RTEMS Logo

RTEMS 4.9.2 On-Line Library


Port Specific Information Disabling of Interrupts by RTEMS

PREV UP NEXT Bookshelf RTEMS CPU Architecture Supplement

1.4.3: Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When these sections are encountered, RTEMS disables all external interrupts before the execution of this section and restores them to the previous level upon completion of the section. RTEMS has been optimized to ensure that interrupts are disabled for the shortest number of instructions possible. Since the precise number of instructions and their execution time varies based upon target CPU family, CPU model, board memory speed, compiler version, and optimization level, it is not practical to provide the precise number for all possible RTEMS configurations.

Historically, the measurements were made by hand analyzing and counting the execution time of instruction sequences during interrupt disable critical sections. For reference purposes, on a 16 Mhz Motorola MC68020, the maximum interrupt disable period was typically approximately ten (10) to thirteen (13) microseconds. This architecture was memory bound and had a slow bit scan instruction. In contrast, during the same period a 14 Mhz SPARC would have a worst case disable time of approximately two (2) to three (3) microseconds because it had a single cycle bit scan instruction and used fewer cycles for memory accesses.

If you are interested in knowing the worst case execution time for a particular version of RTEMS, please contact OAR Corporation and we will be happy to product the results as a consulting service.

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level MUST NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results may occur due to the inability of RTEMS to protect its critical sections. However, ISRs that make no system calls may safely execute as non-maskable interrupts.


PREV UP NEXT Bookshelf RTEMS CPU Architecture Supplement

Copyright © 1988-2008 OAR Corporation