16. Signal Manager¶
16.1. Introduction¶
The signal manager provides the capabilities required for asynchronous communication. The directives provided by the signal manager are:
rtems_signal_catch - Establish an ASR
rtems_signal_send - Send signal set to a task
16.2. Background¶
16.2.1. Signal Manager Definitions¶
The signal manager allows a task to optionally define an asynchronous signal routine (ASR). An ASR is to a task what an ISR is to an application’s set of tasks. When the processor is interrupted, the execution of an application is also interrupted and an ISR is given control. Similarly, when a signal is sent to a task, that task’s execution path will be “interrupted” by the ASR. Sending a signal to a task has no effect on the receiving task’s current execution state.
A signal flag is used by a task (or ISR) to inform another task of the
occurrence of a significant situation. Thirty-two signal flags are associated
with each task. A collection of one or more signals is referred to as a signal
set. The data type rtems_signal_set
is used to manipulate signal sets.
A signal set is posted when it is directed (or sent) to a task. A pending signal is a signal that has been sent to a task with a valid ASR, but has not been processed by that task’s ASR.
16.2.2. A Comparison of ASRs and ISRs¶
The format of an ASR is similar to that of an ISR with the following exceptions:
ISRs are scheduled by the processor hardware. ASRs are scheduled by RTEMS.
ISRs do not execute in the context of a task and may invoke only a subset of directives. ASRs execute in the context of a task and may execute any directive.
When an ISR is invoked, it is passed the vector number as its argument. When an ASR is invoked, it is passed the signal set as its argument.
An ASR has a task mode which can be different from that of the task. An ISR does not execute as a task and, as a result, does not have a task mode.
16.2.3. Building a Signal Set¶
A signal set is built by a bitwise OR of the desired signals. The set of valid
signals is RTEMS_SIGNAL_0
through RTEMS_SIGNAL_31
. If a signal is not
explicitly specified in the signal set, then it is not present. Signal values
are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each signal appears exactly once
in the component list.
This example demonstrates the signal parameter used when sending the signal set
consisting of RTEMS_SIGNAL_6
, RTEMS_SIGNAL_15
, and RTEMS_SIGNAL_31
.
The signal parameter provided to the rtems_signal_send
directive should be
RTEMS_SIGNAL_6 | RTEMS_SIGNAL_15 | RTEMS_SIGNAL_31
.
16.2.4. Building an ASR Mode¶
In general, an ASR’s mode is built by a bitwise OR of the desired mode components. The set of valid mode components is the same as those allowed with the task_create and task_mode directives. A complete list of mode options is provided in the following table:
|
is masked by |
|
is masked by |
|
is masked by |
|
is masked by |
|
is masked by |
|
is masked by |
|
is masked by |
|
is masked by |
Mode values are specifically designed to be mutually exclusive, therefore
bitwise OR and addition operations are equivalent as long as each mode appears
exactly once in the component list. A mode component listed as a default is
not required to appear in the mode list, although it is a good programming
practice to specify default components. If all defaults are desired, the mode
DEFAULT_MODES
should be specified on this call.
This example demonstrates the mode parameter used with the
rtems_signal_catch
to establish an ASR which executes at interrupt level
three and is non-preemptible. The mode should be set to
RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT
to indicate the desired
processor mode and interrupt level.
16.3. Operations¶
16.3.1. Establishing an ASR¶
The rtems_signal_catch
directive establishes an ASR for the calling task.
The address of the ASR and its execution mode are specified to this directive.
The ASR’s mode is distinct from the task’s mode. For example, the task may
allow preemption, while that task’s ASR may have preemption disabled. Until a
task calls rtems_signal_catch
the first time, its ASR is invalid, and no
signal sets can be sent to the task.
A task may invalidate its ASR and discard all pending signals by calling
rtems_signal_catch
with a value of NULL for the ASR’s address. When a
task’s ASR is invalid, new signal sets sent to this task are discarded.
A task may disable ASR processing (RTEMS_NO_ASR
) via the task_mode
directive. When a task’s ASR is disabled, the signals sent to it are left
pending to be processed later when the ASR is enabled.
Any directive that can be called from a task can also be called from an ASR. A
task is only allowed one active ASR. Thus, each call to rtems_signal_catch
replaces the previous one.
Normally, signal processing is disabled for the ASR’s execution mode, but if signal processing is enabled for the ASR, the ASR must be reentrant.
16.3.2. Sending a Signal Set¶
The rtems_signal_send
directive allows both tasks and ISRs to send signals
to a target task. The target task and a set of signals are specified to the
rtems_signal_send
directive. The sending of a signal to a task has no
effect on the execution state of that task. If the task is not the currently
running task, then the signals are left pending and processed by the task’s ASR
the next time the task is dispatched to run. The ASR is executed immediately
before the task is dispatched. If the currently running task sends a signal to
itself or is sent a signal from an ISR, its ASR is immediately dispatched to
run provided signal processing is enabled.
If an ASR with signals enabled is preempted by another task or an ISR and a new signal set is sent, then a new copy of the ASR will be invoked, nesting the preempted ASR. Upon completion of processing the new signal set, control will return to the preempted ASR. In this situation, the ASR must be reentrant.
Like events, identical signals sent to a task are not queued. In other words, sending the same signal multiple times to a task (without any intermediate signal processing occurring for the task), has the same result as sending that signal to that task once.
16.3.3. Processing an ASR¶
Asynchronous signals were designed to provide the capability to generate software interrupts. The processing of software interrupts parallels that of hardware interrupts. As a result, the differences between the formats of ASRs and ISRs is limited to the meaning of the single argument passed to an ASR. The ASR should have the following calling sequence and adhere to C calling conventions:
rtems_asr user_routine(
rtems_signal_set signals
);
When the ASR returns to RTEMS the mode and execution path of the interrupted task (or ASR) is restored to the context prior to entering the ASR.
16.4. Directives¶
This section details the signal manager’s directives. A subsection is dedicated to each of this manager’s directives and describes the calling sequence, related constants, usage, and status codes.
16.4.1. SIGNAL_CATCH - Establish an ASR¶
- CALLING SEQUENCE:
rtems_status_code rtems_signal_catch( rtems_asr_entry asr_handler, rtems_mode mode );
- DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL
always successful
- DESCRIPTION:
This directive establishes an asynchronous signal routine (ASR) for the calling task. The asr_handler parameter specifies the entry point of the ASR. If asr_handler is NULL, the ASR for the calling task is invalidated and all pending signals are cleared. Any signals sent to a task with an invalid ASR are discarded. The mode parameter specifies the execution mode for the ASR. This execution mode supersedes the task’s execution mode while the ASR is executing.
- NOTES:
This directive will not cause the calling task to be preempted.
The following task mode constants are defined by RTEMS:
RTEMS_PREEMPT
is masked by
RTEMS_PREEMPT_MASK
and enables preemptionRTEMS_NO_PREEMPT
is masked by
RTEMS_PREEMPT_MASK
and disables preemptionRTEMS_NO_TIMESLICE
is masked by
RTEMS_TIMESLICE_MASK
and disables timeslicingRTEMS_TIMESLICE
is masked by
RTEMS_TIMESLICE_MASK
and enables timeslicingRTEMS_ASR
is masked by
RTEMS_ASR_MASK
and enables ASR processingRTEMS_NO_ASR
is masked by
RTEMS_ASR_MASK
and disables ASR processingRTEMS_INTERRUPT_LEVEL(0)
is masked by
RTEMS_INTERRUPT_MASK
and enables all interruptsRTEMS_INTERRUPT_LEVEL(n)
is masked by
RTEMS_INTERRUPT_MASK
and sets interrupts level n
16.4.2. SIGNAL_SEND - Send signal set to a task¶
- CALLING SEQUENCE:
rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set );
- DIRECTIVE STATUS CODES:
RTEMS_SUCCESSFUL
signal sent successfully
RTEMS_INVALID_ID
task id invalid
RTEMS_INVALID_NUMBER
empty signal set
RTEMS_NOT_DEFINED
ASR invalid
- DESCRIPTION:
This directive sends a signal set to the task specified in id. The signal_set parameter contains the signal set to be sent to the task.
If a caller sends a signal set to a task with an invalid ASR, then an error code is returned to the caller. If a caller sends a signal set to a task whose ASR is valid but disabled, then the signal set will be caught and left pending for the ASR to process when it is enabled. If a caller sends a signal set to a task with an ASR that is both valid and enabled, then the signal set is caught and the ASR will execute the next time the task is dispatched to run.
- NOTES:
Sending a signal set to a task has no effect on that task’s state. If a signal set is sent to a blocked task, then the task will remain blocked and the signals will be processed when the task becomes the running task.
Sending a signal set to a global task which does not reside on the local node will generate a request telling the remote node to send the signal set to the specified task.