RTEMS

www.rtems.org

RTEMS BSP and Driver Guide

Release 7.0-rc1 (24th January 2026)
© 1988-2026 RTEMS Project and contributors

CONTENTS

Introduction 3
Target Dependent Files 5
2.1 CPUDependent i, 6
2.2 Board Dependent e e 7
2.3 Peripheral Dependent 8
2.4 Questionsto Ask e e e e 9
2.5 CPU Dependent Executive Files 10
2.6 Board Support Package Structure 11
Linker Script 13
3.1 Whatisa“linkemds”file? 14
3.2 Program Sections i e e e e e e e e e e e e e e e 15
3.3 ImageofanExecutable 16
3.4 Example Linker Command Scripto oL 17
3.5 Initialized Data e e e e e 21
Miscellaneous Support Files 23
41 READMEFiles e e e 24
4.2 TIMEeS o e e e e e e e 25
4.3 bsphincludeFile 26
44 tm27.hiIncludeFile 27
4.5 sbrk() Implementation 28
4.6 bsp_fatal extension() - Cleanup the Hardware 29
4.7 Configuration Macros oo v i it 30
4.8 set vector() - Install an Interrupt Vector 31
4.9 Interrupt Delay Profiling 32
4.10 Programmable Interrupt Controller APT 33
System Initialization 35
5.1 Introduction e e e 36
5.2 Low-Level Initialization via Start Code in the Start File (start.o) 37
5.3 High-Level Initialization via boot card() 38

5.3.1 Early BSP Initialization 38

5.3.2 Memory Information 38

5.3.3 BSPInitialization e 38
54 ErrorHandling e e e e 39
Console Driver 41

6.1 IntroduCtion v v v v i e e e e e e e e e e e e e e

6.2 Build Systemand Files.
6.3 Driver Functioning Modes e e
6.4 Polled Mode e e e
6.5 InterruptDrivenMode e e e e
6.6 FirstOpen e e e e
6.7 LastClose i i e e e e e
6.8 SetAttributes L.
6.9 I0Control e e
6.10 Flow Control o e e e e e e
6.11 General Initialization

Clock Driver

7.1 Introduction e e e
7.2 Initialization e e e e e e e e e

7.2.1 Timecounter Variantt

7.2.2 Simple Timecounter Variant

7.2.3 Clock TickOnly Variant.
7.3 Install Clock Tick Interrupt Service Routine
7.4 Support AtTick e e e e e
7.5 System Shutdown Support oo
7.6 SMP SUPPOIt e e e e e e e e e e e e e e e e e
7.7 Multiple Clock Driver Ticks Per Clock Tick
7.8 Clock Driver Ticks Counter

8 Target Hash

9 Entropy Source

10 CAN Driver

10.1 Include Headers o i i ittt e
10.1.1 Application e e e
10.1.2 BSP Registration v i vt
10.1.3 Device Driver e e e

10.2 RTEMS CAN API e e e e e e e e e e e
10.2.1 Opening Device and Configuration

10.2.1.1 Managing Queues i
10.2.1.2 Setting Bit Timing,
10.2.1.3 SettingModeo e e
10.2.1.4 StartingChip
10.2.1.5 Stopping Chip e
10.2.1.6 Controller Related Information
10.2.1.7 Controller Statistics e
10.2.2 CAN Frame Representation. o v v v v v v v v v ..
10.2.3 Frame Transmission. o o it
10.2.4 Frame Reception
10.2.5 Error Reporting e

10.3 Driver Interface e e e
10.3.1 Chip Initialization e
10.3.2 Frame TranSmiSSion v v v v v it e i e e e e e e e e
10.3.3 Frame Reception i i i v i it et et
10.3.4 Worker Thread Example

ii

10.4 Registering CANBus e e 96

10.4.1 Example L e e e 96

11 I2C Driver 97
12 SPI Driver 99
13 Real-Time Clock Driver 101
13.1 Introduction e e 102
13.2 Initialization e e e e e e e e e e e e e 104
13.3 setRealTimeToRTEMS et e e e e e e e 105
13.4 setRealTimeFromRTEMS @ i i it it i e e 106
13.5 getRealTime e e e e 107
13.6 setRealTime e e e 108
13.7 checkRealTime e e e e e 109

14 Networking Driver 111
14.1 Introduction i e e e 112
14.2 Learn about the network device 113
14.3 Understand the network scheduling conventions 114
14.4 Network Driver Makefile e 115
14.5 Write the Driver Attach Function 116
14.6 Write the Driver Start Function. o v v i v 118
14.7 Write the Driver Initialization Function.« 119
14.8 Write the Driver Transmit Task 120
14.9 Write the Driver Receive Task v i it e e 121
14.10Write the Driver Interrupt Handler 122
14.11Write the Driver IOCTL Function v v v v v vt it e e e e e 123
14.12Write the Driver Statistic-Printing Function 124

15 Frame Buffer Driver 125
15.1 Introduction @ v i i e e e e e 126
15.2 Driver Function OVerview i i i e e e e e e e e e e 127
15.2.1 Initialization o i e e e e e 127

15.2.2 Opening the Frame Buffer Device 127

15.2.3 Closing the Frame Buffer Device 128

15.2.4 Reading from the Frame Buffer Device 128

15.2.5 Writing to the Frame Buffer Device 129

15.2.6 Frame Buffer IO Control v 129

16 Ada95 Interrupt Support 131
16.1 Introduction e e e 132
16.2 Mapping Interrupts to POSIX Signals 133
16.3 Example Ada95 Interrupt Program i 134
16.4 Version Requirements it it 135
17 Shared Memory Support Driver 137
17.1 Shared Memory Configuration Table 138
17.2 Primitives e e e e e e e e e e e e e e e e e 140
17.2.1 Convert Address. o i v i i e e e e 140

17.2.2 GetConfiguration e 140

17.2.3 Locking Primitives 140

17.2.3.1 Initializinga SharedLock 141

iii

17.2.3.2 Acquiring a SharedLock 141

17.2.3.3 Releasinga SharedLock 141

17.3 Installing the MPCIISR i ittt e e et 143

18 Timer Driver 145
18.1 Benchmark Timer i i i i et e e 146
18.1.1 benchmark timer initialize 146

18.1.2 Read_timer 146

18.1.3 benchmark timer disable subtracting average overhead. 146

18.2 gen68340 UART FIFO FULLMOde . . « o v oo oo e e e 147

19 ATA Driver 149
19.1 Terms o v i v i e e e e e e e e e e 150
19.2 Introduction vttt e e e e e e e e e e 151
19.3 Initialization e e e e e e e e 152
19.4 ATA Driver Architecture o i e e e 153
19.4.1 ATA Driver Main Internal Data Structures 153

19.4.2 Brief ATA Driver Core OVerview v v v v v v v v v v 154

20 IDE Controller Driver 155
20.1 Introduction i i e e e e e e e 156
20.2 Initialization e e e e 157
20.3 Read IDE Controller Register 158
20.4 Write IDE Controller Register 159
20.5 Read Data Block Through IDE Controller Data Register 160
20.6 Write Data Block Through IDE Controller Data Register 161

21 Command and Variable Index 163
22 Doxygen Recommendations for BSPs 165
22,1 BSPBasiCs i e e e e e e e e e e 166
22.2 Common Features Found InBSPs, 167
22.3 Shared Features i i i e e e e 168
22.4 Rationale e e e 169
22.5 The Structure of the bsps/ directory 170
22.6 DOXYZEN i v it e e e e e e 173
227 Doxygen Basics e e 174
22.8 Doxygen Headers i i e 175
22.9 The @defgroup Commandttt 176
22.10The @ingroup Command i it 177
22.11The @brief Command 0 i i e e e 178
22.12The Two Types of Doxygen Headers 179
22.13Generating Documentation L oo 181
22.14Doxygen in bsps/ e e e e e e e 182
22.15Group Naming Conventions o v vt vt vt e e e e 183
22.16Where to place @defgroup Lo 184
22.17 @defgroups for CPU Architectures and Shared Directories 185
22.18@defgroups for BSPs e e e e e e e 186
22.19 @defgroups for Everything Else 187
22.20Look Common Features Implemented 188
22.21Check out the Makefile 189
22.22Start with a .h, and look for files that include it 190

iv

22.23Files with similarnames e e e e e e 191

22.24Where to place @INgroup o v v it e e e e e e e e e e e 192
22.25 @ingroup in the first type of Doxygen Header 193
22.26 @ingroup in the second type of Doxygen Header 194
22.27 @ingroup for sharedcode L L. 195
Index 197

vi

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

Copyrights and License

© 2017 Christian Mauderer

© 2016, 2020 embedded brains GmbH & Co. KG

© 2016, 2020 Sebastian Huber

© 1988, 2017 On-Line Applications Research Corporation (OAR)

This document is available under the

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at . Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

© RTEMS Online Resources
* Home
* Documentation
* Mailing Lists
* Bug Reporting
* @it Repositories

* Developers

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This document describes how to create or modify a Board Support Package (BSP) for RTEMS,
i.e. how to port RTEMS on a new microcontroller, system on chip (SoC) or board. It is strongly
recommended to notify the about any activity in this area and
maybe also for specific work packages.

A basic BSP consists of the following components:
* Low-level initialization
* Console driver

e Clock driver

https://lists.rtems.org/mailman/listinfo/devel
https://gitlab.rtems.org/rtems/rtos/rtems

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 1 Section 1.0

4 Chapter 1. Introduction

CHAPTER

TWO

TARGET DEPENDENT FILES

A\ Warning

This chapter contains outdated and confusing information.

RTEMS has a multi-layered approach to portability. This is done to maximize the amount of
software that can be reused. Much of the RTEMS source code can be reused on all RTEMS
platforms. Other parts of the executive are specific to hardware in some sense. RTEMS classifies
target dependent code based upon its dependencies into one of the following categories.

* CPU dependent
* Board dependent

* Peripheral dependent

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 2 Section 2.1

2.1 CPU Dependent

This class of code includes the foundation routines for the executive proper such as the con-
text switch and the interrupt subroutine implementations. Sources for the supported processor
families can be found in cpukit/score/cpu. A good starting point for a new family of proces-
sors is the no_cpu directory, which holds both prototypes and descriptions of each needed CPU
dependent function.

CPU dependent code is further subcategorized if the implementation is dependent on a particu-
lar CPU model. For example, the MC68000 and MC68020 processors are both members of the
m68k CPU family but there are significant differences between these CPU models which RTEMS
must take into account.

The source code found in the cpukit/score/cpu is required to only depend upon the CPU model
variations that GCC distinguishes for the purposes of multilib’ing. Multilib is the term the GNU
community uses to refer to building a single library source multiple times with different com-
piler options so the binary code generated is compatible. As an example, from GCC’s perspec-
tive, many PowerPC CPU models are just a PPC603e. Remember that GCC only cares about the
CPU code itself and need not be aware of any peripherals. In the embedded community, we are
exposed to thousands of CPU models which are all based upon only a relative small number of
CPU cores.

Similarly for the SPARC/ERC32 BSP, the RTEMS_CPU is specified as erc32 which is the name of
the CPU model and BSP for this SPARC V7 system on chip. But the multilib variant used is
actually v7 which indicates the ERC32 CPU core is a SPARC V7.

6 Chapter 2. Target Dependent Files

Chapter 2 Section 2.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

2.2 Board Dependent

This class of code provides the most specific glue between RTEMS and a particular board. This
code is represented by the Board Support Packages and associated Device Drivers. Sources for
the BSPs included in the RTEMS distribution are located in the directory . The BSP source
directory is further subdivided based on the CPU family and BSP.

Some BSPs may support multiple board models within a single board family. This is necessary
when the board supports multiple variants on a single base board. For example, the SPARC
LEON3 board family has a fairly large number of variations based upon the particular CPU
model and the peripherals actually placed on the SoC.

2.2. Board Dependent 7

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 2 Section 2.3

2.3 Peripheral Dependent

This class of code provides a reusable library of peripheral device drivers which can be tailored
easily to a particular board. The libchip library is a collection of reusable software objects that
correspond to standard controllers. Just as the hardware engineer chooses a standard controller
when designing a board, the goal of this library is to let the software engineer do the same thing.

The source code for the reusable peripheral driver library may be found in the directory

or . The source code is further divided based upon the class of
hardware. Example classes include serial communications controllers, real-time clocks, non-
volatile memory, and network controllers.

8 Chapter 2. Target Dependent Files

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/dev
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/dev

Chapter 2 Section 2.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

2.4 Questions to Ask

When evaluating what is required to support RTEMS applications on a particular target board,
the following questions should be asked:

* Does a BSP for this board exist?
e Does a BSP for a similar board exists?
* Is the board’s CPU supported?

If there is already a BSP for the board, then things may already be ready to start developing ap-
plication software. All that remains is to verify that the existing BSP provides device drivers for
all the peripherals on the board that the application will be using. For example, the application
in question may require that the board’s Ethernet controller be used and the existing BSP may
not support this.

If the BSP does not exist and the board’s CPU model is supported, then examine the reusable
chip library and existing BSPs for a close match. Other BSPs and libchip provide starting points
for the development of a new BSP. It is often possible to copy existing components in the
reusable chip library or device drivers from BSPs from different CPU families as the starting
point for a new device driver. This will help reduce the development effort required.

If the board’s CPU family is supported but the particular CPU model on that board is not, then
the RTEMS port to that CPU family will have to be augmented. After this is done, development
of the new BSP can proceed.

Otherwise both CPU dependent code and the BSP will have to be written.

This type of development often requires specialized skills and there are people in the community
who provide those services. If you need help in making these modifications to RTEMS try a
search in a search engine with something like “RTEMS support”. The RTEMS Project encourages
users to use support services however we do not endorse any providers.

2.4. Questions to Ask 9

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 2 Section 2.5

2.5 CPU Dependent Executive Files

The CPU dependent files in the RTEMS executive source code are found in the cpukit/score/
cpu/${RTEMS_CPU} directories. The ${RTEMS_CPU} is a particular architecture, e.g. arm, pow-
erpc, riscy, sparc, etc.

Within each CPU dependent directory inside the executive proper is a file named cpu.h which
contains information about each of the supported CPU models within that family.

10 Chapter 2. Target Dependent Files

Chapter 2 Section 2.6 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

2.6 Board Support Package Structure

The BSPs are all under the directory. The structure in this source subtree is:
* bsps/shared
* bsps/${RTEMS_CPU}/shared
* bsps/${RTEMS_CPU}/${RTEMS_BSP_FAMILY}

The ${RTEMS_CPU} is a particular architecture, e.g. arm, powerpc, riscv, sparc, etc. The
shared directories contain code shared by all BSPs or BSPs of a particular architecture. The
${RTEMS_BSP_FAMILY?} directories contain BSPs for a particular system on chip (SoC) or proces-
sor family.

Use the following structure under the bsps/${RTEMS_CPU}/${RTEMS_BSP_FAMILY}:
* ata - the legacy ATA/IDE driver
* btimer - the legacy benchmark timer driver
* cache - cache controller support
* clock - the clock driver
* config - build system configuration files
* console - the console driver
* contrib - imports of external sources
— the layout of external sources should be used as is if possible
* i2c - the I12C driver
* include - public header files
* irq - the interrupt controller support
* mpci - support for heterogeneous multiprocessing (RTEMS_MULTIPROCESSING)
* net - legacy network stack drivers
* rtc - the RTC driver
e spi - the SPI driver

* start - everything required to run a minimal application without devices

start.S - lowest level startup code

bspstart.c - low level startup code

bspsmp.c - SMP support

linkcmds - a linker command file

2.6. Board Support Package Structure 11

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 2 Section 2.6

12 Chapter 2. Target Dependent Files

CHAPTER

THREE

LINKER SCRIPT

A\ Warning

This chapter contains outdated and confusing information.

13

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 3 Section 3.1

3.1 What is a “linkemds” file?

The linkcmds file is a script which is passed to the linker at linking time. This file describes
the memory configuration of the board as needed to link the program. Specifically it specifies
where the code and data for the application will reside in memory.

The format of the linker script is defined by the GNU Loader 1d which is included as a com-
ponent of the GNU Binary Utilities. If you are using GNU/Linux, then you probably have the
documentation installed already and are using these same tools configured for native use. Please
visit the Binutils project if you need more information.

14 Chapter 3. Linker Script

http://sourceware.org/binutils/

Chapter 3 Section 3.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

3.2 Program Sections

An embedded systems programmer must be much more aware of the placement of their exe-
cutable image in memory than the average applications programmer. A program destined to be
embedded as well as the target system have some specific properties that must be taken into
account. Embedded machines often mean average performances and small memory usage. It is
the memory usage that concerns us when examining the linker command file.

Two types of memories have to be distinguished:
* RAM - volatile offering read and write access
* ROM - non-volatile but read only

Even though RAM and ROM can be found in every personal computer, one generally doesn’t care
about them. In a personal computer, a program is nearly always stored on disk and executed in
RAM. Things are a bit different for embedded targets: the target will execute the program each
time it is rebooted or switched on. The application program is stored in non-volatile memory
such as ROM, PROM, EEPROM, or Flash. On the other hand, data processing occurs in RAM.

This leads us to the structure of an embedded program. In rough terms, an embedded program
is made of sections. It is the responsibility of the application programmer to place these sections
in the appropriate place in target memory. To make this clearer, if using the COFF object file
format on the Motorola m68k family of microprocessors, the following sections will be present:

* code (.text) section: is the program’s code and it should not be modified. This section
may be placed in ROM.

* non-initialized data (.bss) section: holds uninitialized variables of the program. It can
stay in RAM.

* initialized data (.data) section: holds the initialized program data which may be modified
during the program’s life. This means they have to be in RAM. On the other hand, these
variables must be set to predefined values, and those predefined values have to be stored
in ROM.

O Note

Many programs and support libraries unknowingly assume that the .bss section and, possi-
bly, the application heap are initialized to zero at program start. This is not required by the
ISO/ANSI C Standard but is such a common requirement that most BSPs do this.

That brings us up to the notion of the image of an executable: it consists of the set of the
sections that together constitute the application.

3.2. Program Sections 15

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 3 Section 3.3

3.3 Image of an Executable

As a program executable has many sections (note that the user can define their own, and that
compilers define theirs without any notice), one has to specify the placement of each section
as well as the type of memory (RAM or ROM) the sections will be placed into. For instance,
a program compiled for a Personal Computer will see all the sections to go to RAM, while a
program destined to be embedded will see some of his sections going into the ROM.

The connection between a section and where that section is loaded into memory is made at link
time. One has to let the linker know where the different sections are to be placed once they are
in memory.

The following example shows a simple layout of program sections. With some object formats,
there are many more sections but the basic layout is conceptually similar.

.text RAM or ROM
.data RAM
.bss RAM

16 Chapter 3. Linker Script

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44

Chapter 3 Section 3.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

3.4 Example Linker Command Script

The GNU linker has a command language to specify the image format. This command language
can be quite complicated but most of what is required can be learned by careful examination of
a well-documented example. The following is a heavily commented version of the linker script
used with the the gen68340 BSP This file can be found at $BSP340 ROOT/startup/linkcmds.

/*

* Specify that the output is to be coff-m68k regardless of what the
* native object format is.

*/
OUTPUT_FORMAT (cof f-m68k)

/*

* Set the amount of RAM on the target board.

* NOTE: The default may be overridden by passing an argument to 1d.
*/
RamSize = DEFINED(RamSize) ? RamSize : 4M;

/*

* Set the amount of RAM to be used for the application heap. Objects
* allocated using malloc() come from this area. Having a tight heap
* size is somewhat difficult and multiple attempts to squeeze it may
* be needed reducing memory usage is important. If all objects are
* allocated from the heap at system initialization time, this eases
* the sizing of the application heap.

*

* NOTE 1: The default may be overridden by passing an argument to 1d.
*

* NOTE 2: The TCP/IP stack requires additional memory in the Heap.

*

* NOTE 3: The GNAT/RTEMS run-time requires additional memory in

* the Heap.

*/

HeapSize = DEFINED(HeapSize) ? HeapSize : 0x10000;

/*

* Set the size of the starting stack used during BSP initialization
* until first task switch. After that point, task stacks allocated
* by RTEMS are used.
*
*

NOTE: The default may be overridden by passing an argument to 1d.
StackSize = DEFINED(StackSize) ? StackSize : 0x1000;
Starting addresses and length of RAM and ROM.

Chip Selects should be initialized such that the code addresses

*
*
* The addresses must be valid addresses on the board. The
*
* are valid.

MEMORY {
ram : ORIGIN = 0x10000000, LENGTH = 4M

(continues on next page)

3.4. Example Linker Command Script 17

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 3 Section 3.4

(continued from previous page)
rom : ORIGIN = 0x01000000, LENGTH = 4M
}
/*
* This is for the network driver. See the Networking documentation
* for more details.
*/
ETHERNET_ADDRESS =
DEFINED(ETHERNET_ADDRESS) ? ETHERNET_ADDRESS : @xDEAD12;

/*

* The following defines the order in which the sections should go.
* It also defines a number of variables which can be used by the
* application program.

*

* NOTE: Each variable appears with 1 or 2 leading underscores to
* ensure that the variable is accessible from C code with a
* single underscore. Some object formats automatically add
* a leading underscore to all C global symbols.

*/

SECTIONS {

/*

* Make the RomBase variable available to the application.

*/

_RamSize = RamSize;
__RamSize = RamSize;
/*
* Boot PROM - Set the RomBase variable to the start of the ROM.
*/
rom : {
_RomBase = .;
__RomBase = .;
} >rom
/*
* Dynamic RAM - set the RamBase variable to the start of the RAM.
*/
ram : {
_RamBase = .;
__RamBase = .;
} >ram
/*
* Text (code) goes into ROM
*/
.text @ {
/*
* Create a symbol for each object (.0).
*/
CREATE_OBJECT_SYMBOLS
/*
* Put all the object files code sections here.
*/

(continues on next page)

18 Chapter 3. Linker Script

Chapter 3 Section 3.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

(continued from previous page)

oa| *(.text)

os| . = ALIGN (16); /* go to a 16-byte boundary =*/
96| /*

97 * C++ constructors and destructors

98

99 * NOTE: See the CROSSGCC mailing-list FAQ for
100 * more details about the "\[...... 1".
101 */

102 __CTOR_LIST__ = .;

103 [......]

104 __DTOR_END__ = .;

05| /*

106 * Declares where the .text section ends.
107 */

108 etext = .;

109| _etext = .;

10| } >rom

| /*

12| * Exception Handler Frame section

13| */

14| .eh_fram : {

1s| . = ALIGN (16);

116| *(.eh_fram)

17| } >ram

18| /*

119 * GCC Exception section

120 */

121] .gcc_exc : {

122/ . = ALIGN (16);

123) *(.gcc_exc)

124| } >ram

125| /*

126| * Special variable to let application get to the dual-ported
127 * memory.

128] */

129| dpram : {

130 m340 = .;

131) _m340 = .;

132 . += (8 * 1024);
133 } >ram

134| /*

135 * Initialized Data section goes in RAM
136| */

137 .data : {

138 copy_start = .;
139| *(.data)

140 . = ALIGN (16);
141 _edata = .;

42| copy_end = .;

(continues on next page)

3.4. Example Linker Command Script 19

143
144
145

146

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

188

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 3 Section 3.4

(continued from previous page)

} >ram
/*
* Uninitialized Data section goes in ROM
*/
.bss : {
/*
* M68K specific: Reserve some room for the Vector Table
* (256 vectors of 4 bytes).
*/
M68Kvec = .;
_M68Kvec = .;
. += (256 * 4);
/*
* Start of memory to zero out at initialization time.
*/
clear_start = .;
/*
* Put all the object files uninitialized data sections
* here.
*/
*(.bss)
*(COMMON)
. = ALIGN (16);
_end = .;
/*
* Start of the Application Heap
*/
_HeapStart = .;
__HeapStart = .;
. += HeapSize;
/*
* The Starting Stack goes after the Application Heap.
* M68K stack grows down so start at high address.
*/
. += StackSize;
. = ALIGN (16);
stack_init = .;
clear_end = .;
/*
* The RTEMS Executive Workspace goes here. RTEMS
* allocates tasks, stacks, semaphores, etc. from this
* memory.
*/
_WorkspaceBase = .;
__WorkspaceBase = .;
} >ram

20 Chapter 3.

Linker Script

Chapter 3 Section 3.5 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

3.5 Initialized Data

Now there’s a problem with the initialized data: the .data section has to be in RAM as this data
may be modified during the program execution. But how will the values be initialized at boot
time?

One approach is to place the entire program image in RAM and reload the image in its entirety
each time the program is run. This is fine for use in a debug environment where a high-speed
connection is available between the development host computer and the target. But even in
this environment, it is cumbersome.

The solution is to place a copy of the initialized data in a separate area of memory and copy it
into the proper location each time the program is started. It is common practice to place a copy
of the initialized .data section at the end of the code (.text) section in ROM when building a
PROM image. The GNU tool objcopy can be used for this purpose.

The following figure illustrates the steps a linked program goes through to become a download-
able image.

.data (RAM) .data (RAM)

.bss (RAM) .bss (RAM)

.text (ROM) .text (ROM) text
copy of .data (ROM) copy of .data

Step 1 Step 2 Step 3

In Step 1, the program is linked together using the BSP linker script.

In Step 2, a copy is made of the .data section and placed after the .text section so it can be
placed in PROM. This step is done after the linking time. There is an example of doing this in
the file SRTEMS ROOT/make/custom/gen68340.cfg:

1|# make a PROM image using objcopy

2| m68k-rtems-objcopy --adjust-section-vma \

3| .data="m68k-rtems-objdump --section-headers $(basename $@).exe | awk '[...]1'" \
4| $(basename $@).exe

O Note

The address of the “copy of .data section” is created by extracting the last address in the
.text section with an awk script. The details of how this is done are not relevant.

Step 3 shows the final executable image as it logically appears in the target’s non-volatile pro-
gram memory. The board initialization code will copy the ““copy of .data section” (which are
stored in ROM) to their reserved location in RAM.

3.5. Initialized Data 21

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 3 Section 3.5

22 Chapter 3. Linker Script

CHAPTER

FOUR

MISCELLANEOUS SUPPORT FILES

A\ Warning

This chapter contains outdated and confusing information.

23

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 4 Section 4.1

4.1 README Files

Most BSPs provide one or more README files. Generally, there is a README file at the top of
the BSP source. This file describes the board and its hardware configuration, provides vendor
information, local configuration information, information on downloading code to the board,
debugging, etc... The intent of this file is to help someone begin to use the BSP faster.

A README file in a BSP subdirectory typically explains something about the contents of that sub-
directory in greater detail. For example, it may list the documentation available for a particular
peripheral controller and how to obtain that documentation. It may also explain some particu-
larly cryptic part of the software in that directory or provide rationale on the implementation.

24 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

4.2 Times

This file contains the results of the RTEMS Timing Test Suite. It is in a standard format so that
results from one BSP can be easily compared with those of another target board.

If a BSP supports multiple variants, then there may be multiple times files. Usually these are
named times.VARIANTN.

4.2. Times 25

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 4 Section 4.3

4.3 bsp.h Include File

The file include/bsp.h contains prototypes and definitions specific to this board. Every BSP is
required to provide a bsp.h. The best approach to writing a bsp.h is copying an existing one as
a starting point.

Many bsp. h files provide prototypes of variables defined in the linker script (1inkcmds).

26 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

4.4 tm27.h Include File

The tm27 test from the RTEMS Timing Test Suite is designed to measure the length of time
required to vector to and return from an interrupt handler. This test requires some help from
the BSP to know how to cause and manipulate the interrupt source used for this measurement.
The following is a list of these:

* MUST_WAIT_FOR_INTERRUPT - modifies behavior of tm27.

e Install_tm27_vector - installs the interrupt service routine for the Interrupt Benchmark
Test (tm27).

* Cause_tm27_intr - generates the interrupt source used in the Interrupt Benchmark Test
(tm27).

* Clear_tm27_intr - clears the interrupt source used in the Interrupt Benchmark Test
(tm27).

* Lower_tm27_intr - lowers the interrupt mask so the interrupt source used in the Interrupt
Benchmark Test (tm27) can generate a nested interrupt.

All members of the Timing Test Suite are designed to run WITHOUT the Clock Device Driver
installed. This increases the predictability of the tests’ execution as well as avoids occassionally
including the overhead of a clock tick interrupt in the time reported. Because of this it is
sometimes possible to use the clock tick interrupt source as the source of this test interrupt. On
other architectures, it is possible to directly force an interrupt to occur.

4.4. tm27.h Include File 27

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 4 Section 4.5

4.5 sbrk() Implementation

Although nearly all BSPs give all possible memory to the C Program Heap at initialization, it
is possible for a BSP to configure the initial size of the heap small and let it grow on demand.
If the BSP wants to dynamically extend the heap used by the C Library memory allocation
routines (i.e. malloc family), then the' “sbrk’ " routine must be functional. The following is the
prototype for this routine:

1{void * sbrk(ptrdiff_t increment)]

The increment amount is based upon the sbrk_amount parameter passed to the bsp_libc_init
during system initialization.

If your BSP does not want to support dynamic heap extension, then you do not have to do
anything special. However, if you want to support sbrk, you must provide an implementation
of this method and define CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK in bsp.h. This informs rtems/
confdefs.h to configure the Malloc Family Extensions which support sbrk.

28 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.6 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

4.6 bsp fatal extension() - Cleanup the Hardware

The bsp_fatal_extension() is an optional BSP specific initial extension invoked once
a fatal system state is reached. Most of the BSPs use the same shared version of
bsp_fatal_extension() that does nothing or performs a system reset. This implementation
is located in the file.

The bsp_fatal_extension() routine can be used to return to a ROM monitor, insure that inter-
rupt sources are disabled, etc... This routine is the last place to ensure a clean shutdown of the
hardware. The fatal source, internal error indicator, and the fatal code arguments are available
to evaluate the fatal condition. All of the non-fatal shutdown sequences ultimately pass their
exit status to rtems_shutdown_executive and this is what is passed to this routine in case the
fatal source is RTEMS_FATAL_SOURCE_EXIT.

On some BSPs, it prints a message indicating that the application completed execution and
waits for the user to press a key before resetting the board. The PowerPC/gen83xx and Pow-
erPC/gen5200 BSPs do this when they are built to support the FreeScale evaluation boards.
This is convenient when using the boards in a development environment and may be disabled
for production use.

4.6. bsp_fatal extension() - Cleanup the Hardware 29

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/start/bspfatal-default.c

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 4 Section 4.7

4.7 Configuration Macros

Each BSP can define macros in bsp.h which alter some of the the default configuration parame-
ters in rtems/confdefs.h. This section describes those macros:

CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK must be defined if the BSP has proper support for
sbrk. This is discussed in more detail in the previous section.

BSP_IDLE_TASK_BODY may be defined to the entry point of a BSP specific IDLE thread
implementation. This may be overridden if the application provides its own IDLE task
implementation.

BSP_IDLE_TASK_STACK_SIZE may be defined to the desired default stack size for the IDLE
task as recommended when using this BSP.

BSP_INTERRUPT_STACK_SIZE may be defined to the desired default interrupt stack size as
recommended when using this BSP. This is sometimes required when the BSP developer
has knowledge of stack intensive interrupt handlers.

BSP_DEFAULT_UNIFIED_WORK_AREAS is defined when the BSP recommends that the unified
work areas configuration should always be used. This is desirable when the BSP is known
to always have very little RAM and thus saving memory by any means is desirable.

30

Chapter 4. Miscellaneous Support Files

-

N

10

11

12

13

Chapter 4 Section 4.8 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

4.8 set _vector() - Install an Interrupt Vector

On targets with Simple Vectored Interrupts, the BSP must provide an implementation of the
set_vector routine. This routine is responsible for installing an interrupt vector. It invokes
the support routines necessary to install an interrupt handler as either a “raw” or an RTEMS
interrupt handler. Raw handlers bypass the RTEMS interrupt structure and are responsible for
saving and restoring all their own registers. Raw handlers are useful for handling traps, debug
vectors, etc.

The set_vector routine is a central place to perform interrupt controller manipulation and
encapsulate that information. It is usually implemented as follows:

rtems_isr_entry set_vector(/* returns old vector */
rtems_isr_entry handler, /* isr routine */
rtems_vector_number vector, /* vector number */
int type /* RTEMS or RAW intr =*/

)

{

if the type is RAW
install the raw vector
else
use rtems_interrupt_catch to install the vector
perform any interrupt controller necessary to unmask the interrupt source
return the previous handler

O Note

The i386, PowerPC and ARM ports use a Programmable Interrupt Controller model which
does not require the BSP to implement set_vector. BSPs for these architectures must pro-
vide a different set of support routines.

4.8. set vector() - Install an Interrupt Vector 31

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 4 Section 4.9

4.9 Interrupt Delay Profiling

The RTEMS profiling needs support by the BSP for the interrupt delay times. In case profil-
ing is enabled via the RTEMS build configuration option RTEMS_PROFILING being set to True.
A BSP may provide data for the interrupt delay times. The BSP can feed interrupt delay
times with the _Profiling_Update_max_interrupt_delay() function (#include <rtems/score/
profiling.h>). For an example please have a look at

32 Chapter 4. Miscellaneous Support Files

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/sparc/leon3/clock/ckinit.c

-

10

11

12

13

14

Chapter 4 Section 4.10 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

4.10 Programmable Interrupt Controller API

A BSP can use the PIC API to install Interrupt Service Routines through a set of generic methods.
In order to do so, the header files and must be included
by the bsp specific irq.h file present in the include/ directory. The irq.h acts as a BSP interrupt
support configuration file which is used to define some important MACROS. It contains the
declarations for any required global functions like bsp_interrupt dispatch(). Thus later on,
every call to the PIC interface requires including <bsp/irq.h>

The generic interrupt handler table is intitalized by invoking the bsp_interrupt_initialize()
method from bsp_start() in the bspstart.c file which sets up this table to store the ISR ad-
dresses, whose size is based on the definition of macros, BSP_INTERRUPT_VECTOR_MIN and
BSP_INTERRUPT_VECTOR_MAX in include/bsp.h

For the generic handler table to properly function, some bsp specific code is required, that
should be present in irq/irq.c. The bsp-specific functions required to be writen by the BSP
developer are :

* bsp_interrupt_facility_initialize() contains bsp specific interrupt initialization
code(Clear Pending interrupts by modifying registers, etc.). This method is called from
bsp_interrupt_initialize() internally while setting up the table.

* bsp_interrupt_handler_default() acts as a fallback handler when no ISR address has
been provided corresponding to a vector in the table.

* bsp_interrupt_dispatch() services the ISR by handling any bsp specific code & calling
the generic method bsp_interrupt_handler_dispatch() which in turn services the inter-
rupt by running the ISR after looking it up in the table. It acts as an entry to the interrupt
switchboard, since the bsp branches to this function at the time of occurrence of an inter-
rupt.

* bsp_interrupt_vector_enable() enables interrupts and is called in irq-generic.c while
setting up the table.

* bsp_interrupt_vector_disable() disables interrupts and is called in irq-generic.c while
setting up the table & during other important parts.

An interrupt handler is installed or removed with the help of the following functions :

rtems_status_code rtems_interrupt_handler_install(/% returns status code */

rtems_vector_number vector, /* interrupt vector =*/

const char *info, /* custom identification.
—text x/

rtems_option options, /*x Type of Interrupt */

rtems_interrupt_handler handler, /* interrupt handler =*/

void *arg /* parameter to be passed

to handler at the time of
invocation */

)

rtems_status_code rtems_interrupt_handler_remove(/* returns status code */
rtems_vector_number vector, /* interrupt vector */
rtems_interrupt_handler handler, /* interrupt handler =*/
void *arg /* parameter to be passed to.

—handler x/

)

4.10. Programmable Interrupt Controller API 33

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/include/bsp/irq-generic.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/include/bsp/irq-info.h

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 4 Section 4.10

34 Chapter 4. Miscellaneous Support Files

CHAPTER

FIVE

SYSTEM INITIALIZATION

35

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 5 Section 5.1

5.1 Introduction

The system initialization consists of a low-level initialization performed by the start code in the
start file (start.o) and a high-level initialization carried out by boot_card(). The final step of
a successful high-level initialization is to switch to the initialization task and change into the
normal system mode with multi-threading enabled. Errors during system initialization are fatal
and end up in a call to _Terminate().

36 Chapter 5. System Initialization

Chapter 5 Section 5.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

5.2 Low-Level Initialization via Start Code in the Start File (start.o)

The start code in the start file (start.o) must be provided by the BSP. It is the first file presented
to the linker and starts the process to link an executable (application image). It should contain
the entry symbol of the executable. It is the responsibility of the linker script in conjunction with
the compiler specifications file or compiler options to put the start code in the correct location in
the executable. The start code is typically written in assembly language since it will tinker with
the stack pointer. The general rule of thumb is that the start code in assembly language should
do the minimum necessary to allow C code to execute to complete the initialization sequence.

The low-level system initialization may depend on a platform initialization carried out by a boot
loader. The low-level system initialization may perform the following steps:

 Initialize the initialization stack. The initialization stack should use the ISR stack area. The
symbols _ISR_Stack_area_begin, _ISR_Stack_area_end, and _ISR_Stack_size should be
used to do this.

* Initialize processor registers and modes.

* Initialize pins.

e Initialize clocks (PLLs).

* Initialize memory controllers.

e Initialize instruction, data, and unified caches.

* Initialize memory management or protection units (MMU).

* Initialize processor exceptions.

* Copy the data sections from a read-only section to the runtime location.
e Set the BSS (.bss) section to zero.

* Initialize the C runtime environment.

* Call boot_card() to hand over to the high-level initialization.

For examples of start file codes see:

5.2. Low-Level Initialization via Start Code in the Start File (start.o) 37

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/shared/start/start.S
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/riscv/shared/start/start.S

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 5 Section 5.3

5.3 High-Level Initialization via boot_card()

The high-level initialization is carried out by boot_card(). For the high-level initialization steps
see the Initialization Manager chapter in the RTEMS Classic API Guide. There are several
system initialization steps which must be implemented by the BSP.

5.3.1 Early BSP Initialization

The BSP may provide a system initialization handler (order RTEMS_SYSINIT_BSP_EARLY) to per-
form an early BSP initialization. This handler is invoked before the memory information and
high-level dynamic memory services (workspace and C program heap) are initialized.

5.3.2 Memory Information

The BSP must provide the memory information to the system with an implementation
of the _Memory_Get() function. The BSP should use the default implementation in

. The memory information is used by low-
level memory consumers such as the per-CPU data, the workspace, and the C program heap.
The BSP may use a system initialization handler (order RTEMS_SYSINIT_MEMORY) to set up the
infrastructure used by _Memory_Get ().

5.3.3 BSP Initialization

The BSP must provide an implementation of the bsp_start() function. This function is regis-
tered as a system initialization handler (order RTEMS_SYSINIT_BSP_START) in the module imple-
menting boot_card(). The bsp_start() function should perform a general platform initializa-
tion. The interrupt controllers are usually initialized here. The C program heap may be used in
this handler. It is not allowed to create any operating system objects, e.g. RTEMS semaphores
or tasks. The BSP may register additional system initialization handlers in the module imple-
menting bsp_start().

38 Chapter 5. System Initialization

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/start/bspgetworkarea-default.c

Chapter 5 Section 5.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

5.4 Error Handling

Errors during system initialization are fatal and end up in a call to _Terminate(). See also the
Fatal Error Manager chapter in the RTEMS Classic API Guide.

The BSP may use BSP-specific fatal error codes, see

The BSP should provide an initial extension which implements a fatal error handler. It should
use the default implementation provided by and

. If the default implementation is used, the BSP must implement a bsp_reset() func-
tion which should reset the platform.

5.4. Error Handling 39

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/include/bsp/fatal.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/include/bsp/default-initial-extension.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/start/bspfatal-default.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/start/bspfatal-default.c

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 5 Section 5.4

40 Chapter 5. System Initialization

CHAPTER

SIX

CONSOLE DRIVER

A\ Warning

The low-level driver API changed between RTEMS 4.10 and RTEMS 4.11. The legacy call-
back API is still supported, but its use is discouraged. The following functions are deprecated:

* rtems_termios_open()
* rtems_termios_close()

This manual describes the new API.

41

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 6 Section 6.1

6.1 Introduction

This chapter describes the operation of a console driver using the RTEMS POSIX Termios sup-
port. Traditionally, RTEMS has referred to all serial device drivers as console drivers. is
defined by IEEE Std 1003.1-2008 (POSIX.1-2008). It supports various modes of operations at
application level. This chapter focuses on the low-level serial device driver. Additional Termios
information can be found in the manpage or the

manpage.

There are the following software layers.

Application
Termios
Low-Level Device Driver

In the default application configuration RTEMS opens during system initialization a /dev/
console device file to create the file descriptors O, 1 and 2 used for standard input, output and
error, respectively. The corresponding device driver is usually a Termios serial device driver de-
scribed here. The standard file descriptors are used by standard C library calls such as printf ()
or scanf () or directly via the read() or write() system calls.

42 Chapter 6. Console Driver

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html
http://man7.org/linux/man-pages/man3/termios.3.html
https://www.freebsd.org/cgi/man.cgi?query=termios&sektion=4

10

11

12

13

14

15

16

17

18

19

20

Chapter 6 Section 6.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

6.2 Build System and Files

A new serial device driver should consist of three parts.

e A section in the BSPs

0|0

libbsp_a_SOURCES += ../../shared/dev/serial/console-termios.c
libbsp_a_SOURCES += console/console.c

0.0

* A general serial device specific low-level driver providing the handler table and the device
context specialization for the Termios rtems_termios_device_install() function. This
low-level driver could be used for more than one BSP.

* A BSP-specific initialization = routine console_initialize(), that calls
rtems_termios_device_install() providing a low-level driver context for each in-
stalled device. This is usually defined in the file console/console.c relative to the BSP
base directory.

The low-level driver should provide a specialization of the Termios device con-
text. The initialization routine must provide a context for each installed device via
rtems_termios_device_install(). Here is an example header file for a low-level serial device
driver.

#ifndef MY_DRIVER_H
#define MY_DRIVER_H

#include <some-chip/serial.h>
#include <rtems/termiostypes.h>
/* My low-level driver specialization of Termios device context */
typedef struct {
rtems_termios_device_context base;
const char *device_name;
volatile some_chip_registers *regs;
/* More stuff %/
} my_driver_context;
extern const rtems_termios_device_handler my_driver_handler_polled;

extern const rtems_termios_device_handler my_driver_handler_interrupt;

#endif /* MY_DRIVER_H =*/

6.2. Build System and Files 43

http://Makefile.am

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 6 Section 6.3

6.3 Driver Functioning Modes

There are four main functioning modes for a Termios serial device driver. The mode must be
set during device creation and cannot be changed afterwards.

Polled Mode (TERMIOS_POLLED)

In polled mode, the processor blocks on sending/receiving characters. This mode is not the
most efficient way to utilize the serial device. But polled mode is usually necessary when one
wants to print an error message in the event of a fatal error such as a fatal error in the BSP.
This is also the simplest mode to program. Polled mode is generally preferred if the serial
device is to be used primarily as a debug console. In a simple polled driver, the software will
continuously check the status of the serial device when it is reading or writing to the serial
device. Termios improves on this by delaying the caller for one clock tick between successive
checks of the serial device on a read operation.

Interrupt Driven Mode (TERMIOS_IRQ_DRIVEN)
In interrupt driven mode, the processor does not block on sending/receiving characters. Data
is buffered between the interrupt service routine and application code. Two buffers are used
to insulate the application from the relative slowness of the serial device. One of the buffers
is used for incoming characters, while the other is used for outgoing characters.

An interrupt is raised when a character is received by the serial device. The interrupt routine
places the incoming character at the end of the input buffer. When an application asks for
input, the characters at the front of the buffer are returned.

When the application prints to the serial device, the outgoing characters are placed at the end
of the output buffer. The driver will place one or more characters in the serial device (the
exact number depends on the serial device) An interrupt will be raised when all the characters
have been transmitted. The interrupt service routine has to send the characters remaining in
the output buffer the same way. When the transmitting side of the serial device is idle, it is
typically necessary to prime the transmitter before the first interrupt will occur.

Interrupt Server Driven Mode (TERMIOS_IRQ_SERVER_DRIVEN)
The interrupt server driven mode is identical to the interrupt driven mode, except that a
mutex is used to protect the low-level device state instead of an interrupt lock (disabled
interrupts). Use this mode in case the serial device is connected via 12C or SPI and the I12C or
SPI framework is used.

Task Driven Mode (TERMIOS_TASK_DRIVEN)
The task driven mode is similar to interrupt driven mode, but the actual data processing is
done in dedicated tasks instead of interrupt routines. This mode is not available in SMP
configurations. It has some implementation flaws and it is not well tested.

44 Chapter 6. Console Driver

10

11

12

13

14

15

10

11

12

13

14

Chapter 6 Section 6.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

6.4 Polled Mode

The handler table for the polled mode should look like the following.

const rtems_termios_device_handler my_driver_handler_polled = {
.first_open = my_driver_first_open,
.last_close = my_driver_last_close,
.poll_read = my_driver_poll_read,
.write = my_driver_poll_write,
.set_attributes = my_driver_set_attributes,
.ioctl = my_driver_ioctl, /* optional, may be NULL =*/
.mode = TERMIOS_POLLED
};

The my_driver_poll_write() routine is responsible for writing n characters from buf to the
serial device specified by base.

static void my_driver_poll_write(
rtems_termios_device_context =*base,
const char *buf,
size_t n

my_driver_context *ctx;

size_t i

ctx = (my_driver_context *) base;
for (i =0 ; 1<n; +1i) {

my_driver_write_char(ctx, buf[i]);

3

b

J

The my_driver_poll_read() routine is responsible for reading a single character from the serial
device specified by base. If no character is available, then the routine should immediately return
minus one.

static int my_driver_poll_read(rtems_termios_device_context xbase)

{

my_driver_context *ctx;
ctx = (my_driver_context *) base;
if (my_driver_can_read_char(ctx)) {

/* Return the character (must be unsigned) x/
return my_driver_read_char(ctx);

} else {
/* Return -1 to indicate that no character is available */
return -1;

}

6.4. Polled Mode 45

[un

»

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 6 Section 6.5

6.5 Interrupt Driven Mode

The handler table for the interrupt driven mode should look like the following.

const rtems_termios_device_handler my_driver_handler_interrupt = {
.first_open = my_driver_first_open,
.last_close = my_driver_last_close,
.poll_read = NULL,
.write = my_driver_interrupt_write,
.set_attributes = my_driver_set_attributes,
.ioctl = my_driver_ioctl, /* optional, may be NULL */
.mode = TERMIOS_IRQ_DRIVEN
};

There is no device driver read handler to be passed to Termios. Indeed a read() call returns the
contents of Termios input buffer. This buffer is filled in the driver interrupt routine.

A serial device generally generates interrupts when it is ready to accept or to emit a number of
characters. In this mode, the interrupt routine is the core of the driver.

The my_driver_interrupt_handler() is responsible for processing asynchronous interrupts
from the serial device. There may be multiple interrupt handlers for a single serial device.
Some serial devices can generate a unique interrupt vector for each interrupt source such as a
character has been received or the transmitter is ready for another character.

In the simplest case, the my_driver_interrupt_handler() will have to check the status of the
serial device and determine what caused the interrupt. The following describes the operation
of an my_driver_interrupt_handler() which has to do this:

static void my_driver_interrupt_handler(void *arg)

{

rtems_termios_tty =*tty;
my_driver_context *ctx;

char buf[N];

size_t n;

tty = arg;

ctx = rtems_termios_get_device_context(tty);

/*

* Check if we have received something. The function reads the

*

received characters from the device and stores them in the
buffer. It returns the number of read characters.

>*

*/

n = my_driver_read_received_chars(ctx, buf, N);

if (n>0) {
/* Hand the data over to the Termios infrastructure */
rtems_termios_enqueue_raw_characters(tty, buf, n);

b

/*
* Check if we have something transmitted. The functions returns

* the number of transmitted characters since the last write to the
(continues on next page)

46 Chapter 6. Console Driver

25

26

27

28

29

30

31

32

33

34

35

36

[un

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Chapter 6 Section 6.5 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

(continued from previous page)

* device.

*/

n = my_driver_transmitted_chars(ctx);

if (n>0) {
/*
* Notify Termios that we have transmitted some characters. It
* will call now the interrupt write function if more characters
* are ready for transmission.
*/
rtems_termios_dequeue_characters(tty, n);

3

J

The my_driver_interrupt_write() handler is responsible for telling the device that the n char-
acters at buf are to be transmitted. It the value n is zero to indicate that no more characters
are to send. The driver can disable the transmit interrupts now. This routine is invoked either
from task context with disabled interrupts to start a new transmission process with exactly one
character in case of an idle output state or from the interrupt handler to refill the transmitter.
If the routine is invoked to start the transmit process the output state will become busy and
Termios starts to fill the output buffer. If the transmit interrupt arises before Termios was able
to fill the transmit buffer you will end up with one interrupt per character.

static void my_driver_interrupt_write(
rtems_termios_device_context +*base,

const char *buf,
size_t n
)
{
my_driver_context *ctx;
ctx = (my_driver_context *) base;
if (n>0) {
/*
* Tell the device to transmit some characters from buf (less than
* or equal to n). When the device is finished it should raise an
* interrupt. The interrupt handler will notify Termios that these
* characters have been transmitted and this may trigger this write
* function again. You may have to store the number of outstanding
* characters in the device data structure.
*/
} else {
/*
* Termios will set n to zero to indicate that the transmitter is
* now inactive. The output buffer is empty in this case. The
* driver may disable the transmit interrupts now.
*/
}
}

6.5. Interrupt Driven Mode 47

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 6 Section 6.6

6.6 First Open

Upon first open of the device, the my_driver_first_open() handler is called by Termios. The
device registered as /dev/console (or CONSOLE_DEVICE_NAME) is opened automatically during
RTEMS initialization.

static bool my_driver_first_open(

rtems_termios_tty *tty,
rtems_termios_device_context +*base,
struct termios *term,
rtems_libio_open_close_args_t =*args
)
{

my_driver_context *ctx;
rtems_status_code sc;
bool ok;

ctx = (my_driver_context *) base;

/*
* You may add some initialization code here.
*/

/*
* Sets the initial baud rate. This should be set to the value of
* the boot loader. This function accepts only exact Termios baud
* values.

*/
sc = rtems_termios_set_initial_baud(tty, MY_DRIVER_BAUD_RATE);
if (sc != RTEMS_SUCCESSFUL) {

/* Not a valid Termios baud */

/*

* Alternatively you can set the best baud.

*/

rtems_termios_set_best_baud(term, MY_DRIVER_BAUD_RATE);

/*

* To propagate the initial Termios attributes to the device use
* this.

*/

ok = my_driver_set_attributes(base, term);

if ('ok) {
/* This is bad */

}

/*

* Return true to indicate a successful set attributes, and false
* otherwise.
*/

(continues on next page)

48 Chapter 6. Console Driver

Chapter 6 Section 6.6

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

46 return true;

47| }

(continued from previous page)

6.6. First Open

49

-

N

w

ES

~

el

10

11

12

13

14

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

Chapter 6 Section 6.7

6.7 Last Close

Termios will call the my_driver_last_close() handler if the last close happens on the device.

static void my_driver_last_close(
rtems_termios_tty *tty,
rtems_termios_device_context +*base,
rtems_libio_open_close_args_t *args

)

{

my_driver_context *ctx;

ctx = (my_driver_context *) base;

/*
* The driver may do some cleanup here.
*/
}
50 Chapter 6. Console Driver

-

N

10

11

12

13

14

15

16

17

18

19

20

21

22

Chapter 6 Section 6.8 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

6.8 Set Attributes

Termios will call the my_driver_set_attributes() handler if a serial line configuration param-
eter changed, e.g. baud, character size, number of stop bits, parity, etc.

static bool my_driver_set_attributes(
rtems_termios_device_context *base,
const struct termios *term

my_driver_context *ctx;
ctx = (my_driver_context *) base;

/*

* Inspect the termios data structure and configure the device
* appropriately. The driver should only be concerned with the
parts of the structure that specify hardware setting for the
* communications channel such as baud, character size, etc.

*/

%

/*

* Return true to indicate a successful set attributes, and false
* otherwise.

*/

return true;

6.8. Set Attributes 51

10

11

12

13

14

15

16

17

18

19

20

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

Chapter 6 Section 6.9

6.9 10 Control

Optionally, the my_driver_ioctl() routine may be provided for arbitrary device-specific func-

tions.

static int my_driver_ioctl(
rtems_termios_device_context =*base,
ioctl_command_t request,
void *buffer

my_driver_context *ctx;
ctx = (my_driver_context *) base;

switch (request) {
case MY_DRIVER_DO_XYZ:
my_driver_do_xyz(ctx, buffer);
break;
default:
rtems_set_errno_and_return_minus_one(EINVAL);

return 0;

52

Chapter 6. Console Driver

Chapter 6 Section 6.10 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

6.10 Flow Control

You can also provide handler for remote transmission control. This is not covered in this manual.

6.10. Flow Control 53

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 6 Section 6.11

6.11 General Initialization

The BSP-specific driver initialization is called once during the RTEMS initialization process.

The console_initialize() function may look like this:

#include <my-driver.h>

#include <rtems/console.h>

#include <bsp.h>
#include <bsp/fatal.h>

static my_driver_context driver_context_table[] = {
{ /* Some values for device @ */ },
{ /* Some values for device 1 */ }

hE:

rtems_device_driver console_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor,

void *arg

)

{
const rtems_termios_device_handler xhandler;
rtems_status_code sc;
size_t il

#ifdef SOME_BSP_USE_INTERRUPTS

handler
#else

handler
#tendif

/*

&my_driver_handler_interrupt;

&my_driver_handler_polled;

* Initialize the Termios infrastructure. If Termios has already
* been initialized by another device driver, then this call will
* have no effect.

*/

rtems_termios_initialize();

/* Initialize each device */
0; 1 < RTEMS_ARRAY_SIZE(driver_context_table) ; ++i) {
my_driver_context *ctx;

for (i =

ctx = &driver_context_table[i J;

/*

* Install this device in the file system and Termios. In order
* to use the console (i.e. being able to do printf, scanf etc.
* on stdin, stdout and stderr), one device must be registered as

(continues on next page)

54

Chapter 6. Console Driver

46

47

48

49

50

51

52

53

54

55

Chapter 6 Section 6.11 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

S
i

b
3

ret

3

(continued from previous page)
* "/dev/console” (CONSOLE_DEVICE_NAME).
*/
c = rtems_termios_device_install(ctx->device_name, handler, NULL, ctx);
f (sc != RTEMS_SUCCESSFUL) {
bsp_fatal(SOME_BSP_FATAL_CONSOLE_DEVICE_INSTALL);

urn RTEMS_SUCCESSFUL;

6.11.

General Initialization 55

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 6 Section 6.11

56 Chapter 6. Console Driver

CHAPTER

SEVEN

CLOCK DRIVER

57

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 7 Section 7.1

7.1 Introduction

The purpose of the clock driver is to provide two services for the operating system.

* A steady time basis to the kernel, so that the RTEMS primitives that need a clock tick work
properly. See the Clock Manager chapter of the RTEMS Application C User’s Guide for more
details.

* An optional to provide timestamps of the uptime and wall clock time with
higher resolution than the clock tick.

The clock driver is usually located in the clock directory of the BSP. Clock drivers
must use the Clock Driver Shell available via the include file. This in-
clude file is not a normal header file and instead defines the clock driver functions
declared in #include <rtems/clockdrv.h> which are used by RTEMS configuration file
#include <rtems/confdefs.h> In case the application configuration defines #define
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER, then the clock driver is registered and should
provide its services to the operating system. The clock tick interval is determined by the appli-
cation configuration via #define CONFIGURE_MICROSECONDS_PER_TICK and can be obtained via
rtems_configuration_get_microseconds_per_tick().

A hardware-specific clock driver must provide some functions, defines and macros for the Clock
Driver Shell which are explained here step by step. A clock driver file looks in general like this.

1| /*

2| * A section with functions, defines and macros to provide hardware-specific
3| * functions for the Clock Driver Shell.

4] */

o

#include "../../../shared/dev/clock/clockimpl.h"

Depending on the hardware capabilities one out of three clock driver variants must be selected.

Timecounter
The variant which provides all features needs a free running hardware counter and a periodic
clock tick interrupt. This variant is mandatory in SMP configurations.

Simple Timecounter
A simple timecounter can be used if the hardware provides no free running hardware counter
and only a periodic hardware counter synchronous to the clock tick interrupt is available.

Clock Tick Only
The most basic clock driver provides only a periodic clock tick interrupt. The timestamp
resolution is limited to the clock tick interval.

58 Chapter 7. Clock Driver

http://www.freebsd.dk/pubs/timecounter.pdf
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/dev/clock/clockimpl.h

-

w

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Chapter 7 Section 7.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

7.2 Initialization

The clock driver is initialized by the _Clock_Initialize() system initialization handler if re-
quested by the application configuration option CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER.
The clock driver does not use the legacy IO driver framework.

7.2.1 Timecounter Variant

This variant is preferred since it is the most efficient and yields the most accurate timestamps.
It is also mandatory in SMP configurations to obtain valid timestamps. The hardware must
provide a periodic interrupt to service the clock tick and a free running counter for the time-
counter. The free running counter must have a power of two period. The tc_counter_mask
must be initialized to the free running counter period minus one, e.g. for a 17-bit counter
this is 0x0001ffff. The tc_get_timecount function must return the current counter value (the
counter values must increase, so if the counter counts down, a conversion is necessary). Use
RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER for the tc_quality. Set tc_frequency to the fre-
quency of the free running counter in Hz. All other fields of the struct timecounter must be
zero initialized. Install the initialized timecounter via rtems_timecounter_install().

For an example see the

#include <rtems/timecounter.h>
static struct timecounter some_tc;

static uint32_t some_tc_get_timecount(struct timecounter *tc)
{

some. free_running_counter;

b

static void some_support_initialize_hardware(void)
{
uint64_t us_per_tick;
uint32_t counter_frequency_in_hz;
uint32_t counter_ticks_per_clock_tick;

us_per_tick = rtems_configuration_get_microseconds_per_tick();
counter_frequency_in_hz = some_tc_get_frequency();

/*
* The multiplication must be done in 64-bit arithmetic to avoid an integer
* overflow on targets with a high enough counter frequency.
*/
counter_ticks_per_clock_tick =
(uint32_t) (counter_frequency_in_hz * us_per_tick) / 1000000;

/*

* Initialize hardware and set up a periodic interrupt for the configuration
* based counter ticks per clock tick.

*/

some_tc.tc_get_timecount = some_tc_get_timecount;
(continues on next page)

7.2. Initialization 59

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/powerpc/qoriq/clock/clock-config.c

32
33
34
35
36
37
38
39
40

41

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 7 Section 7.2

(continued from previous page)

some_tc.tc_counter_mask = Oxffffffff;

some_tc.tc_frequency = frequency;

some_tc.tc_quality = RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER;
rtems_timecounter_install(&some_tc);

#define Clock_driver_support_initialize_hardware() \
some_support_initialize_hardware()

#include "../../../shared/dev/clock/clockimpl.h”

7.2.2 Simple Timecounter Variant

For an example see the The argument parameter of
Clock_driver_timecounter_tick(arg) is the argLunent used to install the clock inter-
rupt handler. Device drivers may use this argument to access their control state.

#include <rtems/timecounter.h>
static rtems_timecounter_simple some_tc;

static uint32_t some_tc_get(rtems_timecounter_simple *tc)

{

return some.counter;

static bool some_tc_is_pending(rtems_timecounter_simple *tc)

{

return some.is_pending;

3

static uint32_t some_tc_get_timecount(struct timecounter *tc)
{
return rtems_timecounter_simple_downcounter_get(
tc,
some_tc_get,
some_tc_is_pending

);
}
static void some_tc_tick(rtems_timecounter_simple *tc)
{
rtems_timecounter_simple_downcounter_tick(tc, some_tc_get);
}

static void some_support_initialize_hardware(void)
{
uint64_t us_per_tick;
uint32_t counter_frequency_in_hz;
(continues on next page)

60 Chapter 7. Clock Driver

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/sparc/erc32/clock/ckinit.c

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

10

11

12

13

Chapter 7 Section 7.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

(continued from previous page)

uint32_t counter_ticks_per_clock_tick;

us_per_tick = rtems_configuration_get_microseconds_per_tick();
counter_frequency_in_hz = some_tc_get_frequency();
counter_ticks_per_clock_tick =

(uint32_t) (counter_frequency_in_hz * us_per_tick) / 1000000;

/* Initialize hardware */

rtems_timecounter_simple_install(
&some_tc,
counter_frequency_in_hz,
counter_ticks_per_clock_tick,
some_tc_get_timecount

I

#define Clock_driver_support_initialize_hardware() \
some_support_initialize_hardware()

#define Clock_driver_timecounter_tick(arg) \
some_tc_tick(arg)

#include "../../../shared/dev/clock/clockimpl.h”

7.2.3 Clock Tick Only Variant

For an example see the Motrola 68360 clock driver,

static void some_support_initialize_hardware(void)

{

/* Initialize hardware */
#define Clock_driver_support_initialize_hardware() \
some_support_initialize_hardware()
/* Indicate that this clock driver lacks a proper timecounter in hardware */
#define CLOCK_DRIVER_USE_DUMMY_TIMECOUNTER

#include "../../../shared/dev/clock/clockimpl.h”

7.2. Initialization 61

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/m68k/gen68360/clock/clock.c

—

N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 7 Section 7.3

7.3 Install Clock Tick Interrupt Service Routine

The clock driver may provide a function to install the clock tick interrupt service rou-
tine via Clock_driver_support_install_isr(isr). The clock tick interrupt service rou-
tine is passed as the one and only parameter to this macro. The default implementation
will do nothing. The argument parameter (in the code below &some_instance) for the in-
stalled interrupt handler is available in the Clock_driver_support_at_tick(arg) and
Clock_driver_support_initialize_hardware(arg) customization macros.

#include <bsp/irq.h>
#include <bsp/fatal.h>

static some_control some_instance;

static void some_support_install_isr(rtems_interrupt_handler isr)
{
rtems_status_code sc;
sc = rtems_interrupt_handler_install(
SOME_IRQ,
"Clock"”,
RTEMS_INTERRUPT_UNIQUE,
isr,
&some_instance
);
if (sc != RTEMS_SUCCESSFUL) {
bsp_fatal(SOME_FATAL_IRQ_INSTALL);
}
}

#tdefine Clock_driver_support_install_isr(isr) \
some_support_install_isr(isr)

#include "../../../shared/dev/clock/clockimpl.h”

62 Chapter 7. Clock Driver

Chapter 7 Section 7.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

7.4 Support At Tick

The hardware-specific support at tick is specified by Clock_driver_support_at_tick(arg).
The arg is the argument used to install the clock interrupt handler. Device drivers may use this
argument to access their control state.

static void some_support_at_tick(some_control xarg)

{

/* Clear interrupt x/

b

#tdefine Clock_driver_support_at_tick(arg) \
some_support_at_tick(arg)

#include "../../../shared/dev/clock/clockimpl.h”

7.4. Support At Tick 63

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 7 Section 7.5

7.5 System Shutdown Support

The clock driver system shutdown support was removed in RTEMS 5.1.

64 Chapter 7. Clock Driver

Chapter 7 Section 7.6 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

7.6 SMP Support

In SMP configurations, the clock tick service must be executed for each processor used by
RTEMS. By default, the clock tick interrupt must be distributed to all processors used by RTEMS
and each processor invokes the clock tick service individually. A clock driver may delegate all
the work to the boot processor. It must define CLOCK_DRIVER_USE_ONLY_BOOT_PROCESSOR in this
case.

Clock drivers must define Clock_driver_support_set_interrupt_affinity(online_processors)
to set the interrupt affinity of the clock tick interrupt.

7.6. SMP Support 65

-

N

IS

3]

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 7 Section 7.7

7.7 Multiple Clock Driver Ticks Per Clock Tick

In case the hardware needs more than one clock driver tick per clock tick (e.g. due to a
limited range of the hardware timer), then this can be specified with the optional #define
CLOCK_DRIVER_ISRS_PER_TICK and #define CLOCK_DRIVER_ISRS_PER_TICK_VALUE defines. This
is currently used only for x86 and it hopefully remains that way.

/* Enable multiple clock driver ticks per clock tick */
#define CLOCK_DRIVER_ISRS_PER_TICK 1

/* Specifiy the clock driver ticks per clock tick value */
#define CLOCK_DRIVER_ISRS_PER_TICK_VALUE 123

#include "../../../shared/dev/clock/clockimpl.h”

66 Chapter 7. Clock Driver

Chapter 7 Section 7.8 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

7.8 Clock Driver Ticks Counter

The Clock Driver Shell provide a global variable that is simply a count of the number of clock
driver interrupt service routines that have occurred. This information is valuable when debug-
ging a system. This variable is declared as follows:

1[volatile uint32_t Clock_driver_ticks; }

7.8. Clock Driver Ticks Counter 67

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 7 Section 7.8

68 Chapter 7. Clock Driver

CHAPTER

EIGHT

TARGET HASH

Each BSP must provide an implementation of the rtems_get_target_hash() directive. The

is based on the CPU counter frequency. A BSP-specific implementa-
tion may be provided which covers also for example the device tree, settings of the memory
controller, processor and bus frequencies, a serial number of a chip, etc. For a BSP-specific
implementation start with the default implementation and add more values to the target hash
using the functions _Hash_Add_data() and _Hash_Add_string(). The target hash can be used
to distinguish test suite results obtained from different target systems.

69

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/start/gettargethash-default.c

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 8 Section 8.0

70 Chapter 8. Target Hash

CHAPTER

NINE

ENTROPY SOURCE

Each BSP must provide an implementation of the getentropy() system call. This system call
was introduced by and is also available in . This system call
is used by the Newlib provided functions, which in turn are used by various
cryptographic functions.

Warning

A good entropy source is critical for (nearly) all cryptographic applications. The default
implementation based on the CPU counter is not suitable for such applications.

The getentropy() implementation must fill the specified memory region of the given
size with random numbers and return O on success. A non-zero return may cause the
INTERNAL _ERROR_ARC4RANDOM_GETENTROPY_FAIL internal error by one of the

functions.

In general, for embedded systems it is not easy to get some real entropy. Normally, that can only
be reached with some extra hardware support. Some microcontrollers integrate a true random
number generator or something similar for cryptographic applications. That is the preferred
source of entropy for most BSPs. For example the

There is also a quite limited . Due to the fact
that it is a time based source, the values provided by getentropy() are quite predictable. This
implementation is not appropriate for any cryptographic applications but it is good enough for
some basic tasks. Use it only if you do not have any strong requirements on the entropy and if
there is no better source.

71

https://man.openbsd.org/getentropy.2
http://man7.org/linux/man-pages/man3/getentropy.3.html
https://man.openbsd.org/arc4random.3
https://man.openbsd.org/arc4random.3
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/atsam/start/getentropy-trng.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/atsam/start/getentropy-trng.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/dev/getentropy/getentropy-cpucounter.c

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 9 Section 9.0

72 Chapter 9. Entropy Source

CHAPTER

TEN

CAN DRIVER

RTEMS provides fully featured CAN/CAN FD stack. The API to the driver is provided in the
form of the POSIX character driver with each CAN controller (chip) registered as node into
“/dev” namespace by name (i.e. “can0”, “canl”, ...). The stack utilizes FIFO queues (also
called edges) organized into oriented edges between controller side and application side. Edges,
responsible for message transfers from an application to controller and vice versa, can have
different priorities and function as priority classes. The naming of the edges and functions
using these edges is taken from the FIFO’s point of view. Therefore, outgoing edge is the edge
that passes the frames to the FIFO and incoming edge retrieves the frames from FIFO. Note that
these can be used both from application and device driver point of view as both sides may use
the same FIFO related functions.

Controller takes frames from FIFOs according their priority class and transmits them to the
network. Successfully sent frames are echoed through queues back to open file instances except
the sending one (that filtering is configurable). Received frames a filtered to all queues to
applications ends of the queues which filter matches the CAN identifier and frame type.

The stack provides run time configuration options to create new queues with desired priority,
direction and filter, making it suitable for various applications requirements. There is also a
possibility to configure controller’s characteristics (bit rate, mode, chip specific ioctl calls).

The device can be opened in both blocking and nonblocking mode and one device can be opened
from multiple applications. Read and write operations wait on binary semaphore indefinitely if
blocking mode is used and frame can not be passed to the framework immediately (full FIFO
queue for example) or there is no received message to process.

73

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.1

10.1 Include Headers

To use the infrastructure, an application, BSP initiator or controller device driver has to include
few header files that provides related structures, definitions and function declarations.

10.1.1 Application

1[#inc1ude <dev/can/can.h>

The only required include for standard application using the structure through POSIX character
device API is <dev/can/can.h>. This provides all defines, ioctl calls, and structures required to
operate with the infrastructure from application layer. These are in detail described in RTEMS
CAN API section.

The mentioned header also includes several other headers. These are still strictly API interface,
but separated to multiple headers for clearer code organization. This contains the header defin-
ing CAN frame structure, header introducing CAN bit timing structures, filters for FIFO queues
or CAN RX/TX statistics tracking. The application does not have to bother include all of these
headers as they are already included through <dev/can/can.h>.

10.1.2 BSP Registration

1|#include <dev/can/can-bus.h>
2| #include <dev/can/controller-dependent.h>

It is expected the controller will be initialized and registered from board support package dur-
ing board initialization, but this includes will work anywhere else (even from an application if
required by the user). The header <dev/can/can-bus.h> provides definition of rtems_can_bus
structure and declarations of rtems_can_bus_register() that registers the controller to stan-
dard /dev namespace. The usage of these functions is described in Registering CAN Bus section.

The source code will most likely have to include a controller dependent header that declares
the initialization function for the specific controller.

10.1.3 Device Driver

1| #include <dev/can/can.h>
2| #include <dev/can/can-devcommon.h>

The device driver (i.e. the file that implements the controller) has to include <dev/can/can.
h> because of CAN frame definition and other defines/structures with which it has to inter-
act. Functions and structures providing the interface with the infrastructure (obtaining frames
from FIFO, pushing frames to FIFO, slot abort and so on) are included through <dev/can/
can-devcommon. h> header. The usage of these functions is described in Driver Interface section.

It is expected <dev/can/can-devcommon. h> will be used primarily from a controller device driver
(i.e. from RTEMS kernel code), but there is a possibility to include this header even from an
application if the user has a special needs surpassing the API.

74 Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

10.2 RTEMS CAN API

1| #include <dev/can/can.h>

It is necessary to include the header above to operate with CAN infrastructure through the
described application interface.

Application Interface is provided with standard POSIX calls open(), write(), read(). close()
and ioctl(). Functions write() and read() are used with can_frame structure representing
one CAN frame (message).

10.2.1 Opening Device and Configuration

Device is registered as a node into “/dev” namespace and can be opened with POSIX open()
call. A single chip can be opened multiple times with each instance creating its own queues
between the controller and application. The frames received by the controller are filtered to all
connected queues if they match the filter set by the user. Therefore, the applications do not race
for the received frames.

CALLING SEQUENCE:

1[int open(const char* pathname, int flags);

DESCRIPTION:
Opens CAN device at path pathname with mode defined in flags argument. Modes are defined
according to POSIX standard.

10.2. RTEMS CAN API 75

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

B

oth infrastructure resources and controller itself can be configured once the device is opened.

The configuration is provided via ioctl calls. Some of these configuration are available only if
the controller is stopped.

10.2.1.1 Managing Queues

One RX and one TX queue is created by default during open() operation. These queues have
the lowest priority and default filter and size settings. If needed, more queues can be created
with RTEMS_CAN_CREATE_QUEUE call.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_CREATE_QUEUE, &queue);

DESCRIPTION:

-

Creates new queue with characteristics defined in “queue” field provided as
rtems_can_queue_param structure.

s M

struct rtems_can_queue_param {
uint8_t direction;
uint8_t priority;
uint8_t dlen_max;
uint8_t buffer_size;
struct rtems_can_filter filter;

BE

Field dlen_max set maximum CAN frame data length that can be sent through the queue.
This allows the user to limit the size of allocated memory if only shorter frames are sent to
the network. If set to zero, default value (64 bytes for CAN FD capable controllers, 8 bytes
otherwise) is used. It is not possible to set an invalid value (less than zero or greater than
64). Field buffer_size configures number of slots (frames) that fits in the FIFO.

,

struct rtems_can_filter {
uint32_t id;
uint32_t id_mask;
uint32_t flags;
uint32_t flags_mask;

5

Structure rtems_can_filter is used to set queue’s filter. It holds the CAN frame identifier and
flag filters, ensuring only frames matching this filter are passed to the queue’s ends. Fields
id and flags hold identifier bits and frames’ flags, respectively, required to be present in a
CAN frame to assign it to the corresponding FIFO queue. In other words, it specifies that only
specific identifiers and/or flags shall be assigned to the queue. Members with _mask postfix
are used to mask out identifiers or flags that are forbidden for a given FIFO queue. Refer to
CAN frame description for possible flags.

The filter can be used to create queues that process only defined subset of CAN frames. This
may be used to create priority classes based on frame identifier range or special queues for
certain type of frames (echo, error etc.). Setting all fields of rtems_can_filter to zero means
all frames are passed through the queue.

76 Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

Default queues created during open() operation allows all identifiers and filters out error and
echo frames.

10.2. RTEMS CAN API 77

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

Queues can be removed (discarded) with RTEMS_CAN_DISCARD_QUEUES command. It is not possi-
ble to discard one specific queue, just all RX or/and all TX queues for given opened instance (file
descriptor) at once. Direction can be defined by RTEMS_CAN_QUEUE_TX and RTEMS_CAN_QUEUE _RX
defines. Terms TX and RX are used from the application’s point of view: TX meaning queues
transferring messages from an application to a controller, RX from a controller to an application.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_DISCARD_QUEUES, type); }

DESCRIPTION:
Discard TX and/or RX queues based on integer “type” argument. Defines RTEMS_CAN_QUEUE_TX
and RTEMS_CAN_QUEUE_RX can be used to specify queues for deletion.

78 Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

Queues can also be flushed with RTEMS_CAN_FLUSH_QUEUES command.
CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_FLUSH_QUEUES, type);

DESCRIPTION:
Flushes TX and/or RX queues based on integer “type” argument. Defines RTEMS_CAN_QUEUE_TX
and RTEMS_CAN_QUEUE_RX can be used to specify queues for deletion. The operation flushes all
RX or/and all TX queues even if multiple queues are used.

10.2. RTEMS CAN API 79

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

10.2.1.2 Setting Bit Timing

There are two ways to set CAN bit timing. Either the user can pass desired bit rate value and let
the infrastructure calculate bit timing, or precomputed bit timing values can be passed directly.
ioctl call RTEMS_CAN_SET_BITRATE is used for this purpose.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_SET_BITRATE, &set_bittiming);

DESCRIPTION:
Sets bit timing based on “set_bittiming” parameter passed as a pointer to can_set_bittiming
structure.

-

10

11

12

13

14

15

16

L

struct rtems_can_bittiming {

1

uint32_t bitrate;
uint32_t sample_point;
uint32_t tq;

uint32_t prop_seg;
uint32_t phase_segl;
uint32_t phase_seg?2;
uint32_t sjw;

uint32_t brp;

struct rtems_can_set_bittiming {

BE

uint16_t type;
uint16_t from;
struct rtems_can_bittiming bittiming;

J

Field type determines the bit timing type to
CAN_BITTIME_TYPE_DATA), field from determines

be set (CAN_BITTIME_TYPE_NOMINAL or
the source of the bit timing wvalues

(CAN_BITTIME_FROM_BITRATE or CAN_BITTIME_FROM_PRECOMPUTED).

80

Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

Actual bit timing values and controller’s bit timing constants can be retrieved with
RTEMS_CAN_GET_BITTIMING.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_GET_BITTIMING, &get_bittiming);

DESCRIPTION:
Retrieves currently set bit timing values and controller’s bit timing constants.

—

struct rtems_can_bittiming_const {
2| char name[32];

3| uint32_t tsegl_min;

4| uint32_t tsegl_max;

s| uint32_t tseg2_min;

6| uint32_t tseg2_max;

7| uint32_t sjw_max;

g| uint32_t brp_min;

9| uint32_t brp_max;

10| uint32_t brp_inc;

ul};

12
13| struct rtems_can_get_bittiming {

14| uint16_t type;

15| struct rtems_can_bittiming bittiming;

16| struct rtems_can_bittiming_const bittiming_const;

17| };

Field type determines bit timing to be set (CAN_BITTIME_TYPE_NOMINAL or
CAN_BITTIME_TYPE_DATA).

10.2. RTEMS CAN API 81

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

10.2.1.3 Setting Mode

Different modes of the chip can be enabled/disabled. ioctl call RTEMS_CAN_CHIP_SET_MODE is
used to set the mode as a 32-bit large unsigned integer mask.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_CHIP_SET_MODE, mode);

DESCRIPTION:
Argument mode is a 32-bit large unsigned integer with modes to be set. Available modes are

¢ CAN_CTRLMODE_LOOPBACK,

* CAN_CTRLMODE_LISTENONLY,

* CAN_CTRLMODE_3_SAMPLES,

* CAN_CTRLMODE_ONE_SHOT,

* CAN_CTRLMODE_BERR_REPORTING,
* CAN_CTRLMODE_FD,

* CAN_CTRLMODE_PRESUME_ACK,
* CAN_CTRLMODE_FD_NON_ISO,

* CAN_CTRLMODE_CC_LEN8_DLC,
* CAN_CTRLMODE_TDC_AUTO, and
* CAN_CTRLMODE_TDC_MANUAL.

The modes are implemented to be compatible with GNU/Linux’s SocketCAN stack and possi-
bly with other operating systems as well. It is possible to set multiple modes during one ioctl
call. The controller should be implemented in such a way that not setting particular mode in
this ioctl call disables this mode. Therefore, the same ioctl call may be used for both enable
and disable operation.

Every controller should know its supported mode. An attempt to set a mode not supported by
the controller leads to the ioctl call returning an error. It is also possible to change controller’s
modes only if the controller is stopped, otherwise error is returned.

10.2.1.4 Starting Chip

Opening the device does not automatically start the chip, this operation has to be handled by
specific ioctl call RTEMS_CAN_CHIP_START.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_CHIP_START);

DESCRIPTION:
Starts the chip (enables write/read). Repeated calls on already started chip do not have any
effect.

82 Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

It is also possible to start the chip with a function call rtems_can_chip_start(). This way the
controller may be started even before the first open, for example from board support package
right after its initialization.

CALLING SEQUENCE:

1| #include <dev/can/can-devcommon.h>

2

3lint rtems_can_chip_start(struct rtems_can_chip *chip)

DESCRIPTION:

Starts the chip (enables write/read). Repeated calls on already started chip do not have any
effect.

10.2.1.5 Stopping Chip

Similarly to the chip start operation, chip stop is performed with RTEMS_CAN_CHIP_STOP ioctl
call.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_CHIP_STOP, &timeout);

DESCRIPTION:

Stops the chip (disables write/read). Repeated calls on already stopped chip do not have
any effect. The call is nonblocking if timeout parameter is set to NULL, otherwise the calling
thread is blocked for a timeout specified as a relative timeout with timespec structure.

This gives the controller the time to abort the frames already present in its buffers and to
return these frames and the frames from FIFO queues back to the applications that opened it
as TX error frames. This way the applications can get the information their frames were not
transmitted because the controller was stopped. If timed out before all frames are returned
as error frames, the queues are flushed and the frames are lost. In any way; it is ensured the
queues are empty when/if the chip is started again. Therefore, the minimal implementation
should always at least flush the FIFO queues from the application to the controller.

NOTES.

It is important to check the number of users (applications) using the chip before turning it
off as there can be more than one user per chip. The infrastructure allows turning off the
controller even if there are other users using it. Read and write calls from other applications
return error in that case.

10.2.1.6 Controller Related Information

An ioctl call RTEMS_CAN_CHIP_GET_INFO can be used to obtain some information about the device
driver (controller).

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_CHIP_GET_INFO, info_type);

10.2. RTEMS CAN API 83

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

DESCRIPTION:

-

N

w

S

i

=

Obtains information about the chip. The information to be obtained is defined as integer
argument info_type. Following parameters can be obtained.

-

L

RTEMS_CAN_CHIP_BITRATE,
RTEMS_CAN_CHIP_DBITRATE,
RTEMS_CAN_CHIP_NUSERS,
RTEMS_CAN_CHIP_FLAGS,
RTEMS_CAN_CHIP_MODE, and
RTEMS_CAN_CHIP_MODE_SUPPORTED.

J

The defines listed above may be used to obtain information from the controller. It is
possible to obtain only one information for one ioctl call. RTEMS_CAN_CHIP_MODE and
RTEMS_CAN_CHIP_MODE_SUPPORTED are used to obtain currently set controller modes and all
modes supported by the controller, respectively. Stop command described previously may
benefit from RTEMS_CAN_CHIP_NUSERS providing number of users currently using the con-
troller. Controller’s flags obtained by RTEMS_CAN_CHIP_FLAGS provide various information
including FD capability of the controller, status of the chip (configured, running), and so
on. Refer to source code documentation for possible chip’s status defines.

10.2.1.7 Controller Statistics

The controller can keep track of its statistics as number of received/transmitted frames, number
of received/transmitted bytes, number of errors and so on. These statistics are represented in
can_stats structure and can be obtained with RTEMS_CAN_CHIP_STATISTICS ioctl call.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_CHIP_STATISTICS, &statistics);

DESCRIPTION:

10

11

12

13

14

15

16

17

Obtains controller’s statistics provided in with argument statistics as a pointer to the
rtems_can_stats structure.

-

enum can_state {
CAN_STATE_ERROR_ACTIVE = 0,
CAN_STATE_ERROR_WARNING,
CAN_STATE_ERROR_PASSIVE,
CAN_STATE_BUS_OFF,
CAN_STATE_STOPPED,
CAN_STATE_SLEEPING,
CAN_STATE_STOPPING,
CAN_STATE_MAX

BE

struct rtems_can_stats {
unsigned long tx_done;
unsigned long rx_done;
unsigned long tx_bytes;
unsigned long rx_bytes;
unsigned long tx_error;

(continues on next page)

84 Chapter 10. CAN Driver

-

)

e

10

11

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

(continued from previous page)
18| unsigned long rx_error;
19| unsigned long rx_overflows;
20 int chip_state;

21| };

10.2.2 CAN Frame Representation

The represenation of one CAN frame is defined statically with a header separated in its own
structure can_frame_header. It has an 8 bytes long timestamp, 4 bytes long CAN identifier, 2
bytes long flag field and 2 bytes long field with information about data length. Data field itself
is a 64 byte long array with byte access.

Only first 11 bits of the identifier are valid (29 if extended identifier format is used). Having
any of the upper three bits set to one indicates an invalid CAN frame format. If these are set,
the user should check frame’s flags to get information if this is not an error frame generated by
the controller.

struct can_frame_header {
uint64_t timestamp;
uint32_t can_id;
uint16_t flags;
uint16_t len;

3

struct can_frame {
struct can_frame_header header;
uint8_t data[CAN_FRAME_MAX_DLENT;
e

Flags are used to distinguish frame formats (extended identifier, CAN FD format, remote request
and so on). Following defines can be used.

* CAN_FRAME_IDE,

¢ CAN_FRAME_RTR,

* CAN_FRAME_ECHO,

¢ CAN_FRAME_LOCAL,

¢ CAN_FRAME_TXERR,

* CAN_FRAME_ERR.

* CAN_FRAME_FIFO_OVERFLOW.
¢ CAN_FRAME_FDF,

* CAN_FRAME_BRS, and

¢ CAN_FRAME_ESI.

Extended frame format (CAN_FRAME_IDE) is forced automatically if identifier exceeds 11 bits.
Flags CAN_FRAME_FDF and CAN_FRAME_BRS (if bit rate switch between arbitration and data phase
is intended) should be set for CAN FD frame transmission.

10.2. RTEMS CAN API 85

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

Some of these flags are automatically masked for the first queues created during the instance
open operation. These include CAN_FRAME_ECHO and both error flags CAN_FRAME_TXERR and
CAN_FRAME_ERR. Flag CAN_FRAME_FIFO_OVERFLOW is set automatically by the stack for RX frames
and can not be filtered out. It indicates FIFO overflow occurred, and some frames on the re-
ceiver side have been discarded. More specifically, it informs the user there are discarded frames
between the frame with CAN_FRAME_FIFO_OVERFLOW flag and a previous correctly received frame.

10.2.3 Frame Transmission
Frame is transmitted to the CAN framework by calling write() function.

CALLING SEQUENCE:

1[ssize_t write(int fd, struct can_frame *frame, size_t count);]

DESCRIPTION:
Passes CAN frame represented by can_frame structure to the network. Return values comply
with POSIX standard. Write size count can be calculated with can_framesize() function. It
is possible to write just one frame with a single call. Passing incorrect frame length (less than
the header size or larger than maximum CAN frame size) results in write error.

86 Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

User can check whether the messages were transferred from RTEMS framework to the physical
network by calling ioctl RTEMS_CAN_WAIT_TX_DONE.

CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_WAIT_TX_DONE, &timeout);

DESCRIPTION:

Waits with timeout until all frames are transferred to the network. The timeout is defined as

a pointer to timespec structure. The timeout is specified as a relative timeout. Returns O on
success and ETIME on timeout.

This call applies to TX FIFO queues at once for a given file descriptor.

10.2. RTEMS CAN API 87

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

Polling in nonblocking mode can be done with RTEMS_CAN_POLL_TX_READY ioctl call.
CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_POLL_TX_READY, &timeout);

DESCRIPTION:
Implements polling function on outgoing edges. Timeout is defined with timespec structure.
The timeout is specified as a relative timeout. It waits until there is an available frame in any
of the input FIFOs or until timeout.

88 Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

10.2.4 Frame Reception
Frame is received from the CAN framework by calling read() function.

CALLING SEQUENCE:

1[ssize_t read(int fd, struct can_frame *frame, size_t count);

DESCRIPTION:
Reads CAN frame represented by can_frame from the network. Return values comply with
POSIX standard. The call returns error if read size specified by count is less than the length
of the frame header. It is possible to read only a single frame with one read call.

10.2. RTEMS CAN API 89

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.2

Polling in nonblocking mode can be done with RTEMS_CAN_POLL_RX_AVAIL ioctl call.
CALLING SEQUENCE:

1[ssize_t ioctl(fd, RTEMS_CAN_POLL_RX_AVAIL, &timeout);

DESCRIPTION:
Implements polling function on incoming edges. Timeout is defined with timespec structure.
It waits until there is an available frame in any of the input FIFOs or until timeout.

90 Chapter 10. CAN Driver

Chapter 10 Section 10.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

10.2.5 Error Reporting

There are two flags for error reporting: CAN_FRAME_TXERR and CAN_FRAME_ERR. First flag is used
to report frame transmission error. In this case, the controller should send the frame that caused
the error back to its opened instance with added CAN_FRAME_TXERR flag. The message should
not be changed in any other way.

It is possible to receive various CAN bus related error through error messages sent from the
controller to the application. Flag CAN_FRAME_ERR is used for that. If this flag is set, received
frame has a special format and shall be looked up as an error frame.

For generated error frame, identifier field is used to store the information about error type.
Following types are supported.

¢ CAN_ERR_ID_TXTIMEOUT,
* CAN_ERR_ID_LOSTARB,

* CAN_ERR_ID_CRTL,

e CAN_ERR_ID_PROT,

* CAN_ERR_ID_TRX,

* CAN_ERR_ID_ACK.

* CAN_ERR_ID_BUSOFF.

* CAN_ERR_ID_BUSERROR,
* CAN_ERR_ID_RESTARTED,
* CAN_ERR_ID_CNT, and

* CAN_ERR_ID_INTERNAL.

Additionally, 31st bit of CAN identifier is set to logical one. This is another check that indicates
it is not a regular frame but error one. Having error types located in CAN frame identifier brings
the possibility to create new RX queues with identifier mask set in such way that only some of
these errors are propagated to the application.

The additional information providing deeper description of raised error are also available in
data fields for some error types. Only a standard frame with 8 bytes long data field is used.

The first byte (8 bits) of the data field keeps the detailed information regarding lost arbitration
error (CAN_ERR_ID_LOSTARB). This basically just informs in that bit the arbitration was lost.
Another field stores controller related problems (CAN_ERR_ID_CRTL). This includes RX or TX
overflows and the controller changing its error state (error active, warning, passive).

Protocol related violations (CAN_ERR_ID_PROT) are stored in the third and the fourth data field.
The first informs what kind of violation is present. This may be incorrect bit stuffing, controller
incapability to generate dominant or recessive bit or bus overload for example. The latter field
provides a location of this violation.

Transceiver status (CAN_ERR_ID_TRX) is located in the fifth data field. This is used to report
hardware layer issues as missing wire or wire being short-circuited to ground or supply voltage.
The sixth data field is reserved and not used. The infrastructure also reports number of the
current values of TX and RX error counter (CAN_ERR_ID_CNT). These data are passed through
seventh and eight data fields for transmission and reception, respectively.

10.2. RTEMS CAN API 91

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.3

10.3 Driver Interface

1| #include <dev/can/can.h>
2| #include <dev/can/can-devcommon.h>

The includes listed above are required to use the functions described in this section.

The infrastructure provides several functions ensuring an interface between FIFO queue side
of the stack and the controller’s specific implementation. Controller’s driver should use these
functions to access the FIFOs.

The driver is forbidden to access the CAN framework from an interrupt handler. Instead, it
should utilize a worker thread waiting on a semaphore and triggered when there are interrupts
to be processed (received frame, send done, error and so on) or where there are frames to be
transmitted (this information is triggered from the CAN framework, see the next section for the
detailed description).

For examples of CAN controller’s driver see:

10.3.1 Chip Initialization

The chip initialization function should allocate a rtems_can_chip structure. This structure holds
the controller’s ends of FIFO queues as well as the chip’s private structure. This structure is chip
specific, and it is used to store the chip specific data. The controller has to allocate and initial-
ize its side of the FIFO queues. The structure to be allocated is rtems_can_queue_ends_dev
located on a gends_dev field of rtems_can_chip structure and initialization is done with a
rtems_can_queue_ends_init_chip() function call.

CALLING SEQUENCE:

1/int rtems_can_queue_ends_init_chip (
2| struct rtems_can_chip *chip,
3| const char *name

4);

DESCRIPTION:
Initializes controller’s side of ends defined in chip structure and connects them to the FIFO
queues. It also creates a worker binary semaphore worker_sem named name and used by the
framework to inform the controller’s side about new frame to be transmitted. The controller
may also use this semaphore to trigger its worker thread in case of an interrupt (received
frame for example).

Driver should also register several functions used by ioctl calls (start chip, stop chip, set bit rate
for example). These functions are assigned through rtems_can_chip_ops structure.
10.3.2 Frame Transmission

The controller retrieves the slots (frames) from FIFO queues (edges) and sends them to the
network. The naming of the functions utilizes _outslot suffix, because the controller’s side
takes the frames from the FIFO’s outputs.

92 Chapter 10. CAN Driver

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/dev/can/can-virtual.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/dev/can/ctucanfd/ctucanfd.c

Chapter 10 Section 10.3 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

The framework informs the driver about the new message to be transmitted
by posting a worker_sem semaphore. The driver then may call the function
rtems_can_queue_test_outslot() to obtain the oldest (least recently added to the FIFO
from an application) slot from the highest priority queue. Note that this uses the priority of the
queues as described in the previous sections, not the priority of a CAN frame (i.e. the frame’s
identifier value). However, these queues may have the filter set up in such a way to accept only
a certain identifier range.

CALLING SEQUENCE:

1/int rtems_can_queue_test_outslot(

2| struct rtems_can_queue_ends *gends,

3 struct rtems_can_queue_edge **gedgep,
4| struct rtems_can_queue_slot **slotp

51);

DESCRIPTION:
Tests and retrieves the oldest ready slot from the highest priority active queue (priority class).

The slot can subsequently be put into the controller’s hardware buffer and sent to the
network. Function rtems_can_queue_test_outslot() does not free the slot’s space in the
FIFO queue. The controller should inform the framework to free the space by calling the
rtems_can_queue_free_outslot() function once the frame is successfully transmitted or the
transmission results in an error.

CALLING SEQUENCE:

1/int rtems_can_queue_free_outslot(

2| struct rtems_can_queue_ends *gends,
3| struct rtems_can_queue_edge *gedge,
4| struct rtems_can_queue_slot *slot

51);

DESCRIPTION:
Releases processed slot previously acquired by a function rtems_can_queue_test_outslot()
call.

The framework also provides a unique feature to push the frames back to the correct FIFO and
schedule the slot later processing. This is useful in case the frame put into a hardware buffer is
aborted. The abort might be used when some later scheduled low-priority frame occupies the
hardware TX buffer, which is urgently demanded for a higher priority pending message from
other FIFO for example.

CALLING SEQUENCE:

1/int rtems_can_queue_push_back_outslot(
2| struct rtems_can_queue_ends *gends,
3 struct rtems_can_queue_edge *gedge,
4| struct rtems_can_queue_slot *slot

51);

10.3. Driver Interface 93

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.3

DESCRIPTION:
Reschedules slot previously acquired with a rtems_can_queue_test_outslot() function call
for a second time processing.

Previously described function rtems_can_queue_test_outslot() already takes the slot from the
FIFO when called. This is not convenient in case there is no free space in the controller’s
hardware TX buffers. We would rather just check whether there is some pending message from
higher priority class compared to the priority classes presented in buffers. This can be done
with rtems_can_queue_pending_outslot_prio().

CALLING SEQUENCE:

1/int rtems_can_queue_pending_outslot_prio(
2| struct rtems_can_queue_ends *gends,
3 int prio_min

k;

N

DESCRIPTION:
Tests whether there is ready slot for given ends and minimum priority to be considered.
Negative value informs this is not a case, positive value informs about the available slot
priority class.

10.3.3 Frame Reception

Upon successful frame reception, the controller has to pass the frame to FIFO edges. This is
done with rtems_can_queue_filter_frame_to_edges()

CALLING SEQUENCE:

1/int rtems_can_queue_filter_frame_to_edges(
2| struct rtems_can_queue_ends *gends,

3| struct rtems_can_queue_edge *src_edge,

4| struct can_frame *frame,

s| unsigned int flags2add

6/);

L

DESCRIPTION:
Sends a message (frame) defined with frame argument to all outgoing edges connected to the
given ends (gends) with additional flags defined by flags2add argument. Argument src_edge
defines an optional source edge for echo detection. This is used to correctly filter echo frames.

The controller also should use this function to send an echo frame with additional flag
CAN_FRAME_LOCAL upon a successful frame transmission or CAN_FRAME_TXERR frame when trans-
mission error occurs.

10.3.4 Worker Thread Example

This is a largely simplified example of a possible worker thread for CAN device driver. The
thread is used both for interrupt processing (semaphore trigger by the interrupt handler) and
frame sender. The interrupt handler should disable interrupts before posting the semaphore as
all interrupts are handled in the worker. The worker should enable them before waiting on the
semaphore.

94 Chapter 10. CAN Driver

-

N

w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

Chapter 10 Section 10.3 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

static rtems_task worker(rtems_task_argument arg)
{
struct rtems_can_chip *chip = (struct rtems_can_chip *)arg;
struct rtems_can_queue_ends *gends = &chip->gends_dev->base;

while (1) {
/* This should be another while loop that handles all interrupts */
process_interrupts(chip);

if (buffer_has_free_space()) {
ret = rtems_can_queue_test_outslot(gends, &qedge, &slot);
if (ret>=0) {
/* Send frame located in slot->frame =*/
3
} else {
/* Check for the possible higher priority frames with
* rtems_can_queue_pending_outslot_prio() call.
* This has sense only if the controller supports frame
* abort from HW buffers.
*/

/* Enable interrupts and wait on semaphore */
interrupts_enable(chip);
rtems_binary_semaphore_wait(&chip->gends_dev->worker_sem);

10.3. Driver Interface 95

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 10 Section 10.4

10.4 Registering CAN Bus

1|#include <dev/can/can-bus.h>
2| #include <dev/can/controller-dependent.h>

The headers listed above have to be used ti provide the described functions. Header <dev/
can/controller-dependent.h> represents the controller’s specific header. This header usually
declares the controller’s initialization function.

Once initialized (rtems_can_chip structure allocated and obtained from a controller specific
function), the device can be registered into /dev namespace by rtems_can_bus_register()
function.

CALLING SEQUENCE:

1/int rtems_can_bus_register/(
2| struct rtems_can_bus *bus,
3| const char *bus_path

4);

DESCRIPTION:
Registers CAN devices in structure rtems_can_bus to /dev namespace with path bus_path.
The path may follow the standard /dev/canX naming, or it can be a different name selected
by the user/BSP. Structure rtems_can_bus represents one CAN device and is defined as:

1| struct rtems_can_bus {
2 struct rtems_can_chip *chip;

3 };

The device can be opened by open() function once registered into /dev namespace. It is
possible to open one device multiple times.

10.4.1 Example

The entire process of initialization and registration is demonstrated on virtual CAN controller in
the code below. Note that the user has to specify the path to which the controller is registered,
and this path has to be unique. Chip specific function xxx_initialize() may also have different
input parameters for different chips or can even have a different name according to the chip’s
specific implementation.

1| #include <dev/can/can-bus.h>
2| #include <dev/can/can-virtual.h>

4| /* Allocate can_bus structure */
s| struct rtems_can_bus bus = malloc(sizeof(struct rtems_can_bus));

7| /* Initialize virtual CAN controller */
g/ bus->chip = rtems_virtual_initialize();

10| /* Register controller as dev/can@, returns @ on success */
u|int ret = rtems_can_bus_register(bus, "dev/can@");

96 Chapter 10. CAN Driver

CHAPTER

ELEVEN

[2C DRIVER

The Inter-Integrated Circuit (1I2C, I2C, IIC) bus drivers should use the . The
user API is compatible to the

For example I12C bus drivers see:

For example I12C device drivers see:

* ADC

GPIO

* Power Management

* Sensors

97

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/i2c.h
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/atsam/i2c/atsam_i2c_bus.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/xilinx-zynq/i2c/cadence-i2c.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/testsuites/libtests/i2c01/init.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/imx/i2c/imx-i2c.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/lpc24xx/i2c/i2c.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/ti-ads-16bit-adc.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/eeprom.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/gpio-nxp-pca9535.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/switch-nxp-pca9548a.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/ti-lm25066a.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/sensor-lm75a.h
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/i2c/ti-tmp112.h

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 11 Section 11.0

98 Chapter 11. I2C Driver

CHAPTER

TWELVE

SPI DRIVER

The Serial Peripheral Interface (SPI) bus drivers should use the . The user
API is compatible to the

For example SPI bus drivers see:

99

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/dev/spi/spi.h
https://www.kernel.org/doc/Documentation/spi/spidev
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/atsam/spi/atsam_spi_bus.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/imx/spi/imx-ecspi.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/arm/lpc24xx/spi/ssp.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/testsuites/libtests/spi01/init.c

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 12 Section 12.0

100 Chapter 12. SPI Driver

CHAPTER

THIRTEEN

REAL-TIME CLOCK DRIVER

101

N —

N - .)

10

11

12

13

14

15

16

17

18

19

20

21

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 13 Section 13.1

13.1 Introduction

The Real-Time Clock (RTC) driver is responsible for providing an interface to an RTC device.
The capabilities provided by this driver are:

* Set the RTC TOD to RTEMS TOD

Set the RTEMS TOD to the RTC TOD
Get the RTC TOD

Set the RTC TOD to the Specified TOD

Get the Difference Between the RTEMS and RTC TOD

O Note

In this chapter, the abbreviation TOD is used for Time of Day.

The reference implementation for a real-time clock driver can be found in

This driver is based on the libchip concept and can
be easily configured to work with any of the RTC chips supported by the RTC chip drivers in
the directory . There is a README file in this directory for each supported
RTC chip. Each of these README explains how to configure the shared libchip implementation
of the RTC driver for that particular RTC chip.

The DY-4 DMV177 BSP used the shared libchip implementation of the RTC driver. There were no
DMV177 specific configuration routines. A BSP could use configuration routines to dynamically
determine what type of real-time clock is on a particular board. This would be useful for a BSP
supporting multiple board models. The relevant ports of the DMV177’s RTC_Table configuration
table is below:

#include <bsp.h>
#include <libchip/rtc.h>

#include <libchip/icm717@.h>
bool dmv177_icm7170_probe(int minor);
rtc_tbl RTC_Table[] = {

{ "/dev/rtco", /* sDeviceName */
RTC_ICM7170, /* deviceType */
&icm7170_fns, /* pDeviceFns */
dmv177_icm7170@_probe, /* deviceProbe */
(void %) ICM7170_AT_1_MHZ, /* pDeviceParams =*/
DMV170_RTC_ADDRESS, /* ulCtrlPortl =/
Q, /* ulDataPort */
icm7170_get_register_8, /* getRegister x/
icm7170_set_register_8, /* setRegister x/

}

};

unsigned long RTC_Count = (sizeof (RTC_Table)/sizeof(rtc_tbl));
rtems_device_minor_number RTC_Minor;

(continues on next page)

102 Chapter 13. Real-Time Clock Driver

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/dev/rtc/rtc-support.c
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/bsps/shared/dev/rtc

22
23
24
25
26
27
28

29

Chapter 13 Section 13.1

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

(continued from previous page)

bool dmv177_icm7170@_probe(int minor)

{

volatile uint16_t *card_resource_reg;

card_resource_reg = (volatile uint16_t *) DMV170_CARD_RESORCE_REG;

if ((*card_resource_reg & DMV170_RTC_INST_MASK) == DMV17@_RTC_INSTALLED)
return TRUE;

return FALSE;

13.1. Introduction

103

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 13 Section 13.2

13.2 Initialization

The rtc_initialize routine is responsible for initializing the RTC chip so it can be used. The
shared libchip implementation of this driver supports multiple RTCs and bases its initialization
order on the order the chips are defined in the RTC_Table. Each chip defined in the table may
or may not be present on this particular board. It is the responsibility of the deviceProbe to
indicate the presence of a particular RTC chip. The first RTC found to be present is considered
the preferred RTC.

In the shared libchip based implementation of the driver, the following actions are performed:

rtems_device_driver rtc_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor_arg,
void *arg

for each RTC configured in RTC_Table
if the deviceProbe for this RTC indicates it is present
set RTC_Minor to this device
set RTC_Present to TRUE
break out of this loop

if RTC_Present is not TRUE
return RTEMS_INVALID_NUMBER to indicate that no RTC is present

register this minor number as the "/dev/rtc”
perform the devicelnitialize routine for the preferred RTC chip
for RTCs past this one in the RTC_Table

if the deviceProbe for this RTC indicates it is present

perform the devicelnitialize routine for this RTC chip
register the configured name for this RTC

The deviceProbe routine returns TRUE if the device configured by this entry in the RTC_Table is
present. This configuration scheme allows one to support multiple versions of the same board
with a single BSP. For example, if the first generation of a board had Vendor A's RTC chip and
the second generation had Vendor B’s RTC chip, RTC_Table could contain information for both.
The deviceProbe configured for Vendor A's RTC chip would need to return TRUE if the board
was a first generation one. The deviceProbe routines are very board dependent and must be
provided by the BSP.

104 Chapter 13. Real-Time Clock Driver

-

[C-BEN] (=)} [SLE w N

Chapter 13 Section 13.3 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

13.3 setRealTimeToRTEMS

The setRealTimeToRTEMS routine sets the current RTEMS TOD to that of the preferred RTC.

void setRealTimeToRTEMS(void)
{

if no RTCs are present
return

invoke the deviceGetTime routine for the preferred RTC
set the RTEMS TOD using rtems_clock_set
}

13.3. setRealTimeToRTEMS

105

-

[C-BEN] (=)} [SLE w N

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

Chapter 13 Section 13.4

13.4 setRealTimeFromRTEMS

The setRealTimeFromRTEMS routine sets the preferred RTC TOD to the current RTEMS TOD.

void setRealTimeFromRTEMS(void)

{
if no RTCs are present
return
obtain the RTEMS TOD using rtems_clock_get
invoke the deviceSetTime routine for the preferred RTC
}
106 Chapter 13. Real-Time Clock Driver

-

~ (=)} [SLE w N

Chapter 13 Section 13.5 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

13.5 getRealTime

The getRealTime returns the preferred RTC TOD to the caller.

void getRealTime(rtems_time_of_day *tod)

{

if no RTCs are present
return

invoke the deviceGetTime routine for the preferred RTC

3

13.5. getRealTime

107

-

~ (=)} [SLE w N

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 13 Section 13.6

13.6 setRealTime

The setRealTime routine sets the preferred RTC TOD to the TOD specified by the caller.

void setRealTime(rtems_time_of_day *tod)

{
if no RTCs are present
return
invoke the deviceSetTime routine for the preferred RTC
3
108 Chapter 13. Real-Time Clock Driver

11

12

Chapter 13 Section 13.7 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

13.7 checkRealTime

The checkRealTime routine returns the number of seconds difference between the RTC TOD

and the current RTEMS TOD.

int checkRealTime(void)

{

if no RTCs are present
return -1

obtain the RTEMS TOD using rtems_clock_get

get the TOD from the preferred RTC using the deviceGetTime routine
convert the RTEMS TOD to seconds

convert the RTC TOD to seconds

return the RTEMS TOD in seconds - RTC TOD in seconds

13.7. checkRealTime

109

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 13 Section 13.7

110 Chapter 13. Real-Time Clock Driver

CHAPTER

FOURTEEN

NETWORKING DRIVER

111

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 14 Section 14.1

14.1 Introduction

This chapter is intended to provide an introduction to the procedure for writing RTEMS network
device drivers. The example code is taken from the ‘Generic 68360’ network device driver. The
source code for this driver is located in the bsps/m68k/gen68360/net directory in the RTEMS
source code distribution. Having a copy of this driver at hand when reading the following notes
will help significantly.

Legacy Networking Stack

This docuemntation is for the legacy FreeBSD networking stack in the RTEMS source tree.

112 Chapter 14. Networking Driver

Chapter 14 Section 14.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

14.2 Learn about the network device

Before starting to write the network driver become completely familiar with the programmer’s
view of the device. The following points list some of the details of the device that must be
understood before a driver can be written.

Does the device use DMA to transfer packets to and from memory or does the processor
have to copy packets to and from memory on the device?

If the device uses DMA, is it capable of forming a single outgoing packet from multiple
fragments scattered in separate memory buffers?

If the device uses DMA, is it capable of chaining multiple outgoing packets, or does each
outgoing packet require intervention by the driver?

Does the device automatically pad short frames to the minimum 64 bytes or does the
driver have to supply the padding?

Does the device automatically retry a transmission on detection of a collision?

If the device uses DMA, is it capable of buffering multiple packets to memory, or does the
receiver have to be restarted after the arrival of each packet?

How are packets that are too short, too long, or received with CRC errors handled? Does
the device automatically continue reception or does the driver have to intervene?

How is the device Ethernet address set? How is the device programmed to accept or reject
broadcast and multicast packets?

What interrupts does the device generate? Does it generate an interrupt for each incoming
packet, or only for packets received without error? Does it generate an interrupt for each
packet transmitted, or only when the transmit queue is empty? What happens when a
transmit error is detected?

In addition, some controllers have specific questions regarding board specific configuration. For
example, the SONIC Ethernet controller has a very configurable data bus interface. It can even
be configured for sixteen and thirty-two bit data buses. This type of information should be
obtained from the board vendor.

14.2.

Learn about the network device 113

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 14 Section 14.3

14.3 Understand the network scheduling conventions

When writing code for the driver transmit and receive tasks, take care to follow the network
scheduling conventions. All tasks which are associated with networking share various data
structures and resources. To ensure the consistency of these structures the tasks execute only
when they hold the network semaphore (rtems_bsdnet_semaphore). The transmit and receive
tasks must abide by this protocol. Be very careful to avoid ‘deadly embraces’ with the other
network tasks. A number of routines are provided to make it easier for the network driver code
to conform to the network task scheduling conventions.

e void rtems_bsdnet_semaphore_release(void) This function releases the network

semaphore. The network driver tasks must call this function immediately before mak-
ing any blocking RTEMS request.

void rtems_bsdnet_semaphore_obtain(void) This function obtains the network
semaphore. If a network driver task has released the network semaphore to allow other
network-related tasks to run while the task blocks, then this function must be called to
reobtain the semaphore immediately after the return from the blocking RTEMS request.

rtems_bsdnet_event_receive(rtems_event_set, rtems_option, rtems_interval,
rtems_event_set *) The network driver task should call this function when it
wishes to wait for an event. This function releases the network semaphore, calls
rtems_event_receive to wait for the specified event or events and reobtains the
semaphore. The value returned is the value returned by the rtems_event_receive.

114

Chapter 14. Networking Driver

Chapter 14 Section 14.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

14.4 Network Driver Makefile

Network drivers are considered part of the BSD network package and as such are
to be compiled with the appropriate flags. This can be accomplished by adding
-D__INSIDE_RTEMS_BSD_TCPIP_STACK__ to the command line. If the driver is inside the RTEMS
source tree or is built using the RTEMS application Makefiles, then adding the following line
accomplishes this:

1 [DEF INES += -D__INSIDE_RTEMS_BSD_TCPIP_STACK__]

This is equivalent to the following list of definitions. Early versions of the RTEMS BSD network
stack required that all of these be defined.

| P0G BSDLKERNELL FPKERNEL FPINERT] -PIFS| -PDTAGNOITTIG |-DBODTRLCoMPAT

1

Defining these macros tells the network header files that the driver is to be compiled with
extended visibility into the network stack. This is in sharp contrast to applications that simply
use the network stack. Applications do not require this level of visibility and should stick to the
portable application level API.

As a direct result of being logically internal to the network stack, network drivers use the BSD
memory allocation routines This means, for example, that malloc takes three arguments. See
the SONIC device driver (c/src/lib/libchip/network/sonic.c) for an example of this. Be-
cause of this, network drivers should not include <stdlib.h>. Doing so will result in conflicting
definitions of malloc().

Application level code including network servers such as the FTP daemon are not part of the
BSD kernel network code and should not be compiled with the BSD network flags. They should
include <stdlib.h> and not define the network stack visibility macros.

14.4. Network Driver Makefile 115

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 14 Section 14.5

14.5 Write the Driver Attach Function

The driver attach function is responsible for configuring the driver and making the connection
between the network stack and the driver.

Driver attach functions take a pointer to an rtems_bsdnet_ifconfig structure as their only
argument. and set the driver parameters based on the values in this structure. If an entry in the
configuration structure is zero the attach function chooses an appropriate default value for that
parameter.

The driver should then set up several fields in the ifnet structure in the device-dependent data
structure supplied and maintained by the driver:

ifp->if_softc
Pointer to the device-dependent data. The first entry in the device-dependent data structure
must be an arpcom structure.

ifp->if_name
The name of the device. The network stack uses this string and the device number for device
name lookups. The device name should be obtained from the name entry in the configuration
structure.

ifp->if_unit
The device number. The network stack uses this number and the device name for device name
lookups. For example, if ifp->if_name is scc and ifp->if_unit is 1, the full device name
would be scc1. The unit number should be obtained from the name entry in the configuration
structure.

ifp->if_mtu
The maximum transmission unit for the device. For Ethernet devices this value should almost
always be 1500.

ifp->if_flags
The device flags. Ethernet devices should set the flags to IFF_BROADCAST | IFF_SIMPLEX, indi-
cating that the device can broadcast packets to multiple destinations and does not receive and
transmit at the same time.

ifp->if_snd.ifq_maxlen
The maximum length of the queue of packets waiting to be sent to the driver. This is normally
set to ifgmaxlen.

ifp->if_init
The address of the driver initialization function.

ifp->if_start

The address of the driver start function.
ifp->if_ioctl

The address of the driver ioctl function.

ifp->if_output
The address of the output function. Ethernet devices should set this to ether_output.

RTEMS provides a function to parse the driver name in the configuration structure into a device
name and unit number.

116 Chapter 14. Networking Driver

Chapter 14 Section 14.5 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

int rtems_bsdnet_parse_driver_name (
const struct rtems_bsdnet_ifconfig =xconfig,
char **namep

b

The function takes two arguments; a pointer to the configuration structure and a pointer to a
pointer to a character. The function parses the configuration name entry, allocates memory for
the driver name, places the driver name in this memory, sets the second argument to point to
the name and returns the unit number. On error, a message is printed and -1 is returned.

Once the attach function has set up the above entries it must link the driver data structure onto
the list of devices by calling if_attach. Ethernet devices should then call ether_ifattach. Both
functions take a pointer to the device’s ifnet structure as their only argument.

The attach function should return a non-zero value to indicate that the driver has been success-
fully configured and attached.

14.5. Write the Driver Attach Function 117

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 14 Section 14.6

14.6 Write the Driver Start Function.

This function is called each time the network stack wants to start the transmitter. This occures
whenever the network stack adds a packet to a device’s send queue and the IFF_OACTIVE bit in
the device’s if_flags is not set.

For many devices this function need only set the IFF_OACTIVE bit in the if_flags and send an
event to the transmit task indicating that a packet is in the driver transmit queue.

118 Chapter 14. Networking Driver

-

IS

3]

=

Chapter 14 Section 14.7 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

14.7 Write the Driver Initialization Function.

This function should initialize the device, attach to interrupt handler, and start the driver trans-
mit and receive tasks. The function:

rtems_id rtems_bsdnet_newproc(
char *name,
int stacksize,
void (*entry)(void *),
void *arg

I

should be used to start the driver tasks.

Note that the network stack may call the driver initialization function more than once. Make
sure multiple versions of the receive and transmit tasks are not accidentally started.

14.7. Write the Driver Initialization Function. 119

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 14 Section 14.8

14.8 Write the Driver Transmit Task

This task is reponsible for removing packets from the driver send queue and sending them to
the device. The task should block waiting for an event from the driver start function indicating
that packets are waiting to be transmitted. When the transmit task has drained the driver send
queue the task should clear the IFF_OACTIVE bit in if_flags and block until another outgoing
packet is queued.

120 Chapter 14. Networking Driver

Chapter 14 Section 14.9 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

14.9 Write the Driver Receive Task

This task should block until a packet arrives from the device. If the device is an Ethernet
interface the function ether_input should be called to forward the packet to the network stack.
The arguments to ether_input are a pointer to the interface data structure, a pointer to the
ethernet header and a pointer to an mbuf containing the packet itself.

14.9. Write the Driver Receive Task 121

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 14 Section 14.10

14.10 Write the Driver Interrupt Handler

A typical interrupt handler will do nothing more than the hardware manipulation required to
acknowledge the interrupt and send an RTEMS event to wake up the driver receive or transmit
task waiting for the event. Network interface interrupt handlers must not make any calls to
other network routines.

122 Chapter 14. Networking Driver

Chapter 14 Section 14.11 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

14.11 Write the Driver IOCTL Function
This function handles ioctl requests directed at the device. The ioctl commands which must be
handled are:

SIOCGIFADDR, SIOCSIFADDR
If the device is an Ethernet interface these commands should be passed on to ether_ioctl.

SIOCSIFFLAGS
This command should be used to start or stop the device, depending on the state of the
interface IFF_UP and" "IFF_RUNNING" " bits in if_flags:

IFF_RUNNING
Stop the device.

IFF_UP
Start the device.

IFF_UP|IFF_RUNNING
Stop then start the device.

Do nothing.

14.11. Write the Driver IOCTL Function 123

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 14 Section 14.12

14.12 Write the Driver Statistic-Printing Function

This function should print the values of any statistic/diagnostic counters the network driver may
use. The driver ioctl function should call the statistic-printing function when the ioctl command
is STO_RTEMS_SHOW_STATS.

124 Chapter 14. Networking Driver

CHAPTER

FIFTEEN

FRAME BUFFER DRIVER

In this chapter, we present the basic functionality implemented by a frame buffer driver:
* frame_buffer_initialize()

* frame_buffer_open()

frame_buffer_close()

frame_buffer_read()

frame_buffer_write()

frame_buffer_control()

125

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 15 Section 15.1

15.1 Introduction

The purpose of the frame buffer driver is to provide an abstraction for graphics hardware. By
using the frame buffer interface, an application can display graphics without knowing any-
thing about the low-level details of interfacing to a particular graphics adapter. The parameters
governing the mapping of memory to displayed pixels (planar or linear, bit depth, etc) is still
implementation-specific, but device-independent methods are provided to determine and po-
tentially modify these parameters.

The frame buffer driver is commonly located in the console directory of the BSP and registered
by the name /dev/fbe. Additional frame buffers (if available) are named /dev/fb1*,*/dev/fb2,
etc.

To work with the frame buffer, the following operation sequence is used:open(), ioctls() to
get the frame buffer info, read() and/or write(), and close().

126 Chapter 15. Frame Buffer Driver

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Chapter 15 Section 15.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

15.2 Driver Function Overview

15.2.1 Initialization

The driver initialization is called once during the RTEMS initialization process and returns
RTEMS_SUCCESSFUL when the device driver is successfully initialized. During the initialization,
a name is assigned to the frame buffer device. If the graphics hardware supports console text
output, as is the case with the pc386 VGA hardware, initialization into graphics mode may be
deferred until the device is open() ed.

The frame_buffer_initialize() function may look like this:

rtems_device_driver frame_buffer_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *arg)

rtems_status_code status;
printk("frame buffer driver initializing..\n");

/*

* Register the device

*/

status = rtems_io_register_name("”/dev/fb@", major, 0);

if (status != RTEMS_SUCCESSFUL)

{
printk("Error registering frame buffer device!\n");
rtems_fatal_error_occurred(status);

3

/*

* graphics hardware initialization goes here for non-console
* devices

*/

return RTEMS_SUCCESSFUL;

15.2.2 Opening the Frame Buffer Device

The frame_buffer_open() function is called whenever a frame buffer device is opened. If the
frame buffer is registered as /dev/fbo, the frame_buffer_open entry point will be called as the
result of an open(”/dev/fb@", mode) in the application.

Thread safety of the frame buffer driver is implementation-dependent. The VGA driver shown
below uses a mutex to prevent multiple open() operations of the frame buffer device.

The frame_buffer_open() function returns RTEMS_SUCCESSFUL when the device driver is suc-
cessfully opened, and RTEMS_UNSATISFIED if the device is already open:

1| rtems_device_driver frame_buffer_close(

2

rtems_device_major_number major,
(continues on next page)

15.2. Driver Function Overview 127

10

11

12

13

14

15

16

17

10

11

12

13

14

15

16

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 15 Section 15.2

(continued from previous page)
rtems_device_minor_number minor,
void *xarg
)
{
if (pthread_mutex_unlock(&mutex) == 0) {
/* restore previous state. for VGA this means return to text mode.
* leave out if graphics hardware has been initialized in
* frame_buffer_initialize()
*/
ega_hwterm();
printk("FBVGA close called.\n");
return RTEMS_SUCCESSFUL;

3
return RTEMS_UNSATISFIED;

In the previous example, the function ega_hwinit() takes care of hardware-specific initializa-
tion.

15.2.3 Closing the Frame Buffer Device

The frame_buffer_close() is invoked when the frame buffer device is closed. It frees up any
resources allocated in frame_buffer_open(), and should restore previous hardware state. The
entry point corresponds to the device driver close entry point.

Returns RTEMS_SUCCESSFUL when the device driver is successfully closed:

rtems_device_driver frame_buffer_close(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *arg)

pthread_mutex_unlock(&mutex);

/* TODO check mutex return value, RTEMS_UNSATISFIED if it failed. we
* don't want to unconditionally call ega_hwterm()... */

/* restore previous state. for VGA this means return to text mode.

* leave out if graphics hardware has been initialized in

* frame_buffer_initialize() =/

ega_hwterm();

printk("frame buffer close called.\n");

return RTEMS_SUCCESSFUL;

15.2.4 Reading from the Frame Buffer Device

The frame_buffer_read() is invoked from a read() operation on the frame buffer device. Read
functions should allow normal and partial reading at the end of frame buffer memory. This
method returns RTEMS_SUCCESSFUL when the device is successfully read from:

128 Chapter 15. Frame Buffer Driver

10
11
12
13

14

10
11
12
13

14

Chapter 15 Section 15.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

rtems_device_driver frame_buffer_read(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *xarg

rtems_libio_rw_args_t *rw_args = (rtems_libio_rw_args_t *)arg;
rw_args->bytes_moved = ((rw_args->offset + rw_args->count) > fb_fix.smem_len) ?
(fb_fix.smem_len - rw_args->offset) : rw_args->count;
memcpy (rw_args->buffer,
(const void *) (fb_fix.smem_start + rw_args->offset),
rw_args->bytes_moved);
return RTEMS_SUCCESSFUL;

15.2.5 Writing to the Frame Buffer Device

The frame_buffer_write() is invoked from a write() operation on the frame buffer device.
The frame buffer write function is similar to the read function, and should handle similar cases
involving partial writes.

This method returns RTEMS_SUCCESSFUL when the device is successfully written to:

rtems_device_driver frame_buffer_write(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *arg

rtems_libio_rw_args_t *rw_args = (rtems_libio_rw_args_t *)arg;
rw_args—->bytes_moved = ((rw_args->offset + rw_args->count) > fb_fix.smem_len) ?
(fb_fix.smem_len - rw_args->offset) : rw_args->count;
memcpy ((void *) (fb_fix.smem_start + rw_args->offset),
rw_args->buffer,
rw_args->bytes_moved);
return RTEMS_SUCCESSFUL;

15.2.6 Frame Buffer IO Control

The frame buffer driver allows several ioctls, partially compatible with the Linux kernel, to
obtain information about the hardware.

All ioctl() operations on the frame buffer device invoke frame_buffer_control().
Ioctls supported:
* ioctls to get the frame buffer screen info (fixed and variable).

* ioctl to set and get palette.

1| rtems_device_driver frame_buffer_control(

2

rtems_device_major_number major,
(continues on next page)

15.2. Driver Function Overview 129

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 15 Section 15.2

(continued from previous page)

rtems_device_minor_number minor,
void *xarg

rtems_libio_ioctl_args_t *args = arg;
printk("FBVGA ioctl called, cmd=%x\n", args->command);

switch(args->command) {

case FBIOGET_FSCREENINFO:

args->ioctl_return = get_fix_screen_info((struct fb_fix_screeninfo x)_
—args->buffer);

break;

case FBIOGET_VSCREENINFO:
args->ioctl_return = get_var_screen_info((struct fb_var_screeninfo *)_

—args->buffer);

break;

case FBIOPUT_VSCREENINFO:
/* not implemented yetx*/
args->ioctl_return = -1;
return RTEMS_UNSATISFIED;

case FBIOGETCMAP:
args->ioctl_return = get_palette((struct fb_cmap *) args->buffer);
break;

case FBIOPUTCMAP:
args->ioctl_return
break;

default:
args—->ioctl_return = 0;
break;

set_palette((struct fb_cmap *) args->buffer);

return RTEMS_SUCCESSFUL;
}

See rtems/fb.h for more information on the list of ioctls and data structures they work with.

130 Chapter 15. Frame Buffer Driver

CHAPTER

SIXTEEN

ADA95 INTERRUPT SUPPORT

131

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 16 Section 16.1

16.1 Introduction

This chapter describes what is required to enable Ada interrupt and error exception handling
when using GNAT over RTEMS.

The GNAT Ada95 interrupt support RTEMS was developed by Jiri Gaisler <
> who also wrote this chapter.

132 Chapter 16. Ada95 Interrupt Support

mailto:jgais@ws.estec.esa.nl
mailto:jgais@ws.estec.esa.nl

Chapter 16 Section 16.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

16.2 Mapping Interrupts to POSIX Signals

In Ada95, interrupts can be attached with the interrupt_attach pragma. For most systems, the
gnat run-time will use POSIX signal to implement the interrupt handling, mapping one signal
per interrupt. For interrupts to be propagated to the attached Ada handler, the corresponding
signal must be raised when the interrupt occurs.

The same mechanism is used to generate Ada error exceptions. Three error exceptions are de-
fined: program, constraint and storage error. These are generated by raising the predefined
signals: SIGILL, SIGFPE and SIGSEGV. These signals should be raised when a spurious or erro-
neous trap occurs.

To enable gnat interrupt and error exception support for a particular BSP, the following has to
be done:

* Write an interrupt/trap handler that will raise the corresponding signal depending on the
interrupt/trap number.

* Install the interrupt handler for all interrupts/traps that will be handled by gnat (including
spurious).

* At startup, gnat calls __gnat_install_handler(). The BSP must provide this function
which installs the interrupt/trap handlers.

Which CPU-interrupt will generate which signal is implementation defined. There are 32 POSIX
signals (1 - 32), and all except the three error signals (SIGILL, SIGFPE and SIGSEGV) can be
used. I would suggest to use the upper 16 (17 - 32) which do not have an assigned POSIX
name.

Note that the pragma interrupt_attach will only bind a signal to a particular Ada handler - it will
not unmask the interrupt or do any other things to enable it. This have to be done separately,
typically by writing various device register.

16.2. Mapping Interrupts to POSIX Signals 133

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 16 Section 16.3

16.3 Example Ada95 Interrupt Program

An example program (irq_test) is included in the Ada examples package to show how inter-
rupts can be handled in Ada95. Note that generation of the test interrupt (irqforce.c) is BSP
specific and must be edited.

O Note
The irq_test example was written for the SPARC/ERC32 BSP.

134 Chapter 16. Ada95 Interrupt Support

Chapter 16 Section 16.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

16.4 Version Requirements

With RTEMS 4.0, a patch was required to psignal.c in RTEMS sources (to correct a bug as-
sociated to the default action of signals 15-32). The SPARC/ERC32 RTEMS BSP includes
the' “gnatsupp" * subdirectory that can be used as an example for other BSPs.

With GNAT 3.11p, a patch is required for a-init.c to invoke the BSP specific routine that
installs the exception handlers.

16.4. Version Requirements 135

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 16 Section 16.4

136 Chapter 16. Ada95 Interrupt Support

CHAPTER

SEVENTEEN

SHARED MEMORY SUPPORT DRIVER

The Shared Memory Support Driver is responsible for providing glue routines and configuration
information required by the Shared Memory Multiprocessor Communications Interface (MPCI).
The Shared Memory Support Driver tailors the portable Shared Memory Driver to a particular
target platform.

This driver is only required in shared memory multiprocessing systems that use the RTEMS
mulitprocessing support. For more information on RTEMS multiprocessing capabilities and the
MPCI, refer to the Multiprocessing Manager chapter of the RTEMS Application C User’s Guide.

137

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 17 Section 17.1

17.1 Shared Memory Configuration Table

The Shared Memory Configuration Table is defined in the following structure:

typedef volatile uint32_t vol_u32;

-

typedef struct {

w

4| vol_u32 *address; /* write here for interrupt */
s| vol_u32 value; /* this value causes interrupt */
6/ vol_u32 length; /* for this length (0,1,2,4) =*/

} Shm_Interrupt_information;

~

struct shm_config_info {

el

10| vol_u32 *base; /* base address of SHM */
1| vol_u32 length; /* length (in bytes) of SHM */
12| vol_u32 format; /* SHM is big or little endian */
13| vol_u32 (*convert)(); /* neutral conversion routine */
14| vol_u32 poll_intr; /* POLLED or INTR driven mode */
15| void (xcause_intr) (uint32_t);

16| Shm_Interrupt_information Intr; /* cause intr information */
17| };

18
19| typedef struct shm_config_info shm_config_table;

where the fields are defined as follows:

base
is the base address of the shared memory buffer used to pass messages between the nodes in
the system.

length
is the length (in bytes) of the shared memory buffer used to pass messages between the nodes
in the system.

format
is either SHM_BIG or SHM_LITTLE to indicate that the neutral format of the shared memory
area is big or little endian. The format of the memory should be chosen to match most of the
inter-node traffic.

convert
is the address of a routine which converts from native format to neutral format. Ideally, the
neutral format is the same as the native format so this routine is quite simple.

poll_intr, cause_intr
is either INTR_MODE or POLLED_MODE to indicate how the node will be informed of incoming
messages.

Intr
is the information required to cause an interrupt on a node. This structure contains the
following fields:

address
is the address to write at to cause an interrupt on that node. For a polled node, this should
be NULL.

138 Chapter 17. Shared Memory Support Driver

Chapter 17 Section 17.1 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

value
is the value to write to cause an interrupt.

length
is the length of the entity to write on the node to cause an interrupt. This can be 0 to
indicate polled operation, 1 to write a byte, 2 to write a sixteen-bit entity, and 4 to write a
thirty-two bit entity.

17.1. Shared Memory Configuration Table 139

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 17 Section 17.2

17.2 Primitives

17.2.1 Convert Address

The Shm_Convert_address is responsible for converting an address of an entity in the shared
memory area into the address that should be used from this node. Most targets will simply
return the address passed to this routine. However, some target boards will have a special
window onto the shared memory. For example, some VMEbus boards have special address
windows to access addresses that are normally reserved in the CPU’s address space.

void *Shm_Convert_address(void *address)

{

return the local address version of this bus address

17.2.2 Get Configuration

The Shm_Get_configuration routine is responsible for filling in the Shared Memory Configura-
tion Table passed to it.

void Shm_Get_configuration(
uint32_t localnode,
shm_config_table **shmcfg

)

{
fill in the Shared Memory Configuration Table

b

17.2.3 Locking Primitives

This is a collection of routines that are invoked by the portable part of the Shared Memory
Driver to manage locks in the shared memory buffer area. Accesses to the shared memory must
be atomic. Two nodes in a multiprocessor system must not be manipulating the shared data
structures simultaneously. The locking primitives are used to insure this.

To avoid deadlock, local processor interrupts should be disabled the entire time the locked
queue is locked.

The locking primitives operate on the lock field of the Shm_Locked_queue_Control data struc-
ture. This structure is defined as follows:

typedef struct {
vol_u32 lock; /* lock field for this queue */
vol_u32 front; /* first envelope on queue */
vol_u32 rear; /* last envelope on queue */
vol_u32 owner; /* receiving (i.e. owning) node x/
} Shm_Locked_queue_Control;

where each field is defined as follows:

lock
is the lock field. Every node in the system must agree on how this field will be used. Many

processor families provide an atomic “test and set” instruction that is used to manage this
field.

140 Chapter 17. Shared Memory Support Driver

Chapter 17 Section 17.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

front

is the index of the first message on this locked queue.

rear

is the index of the last message on this locked queue.

owner

10

11

12

13

14

-

is the node number of the node that currently has this structure locked.

17.2.3.1 Initializing a Shared Lock

The Shm_Initialize_lock routine is responsible for initializing the lock field. This routines
usually is implemented as follows:

void Shm_Initialize_lock(
Shm_Locked_queue_Control *1g_cb
)
{
1g_cb->1lock = LQ_UNLOCKED;
}

17.2.3.2 Acquiring a Shared Lock

The Shm_Lock routine is responsible for acquiring the lock field. Interrupts should be disabled
while that lock is acquired. If the lock is currently unavailble, then the locking routine should
delay a few microseconds to allow the other node to release the lock. Doing this reduces bus
contention for the lock. This routines usually is implemented as follows:

void Shm_Lock(
Shm_Locked_queue_Control *1q_cb

)

{

disable processor interrupts
set Shm_isrstat to previous interrupt disable level

while (TRUE) {
atomically attempt to acquire the lock
if the lock was acquired
return
delay some small period of time
}
}

17.2.3.3 Releasing a Shared Lock

The Shm_Unlock routine is responsible for releasing the lock field and reenabling processor
interrupts. This routines usually is implemented as follows:

void Shm_Unlock(
Shm_Locked_queue_Control *1qg_cb

)
{

(continues on next page)

17.2. Primitives 141

(3]

[«

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 17 Section 17.2

set the lock to the unlocked value

(continued from previous page)

reenable processor interrupts to their level prior
to the lock being acquired. This value was saved

in the global variable Shm_isrstat

142

Chapter 17. Shared Memory Support Driver

Chapter 17 Section 17.3 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

17.3 Installing the MPCI ISR

The Shm_setvec is invoked by the portable portion of the shared memory to install the inter-
rupt service routine that is invoked when an incoming message is announced. Some target
boards support an interprocessor interrupt or mailbox scheme and this is where the ISR for that
interrupt would be installed.

On an interrupt driven node, this routine would be implemented as follows:

1/void Shm_setvec(void)
2 {
3| install the interprocessor communications ISR

43

On a polled node, this routine would be empty.

17.3. Installing the MPCI ISR 143

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 17 Section 17.3

144 Chapter 17. Shared Memory Support Driver

CHAPTER

EIGHTEEN

TIMER DRIVER

A\ Warning

The Timer Driver is superfluous and should be replaced by the RTEMS counter support. Ask
on the mailing list if you plan to write a Timer Driver.

The timer driver is primarily used by the RTEMS Timing Tests. This driver provides as accurate
a benchmark timer as possible. It typically reports its time in microseconds, CPU cycles, or
bus cycles. This information can be very useful for determining precisely what pieces of code
require optimization and to measure the impact of specific minor changes.

The gen68340 BSP also uses the Timer Driver to support a high performance mode of the on-
CPU UART.

145

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 18 Section 18.1

18.1 Benchmark Timer

The RTEMS Timing Test Suite requires a benchmark timer. The RTEMS Timing Test Suite is very
helpful for determining the performance of target hardware and comparing its performance to
that of other RTEMS targets.

This section describes the routines which are assumed to exist by the RTEMS Timing Test Suite.
The names used are EXACTLY what is used in the RTEMS Timing Test Suite so follow the naming
convention.

18.1.1 benchmark timer initialize

Initialize the timer source.

void benchmark_timer_initialize(void)

{

initialize the benchmark timer

18.1.2 Read_timer

The benchmark_timer_read routine returns the number of benchmark time units (typically mi-
croseconds) that have elapsed since the last call to benchmark_timer_initialize.

benchmark_timer_t benchmark_timer_read(void)
{
stop time = read the hardware timer
if the subtract overhead feature is enabled
subtract overhead from stop time
return the stop time

3

Many implementations of this routine subtract the overhead required to initialize and read the
benchmark timer. This makes the times reported more accurate.

Some implementations report O if the harware timer value change is sufficiently small. This is
intended to indicate that the execution time is below the resolution of the timer.

18.1.3 benchmark timer disable subtracting average overhead

This routine is invoked by the “Check Timer” (tmck) test in the RTEMS Timing Test Suite. It
makes the benchmark_timer_read routine NOT subtract the overhead required to initialize and
read the benchmark timer. This is used by the tmoverhd test to determine the overhead required
to initialize and read the timer.

void benchmark_timer_disable_subtracting_average_overhead(bool find_flag)

{

disable the subtract overhead feature

b

The benchmark_timer_find_average_overhead variable is used to indicate the state of the “sub-
tract overhead feature”.

146 Chapter 18. Timer Driver

Chapter 18 Section 18.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

18.2 gen68340 UART FIFO Full Mode

The gen68340 BSP is an example of the use of the timer to support the UART input FIFO full
mode (FIFO means First In First Out and roughly means buffer). This mode consists in the
UART raising an interrupt when n characters have been received (n is the UART’s FIFO length).
It results in a lower interrupt processing time, but the problem is that a scanf primitive will block
on a receipt of less than n characters. The solution is to set a timer that will check whether there
are some characters waiting in the UART’s input FIFO. The delay time has to be set carefully
otherwise high rates will be broken:

* if no character was received last time the interrupt subroutine was entered, set a long
delay,

» otherwise set the delay to the delay needed for n characters receipt.

18.2. gen68340 UART FIFO Full Mode 147

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 18 Section 18.2

148 Chapter 18. Timer Driver

CHAPTER

NINETEEN

ATA DRIVER

A\ Warning

The ATA/IDE Drivers are out of date and should not be used for new BSPs. The preferred
alternative is to port the ATA/SATA/SCSI/NVMe support from FreeBSD to RTEMS using the
. Ask on the mailing list if you plan to write a driver for an ATA/IDE device.

149

https://gitlab.rtems.org/rtems/pkg/rtems-libbsd

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 19 Section 19.1

19.1 Terms

ATA device - physical device attached to an IDE controller

150 Chapter 19. ATA Driver

Chapter 19 Section 19.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

19.2 Introduction

ATA driver provides generic interface to an ATA device. ATA driver is hardware independent
implementation of ATA standard defined in working draft “AT Attachment Interface with Exten-
sions (ATA-2)” X3T10/0948D revision 4c¢, March 18, 1996. ATA Driver based on IDE Controller
Driver and may be used for computer systems with single IDE controller and with multiple
as well. Although current implementation has several restrictions detailed below ATA driver
architecture allows easily extend the driver. Current restrictions are:

* Only mandatory (see draft p.29) and two optional (READ/WRITE MULTIPLE) commands
are implemented

* Only PIO mode is supported but both poll and interrupt driven

The reference implementation for ATA driver can be found in cpukit/libblock/src/ata.c.

19.2. Introduction 151

10

11

12

13

14

15

16

17

18

19

20

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 19 Section 19.3

19.3 Initialization

The ata_initialize routine is responsible for ATA driver initialization. The main goal of the
initialization is to detect and register in the system all ATA devices attached to IDE controllers
successfully initialized by the IDE Controller driver.

In the implementation of the driver, the following actions are performed:

rtems_device_driver ata_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor,
void *arg

{

initialize internal ATA driver data structure
for each IDE controller successfully initialized by the IDE Controller driver
if the controller is interrupt driven

set up interrupt handler

obtain information about ATA devices attached to the controller
with help of EXECUTE DEVICE DIAGNOSTIC command

for each ATA device detected on the controller
obtain device parameters with help of DEVICE IDENTIFY command

register new ATA device as new block device in the system

Special processing of ATA commands is required because of absence of multitasking environ-
ment during the driver initialization.

Detected ATA devices are registered in the system as physical block devices (see libblock library
description). Device names are formed based on IDE controller minor number device is attached
to and device number on the controller (0 - Master, 1 - Slave). In current implementation 64
minor numbers are reserved for each ATA device which allows to support up to 63 logical
partitions per device.

controller minor device number device name ata device minor

0 0 hda 0

0 1 hdb 64
1 0 hdc 128
1 1 hdd 172

152 Chapter 19. ATA Driver

10

11

12

13

14

Chapter 19 Section 19.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

19.4 ATA Driver Architecture

19.4.1 ATA Driver Main Internal Data Structures

ATA driver works with ATA requests. ATA request is described by the following structure:

/* ATA request */
typedef struct ata_req_s {

Chain_Node link; /* link in requests chain x/

char type; /* request type */

ata_registers_t regs; /* ATA command */

uint32_t cnt; /* Number of sectors to be exchanged */

uint32_t cbuf; /* number of current buffer from breq in use */

uint32_t pos; /* current position in 'cbuf' */

blkdev_request *breq; /* blkdev_request which corresponds to the ata.
<request */

rtems_id sema; /* semaphore which is used if synchronous

* processing of the ata request is required */
rtems_status_code status; /* status of ata request processing */
int error; /* error code */
} ata_req_t;

J

ATA driver supports separate ATA requests queues for each IDE controller (one queue per con-
troller). The following structure contains information about controller’s queue and devices
attached to the controller:

/*
* This structure describes controller state, devices configuration on the
* controller and chain of ATA requests to the controller.

*/

typedef struct ata_ide_ctrl_s {
bool present; /* controller state x/
ata_dev_t device[2]; /* ata devices description */
Chain_Control regs; /* requests chain */

} ata_ide_ctrl_t;

Driver uses array of the structures indexed by the controllers minor number.

The following structure allows to map an ATA device to the pair (IDE controller minor number
device is attached to, device number on the controller):

/*

* Mapping of RTEMS ATA devices to the following pairs:

* (IDE controller number served the device, device number on the controller)

*/

typedef struct ata_ide_dev_s {
int ctrl_minor;/* minor number of IDE controller serves RTEMS ATA device */
int device; /* device number on IDE controller (@ or 1) x/

} ata_ide_dev_t;

Driver uses array of the structures indexed by the ATA devices minor number.

ATA driver defines the following internal events:

19.4. ATA Driver Architecture 153

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 19 Section 19.4

/* ATA driver events =*/
typedef enum ata_msg_type_s {

ATA_MSG_GEN_EVT = 1, /* general event */
ATA_MSG_SUCCESS_EVT, /* success event *x/
ATA_MSG_ERROR_EVT, /* error event x/

ATA_MSG_PROCESS_NEXT_EVT /* process next ata request event */
} ata_msg_type_t;

19.4.2 Brief ATA Driver Core Overview

All ATA driver functionality is available via ATA driver ioctl. Current implementation supports
only two ioctls: BLKIO_REQUEST and ATAIO_SET_MULTIPLE_MODE. Each ATA driver ioctl() call
generates an ATA request which is appended to the appropriate controller queue depending on
ATA device the request belongs to. If appended request is single request in the controller’s queue
then ATA driver event is generated.

ATA driver task which manages queue of ATA driver events is core of ATA driver. In current driver
version queue of ATA driver events implemented as RTEMS message queue. Each message
contains event type, IDE controller minor number on which event happened and error if an
error occurred. Events may be generated either by ATA driver ioctl call or by ATA driver task
itself. Each time ATA driver task receives an event it gets controller minor number from event,
takes first ATA request from controller queue and processes it depending on request and event
types. An ATA request processing may also includes sending of several events. If ATA request
processing is finished the ATA request is removed from the controller queue. Note, that in
current implementation maximum one event per controller may be queued at any moment of
the time.

(This part seems not very clear, hope I rewrite it soon)

154 Chapter 19. ATA Driver

CHAPTER

TWENTY

IDE CONTROLLER DRIVER

A\ Warning

The ATA/IDE Drivers are out of date and should not be used for new BSPs. The preferred
alternative is to port the ATA/SATA/SCSI/NVMe support from FreeBSD to RTEMS using the
. Ask on the mailing list if you plan to write a driver for an ATA/IDE device.

155

https://gitlab.rtems.org/rtems/pkg/rtems-libbsd

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 20 Section 20.1

20.1 Introduction

The IDE Controller driver is responsible for providing an interface to an IDE Controller. The
capabilities provided by this driver are:

* Read IDE Controller register
* Write IDE Controller register
* Read data block through IDE Controller Data Register
* Write data block through IDE Controller Data Register

The reference implementation for an IDE Controller driver can be found in bsps/shared/dev/
ide. This driver is based on the libchip concept and allows to work with any of the IDE Con-
troller chips simply by appropriate configuration of BSP. Drivers for a particular IDE Controller
chips locate in the following directories: drivers for well-known IDE Controller chips locate into
bsps/shared/dev/ide and drivers for custom IDE Controller chips (for example, implemented
on FPGA) locate into bsps/${RTEMS_CPU}/${RTEMS_BSP/ata. There is a README file in these
directories for each supported IDE Controller chip. Each of these README explains how to
configure a BSP for that particular IDE Controller chip.

156 Chapter 20. IDE Controller Driver

10

11

12

Chapter 20 Section 20.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

20.2 Initialization

IDE Controller chips used by a BSP are statically configured into IDE_Controller_Table. The
ide_controller_initialize routine is responsible for initialization of all configured IDE con-
troller chips. Initialization order of the chips based on the order the chips are defined in the
IDE_Controller_Table.

The following actions are performed by the IDE Controller driver initialization routine:

rtems_device_driver ide_controller_initialize(
rtems_device_major_number major,
rtems_device_minor_number minor_arg,
void *arg

for each IDE Controller chip configured in IDE_Controller_Table
if (BSP dependent probe(if exists) AND device probe for this IDE chip
indicates it is present)
perform initialization of the particular chip
register device with configured name for this chip

20.2. Initialization 157

N

w

ES

~

<

10

11

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 20 Section 20.3

20.3 Read IDE Controller Register

The ide_controller_read_register routine reads the content of the IDE Controller chip reg-
ister. IDE Controller chip is selected via the minor number. This routine is not allowed to be
called from an application.

void ide_controller_read_register(
rtems_device_minor_number minor,
unsigned32 reg,
unsigned3?2 *value

)

{

get IDE Controller chip configuration information from
IDE_Controller_Table by minor number

invoke read register routine for the chip

by

158 Chapter 20. IDE Controller Driver

N

w

ES

~

<

10

11

Chapter 20 Section 20.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

20.4 Write IDE Controller Register

The ide_controller_write_register routine writes IDE Controller chip register with specified
value. IDE Controller chip is selected via the minor number. This routine is not allowed to be
called from an application.

void ide_controller_write_register(
rtems_device_minor_number minor,
unsigned32 reg,
unsigned3?2 value

)

{

get IDE Controller chip configuration information from
IDE_Controller_Table by minor number

invoke write register routine for the chip

by

20.4. Write IDE Controller Register 159

11

12

13

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 20 Section 20.5

20.5 Read Data Block Through IDE Controller Data Register

The ide_controller_read_data_block provides multiple consequent read of the IDE Controller
Data Register. IDE Controller chip is selected via the minor number. The same functional-
ity may be achieved via separate multiple calls of ide_controller_read_register routine but
ide_controller_read_data_block allows to escape functions call overhead. This routine is not
allowed to be called from an application.

void ide_controller_read_data_block(
rtems_device_minor_number minor,

unsigned16 block_size,
blkdev_sg_buffer *bufs,
uint32_t *cbuf,
uint32_t *pos

)

{

get IDE Controller chip configuration information from
IDE_Controller_Table by minor number

invoke read data block routine for the chip

160 Chapter 20. IDE Controller Driver

11

12

13

Chapter 20 Section 20.6 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

20.6 Write Data Block Through IDE Controller Data Register

The ide_controller_write_data_block provides multiple consequent write into the IDE Con-
troller Data Register. IDE Controller chip is selected via the minor number. The same function-
ality may be achieved via separate multiple calls of ide_controller_write_register routine
but ide_controller_write_data_block allows to escape functions call overhead. This routine
is not allowed to be called from an application.

void ide_controller_write_data_block(
rtems_device_minor_number minor,

unsigned16 block_size,
blkdev_sg_buffer *bufs,
uint32_t *cbuf,
uint32_t *pos

)

{

get IDE Controller chip configuration information from
IDE_Controller_Table by minor number

invoke write data block routine for the chip

20.6. Write Data Block Through IDE Controller Data Register 161

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 20 Section 20.6

162 Chapter 20. IDE Controller Driver

CHAPTER

TWENTYONE

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable Index entries.

163

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 21 Section 21.0

164 Chapter 21. Command and Variable Index

CHAPTER

TWENTYTWO

DOXYGEN RECOMMENDATIONS FOR
BSPS

RTEMS contains well over a hundred Board Support Packages (BSPs). , across over 20 different
CPU Architectures. . What this means is that there is a lot of hardware dependent code that
gets written, and that adding Doxygen to properly document it all can be a very complicated
task.

The goal of this document is to attempt to simplify this process a bit, and to get you started
on adding Doxygen to the bsps/ directory in a way that is logical and has structure. Before we
move on to detailing the process of actually adding Doxygen to BSPs, you will be greatly served
by having at least a basic understanding of the purpose of a Board Support Package (it always
helps to know a bit about what you’re documenting), as well as of the existing structure of the
bsps/ directory.

Feel free to skip around and skim parts of this.

165

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.1

22.1 BSP Basics

Embedded development is hard. Different CPUs have different instructions for doing the same
thing, and different boards will have all sorts of different hardware that require unique drivers
and interfaces. RTEMS handles this by having discrete packages, BSPs, to encapsulate code to
accommodate for unique hardware. BSPs seek to implement the Hardware-Software interface.
This, in a nutshell, is one of the core purposes. of RTEMS: To abstract (as much as is possible)
away from the physical hardware and provide a standards compliant real-time environment for
the embedded developer. If you think about it, the operating system on your normal computer
serves a very similar purpose.

166 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.2 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.2 Common Features Found In BSPs

Although the actual implementation code will differ between BSPs, all BSPs will share some
degree of common functionality. This is because that no matter what exact hardware you have,
you need some basic features implemented in order to have a real time system you can develop
on. Some of the most common shared features across most boards include:

* console: is technically the serial driver for the BSP rather than just a console driver, it
deals with the board UART (i.e. serial devices)

* clock: support for the clock tick - a regular time basis for the kernel

* timer: support of timer devices, used for timing tests

* rtc or tod: support for the hardware real time clock

* network: the Ethernet driver

* shmsupp: support of shared memory driver MPCI layer in a multiprocessor system
* gnatsupp: BSP specific support for the GNU Ada run-time

* irq: support for how the processor handles interrupts (probably the most common module
shared by all boards)

* tm27: specific routines for the tm27 timing test

* start and startup: C and assembly used to initialize the board during star-
tups/resets/reboots

These are just some of the things you should be looking for when adding Doxygen to a BSP.

Note that there is no guarantee a particular BSP will implement all of these features, or even
some of them. These are just the most common ones to look for. RTEMS follows a standardized
naming convention for the BSP sub directories, so you should be able to tell in most cases what
has been implemented on the BSP level and what has not.

22.2. Common Features Found In BSPs 167

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.3

22.3 Shared Features

Some of the RTEMS executive is hardware independent and can be abstracted so that the same
piece of code can be shared across multiple CPU architectures, or across multiple boards on the
same architecture. This is done so that chunks of software can be reused, as well as aiding in
reducing the development and debugging time for implementing new BSPs. This greatly aids
the developer, but as someone seeking to document this code, this can make your life a little
bit harder. It is hard to tell by looking at the directory of a BSP which features have simply
been left out and which features are being implemented by using shared code from either from
the architecture (.../shared) or the base bsps/ shared directory (.../.../shared). You may be
looking at the BSP headers and notice that you have an irq.h, but no irq.c implementing it, or
you might even be missing both. You know that the processor has interrupt support somehow,
but where is it? The easiest way to figure this out is by looking at the for a BSP.
We'll detail this process more in a bit.

168 Chapter 22. Doxygen Recommendations for BSPs

http://Makefile.am

Chapter 22 Section 22.4 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.4 Rationale

As someone adding documentation and not doing actual development work, you might think it
is not necessary to know some of the in and outs of BSPs. In actuality, this information will prove
to be very useful. Doxygen documentation works by grouping things and their components (i.e.
functions and other definitions), and by having brief descriptions of what each group does. You
can’t know what to look for or know how to group it or know how to describe it without some
basic knowledge of what a BSP is. For more information on any of the above or BSPs in general,
check out the

22.4. Rationale 169

http://rtems.org/onlinedocs/doc-current/share/rtems/html/bsp_howto/index.html

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.5

22.5 The Structure of the bsps/ directory

All BSPs are found within the bsps/ directory, which is itself very well ordered. At the first level,
we find a directory for each CPU architecture RTEMS supports, as well as a directory for code
shared by all implementations.

11$ cd bsps

2|$ 1s

3{aarch64 1386 m68k mips nios2 orilk riscv sparc
4l arm include microblaze moxie no_cpu powerpc shared x86_64

If we cd into a specific architecture, we see that a similar structure is employed. bsps/arm/
contains directories for each Board Support Package for boards with an ARM cpu, along with a
folder for files and .h’s shared by all BSPs of that architecture.

(

11$ cd arm

2[$ 1s

slaltera-cyclone-v fvp 1pc176x shared xilinx-versal-rpu
4| atsam gumstix lpc24xx smdk241@ xilinx-zynqg

s| beagle imx 1pc32xx stm32f4 xilinx-zyngmp

6| cSb336 imxrt raspberrypi stm32h7 xilinx-zyngmp-rpu
7| csb337 include realview-pbx-a9 tms570@

sl edb7312 Im3s69xx rtl22xx xen

L

Finally, if we cd into a specific BSP, we see the files and .h’s that compose the package for that
particular board. You may recognize the directory names as some of the [common features]
we outlined above, like “irq”, “‘clock™, “‘console’™, and “‘startup’. These directories contain

implementations of these features.

20 (213

1|$ cd raspberrypi
2|$ 1s
3lconfig console gpio i2c include irq README.md spi start

Another way to get an idea of the structure of bsps/ is to navigate to a directory and execute the
“tree -f” command. This outputs a nice graphic that conveys some of the hierarchical properties
of a particular directory.

1|$ pwd

2| ~/rtems/bsps/arm/raspberrypi

3|$ tree -f

4 .

s| — ./config

6 — ./config/raspberrypi2.cfg
7 — ./config/raspberrypi.cfg
8 L— ./config/raspberrypi.inc
9| — ./console

10 — ./console/console-config.c
11 — ./console/fb.c

12 — ./console/fbcons.c

13 — ./console/font_data.h

14 L— ./console/outch.c

15| — ./gpio

(continues on next page)

170 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.5 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

(continued from previous page)

16 ./gpio/gpio-interfaces-pil-rev2.c
17 ./gpio/rpi-gpio.c

18| — ./i2c

19 L ./i2c/i2c.c

20| — ./include

21 — ./include/bsp

22 — ./include/bsp/fbcons.h
23 — ./include/bsp/i2c.h

24 — ./include/bsp/irqg.h

25 — ./include/bsp/mailbox.h
26 — ./include/bsp/mmu.h

27 —— ./include/bsp/raspberrypi.h
28 — ./include/bsp/rpi-fb.h
29 — ./include/bsp/rpi-gpio.h
30 — ./include/bsp/spi.h

31 — ./include/bsp/usart.h
32 L— ./include/bsp/vc.h

33 — ./include/bsp.h

34 L— ./include/tm27.h

5| — ./1irq

36 L ./irq/irq.c

37| — ./README .md

38| — ./spi

39 L . /spi/spi.c

40| V— ./start

41 — ./start/bspreset.c

42 — ./start/bspsmp.c

43 — ./start/bspsmp_init.c

44 — ./start/bspstart.c

45 — ./start/bspstarthooks.c

46 — ./start/cmdline.c

47 — ./start/mailbox.c

48 — ./start/timer.c

49 — ./start/vc.c

50 L— ./start/vc_defines.h

51

52| 9 directories, 37 files

In short, BSPs will use the following directories:
* bsps/shared <- code used that is shared by all BSPs
* bsps/CPU/shared <- code used shared by all BSPs of a particular CPU architecture
* bsps/CPU/BSP <- code unique to this BSP

As you can see, the bsps/ directory has a very logical and easy to understand structure to it.
The documentation generated by Doxygen should attempt to match this structure as closely
as possible. We want an overarching parent group to serve the same purpose as the bsps/
directory. In it, we want groups for each CPU architecture and a group for the shared files. We
then want groups for each BSP. Breaking our documentation up into discrete groups like this
will greatly simplify the process and make the documentation much easier to go through. By

22.5. The Structure of the bsps/ directory 171

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.5

learning about the existing structure of the bsps/ directory, we get an idea of how we should
structure the Doxygen groups we create. More on this in the next section.

172 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.6 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.6 Doxygen

Now that we have covered some of the preliminaries, we can move on to what you are actually
reading this wiki page for: adding Doxygen to the bsps/ directory. Let’s start with some Doxygen
basics. Skip this if you are already comfortable with Doxygen.

In addition to this, check out the page on [Doxygen Recommen-
dations <wiki:Developer/Coding/Doxygen >][doxygen recommendations
<wiki:developer/coding/doxygen >]. , which also contains a fair amount of information that
will not be covered here.

22.6. Doxygen 173

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.7

22.7 Doxygen Basics

Doxygen is a documentation generator. It allows for documentation to be written right by
the source code, greatly easing the pains of keeping documentation relevant and up to date.
Doxygen has many commands, used for things like annotating functions with descriptions, pa-
rameter information, or return value information. You can reference other files or even other
documentation.

The core component of Doxygen (that we care about right now at least) is what’s called a group,
or module. These are used to add structure and associate groups of files that serve a similar
purpose or implement the same thing.

174 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.8 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.8 Doxygen Headers

Doxygen is always found in a special Doxygen comment block, known as a Doxygen header.
In RTEMS, this block comes in the form of a multiline comment with some included Doxygen
commands, which are preceded by the ‘@’ tag. Take a look at this Doxygen header that declares
the arm_raspberrypi module, which houses the documentation in the BSP for the Raspberry Pi.

bsps/arm/raspberrypi/include/bsp.h:

VEXS

@defgroup arm_raspberrypi Raspberry Pi Support

@brief Raspberry Pi support package

O [e- BN | [e)} 93] e w N -

*
*
* @ingroup bsp_arm
*
*
*

*/

=
o

You see a few commands here that we’ll cover in the following sections. Briefly, the @defgroup
command declares a new group, the @ingroup command nests this group as a submodule of
some other group (in this case bsp_arm), and the @brief command provides a brief description
of what this group is.

22.8. Doxygen Headers 175

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.9

22.9 The @defgroup Command

The @defgroup command is used to declare new groups or modules. Think “define group”. The
syntax of this command is as follows:

1{@def‘group <group name> <group description>]

The group name is the name used by Doxygen elsewhere to reference this group. The group
description is what is displayed when the end user navigates to this module in the resulting
documentation. The group description is a couple words formatted as how it would be in a
table of contents. This part is what actually shows up in the documentation, when the user
navigates to this group’s module, this description will be the modules name.

Groups should only be declared (@defgroup) in .h files. This is because Doxygen is used pri-
marily to document interfaces, which are only found in .h files. Placing @defgroups in .h files
is the only real restriction. Which .h file you place the group declaration in surprisingly doesn’t
matter. There is no information in the resulting documentation that indicates where the group
was declared. You will see that we do have some rules for where you should place these decla-
rations, but we also use this fact that it doesn’t matter to our advantage, in order to standardize
things.

The @defgroup command is used only to define “structure”. No actual documentation is gen-
erated as a result of its use. We must @ingroup things to the group we declare in order to
create documentation. Even though it does not generate visible documentation, the @defgroup
command is still very important. We use it in a way that seeks to emulate the structure of the
bsps/ directory itself. We do this by creating a hierarchy of groups for each CPU architecture
and each BSP.

176 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.10 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.10 The @ingroup Command

The @ingroup command is used to add ‘things’ to already declared groups or modules. These
‘things’ can either be other groups, or files themselves. The syntax of the @ingroup command
is as follows:

1£@ingroup <group name>]

The group name is the actual name, not description, of the group you want to add yourself to.
Remember that group name was the second argument passed to the @defgroup command.

Using the @ingroup command is how we add “meaning” to the “structure” created by using
@defgroup. @ingroup associates the file it is found in and all other Doxygen found within
(function annotations, prototypes, etc) with the group we declared with the @defgroup com-
mand. We add related files and headers to the same groups to create a logical and cohesive
body of documentation. If the end user wanted to read documentation about how the rasp-
berry pi handles interrupts, all they would have to do would be to navigate to the raspberry
pi’s interrupt support module (which we created with a @defgroup command), and read the
documentation contained within (which we added with @ingroup commands).

@ingroup is found within all Doxygen headers, along with an @brief statement. There are
two types of Doxygen headers, which we will go over after we see a description of the @brief
command.

22.10. The @ingroup Command 177

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.11

22.11 The @brief Command

The @brief command is used to give either a) a brief description in the form of an entry as
you would see it in a table of contents (i.e. Capitalized, only a couple of words) or b) a brief
topic sentence giving a basic idea of what the group does. The reason you have two uses for
the brief command is that it is used differently in the two types of Doxygen headers, as we
will see shortly. The syntax of the brief command is self evident, but included for the sake of
completion:

1|@brief <Table of Contents entry '''or''' Topic Sentence>]

178 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.12 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.12 The Two Types of Doxygen Headers

There are two types of Doxygen Headers. The first type is found at the beginning of a file,
and contains an @file command. This type of header is used when @ingroup-ing the file into
another doxygen group. The form of the @brief command in this case is a topic sentence, often
very close to the file name or one of it’'s major functions. An example of this type of header,
found in bsps/arm/raspberrypi/include/bsp.h is as follows:

Header type 1: used to add files to groups, always found at the.
—beginning of a file
2| /**

Jun

* @file
*
s| * @ingroup raspberrypi
*
* @brief Global BSP definitions.

10| /*
1| * Copyright (c) YYYY NAME
*

12

Pa

<LICENSE TERMS>

13

14| */

Notice the form and placement of this type of header. It is always found at the beginning of
a file, and is in its own multiline comment block, separated by one line white space from the
copyright. If you look at the header itself, you see a @file, @ingroup, and @brief command.
Consider the @file and the @ingroup together, what this says is that we are adding this file to
the raspberrypi group. There is actually a single argument to the @file command, but Doxygen
can infer it, so we leave it out. Any other Doxygen, function annotations, function prototypes,
#defines, and other code included in the file will now be visible and documented when the end
user navigates to the group you added it to in the resulting documentation.

Now let’s consider the second type of header. This type is syntactically very similar, but is used
not to add files to groups, but to add groups to other groups. We use this type of header to define
new groups and nest them within old groups. This is how we create hierarchy and structure
within Doxygen. The following is found, again, in bsps/arm/raspberrypi/include/bsp.h:

Header type 2: Used to nest groups, found anywhere within a file

2| /*%

[

@defgroup arm_raspberrypi Raspberry Pi Support

@ingroup bsp_arm

w
* % ok * %k

@brief Raspberry Pi Support Package

8| */

L

It looks very similar to the first type of header, but notice that the @file command is replaced
with the @defgroup command. You can think about it in the same way though. Here we are
creating a new group, the arm_raspberry pi group, and nesting it within the bsp_arm group.
The @brief in this case should be in the form of how you would see it in a table of contents.
Words should be capitalized and there should be no period. This type of header can be found

22.12. The Two Types of Doxygen Headers 179

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.12

anywhere in a file, but it is typically found either in the middle before the file’s main function,
or at the tail end of a file. Recall that as we are using the @defgroup command and creating a
new group in this header, the actual .h we place this in does not matter.

The second type of header is the structure header, it's how we create new groups and implement
hierarchy. The first type of header was the meaning header, it's how we added information to
the groups we created.

For more examples of Doxygen structure and syntax, refer to BSPs found within the arm ar-
chitecture, the lpc32xx and raspberrypi BSPs are particularly well documented. A good way
to quickly learn more is by tweaking some Doxygen in a file, then regenerating the html, and
seeing what has changed.

180 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.13 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.13 Generating Documentation

Doxygen is a documentation generator, and as such, we must generate the actual html docu-
mentation to see the results of our work. This is a very good way to check your work, and see
if the resulting structure and organization was what you had intended. The best way to do this
is to simply run the . To use the script:

Make sure Doxygen is installed. Also, the environment needs to have the root directory of
RTEMS set in the variable r so that $r prints the path to RTEMS, and the script takes as argument
a relative directory from there to generate the doxygen, for example to generate the doxygen
for all of bsps/ you would do:

1| export r=~/rtems
2| ./do_doxygen bsps

22.13. Generating Documentation 181

https://github.com/joelsherrill/gci_tasks/blob/master/2015/doxygen_c_header_tasks/validate/do_doxygen

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.14

22.14 Doxygen in bsps/

Now that we’ve covered the basics of Doxygen, the basics of BSPs and the structure of the bsps/
directory, actually adding new Doxygen to bsps/ will be much easier than it was before. We
will cover a set of rules and conventions that you should follow when adding Doxygen to this
directory, and include some tips and tricks.

182 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.15 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.15 Group Naming Conventions

This is an easy one. These are in place in order for you to quickly identify some of the structure
of the Doxygen groups and nested groups, without actually generating and looking at the doc-
umentation. The basic idea is this: when defining a new group (@defgroup), the form of the
name should be the super group, or the name of the group you are nesting this group within,
followed by an underscore, followed by the intended name of this new group. In command
form:

1| <—---- This is your group name ------- > <--usual description -->
2 @defgroup <super-group name>_<name of this group> <group description>

Some examples of this:

* bsp_arm: This is the group for the arm architecture. It is a member of the all inclusive
bsp-kit group (more on this in structure conventions), so we prefix it with the “bsp” super
group name. This is the group for the arm architecture, so the rest is just “*arm’”

* arm_raspberrypi: This is the group for the Raspberry Pi BSP. It is is an arm board, and
as such, is nested within the bsp_arm group. We prefix the group name with an “arm”
(notice we drop the bsp prefix of the arm group - we only care about the immediate super
group), and the rest is a simple ““raspberrypi’””, indicating this is the raspberrypi group,
which is nested within the bsp_arm group.

* raspberrypi_interrupt This is the group for code handling interrupts on the Raspberry Pi
platform. Because this code and the group that envelops it is Raspberry Pi dependent, we
prefix our name with a “raspberrypi”, indicating this group is nested within the raspber-
rypi group.= Structure Conventions =

This covers where, when, and why you should place the second type of Doxygen header. Re-
member that our goal is to have the structure of the documentation to match the organization
of the bsps/ directory as closely as possible. We accomplish this by creating groups for each
cpu architecture, each BSP, and each shared directory. These groups are nested as appropriate
in order to achieve a hierarchy similar to that of bsps/. The arm_raspberrypi group would be
nested within the bsp_arm group, for example.

22.15. Group Naming Conventions 183

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.16

22.16 Where to place @defgroup

Remember how I said it really doesn’t matter where you place the @defgroup? Well, it does
and it doesn’t. It would be chaotic to place these anywhere, and almost impossible to tell when
you have a @defgroup and when you don’t, so we do have some rules in place to guide where
you should place these.

184 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.17 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.17 @defgroups for CPU Architectures and Shared Directories

The standardized place for these is within a special doxygen.h file placed within the particular
architectures shared directory. This doxygen.h file exists solely for this purpose, to provide a
standard place to house the group definitions for CPU architectures and the shared directory for
that architecture. This is done because there is no single file that all architectures share, so it
would be impossible to declare a standardized location for architecture declarations without the
creation of a new file. This also allows others to quickly determine if the group for a particular
architecture has already been defined or not. Lets look at the doxygen.h for the arm architecture
as an example, found at arm/shared/doxygen.h:

1| /*x*

2| * @defgroup bsp_arm ARM

3 *

4 * @ingroup bsp_kit

S

6| * @brief ARM Board Support Packages
7| */

8

9| /*%

10| * @defgroup arm_shared ARM Shared Modules
1| *
12| * @ingroup bsp_arm
13| *
* @brief ARM Shared Modules

14

15| */

The doxygen.h contains only 2 Doxygen headers, both of which are of the second type. One
header is used to create the groups for the arm architecture bsp_arm, nesting it as part of
the bsp_kit group, and the other creates an arm_shared group to house the code that is shared
across all BSPs of this architecture. Because these are the second type of Doxygen header, where
we place them does not matter. This allows us to place them in a standard doxygen.h file, and
the end user is non the wiser. Note that this .h file should never be included by a .c file, and
that the only group declarations that should be placed here are the declarations for the CPU
Architecture group and the shared group.

There is also a doxygen.h file that exists at the root bsps/shared directory, to @defgroup the
the parent bsp_kit group (the only group to not be nested within any other groups) and to
@defgroup the bsp_shared group, to serve as the holder for the bsps/shared directory.

If the architecture in which the BSP you are tasked with does not have one of these files already,
you will need to copy the format of the file here, replacing the arm with whatever the CPU
Architecture you are working with is. Name this file doxygen.h, and place it in the shared
directory for that architecture.

The only groups you should ever add to this CPU group would be groups for specific BSPs and
a group for the shared directory.

22.17. @defgroups for CPU Architectures and Shared Directories 185

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.18

22.18 @defgroups for BSPs

These are much easier than placing @defgroups for CPU Architectures. The overwhelm-
ing majority of the time, the @defgroup for a BSP is found within the bsp.h file found at
““bsp’?/include/bsp.h. It is usually placed midway through or towards the end of the file.
In the event that your board lacks a bsp.h file, include this group declaration within the most
standard or commonly included header for that BSP.

The group for a BSP should always be nested within the group for the CPU architecture it uses.
This means that the Doxygen header for defining a BSP group should always look something
like this:

VEXS
@defgroup *architecturex_*BSP* *namex

@ingroup bsp_x*architecturex

@brief *BSP* Support Package

N o A W N e
X % X X X%

*/

186 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.19 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.19 @defgroups for Everything Else

Never be afraid to add more structure! Once the basic CPU and BSP group hierarchy is es-
tablished, what we’re left with is all the sub directories and implementation code. Whether
working within a shared directory for a CPU architecture, or within a BSP directory, you should
always be looking for associations you can make to group files together by. Your goal should be
to avoid @ingroup-ing files directly to the cpu_shared group and the cpu_bsp group as much as
possible, you want to find more groups you can nest within these groups, and then @ingroup
files to those groups. Here are some things to look for:

22.19. @defgroups for Everything Else 187

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.20

22.20 Look Common Features Implemented

Remember that list of common features outlined in the BSP Basics section? Find the .h’s that are
responsible for providing the interface for these features, and @defgroup a group to @ingroup
the files responsible for implementing this feature.

RTEMS has a naming convention for its BSP sub directories, so it should be a really quick and
easy process to determine what features are there and what is missing.

Examples of this are found within the arm_raspberrypi group, which contains nested sub-
groups like raspberry_interrupt to group files responsible for handling interrupts, raspber-
rypi_usart to group files responsible for implementing USART support, and many other sub-
groups.

188 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.21 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.21 Check out the Makefile

When working within a BSP, take a look at the . Often times, you will find that the
original developer of the code has outlined the groups nicely for you already, with comments
and titles before including source files to be built. Also, this is often the only way to tell which
features a BSP simply does not implement, and which features a BSP borrows from either the
architecture’s shared group, or the bsps/ shared group.

22.21. Check out the Makefile 189

http://Makefile.am

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.22

22.22 Start with a .h, and look for files that include it

You should end up with a @defgroup for “most” .h files. Some .h files are related and will not
have independent groups, but most provide interfaces for different features and should have
their own group defined. Declare a group for the header, then use cscope to find the files that
include this header, and try to determine where the implementation code for prototypes are
found. These are the files you should @ingroup.

190 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.23 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.23 Files with similar names

If you see that a few files have similar names, like they are all prefixed with the same characters,
then these files should most likely be part of the same group.

Remember, your goal is to @defgroup as much as you can. The only files you should be
@ingroup-ing directly to the BSP group or the shared group are files that don’t cleanly fit into
any other group.

22.23. Files with similar names 191

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.24

22.24 Where to place @ingroup

The @ingroups you add should make sense.

* If you are working within an architecture’s shared directory, @ingroup should be adding
things either to the architecture_shared group, or some sub group of it.

* If you are working within a BSP directory, @ingroup should be adding things to either the
architecture_*bsp group, or some sub group of it.

192 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.25 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.25 @ingroup in the first type of Doxygen Header

Remember that in the first type of Doxygen header, we are adding files to groups. This type of
header should always be at the top of the file. You should be adding files that are associated
in some way to the same groups. That is to say, if three different .h files provide an interface
allowing interrupt support, they should be a part of the same group. Some good ways to
associate files were outlined above.

22.25. @ingroup in the first type of Doxygen Header 193

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.26

22.26 @ingroup in the second type of Doxygen Header

Here we are using the @ingroup command to add groups to other groups, creating a hierarchy.
The goal for bsps/ is to have one single group that holds all other groups. This root group is the
bsp_kit group. All groups should be added either directly to this group (if you are creating an
architecture group) or added to one of its sub groups.

When nesting groups, try to match the structure of bsps/ as closely as possible. For example,
if a group is defined to associate all files that provide for a real time clock for the raspberrypi,
nest it within the arm_raspberrypi group.

194 Chapter 22. Doxygen Recommendations for BSPs

Chapter 22 Section 22.27 RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026)

22.27 @ingroup for shared code

This is tricky. You may end up in a situation where your BSP uses code found in either the
architecture shared directory, or the bsps/shared directory. Even though this code is logically
associated with the BSP, as stated above: all files in the shared directory should be added to ei-
ther the architecture_shared group, or some subgroup of it “not” the BSP group. You could make
a note under the @brief line in the header (which shows up in the resulting documentation)
that a particular BSP uses this code.

When working with shared code, you should be careful and add notes to @brief to indicate that
it is a shared code or interface. Prefixing things with “Generic” is a good idea here. You will still
be able to form groups and associate things when working on the shared level, but sometimes
you will find that you have the interface (.h) to @defgroup, but not many files to add to the
group as it may be hardware dependent. This is okay.

22.27. @ingroup for shared code 195

RTEMS BSP and Driver Guide, Release 7.0-rc1 (24th January 2026) Chapter 22 Section 22.27

196 Chapter 22. Doxygen Recommendations for BSPs

B

BSP_DEFAULT_UNIFIED_WORK_AREAS, 30
BSP_IDLE_TASK_BODY, 30
BSP_IDLE_TASK_STACK_SIZE, 30
bsp_interrupt_dispatch(), 33
bsp_interrupt_facility_initialize(), 33
bsp_interrupt_handler_default(), 33
BSP_INTERRUPT_STACK_SIZE, 30
bsp_interrupt_vector_disable(), 33
bsp_interrupt_vector_enable(), 33

C

CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK, 28, 30

INDEX

197

	Introduction
	Target Dependent Files
	CPU Dependent
	Board Dependent
	Peripheral Dependent
	Questions to Ask
	CPU Dependent Executive Files
	Board Support Package Structure

	Linker Script
	What is a “linkcmds” file?
	Program Sections
	Image of an Executable
	Example Linker Command Script
	Initialized Data

	Miscellaneous Support Files
	README Files
	Times
	bsp.h Include File
	tm27.h Include File
	sbrk() Implementation
	bsp_fatal_extension() - Cleanup the Hardware
	Configuration Macros
	set_vector() - Install an Interrupt Vector
	Interrupt Delay Profiling
	Programmable Interrupt Controller API

	System Initialization
	Introduction
	Low-Level Initialization via Start Code in the Start File (start.o)
	High-Level Initialization via boot_card()
	Early BSP Initialization
	Memory Information
	BSP Initialization

	Error Handling

	Console Driver
	Introduction
	Build System and Files
	Driver Functioning Modes
	Polled Mode
	Interrupt Driven Mode
	First Open
	Last Close
	Set Attributes
	IO Control
	Flow Control
	General Initialization

	Clock Driver
	Introduction
	Initialization
	Timecounter Variant
	Simple Timecounter Variant
	Clock Tick Only Variant

	Install Clock Tick Interrupt Service Routine
	Support At Tick
	System Shutdown Support
	SMP Support
	Multiple Clock Driver Ticks Per Clock Tick
	Clock Driver Ticks Counter

	Target Hash
	Entropy Source
	CAN Driver
	Include Headers
	Application
	BSP Registration
	Device Driver

	RTEMS CAN API
	Opening Device and Configuration
	Managing Queues
	Setting Bit Timing
	Setting Mode
	Starting Chip
	Stopping Chip
	Controller Related Information
	Controller Statistics

	CAN Frame Representation
	Frame Transmission
	Frame Reception
	Error Reporting

	Driver Interface
	Chip Initialization
	Frame Transmission
	Frame Reception
	Worker Thread Example

	Registering CAN Bus
	Example

	I2C Driver
	SPI Driver
	Real-Time Clock Driver
	Introduction
	Initialization
	setRealTimeToRTEMS
	setRealTimeFromRTEMS
	getRealTime
	setRealTime
	checkRealTime

	Networking Driver
	Introduction
	Learn about the network device
	Understand the network scheduling conventions
	Network Driver Makefile
	Write the Driver Attach Function
	Write the Driver Start Function.
	Write the Driver Initialization Function.
	Write the Driver Transmit Task
	Write the Driver Receive Task
	Write the Driver Interrupt Handler
	Write the Driver IOCTL Function
	Write the Driver Statistic-Printing Function

	Frame Buffer Driver
	Introduction
	Driver Function Overview
	Initialization
	Opening the Frame Buffer Device
	Closing the Frame Buffer Device
	Reading from the Frame Buffer Device
	Writing to the Frame Buffer Device
	Frame Buffer IO Control

	Ada95 Interrupt Support
	Introduction
	Mapping Interrupts to POSIX Signals
	Example Ada95 Interrupt Program
	Version Requirements

	Shared Memory Support Driver
	Shared Memory Configuration Table
	Primitives
	Convert Address
	Get Configuration
	Locking Primitives
	Initializing a Shared Lock
	Acquiring a Shared Lock
	Releasing a Shared Lock

	Installing the MPCI ISR

	Timer Driver
	Benchmark Timer
	benchmark_timer_initialize
	Read_timer
	benchmark_timer_disable_subtracting_average_overhead

	gen68340 UART FIFO Full Mode

	ATA Driver
	Terms
	Introduction
	Initialization
	ATA Driver Architecture
	ATA Driver Main Internal Data Structures
	Brief ATA Driver Core Overview

	IDE Controller Driver
	Introduction
	Initialization
	Read IDE Controller Register
	Write IDE Controller Register
	Read Data Block Through IDE Controller Data Register
	Write Data Block Through IDE Controller Data Register

	Command and Variable Index
	Doxygen Recommendations for BSPs
	BSP Basics
	Common Features Found In BSPs
	Shared Features
	Rationale
	The Structure of the bsps/ directory
	Doxygen
	Doxygen Basics
	Doxygen Headers
	The @defgroup Command
	The @ingroup Command
	The @brief Command
	The Two Types of Doxygen Headers
	Generating Documentation
	Doxygen in bsps/
	Group Naming Conventions
	Where to place @defgroup
	@defgroups for CPU Architectures and Shared Directories
	@defgroups for BSPs
	@defgroups for Everything Else
	Look Common Features Implemented
	Check out the Makefile
	Start with a .h, and look for files that include it
	Files with similar names
	Where to place @ingroup
	@ingroup in the first type of Doxygen Header
	@ingroup in the second type of Doxygen Header
	@ingroup for shared code

	Index

