
RTEMS Classic API Guide
Release 6.1-rc5 (16th December 2024)

© 1988-2024 RTEMS Project and contributors

CONTENTS

1 Preface 3

2 Overview 7
2.1 Introduction . 8
2.2 Real-time Application Systems . 9
2.3 Real-time Executive . 10
2.4 RTEMS Application Architecture . 11
2.5 RTEMS Internal Architecture . 12
2.6 User Customization and Extensibility . 14
2.7 Portability . 15
2.8 Memory Requirements . 16
2.9 Audience . 17
2.10 Conventions . 18
2.11 Manual Organization . 19

3 Key Concepts 23
3.1 Introduction . 24
3.2 Objects . 25

3.2.1 Object Names . 25
3.2.2 Object Ids . 26
3.2.3 Local and Global Scope . 26

3.2.3.1 Object ID Format . 26
3.2.4 Object ID Description . 27

3.3 Communication and Synchronization . 28
3.4 Locking Protocols . 29

3.4.1 Priority Inversion . 29
3.4.2 Immediate Ceiling Priority Protocol (ICPP) 29
3.4.3 Priority Inheritance Protocol . 29
3.4.4 Multiprocessor Resource Sharing Protocol (MrsP) 30
3.4.5 O(m) Independence-Preserving Protocol (OMIP) 30

3.5 Thread Queues . 31
3.6 Time . 32
3.7 Timer and Timeouts . 33
3.8 Memory Management . 34

4 RTEMS Data Types 35
4.1 Introduction . 36
4.2 List of Data Types . 37

i

4.2.1 BSP_output_char_function_type . 37
4.2.2 BSP_polling_getchar_function_type . 37
4.2.3 Timer_Classes . 37
4.2.4 rtems_api_configuration_table . 37
4.2.5 rtems_asr . 38
4.2.6 rtems_asr_entry . 38
4.2.7 rtems_assert_context . 38
4.2.8 rtems_attribute . 39
4.2.9 rtems_device_driver . 39
4.2.10 rtems_device_driver_entry . 39
4.2.11 rtems_device_major_number . 39
4.2.12 rtems_device_minor_number . 39
4.2.13 rtems_driver_address_table . 40
4.2.14 rtems_event_set . 40
4.2.15 rtems_exception_frame . 40
4.2.16 rtems_extensions_table . 40
4.2.17 rtems_fatal_code . 40
4.2.18 rtems_fatal_extension . 41
4.2.19 rtems_fatal_source . 41
4.2.20 rtems_id . 41
4.2.21 rtems_initialization_tasks_table . 42
4.2.22 rtems_interrupt_attributes . 42
4.2.23 rtems_interrupt_entry . 44
4.2.24 rtems_interrupt_handler . 44
4.2.25 rtems_interrupt_level . 44
4.2.26 rtems_interrupt_lock . 44
4.2.27 rtems_interrupt_lock_context . 45
4.2.28 rtems_interrupt_per_handler_routine . 45
4.2.29 rtems_interrupt_server_action . 45
4.2.30 rtems_interrupt_server_config . 45
4.2.31 rtems_interrupt_server_control . 45
4.2.32 rtems_interrupt_server_entry . 46
4.2.33 rtems_interrupt_server_request . 46
4.2.34 rtems_interrupt_signal_variant . 46
4.2.35 rtems_interval . 47
4.2.36 rtems_isr . 47
4.2.37 rtems_isr_entry . 47
4.2.38 rtems_message_queue_config . 47
4.2.39 rtems_mode . 47
4.2.40 rtems_mp_packet_classes . 48
4.2.41 rtems_mpci_entry . 48
4.2.42 rtems_mpci_get_packet_entry . 48
4.2.43 rtems_mpci_initialization_entry . 48
4.2.44 rtems_mpci_receive_packet_entry . 48
4.2.45 rtems_mpci_return_packet_entry . 48
4.2.46 rtems_mpci_send_packet_entry . 48
4.2.47 rtems_mpci_table . 48
4.2.48 rtems_multiprocessing_table . 48
4.2.49 rtems_name . 48
4.2.50 rtems_object_api_class_information . 48
4.2.51 rtems_option . 49

ii

4.2.52 rtems_packet_prefix . 49
4.2.53 rtems_rate_monotonic_period_states . 49
4.2.54 rtems_rate_monotonic_period_statistics 49
4.2.55 rtems_rate_monotonic_period_status . 50
4.2.56 rtems_regulator_attributes . 50
4.2.57 rtems_regulator_deliverer . 51
4.2.58 rtems_regulator_statistics . 51
4.2.59 rtems_signal_set . 52
4.2.60 rtems_stack_allocate_hook . 52
4.2.61 rtems_stack_allocate_init_hook . 52
4.2.62 rtems_stack_free_hook . 52
4.2.63 rtems_status_code . 52
4.2.64 rtems_task . 54
4.2.65 rtems_task_argument . 54
4.2.66 rtems_task_begin_extension . 54
4.2.67 rtems_task_config . 54
4.2.68 rtems_task_create_extension . 55
4.2.69 rtems_task_delete_extension . 56
4.2.70 rtems_task_entry . 56
4.2.71 rtems_task_exitted_extension . 56
4.2.72 rtems_task_priority . 57
4.2.73 rtems_task_restart_extension . 57
4.2.74 rtems_task_start_extension . 57
4.2.75 rtems_task_switch_extension . 57
4.2.76 rtems_task_terminate_extension . 58
4.2.77 rtems_task_visitor . 59
4.2.78 rtems_tcb . 59
4.2.79 rtems_time_of_day . 59
4.2.80 rtems_timer_information . 59
4.2.81 rtems_timer_service_routine . 60
4.2.82 rtems_timer_service_routine_entry . 60
4.2.83 rtems_vector_number . 60

5 Scheduling Concepts 61
5.1 Introduction . 62
5.2 Background . 63

5.2.1 Scheduling Algorithms . 63
5.2.2 Priority Scheduling . 63
5.2.3 Scheduling Modification Mechanisms . 64

5.2.3.1 Task Priority and Scheduling . 64
5.2.3.2 Preemption . 64
5.2.3.3 Timeslicing . 64
5.2.3.4 Manual Round-Robin . 65

5.2.4 Dispatching Tasks . 65
5.2.5 Task State Transitions . 65

5.3 Uniprocessor Schedulers . 68
5.3.1 Deterministic Priority Scheduler . 68
5.3.2 Simple Priority Scheduler . 68
5.3.3 Earliest Deadline First Scheduler . 68
5.3.4 Constant Bandwidth Server Scheduling (CBS) 69

5.4 SMP Schedulers . 70

iii

5.4.1 Earliest Deadline First SMP Scheduler . 70
5.4.2 Deterministic Priority SMP Scheduler . 70
5.4.3 Simple Priority SMP Scheduler . 70
5.4.4 Arbitrary Processor Affinity Priority SMP Scheduler 70

5.5 Directives . 71
5.5.1 rtems_scheduler_ident() . 72
5.5.2 rtems_scheduler_ident_by_processor() 73
5.5.3 rtems_scheduler_ident_by_processor_set() 74
5.5.4 rtems_scheduler_get_maximum_priority() 76
5.5.5 rtems_scheduler_map_priority_to_posix() 77
5.5.6 rtems_scheduler_map_priority_from_posix() 78
5.5.7 rtems_scheduler_get_processor() . 79
5.5.8 rtems_scheduler_get_processor_maximum() 80
5.5.9 rtems_scheduler_get_processor_set() . 81
5.5.10 rtems_scheduler_add_processor() . 82
5.5.11 rtems_scheduler_remove_processor() . 83

6 Initialization Manager 85
6.1 Introduction . 86
6.2 Background . 87

6.2.1 Initialization Tasks . 87
6.2.2 The Idle Task . 87
6.2.3 Initialization Manager Failure . 87

6.3 Operations . 88
6.3.1 Initializing RTEMS . 88
6.3.2 Global Construction . 92

6.4 Directives . 94
6.4.1 rtems_initialize_executive() . 95

7 Task Manager 97
7.1 Introduction . 98
7.2 Background . 99

7.2.1 Task Definition . 99
7.2.2 Task Control Block . 99
7.2.3 Task Memory . 99
7.2.4 Task Name . 100
7.2.5 Task States . 100
7.2.6 Task Priority . 100
7.2.7 Task Mode . 101
7.2.8 Task Life States . 102
7.2.9 Accessing Task Arguments . 102
7.2.10 Floating Point Considerations . 103
7.2.11 Building a Task Attribute Set . 103
7.2.12 Building a Mode and Mask . 104

7.3 Operations . 105
7.3.1 Creating Tasks . 105
7.3.2 Obtaining Task IDs . 105
7.3.3 Starting and Restarting Tasks . 105
7.3.4 Suspending and Resuming Tasks . 105
7.3.5 Delaying the Currently Executing Task 106
7.3.6 Changing Task Priority . 106
7.3.7 Changing Task Mode . 106

iv

7.3.8 Task Deletion . 106
7.3.9 Setting Affinity to a Single Processor . 106
7.3.10 Transition Advice for Removed Notepads 107
7.3.11 Transition Advice for Removed Task Variables 107

7.4 Directives . 108
7.4.1 rtems_task_create() . 109
7.4.2 rtems_task_construct() . 113
7.4.3 rtems_task_ident() . 115
7.4.4 rtems_task_self() . 117
7.4.5 rtems_task_start() . 118
7.4.6 rtems_task_restart() . 120
7.4.7 rtems_task_delete() . 122
7.4.8 rtems_task_exit() . 124
7.4.9 rtems_task_suspend() . 125
7.4.10 rtems_task_resume() . 126
7.4.11 rtems_task_is_suspended() . 127
7.4.12 rtems_task_set_priority() . 128
7.4.13 rtems_task_get_priority() . 130
7.4.14 rtems_task_mode() . 132
7.4.15 rtems_task_wake_after() . 134
7.4.16 rtems_task_wake_when() . 135
7.4.17 rtems_task_get_scheduler() . 136
7.4.18 rtems_task_set_scheduler() . 137
7.4.19 rtems_task_get_affinity() . 139
7.4.20 rtems_task_set_affinity() . 141
7.4.21 rtems_task_iterate() . 143
7.4.22 RTEMS_TASK_STORAGE_SIZE() . 144

7.5 Deprecated Directives . 145
7.5.1 ITERATE_OVER_ALL_THREADS - Iterate Over Tasks 146

7.6 Removed Directives . 147
7.6.1 TASK_GET_NOTE - Get task notepad entry 148
7.6.2 TASK_SET_NOTE - Set task notepad entry 149
7.6.3 TASK_VARIABLE_ADD - Associate per task variable 150
7.6.4 TASK_VARIABLE_GET - Obtain value of a per task variable 151
7.6.5 TASK_VARIABLE_DELETE - Remove per task variable 152

8 Interrupt Manager 153
8.1 Introduction . 154
8.2 Background . 157

8.2.1 Processing an Interrupt . 157
8.2.2 RTEMS Interrupt Levels . 158
8.2.3 Disabling of Interrupts by RTEMS . 158

8.3 Operations . 159
8.3.1 Establishing an ISR . 159
8.3.2 Directives Allowed from an ISR . 159

8.4 Directives . 161
8.4.1 rtems_interrupt_catch() . 162
8.4.2 rtems_interrupt_disable() . 164
8.4.3 rtems_interrupt_enable() . 166
8.4.4 rtems_interrupt_flash() . 167
8.4.5 rtems_interrupt_local_disable() . 168

v

8.4.6 rtems_interrupt_local_enable() . 170
8.4.7 rtems_interrupt_is_in_progress() . 171
8.4.8 rtems_interrupt_lock_initialize() . 172
8.4.9 rtems_interrupt_lock_destroy() . 173
8.4.10 rtems_interrupt_lock_acquire() . 174
8.4.11 rtems_interrupt_lock_release() . 176
8.4.12 rtems_interrupt_lock_acquire_isr() . 177
8.4.13 rtems_interrupt_lock_release_isr() . 178
8.4.14 rtems_interrupt_lock_interrupt_disable() 179
8.4.15 RTEMS_INTERRUPT_LOCK_DECLARE() 180
8.4.16 RTEMS_INTERRUPT_LOCK_DEFINE() 181
8.4.17 RTEMS_INTERRUPT_LOCK_INITIALIZER() 182
8.4.18 RTEMS_INTERRUPT_LOCK_MEMBER() 183
8.4.19 RTEMS_INTERRUPT_LOCK_REFERENCE() 184
8.4.20 RTEMS_INTERRUPT_ENTRY_INITIALIZER() 185
8.4.21 rtems_interrupt_entry_initialize() . 186
8.4.22 rtems_interrupt_entry_install() . 187
8.4.23 rtems_interrupt_entry_remove() . 189
8.4.24 rtems_interrupt_handler_install() . 190
8.4.25 rtems_interrupt_handler_remove() . 192
8.4.26 rtems_interrupt_vector_is_enabled() . 193
8.4.27 rtems_interrupt_vector_enable() . 194
8.4.28 rtems_interrupt_vector_disable() . 195
8.4.29 rtems_interrupt_is_pending() . 196
8.4.30 rtems_interrupt_raise() . 198
8.4.31 rtems_interrupt_raise_on() . 199
8.4.32 rtems_interrupt_clear() . 200
8.4.33 rtems_interrupt_get_priority() . 201
8.4.34 rtems_interrupt_set_priority() . 202
8.4.35 rtems_interrupt_get_affinity() . 204
8.4.36 rtems_interrupt_set_affinity() . 205
8.4.37 rtems_interrupt_get_attributes() . 207
8.4.38 rtems_interrupt_handler_iterate() . 208
8.4.39 rtems_interrupt_server_initialize() . 210
8.4.40 rtems_interrupt_server_create() . 212
8.4.41 rtems_interrupt_server_handler_install() 213
8.4.42 rtems_interrupt_server_handler_remove() 215
8.4.43 rtems_interrupt_server_set_affinity() . 216
8.4.44 rtems_interrupt_server_delete() . 218
8.4.45 rtems_interrupt_server_suspend() . 219
8.4.46 rtems_interrupt_server_resume() . 220
8.4.47 rtems_interrupt_server_move() . 221
8.4.48 rtems_interrupt_server_handler_iterate() 222
8.4.49 rtems_interrupt_server_entry_initialize() 224
8.4.50 rtems_interrupt_server_action_prepend() 225
8.4.51 rtems_interrupt_server_entry_destroy() 227
8.4.52 rtems_interrupt_server_entry_submit() 228
8.4.53 rtems_interrupt_server_entry_move() . 229
8.4.54 rtems_interrupt_server_request_initialize() 230
8.4.55 rtems_interrupt_server_request_set_vector() 231
8.4.56 rtems_interrupt_server_request_destroy() 232

vi

8.4.57 rtems_interrupt_server_request_submit() 233

9 Clock Manager 235
9.1 Introduction . 236
9.2 Background . 238

9.2.1 Required Support . 238
9.2.2 Time and Date Data Structures . 238
9.2.3 Clock Tick and Timeslicing . 239
9.2.4 Delays . 239
9.2.5 Timeouts . 239

9.3 Operations . 240
9.3.1 Announcing a Tick . 240
9.3.2 Setting the Time . 240
9.3.3 Obtaining the Time . 240
9.3.4 Transition Advice for the Removed rtems_clock_get() 240

9.4 Directives . 242
9.4.1 rtems_clock_set() . 243
9.4.2 rtems_clock_get_tod() . 245
9.4.3 rtems_clock_get_tod_timeval() . 246
9.4.4 rtems_clock_get_realtime() . 247
9.4.5 rtems_clock_get_realtime_bintime() . 248
9.4.6 rtems_clock_get_realtime_timeval() . 249
9.4.7 rtems_clock_get_realtime_coarse() . 250
9.4.8 rtems_clock_get_realtime_coarse_bintime() 251
9.4.9 rtems_clock_get_realtime_coarse_timeval() 252
9.4.10 rtems_clock_get_monotonic() . 253
9.4.11 rtems_clock_get_monotonic_bintime() 254
9.4.12 rtems_clock_get_monotonic_sbintime() 255
9.4.13 rtems_clock_get_monotonic_timeval() 256
9.4.14 rtems_clock_get_monotonic_coarse() . 257
9.4.15 rtems_clock_get_monotonic_coarse_bintime() 258
9.4.16 rtems_clock_get_monotonic_coarse_timeval() 259
9.4.17 rtems_clock_get_boot_time() . 260
9.4.18 rtems_clock_get_boot_time_bintime() 261
9.4.19 rtems_clock_get_boot_time_timeval() . 262
9.4.20 rtems_clock_get_seconds_since_epoch() 263
9.4.21 rtems_clock_get_ticks_per_second() . 264
9.4.22 rtems_clock_get_ticks_since_boot() . 265
9.4.23 rtems_clock_get_uptime() . 266
9.4.24 rtems_clock_get_uptime_timeval() . 267
9.4.25 rtems_clock_get_uptime_seconds() . 268
9.4.26 rtems_clock_get_uptime_nanoseconds() 269
9.4.27 rtems_clock_tick_later() . 270
9.4.28 rtems_clock_tick_later_usec() . 271
9.4.29 rtems_clock_tick_before() . 272

9.5 Removed Directives . 273
9.5.1 CLOCK_GET - Get date and time information 274

10 Timer Manager 275
10.1 Introduction . 276
10.2 Background . 277

10.2.1 Required Support . 277

vii

10.2.2 Timers . 277
10.2.3 Timer Server . 277
10.2.4 Timer Service Routines . 277

10.3 Operations . 278
10.3.1 Creating a Timer . 278
10.3.2 Obtaining Timer IDs . 278
10.3.3 Initiating an Interval Timer . 278
10.3.4 Initiating a Time of Day Timer . 278
10.3.5 Canceling a Timer . 278
10.3.6 Resetting a Timer . 278
10.3.7 Initiating the Timer Server . 278
10.3.8 Deleting a Timer . 279

10.4 Directives . 280
10.4.1 rtems_timer_create() . 281
10.4.2 rtems_timer_ident() . 283
10.4.3 rtems_timer_cancel() . 284
10.4.4 rtems_timer_delete() . 285
10.4.5 rtems_timer_fire_after() . 286
10.4.6 rtems_timer_fire_when() . 288
10.4.7 rtems_timer_initiate_server() . 290
10.4.8 rtems_timer_server_fire_after() . 292
10.4.9 rtems_timer_server_fire_when() . 294
10.4.10 rtems_timer_reset() . 296
10.4.11 rtems_timer_get_information() . 297

11 Rate Monotonic Manager 299
11.1 Introduction . 300
11.2 Background . 301

11.2.1 Rate Monotonic Manager Required Support 301
11.2.2 Period Statistics . 301
11.2.3 Periodicity Definitions . 302
11.2.4 Rate Monotonic Scheduling Algorithm 302
11.2.5 Schedulability Analysis . 303

11.2.5.1 Assumptions . 303
11.2.5.2 Processor Utilization Rule . 304
11.2.5.3 Processor Utilization Rule Example 304
11.2.5.4 First Deadline Rule . 304
11.2.5.5 First Deadline Rule Example . 305
11.2.5.6 Relaxation of Assumptions . 306

11.3 Operations . 307
11.3.1 Creating a Rate Monotonic Period . 307
11.3.2 Manipulating a Period . 307
11.3.3 Obtaining the Status of a Period . 307
11.3.4 Canceling a Period . 307
11.3.5 Deleting a Rate Monotonic Period . 308
11.3.6 Examples . 308
11.3.7 Simple Periodic Task . 308
11.3.8 Task with Multiple Periods . 309

11.4 Directives . 311
11.4.1 rtems_rate_monotonic_create() . 312
11.4.2 rtems_rate_monotonic_ident() . 314

viii

11.4.3 rtems_rate_monotonic_cancel() . 315
11.4.4 rtems_rate_monotonic_delete() . 316
11.4.5 rtems_rate_monotonic_period() . 317
11.4.6 rtems_rate_monotonic_get_status() . 319
11.4.7 rtems_rate_monotonic_get_statistics() 321
11.4.8 rtems_rate_monotonic_reset_statistics() 323
11.4.9 rtems_rate_monotonic_reset_all_statistics() 324
11.4.10 rtems_rate_monotonic_report_statistics() 325
11.4.11 rtems_rate_monotonic_report_statistics_with_plugin() 326

12 Semaphore Manager 327
12.1 Introduction . 328
12.2 Background . 329

12.2.1 Nested Resource Access . 329
12.2.2 Priority Inheritance . 329
12.2.3 Priority Ceiling . 330
12.2.4 Multiprocessor Resource Sharing Protocol 330
12.2.5 Building a Semaphore Attribute Set . 330
12.2.6 Building a SEMAPHORE_OBTAIN Option Set 331

12.3 Operations . 332
12.3.1 Creating a Semaphore . 332
12.3.2 Obtaining Semaphore IDs . 332
12.3.3 Acquiring a Semaphore . 332
12.3.4 Releasing a Semaphore . 333
12.3.5 Deleting a Semaphore . 333

12.4 Directives . 334
12.4.1 rtems_semaphore_create() . 335
12.4.2 rtems_semaphore_ident() . 339
12.4.3 rtems_semaphore_delete() . 341
12.4.4 rtems_semaphore_obtain() . 343
12.4.5 rtems_semaphore_release() . 346
12.4.6 rtems_semaphore_flush() . 348
12.4.7 rtems_semaphore_set_priority() . 350

13 Barrier Manager 355
13.1 Introduction . 356
13.2 Background . 357

13.2.1 Automatic Versus Manual Barriers . 357
13.2.2 Building a Barrier Attribute Set . 357

13.3 Directives . 358
13.3.1 rtems_barrier_create() . 359
13.3.2 rtems_barrier_ident() . 361
13.3.3 rtems_barrier_delete() . 362
13.3.4 rtems_barrier_wait() . 363
13.3.5 rtems_barrier_release() . 364

14 Message Manager 365
14.1 Introduction . 366
14.2 Background . 367

14.2.1 Messages . 367
14.2.2 Message Queues . 367
14.2.3 Building a Message Queue Attribute Set 367

ix

14.2.4 Building a MESSAGE_QUEUE_RECEIVE Option Set 367
14.3 Operations . 369

14.3.1 Creating a Message Queue . 369
14.3.2 Obtaining Message Queue IDs . 369
14.3.3 Receiving a Message . 369
14.3.4 Sending a Message . 369
14.3.5 Broadcasting a Message . 370
14.3.6 Deleting a Message Queue . 370

14.4 Directives . 371
14.4.1 rtems_message_queue_create() . 372
14.4.2 rtems_message_queue_construct() . 375
14.4.3 rtems_message_queue_ident() . 377
14.4.4 rtems_message_queue_delete() . 379
14.4.5 rtems_message_queue_send() . 381
14.4.6 rtems_message_queue_urgent() . 383
14.4.7 rtems_message_queue_broadcast() . 385
14.4.8 rtems_message_queue_receive() . 387
14.4.9 rtems_message_queue_get_number_pending() 389
14.4.10 rtems_message_queue_flush() . 390
14.4.11 RTEMS_MESSAGE_QUEUE_BUFFER() 391

15 Event Manager 393
15.1 Introduction . 394
15.2 Background . 395

15.2.1 Event Sets . 395
15.2.2 Building an Event Set or Condition . 395
15.2.3 Building an EVENT_RECEIVE Option Set 395

15.3 Operations . 397
15.3.1 Sending an Event Set . 397
15.3.2 Receiving an Event Set . 397
15.3.3 Determining the Pending Event Set . 397
15.3.4 Receiving all Pending Events . 397

15.4 Directives . 398
15.4.1 rtems_event_send() . 399
15.4.2 rtems_event_receive() . 401

16 Signal Manager 403
16.1 Introduction . 404
16.2 Background . 405

16.2.1 Signal Manager Definitions . 405
16.2.2 A Comparison of ASRs and ISRs . 405
16.2.3 Building a Signal Set . 405
16.2.4 Building an ASR Mode . 405

16.3 Operations . 407
16.3.1 Establishing an ASR . 407
16.3.2 Sending a Signal Set . 407
16.3.3 Processing an ASR . 407

16.4 Directives . 409
16.4.1 rtems_signal_catch() . 410
16.4.2 rtems_signal_send() . 412

17 Partition Manager 415

x

17.1 Introduction . 416
17.2 Background . 417

17.2.1 Partition Manager Definitions . 417
17.2.2 Building a Partition Attribute Set . 417

17.3 Operations . 418
17.3.1 Creating a Partition . 418
17.3.2 Obtaining Partition IDs . 418
17.3.3 Acquiring a Buffer . 418
17.3.4 Releasing a Buffer . 418
17.3.5 Deleting a Partition . 418

17.4 Directives . 419
17.4.1 rtems_partition_create() . 420
17.4.2 rtems_partition_ident() . 423
17.4.3 rtems_partition_delete() . 425
17.4.4 rtems_partition_get_buffer() . 427
17.4.5 rtems_partition_return_buffer() . 429

18 Region Manager 431
18.1 Introduction . 432
18.2 Background . 433

18.2.1 Region Manager Definitions . 433
18.2.2 Building an Attribute Set . 433
18.2.3 Building an Option Set . 433

18.3 Operations . 435
18.3.1 Creating a Region . 435
18.3.2 Obtaining Region IDs . 435
18.3.3 Adding Memory to a Region . 435
18.3.4 Acquiring a Segment . 435
18.3.5 Releasing a Segment . 435
18.3.6 Obtaining the Size of a Segment . 436
18.3.7 Changing the Size of a Segment . 436
18.3.8 Deleting a Region . 436

18.4 Directives . 437
18.4.1 rtems_region_create() . 438
18.4.2 rtems_region_ident() . 440
18.4.3 rtems_region_delete() . 441
18.4.4 rtems_region_extend() . 442
18.4.5 rtems_region_get_segment() . 444
18.4.6 rtems_region_return_segment() . 446
18.4.7 rtems_region_resize_segment() . 447
18.4.8 rtems_region_get_information() . 449
18.4.9 rtems_region_get_free_information() . 450
18.4.10 rtems_region_get_segment_size() . 452

19 Dual-Ported Memory Manager 455
19.1 Introduction . 456
19.2 Background . 457
19.3 Operations . 458

19.3.1 Creating a Port . 458
19.3.2 Obtaining Port IDs . 458
19.3.3 Converting an Address . 458
19.3.4 Deleting a DPMA Port . 458

xi

19.4 Directives . 459
19.4.1 rtems_port_create() . 460
19.4.2 rtems_port_ident() . 462
19.4.3 rtems_port_delete() . 463
19.4.4 rtems_port_external_to_internal() . 464
19.4.5 rtems_port_internal_to_external() . 465

20 I/O Manager 467
20.1 Introduction . 468
20.2 Background . 469

20.2.1 Device Driver Table . 469
20.2.2 Major and Minor Device Numbers . 469
20.2.3 Device Names . 469
20.2.4 Device Driver Environment . 469
20.2.5 Runtime Driver Registration . 470
20.2.6 Device Driver Interface . 470
20.2.7 Device Driver Initialization . 470

20.3 Operations . 472
20.3.1 Register and Lookup Name . 472
20.3.2 Accessing an Device Driver . 472

20.4 Directives . 473
20.4.1 rtems_io_register_driver() . 474
20.4.2 rtems_io_unregister_driver() . 476
20.4.3 rtems_io_initialize() . 477
20.4.4 rtems_io_register_name() . 478
20.4.5 rtems_io_open() . 479
20.4.6 rtems_io_close() . 480
20.4.7 rtems_io_read() . 481
20.4.8 rtems_io_write() . 482
20.4.9 rtems_io_control() . 483

21 Kernel Character I/O Support 485
21.1 Introduction . 486
21.2 Directives . 487

21.2.1 rtems_putc() . 488
21.2.2 rtems_put_char() . 489
21.2.3 putk() . 490
21.2.4 printk() . 491
21.2.5 vprintk() . 492
21.2.6 rtems_printk_printer() . 493
21.2.7 getchark() . 494

22 Cache Manager 495
22.1 Introduction . 496
22.2 Directives . 497

22.2.1 rtems_cache_flush_multiple_data_lines() 498
22.2.2 rtems_cache_invalidate_multiple_data_lines() 499
22.2.3 rtems_cache_invalidate_multiple_instruction_lines() 500
22.2.4 rtems_cache_instruction_sync_after_code_change() 501
22.2.5 rtems_cache_get_maximal_line_size() 502
22.2.6 rtems_cache_get_data_line_size() . 503
22.2.7 rtems_cache_get_instruction_line_size() 504

xii

22.2.8 rtems_cache_get_data_cache_size() . 505
22.2.9 rtems_cache_get_instruction_cache_size() 506
22.2.10 rtems_cache_flush_entire_data() . 507
22.2.11 rtems_cache_invalidate_entire_data() . 508
22.2.12 rtems_cache_invalidate_entire_instruction() 509
22.2.13 rtems_cache_enable_data() . 510
22.2.14 rtems_cache_disable_data() . 511
22.2.15 rtems_cache_enable_instruction() . 512
22.2.16 rtems_cache_disable_instruction() . 513
22.2.17 rtems_cache_aligned_malloc() . 514

23 Fatal Error Manager 515
23.1 Introduction . 516
23.2 Background . 517

23.2.1 Overview . 517
23.2.2 System Termination Procedure . 517
23.2.3 Fatal Sources . 518
23.2.4 Internal Error Codes . 519

23.3 Operations . 524
23.3.1 Announcing a Fatal Error . 524

23.4 Directives . 525
23.4.1 rtems_fatal() . 526
23.4.2 rtems_panic() . 527
23.4.3 rtems_shutdown_executive() . 528
23.4.4 rtems_exception_frame_print() . 529
23.4.5 rtems_fatal_source_text() . 530
23.4.6 rtems_internal_error_text() . 531
23.4.7 rtems_fatal_error_occurred() . 532

24 Board Support Packages 533
24.1 Introduction . 534
24.2 Reset and Initialization . 535

24.2.1 Interrupt Stack Requirements . 536
24.2.2 Processors with a Separate Interrupt Stack 536
24.2.3 Processors Without a Separate Interrupt Stack 536

24.3 Device Drivers . 537
24.3.1 Clock Tick Device Driver . 537

24.4 User Extensions . 538
24.5 Multiprocessor Communications Interface (MPCI) 539

24.5.1 Tightly-Coupled Systems . 539
24.5.2 Loosely-Coupled Systems . 539
24.5.3 Systems with Mixed Coupling . 539
24.5.4 Heterogeneous Systems . 539

25 User Extensions Manager 541
25.1 Introduction . 542
25.2 Background . 543

25.2.1 Extension Sets . 543
25.2.2 TCB Extension Area . 543
25.2.3 Order of Invocation . 544
25.2.4 Thread Create Extension . 545
25.2.5 Thread Start Extension . 545

xiii

25.2.6 Thread Restart Extension . 545
25.2.7 Thread Switch Extension . 546
25.2.8 Thread Begin Extension . 546
25.2.9 Thread Exitted Extension . 547
25.2.10 Thread Termination Extension . 547
25.2.11 Thread Delete Extension . 547
25.2.12 Fatal Error Extension . 548

25.3 Directives . 549
25.3.1 rtems_extension_create() . 550
25.3.2 rtems_extension_delete() . 552
25.3.3 rtems_extension_ident() . 553

26 Configuring a System 555
26.1 Introduction . 556
26.2 Default Value Selection Philosophy . 559
26.3 Sizing the RTEMS Workspace . 560
26.4 Potential Issues with RTEMS Workspace Size Estimation 561
26.5 Configuration Example . 562
26.6 Unlimited Objects . 564

26.6.1 Unlimited Objects by Class . 565
26.6.2 Unlimited Objects by Default . 565

26.7 General System Configuration . 566
26.7.1 CONFIGURE_DIRTY_MEMORY . 567
26.7.2 CONFIGURE_DISABLE_BSP_SETTINGS 568
26.7.3 CONFIGURE_DISABLE_NEWLIB_REENTRANCY 569
26.7.4 CONFIGURE_EXECUTIVE_RAM_SIZE . 570
26.7.5 CONFIGURE_EXTRA_TASK_STACKS . 571
26.7.6 CONFIGURE_INIT . 572
26.7.7 CONFIGURE_INITIAL_EXTENSIONS . 573
26.7.8 CONFIGURE_INTERRUPT_STACK_SIZE 574
26.7.9 CONFIGURE_MALLOC_DIRTY . 575
26.7.10 CONFIGURE_MAXIMUM_FILE_DESCRIPTORS 576
26.7.11 CONFIGURE_MAXIMUM_PROCESSORS 577
26.7.12 CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE 578
26.7.13 CONFIGURE_MAXIMUM_THREAD_NAME_SIZE 579
26.7.14 CONFIGURE_MEMORY_OVERHEAD . 580
26.7.15 CONFIGURE_MESSAGE_BUFFER_MEMORY 581
26.7.16 CONFIGURE_MICROSECONDS_PER_TICK 583
26.7.17 CONFIGURE_MINIMUM_TASK_STACK_SIZE 584
26.7.18 CONFIGURE_STACK_CHECKER_ENABLED 585
26.7.19 CONFIGURE_TICKS_PER_TIMESLICE 586
26.7.20 CONFIGURE_UNIFIED_WORK_AREAS 587
26.7.21 CONFIGURE_UNLIMITED_ALLOCATION_SIZE 588
26.7.22 CONFIGURE_UNLIMITED_OBJECTS . 589
26.7.23 CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION 590
26.7.24 CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY 591

26.8 Device Driver Configuration . 592
26.8.1 CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER 593
26.8.2 CONFIGURE_APPLICATION_EXTRA_DRIVERS 594
26.8.3 CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER 595
26.8.4 CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER 596

xiv

26.8.5 CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER 597
26.8.6 CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER 598
26.8.7 CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER 599
26.8.8 CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER 600
26.8.9 CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER 601
26.8.10 CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER 602
26.8.11 CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER 603
26.8.12 CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER 604
26.8.13 CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER 605
26.8.14 CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER 606
26.8.15 CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER 607
26.8.16 CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS 608
26.8.17 CONFIGURE_ATA_DRIVER_TASK_PRIORITY 609
26.8.18 CONFIGURE_EXCEPTION_TO_SIGNAL_MAPPING 610
26.8.19 CONFIGURE_MAXIMUM_DRIVERS . 611

26.9 Classic API Configuration . 613
26.9.1 CONFIGURE_MAXIMUM_BARRIERS . 614
26.9.2 CONFIGURE_MAXIMUM_MESSAGE_QUEUES 615
26.9.3 CONFIGURE_MAXIMUM_PARTITIONS 616
26.9.4 CONFIGURE_MAXIMUM_PERIODS . 617
26.9.5 CONFIGURE_MAXIMUM_PORTS . 618
26.9.6 CONFIGURE_MAXIMUM_REGIONS . 619
26.9.7 CONFIGURE_MAXIMUM_SEMAPHORES 620
26.9.8 CONFIGURE_MAXIMUM_TASKS . 621
26.9.9 CONFIGURE_MAXIMUM_TIMERS . 622
26.9.10 CONFIGURE_MAXIMUM_USER_EXTENSIONS 623
26.9.11 CONFIGURE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE . . 624

26.10Classic API Initialization Task Configuration . 625
26.10.1 CONFIGURE_INIT_TASK_ARGUMENTS 626
26.10.2 CONFIGURE_INIT_TASK_ATTRIBUTES 627
26.10.3 CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE 628
26.10.4 CONFIGURE_INIT_TASK_ENTRY_POINT 629
26.10.5 CONFIGURE_INIT_TASK_INITIAL_MODES 630
26.10.6 CONFIGURE_INIT_TASK_NAME . 631
26.10.7 CONFIGURE_INIT_TASK_PRIORITY . 632
26.10.8 CONFIGURE_INIT_TASK_STACK_SIZE 633
26.10.9 CONFIGURE_RTEMS_INIT_TASKS_TABLE 634

26.11POSIX API Configuration . 635
26.11.1 CONFIGURE_MAXIMUM_POSIX_KEYS 636
26.11.2 CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS 637
26.11.3 CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES 638
26.11.4 CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS 639
26.11.5 CONFIGURE_MAXIMUM_POSIX_SEMAPHORES 640
26.11.6 CONFIGURE_MAXIMUM_POSIX_SHMS 641
26.11.7 CONFIGURE_MAXIMUM_POSIX_THREADS 642
26.11.8 CONFIGURE_MAXIMUM_POSIX_TIMERS 643
26.11.9 CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE 644

26.12POSIX Initialization Thread Configuration . 645
26.12.1 CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT 646
26.12.2 CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE 647
26.12.3 CONFIGURE_POSIX_INIT_THREAD_TABLE 648

xv

26.13Event Recording Configuration . 649
26.13.1 CONFIGURE_RECORD_EXTENSIONS_ENABLED 650
26.13.2 CONFIGURE_RECORD_FATAL_DUMP_BASE64 651
26.13.3 CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB 652
26.13.4 CONFIGURE_RECORD_INTERRUPTS_ENABLED 653
26.13.5 CONFIGURE_RECORD_PER_PROCESSOR_ITEMS 654

26.14Filesystem Configuration . 655
26.14.1 CONFIGURE_APPLICATION_DISABLE_FILESYSTEM 656
26.14.2 CONFIGURE_FILESYSTEM_ALL . 657
26.14.3 CONFIGURE_FILESYSTEM_DOSFS . 658
26.14.4 CONFIGURE_FILESYSTEM_FTPFS . 659
26.14.5 CONFIGURE_FILESYSTEM_IMFS . 660
26.14.6 CONFIGURE_FILESYSTEM_JFFS2 . 661
26.14.7 CONFIGURE_FILESYSTEM_NFS . 662
26.14.8 CONFIGURE_FILESYSTEM_RFS . 663
26.14.9 CONFIGURE_FILESYSTEM_TFTPFS . 664
26.14.10CONFIGURE_IMFS_DISABLE_CHMOD 665
26.14.11CONFIGURE_IMFS_DISABLE_CHOWN 666
26.14.12CONFIGURE_IMFS_DISABLE_LINK . 667
26.14.13CONFIGURE_IMFS_DISABLE_MKNOD 668
26.14.14CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE 669
26.14.15CONFIGURE_IMFS_DISABLE_MKNOD_FILE 670
26.14.16CONFIGURE_IMFS_DISABLE_MOUNT 671
26.14.17CONFIGURE_IMFS_DISABLE_READDIR 672
26.14.18CONFIGURE_IMFS_DISABLE_READLINK 673
26.14.19CONFIGURE_IMFS_DISABLE_RENAME 674
26.14.20CONFIGURE_IMFS_DISABLE_RMNOD 675
26.14.21CONFIGURE_IMFS_DISABLE_SYMLINK 676
26.14.22CONFIGURE_IMFS_DISABLE_UNMOUNT 677
26.14.23CONFIGURE_IMFS_DISABLE_UTIME . 678
26.14.24CONFIGURE_IMFS_ENABLE_MKFIFO 679
26.14.25CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK 680
26.14.26CONFIGURE_JFFS2_DELAYED_WRITE_TASK_PRIORITY 681
26.14.27CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM 682
26.14.28CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM 683

26.15Block Device Cache Configuration . 684
26.15.1 CONFIGURE_APPLICATION_NEEDS_LIBBLOCK 685
26.15.2 CONFIGURE_BDBUF_BUFFER_MAX_SIZE 686
26.15.3 CONFIGURE_BDBUF_BUFFER_MIN_SIZE 687
26.15.4 CONFIGURE_BDBUF_CACHE_MEMORY_SIZE 688
26.15.5 CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS 689
26.15.6 CONFIGURE_BDBUF_MAX_WRITE_BLOCKS 690
26.15.7 CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY 691
26.15.8 CONFIGURE_BDBUF_TASK_STACK_SIZE 692
26.15.9 CONFIGURE_SWAPOUT_BLOCK_HOLD 693
26.15.10CONFIGURE_SWAPOUT_SWAP_PERIOD 694
26.15.11CONFIGURE_SWAPOUT_TASK_PRIORITY 695
26.15.12CONFIGURE_SWAPOUT_WORKER_TASKS 696
26.15.13CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY 697

26.16Task Stack Allocator Configuration . 698
26.16.1 CONFIGURE_TASK_STACK_ALLOCATOR 699

xvi

26.16.2 CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE 700
26.16.3 CONFIGURE_TASK_STACK_ALLOCATOR_FOR_IDLE 701
26.16.4 CONFIGURE_TASK_STACK_ALLOCATOR_INIT 702
26.16.5 CONFIGURE_TASK_STACK_DEALLOCATOR 703
26.16.6 CONFIGURE_TASK_STACK_FROM_ALLOCATOR 704

26.17Idle Task Configuration . 705
26.17.1 CONFIGURE_IDLE_TASK_BODY . 706
26.17.2 CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION 707
26.17.3 CONFIGURE_IDLE_TASK_STACK_SIZE 708
26.17.4 CONFIGURE_IDLE_TASK_STORAGE_SIZE 709

26.18General Scheduler Configuration . 710
26.18.1 CONFIGURE_CBS_MAXIMUM_SERVERS 711
26.18.2 CONFIGURE_MAXIMUM_PRIORITY . 712
26.18.3 CONFIGURE_SCHEDULER_ASSIGNMENTS 713
26.18.4 CONFIGURE_SCHEDULER_CBS . 714
26.18.5 CONFIGURE_SCHEDULER_EDF . 715
26.18.6 CONFIGURE_SCHEDULER_EDF_SMP . 716
26.18.7 CONFIGURE_SCHEDULER_NAME . 717
26.18.8 CONFIGURE_SCHEDULER_PRIORITY 718
26.18.9 CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP 719
26.18.10CONFIGURE_SCHEDULER_PRIORITY_SMP 720
26.18.11CONFIGURE_SCHEDULER_SIMPLE . 721
26.18.12CONFIGURE_SCHEDULER_SIMPLE_SMP 722
26.18.13CONFIGURE_SCHEDULER_STRONG_APA 723
26.18.14CONFIGURE_SCHEDULER_TABLE_ENTRIES 724
26.18.15CONFIGURE_SCHEDULER_USER . 725

26.19Clustered Scheduler Configuration . 726
26.19.1 Configuration Step 1 - Scheduler Algorithms 726
26.19.2 Configuration Step 2 - Schedulers . 726
26.19.3 Configuration Step 3 - Scheduler Table 727
26.19.4 Configuration Step 4 - Processor to Scheduler Assignment 727
26.19.5 Configuration Example . 727
26.19.6 Configuration Errors . 728

26.20FACE Technical Standard Related Configuration 730
26.20.1 CONFIGURE_POSIX_TIMERS_FACE_BEHAVIOR 731

26.21Multiprocessing Configuration . 732
26.21.1 CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK 733
26.21.2 CONFIGURE_MP_APPLICATION . 734
26.21.3 CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS 735
26.21.4 CONFIGURE_MP_MAXIMUM_NODES 736
26.21.5 CONFIGURE_MP_MAXIMUM_PROXIES 737
26.21.6 CONFIGURE_MP_MPCI_TABLE_POINTER 738
26.21.7 CONFIGURE_MP_NODE_NUMBER . 739

26.22PCI Library Configuration . 740
26.23Ada Configuration . 741
26.24Directives . 742

26.24.1 rtems_get_build_label() . 743
26.24.2 rtems_get_copyright_notice() . 744
26.24.3 rtems_get_target_hash() . 745
26.24.4 rtems_get_version_string() . 746
26.24.5 rtems_configuration_get_do_zero_of_workspace() 747

xvii

26.24.6 rtems_configuration_get_idle_task_stack_size() 748
26.24.7 rtems_configuration_get_idle_task() . 749
26.24.8 rtems_configuration_get_interrupt_stack_size() 750
26.24.9 rtems_configuration_get_maximum_barriers() 751
26.24.10rtems_configuration_get_maximum_extensions() 752
26.24.11rtems_configuration_get_maximum_message_queues() 753
26.24.12rtems_configuration_get_maximum_partitions() 754
26.24.13rtems_configuration_get_maximum_periods() 755
26.24.14rtems_configuration_get_maximum_ports() 756
26.24.15rtems_configuration_get_maximum_processors() 757
26.24.16rtems_configuration_get_maximum_regions() 758
26.24.17rtems_configuration_get_maximum_semaphores() 759
26.24.18rtems_configuration_get_maximum_tasks() 760
26.24.19rtems_configuration_get_maximum_timers() 761
26.24.20rtems_configuration_get_microseconds_per_tick() 762
26.24.21rtems_configuration_get_milliseconds_per_tick() 763
26.24.22rtems_configuration_get_nanoseconds_per_tick() 764
26.24.23rtems_configuration_get_number_of_initial_extensions() 765
26.24.24rtems_configuration_get_stack_allocate_for_idle_hook() 766
26.24.25rtems_configuration_get_stack_allocate_hook() 767
26.24.26rtems_configuration_get_stack_allocate_init_hook() 768
26.24.27rtems_configuration_get_stack_allocator_avoids_work_space() 769
26.24.28rtems_configuration_get_stack_free_hook() 770
26.24.29rtems_configuration_get_stack_space_size() 771
26.24.30rtems_configuration_get_ticks_per_timeslice() 772
26.24.31rtems_configuration_get_unified_work_area() 773
26.24.32rtems_configuration_get_user_extension_table() 774
26.24.33rtems_configuration_get_user_multiprocessing_table() 775
26.24.34rtems_configuration_get_work_space_size() 776
26.24.35rtems_configuration_get_rtems_api_configuration() 777
26.24.36rtems_resource_is_unlimited() . 778
26.24.37rtems_resource_maximum_per_allocation() 779
26.24.38rtems_resource_unlimited() . 780

26.25Obsolete Configuration Options . 781
26.25.1 CONFIGURE_BDBUF_BUFFER_COUNT 781
26.25.2 CONFIGURE_BDBUF_BUFFER_SIZE . 781
26.25.3 CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS 781
26.25.4 CONFIGURE_ENABLE_GO . 781
26.25.5 CONFIGURE_GNAT_RTEMS . 781
26.25.6 CONFIGURE_HAS_OWN_CONFIGURATION_TABLE 781
26.25.7 CONFIGURE_HAS_OWN_BDBUF_TABLE 781
26.25.8 CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE 781
26.25.9 CONFIGURE_HAS_OWN_INIT_TASK_TABLE 781
26.25.10CONFIGURE_HAS_OWN_MOUNT_TABLE 781
26.25.11CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE 781
26.25.12CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 782
26.25.13CONFIGURE_MAXIMUM_ADA_TASKS 782
26.25.14CONFIGURE_MAXIMUM_DEVICES . 782
26.25.15CONFIGURE_MAXIMUM_FAKE_ADA_TASKS 782
26.25.16CONFIGURE_MAXIMUM_GO_CHANNELS 782
26.25.17CONFIGURE_MAXIMUM_GOROUTINES 782

xviii

26.25.18CONFIGURE_MAXIMUM_MRSP_SEMAPHORES 782
26.25.19CONFIGURE_NUMBER_OF_TERMIOS_PORTS 782
26.25.20CONFIGURE_MAXIMUM_POSIX_BARRIERS 782
26.25.21CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES 782
26.25.22CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS . . 782
26.25.23CONFIGURE_MAXIMUM_POSIX_MUTEXES 782
26.25.24CONFIGURE_MAXIMUM_POSIX_RWLOCKS 783
26.25.25CONFIGURE_MAXIMUM_POSIX_SPINLOCKS 783
26.25.26CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE 783
26.25.27CONFIGURE_SMP_APPLICATION . 783
26.25.28CONFIGURE_SMP_MAXIMUM_PROCESSORS 783
26.25.29CONFIGURE_TERMIOS_DISABLED . 783

27 Self-Contained Objects 785
27.1 Introduction . 786
27.2 RTEMS Thread API . 788
27.3 Mutual Exclusion . 789

27.3.1 Static mutex initialization . 790
27.3.2 Run-time mutex initialization . 791
27.3.3 Lock the mutex . 792
27.3.4 Try to lock the mutex . 793
27.3.5 Unlock the mutex . 794
27.3.6 Set mutex name . 795
27.3.7 Get mutex name . 796
27.3.8 Mutex destruction . 796

27.4 Condition Variables . 797
27.4.1 Static condition variable initialization . 798
27.4.2 Run-time condition variable initialization 799
27.4.3 Wait for condition signal . 800
27.4.4 Signals a condition change . 801
27.4.5 Broadcasts a condition change . 802
27.4.6 Set condition variable name . 803
27.4.7 Get condition variable name . 804
27.4.8 Condition variable destruction . 804

27.5 Counting Semaphores . 805
27.5.1 Static counting semaphore initialization 806
27.5.2 Run-time counting semaphore initialization 807
27.5.3 Wait for a counting semaphore . 808
27.5.4 Wait for a counting semaphore with timeout in ticks 809
27.5.5 Tries to wait for a counting semaphore 810
27.5.6 Post a counting semaphore . 811
27.5.7 Set counting semaphore name . 812
27.5.8 Get counting semaphore name . 813
27.5.9 Counting semaphore destruction . 813

27.6 Binary Semaphores . 814
27.6.1 Static binary semaphore initialization . 815
27.6.2 Run-time binary semaphore initialization 816
27.6.3 Wait for a binary semaphore . 817
27.6.4 Wait for a binary semaphore with timeout in ticks 818
27.6.5 Tries to wait for a binary semaphore . 819
27.6.6 Post a binary semaphore . 820

xix

27.6.7 Set binary semaphore name . 821
27.6.8 Get binary semaphore name . 822
27.6.9 Binary semaphore destruction . 822

27.7 Threads . 823

28 Regulator Manager 825
28.1 Introduction . 826
28.2 Background . 827

28.2.1 Regulator Buffering . 827
28.2.2 Message Delivery Rate . 827

28.3 Operations . 829
28.3.1 Application Sourcing Data . 829
28.3.2 Delivery Function . 829

28.4 Directives . 831
28.4.1 rtems_regulator_create() . 832
28.4.2 rtems_regulator_delete() . 834
28.4.3 rtems_regulator_obtain_buffer() . 836
28.4.4 rtems_regulator_release_buffer() . 837
28.4.5 rtems_regulator_send() . 838
28.4.6 rtems_regulator_get_statistics() . 840

29 Multiprocessing Manager 843
29.1 Introduction . 844
29.2 Background . 845

29.2.1 Nodes . 845
29.2.2 Global Objects . 845
29.2.3 Global Object Table . 845
29.2.4 Remote Operations . 846
29.2.5 Proxies . 847
29.2.6 Multiprocessor Configuration Table . 847

29.3 Multiprocessor Communications Interface Layer 848
29.3.1 INITIALIZATION . 848
29.3.2 GET_PACKET . 849
29.3.3 RETURN_PACKET . 849
29.3.4 RECEIVE_PACKET . 849
29.3.5 SEND_PACKET . 850
29.3.6 Supporting Heterogeneous Environments 850

29.4 Operations . 852
29.4.1 Announcing a Packet . 852

29.5 Directives . 853
29.5.1 rtems_multiprocessing_announce() . 854

30 Symmetric Multiprocessing (SMP) 855
30.1 Introduction . 856
30.2 Background . 857

30.2.1 Application Configuration . 857
30.2.2 Examples . 857
30.2.3 Uniprocessor versus SMP Parallelism . 857
30.2.4 Task Affinity . 858
30.2.5 Task Migration . 858
30.2.6 Clustered Scheduling . 858
30.2.7 OpenMP . 859

xx

30.2.8 Atomic Operations . 860
30.3 Application Issues . 861

30.3.1 Task variables . 861
30.3.2 Highest Priority Thread Never Walks Alone 861
30.3.3 Disabling of Thread Preemption . 861
30.3.4 Disabling of Interrupts . 862
30.3.5 Interrupt Service Routines Execute in Parallel With Threads 863
30.3.6 Timers Do Not Stop Immediately . 863
30.3.7 False Sharing of Cache Lines Due to Objects Table 863

30.4 Implementation Details . 864
30.4.1 Low-Level Synchronization . 864
30.4.2 Internal Locking . 865
30.4.3 Profiling . 866
30.4.4 Scheduler Helping Protocol . 867
30.4.5 Thread Dispatch Details . 867
30.4.6 Per-Processor Data . 868
30.4.7 Thread Pinning . 868

31 PCI Library 871
31.1 Introduction . 872
31.2 Background . 873

31.2.1 Software Components . 873
31.2.2 PCI Configuration . 874

31.2.2.1 RTEMS Configuration selection 874
31.2.2.2 Auto Configuration . 874
31.2.2.3 Read Configuration . 875
31.2.2.4 Static Configuration . 875
31.2.2.5 Peripheral Configuration . 876

31.2.3 PCI Access . 876
31.2.3.1 Configuration space . 876
31.2.3.2 I/O space . 877
31.2.3.3 Registers over Memory space . 877
31.2.3.4 Access functions . 877
31.2.3.5 PCI address translation . 878

31.2.4 PCI Interrupt . 878
31.2.5 PCI Shell command . 879

32 Stack Bounds Checker 881
32.1 Introduction . 882
32.2 Background . 883

32.2.1 Task Stack . 883
32.2.2 Execution . 883

32.3 Operations . 884
32.3.1 Initializing the Stack Bounds Checker . 884
32.3.2 Checking for Blown Task Stack . 884
32.3.3 Reporting Task Stack Usage . 884
32.3.4 When a Task Overflows the Stack . 884

32.4 Routines . 885
32.4.1 STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack 885
32.4.2 STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage 885

33 CPU Usage Statistics 887

xxi

33.1 Introduction . 888
33.2 Background . 889
33.3 Operations . 890

33.3.1 Report CPU Usage Statistics . 890
33.3.2 Reset CPU Usage Statistics . 890

33.4 Directives . 891
33.4.1 cpu_usage_report - Report CPU Usage Statistics 892
33.4.2 cpu_usage_reset - Reset CPU Usage Statistics 893

34 Object Services 895
34.1 Introduction . 896
34.2 Background . 897

34.2.1 APIs . 897
34.2.2 Object Classes . 897
34.2.3 Object Names . 897

34.3 Operations . 898
34.3.1 Decomposing and Recomposing an Object Id 898
34.3.2 Printing an Object Id . 898

34.4 Directives . 900
34.4.1 rtems_build_id() . 901
34.4.2 rtems_build_name() . 902
34.4.3 rtems_object_get_classic_name() . 903
34.4.4 rtems_object_get_name() . 904
34.4.5 rtems_object_set_name() . 905
34.4.6 rtems_object_id_get_api() . 906
34.4.7 rtems_object_id_get_class() . 907
34.4.8 rtems_object_id_get_node() . 908
34.4.9 rtems_object_id_get_index() . 909
34.4.10 rtems_object_id_api_minimum() . 910
34.4.11 rtems_object_id_api_maximum() . 911
34.4.12 rtems_object_api_minimum_class() . 912
34.4.13 rtems_object_api_maximum_class() . 913
34.4.14 rtems_object_get_api_name() . 914
34.4.15 rtems_object_get_api_class_name() . 915
34.4.16 rtems_object_get_class_information() . 916
34.4.17 rtems_object_get_local_node() . 917
34.4.18 RTEMS_OBJECT_ID_INITIAL() . 918

35 Chains 919
35.1 Introduction . 920
35.2 Background . 921

35.2.1 Nodes . 921
35.2.2 Controls . 921

35.3 Operations . 922
35.3.1 Multi-threading . 922
35.3.2 Creating a Chain . 922
35.3.3 Iterating a Chain . 922

35.4 Directives . 924
35.4.1 Initialize Chain With Nodes . 925
35.4.2 Initialize Empty . 926
35.4.3 Is Null Node ? . 927
35.4.4 Head . 928

xxii

35.4.5 Tail . 929
35.4.6 Are Two Nodes Equal ? . 930
35.4.7 Is the Chain Empty . 931
35.4.8 Is this the First Node on the Chain ? . 932
35.4.9 Is this the Last Node on the Chain ? . 933
35.4.10 Does this Chain have only One Node ? 934
35.4.11 Returns the node count of the chain (unprotected) 935
35.4.12 Is this Node the Chain Head ? . 936
35.4.13 Is this Node the Chain Tail ? . 937
35.4.14 Extract a Node . 938
35.4.15 Extract a Node (unprotected) . 939
35.4.16 Get the First Node . 940
35.4.17 Get the First Node (unprotected) . 941
35.4.18 Insert a Node . 942
35.4.19 Insert a Node (unprotected) . 943
35.4.20 Append a Node . 944
35.4.21 Append a Node (unprotected) . 945
35.4.22 Prepend a Node . 946
35.4.23 Prepend a Node (unprotected) . 947

36 Red-Black Trees 949
36.1 Introduction . 950
36.2 Background . 951

36.2.1 Nodes . 951
36.2.2 Controls . 951

36.3 Operations . 952
36.4 Directives . 953

36.4.1 Documentation for the Red-Black Tree Directives 953

37 Timespec Helpers 955
37.1 Introduction . 956
37.2 Background . 957

37.2.1 Time Storage Conventions . 957
37.3 Operations . 958

37.3.1 Set and Obtain Timespec Value . 958
37.3.2 Timespec Math . 958
37.3.3 Comparing struct timespec Instances . 958
37.3.4 Conversions and Validity Check . 958

37.4 Directives . 959
37.4.1 TIMESPEC_SET - Set struct timespec Instance 960
37.4.2 TIMESPEC_ZERO - Zero struct timespec Instance 961
37.4.3 TIMESPEC_IS_VALID - Check validity of a struct timespec instance . . . 962
37.4.4 TIMESPEC_ADD_TO - Add Two struct timespec Instances 963
37.4.5 TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances 964
37.4.6 TIMESPEC_DIVIDE - Divide Two struct timespec Instances 965
37.4.7 TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by

an Integer . 966
37.4.8 TIMESPEC_LESS_THAN - Less than operator 967
37.4.9 TIMESPEC_GREATER_THAN - Greater than operator 968
37.4.10 TIMESPEC_EQUAL_TO - Check equality of timespecs 969
37.4.11 TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec In-

stance . 970

xxiii

37.4.12 TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the
struct timespec Instance . 971

37.4.13 TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks 972
37.4.14 TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representa-

tion . 973

38 Constant Bandwidth Server Scheduler API 975
38.1 Introduction . 976
38.2 Background . 977

38.2.1 Constant Bandwidth Server Definitions 977
38.2.2 Handling Periodic Tasks . 977
38.2.3 Registering a Callback Function . 977
38.2.4 Limitations . 978

38.3 Operations . 979
38.3.1 Setting up a server . 979
38.3.2 Attaching Task to a Server . 979
38.3.3 Detaching Task from a Server . 979
38.3.4 Examples . 979

38.4 Directives . 981
38.4.1 CBS_INITIALIZE - Initialize the CBS library 982
38.4.2 CBS_CLEANUP - Cleanup the CBS library 983
38.4.3 CBS_CREATE_SERVER - Create a new bandwidth server 984
38.4.4 CBS_ATTACH_THREAD - Attach a thread to server 985
38.4.5 CBS_DETACH_THREAD - Detach a thread from server 986
38.4.6 CBS_DESTROY_SERVER - Destroy a bandwidth server 987
38.4.7 CBS_GET_SERVER_ID - Get an ID of a server 988
38.4.8 CBS_GET_PARAMETERS - Get scheduling parameters of a server 989
38.4.9 CBS_SET_PARAMETERS - Set scheduling parameters 990
38.4.10 CBS_GET_EXECUTION_TIME - Get elapsed execution time 991
38.4.11 CBS_GET_REMAINING_BUDGET - Get remaining execution time 992
38.4.12 CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time 993

39 Ada Support 995
39.1 Introduction . 996
39.2 Ada Programming Language Support . 997
39.3 Classic API Ada Bindings . 998

40 Linker Sets 999
40.1 Introduction . 1000
40.2 Background . 1002
40.3 Directives . 1003

40.3.1 RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker 1004
40.3.2 RTEMS_LINKER_SET_END - Designator of the linker set end marker . . 1005
40.3.3 RTEMS_LINKER_SET_SIZE - The linker set size in characters 1006
40.3.4 RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count 1007
40.3.5 RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty? 1008
40.3.6 RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items . . 1009
40.3.7 RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set . . . 1010
40.3.8 RTEMS_LINKER_ROSET - Defines a read-only linker set 1011
40.3.9 RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker

set item . 1012

xxiv

40.3.10 RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE - Declares an or-
dered read-only linker set item . 1013

40.3.11 RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only
linker set item . 1014

40.3.12 RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item . . . 1015
40.3.13 RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-

only linker set item . 1016
40.3.14 RTEMS_LINKER_ROSET_CONTENT - Marks a declaration as a read-only

linker set content . 1017
40.3.15 RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set . . 1018
40.3.16 RTEMS_LINKER_RWSET - Defines a read-write linker set 1019
40.3.17 RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker

set item . 1020
40.3.18 RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE - Declares an or-

dered read-write linker set item . 1021
40.3.19 RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write

linker set item . 1022
40.3.20 RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item . . 1023
40.3.21 RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-

write linker set item . 1024
40.3.22 RTEMS_LINKER_RWSET_CONTENT - Marks a declaration as a read-

write linker set content . 1025

41 Directive Status Codes 1027
41.1 Introduction . 1028
41.2 Directives . 1029

41.2.1 STATUS_TEXT - Returns the enumeration name for a status code 1030

42 Example Application 1031

43 Glossary 1033

Bibliography 1053

Index 1057

xxv

xxvi

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

Copyrights and License

© 2017 Chris Johns
© 2017 Kuan-Hsun Chen
© 2015, 2020 embedded brains GmbH & Co. KG
© 2015, 2020 Sebastian Huber
© 2011 Petr Benes
© 2010 Gedare Bloom
© 1988, 2018 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://gitlab.rtems.org
Git Repositories https://gitlab.rtems.org
Developers https://gitlab.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

2 CONTENTS

CHAPTER

ONE

PREFACE

In recent years, the cost required to develop a software product has increased significantly while
the target hardware costs have decreased. Now a larger portion of money is expended in de-
veloping, using, and maintaining software. The trend in computing costs is the complete dom-
inance of software over hardware costs. Because of this, it is necessary that formal disciplines
be established to increase the probability that software is characterized by a high degree of cor-
rectness, maintainability, and portability. In addition, these disciplines must promote practices
that aid in the consistent and orderly development of a software system within schedule and
budgetary constraints. To be effective, these disciplines must adopt standards which channel
individual software efforts toward a common goal.

The push for standards in the software development field has been met with various degrees of
success. The Microprocessor Operating Systems Interfaces (MOSI) effort has experienced only
limited success. As popular as the UNIX operating system has grown, the attempt to develop a
standard interface definition to allow portable application development has only recently begun
to produce the results needed in this area. Unfortunately, very little effort has been expended
to provide standards addressing the needs of the real-time community. Several organizations
have addressed this need during recent years.

The Real Time Executive Interface Definition (RTEID) was developed by Motorola with tech-
nical input from Software Components Group [Mot88]. RTEID was adopted by the VMEbus
International Trade Association (VITA) as a baseline draft for their proposed standard multi-
processor, real-time executive interface, Open Real-Time Kernel Interface Definition (ORKID)
[VIT90]. These two groups worked together with the IEEE P1003.4 committee to ensure that
the functionality of their proposed standards is adopted as the real-time extensions to POSIX.

This proposed standard defines an interface for the development of real-time software to ease
the writing of real-time application programs that are directly portable across multiple real-time
executive implementations. This interface includes both the source code interfaces and run-
time behavior as seen by a real-time application. It does not include the details of how a kernel
implements these functions. The standard’s goal is to serve as a complete definition of external
interfaces so that application code that conforms to these interfaces will execute properly in
all real-time executive environments. With the use of a standards compliant executive, routines
that acquire memory blocks, create and manage message queues, establish and use semaphores,
and send and receive signals need not be redeveloped for a different real-time environment
as long as the new environment is compliant with the standard. Software developers need
only concentrate on the hardware dependencies of the real-time system. Furthermore, most
hardware dependencies for real-time applications can be localized to the device drivers.

A compliant executive provides simple and flexible real-time multiprocessing. It easily lends it-
self to both tightly-coupled and loosely-coupled configurations (depending on the system hard-

3

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 1 Section 1.0

ware configuration). Objects such as tasks, queues, events, signals, semaphores, and memory
blocks can be designated as global objects and accessed by any task regardless of which proces-
sor the object and the accessing task reside.

The acceptance of a standard for real-time executives will produce the same advantages en-
joyed from the push for UNIX standardization by AT&T’s System V Interface Definition and
IEEE’s POSIX efforts. A compliant multiprocessing executive will allow close coupling between
UNIX systems and real-time executives to provide the many benefits of the UNIX development
environment to be applied to real-time software development. Together they provide the nec-
essary laboratory environment to implement real-time, distributed, embedded systems using a
wide variety of computer architectures.

A study was completed in 1988, within the Research, Development, and Engineering Center,
U.S. Army Missile Command, which compared the various aspects of the Ada programming
language as they related to the application of Ada code in distributed and/or multiple processing
systems. Several critical conclusions were derived from the study. These conclusions have a
major impact on the way the Army develops application software for embedded applications.
These impacts apply to both in-house software development and contractor developed software.

A conclusion of the analysis, which has been previously recognized by other agencies attempting
to utilize Ada in a distributed or multiprocessing environment, is that the Ada programming
language does not adequately support multiprocessing. Ada does provide a mechanism for
multi-tasking, however, this capability exists only for a single processor system. The language
also does not have inherent capabilities to access global named variables, flags or program code.
These critical features are essential in order for data to be shared between processors. However,
these drawbacks do have workarounds which are sometimes awkward and defeat the intent of
software maintainability and portability goals.

Another conclusion drawn from the analysis, was that the run time executives being delivered
with the Ada compilers were too slow and inefficient to be used in modern missile systems. A
run time executive is the core part of the run time system code, or operating system code, that
controls task scheduling, input/output management and memory management. Traditionally,
whenever efficient executive (also known as kernel) code was required by the application, the
user developed in-house software. This software was usually written in assembly language for
optimization.

Because of this shortcoming in the Ada programming language, software developers in research
and development and contractors for project managed systems, are mandated by technology to
purchase and utilize off-the-shelf third party kernel code. The contractor, and eventually the
Government, must pay a licensing fee for every copy of the kernel code used in an embedded
system.

The main drawback to this development environment is that the Government does not own,
nor has the right to modify code contained within the kernel. V&V techniques in this situation
are more difficult than if the complete source code were available. Responsibility for system
failures due to faulty software is yet another area to be resolved under this environment.

The Guidance and Control Directorate began a software development effort to address these
problems. A project to develop an experimental run time kernel was begun that will eliminate
the major drawbacks of the Ada programming language mentioned above. The Real Time
Executive for Multiprocessor Systems (RTEMS) provides full capabilities for management of
tasks, interrupts, time, and multiple processors in addition to those features typical of generic
operating systems. The code is Government owned, so no licensing fees are necessary. RTEMS
has been implemented in both the Ada and C programming languages. It has been ported to
the following processor families:

4 Chapter 1. Preface

Chapter 1 Section 1.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• Adapteva Epiphany

• Altera NIOS II

• Analog Devices Blackfin

• Atmel AVR

• ARM

• Freescale (formerly Motorola) MC68xxx

• Freescale (formerly Motorola) MC683xx

• Freescale (formerly Motorola) ColdFire

• Intel i386 and above

• Lattice Semiconductor LM32

• NEC V850

• MIPS

• Moxie Processor

• OpenRISC

• PowerPC

• Renesas (formerly Hitachi) SuperH

• Renesas (formerly Hitachi) H8/300

• Renesas M32C

• SPARC v7, v8, and V9

Since almost all of RTEMS is written in a high level language, ports to additional processor
families require minimal effort.

RTEMS multiprocessor support is capable of handling either homogeneous or heterogeneous
systems. The kernel automatically compensates for architectural differences (byte swapping,
etc.) between processors. This allows a much easier transition from one processor family to
another without a major system redesign.

Since the proposed standards are still in draft form, RTEMS cannot and does not claim com-
pliance. However, the status of the standard is being carefully monitored to guarantee that
RTEMS provides the functionality specified in the standard. Once approved, RTEMS will be
made compliant.

This document is a detailed users guide for a functionally compliant real-time multiprocessor
executive. It describes the user interface and run-time behavior of Release 4.10.99.0 of the C
interface to RTEMS.

5

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 1 Section 1.0

6 Chapter 1. Preface

CHAPTER

TWO

OVERVIEW

7

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.1

2.1 Introduction

RTEMS, Real-Time Executive for Multiprocessor Systems, is a real-time executive (kernel) which
provides a high performance environment for embedded military applications including the
following features:

• multitasking capabilities

• homogeneous and heterogeneous multiprocessor systems

• event-driven, priority-based, preemptive scheduling

• optional rate monotonic scheduling

• intertask communication and synchronization

• priority inheritance

• responsive interrupt management

• dynamic memory allocation

• high level of user configurability

This manual describes the usage of RTEMS for applications written in the C programming lan-
guage. Those implementation details that are processor dependent are provided in the Appli-
cations Supplement documents. A supplement document which addresses specific architectural
issues that affect RTEMS is provided for each processor type that is supported.

8 Chapter 2. Overview

Chapter 2 Section 2.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

2.2 Real-time Application Systems

Real-time application systems are a special class of computer applications. They have a complex
set of characteristics that distinguish them from other software problems. Generally, they must
adhere to more rigorous requirements. The correctness of the system depends not only on the
results of computations, but also on the time at which the results are produced. The most
important and complex characteristic of real-time application systems is that they must receive
and respond to a set of external stimuli within rigid and critical time constraints referred to as
deadlines. Systems can be buried by an avalanche of interdependent, asynchronous or cyclical
event streams.

Deadlines can be further characterized as either hard or soft based upon the value of the results
when produced after the deadline has passed. A deadline is hard if the results have no value
or if their use will result in a catastrophic event. In contrast, results which are produced after a
soft deadline may have some value.

Another distinguishing requirement of real-time application systems is the ability to coordinate
or manage a large number of concurrent activities. Since software is a synchronous entity,
this presents special problems. One instruction follows another in a repeating synchronous
cycle. Even though mechanisms have been developed to allow for the processing of external
asynchronous events, the software design efforts required to process and manage these events
and tasks are growing more complicated.

The design process is complicated further by spreading this activity over a set of processors
instead of a single processor. The challenges associated with designing and building real-time
application systems become very complex when multiple processors are involved. New require-
ments such as interprocessor communication channels and global resources that must be shared
between competing processors are introduced. The ramifications of multiple processors compli-
cate each and every characteristic of a real-time system.

2.2. Real-time Application Systems 9

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.3

2.3 Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a cornerstone on which
to build the application system. A real-time multitasking executive allows an application to
be cast into a set of logical, autonomous processes or tasks which become quite manageable.
Each task is internally synchronous, but different tasks execute independently, resulting in an
asynchronous processing stream. Tasks can be dynamically paused for many reasons resulting
in a different task being allowed to execute for a period of time. The executive also provides
an interface to other system components such as interrupt handlers and device drivers. System
components may request the executive to allocate and coordinate resources, and to wait for
and trigger synchronizing conditions. The executive system calls effectively extend the CPU
instruction set to support efficient multitasking. By causing tasks to travel through well-defined
state transitions, system calls permit an application to demand-switch between tasks in response
to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now asynchronously
switch between independent streams of execution, directly responding to external stimuli as
they occur. This allows the system design to meet critical performance specifications which are
typically measured by guaranteed response time and transaction throughput. The multipro-
cessor extensions of RTEMS provide the features necessary to manage the extra requirements
introduced by a system distributed across several processors. It removes the physical barriers
of processor boundaries from the world of the system designer, enabling more critical aspects
of the system to receive the required attention. Such a system, based on an efficient real-time,
multiprocessor executive, is a more realistic model of the outside world or environment for
which it is designed. As a result, the system will always be more logical, efficient, and reliable.

By using the directives provided by RTEMS, the real-time applications developer is freed from
the problem of controlling and synchronizing multiple tasks and processors. In addition, one
need not develop, test, debug, and document routines to manage memory, pass messages, or
provide mutual exclusion. The developer is then able to concentrate solely on the application.
By using standard software components, the time and cost required to develop sophisticated
real-time applications is significantly reduced.

10 Chapter 2. Overview

Chapter 2 Section 2.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

2.4 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two critical layers of
typical real-time systems. As shown in the following figure, RTEMS serves as a buffer between
the project dependent application code and the target hardware. Most hardware dependencies
for real-time applications can be localized to the low level device drivers.

The RTEMS I/O interface manager provides an efficient tool for incorporating these hardware
dependencies into the system while simultaneously providing a general mechanism to the appli-
cation code that accesses them. A well designed real-time system can benefit from this architec-
ture by building a rich library of standard application components which can be used repeatedly
in other real-time projects.

2.4. RTEMS Application Architecture 11

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.5

2.5 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered components that work in harmony to provide a set of
services to a real-time application system. The executive interface presented to the application is
formed by grouping directives into logical sets called resource managers. Functions utilized by
multiple managers such as scheduling, dispatching, and object management are provided in the
executive core. The executive core depends on a small set of CPU dependent routines. Together
these components provide a powerful run time environment that promotes the development of
efficient real-time application systems. The following figure illustrates this organization:

Subsequent chapters present a detailed description of the capabilities provided by each of the
following RTEMS managers:

• initialization

• task

• interrupt

• clock

• timer

• semaphore

• message

• event

• signal

• partition

• region

• dual ported memory

• I/O

• fatal error

• rate monotonic

• user extensions

12 Chapter 2. Overview

Chapter 2 Section 2.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• multiprocessing

2.5. RTEMS Internal Architecture 13

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.6

2.6 User Customization and Extensibility

As thirty-two bit microprocessors have decreased in cost, they have become increasingly com-
mon in a variety of embedded systems. A wide range of custom and general-purpose processor
boards are based on various thirty-two bit processors. RTEMS was designed to make no as-
sumptions concerning the characteristics of individual microprocessor families or of specific
support hardware. In addition, RTEMS allows the system developer a high degree of freedom
in customizing and extending its features.

RTEMS assumes the existence of a supported microprocessor and sufficient memory for both
RTEMS and the real-time application. Board dependent components such as clocks, interrupt
controllers, or I/O devices can be easily integrated with RTEMS. The customization and exten-
sibility features allow RTEMS to efficiently support as many environments as possible.

14 Chapter 2. Overview

Chapter 2 Section 2.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

2.7 Portability

The issue of portability was the major factor in the creation of RTEMS. Since RTEMS is designed
to isolate the hardware dependencies in the specific board support packages, the real-time appli-
cation should be easily ported to any other processor. The use of RTEMS allows the development
of real-time applications which can be completely independent of a particular microprocessor
architecture.

2.7. Portability 15

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.8

2.8 Memory Requirements

Since memory is a critical resource in many real-time embedded systems, RTEMS was specif-
ically designed to automatically leave out all services that are not required from the run-time
environment. Features such as networking, various fileystems, and many other features are
completely optional. This allows the application designer the flexibility to tailor RTEMS to
most efficiently meet system requirements while still satisfying even the most stringent memory
constraints. As a result, the size of the RTEMS executive is application dependent.

RTEMS requires RAM to manage each instance of an RTEMS object that is created. Thus the
more RTEMS objects an application needs, the more memory that must be reserved. See Con-
figuring a System (page 555).

RTEMS utilizes memory for both code and data space. Although RTEMS’ data space must be in
RAM, its code space can be located in either ROM or RAM.

16 Chapter 2. Overview

Chapter 2 Section 2.9 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

2.9 Audience

This manual was written for experienced real-time software developers. Although some back-
ground is provided, it is assumed that the reader is familiar with the concepts of task manage-
ment as well as intertask communication and synchronization. Since directives, user related
data structures, and examples are presented in C, a basic understanding of the C programming
language is required to fully understand the material presented. However, because of the simi-
larity of the Ada and C RTEMS implementations, users will find that the use and behavior of the
two implementations is very similar. A working knowledge of the target processor is helpful in
understanding some of RTEMS’ features. A thorough understanding of the executive cannot be
obtained without studying the entire manual because many of RTEMS’ concepts and features
are interrelated. Experienced RTEMS users will find that the manual organization facilitates its
use as a reference document.

2.9. Audience 17

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.10

2.10 Conventions

The following conventions are used in this manual:

• Significant words or phrases as well as all directive names are printed in bold type.

• Items in bold capital letters are constants defined by RTEMS. Each language interface
provided by RTEMS includes a file containing the standard set of constants, data types,
and structure definitions which can be incorporated into the user application.

• A number of type definitions are provided by RTEMS and can be found in rtems.h.

• The characters “0x” preceding a number indicates that the number is in hexadecimal
format. Any other numbers are assumed to be in decimal format.

18 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

2.11 Manual Organization

This first chapter has presented the introductory and background material for the RTEMS exec-
utive. The remaining chapters of this manual present a detailed description of RTEMS and the
environment, including run time behavior, it creates for the user.

A chapter is dedicated to each manager and provides a detailed discussion of each RTEMS man-
ager and the directives which it provides. The presentation format for each directive includes
the following sections:

• Calling sequence

• Directive status codes

• Description

• Notes

The following provides an overview of the remainder of this manual:

Chapter 3:
Key Concepts: presents an introduction to the ideas which are common across multiple
RTEMS managers.

Chapter 4:
RTEMS Data Types: describes the fundamental data types shared by the services in the RTEMS
Classic API.

Chapter 5:
Scheduling Concepts: details the various RTEMS scheduling algorithms and task state transi-
tions.

Chapter 6:
Initialization Manager: describes the functionality and directives provided by the Initializa-
tion Manager.

Chapter 7:
Task Manager: describes the functionality and directives provided by the Task Manager.

Chapter 8:
Interrupt Manager: describes the functionality and directives provided by the Interrupt Man-
ager.

Chapter 9:
Clock Manager: describes the functionality and directives provided by the Clock Manager.

Chapter 10:
Timer Manager: describes the functionality and directives provided by the Timer Manager.

Chapter 11:
Rate Monotonic Manager: describes the functionality and directives provided by the Rate
Monotonic Manager.

Chapter 12:
Semaphore Manager: describes the functionality and directives provided by the Semaphore
Manager.

Chapter 13:
Barrier Manager: describes the functionality and directives provided by the Barrier Manager.

2.11. Manual Organization 19

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.11

Chapter 14:
Message Manager: describes the functionality and directives provided by the Message Man-
ager.

Chapter 15:
Event Manager: describes the functionality and directives provided by the Event Manager.

Chapter 16:
Signal Manager: describes the functionality and directives provided by the Signal Manager.

Chapter 17:
Partition Manager: describes the functionality and directives provided by the Partition Man-
ager.

Chapter 18:
Region Manager: describes the functionality and directives provided by the Region Manager.

Chapter 19:
Dual-Ported Memory Manager: describes the functionality and directives provided by the
Dual-Ported Memory Manager.

Chapter 20:
I/O Manager: describes the functionality and directives provided by the I/O Manager.

Chapter 21:
Fatal Error Manager: describes the functionality and directives provided by the Fatal Error
Manager.

Chapter 22:
Board Support Packages: defines the functionality required of user-supplied board support
packages.

Chapter 23:
User Extensions: shows the user how to extend RTEMS to incorporate custom features.

Chapter 24:
Configuring a System: details the process by which one tailors RTEMS for a particular single-
processor or multiprocessor application.

Chapter 25:
Self-Contained Objects: contains information about objects like threads, mutexes and
semaphores.

Chapter 26:
Multiprocessing Manager: presents a conceptual overview of the multiprocessing capabilities
provided by RTEMS as well as describing the Multiprocessing Communications Interface Layer
and Multiprocessing Manager directives.

Chapter 27:
Symmetric Multiprocessing (SMP): information regarding the SMP features.

Chapter 28:
PCI Library: information about using the PCI bus in RTEMS.

Chapter 29:
Stack Bounds Checker: presents the capabilities of the RTEMS task stack checker which can
report stack usage as well as detect bounds violations.

20 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

Chapter 30:
CPU Usage Statistics: presents the capabilities of the CPU Usage statistics gathered on a per
task basis along with the mechanisms for reporting and resetting the statistics.

Chapter 31:
Object Services: presents a collection of helper services useful when manipulating RTEMS
objects. These include methods to assist in obtaining an object’s name in printable form.
Additional services are provided to decompose an object Id and determine which API and
object class it belongs to.

Chapter 32:
Chains: presents the methods provided to build, iterate and manipulate doubly-linked chains.
This manager makes the chain implementation used internally by RTEMS to user space appli-
cations.

Chapter 33:
Red-Black Trees: information about how to use the Red-Black Tree API.

Chapter 34:
Timespec Helpers: presents a set of helper services useful when manipulating POSIX struct
timespec instances.

Chapter 35:
Constant Bandwidth Server Scheduler API.

Chapter 36:
Ada Support: information about Ada programming language support.

Chapter 37:
Directive Status Codes: provides a definition of each of the directive status codes referenced
in this manual.

Chapter 38:
Linker Sets: information about linker set features.

Chapter 39:
Example Application: provides a template for simple RTEMS applications.

Chapter 40:
Glossary: defines terms used throughout this manual.

Chapter 41:
References: References.

Chapter 42:
Index: Index.

2.11. Manual Organization 21

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 2 Section 2.11

22 Chapter 2. Overview

CHAPTER

THREE

KEY CONCEPTS

23

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 3 Section 3.1

3.1 Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful concepts. These
concepts must be understood before the application developer can efficiently utilize RTEMS.
The purpose of this chapter is to familiarize one with these concepts.

24 Chapter 3. Key Concepts

Chapter 3 Section 3.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

3.2 Objects

RTEMS provides directives which can be used to dynamically create, delete, and manipulate a
set of predefined object types. These types include tasks, message queues, semaphores, memory
regions, memory partitions, timers, ports, and rate monotonic periods. The object-oriented
nature of RTEMS encourages the creation of modular applications built upon re-usable “building
block” routines.

All objects are created on the local node as required by the application and have an RTEMS
assigned ID. All objects have a user-assigned name. Although a relationship exists between an
object’s name and its RTEMS assigned ID, the name and ID are not identical. Object names are
completely arbitrary and selected by the user as a meaningful “tag” which may commonly reflect
the object’s use in the application. Conversely, object IDs are designed to facilitate efficient
object manipulation by the executive.

3.2.1 Object Names

An object name is an unsigned thirty-two bit entity associated with the object by the user. The
data type rtems_name is used to store object names.

Although not required by RTEMS, object names are often composed of four ASCII characters
which help identify that object. For example, a task which causes a light to blink might be
called “LITE”. The rtems_build_name routine is provided to build an object name from four
ASCII characters. The following example illustrates this:

1 rtems_name my_name;
2 my_name = rtems_build_name('L', 'I', 'T', 'E');

However, it is not required that the application use ASCII characters to build object names. For
example, if an application requires one-hundred tasks, it would be difficult to assign meaningful
ASCII names to each task. A more convenient approach would be to name them the binary
values one through one-hundred, respectively.

RTEMS provides a helper routine, rtems_object_get_name, which can be used to obtain the
name of any RTEMS object using just its ID. This routine attempts to convert the name into a
printable string.

The following example illustrates the use of this method to print an object name:

1 #include <rtems.h>
2 #include <rtems/bspIo.h>
3 void print_name(rtems_id id)
4 {
5 char buffer[10]; /* name assumed to be 10 characters or less */
6 char *result;
7 result = rtems_object_get_name(id, sizeof(buffer), buffer);
8 printk("ID=0x%08x name=%s\n", id, ((result) ? result : "no name"));
9 }

3.2. Objects 25

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 3 Section 3.2

3.2.2 Object Ids

an object id is a unique 32-bit unsigned integer value which uniquely identifies an object in-
stance. object ids are passed as arguments to many directives in rtems and rtems translates
the id to an internal object pointer. the efficient manipulation of object ids is critical to the
performance of some rtems services.

There are multiple directives with names of the form rtems_@CLASS@_ident that take a name as
argument and return the associated id if the name is found. The following is the set of name to
id services: which can look up an object

• rtems_extension_ident()

• rtems_barrier_ident()

• rtems_port_ident()

• rtems_message_queue_ident()

• rtems_partition_ident()

• rtems_region_ident()

• rtems_semaphore_ident()

• rtems_task_ident()

• rtems_timer_ident()

3.2.3 Local and Global Scope

RTEMS supports uniprocessing, distributed multiprocessing, and Symmetric Multiprocessing
(SMP) configurations. A uniprocessor system includes only a single processor in a single node.
Distributed multiprocessor systems include multiple nodes, each of which is a single processor
and is usually referred to as just multiprocessor mode for historical reasons. SMP systems
consist of multiple processors cores in a single node.

In distributed multiprocessing configurations, there are multiple nodes in the system and object
instances may be visible on just the creating node or to all nodes. If visible only to the creating
node, this is referred to as local scope and corresponds to the RTEMS_LOCAL attribute setting
which is the default. If RTEMS GLOBAL is specified as part of the object attributes, then the
object instance has global scope and the object id can be used anywhere in the system to
identify that object instance.

In uniprocessing and SMP configurations, there is only one node in the system and object in-
stances are locally scoped to that node. Any attempt to create with the RTEMS_GLOBAL at-
tribute is an error.

3.2.3.1 Object ID Format

The thirty-two bit format for an object ID is composed of four parts: API, object class, node, and
index. The data type rtems_id is used to store object IDs.

1 31 27 26 24 23 16 15 0
2 +---------+-------+--------------+-------------------------------+
3 | | | | |
4 | Class | API | Node | Index |

(continues on next page)

26 Chapter 3. Key Concepts

Chapter 3 Section 3.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

5 | | | | |
6 +---------+-------+--------------+-------------------------------+

The most significant five bits are the object class. The next three bits indicate the API to which
the object class belongs. The next eight bits (16-23) are the number of the node on which this
object was created. The node number is always one (1) in a single processor system. The least
significant sixteen bits form an identifier within a particular object type. This identifier, called
the object index, ranges in value from 1 to the maximum number of objects configured for this
object type.

None of the fields in an object id may be zero except for the special case of RTEMS_SELF to
indicate the currently running thread.

3.2.4 Object ID Description

The components of an object ID make it possible to quickly locate any object in even the most
complicated multiprocessor system. Object ID’s are associated with an object by RTEMS when
the object is created and the corresponding ID is returned by the appropriate object create
directive. The object ID is required as input to all directives involving objects, except those
which create an object or obtain the ID of an object.

The object identification directives can be used to dynamically obtain a particular object’s ID
given its name. This mapping is accomplished by searching the name table associated with
this object type. If the name is non-unique, then the ID associated with the first occurrence of
the name will be returned to the application. Since object IDs are returned when the object
is created, the object identification directives are not necessary in a properly designed single
processor application.

In addition, services are provided to portably examine the subcomponents of an RTEMS ID.
These services are described in detail later in this manual but are prototyped as follows:

1 Objects_APIs rtems_object_id_get_api(rtems_id);
2 uint32_t rtems_object_id_get_class(rtems_id);
3 uint32_t rtems_object_id_get_node(rtems_id);
4 uint16_t rtems_object_id_get_index(rtems_id);

An object control block is a data structure defined by RTEMS which contains the information
necessary to manage a particular object type. For efficiency reasons, the format of each object
type’s control block is different. However, many of the fields are similar in function. The number
of each type of control block is application dependent and determined by the values specified
in the user’s Configuration Table. An object control block is allocated at object create time and
freed when the object is deleted. With the exception of user extension routines, object control
blocks are not directly manipulated by user applications.

3.2. Objects 27

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 3 Section 3.3

3.3 Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution threads to commu-
nicate and synchronize with each other is imperative. A real-time executive should provide an
application with the following capabilities:

• Data transfer between cooperating tasks

• Data transfer between tasks and ISRs

• Synchronization of cooperating tasks

• Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication and/or synchro-
nization. However, managers dedicated specifically to communication and synchronization pro-
vide well established mechanisms which directly map to the application’s varying needs. This
level of flexibility allows the application designer to match the features of a particular manager
with the complexity of communication and synchronization required. The following managers
were specifically designed for communication and synchronization:

• Semaphore

• Message Queue

• Event

• Signal

The semaphore manager supports mutual exclusion involving the synchronization of access
to one or more shared user resources. Binary semaphores may utilize the optional priority
inheritance algorithm to avoid the problem of priority inversion. The message manager sup-
ports both communication and synchronization, while the event manager primarily provides a
high performance synchronization mechanism. The signal manager supports only asynchronous
communication and is typically used for exception handling.

28 Chapter 3. Key Concepts

Chapter 3 Section 3.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

3.4 Locking Protocols

RTEMS supports the four locking protocols

• Immediate Ceiling Priority Protocol (ICPP) (page 29),

• Priority Inheritance Protocol (page 29),

• Multiprocessor Resource Sharing Protocol (MrsP) (page 30), and

• O(m) Independence-Preserving Protocol (OMIP) (page 30)

for synchronization objects providing mutual-exclusion (mutex). The OMIP is only available in
SMP configurations and replaces the priority inheritance protocol in this case. One aim of the
locking protocols is to avoid priority inversion.

Since RTEMS 5.1, priority updates due to the locking protocols take place immediately and are
propagated recursively. The mutex owner and wait for mutex relationships define a directed
acyclic graph (DAG). The run-time of the mutex obtain, release and timeout operations depend
on the complexity of this resource dependency graph.

3.4.1 Priority Inversion

Priority inversion is a form of indefinite postponement which is common in multitasking, pre-
emptive executives with shared resources. Priority inversion occurs when a high priority tasks
requests access to shared resource which is currently allocated to a low priority task. The high
priority task must block until the low priority task releases the resource. This problem is exacer-
bated when the low priority task is prevented from executing by one or more medium priority
tasks. Because the low priority task is not executing, it cannot complete its interaction with
the resource and release that resource. The high priority task is effectively prevented from
executing by lower priority tasks.

3.4.2 Immediate Ceiling Priority Protocol (ICPP)

Each mutex using the Immediate Ceiling Priority Protocol (ICPP) has a ceiling priority. The
priority of the mutex owner is immediately raised to the ceiling priority of the mutex. In case
the thread owning the mutex releases the mutex, then the normal priority of the thread is
restored. This locking protocol is beneficial for schedulability analysis, see also [BW01].

This protocol avoids the possibility of changing the priority of the mutex owner multiple times
since the ceiling priority must be set to the one of highest priority thread which will ever attempt
to acquire that mutex. This requires an overall knowledge of the application as a whole. The
need to identify the highest priority thread which will attempt to obtain a particular mutex
can be a difficult task in a large, complicated system. Although the priority ceiling protocol is
more efficient than the priority inheritance protocol with respect to the maximum number of
thread priority changes which may occur while a thread owns a particular mutex, the priority
inheritance protocol is more forgiving in that it does not require this apriori information.

3.4.3 Priority Inheritance Protocol

The priority of the mutex owner is raised to the highest priority of all threads that currently wait
for ownership of this mutex [SRL90]. Since RTEMS 5.1, priority updates due to the priority
inheritance protocol take place immediately and are propagated recursively. This means the
priority inheritance is transitive since RTEMS 5.1. If a task A owning a priority inheritance
mutex blocks on another priority inheritance mutex, then the owner of this mutex inherits the
priority of the task A.

3.4. Locking Protocols 29

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 3 Section 3.4

3.4.4 Multiprocessor Resource Sharing Protocol (MrsP)

The Multiprocessor Resource Sharing Protocol (MrsP) is a generalization of the priority ceiling
protocol to clustered scheduling [BW13]. One of the design goals of MrsP is to enable an
effective schedulability analysis using the sporadic task model. Each mutex using the MrsP has
a ceiling priority for each scheduler instance. The priority of the mutex owner is immediately
raised to the ceiling priority of the mutex defined for its home scheduler instance. In case the
thread owning the mutex releases the mutex, then the normal priority of the thread is restored.
Threads that wait for mutex ownership are not blocked with respect to the scheduler and instead
perform a busy wait. The MrsP uses temporary thread migrations to foreign scheduler instances
in case of a preemption of the mutex owner. This locking protocol is available since RTEMS
4.11. It was re-implemented in RTEMS 5.1 to overcome some shortcomings of the original
implementation [CBHM15].

3.4.5 O(m) Independence-Preserving Protocol (OMIP)

The 𝑂(𝑚) Independence-Preserving Protocol (OMIP) is a generalization of the priority inheri-
tance protocol to clustered scheduling which avoids the non-preemptive sections present with
priority boosting [Bra13]. The 𝑚 denotes the number of processors in the system. Similar to the
uniprocessor priority inheritance protocol, the OMIP mutexes do not need any external config-
uration data, e.g. a ceiling priority. This makes them a good choice for general purpose libraries
that need internal locking. The complex part of the implementation is contained in the thread
queues and shared with the MrsP support. This locking protocol is available since RTEMS 5.1.

30 Chapter 3. Key Concepts

Chapter 3 Section 3.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

3.5 Thread Queues

In case more than one thread may wait on a synchronization object, e.g. a semaphore or a
message queue, then the waiting threads are added to a data structure called the thread queue.
Thread queues are named task wait queues in the Classic API. There are two thread queuing
disciplines available which define the order of the threads on a particular thread queue. Threads
can wait in FIFO or priority order.

In uniprocessor configurations, the priority queuing discipline just orders the threads according
to their current priority and in FIFO order in case of equal priorities. However, in SMP configu-
rations, the situation is a bit more difficult due to the support for clustered scheduling. It makes
no sense to compare the priority values of two different scheduler instances. Thus, it is impossi-
ble to simply use one plain priority queue for threads of different clusters. Two levels of queues
can be used as one way to solve the problem. The top-level queue provides FIFO ordering
and contains priority queues. Each priority queue is associated with a scheduler instance and
contains only threads of this scheduler instance. Threads are enqueued in the priority queues
corresponding to their scheduler instances. To dequeue a thread, the highest priority thread of
the first priority queue is selected. Once this is done, the first priority queue is appended to the
top-level FIFO queue. This guarantees fairness with respect to the scheduler instances.

Such a two-level queue needs a considerable amount of memory if fast enqueue and dequeue
operations are desired. Providing this storage per thread queue would waste a lot of memory
in typical applications. Instead, each thread has a queue attached which resides in a dedicated
memory space independent of other memory used for the thread (this approach was borrowed
from FreeBSD). In case a thread needs to block, there are two options

• the object already has a queue, then the thread enqueues itself to this already present
queue and the queue of the thread is added to a list of free queues for this object, or

• otherwise, the queue of the thread is given to the object and the thread enqueues itself to
this queue.

In case the thread is dequeued, there are two options

• the thread is the last thread in the queue, then it removes this queue from the object and
reclaims it for its own purpose, or

• otherwise, the thread removes one queue from the free list of the object and reclaims it
for its own purpose.

Since there are usually more objects than threads, this actually reduces the memory demands.
In addition the objects only contain a pointer to the queue structure. This helps to hide imple-
mentation details. Inter-cluster priority queues are available since RTEMS 5.1.

A doubly-linked list (chain) is used to implement the FIFO queues yielding a 𝑂(1) worst-case
time complexity for enqueue and dequeue operations.

A red-black tree is used to implement the priority queues yielding a 𝑂(𝑙𝑜𝑔(𝑛)) worst-case time
complexity for enqueue and dequeue operations with 𝑛 being the count of threads already on
the queue.

3.5. Thread Queues 31

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 3 Section 3.6

3.6 Time

The development of responsive real-time applications requires an understanding of how RTEMS
maintains and supports time-related operations. The basic unit of time in RTEMS is known as
a clock tick or simply tick. The tick interval is defined by the application configuration option
CONFIGURE_MICROSECONDS_PER_TICK (page 583). The tick interval defines the basic reso-
lution of all interval and calendar time operations. Obviously, the directives which use intervals
or wall time cannot operate without some external mechanism which provides a periodic clock
tick. This clock tick is provided by the clock driver. The tick precision and stability depends on
the clock driver and interrupt latency. Most clock drivers provide a timecounter to measure the
time with a higher resolution than the tick.

By tracking time in units of ticks, RTEMS is capable of supporting interval timing functions such
as task delays, timeouts, timeslicing, the delayed execution of timer service routines, and the
rate monotonic scheduling of tasks. An interval is defined as a number of ticks relative to the
current time. For example, when a task delays for an interval of ten ticks, it is implied that the
task will not execute until ten clock ticks have occurred. All intervals are specified using data
type rtems_interval.

A characteristic of interval timing is that the actual interval period may be a fraction of a tick
less than the interval requested. This occurs because the time at which the delay timer is set up
occurs at some time between two clock ticks. Therefore, the first countdown tick occurs in less
than the complete time interval for a tick. This can be a problem if the tick resolution is large.

The rate monotonic scheduling algorithm is a hard real-time scheduling methodology. This
methodology provides rules which allows one to guarantee that a set of independent peri-
odic tasks will always meet their deadlines even under transient overload conditions. The rate
monotonic manager provides directives built upon the Clock Manager’s interval timer support
routines.

Interval timing is not sufficient for the many applications which require that time be kept in
wall time or true calendar form. Consequently, RTEMS maintains the current date and time.
This allows selected time operations to be scheduled at an actual calendar date and time. For
example, a task could request to delay until midnight on New Year’s Eve before lowering the ball
at Times Square. The data type rtems_time_of_day is used to specify calendar time in RTEMS
services. See Time and Date Data Structures (page 238).

32 Chapter 3. Key Concepts

Chapter 3 Section 3.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

3.7 Timer and Timeouts

Timer and timeout services are a standard component of an operating system. The use cases
fall roughly into two categories:

• Timeouts – used to detect if some operations need more time than expected. Since the
unexpected happens hopefully rarely, timeout timers are usually removed before they
expire. The critical operations are insert and removal. For example, they are important
for the performance of a network stack.

• Timers – used to carry out some work in the future. They usually expire and need a high
resolution. An example use case is a time driven scheduler, e.g. rate-monotonic or EDF.

In RTEMS versions prior to 5.1 the timer and timeout support was implemented by means of
delta chains. This implementation was unfit for SMP systems due to several reasons. The new
implementation present since RTEMS 5.1 uses a red-black tree with the expiration time as the
key. This leads to 𝑂(𝑙𝑜𝑔(𝑛)) worst-case insert and removal operations for 𝑛 active timer or
timeouts. Each processor provides its own timer and timeout service point so that it scales well
with the processor count of the system. For each operation it is sufficient to acquire and release
a dedicated SMP lock only once. The drawback is that a 64-bit integer type is required internally
for the intervals to avoid a potential overflow of the key values.

An alternative to the red-black tree based implementation would be the use of a timer wheel
based algorithm [VL87] which is used in Linux and FreeBSD [VC95] for example. A timer wheel
based algorithm offers 𝑂(1) worst-case time complexity for insert and removal operations. The
drawback is that the run-time of the clock tick procedure is unpredictable due to the use of a
hash table or cascading.

The red-black tree approach was selected for RTEMS, since it offers a more predictable run-time
behaviour. However, this sacrifices the constant insert and removal operations offered by the
timer wheel algorithms. See also [GN06]. The implementation can re-use the red-black tree
support already used in other areas, e.g. for the thread priority queues. Less code is a good
thing for size, testing and verification.

3.7. Timer and Timeouts 33

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 3 Section 3.8

3.8 Memory Management

RTEMS memory management facilities can be grouped into two classes: dynamic memory allo-
cation and address translation. Dynamic memory allocation is required by applications whose
memory requirements vary through the application’s course of execution. Address translation is
needed by applications which share memory with another CPU or an intelligent Input/Output
processor. The following RTEMS managers provide facilities to manage memory:

• Region

• Partition

• Dual Ported Memory

RTEMS memory management features allow an application to create simple memory pools of
fixed size buffers and/or more complex memory pools of variable size segments. The partition
manager provides directives to manage and maintain pools of fixed size entities such as resource
control blocks. Alternatively, the region manager provides a more general purpose memory
allocation scheme that supports variable size blocks of memory which are dynamically obtained
and freed by the application. The dual-ported memory manager provides executive support for
address translation between internal and external dual-ported RAM address space.

34 Chapter 3. Key Concepts

CHAPTER

FOUR

RTEMS DATA TYPES

35

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.1

4.1 Introduction

This chapter contains a complete list of the RTEMS primitive data types in alphabetical order.
This is intended to be an overview and the user is encouraged to look at the appropriate chapters
in the manual for more information about the usage of the various data types.

36 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

4.2 List of Data Types

The following is a complete list of the RTEMS primitive data types in alphabetical order:

4.2.1 BSP_output_char_function_type

Polled character output functions shall have this type.

4.2.2 BSP_polling_getchar_function_type

Polled character input functions shall have this type.

4.2.3 Timer_Classes

The timer class indicates how the timer was most recently fired.

ENUMERATORS:

TIMER_DORMANT
This timer class indicates that the timer was never in use.

TIMER_INTERVAL
This timer class indicates that the timer is currently in use as an interval timer which will fire
in the context of the clock tick ISR.

TIMER_INTERVAL_ON_TASK
This timer class indicates that the timer is currently in use as an interval timer which will fire
in the context of the Timer Server task.

TIMER_TIME_OF_DAY
This timer class indicates that the timer is currently in use as an time of day timer which will
fire in the context of the clock tick ISR.

TIMER_TIME_OF_DAY_ON_TASK
This timer class indicates that the timer is currently in use as an time of day timer which will
fire in the context of the Timer Server task.

4.2.4 rtems_api_configuration_table

This structure contains a summary of the Classic API configuration.

MEMBERS:

maximum_tasks
This member contains the maximum number of Classic API Tasks configured for this applica-
tion. See CONFIGURE_MAXIMUM_TASKS (page 621).

notepads_enabled
This member is true, if the Classic API Notepads are enabled, otherwise it is false.

maximum_timers
This member contains the maximum number of Classic API Timers configured for this appli-
cation. See CONFIGURE_MAXIMUM_TIMERS (page 622).

maximum_semaphores
This member contains the maximum number of Classic API Semaphores configured for this
application. See CONFIGURE_MAXIMUM_SEMAPHORES (page 620).

4.2. List of Data Types 37

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

maximum_message_queues
This member contains the maximum number of Classic API Message Queues configured for
this application. See CONFIGURE_MAXIMUM_MESSAGE_QUEUES (page 615).

maximum_partitions
This member contains the maximum number of Classic API Partitions configured for this
application. See CONFIGURE_MAXIMUM_PARTITIONS (page 616).

maximum_regions
This member contains the maximum number of Classic API Regions configured for this appli-
cation. See CONFIGURE_MAXIMUM_REGIONS (page 619).

maximum_ports
This member contains the maximum number of Classic API Dual-Ported Memories configured
for this application. See CONFIGURE_MAXIMUM_PORTS (page 618).

maximum_periods
This member contains the maximum number of Classic API Rate Monotonic Periods config-
ured for this application. See CONFIGURE_MAXIMUM_PERIODS (page 617).

maximum_barriers
This member contains the maximum number of Classic API Barriers configured for this appli-
cation. See CONFIGURE_MAXIMUM_BARRIERS (page 614).

number_of_initialization_tasks
This member contains the number of Classic API Initialization Tasks configured for this appli-
cation. See CONFIGURE_RTEMS_INIT_TASKS_TABLE (page 634).

User_initialization_tasks_table
This member contains the pointer to Classic API Initialization Tasks Table of this application.
See CONFIGURE_RTEMS_INIT_TASKS_TABLE (page 634).

DESCRIPTION:

Use rtems_configuration_get_rtems_api_configuration() (page 777) to get the configuration ta-
ble.

4.2.5 rtems_asr

This type defines the return type of routines which are used to process asynchronous signals.

NOTES:

This type can be used to document asynchronous signal routines in the source code.

4.2.6 rtems_asr_entry

This type defines the prototype of routines which are used to process asynchronous signals.

4.2.7 rtems_assert_context

This structure provides the context in which an assertion failed.

38 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

MEMBERS:

file
This member provides the file name of the source code file containing the failed assertion
statement.

line
This member provides the line number in the source code file containing the failed assertion
statement.

function
This member provides the function name containing the failed assertion statement.

failed_expression
This member provides the expression of the failed assertion statement.

4.2.8 rtems_attribute

This type represents Classic API attributes.

NOTES:

Attributes are primarily used when creating objects.

4.2.9 rtems_device_driver

This type shall be used in device driver entry declarations and definitions.

NOTES:

Device driver entries return an rtems_status_code status code. This type definition helps to
document device driver entries in the source code.

4.2.10 rtems_device_driver_entry

Device driver entries shall have this type.

4.2.11 rtems_device_major_number

This integer type represents the major number of devices.

NOTES:

The major number of a device is determined by rtems_io_register_driver() (page 474) and the
application configuration (see CONFIGURE_MAXIMUM_DRIVERS (page 611)) .

4.2.12 rtems_device_minor_number

This integer type represents the minor number of devices.

NOTES:

The minor number of devices is managed by the device driver.

4.2. List of Data Types 39

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

4.2.13 rtems_driver_address_table

This structure contains the device driver entries.

MEMBERS:

initialization_entry
This member is the device driver initialization entry. This entry is called by
rtems_io_initialize() (page 477).

open_entry
This member is the device driver open entry. This entry is called by rtems_io_open()
(page 479).

close_entry
This member is the device driver close entry. This entry is called by rtems_io_close()
(page 480).

read_entry
This member is the device driver read entry. This entry is called by rtems_io_read()
(page 481).

write_entry
This member is the device driver write entry. This entry is called by rtems_io_write()
(page 482).

control_entry
This member is the device driver control entry. This entry is called by rtems_io_control()
(page 483).

DESCRIPTION:

This structure is used to register a device driver via rtems_io_register_driver() (page 474).

4.2.14 rtems_event_set

This integer type represents a bit field which can hold exactly 32 individual events.

4.2.15 rtems_exception_frame

This structure represents an architecture-dependent exception frame.

4.2.16 rtems_extensions_table

The extensions table contains a set of extensions which may be registered in the system
through the CONFIGURE_INITIAL_EXTENSIONS (page 573) application configuration option or
the rtems_extension_create() (page 550) directive.

4.2.17 rtems_fatal_code

This integer type represents system termination codes.

40 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

DESCRIPTION:

This integer type is large enough to store a 32-bit integer or a pointer.

NOTES:

The interpretation of a system termination code depends on the system termination source, see
rtems_fatal_source (page 41).

4.2.18 rtems_fatal_extension

Fatal extensions are invoked when the system should terminate.

PARAMETERS:

source
This parameter is the system termination source. The source indicates the component which
caused the system termination request, see rtems_fatal_source (page 41). The system termi-
nation code may provide additional information related to the system termination request.

always_set_to_false
This parameter is a value equal to false.

code
This parameter is the system termination code. This value must be interpreted with respect
to the source.

NOTES:

The fatal extensions are invoked in extension forward order and with maskable interrupts dis-
abled.

The fatal extension should be extremely careful with respect to the RTEMS directives it calls.
Depending on the system termination source, the system may be in an undefined and corrupt
state.

It is recommended to register fatal extensions through initial extension sets, see CONFIG-
URE_INITIAL_EXTENSIONS (page 573).

4.2.19 rtems_fatal_source

This enumeration represents system termination sources.

NOTES:

The system termination code may provide additional information depending on the system
termination source, see rtems_fatal_code (page 40).

4.2.20 rtems_id

This type represents RTEMS object identifiers.

4.2. List of Data Types 41

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

4.2.21 rtems_initialization_tasks_table

This structure defines the properties of the Classic API user initialization task.

MEMBERS:

name
This member defines the task name.

stack_size
This member defines the task stack size in bytes.

initial_priority
This member defines the initial task priority.

attribute_set
This member defines the attribute set of the task.

entry_point
This member defines the entry point of the task.

mode_set
This member defines the initial modes of the task.

argument
This member defines the entry point argument of the task.

4.2.22 rtems_interrupt_attributes

This structure provides the attributes of an interrupt vector.

MEMBERS:

is_maskable
This member is true, if the interrupt vector is maskable by rtems_interrupt_local_disable()
(page 168), otherwise it is false. Interrupt vectors which are not maskable by
rtems_interrupt_local_disable() (page 168) should be used with care since they cannot use
most operating system services.

can_enable
This member is true, if the interrupt vector can be enabled by rtems_interrupt_vector_enable()
(page 194), otherwise it is false. When an interrupt vector can be enabled, this means that
the enabled state can always be changed from disabled to enabled. For an interrupt vector
which can be enabled it follows that it may be enabled.

maybe_enable
This member is true, if the interrupt vector may be enabled by rtems_interrupt_vector_enable()
(page 194), otherwise it is false. When an interrupt vector may be enabled, this means that
the enabled state may be changed from disabled to enabled. The requested enabled state
change should be checked by rtems_interrupt_vector_is_enabled() (page 193). Some interrupt
vectors may be optionally available and cannot be enabled on a particular target.

can_disable
This member is true, if the interrupt vector can be disabled by rtems_interrupt_vector_disable()
(page 195), otherwise it is false. When an interrupt vector can be disabled, this means that
the enabled state can be changed from enabled to disabled. For an interrupt vector which can
be disabled it follows that it may be disabled.

42 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

maybe_disable
This member is true, if the interrupt vector may be disabled by
rtems_interrupt_vector_disable() (page 195), otherwise it is false. When an interrupt vector
may be disabled, this means that the enabled state may be changed from enabled to disabled.
The requested enabled state change should be checked by rtems_interrupt_vector_is_enabled()
(page 193). Some interrupt vectors may be always enabled and cannot be disabled on a
particular target.

can_raise
This member is true, if the interrupt vector can be raised by rtems_interrupt_raise()
(page 198), otherwise it is false.

can_raise_on
This member is true, if the interrupt vector can be raised on a processor by
rtems_interrupt_raise_on() (page 199), otherwise it is false.

can_clear
This member is true, if the interrupt vector can be cleared by rtems_interrupt_clear()
(page 200), otherwise it is false.

cleared_by_acknowledge
This member is true, if the pending status of the interrupt associated with the interrupt vector
is cleared by an interrupt acknowledge from the processor, otherwise it is false.

can_get_affinity
This member is true, if the affinity set of the interrupt vector can be obtained by
rtems_interrupt_get_affinity() (page 204), otherwise it is false.

can_set_affinity
This member is true, if the affinity set of the interrupt vector can be set by
rtems_interrupt_set_affinity() (page 205), otherwise it is false.

can_be_triggered_by_message
This member is true, if the interrupt associated with the interrupt vector can be triggered by
a message. Interrupts may be also triggered by signals, rtems_interrupt_raise() (page 198),
or rtems_interrupt_raise_on() (page 199). Examples for message triggered interrupts are the
PCIe MSI/MSI-X and the ARM GICv3 Locality-specific Peripheral Interrupts (LPI).

trigger_signal
This member describes the trigger signal of the interrupt associated with the interrupt vector.
Interrupts are normally triggered by signals which indicate an interrupt request from a pe-
ripheral. Interrupts may be also triggered by messages, rtems_interrupt_raise() (page 198),
or rtems_interrupt_raise_on() (page 199).

can_get_priority
This member is true, if the priority of the interrupt vector can be obtained by
rtems_interrupt_get_priority() (page 201), otherwise it is false.

can_set_priority
This member is true, if the priority of the interrupt vector can be set by
rtems_interrupt_set_priority() (page 202), otherwise it is false.

maximum_priority
This member represents the maximum priority value of the interrupt vector. By convention,
the minimum priority value is zero. Lower priority values shall be associated with a higher
importance. The higher the priority value, the less important is the service of the associated

4.2. List of Data Types 43

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

interrupt vector. Where nested interrupts are supported, interrupts with a lower priority value
may preempt other interrupts having a higher priority value.

DESCRIPTION:

The rtems_interrupt_get_attributes() (page 207) directive may be used to obtain the attributes
of an interrupt vector.

4.2.23 rtems_interrupt_entry

This structure represents an interrupt entry.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of
view. Members shall not be accessed directly. An entry may be initialized by
RTEMS_INTERRUPT_ENTRY_INITIALIZER() (page 185) or rtems_interrupt_entry_initialize()
(page 186). It may be installed for an interrupt vector with rtems_interrupt_entry_install()
(page 187) and removed from an interrupt vector by rtems_interrupt_entry_remove()
(page 189).

4.2.24 rtems_interrupt_handler

Interrupt handler routines shall have this type.

4.2.25 rtems_interrupt_level

This integer type represents interrupt levels.

4.2.26 rtems_interrupt_lock

This structure represents an ISR lock.

NOTES:

Lock objects are only needed in some RTEMS build configurations, for example where the
SMP support is enabled. The RTEMS_INTERRUPT_LOCK_NEEDS_OBJECT constant can be used to
determine whether a lock object is needed or not. This may help to reduce the memory demands
of an application. All lock operations do not use the lock object parameter if lock objects are
not needed.

1 #include <rtems.h>
2

3 #if RTEMS_INTERRUPT_LOCK_NEEDS_OBJECT
4 rtems_interrupt_lock lock = RTEMS_INTERRUPT_LOCK_INITIALIZER("name");
5 #endif
6

7 struct s {
8 #if RTEMS_INTERRUPT_LOCK_NEEDS_OBJECT

(continues on next page)

44 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

9 rtems_interrupt_lock lock;
10 #endif
11 int foobar;
12 };

4.2.27 rtems_interrupt_lock_context

This structure provides an ISR lock context for acquire and release pairs.

4.2.28 rtems_interrupt_per_handler_routine

Visitor routines invoked by rtems_interrupt_handler_iterate() (page 208) shall have this type.

4.2.29 rtems_interrupt_server_action

This structure represents an interrupt server action.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of view. Members
shall not be accessed directly.

4.2.30 rtems_interrupt_server_config

This structure defines an interrupt server configuration.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

See also rtems_interrupt_server_create() (page 212).

4.2.31 rtems_interrupt_server_control

This structure represents an interrupt server.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of view. Members
shall not be accessed directly. The structure is initialized by rtems_interrupt_server_create()
(page 212) and maintained by the interrupt server support.

4.2. List of Data Types 45

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

4.2.32 rtems_interrupt_server_entry

This structure represents an interrupt server entry.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of view. Members
shall not be accessed directly. An entry is initialized by rtems_interrupt_server_entry_initialize()
(page 224) and destroyed by rtems_interrupt_server_entry_destroy() (page 227). Interrupt
server actions can be prepended to the entry by rtems_interrupt_server_action_prepend()
(page 225). The entry is submitted to be serviced by rtems_interrupt_server_entry_submit()
(page 228).

4.2.33 rtems_interrupt_server_request

This structure represents an interrupt server request.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of view. Members shall
not be accessed directly. A request is initialized by rtems_interrupt_server_request_initialize()
(page 230) and destroyed by rtems_interrupt_server_request_destroy() (page 232). The inter-
rupt vector of the request can be set by rtems_interrupt_server_request_set_vector() (page 231).
The request is submitted to be serviced by rtems_interrupt_server_request_submit() (page 233).

4.2.34 rtems_interrupt_signal_variant

This enumeration provides interrupt trigger signal variants.

ENUMERATORS:

RTEMS_INTERRUPT_UNSPECIFIED_SIGNAL
This interrupt signal variant indicates that the interrupt trigger signal is unspecified.

RTEMS_INTERRUPT_NO_SIGNAL
This interrupt signal variant indicates that the interrupt cannot be triggered by a signal.

RTEMS_INTERRUPT_SIGNAL_LEVEL_LOW
This interrupt signal variant indicates that the interrupt is triggered by a low level signal.

RTEMS_INTERRUPT_SIGNAL_LEVEL_HIGH
This interrupt signal variant indicates that the interrupt is triggered by a high level signal.

RTEMS_INTERRUPT_SIGNAL_EDGE_FALLING
This interrupt signal variant indicates that the interrupt is triggered by a falling edge signal.

RTEMS_INTERRUPT_SIGNAL_EDGE_RAISING
This interrupt signal variant indicates that the interrupt is triggered by a raising edge signal.

46 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

4.2.35 rtems_interval

This type represents clock tick intervals.

4.2.36 rtems_isr

This type defines the return type of interrupt service routines.

DESCRIPTION:

This type can be used to document interrupt service routines in the source code.

4.2.37 rtems_isr_entry

Interrupt service routines installed by rtems_interrupt_catch() (page 162) shall have this type.

4.2.38 rtems_message_queue_config

This structure defines the configuration of a message queue constructed by
rtems_message_queue_construct() (page 375).

MEMBERS:

name
This member defines the name of the message queue.

maximum_pending_messages
This member defines the maximum number of pending messages supported by the message
queue.

maximum_message_size
This member defines the maximum message size supported by the message queue.

storage_area
This member shall point to the message buffer storage area begin. The message
buffer storage area for the message queue shall be an array of the type defined by
RTEMS_MESSAGE_QUEUE_BUFFER() (page 391) with a maximum message size equal to the
maximum message size of this configuration.

storage_size
This member defines size of the message buffer storage area in bytes.

storage_free
This member defines the optional handler to free the message buffer storage area. It is called
when the message queue is deleted. It is called from task context under protection of the
object allocator lock. It is allowed to call free() in this handler. If handler is NULL, then no
action will be performed.

attributes
This member defines the attributes of the message queue.

4.2.39 rtems_mode

This type represents a Classic API task mode set.

4.2. List of Data Types 47

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

4.2.40 rtems_mp_packet_classes

This enumeration defines the MPCI packet classes.

4.2.41 rtems_mpci_entry

MPCI handler routines shall have this return type.

4.2.42 rtems_mpci_get_packet_entry

MPCI get packet routines shall have this type.

4.2.43 rtems_mpci_initialization_entry

MPCI initialization routines shall have this type.

4.2.44 rtems_mpci_receive_packet_entry

MPCI receive packet routines shall have this type.

4.2.45 rtems_mpci_return_packet_entry

MPCI return packet routines shall have this type.

4.2.46 rtems_mpci_send_packet_entry

MPCI send packet routines shall have this type.

4.2.47 rtems_mpci_table

This type represents the user-provided MPCI control.

4.2.48 rtems_multiprocessing_table

This type represents the user-provided MPCI configuration.

4.2.49 rtems_name

This type represents Classic API object names.

DESCRIPTION:

It is an unsigned 32-bit integer which can be treated as a numeric value or initialized using
rtems_build_name() (page 902) to encode four ASCII characters. A value of zero may have a
special meaning in some directives.

4.2.50 rtems_object_api_class_information

This structure is used to return information to the application about the objects configured for
a specific API/Class combination.

48 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

MEMBERS:

minimum_id
This member contains the minimum valid object identifier for this class.

maximum_id
This member contains the maximum valid object identifier for this class.

maximum
This member contains the maximum number of active objects configured for this class.

auto_extend
This member is true, if this class is configured for automatic object extension, otherwise it is
false.

unallocated
This member contains the number of currently inactive objects of this class.

4.2.51 rtems_option

This type represents a Classic API directive option set.

4.2.52 rtems_packet_prefix

This type represents the prefix found at the beginning of each MPCI packet sent between nodes.

4.2.53 rtems_rate_monotonic_period_states

This enumeration defines the states in which a period may be.

ENUMERATORS:

RATE_MONOTONIC_INACTIVE
This status indicates the period is off the watchdog chain, and has never been initialized.

RATE_MONOTONIC_ACTIVE
This status indicates the period is on the watchdog chain, and running. The owner may be
executing or blocked waiting on another object.

RATE_MONOTONIC_EXPIRED
This status indicates the period is off the watchdog chain, and has expired. The owner may
still execute and has taken too much time to complete this iteration of the period.

4.2.54 rtems_rate_monotonic_period_statistics

This structure provides the statistics of a period.

MEMBERS:

count
This member contains the number of periods executed.

missed_count
This member contains the number of periods missed.

min_cpu_time
This member contains the least amount of processor time used in a period.

4.2. List of Data Types 49

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

max_cpu_time
This member contains the highest amount of processor time used in a period.

total_cpu_time
This member contains the total amount of processor time used in a period.

min_wall_time
This member contains the least amount of CLOCK_MONOTONIC time used in a period.

max_wall_time
This member contains the highest amount of CLOCK_MONOTONIC time used in a period.

total_wall_time
This member contains the total amount of CLOCK_MONOTONIC time used in a period.

4.2.55 rtems_rate_monotonic_period_status

This structure provides the detailed status of a period.

MEMBERS:

owner
This member contains the identifier of the owner task of the period.

state
This member contains the state of the period.

since_last_period
This member contains the time elapsed since the last successful invocation
rtems_rate_monotonic_period() (page 317) using CLOCK_MONOTONIC. If the period is
expired or has not been initiated, then this value has no meaning.

executed_since_last_period
This member contains the processor time consumed by the owner task since the last successful
invocation rtems_rate_monotonic_period() (page 317). If the period is expired or has not been
initiated, then this value has no meaning.

postponed_jobs_count
This member contains the count of jobs which are not released yet.

4.2.56 rtems_regulator_attributes

This structure defines the configuration of a regulator created by rtems_regulator_create()
(page 832).

MEMBERS:

deliverer
This member contains a pointer to an application function invoked by the Delivery thread to
output a message to the destination.

deliverer_context
This member contains a pointer to an application defined context which is passed to delivery
function.

maximum_message_size
This member contains the maximum size message to process.

50 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

maximum_messages
This member contains the maximum number of messages to be able to buffer.

output_thread_priority
This member contains the priority of output thread.

output_thread_stack_size
This member contains the Stack size of output thread.

output_thread_period
This member contains the period (in ticks) of output thread.

maximum_to_dequeue_per_period
This member contains the maximum number of messages the output thread should dequeue
and deliver per period.

NOTES:

This type is passed as an argument to rtems_regulator_create() (page 832).

4.2.57 rtems_regulator_deliverer

This type represents the function signature used to specify a delivery function for the RTEMS
Regulator.

NOTES:

This type is used in the rtems_regulator_attributes (page 50) structure which is passed as an
argument to rtems_regulator_create() (page 832).

4.2.58 rtems_regulator_statistics

This structure defines the statistics maintained by each Regulator instance.

MEMBERS:

obtained
This member contains the number of successfully obtained buffers.

released
This member contains the number of successfully released buffers.

delivered
This member contains the number of successfully delivered buffers.

period_statistics
This member contains the Rate Monotonic Period statistics for the Delivery Thread. It is an
instance of the rtems_rate_monotonic_period_statistics (page 49) structure.

NOTES:

This type is passed as an argument to rtems_regulator_get_statistics() (page 840).

4.2. List of Data Types 51

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

4.2.59 rtems_signal_set

This integer type represents a bit field which can hold exactly 32 individual signals.

4.2.60 rtems_stack_allocate_hook

A thread stack allocator allocate handler shall have this type.

4.2.61 rtems_stack_allocate_init_hook

A task stack allocator initialization handler shall have this type.

4.2.62 rtems_stack_free_hook

A task stack allocator free handler shall have this type.

4.2.63 rtems_status_code

This enumeration provides status codes for directives of the Classic API.

ENUMERATORS:

RTEMS_SUCCESSFUL
This status code indicates successful completion of a requested operation.

RTEMS_TASK_EXITTED
This status code indicates that a thread exitted.

RTEMS_MP_NOT_CONFIGURED
This status code indicates that multiprocessing was not configured.

RTEMS_INVALID_NAME
This status code indicates that an object name was invalid.

RTEMS_INVALID_ID
This status code indicates that an object identifier was invalid.

RTEMS_TOO_MANY
This status code indicates you have attempted to create too many instances of a particular
object class.

RTEMS_TIMEOUT
This status code indicates that a blocking directive timed out.

RTEMS_OBJECT_WAS_DELETED
This status code indicates the object was deleted while the thread was blocked waiting.

RTEMS_INVALID_SIZE
This status code indicates that a specified size was invalid.

RTEMS_INVALID_ADDRESS
This status code indicates that a specified address was invalid.

RTEMS_INVALID_NUMBER
This status code indicates that a specified number was invalid.

RTEMS_NOT_DEFINED
This status code indicates that the item has not been initialized.

52 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RTEMS_RESOURCE_IN_USE
This status code indicates that the object still had resources in use.

RTEMS_UNSATISFIED
This status code indicates that the request was not satisfied.

RTEMS_INCORRECT_STATE
This status code indicates that an object was in wrong state for the requested operation.

RTEMS_ALREADY_SUSPENDED
This status code indicates that the thread was already suspended.

RTEMS_ILLEGAL_ON_SELF
This status code indicates that the operation was illegal on the calling thread.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
This status code indicates that the operation was illegal on a remote object.

RTEMS_CALLED_FROM_ISR
This status code indicates that the operation should not be called from this execution envi-
ronment.

RTEMS_INVALID_PRIORITY
This status code indicates that an invalid thread priority was provided.

RTEMS_INVALID_CLOCK
This status code indicates that a specified date or time was invalid.

RTEMS_INVALID_NODE
This status code indicates that a specified node identifier was invalid.

RTEMS_NOT_CONFIGURED
This status code indicates that the directive was not configured.

RTEMS_NOT_OWNER_OF_RESOURCE
This status code indicates that the caller was not the owner of the resource.

RTEMS_NOT_IMPLEMENTED
This status code indicates the directive or requested portion of the directive is not imple-
mented. This is a hint that you have stumbled across an opportunity to submit code to the
RTEMS Project.

RTEMS_INTERNAL_ERROR
This status code indicates that an internal RTEMS inconsistency was detected.

RTEMS_NO_MEMORY
This status code indicates that the directive attempted to allocate memory but was unable to
do so.

RTEMS_IO_ERROR
This status code indicates a device driver IO error.

RTEMS_INTERRUPTED
This status code is used internally by the implementation to indicate a blocking device driver
call has been interrupted and should be reflected to the caller as interrupted.

RTEMS_PROXY_BLOCKING
This status code is used internally by the implementation when performing operations on
behalf of remote tasks. This is referred to as proxying operations and this status indicates that
the operation could not be completed immediately and the proxy is blocking.

4.2. List of Data Types 53

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

4.2.64 rtems_task

This type defines the return type of task entry points.

DESCRIPTION:

This type can be used to document task entry points in the source code.

4.2.65 rtems_task_argument

This integer type represents task argument values.

NOTES:

The type is an architecture-specific unsigned integer type which is large enough to represent
pointer values and 32-bit unsigned integers.

4.2.66 rtems_task_begin_extension

Task begin extensions are invoked when a task begins execution.

PARAMETERS:

executing
This parameter is the TCB of the executing thread.

NOTES:

The task begin extensions are invoked in extension forward order.

Task begin extensions are invoked with thread dispatching enabled. This allows the use of
dynamic memory allocation, creation of POSIX keys, and use of C++ thread-local storage.
Blocking synchronization primitives are allowed also.

The task begin extensions are invoked before the global construction.

The task begin extensions may be called as a result of a task restart through rtems_task_restart()
(page 120).

4.2.67 rtems_task_config

This structure defines the configuration of a task constructed by rtems_task_construct()
(page 113).

MEMBERS:

name
This member defines the name of the task.

initial_priority
This member defines the initial priority of the task.

storage_area
This member shall point to the task storage area begin. The task storage area will contain
the task stack, the thread-local storage, and the floating-point context on architectures with a
separate floating-point context.

54 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The task storage area begin address and size should be aligned by
RTEMS_TASK_STORAGE_ALIGNMENT. To avoid memory waste, use RTEMS_ALIGNED() and
RTEMS_TASK_STORAGE_ALIGNMENT to enforce the recommended alignment of a statically
allocated task storage area.

storage_size
This member defines size of the task storage area in bytes. Use the
RTEMS_TASK_STORAGE_SIZE() (page 144) macro to determine the recommended task
storage area size.

maximum_thread_local_storage_size
This member defines the maximum thread-local storage size supported by the task storage
area. Use RTEMS_ALIGN_UP() and RTEMS_TASK_STORAGE_ALIGNMENT to adjust the size to meet
the minimum alignment requirement of a thread-local storage area used to construct a task.

If the value is less than the actual thread-local storage size, then the task construction by
rtems_task_construct() (page 113) fails.

If the is less than the task storage area size, then the task construction by
rtems_task_construct() (page 113) fails.

The actual thread-local storage size is determined when the application executable is linked.
The rtems-exeinfo command line tool included in the RTEMS Tools can be used to obtain
the thread-local storage size and alignment of an application executable.

The application may configure the maximum thread-local storage size for all threads explicitly
through the CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE (page 578) configura-
tion option.

storage_free
This member defines the optional handler to free the task storage area. It is called on exactly
two mutually exclusive occasions. Firstly, when the task construction aborts due to a failed
task create extension, or secondly, when the task is deleted. It is called from task context
under protection of the object allocator lock. It is allowed to call free() in this handler. If
handler is NULL, then no action will be performed.

initial_modes
This member defines the initial modes of the task.

attributes
This member defines the attributes of the task.

4.2.68 rtems_task_create_extension

Task create extensions are invoked when a task is created.

PARAMETERS:

executing
This parameter is the TCB of the executing thread. When the idle thread is created, the
executing thread is equal to NULL.

created
This parameter is the TCB of the created thread.

4.2. List of Data Types 55

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

RETURN VALUES:

Returns true, if the task create extension was successful, otherwise false.

NOTES:

The task create extensions are invoked in extension forward order.

The task create extensions are invoked after a new task has been completely initialized, but
before it is started.

While normal tasks are created, the executing thread is the owner of the object allocator mutex.
The object allocator mutex allows nesting, so the normal memory allocation routines can be
used allocate memory for the created thread.

If the task create extension returns false, then the task create operation stops immediately and
the entire task create operation will fail. In this case, all task delete extensions are invoked, see
rtems_task_delete_extension (page 56).

4.2.69 rtems_task_delete_extension

Task delete extensions are invoked when a task is deleted.

PARAMETERS:

executing
This parameter is the TCB of the executing thread. If the idle thread is created and one of the
initial task create extension fails, then the executing thread is equal to NULL.

created
This parameter is the TCB of the deleted thread. The executing and deleted arguments are
never equal.

NOTES:

The task delete extensions are invoked in extension reverse order.

The task delete extensions are invoked by task create directives before an attempt to allocate a
TCB is made.

If a task create extension failed, then a task delete extension may be invoked without a previous
invocation of the corresponding task create extension of the extension set.

4.2.70 rtems_task_entry

This type defines the task entry point of an RTEMS task.

4.2.71 rtems_task_exitted_extension

Task exitted extensions are invoked when a task entry returns.

PARAMETERS:

executing
This parameter is the TCB of the executing thread.

56 Chapter 4. RTEMS Data Types

https://en.cppreference.com/w/c/types/NULL

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

NOTES:

The task exitted extensions are invoked in extension forward order.

4.2.72 rtems_task_priority

This integer type represents task priorities of the Classic API.

4.2.73 rtems_task_restart_extension

Task restart extensions are invoked when a task restarts.

PARAMETERS:

executing
This parameter is the TCB of the executing thread.

restarted
This parameter is the TCB of the executing thread. Yes, the executing thread.

NOTES:

The task restart extensions are invoked in extension forward order.

The task restart extensions are invoked in the context of the restarted thread right before the
execution context is reloaded. The thread stack reflects the previous execution context.

Thread restart and delete requests issued by restart extensions lead to recursion.

4.2.74 rtems_task_start_extension

Task start extensions are invoked when a task was made ready for the first time.

PARAMETERS:

executing
This parameter is the TCB of the executing thread.

started
This parameter is the TCB of the started thread.

NOTES:

The task start extensions are invoked in extension forward order.

In SMP configurations, the thread may already run on another processor before the task start
extensions are actually invoked. Task switch and task begin extensions may run before or in
parallel with the thread start extension in SMP configurations, see rtems_task_switch_extension
(page 57) and rtems_task_begin_extension (page 54).

4.2.75 rtems_task_switch_extension

Task switch extensions are invoked when a thread switch from an executing thread to a heir
thread takes place.

4.2. List of Data Types 57

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

PARAMETERS:

executing
This parameter is the TCB of the executing thread. In SMP configurations, this is the previ-
ously executing thread also known as the ancestor thread.

heir
This parameter is the TCB of the heir thread. In SMP configurations, this is the executing
thread.

NOTES:

The task switch extensions are invoked in extension forward order.

The invocation conditions of the task switch extensions depend on whether RTEMS was built
with SMP support enabled or disabled. A user must pay attention to the differences to correctly
implement a task switch extension.

Where the system was built with SMP support disabled, the task switch extensions are invoked
before the context switch from the currently executing thread to the heir thread. The executing
is a pointer to the TCB of the currently executing thread. The heir is a pointer to the TCB of
the heir thread. The context switch initiated through the multitasking start is not covered by
the task switch extensions.

Where the system was built with SMP support enabled, the task switch extensions are invoked
after the context switch to the heir thread. The executing is a pointer to the TCB of the previ-
ously executing thread. Despite the name, this is not the currently executing thread. The heir
is a pointer to the TCB of the newly executing thread. This is the currently executing thread.
The context switches initiated through the multitasking start are covered by the task switch
extensions. The reason for the differences to uniprocessor configurations is that the context
switch may update the heir thread of the processor. The task switch extensions are invoked
with maskable interrupts disabled and with ownership of a processor-specific SMP lock. Task
switch extensions may run in parallel on multiple processors. It is recommended to use thread-
local or processor-specific data structures for task switch extensions. A global SMP lock should
be avoided for performance reasons, see rtems_interrupt_lock_initialize() (page 172).

4.2.76 rtems_task_terminate_extension

Task terminate extensions are invoked when a task terminates.

PARAMETERS:

executing
This parameter is the TCB of the executing thread. This is the terminating thread.

NOTES:

The task terminate extensions are invoked in extension reverse order.

The task terminate extensions are invoked in the context of the terminating thread right before
the thread dispatch to the heir thread should take place. The thread stack reflects the previous
execution context. The POSIX cleanup and key destructors execute in this context.

Thread restart and delete requests issued by terminate extensions lead to recursion.

58 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

4.2.77 rtems_task_visitor

Visitor routines invoked by rtems_task_iterate() (page 143) shall have this type.

4.2.78 rtems_tcb

This structure represents the TCB.

4.2.79 rtems_time_of_day

This type represents Classic API calendar times.

MEMBERS:

year
This member contains the year A.D.

month
This member contains the month of the year with values from 1 to 12.

day
This member contains the day of the month with values from 1 to 31.

hour
This member contains the hour of the day with values from 0 to 23.

minute
This member contains the minute of the hour with values from 0 to 59.

second
This member contains the second of the minute with values from 0 to 59.

ticks
This member contains the clock tick of the second with values from 0 to
rtems_clock_get_ticks_per_second() (page 264) minus one.

4.2.80 rtems_timer_information

The structure contains information about a timer.

MEMBERS:

the_class
The timer class member indicates how the timer was most recently fired.

initial
This member indicates the initial requested interval.

start_time
This member indicates the time the timer was initially scheduled. The time is in clock ticks
since the clock driver initialization or the last clock tick counter overflow.

stop_time
This member indicates the time the timer was scheduled to fire. The time is in clock ticks
since the clock driver initialization or the last clock tick counter overflow.

4.2. List of Data Types 59

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 4 Section 4.2

4.2.81 rtems_timer_service_routine

This type defines the return type of routines which can be fired by directives of the Timer
Manager.

DESCRIPTION:

This type can be used to document timer service routines in the source code.

4.2.82 rtems_timer_service_routine_entry

This type defines the prototype of routines which can be fired by directives of the Timer Man-
ager.

4.2.83 rtems_vector_number

This integer type represents interrupt vector numbers.

60 Chapter 4. RTEMS Data Types

CHAPTER

FIVE

SCHEDULING CONCEPTS

61

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.1

5.1 Introduction

The scheduling concepts relate to the allocation of processing time for tasks.

The concept of scheduling in real-time systems dictates the ability to provide an immediate
response to specific external events, particularly the necessity of scheduling tasks to run within
a specified time limit after the occurrence of an event. For example, software embedded in
life-support systems used to monitor hospital patients must take instant action if a change in
the patient’s status is detected.

The component of RTEMS responsible for providing this capability is appropriately called the
scheduler. The scheduler’s sole purpose is to allocate the all important resource of processor
time to the various tasks competing for attention. The directives provided by the Scheduler
Manager are:

• rtems_scheduler_ident() (page 72) - Identifies a scheduler by the object name.

• rtems_scheduler_ident_by_processor() (page 73) - Identifies a scheduler by the processor
index.

• rtems_scheduler_ident_by_processor_set() (page 74) - Identifies a scheduler by the proces-
sor set.

• rtems_scheduler_get_maximum_priority() (page 76) - Gets the maximum task priority of
the scheduler.

• rtems_scheduler_map_priority_to_posix() (page 77) - Maps a Classic API task priority to
the corresponding POSIX thread priority.

• rtems_scheduler_map_priority_from_posix() (page 78) - Maps a POSIX thread priority to
the corresponding Classic API task priority.

• rtems_scheduler_get_processor() (page 79) - Returns the index of the current processor.

• rtems_scheduler_get_processor_maximum() (page 80) - Returns the processor maximum
supported by the system.

• rtems_scheduler_get_processor_set() (page 81) - Gets the set of processors owned by the
scheduler.

• rtems_scheduler_add_processor() (page 82) - Adds the processor to the set of processors
owned by the scheduler.

• rtems_scheduler_remove_processor() (page 83) - Removes the processor from the set of
processors owned by the scheduler.

62 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

5.2 Background

5.2.1 Scheduling Algorithms

RTEMS provides a plugin framework that allows it to support multiple scheduling algorithms.
RTEMS includes multiple scheduling algorithms, and the user can select which of these they
wish to use in their application at link-time. In addition, the user can implement their own
scheduling algorithm and configure RTEMS to use it.

Supporting multiple scheduling algorithms gives the end user the option to select the algorithm
which is most appropriate to their use case. Most real-time operating systems schedule tasks us-
ing a priority based algorithm, possibly with preemption control. The classic RTEMS scheduling
algorithm which was the only algorithm available in RTEMS 4.10 and earlier, is a fixed-priority
scheduling algorithm. This scheduling algorithm is suitable for uniprocessor (e.g., non-SMP)
systems and is known as the Deterministic Priority Scheduler. Unless the user configures another
scheduling algorithm, RTEMS will use this on uniprocessor systems.

5.2.2 Priority Scheduling

When using priority based scheduling, RTEMS allocates the processor using a priority-based,
preemptive algorithm augmented to provide round-robin characteristics within individual pri-
ority groups. The goal of this algorithm is to guarantee that the task which is executing on the
processor at any point in time is the one with the highest priority among all tasks in the ready
state.

When a task is added to the ready chain, it is placed behind all other tasks of the same priority.
This rule provides a round-robin within a priority group scheduling characteristic. This means
that in a group of equal priority tasks, tasks will execute in the order they become ready or FIFO
order. Even though there are ways to manipulate and adjust task priorities, the most important
rule to remember is:

ò Note

Priority based scheduling algorithms will always select the highest priority task that is ready
to run when allocating the processor to a task.

Priority scheduling is the most commonly used scheduling algorithm. It should be used by
applications in which multiple tasks contend for CPU time or other resources, and there is a
need to ensure certain tasks are given priority over other tasks.

There are a few common methods of accomplishing the mechanics of this algorithm. These
ways involve a list or chain of tasks in the ready state.

• The least efficient method is to randomly place tasks in the ready chain forcing the sched-
uler to scan the entire chain to determine which task receives the processor.

• A more efficient method is to schedule the task by placing it in the proper place on the
ready chain based on the designated scheduling criteria at the time it enters the ready
state. Thus, when the processor is free, the first task on the ready chain is allocated the
processor.

• Another mechanism is to maintain a list of FIFOs per priority. When a task is readied, it
is placed on the rear of the FIFO for its priority. This method is often used with a bitmap

5.2. Background 63

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.2

to assist in locating which FIFOs have ready tasks on them. This data structure has 𝑂(1)
insert, extract and find highest ready run-time complexities.

• A red-black tree may be used for the ready queue with the priority as the key. This data
structure has 𝑂(𝑙𝑜𝑔(𝑛)) insert, extract and find highest ready run-time complexities while
𝑛 is the count of tasks in the ready queue.

RTEMS currently includes multiple priority based scheduling algorithms as well as other algo-
rithms that incorporate deadline. Each algorithm is discussed in the following sections.

5.2.3 Scheduling Modification Mechanisms

RTEMS provides four mechanisms which allow the user to alter the task scheduling decisions:

• user-selectable task priority level

• task preemption control

• task timeslicing control

• manual round-robin selection

Each of these methods provides a powerful capability to customize sets of tasks to satisfy the
unique and particular requirements encountered in custom real-time applications. Although
each mechanism operates independently, there is a precedence relationship which governs the
effects of scheduling modifications. The evaluation order for scheduling characteristics is always
priority, preemption mode, and timeslicing. When reading the descriptions of timeslicing and
manual round-robin it is important to keep in mind that preemption (if enabled) of a task
by higher priority tasks will occur as required, overriding the other factors presented in the
description.

5.2.3.1 Task Priority and Scheduling

The most significant task scheduling modification mechanism is the ability for the user to assign
a priority level to each individual task when it is created and to alter a task’s priority at run-time,
see Task Priority (page 100).

5.2.3.2 Preemption

Another way the user can alter the basic scheduling algorithm is by manipulating the preemp-
tion mode flag (RTEMS_PREEMPT_MASK) of individual tasks. If preemption is disabled for a task
(RTEMS_NO_PREEMPT), then the task will not relinquish control of the processor until it termi-
nates, blocks, or re-enables preemption. Even tasks which become ready to run and possess
higher priority levels will not be allowed to execute. Note that the preemption setting has no
effect on the manner in which a task is scheduled. It only applies once a task has control of the
processor.

5.2.3.3 Timeslicing

Timeslicing or round-robin scheduling is an additional method which can be used to alter the
basic scheduling algorithm. Like preemption, timeslicing is specified on a task by task basis
using the timeslicing mode flag (RTEMS_TIMESLICE_MASK). If timeslicing is enabled for a task
(RTEMS_TIMESLICE), then RTEMS will limit the amount of time the task can execute before the
processor is allocated to another task. Each tick of the real-time clock reduces the currently
running task’s timeslice. When the execution time equals the timeslice, RTEMS will dispatch
another task of the same priority to execute. If there are no other tasks of the same priority

64 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

ready to execute, then the current task is allocated an additional timeslice and continues to run.
Remember that a higher priority task will preempt the task (unless preemption is disabled) as
soon as it is ready to run, even if the task has not used up its entire timeslice.

5.2.3.4 Manual Round-Robin

The final mechanism for altering the RTEMS scheduling algorithm is called manual round-
robin. Manual round-robin is invoked by using the rtems_task_wake_after directive with a
ticks parameter of RTEMS_YIELD_PROCESSOR. This allows a task to give up the processor and be
immediately returned to the ready chain at the end of its priority group. If no other tasks of the
same priority are ready to run, then the task does not lose control of the processor.

5.2.4 Dispatching Tasks

The dispatcher is the RTEMS component responsible for allocating the processor to a ready task.
In order to allocate the processor to one task, it must be deallocated or retrieved from the task
currently using it. This involves a concept called a context switch. To perform a context switch,
the dispatcher saves the context of the current task and restores the context of the task which
has been allocated to the processor. Saving and restoring a task’s context is the storing/loading
of all the essential information about a task to enable it to continue execution without any
effects of the interruption. For example, the contents of a task’s register set must be the same
when it is given the processor as they were when it was taken away. All of the information
that must be saved or restored for a context switch is located either in the TCB or on the task’s
stacks.

Tasks that utilize a numeric coprocessor and are created with the RTEMS_FLOATING_POINT at-
tribute require additional operations during a context switch. These additional operations are
necessary to save and restore the floating point context of RTEMS_FLOATING_POINT tasks. To
avoid unnecessary save and restore operations, the state of the numeric coprocessor is only
saved when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last task to
utilize the coprocessor.

5.2.5 Task State Transitions

Tasks in an RTEMS system must always be in one of the five allowable task states. These states
are: executing, ready, blocked, dormant, and non-existent.

A task occupies the non-existent state before a rtems_task_create has been issued on its behalf.
A task enters the non-existent state from any other state in the system when it is deleted with
the rtems_task_delete directive. While a task occupies this state it does not have a TCB or a
task ID assigned to it; therefore, no other tasks in the system may reference this task.

When a task is created via the rtems_task_create directive, it enters the dormant state. This
state is not entered through any other means. Although the task exists in the system, it cannot
actively compete for system resources. It will remain in the dormant state until it is started
via the rtems_task_start directive, at which time it enters the ready state. The task is now
permitted to be scheduled for the processor and to compete for other system resources.

A task occupies the blocked state whenever it is unable to be scheduled to run. A running
task may block itself or be blocked by other tasks in the system. The running task blocks itself
through voluntary operations that cause the task to wait. The only way a task can block a task
other than itself is with the rtems_task_suspend directive. A task enters the blocked state due
to any of the following conditions:

5.2. Background 65

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.2

• A task issues a rtems_task_suspend directive which blocks either itself or another task in
the system.

• The running task issues a rtems_barrier_wait directive.

• The running task issues a rtems_message_queue_receive directive with the wait option,
and the message queue is empty.

• The running task issues a rtems_event_receive directive with the wait option, and the
currently pending events do not satisfy the request.

• The running task issues a rtems_semaphore_obtain directive with the wait option and the
requested semaphore is unavailable.

• The running task issues a rtems_task_wake_after directive which blocks the task for the
given count of ticks. If the count of ticks specified is zero, the task yields the processor
and remains in the ready state.

• The running task issues a rtems_task_wake_when directive which blocks the task until the
requested date and time arrives.

• The running task issues a rtems_rate_monotonic_period directive and must wait for the
specified rate monotonic period to conclude.

• The running task issues a rtems_region_get_segment directive with the wait option and
there is not an available segment large enough to satisfy the task’s request.

A blocked task may also be suspended. Therefore, both the suspension and the blocking condi-
tion must be removed before the task becomes ready to run again.

A task occupies the ready state when it is able to be scheduled to run, but currently does not

66 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

have control of the processor. Tasks of the same or higher priority will yield the processor by
either becoming blocked, completing their timeslice, or being deleted. All tasks with the same
priority will execute in FIFO order. A task enters the ready state due to any of the following
conditions:

• A running task issues a rtems_task_resume directive for a task that is suspended and the
task is not blocked waiting on any resource.

• A running task issues a rtems_message_queue_send, rtems_message_queue_broadcast, or
a rtems_message_queue_urgent directive which posts a message to the queue on which
the blocked task is waiting.

• A running task issues an rtems_event_send directive which sends an event condition to a
task that is blocked waiting on that event condition.

• A running task issues a rtems_semaphore_release directive which releases the semaphore
on which the blocked task is waiting.

• The requested count of ticks has elapsed for a task which was blocked by a call to the
rtems_task_wake_after directive.

• A timeout period expires for a task which blocked by a call to the rtems_task_wake_when
directive.

• A running task issues a rtems_region_return_segment directive which releases a segment
to the region on which the blocked task is waiting and a resulting segment is large enough
to satisfy the task’s request.

• A rate monotonic period expires for a task which blocked by a call to the
rtems_rate_monotonic_period directive.

• A timeout interval expires for a task which was blocked waiting on a message, event,
semaphore, or segment with a timeout specified.

• A running task issues a directive which deletes a message queue, a semaphore, or a region
on which the blocked task is waiting.

• A running task issues a rtems_task_restart directive for the blocked task.

• The running task, with its preemption mode enabled, may be made ready by issuing any
of the directives that may unblock a task with a higher priority. This directive may be
issued from the running task itself or from an ISR. A ready task occupies the executing
state when it has control of the CPU. A task enters the executing state due to any of the
following conditions:

• The task is the highest priority ready task in the system.

• The running task blocks and the task is next in the scheduling queue. The task may be of
equal priority as in round-robin scheduling or the task may possess the highest priority of
the remaining ready tasks.

• The running task may reenable its preemption mode and a task exists in the ready queue
that has a higher priority than the running task.

• The running task lowers its own priority and another task is of higher priority as a result.

• The running task raises the priority of a task above its own and the running task is in
preemption mode.

5.2. Background 67

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.3

5.3 Uniprocessor Schedulers

All uniprocessor schedulers included in RTEMS are priority based. The processor is allocated to
the highest priority task allowed to run.

5.3.1 Deterministic Priority Scheduler

This is the scheduler implementation which has always been in RTEMS. After the 4.10 release
series, it was factored into a pluggable scheduler selection. It schedules tasks using a priority
based algorithm which takes into account preemption. It is implemented using an array of
FIFOs with a FIFO per priority. It maintains a bitmap which is used to track which priorities
have ready tasks.

This algorithm is deterministic (e.g., predictable and fixed) in execution time. This comes at
the cost of using slightly over three (3) kilobytes of RAM on a system configured to support 256
priority levels.

This scheduler is only aware of a single core.

5.3.2 Simple Priority Scheduler

This scheduler implementation has the same behaviour as the Deterministic Priority Scheduler
but uses only one linked list to manage all ready tasks. When a task is readied, a linear search
of that linked list is performed to determine where to insert the newly readied task.

This algorithm uses much less RAM than the Deterministic Priority Scheduler but is O(n) where
n is the number of ready tasks. In a small system with a small number of tasks, this will not
be a performance issue. Reducing RAM consumption is often critical in small systems that are
incapable of supporting a large number of tasks.

This scheduler is only aware of a single core.

5.3.3 Earliest Deadline First Scheduler

This is an alternative scheduler in RTEMS for single-core applications. The primary EDF ad-
vantage is high total CPU utilization (theoretically up to 100%). It assumes that tasks have
priorities equal to deadlines.

This EDF is initially preemptive, however, individual tasks may be declared not-preemptive.
Deadlines are declared using only Rate Monotonic manager whose goal is to handle periodic
behavior. Period is always equal to the deadline. All ready tasks reside in a single ready queue
implemented using a red-black tree.

This implementation of EDF schedules two different types of task priority types while each
task may switch between the two types within its execution. If a task does have a deadline
declared using the Rate Monotonic manager, the task is deadline-driven and its priority is equal
to deadline. On the contrary, if a task does not have any deadline or the deadline is cancelled
using the Rate Monotonic manager, the task is considered a background task with priority
equal to that assigned upon initialization in the same manner as for priority scheduler. Each
background task is of lower importance than each deadline-driven one and is scheduled when
no deadline-driven task and no higher priority background task is ready to run.

Every deadline-driven scheduling algorithm requires means for tasks to claim a deadline. The
Rate Monotonic Manager is responsible for handling periodic execution. In RTEMS periods are
equal to deadlines, thus if a task announces a period, it has to be finished until the end of this

68 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

period. The call of rtems_rate_monotonic_period passes the scheduler the length of an oncom-
ing deadline. Moreover, the rtems_rate_monotonic_cancel and rtems_rate_monotonic_delete
calls clear the deadlines assigned to the task.

5.3.4 Constant Bandwidth Server Scheduling (CBS)

This is an alternative scheduler in RTEMS for single-core applications. The CBS is a budget
aware extension of EDF scheduler. The main goal of this scheduler is to ensure temporal
isolation of tasks meaning that a task’s execution in terms of meeting deadlines must not be
influenced by other tasks as if they were run on multiple independent processors.

Each task can be assigned a server (current implementation supports only one task per server).
The server is characterized by period (deadline) and computation time (budget). The ratio
budget/period yields bandwidth, which is the fraction of CPU to be reserved by the scheduler
for each subsequent period.

The CBS is equipped with a set of rules applied to tasks attached to servers ensuring that
deadline miss because of another task cannot occur. In case a task breaks one of the rules, its
priority is pulled to background until the end of its period and then restored again. The rules
are:

• Task cannot exceed its registered budget,

• Task cannot be unblocked when a ratio between remaining budget and remaining dead-
line is higher than declared bandwidth.

The CBS provides an extensive API. Unlike EDF, the rtems_rate_monotonic_period does not
declare a deadline because it is carried out using CBS API. This call only announces next period.

5.3. Uniprocessor Schedulers 69

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.4

5.4 SMP Schedulers

All SMP schedulers included in RTEMS are priority based. The processors managed by a sched-
uler instance are allocated to the highest priority tasks allowed to run.

5.4.1 Earliest Deadline First SMP Scheduler

This is a job-level fixed-priority scheduler using the Earliest Deadline First (EDF) method. By
convention, the maximum priority level is 𝑚𝑖𝑛(𝐼𝑁𝑇_𝑀𝐴𝑋, 262−1) for background tasks. Tasks
without an active deadline are background tasks. In case deadlines are not used, then the EDF
scheduler behaves exactly like a fixed-priority scheduler. The tasks with an active deadline have
a higher priority than the background tasks. This scheduler supports task processor affinities
of one-to-one and one-to-all, e.g., a task can execute on exactly one processor or all processors
managed by the scheduler instance. The processor affinity set of a task must contain all online
processors to select the one-to-all affinity. This is to avoid pathological cases if processors are
added/removed to/from the scheduler instance at run-time. In case the processor affinity set
contains not all online processors, then a one-to-one affinity will be used selecting the processor
with the largest index within the set of processors currently owned by the scheduler instance.
This scheduler algorithm supports thread pinning (page 868). The ready queues use a red-black
tree with the task priority as the key.

This scheduler algorithm is the default scheduler in SMP configurations if more than one pro-
cessor is configured (CONFIGURE_MAXIMUM_PROCESSORS (page 577)).

5.4.2 Deterministic Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for the
ready tasks. The maximum priority level is configurable. By default, the maximum priority level
is 255 (256 priority levels), see CONFIGURE_MAXIMUM_PRIORITY (page 712).

5.4.3 Simple Priority SMP Scheduler

A fixed-priority scheduler which uses a sorted chain for the ready tasks. By convention, the
maximum priority level is 255. The implementation limit is actually 263 − 1.

5.4.4 Arbitrary Processor Affinity Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for
the ready tasks. The maximum priority level is configurable. By default, the maximum prior-
ity level is 255 (256 priority levels), see CONFIGURE_MAXIMUM_PRIORITY (page 712). This
scheduler supports arbitrary task processor affinities. The worst-case run-time complexity of
some scheduler operations exceeds 𝑂(𝑛) while 𝑛 is the count of ready tasks.

70 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

5.5 Directives

This section details the directives of the Scheduler Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

5.5. Directives 71

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.5

5.5.1 rtems_scheduler_ident()

Identifies a scheduler by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_ident(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the scheduler name to look up.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the scheduler will be stored in this object.

DESCRIPTION:

This directive obtains a scheduler identifier associated with the scheduler name specified in
name.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
There was no scheduler associated with the name.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

NOTES:

The scheduler name is determined by the scheduler configuration.

The scheduler identifier is used with other scheduler related directives to access the scheduler.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

72 Chapter 5. Scheduling Concepts

https://en.cppreference.com/w/c/types/NULL

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

5.5.2 rtems_scheduler_ident_by_processor()

Identifies a scheduler by the processor index.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_ident_by_processor(
2 uint32_t cpu_index,
3 rtems_id *id
4);

PARAMETERS:

cpu_index
This parameter is the processor index to identify the scheduler.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the scheduler will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The processor index was invalid.

RTEMS_INCORRECT_STATE
The processor index was valid, however, the corresponding processor was not owned by a
scheduler.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

5.5. Directives 73

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.5

5.5.3 rtems_scheduler_ident_by_processor_set()

Identifies a scheduler by the processor set.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_ident_by_processor_set(
2 size_t cpusetsize,
3 const cpu_set_t *cpuset,
4 rtems_id *id
5);

PARAMETERS:

cpusetsize
This parameter is the size of the processor set referenced by cpuset in bytes. The size shall
be positive.

cpuset
This parameter is the pointer to a cpu_set_t. The referenced processor set will be used to
identify the scheduler.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the scheduler will be stored in this object.

DESCRIPTION:

The scheduler is selected according to the highest numbered online processor in the specified
processor set.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_ADDRESS
The cpuset parameter was NULL.

RTEMS_INVALID_SIZE
The processor set size was invalid.

RTEMS_INVALID_NAME
The processor set contained no online processor.

RTEMS_INCORRECT_STATE
The processor set was valid, however, the highest numbered online processor in the processor
set was not owned by a scheduler.

74 Chapter 5. Scheduling Concepts

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

5.5. Directives 75

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.5

5.5.4 rtems_scheduler_get_maximum_priority()

Gets the maximum task priority of the scheduler.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_get_maximum_priority(
2 rtems_id scheduler_id,
3 rtems_task_priority *priority
4);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

priority
This parameter is the pointer to an rtems_task_priority (page 57) object. When the directive
the maximum priority of the scheduler will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_ADDRESS
The priority parameter was NULL.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

76 Chapter 5. Scheduling Concepts

https://en.cppreference.com/w/c/types/NULL

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

5.5.5 rtems_scheduler_map_priority_to_posix()

Maps a Classic API task priority to the corresponding POSIX thread priority.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_map_priority_to_posix(
2 rtems_id scheduler_id,
3 rtems_task_priority priority,
4 int *posix_priority
5);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

priority
This parameter is the Classic API task priority to map.

posix_priority
This parameter is the pointer to an int object. When the directive call is successful, the
POSIX thread priority value corresponding to the specified Classic API task priority value will
be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The posix_priority parameter was NULL.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_PRIORITY
The Classic API task priority was invalid.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

5.5. Directives 77

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.5

5.5.6 rtems_scheduler_map_priority_from_posix()

Maps a POSIX thread priority to the corresponding Classic API task priority.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_map_priority_from_posix(
2 rtems_id scheduler_id,
3 int posix_priority,
4 rtems_task_priority *priority
5);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

posix_priority
This parameter is the POSIX thread priority to map.

priority
This parameter is the pointer to an rtems_task_priority (page 57) object. When the directive
call is successful, the Classic API task priority value corresponding to the specified POSIX
thread priority value will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The priority parameter was NULL.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_PRIORITY
The POSIX thread priority was invalid.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

78 Chapter 5. Scheduling Concepts

https://en.cppreference.com/w/c/types/NULL

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

5.5.7 rtems_scheduler_get_processor()

Returns the index of the current processor.

CALLING SEQUENCE:

1 uint32_t rtems_scheduler_get_processor(void);

DESCRIPTION:

Where the system was built with SMP support disabled, this directive evaluates to a compile
time constant of zero.

Where the system was built with SMP support enabled, this directive returns the index of the
current processor. The set of processor indices is the range of integers starting with zero up to
rtems_scheduler_get_processor_maximum() (page 80) minus one.

RETURN VALUES:

Returns the index of the current processor.

NOTES:

Outside of sections with disabled thread dispatching the current processor index may change
after every instruction since the thread may migrate from one processor to another. Sections
with disabled interrupts are sections with thread dispatching disabled.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

5.5. Directives 79

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.5

5.5.8 rtems_scheduler_get_processor_maximum()

Returns the processor maximum supported by the system.

CALLING SEQUENCE:

1 uint32_t rtems_scheduler_get_processor_maximum(void);

DESCRIPTION:

Where the system was built with SMP support disabled, this directive evaluates to a compile
time constant of one.

Where the system was built with SMP support enabled, this directive returns the minimum
of the processors (physically or virtually) available at the target and the configured processor
maximum (see CONFIGURE_MAXIMUM_PROCESSORS (page 577)). Not all processors in the
range from processor index zero to the last processor index (which is the processor maximum
minus one) may be configured to be used by a scheduler or may be online (online processors
have a scheduler assigned).

RETURN VALUES:

Returns the processor maximum supported by the system.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

80 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

5.5.9 rtems_scheduler_get_processor_set()

Gets the set of processors owned by the scheduler.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_get_processor_set(
2 rtems_id scheduler_id,
3 size_t cpusetsize,
4 cpu_set_t *cpuset
5);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

cpusetsize
This parameter is the size of the processor set referenced by cpuset in bytes.

cpuset
This parameter is the pointer to a cpu_set_t object. When the directive call is successful, the
processor set of the scheduler will be stored in this object. A set bit in the processor set means
that the corresponding processor is owned by the scheduler, otherwise the bit is cleared.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The cpuset parameter was NULL.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_SIZE
The provided processor set was too small for the set of processors owned by the scheduler.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

5.5. Directives 81

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.5

5.5.10 rtems_scheduler_add_processor()

Adds the processor to the set of processors owned by the scheduler.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_add_processor(
2 rtems_id scheduler_id,
3 uint32_t cpu_index
4);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

cpu_index
This parameter is the index of the processor to add.

DESCRIPTION:

This directive adds the processor specified by the cpu_index to the scheduler specified by
scheduler_id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_NOT_CONFIGURED
The processor was not configured to be used by the application.

RTEMS_INCORRECT_STATE
The processor was configured to be used by the application, however, it was not online.

RTEMS_RESOURCE_IN_USE
The processor was already assigned to a scheduler.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

82 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

5.5.11 rtems_scheduler_remove_processor()

Removes the processor from the set of processors owned by the scheduler.

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_remove_processor(
2 rtems_id scheduler_id,
3 uint32_t cpu_index
4);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

cpu_index
This parameter is the index of the processor to remove.

DESCRIPTION:

This directive removes the processor specified by the cpu_index from the scheduler specified by
scheduler_id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_NUMBER
The processor was not owned by the scheduler.

RTEMS_RESOURCE_IN_USE
The processor was required by at least one non-idle task that used the scheduler as its home
scheduler.

RTEMS_RESOURCE_IN_USE
The processor was the last processor owned by the scheduler and there was at least one task
that used the scheduler as a helping scheduler.

NOTES:

Removing a processor from a scheduler is a complex operation that involves all tasks of the
system.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

5.5. Directives 83

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 5 Section 5.5

84 Chapter 5. Scheduling Concepts

CHAPTER

SIX

INITIALIZATION MANAGER

85

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 6 Section 6.1

6.1 Introduction

The Initialization Manager is responsible for initializing the system.

The system initialization includes the initialization of the Board Support Package, RTEMS, de-
vice drivers, the root filesystem, and the application. The Fatal Error Manager (page 515) is
responsible for the system shutdown. The directives provided by the Initialization Manager are:

• rtems_initialize_executive() (page 95) - Initializes the system and starts multitasking.

86 Chapter 6. Initialization Manager

Chapter 6 Section 6.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

6.2 Background

6.2.1 Initialization Tasks

Initialization task(s) are the mechanism by which RTEMS transfers initial control to the user’s
application. Initialization tasks differ from other application tasks in that they are defined in
the User Initialization Tasks Table and automatically created and started by RTEMS as part of
its initialization sequence. Since the initialization tasks are scheduled using the same algorithm
as all other RTEMS tasks, they must be configured at a priority and mode which will ensure that
they will complete execution before other application tasks execute. Although there is no upper
limit on the number of initialization tasks, an application is required to define at least one.

A typical initialization task will create and start the static set of application tasks. It may also
create any other objects used by the application. Initialization tasks which only perform ini-
tialization should delete themselves upon completion to free resources for other tasks. Initial-
ization tasks may transform themselves into a “normal” application task. This transformation
typically involves changing priority and execution mode. RTEMS does not automatically delete
the initialization tasks.

6.2.2 The Idle Task

The Idle Task is the lowest priority task in a system and executes only when no other task is
ready to execute. The default implementation of this task consists of an infinite loop. RTEMS
allows the Idle Task body to be replaced by a CPU specific implementation, a BSP specific
implementation or an application specific implementation.

The Idle Task is preemptible and WILL be preempted when any other task is made ready to
execute. This characteristic is critical to the overall behavior of any application.

6.2.3 Initialization Manager Failure

System initialization errors are fatal. See Internal Error Codes (page 519).

6.2. Background 87

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 6 Section 6.3

6.3 Operations

6.3.1 Initializing RTEMS

The Initialization Manager rtems_initialize_executive() directives is called by the
boot_card() routine which is invoked by the Board Support Package once a basic C run-time
environment is set up. This consists of

• a valid and accessible text section, read-only data, read-write data and zero-initialized
data,

• an initialization stack large enough to initialize the rest of the Board Support Package,
RTEMS and the device drivers,

• all registers and components mandated by Application Binary Interface, and

• disabled interrupts.

The rtems_initialize_executive() directive uses a system initialization linker set (page 999)
to initialize only those parts of the overall RTEMS feature set that is necessary for a particular
application. Each RTEMS feature used the application may optionally register an initialization
handler. The system initialization API is available via #included <rtems/sysinit.h>.

A list of all initialization steps follows. Some steps are optional depending on the requested
feature set of the application. The initialization steps are execute in the order presented here.

RTEMS_SYSINIT_RECORD
Initialization of the event recording is the first initialization step. This allows to record
the further system initialization. This step is optional and depends on the CONFIG-
URE_RECORD_PER_PROCESSOR_ITEMS (page 654) configuration option.

RTEMS_SYSINIT_BSP_EARLY
The Board Support Package may perform an early platform initialization in this step. This
step is optional.

RTEMS_SYSINIT_MEMORY
The Board Support Package should initialize everything so that calls to _Memory_Get() can be
made after this step. This step is optional.

RTEMS_SYSINIT_DIRTY_MEMORY
The free memory is dirtied in this step. This step is optional and depends on the
BSP_DIRTY_MEMORY BSP option.

RTEMS_SYSINIT_ISR_STACK
The stack checker initializes the ISR stacks in this step. This step is optional and depends on
the CONFIGURE_STACK_CHECKER_ENABLED (page 585) configuration option.

RTEMS_SYSINIT_PER_CPU_DATA
The per-CPU data is initialized in this step. This step is mandatory.

RTEMS_SYSINIT_SBRK
The Board Support Package may initialize the sbrk() support in this step. This step is op-
tional.

RTEMS_SYSINIT_WORKSPACE
The workspace is initialized in this step. This step is optional and depends on the application
configuration.

88 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RTEMS_SYSINIT_MALLOC
The C program heap is initialized in this step. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_BSP_START
The Board Support Package should perform a general platform initialization in this step (e.g.
interrupt controller initialization). This step is mandatory.

RTEMS_SYSINIT_CPU_COUNTER
Initialization of the CPU counter hardware and support functions. The CPU counter is initial-
ized early to allow its use in the tracing and profiling of the system initialization sequence.
This step is optional and depends on the application configuration.

RTEMS_SYSINIT_INITIAL_EXTENSIONS
Registers the initial extensions. This step is optional and depends on the application configu-
ration.

RTEMS_SYSINIT_MP_EARLY
In MPCI configurations, an early MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT_DATA_STRUCTURES
This directive is called when the Board Support Package has completed its basic initialization
and allows RTEMS to initialize the application environment based upon the information in
the Configuration Table, User Initialization Tasks Table, Device Driver Table, User Extension
Table, Multiprocessor Configuration Table, and the Multiprocessor Communications Interface
(MPCI) Table.

RTEMS_SYSINIT_MP
In MPCI configurations, a general MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT_USER_EXTENSIONS
Initialization of the User Extensions object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_TASKS
Initialization of the Classic Tasks object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_CLASSIC_TASKS_MP
In MPCI configurations, the Classic Tasks MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_TIMER
Initialization of the Classic Timer object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_SIGNAL
Initialization of the Classic Signal support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT_CLASSIC_SIGNAL_MP
In MPCI configurations, the Classic Signal MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_EVENT
Initialization of the Classic Event support. This step is optional and depends on the application

6.3. Operations 89

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 6 Section 6.3

configuration. This step is only used on MPCI configurations.

RTEMS_SYSINIT_CLASSIC_EVENT_MP
In MPCI configurations, the Classic Event MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_MESSAGE_QUEUE
Initialization of the Classic Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_CLASSIC_SEMAPHORE
Initialization of the Classic Semaphore object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_SEMAPHORE_MP
In MPCI configurations, the Classic Semaphore MPCI support is initialized in this step. This
step is optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION
Initialization of the Classic Partition object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION_MP
In MPCI configurations, the Classic Partition MPCI support is initialized in this step. This step
is optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_REGION
Initialization of the Classic Region object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_DUAL_PORTED_MEMORY
Initialization of the Classic Dual-Ported Memory object class. This step is optional and de-
pends on the application configuration.

RTEMS_SYSINIT_CLASSIC_RATE_MONOTONIC
Initialization of the Classic Rate-Monotonic object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_CLASSIC_BARRIER
Initialization of the Classic Barrier object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_SIGNALS
Initialization of the POSIX Signals support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT_POSIX_THREADS
Initialization of the POSIX Threads object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_MESSAGE_QUEUE
Initialization of the POSIX Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_POSIX_SEMAPHORE
Initialization of the POSIX Semaphore object class. This step is optional and depends on the
application configuration.

90 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RTEMS_SYSINIT_POSIX_TIMER
Initialization of the POSIX Timer object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_POSIX_SHM
Initialization of the POSIX Shared Memory object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_POSIX_KEYS
Initialization of the POSIX Keys object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_POSIX_CLEANUP
Initialization of the POSIX Cleanup support. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_IDLE_THREADS
Initialization of idle threads. This step is mandatory.

RTEMS_SYSINIT_LIBIO
Initialization of IO library. This step is optional and depends on the application configuration.

RTEMS_SYSINIT_ROOT_FILESYSTEM
Initialization of the root filesystem. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT_DRVMGR
Driver manager initialization. This step is optional and depends on the application configura-
tion. Only available if the driver manager is enabled.

RTEMS_SYSINIT_MP_SERVER
In MPCI configurations, the MPCI server is initialized in this step. This step is mandatory in
MPCI configurations.

RTEMS_SYSINIT_BSP_PRE_DRIVERS
Initialization step performed right before device drivers are initialized. This step is mandatory.

RTEMS_SYSINIT_DRVMGR_LEVEL_1
Driver manager level 1 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT_DEVICE_DRIVERS
This step initializes all statically configured device drivers and performs all RTEMS initializa-
tion which requires device drivers to be initialized. This step is mandatory. In a multiprocessor
configuration, this service will initialize the Multiprocessor Communications Interface (MPCI)
and synchronize with the other nodes in the system.

RTEMS_SYSINIT_DRVMGR_LEVEL_2
Driver manager level 2 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT_DRVMGR_LEVEL_3
Driver manager level 3 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT_DRVMGR_LEVEL_4
Driver manager level 4 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

6.3. Operations 91

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 6 Section 6.3

RTEMS_SYSINIT_MP_FINALIZE
Finalize MPCI initialization. This step is mandatory on MPCI configurations.

RTEMS_SYSINIT_CLASSIC_USER_TASKS
Creates and starts the Classic initialization tasks. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_USER_THREADS
Creates POSIX initialization threads. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT_STD_FILE_DESCRIPTORS
Open the standard input, output and error file descriptors. This step is optional and depends
on the application configuration.

The final action of the rtems_initialize_executive() directive is to start multitasking and
switch to the highest priority ready thread. RTEMS does not return to the initialization context
and the initialization stack may be re-used for interrupt processing.

Many of RTEMS actions during initialization are based upon the contents of the Configuration
Table. For more information regarding the format and contents of this table, please refer to the
chapter Configuring a System (page 555).

6.3.2 Global Construction

The global construction is carried out by the Classic API initialization task. If no Clas-
sic API initialization task exists, then it is carried out by the POSIX API initialization
thread. If no initialization task or thread exists, then no global construction is per-
formed. The Classic API task or POSIX API thread which carries out global construction is
called the main thread. For configuration options related to initialization tasks, see CON-
FIGURE_RTEMS_INIT_TASKS_TABLE (page 634), CONFIGURE_POSIX_INIT_THREAD_TABLE
(page 648), and CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION (page 707).

Global construction runs before the task entry of the main thread. The configuration of the
main thread must take the global construction into account. In particular, the main thread stack
size, priority, attributes and initial modes must be set accordingly. Thread-local objects and
POSIX key values created during global construction are accessible by the main thread. If other
initialization tasks are configured, and one of them has a higher priority than the main thread
and the main thread is preemptible, this task executes before the global construction. In case the
main thread blocks during global construction, then other tasks may run. In SMP configurations,
other initialization tasks may run in parallel with global construction. Tasks created during
global construction may preempt the main thread or run in parallel in SMP configurations. All
RTEMS services allowed in task context are allowed during global construction.

Global constructors are C++ global object constructors or functions with the constructor at-
tribute. For example, the following test program

1 #include <stdio.h>
2 #include <assert.h>
3

4 class A {
5 public:
6 A()
7 {
8 puts("A:A()");

(continues on next page)

92 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

9 }
10 };
11

12 static A a;
13

14 static thread_local int i;
15

16 static thread_local int j;
17

18 static __attribute__((__constructor__)) void b(void)
19 {
20 i = 1;
21 puts("b()");
22 }
23

24 static __attribute__((__constructor__(1000))) void c(void)
25 {
26 puts("c()");
27 }
28

29 int main(void)
30 {
31 assert(i == 1);
32 assert(j == 0);
33 return 0;
34 }

should output:

1 c()
2 b()
3 A:A()

6.3. Operations 93

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 6 Section 6.4

6.4 Directives

This section details the directives of the Initialization Manager. A subsection is dedicated to
each of this manager’s directives and lists the calling sequence, parameters, description, return
values, and notes of the directive.

94 Chapter 6. Initialization Manager

Chapter 6 Section 6.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

6.4.1 rtems_initialize_executive()

Initializes the system and starts multitasking.

CALLING SEQUENCE:

1 void rtems_initialize_executive(void);

DESCRIPTION:

Iterates through the system initialization linker set and invokes the registered handlers. The
final step is to start multitasking.

NOTES:

Errors in the initialization sequence are usually fatal and lead to a system termination.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive should be called by boot_card() only.

• The directive will not return to the caller.

6.4. Directives 95

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 6 Section 6.4

96 Chapter 6. Initialization Manager

CHAPTER

SEVEN

TASK MANAGER

97

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.1

7.1 Introduction

The Task Manager provides a comprehensive set of directives to create, delete, and administer
tasks. The directives provided by the Task Manager are:

• rtems_task_create() (page 109) - Creates a task.

• rtems_task_construct() (page 113) - Constructs a task from the specified task configura-
tion.

• rtems_task_ident() (page 115) - Identifies a task by the object name.

• rtems_task_self() (page 117) - Gets the task identifier of the calling task.

• rtems_task_start() (page 118) - Starts the task.

• rtems_task_restart() (page 120) - Restarts the task.

• rtems_task_delete() (page 122) - Deletes the task.

• rtems_task_exit() (page 124) - Deletes the calling task.

• rtems_task_suspend() (page 125) - Suspends the task.

• rtems_task_resume() (page 126) - Resumes the task.

• rtems_task_is_suspended() (page 127) - Checks if the task is suspended.

• rtems_task_set_priority() (page 128) - Sets the real priority or gets the current priority of
the task.

• rtems_task_get_priority() (page 130) - Gets the current priority of the task with respect to
the scheduler.

• rtems_task_mode() (page 132) - Gets and optionally sets the mode of the calling task.

• rtems_task_wake_after() (page 134) - Wakes up after a count of clock ticks have occurred
or yields the processor.

• rtems_task_wake_when() (page 135) - Wakes up when specified.

• rtems_task_get_scheduler() (page 136) - Gets the home scheduler of the task.

• rtems_task_set_scheduler() (page 137) - Sets the home scheduler for the task.

• rtems_task_get_affinity() (page 139) - Gets the processor affinity of the task.

• rtems_task_set_affinity() (page 141) - Sets the processor affinity of the task.

• rtems_task_iterate() (page 143) - Iterates over all tasks and invokes the visitor routine for
each task.

• RTEMS_TASK_STORAGE_SIZE() (page 144) - Gets the recommended task storage area
size for the size and task attributes.

98 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.2 Background

7.2.1 Task Definition

Many definitions of a task have been proposed in computer literature. Unfortunately, none of
these definitions encompasses all facets of the concept in a manner which is operating system
independent. Several of the more common definitions are provided to enable each user to select
a definition which best matches their own experience and understanding of the task concept:

• a “dispatchable” unit.

• an entity to which the processor is allocated.

• an atomic unit of a real-time, multiprocessor system.

• single threads of execution which concurrently compete for resources.

• a sequence of closely related computations which can execute concurrently with other
computational sequences.

From RTEMS’ perspective, a task is the smallest thread of execution which can compete on its
own for system resources. A task is manifested by the existence of a task control block (TCB).

7.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS defined data structure which contains all the infor-
mation that is pertinent to the execution of a task. During system initialization, RTEMS reserves
a TCB for each task configured. A TCB is allocated upon creation of the task and is returned to
the TCB free list upon deletion of the task.

The TCB’s elements are modified as a result of system calls made by the application in response
to external and internal stimuli. TCBs are the only RTEMS internal data structure that can
be accessed by an application via user extension routines. The TCB contains a task’s name,
ID, current priority, current and starting states, execution mode, TCB user extension pointer,
scheduling control structures, as well as data required by a blocked task.

A task’s context is stored in the TCB when a task switch occurs. When the task regains control
of the processor, its context is restored from the TCB. When a task is restarted, the initial state
of the task is restored from the starting context area in the task’s TCB.

7.2.3 Task Memory

The system uses two separate memory areas to manage a task. One memory area is the Task
Control Block (page 99). The other memory area is allocated from the stack space or provided
by the user and contains

• the task stack,

• the thread-local storage (TLS), and

• an optional architecture-specific floating-point context.

The size of the thread-local storage is determined at link time. A user-provided task stack must
take the size of the thread-local storage into account.

On architectures with a dedicated floating-point context, the application configuration assumes
that every task is a floating-point task, but whether or not a task is actually floating-point
is determined at runtime during task creation (see Floating Point Considerations (page 103)).
In highly memory constrained systems this potential overestimate of the task stack space can

7.2. Background 99

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.2

be mitigated through the CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 584) configuration
option and aligned task stack sizes for the tasks. A user-provided task stack must take the
potential floating-point context into account.

7.2.4 Task Name

By default, the task name is defined by the task object name given to rtems_task_create(). The
task name can be obtained with the pthread_getname_np() function. Optionally, a new task
name may be set with the pthread_setname_np() function. The maximum size of a task name is
defined by the application configuration option CONFIGURE_MAXIMUM_THREAD_NAME_SIZE
(page 579).

7.2.5 Task States

A task may exist in one of the following five states:

• executing - Currently scheduled to the CPU

• ready - May be scheduled to the CPU

• blocked - Unable to be scheduled to the CPU

• dormant - Created task that is not started

• non-existent - Uncreated or deleted task

An active task may occupy the executing, ready, blocked or dormant state, otherwise the task
is considered non-existent. One or more tasks may be active in the system simultaneously.
Multiple tasks communicate, synchronize, and compete for system resources with each other
via system calls. The multiple tasks appear to execute in parallel, but actually each is dispatched
to the CPU for periods of time determined by the RTEMS scheduling algorithm. The scheduling
of a task is based on its current state and priority.

7.2.6 Task Priority

A task’s priority determines its importance in relation to the other tasks executing on the pro-
cessor set owned by a scheduler. Normally, RTEMS supports 256 levels of priority ranging from
0 to 255. The priority level 0 represents a special priority reserved for the operating system.
The data type rtems_task_priority is used to store task priorities. The maximum priority
level depends on the configured scheduler, see CONFIGURE_MAXIMUM_PRIORITY (page 712),
Clustered Scheduler Configuration (page 726), and Scheduling Concepts (page 61).

Tasks of numerically smaller priority values are more important tasks than tasks of numerically
larger priority values. For example, a task at priority level 5 is of higher privilege than a task at
priority level 10. There is no limit to the number of tasks assigned to the same priority.

Each task has a priority associated with it at all times. The initial value of this priority is assigned
at task creation time. The priority of a task may be changed at any subsequent time.

Priorities are used by the scheduler to determine which ready task will be allowed to execute.
In general, the higher the logical priority of a task, the more likely it is to receive processor
execution time.

100 Chapter 7. Task Manager

http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html
http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.2.7 Task Mode

A task’s execution mode is a combination of the following four components:

• preemption

• ASR processing

• timeslicing

• interrupt level

It is used to modify RTEMS’ scheduling process and to alter the execution environment of the
task. The data type rtems_task_mode is used to manage the task execution mode.

The preemption component allows a task to determine when control of the processor is re-
linquished. If preemption is disabled (RTEMS_NO_PREEMPT), the task will retain control of the
processor as long as it is in the executing state - even if a higher priority task is made ready.
If preemption is enabled (RTEMS_PREEMPT) and a higher priority task is made ready, then the
processor will be taken away from the current task immediately and given to the higher priority
task.

The timeslicing component is used by the RTEMS scheduler to determine how the processor is
allocated to tasks of equal priority. If timeslicing is enabled (RTEMS_TIMESLICE), then RTEMS
will limit the amount of time the task can execute before the processor is allocated to another
ready task of equal priority. The length of the timeslice is application dependent and specified in
the Configuration Table. If timeslicing is disabled (RTEMS_NO_TIMESLICE), then the task will be
allowed to execute until a task of higher priority is made ready. If RTEMS_NO_PREEMPT is selected,
then the timeslicing component is ignored by the scheduler.

The asynchronous signal processing component is used to determine when received signals
are to be processed by the task. If signal processing is enabled (RTEMS_ASR), then signals sent
to the task will be processed the next time the task executes. If signal processing is disabled
(RTEMS_NO_ASR), then all signals received by the task will remain posted until signal processing
is enabled. This component affects only tasks which have established a routine to process
asynchronous signals.

The interrupt level component is used to determine which interrupts will be enabled when the
task is executing. RTEMS_INTERRUPT_LEVEL(n) specifies that the task will execute at interrupt
level n.

RTEMS_PREEMPT enable preemption (default)
RTEMS_NO_PREEMPT disable preemption
RTEMS_NO_TIMESLICE disable timeslicing (default)
RTEMS_TIMESLICE enable timeslicing
RTEMS_ASR enable ASR processing (default)
RTEMS_NO_ASR disable ASR processing
RTEMS_INTERRUPT_LEVEL(0) enable all interrupts (default)
RTEMS_INTERRUPT_LEVEL(n) execute at interrupt level n

The set of default modes may be selected by specifying the RTEMS_DEFAULT_MODES constant.

7.2. Background 101

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.2

7.2.8 Task Life States

Independent of the task state with respect to the scheduler, the task life is determined by several
orthogonal states:

• protected or unprotected

• deferred life changes or no deferred life changes

• restarting or not restarting

• terminating or not terminating

• detached or not detached

While the task life is protected, asynchronous task restart and termination requests are blocked.
A task may still restart or terminate itself. All tasks are created with an unprotected task life.
The task life protection is used by the system to prevent system resources being affected by
asynchronous task restart and termination requests. The task life protection can be enabled
(PTHREAD_CANCEL_DISABLE) or disabled (PTHREAD_CANCEL_ENABLE) for the calling task through
the pthread_setcancelstate() directive.

While deferred life changes are enabled, asynchronous task restart and termination requests
are delayed until the task performs a life change itself or calls pthread_testcancel(). Can-
cellation points are not implemented in RTEMS. Deferred task life changes can be enabled
(PTHREAD_CANCEL_DEFERRED) or disabled (PTHREAD_CANCEL_ASYNCHRONOUS) for the calling task
through the pthread_setcanceltype() directive. Classic API tasks are created with deferred
life changes disabled. POSIX threads are created with deferred life changes enabled.

A task is made restarting by issuing a task restart request through the rtems_task_restart()
(page 120) directive.

A task is made terminating by issuing a task termination request through the rtems_task_exit()
(page 124), rtems_task_delete() (page 122), pthread_exit(), and pthread_cancel() directives.

When a detached task terminates, the termination procedure completes without the need for an-
other task to join with the terminated task. Classic API tasks are created as not detached. The
detached state of created POSIX threads is determined by the thread attributes. They are created
as not detached by default. The calling task is made detached through the pthread_detach() di-
rective. The rtems_task_exit() (page 124) directive and self deletion though rtems_task_delete()
(page 122) directive make the calling task detached. In contrast, the pthread_exit() directive
does not change the detached state of the calling task.

7.2.9 Accessing Task Arguments

All RTEMS tasks are invoked with a single argument which is specified when they are started
or restarted. The argument is commonly used to communicate startup information to the task.
The simplest manner in which to define a task which accesses it argument is:

1 rtems_task user_task(
2 rtems_task_argument argument
3);

Application tasks requiring more information may view this single argument as an index into
an array of parameter blocks.

102 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.2.10 Floating Point Considerations

Please consult the RTEMS CPU Architecture Supplement if this section is relevant on your ar-
chitecture. On some architectures the floating-point context is contained in the normal task
context and this section does not apply.

Creating a task with the RTEMS_FLOATING_POINT attribute flag results in additional memory being
allocated for the task to store the state of the numeric coprocessor during task switches. This ad-
ditional memory is not allocated for RTEMS_NO_FLOATING_POINT tasks. Saving and restoring the
context of a RTEMS_FLOATING_POINT task takes longer than that of a RTEMS_NO_FLOATING_POINT
task because of the relatively large amount of time required for the numeric coprocessor to save
or restore its computational state.

Since RTEMS was designed specifically for embedded military applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the state
of the numeric coprocessor. In uniprocessor configurations, the state of the numeric coprocessor
is only saved when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last
task to utilize the coprocessor. In a uniprocessor system with only one RTEMS_FLOATING_POINT
task, the state of the numeric coprocessor will never be saved or restored.

Although the overhead imposed by RTEMS_FLOATING_POINT tasks is minimal, some applications
may wish to completely avoid the overhead associated with RTEMS_FLOATING_POINT tasks and
still utilize a numeric coprocessor. By preventing a task from being preempted while performing
a sequence of floating point operations, a RTEMS_NO_FLOATING_POINT task can utilize the numeric
coprocessor without incurring the overhead of a RTEMS_FLOATING_POINT context switch. This
approach also avoids the allocation of a floating point context area. However, if this approach
is taken by the application designer, no tasks should be created as RTEMS_FLOATING_POINT tasks.
Otherwise, the floating point context will not be correctly maintained because RTEMS assumes
that the state of the numeric coprocessor will not be altered by RTEMS_NO_FLOATING_POINT tasks.
Some architectures with a dedicated floating-point context raise a processor exception if a task
with RTEMS_NO_FLOATING_POINT issues a floating-point instruction, so this approach may not
work at all.

If the supported processor type does not have hardware floating capabilities or a standard nu-
meric coprocessor, RTEMS will not provide built-in support for hardware floating point on that
processor. In this case, all tasks are considered RTEMS_NO_FLOATING_POINT whether created as
RTEMS_FLOATING_POINT or RTEMS_NO_FLOATING_POINT tasks. A floating point emulation software
library must be utilized for floating point operations.

On some processors, it is possible to disable the floating point unit dynamically. If this capability
is supported by the target processor, then RTEMS will utilize this capability to enable the float-
ing point unit only for tasks which are created with the RTEMS_FLOATING_POINT attribute. The
consequence of a RTEMS_NO_FLOATING_POINT task attempting to access the floating point unit is
CPU dependent but will generally result in an exception condition.

7.2.11 Building a Task Attribute Set

In general, an attribute set is built by a bitwise OR of the desired components. The set of valid
task attribute components is listed below:

RTEMS_NO_FLOATING_POINT does not use coprocessor (default)
RTEMS_FLOATING_POINT uses numeric coprocessor
RTEMS_LOCAL local task (default)
RTEMS_GLOBAL global task

7.2. Background 103

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.2

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the com-
ponent list. A component listed as a default is not required to appear in the component list,
although it is a good programming practice to specify default components. If all defaults are
desired, then RTEMS_DEFAULT_ATTRIBUTES should be used.

This example demonstrates the attribute_set parameter needed to create a local task which uti-
lizes the numeric coprocessor. The attribute_set parameter could be RTEMS_FLOATING_POINT
or RTEMS_LOCAL | RTEMS_FLOATING_POINT. The attribute_set parameter can be set to
RTEMS_FLOATING_POINT because RTEMS_LOCAL is the default for all created tasks. If the task
were global and used the numeric coprocessor, then the attribute_set parameter would be
RTEMS_GLOBAL | RTEMS_FLOATING_POINT.

7.2.12 Building a Mode and Mask

In general, a mode and its corresponding mask is built by a bitwise OR of the desired compo-
nents. The set of valid mode constants and each mode’s corresponding mask constant is listed
below:

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_
LEVEL(0)

is masked by RTEMS_INTERRUPT_MASK and enables all interrupts

RTEMS_INTERRUPT_
LEVEL(n)

is masked by RTEMS_INTERRUPT_MASK and sets interrupts level n

Mode values are specifically designed to be mutually exclusive, therefore bitwise OR and addi-
tion operations are equivalent as long as each mode appears exactly once in the component list.
A mode component listed as a default is not required to appear in the mode component list,
although it is a good programming practice to specify default components. If all defaults are
desired, the mode RTEMS_DEFAULT_MODES and the mask RTEMS_ALL_MODE_MASKS should be used.

The following example demonstrates the mode and mask parameters used with the
rtems_task_mode directive to place a task at interrupt level 3 and make it non-preemptible.
The mode should be set to RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT to indicate the
desired preemption mode and interrupt level, while the mask parameter should be set to
RTEMS_INTERRUPT_MASK | RTEMS_NO_PREEMPT_MASK to indicate that the calling task’s interrupt
level and preemption mode are being altered.

104 Chapter 7. Task Manager

Chapter 7 Section 7.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.3 Operations

7.3.1 Creating Tasks

The rtems_task_create directive creates a task by allocating a task control block, assigning the
task a user-specified name, allocating it a stack and floating point context area, setting a user-
specified initial priority, setting a user-specified initial mode, and assigning it a task ID. Newly
created tasks are initially placed in the dormant state. All RTEMS tasks execute in the most
privileged mode of the processor.

7.3.2 Obtaining Task IDs

When a task is created, RTEMS generates a unique task ID and assigns it to the created task
until it is deleted. The task ID may be obtained by either of two methods. First, as the result
of an invocation of the rtems_task_create directive, the task ID is stored in a user provided
location. Second, the task ID may be obtained later using the rtems_task_ident directive. The
task ID is used by other directives to manipulate this task.

7.3.3 Starting and Restarting Tasks

The rtems_task_start directive is used to place a dormant task in the ready state. This enables
the task to compete, based on its current priority, for the processor and other system resources.
Any actions, such as suspension or change of priority, performed on a task prior to starting it
are nullified when the task is started.

With the rtems_task_start directive the user specifies the task’s starting address and argument.
The argument is used to communicate some startup information to the task. As part of this di-
rective, RTEMS initializes the task’s stack based upon the task’s initial execution mode and start
address. The starting argument is passed to the task in accordance with the target processor’s
calling convention.

The rtems_task_restart directive restarts a task at its initial starting address with its original
priority and execution mode, but with a possibly different argument. The new argument may be
used to distinguish between the original invocation of the task and subsequent invocations. The
task’s stack and control block are modified to reflect their original creation values. Although
references to resources that have been requested are cleared, resources allocated by the task
are NOT automatically returned to RTEMS. A task cannot be restarted unless it has previously
been started (i.e. dormant tasks cannot be restarted). All restarted tasks are placed in the ready
state.

7.3.4 Suspending and Resuming Tasks

The rtems_task_suspend directive is used to place either the caller or another task into a sus-
pended state. The task remains suspended until a rtems_task_resume directive is issued. This
implies that a task may be suspended as well as blocked waiting either to acquire a resource or
for the expiration of a timer.

The rtems_task_resume directive is used to remove another task from the suspended state. If
the task is not also blocked, resuming it will place it in the ready state, allowing it to once again
compete for the processor and resources. If the task was blocked as well as suspended, this
directive clears the suspension and leaves the task in the blocked state.

Suspending a task which is already suspended or resuming a task which is not suspended is con-
sidered an error. The rtems_task_is_suspended can be used to determine if a task is currently
suspended.

7.3. Operations 105

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.3

7.3.5 Delaying the Currently Executing Task

The rtems_task_wake_after directive creates a sleep timer which allows a task to go to sleep
for a specified count of clock ticks. The task is blocked until the count of clock ticks has elapsed,
at which time the task is unblocked. A task calling the rtems_task_wake_after directive with a
delay of RTEMS_YIELD_PROCESSOR ticks will yield the processor to any other ready task of equal
or greater priority and remain ready to execute.

The rtems_task_wake_when directive creates a sleep timer which allows a task to go to sleep
until a specified date and time. The calling task is blocked until the specified date and time has
occurred, at which time the task is unblocked.

7.3.6 Changing Task Priority

The rtems_task_set_priority directive is used to obtain or change the current priority of either
the calling task or another task. If the new priority requested is RTEMS_CURRENT_PRIORITY or the
task’s actual priority, then the current priority will be returned and the task’s priority will remain
unchanged. If the task’s priority is altered, then the task will be scheduled according to its new
priority.

The rtems_task_restart directive resets the priority of a task to its original value.

7.3.7 Changing Task Mode

The rtems_task_mode directive is used to obtain or change the current execution mode of the
calling task. A task’s execution mode is used to enable preemption, timeslicing, ASR processing,
and to set the task’s interrupt level.

The rtems_task_restart directive resets the mode of a task to its original value.

7.3.8 Task Deletion

RTEMS provides the rtems_task_delete directive to allow a task to delete itself or any other
task. This directive removes all RTEMS references to the task, frees the task’s control block,
removes it from resource wait queues, and deallocates its stack as well as the optional floating
point context. The task’s name and ID become inactive at this time, and any subsequent refer-
ences to either of them is invalid. In fact, RTEMS may reuse the task ID for another task which
is created later in the application. A specialization of rtems_task_delete is rtems_task_exit
which deletes the calling task.

Unexpired delay timers (i.e. those used by rtems_task_wake_after and rtems_task_wake_when)
and timeout timers associated with the task are automatically deleted, however, other resources
dynamically allocated by the task are NOT automatically returned to RTEMS. Therefore, before
a task is deleted, all of its dynamically allocated resources should be deallocated by the user.
This may be accomplished by instructing the task to delete itself rather than directly deleting the
task. Other tasks may instruct a task to delete itself by sending a “delete self” message, event,
or signal, or by restarting the task with special arguments which instruct the task to delete itself.

7.3.9 Setting Affinity to a Single Processor

On some embedded applications targeting SMP systems, it may be beneficial to lock individual
tasks to specific processors. In this way, one can designate a processor for I/O tasks, another
for computation, etc.. The following illustrates the code sequence necessary to assign a task an
affinity for processor with index processor_index.

106 Chapter 7. Task Manager

Chapter 7 Section 7.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

1 #include <rtems.h>
2 #include <assert.h>
3

4 void pin_to_processor(rtems_id task_id, int processor_index)
5 {
6 rtems_status_code sc;
7 cpu_set_t cpuset;
8 CPU_ZERO(&cpuset);
9 CPU_SET(processor_index, &cpuset);

10 sc = rtems_task_set_affinity(task_id, sizeof(cpuset), &cpuset);
11 assert(sc == RTEMS_SUCCESSFUL);
12 }

It is important to note that the cpuset is not validated until the rtems_task_set_affinity call
is made. At that point, it is validated against the current system configuration.

7.3.10 Transition Advice for Removed Notepads

Task notepads and the associated directives TASK_GET_NOTE - Get task notepad entry
(page 148) and TASK_SET_NOTE - Set task notepad entry (page 149) were removed in RTEMS
5.1. These were never thread-safe to access and subject to conflicting use of the notepad index
by libraries which were designed independently.

It is recommended that applications be modified to use services which are thread safe and
not subject to issues with multiple applications conflicting over the key (e.g. notepad index)
selection. For most applications, POSIX Keys should be used. These are available in all RTEMS
build configurations. It is also possible that thread-local storage (TLS) is an option for some use
cases.

7.3.11 Transition Advice for Removed Task Variables

Task notepads and the associated directives TASK_VARIABLE_ADD - Associate per task vari-
able (page 150), TASK_VARIABLE_GET - Obtain value of a per task variable (page 151) and
TASK_VARIABLE_DELETE - Remove per task variable (page 152) were removed in RTEMS 5.1.
Task variables must be replaced by POSIX Keys or thread-local storage (TLS). POSIX Keys are
available in all configurations and support value destructors. For the TLS support consult the
RTEMS CPU Architecture Supplement.

7.3. Operations 107

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4 Directives

This section details the directives of the Task Manager. A subsection is dedicated to each of this
manager’s directives and lists the calling sequence, parameters, description, return values, and
notes of the directive.

108 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.1 rtems_task_create()

Creates a task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_create(
2 rtems_name name,
3 rtems_task_priority initial_priority,
4 size_t stack_size,
5 rtems_mode initial_modes,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

PARAMETERS:

name
This parameter is the object name of the task.

initial_priority
This parameter is the initial task priority.

stack_size
This parameter is the task stack size in bytes.

initial_modes
This parameter is the initial mode set of the task.

attribute_set
This parameter is the attribute set of the task.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created task will be stored in this object.

DESCRIPTION:

This directive creates a task which resides on the local node. The task has the user-defined
object name specified in name. The assigned object identifier is returned in id. This identifier is
used to access the task with other task related directives.

The initial priority of the task is specified in initial_priority. The home scheduler of the
created task is the home scheduler of the calling task at some time point during the task creation.
The initial task priority specified in initial_priority shall be valid for this scheduler.

The stack size of the task is specified in stack_size. If the requested stack size is less
than the configured minimum stack size, then RTEMS will use the configured minimum as
the stack size for this task. The configured minimum stack size is defined by the CONFIG-
URE_MINIMUM_TASK_STACK_SIZE (page 584) application configuration option. In addition
to being able to specify the task stack size as a integer, there are two constants which may be
specified:

• The RTEMS_MINIMUM_STACK_SIZE constant can be specified to use the recommended mini-
mum stack size for the target processor. This value is selected by the RTEMS maintainers
conservatively to minimize the risk of blown stacks for most user applications. Using this

7.4. Directives 109

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

constant when specifying the task stack size, indicates that the stack size will be at least
RTEMS_MINIMUM_STACK_SIZE bytes in size. If the user configured minimum stack size is
larger than the recommended minimum, then it will be used.

• The RTEMS_CONFIGURED_MINIMUM_STACK_SIZE constant can be specified to use the mini-
mum stack size that was configured by the application. If not explicitly configured by
the application, the default configured minimum stack size is the target processor depen-
dent value RTEMS_MINIMUM_STACK_SIZE. Since this uses the configured minimum stack size
value, you may get a stack size that is smaller or larger than the recommended minimum.
This can be used to provide large stacks for all tasks on complex applications or small
stacks on applications that are trying to conserve memory.

The initial mode set specified in initial_modes is built through a bitwise or of the mode con-
stants described below. Not all combinations of modes are allowed. Some modes are mutually
exclusive. If mutually exclusive modes are combined, the behaviour is undefined. Default task
modes can be selected by using the RTEMS_DEFAULT_MODES constant. The task mode set defines

• the preemption mode of the task: RTEMS_PREEMPT (default) or RTEMS_NO_PREEMPT,

• the timeslicing mode of the task: RTEMS_TIMESLICE or RTEMS_NO_TIMESLICE (default),

• the ASR processing mode of the task: RTEMS_ASR (default) or RTEMS_NO_ASR,

• the interrupt level of the task: RTEMS_INTERRUPT_LEVEL() with a default of
RTEMS_INTERRUPT_LEVEL(0) which is associated with enabled interrupts.

The initial preemption mode of the task is enabled or disabled.

• An enabled preemption is the default and can be emphasized through the use of the
RTEMS_PREEMPT mode constant.

• A disabled preemption is set by the RTEMS_NO_PREEMPT mode constant.

The initial timeslicing mode of the task is enabled or disabled.

• A disabled timeslicing is the default and can be emphasized through the use of the
RTEMS_NO_TIMESLICE mode constant.

• An enabled timeslicing is set by the RTEMS_TIMESLICE mode constant.

The initial ASR processing mode of the task is enabled or disabled.

• An enabled ASR processing is the default and can be emphasized through the use of the
RTEMS_ASR mode constant.

• A disabled ASR processing is set by the RTEMS_NO_ASR mode constant.

The initial interrupt level mode of the task is defined by RTEMS_INTERRUPT_LEVEL().

• Task execution with interrupts enabled the default and can be emphasized through the
use of the RTEMS_INTERRUPT_LEVEL() mode macro with a value of zero (0) for the pa-
rameter. An interrupt level of zero is associated with enabled interrupts on all target
processors.

• Task execution at a non-zero interrupt level can be specified by the
RTEMS_INTERRUPT_LEVEL() mode macro with a non-zero value for the parameter.
The interrupt level portion of the task mode supports a maximum of 256 interrupt
levels. These levels are mapped onto the interrupt levels actually supported by the target
processor in a processor dependent fashion.

110 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The attribute set specified in attribute_set is built through a bitwise or of the attribute con-
stants described below. Not all combinations of attributes are allowed. Some attributes are
mutually exclusive. If mutually exclusive attributes are combined, the behaviour is undefined.
Attributes not mentioned below are not evaluated by this directive and have no effect. Default
attributes can be selected by using the RTEMS_DEFAULT_ATTRIBUTES constant. The attribute set
defines

• the scope of the task: RTEMS_LOCAL (default) or RTEMS_GLOBAL and

• the floating-point unit use of the task: RTEMS_FLOATING_POINT or
RTEMS_NO_FLOATING_POINT (default).

The task has a local or global scope in a multiprocessing network (this attribute does not refer to
SMP systems). The scope is selected by the mutually exclusive RTEMS_LOCAL and RTEMS_GLOBAL
attributes.

• A local scope is the default and can be emphasized through the use of the RTEMS_LOCAL
attribute. A local task can be only used by the node which created it.

• A global scope is established if the RTEMS_GLOBAL attribute is set. Setting the global
attribute in a single node system has no effect.the

The use of the floating-point unit is selected by the mutually exclusive RTEMS_FLOATING_POINT
and RTEMS_NO_FLOATING_POINT attributes. On some target processors, the use of the floating-
point unit can be enabled or disabled for each task. Other target processors may have no
hardware floating-point unit or enable the use of the floating-point unit for all tasks. Consult
the RTEMS CPU Architecture Supplement for the details.

• A disabled floating-point unit is the default and can be emphasized through use of the
RTEMS_NO_FLOATING_POINT attribute. For performance reasons, it is recommended that
tasks not using the floating-point unit should specify this attribute.

• An enabled floating-point unit is selected by the RTEMS_FLOATING_POINT attribute.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_PRIORITY
The initial_priority was invalid.

RTEMS_TOO_MANY
There was no inactive object available to create a task. The number of tasks available to the
application is configured through the CONFIGURE_MAXIMUM_TASKS (page 621) application
configuration option.

RTEMS_TOO_MANY
In multiprocessing configurations, there was no inactive global object available to create a
global task. The number of global objects available to the application is configured through
the CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configuration op-
tion.

7.4. Directives 111

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

RTEMS_UNSATISFIED
There was not enough memory to allocate the task storage area. The task storage area con-
tains the task stack, the thread-local storage, and the floating point context.

RTEMS_UNSATISFIED
One of the task create extensions failed to create the task.

RTEMS_UNSATISFIED
In SMP configurations, the non-preemption mode was not supported.

RTEMS_UNSATISFIED
In SMP configurations, the interrupt level mode was not supported.

NOTES:

The task processor affinity is initialized to the set of online processors.

When created, a task is placed in the dormant state and can only be made ready to execute
using the directive rtems_task_start() (page 118).

Application developers should consider the stack usage of the device drivers when calculating
the stack size required for tasks which utilize the driver. The task stack size shall account for
an target processor dependent interrupt stack frame which may be placed on the stack of the
interrupted task while servicing an interrupt. The stack checker may be used to monitor the
stack usage, see CONFIGURE_STACK_CHECKER_ENABLED (page 585).

For control and maintenance of the task, RTEMS allocates a TCB from the local TCB free pool
and initializes it.

The TCB for a global task is allocated on the local node. Task should not be made global unless
remote tasks must interact with the task. This is to avoid the system overhead incurred by the
creation of a global task. When a global task is created, the task’s name and identifier must be
transmitted to every node in the system for insertion in the local copy of the global object table.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The number of tasks available to the application is configured through the CONFIG-
URE_MAXIMUM_TASKS (page 621) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

• The number of global objects available to the application is configured through the CON-
FIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configuration option.

112 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.2 rtems_task_construct()

Constructs a task from the specified task configuration.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_construct(
2 const rtems_task_config *config,
3 rtems_id *id
4);

PARAMETERS:

config
This parameter is the pointer to an rtems_task_config (page 54) object. It configures the task.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the constructed task will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The config parameter was NULL.

RTEMS_INVALID_NAME
The task name was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_PRIORITY
The initial task priority was invalid.

RTEMS_INVALID_SIZE
The thread-local storage size is greater than the maximum thread-local storage size specified
in the task configuration. The thread-local storage size is determined by the thread-local vari-
ables used by the application and CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE
(page 578).

RTEMS_INVALID_SIZE
The task storage area was too small to provide a task stack of the configured minimum size,
see CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 584). The task storage area contains
the task stack, the thread-local storage, and the floating-point context on architectures with a
separate floating-point context.

RTEMS_TOO_MANY
There was no inactive task object available to construct a task.

RTEMS_TOO_MANY
In multiprocessing configurations, there was no inactive global object available to construct a
global task.

7.4. Directives 113

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

RTEMS_UNSATISFIED
One of the task create extensions failed during the task construction.

RTEMS_UNSATISFIED
In SMP configurations, the non-preemption mode was not supported.

RTEMS_UNSATISFIED
In SMP configurations, the interrupt level mode was not supported.

NOTES:

In contrast to tasks created by rtems_task_create() (page 109), the tasks constructed by this
directive use a user-provided task storage area. The task storage area contains the task stack,
the thread-local storage, and the floating-point context on architectures with a separate floating-
point context.

This directive is intended for applications which do not want to use the RTEMS Workspace
and instead statically allocate all operating system resources. It is not recommended to use
rtems_task_create() (page 109) and rtems_task_construct() (page 113) together in an applica-
tion. It is also not recommended to use rtems_task_construct() (page 113) for drivers or general
purpose libraries. The reason for these recommendations is that the task configuration needs
settings which can be only given with a through knowledge of the application resources.

An application based solely on static allocation can avoid any runtime memory allocators. This
can simplify the application architecture as well as any analysis that may be required.

The stack space estimate done by <rtems/confdefs.h> assumes that all tasks
are created by rtems_task_create() (page 109). The estimate can be adjusted
to take user-provided task storage areas into account through the CONFIG-
URE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE (page 624) application config-
uration option.

The CONFIGURE_MAXIMUM_TASKS (page 621) should include tasks constructed by
rtems_task_construct() (page 113).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The number of tasks available to the application is configured through the CONFIG-
URE_MAXIMUM_TASKS (page 621) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

• The number of global objects available to the application is configured through the CON-
FIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configuration option.

114 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.3 rtems_task_ident()

Identifies a task by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

PARAMETERS:

name
This parameter is the object name to look up.

node
This parameter is the node or node set to search for a matching object.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a task identifier associated with the task name specified in name.

A task may obtain its own identifier by specifying RTEMS_WHO_AM_I for the name.

The node to search is specified in node. It shall be

• a valid node number,

• the constant RTEMS_SEARCH_ALL_NODES to search in all nodes,

• the constant RTEMS_SEARCH_LOCAL_NODE to search in the local node only, or

• the constant RTEMS_SEARCH_OTHER_NODES to search in all nodes except the local node.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
There was no object with the specified name on the specified nodes.

RTEMS_INVALID_NODE
In multiprocessing configurations, the specified node was invalid.

7.4. Directives 115

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

NOTES:

If the task name is not unique, then the task identifier will match the first task with that name
in the search order. However, this task identifier is not guaranteed to correspond to the desired
task.

The objects are searched from lowest to the highest index. If node is RTEMS_SEARCH_ALL_NODES,
all nodes are searched with the local node being searched first. All other nodes are searched
from lowest to the highest node number.

If node is a valid node number which does not represent the local node, then only the tasks
exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the
global object table.

The task identifier is used with other task related directives to access the task.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

116 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.4 rtems_task_self()

Gets the task identifier of the calling task.

CALLING SEQUENCE:

1 rtems_id rtems_task_self(void);

DESCRIPTION:

This directive returns the task identifier of the calling task.

RETURN VALUES:

Returns the task identifier of the calling task.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

7.4. Directives 117

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.5 rtems_task_start()

Starts the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_start(
2 rtems_id id,
3 rtems_task_entry entry_point,
4 rtems_task_argument argument
5);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

entry_point
This parameter is the task entry point.

argument
This parameter is the task entry point argument.

DESCRIPTION:

This directive readies the task, specified by id, for execution based on the priority and execu-
tion mode specified when the task was created. The task entry point of the task is given in
entry_point. The task’s entry point argument is contained in argument.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The entry_point parameter was NULL.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_INCORRECT_STATE
The task was not in the dormant state.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

NOTES:

The type of the entry point argument is an unsigned integer type. However, the integer type
has the property that any valid pointer to void can be converted to this type and then converted
back to a pointer to void. The result will compare equal to the original pointer. The type can
represent at least 32 bits. Some applications use the entry point argument as an index into a
parameter table to get task-specific parameters.

Any actions performed on a dormant task such as suspension or change of priority are nullified
when the task is initiated via the rtems_task_start() (page 118) directive.

118 Chapter 7. Task Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

7.4. Directives 119

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.6 rtems_task_restart()

Restarts the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_restart(
2 rtems_id id,
3 rtems_task_argument argument
4);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

argument
This parameter is the task entry point argument.

DESCRIPTION:

This directive resets the task specified by id to begin execution at its original entry point. The
task’s priority and execution mode are set to the original creation values. If the task is currently
blocked, RTEMS automatically makes the task ready. A task can be restarted from any state,
except the dormant state. The task’s entry point argument is contained in argument.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_INCORRECT_STATE
The task never started.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

NOTES:

The type of the entry point argument is an unsigned integer type. However, the integer type
has the property that any valid pointer to void can be converted to this type and then converted
back to a pointer to void. The result will compare equal to the original pointer. The type can
represent at least 32 bits. Some applications use the entry point argument as an index into a
parameter table to get task-specific parameters.

A new entry point argument may be used to distinguish between the initial rtems_task_start()
(page 118) of the task and any ensuing calls to rtems_task_restart() (page 120) of the task.
This can be beneficial in deleting a task. Instead of deleting a task using the rtems_task_delete()
(page 122) directive, a task can delete another task by restarting that task, and allowing that
task to release resources back to RTEMS and then delete itself.

120 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may change the priority of a task. This may cause the calling task to be
preempted.

• The directive may unblock a task. This may cause the calling task to be preempted.

7.4. Directives 121

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.7 rtems_task_delete()

Deletes the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_delete(rtems_id id);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

DESCRIPTION:

This directive deletes the task, either the calling task or another task, as specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_CALLED_FROM_ISR
The directive was called from within interrupt context.

RTEMS_INCORRECT_STATE
The task termination procedure was started, however, waiting for the terminating task would
have resulted in a deadlock.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

NOTES:

The task deletion is done in several steps. Firstly, the task is marked as terminating. While the
task life of the terminating task is protected, it executes normally until it disables the task life
protection or it deletes itself. A terminating task will eventually stop its normal execution and
start its termination procedure. The procedure executes in the context of the terminating task.
The task termination procedure involves the destruction of POSIX key values and running the
task termination user extensions. Once complete the execution of the task is stopped and task-
specific resources are reclaimed by the system, such as the stack memory, any allocated delay
or timeout timers, the TCB, and, if the task is RTEMS_FLOATING_POINT, its floating point context
area. RTEMS explicitly does not reclaim the following resources: region segments, partition
buffers, semaphores, timers, or rate monotonic periods.

A task is responsible for releasing its resources back to RTEMS before deletion. To insure proper
deallocation of resources, a task should not be deleted unless it is unable to execute or does
not hold any RTEMS resources. If a task holds RTEMS resources, the task should be allowed
to deallocate its resources before deletion. A task can be directed to release its resources and
delete itself by restarting it with a special argument or by sending it a message, an event, or a
signal.

122 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

Deletion of the calling task (RTEMS_SELF) will force RTEMS to select another task to execute.

When a task deletes another task, the calling task waits until the task termination procedure of
the task being deleted has completed. The terminating task inherits the eligible priorities of the
calling task.

When a global task is deleted, the task identifier must be transmitted to every node in the system
for deletion from the local copy of the global object table.

The task must reside on the local node, even if the task was created with the RTEMS_GLOBAL
attribute.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

7.4. Directives 123

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.8 rtems_task_exit()

Deletes the calling task.

CALLING SEQUENCE:

1 void rtems_task_exit(void);

DESCRIPTION:

This directive deletes the calling task.

NOTES:

The directive is an optimized variant of the following code sequences, see also
rtems_task_delete() (page 122):

1 #include <pthread.h>
2 #include <rtems.h>
3

4 void classic_delete_self(void)
5 {
6 (void) rtems_task_delete(RTEMS_SELF);
7 }
8

9 void posix_delete_self(void)
10 {
11 (void) pthread_detach(pthread_self());
12 (void) pthread_exit(NULL);
13 }

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive will not return to the caller.

• While thread dispatching is disabled, if the directive performs a thread dispatch, then the
fatal error with the fatal source INTERNAL_ERROR_CORE (page 518) and the fatal code
INTERNAL_ERROR_BAD_THREAD_DISPATCH_DISABLE_LEVEL (page 519) will occur.

124 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.9 rtems_task_suspend()

Suspends the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_suspend(rtems_id id);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

DESCRIPTION:

This directive suspends the task specified by id from further execution by placing it in the sus-
pended state. This state is additive to any other blocked state that the task may already be in.
The task will not execute again until another task issues the rtems_task_resume() (page 126)
directive for this task and any blocked state has been removed. The rtems_task_restart()
(page 120) directive will also remove the suspended state.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_ALREADY_SUSPENDED
The task was already suspended.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

NOTES:

The requesting task can suspend itself for example by specifying RTEMS_SELF as id. In this
case, the task will be suspended and a successful return code will be returned when the task is
resumed.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

7.4. Directives 125

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.10 rtems_task_resume()

Resumes the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_resume(rtems_id id);

PARAMETERS:

id
This parameter is the task identifier.

DESCRIPTION:

This directive removes the task specified by id from the suspended state. If the task is in the
ready state after the suspension is removed, then it will be scheduled to run. If the task is still
in a blocked state after the suspension is removed, then it will remain in that blocked state.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_INCORRECT_STATE
The task was not suspended.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

126 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.11 rtems_task_is_suspended()

Checks if the task is suspended.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_is_suspended(rtems_id id);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

DESCRIPTION:

This directive returns a status code indicating whether or not the task specified by id is currently
suspended.

RETURN VALUES:

RTEMS_SUCCESSFUL
The task was not suspended.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_ALREADY_SUSPENDED
The task was suspended.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

7.4. Directives 127

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.12 rtems_task_set_priority()

Sets the real priority or gets the current priority of the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_priority(
2 rtems_id id,
3 rtems_task_priority new_priority,
4 rtems_task_priority *old_priority
5);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

new_priority
This parameter is the new real priority or RTEMS_CURRENT_PRIORITY to get the current priority.

old_priority
This parameter is the pointer to an rtems_task_priority (page 57) object. When the directive
call is successful, the current or previous priority of the task with respect to its home scheduler
will be stored in this object.

DESCRIPTION:

This directive manipulates the priority of the task specified by id. When new_priority is
not equal to RTEMS_CURRENT_PRIORITY, the specified task’s previous priority is returned in
old_priority. When new_priority is RTEMS_CURRENT_PRIORITY, the specified task’s current
priority is returned in old_priority.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The old_priority parameter was NULL.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_INVALID_PRIORITY
The task priority specified in new_priority was invalid with respect to the home scheduler of
the task.

NOTES:

Valid priorities range from one to a maximum value which depends on the configured scheduler.
The lower the priority value the higher is the importance of the task.

If the task is currently holding any binary semaphores which use a locking protocol, then the
task’s priority cannot be lowered immediately. If the task’s priority were lowered immediately,
then this could violate properties of the locking protocol and may result in priority inversion.

128 Chapter 7. Task Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The requested lowering of the task’s priority will occur when the task has released all binary
semaphores which make the task more important. The task’s priority can be increased regard-
less of the task’s use of binary semaphores with locking protocols.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may change the priority of a task. This may cause the calling task to be
preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

7.4. Directives 129

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.13 rtems_task_get_priority()

Gets the current priority of the task with respect to the scheduler.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_priority(
2 rtems_id task_id,
3 rtems_id scheduler_id,
4 rtems_task_priority *priority
5);

PARAMETERS:

task_id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

scheduler_id
This parameter is the scheduler identifier.

priority
This parameter is the pointer to an rtems_task_priority (page 57) object. When the directive
call is successful, the current priority of the task with respect to the specified scheduler will
be stored in this object.

DESCRIPTION:

This directive returns the current priority in priority of the task specified by task_id with
respect to the scheduler specified by scheduler_id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The priority parameter was NULL.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by task_id.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_NOT_DEFINED
The task had no priority with respect to the scheduler.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

NOTES:

The current priority reflects temporary priority adjustments due to locking protocols, the rate-
monotonic period objects on some schedulers such as EDF, and the POSIX sporadic server.

130 Chapter 7. Task Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

7.4. Directives 131

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.14 rtems_task_mode()

Gets and optionally sets the mode of the calling task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_mode(
2 rtems_mode mode_set,
3 rtems_mode mask,
4 rtems_mode *previous_mode_set
5);

PARAMETERS:

mode_set
This parameter is the mode set to apply to the calling task. When mask is set to
RTEMS_CURRENT_MODE, the value of this parameter is ignored. Only modes requested by mask
are applied to the calling task.

mask
This parameter is the mode mask which specifies which modes in mode_set are applied to
the calling task. When the value is RTEMS_CURRENT_MODE, the mode of the calling task is not
changed.

previous_mode_set
This parameter is the pointer to an rtems_mode object. When the directive call is successful,
the mode of the task before any mode changes done by the directive call will be stored in this
object.

DESCRIPTION:

This directive queries and optionally manipulates the execution mode of the calling task. A
task’s execution mode enables and disables preemption, timeslicing, asynchronous signal pro-
cessing, as well as specifying the interrupt level. To modify an execution mode, the mode
class(es) to be changed must be specified in the mask parameter and the desired mode(s) must
be specified in the mode_set parameter.

A task can obtain its current execution mode, without modifying it, by calling this directive with
a mask value of RTEMS_CURRENT_MODE.

The mode set specified in mode_set is built through a bitwise or of the mode constants described
below. Not all combinations of modes are allowed. Some modes are mutually exclusive. If
mutually exclusive modes are combined, the behaviour is undefined. Default task modes can
be selected by using the RTEMS_DEFAULT_MODES constant. The task mode set defines

• the preemption mode of the task: RTEMS_PREEMPT (default) or RTEMS_NO_PREEMPT,

• the timeslicing mode of the task: RTEMS_TIMESLICE or RTEMS_NO_TIMESLICE (default),

• the ASR processing mode of the task: RTEMS_ASR (default) or RTEMS_NO_ASR,

• the interrupt level of the task: RTEMS_INTERRUPT_LEVEL() with a default of
RTEMS_INTERRUPT_LEVEL(0) which is associated with enabled interrupts.

The mode mask specified in mask is built through a bitwise or of the mode mask constants
described below.

132 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

When the RTEMS_PREEMPT_MASK is set in mask, the preemption mode of the calling task is

• enabled by using the RTEMS_PREEMPT mode constant in mode_set and

• disabled by using the RTEMS_NO_PREEMPT mode constant in mode_set.

When the RTEMS_TIMESLICE_MASK is set in mask, the timeslicing mode of the calling task is

• enabled by using the RTEMS_TIMESLICE mode constant in mode_set and

• disabled by using the RTEMS_NO_TIMESLICE mode constant in mode_set.

Enabling timeslicing has no effect if preemption is disabled. For a task to be timesliced, that
task must have both preemption and timeslicing enabled.

When the RTEMS_ASR_MASK is set in mask, the ASR processing mode of the calling task is

• enabled by using the RTEMS_ASR mode constant in mode_set and

• disabled by using the RTEMS_NO_ASR mode constant in mode_set.

When the RTEMS_INTERRUPT_MASK is set in mask, interrupts of the calling task are

• enabled by using the RTEMS_INTERRUPT_LEVEL() mode macro with a value of zero (0) in
mode_set and

• disabled up to the specified level by using the RTEMS_INTERRUPT_LEVEL() mode macro
with a positive value in mode_set.

An interrupt level of zero is associated with enabled interrupts on all target processors. The
interrupt level portion of the task mode supports a maximum of 256 interrupt levels. These
levels are mapped onto the interrupt levels actually supported by the target processor in a
processor dependent fashion.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_NOT_IMPLEMENTED
The RTEMS_NO_PREEMPT was set in mode_set and setting the preemption mode was requested
by RTEMS_PREEMPT_MASK in mask and the system configuration had no implementation for this
mode.

RTEMS_NOT_IMPLEMENTED
The RTEMS_INTERRUPT_LEVEL() was set to a positive level in mode_set and setting the interrupt
level was requested by RTEMS_INTERRUPT_MASK in mask and the system configuration had no
implementation for this mode.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• When the directive enables preemption for the calling task, another task may preempt the
calling task.

• While thread dispatching is disabled, if the directive performs a thread dispatch, then the
fatal error with the fatal source INTERNAL_ERROR_CORE (page 518) and the fatal code
INTERNAL_ERROR_BAD_THREAD_DISPATCH_DISABLE_LEVEL (page 519) will occur.

7.4. Directives 133

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.15 rtems_task_wake_after()

Wakes up after a count of clock ticks have occurred or yields the processor.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_wake_after(rtems_interval ticks);

PARAMETERS:

ticks
This parameter is the count of clock ticks to delay the task or RTEMS_YIELD_PROCESSOR to yield
the processor.

DESCRIPTION:

This directive blocks the calling task for the specified ticks count of clock ticks if the value
is not equal to RTEMS_YIELD_PROCESSOR. When the requested count of ticks have occurred, the
task is made ready. The clock tick directives automatically update the delay period. The call-
ing task may give up the processor and remain in the ready state by specifying a value of
RTEMS_YIELD_PROCESSOR in ticks.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

NOTES:

Setting the system date and time with the rtems_clock_set() (page 243) directive and similar
directives which set CLOCK_REALTIME have no effect on a rtems_task_wake_after() (page 134)
blocked task. The delay until first clock tick will never be a whole clock tick interval since
this directive will never execute exactly on a clock tick. Applications requiring use of a
clock (CLOCK_REALTIME or CLOCK_MONOTONIC) instead of clock ticks should make use of
clock_nanosleep().

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive requires a Clock Driver.

• While thread dispatching is disabled, if the directive performs a thread dispatch, then the
fatal error with the fatal source INTERNAL_ERROR_CORE (page 518) and the fatal code
INTERNAL_ERROR_BAD_THREAD_DISPATCH_DISABLE_LEVEL (page 519) will occur.

134 Chapter 7. Task Manager

https://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_nanosleep.html

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.16 rtems_task_wake_when()

Wakes up when specified.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_wake_when(const rtems_time_of_day *time_buffer);

PARAMETERS:

time_buffer
This parameter is the date and time to wake up.

DESCRIPTION:

This directive blocks a task until the date and time specified in time_buffer. At the requested
date and time, the calling task will be unblocked and made ready to execute.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_NOT_DEFINED
The system date and time was not set.

RTEMS_INVALID_ADDRESS
The time_buffer parameter was NULL.

RTEMS_INVALID_CLOCK
The time of day was invalid.

NOTES:

The ticks portion of time_buffer structure is ignored. The timing granularity of this directive is
a second.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive requires a Clock Driver.

• While thread dispatching is disabled, if the directive performs a thread dispatch, then the
fatal error with the fatal source INTERNAL_ERROR_CORE (page 518) and the fatal code
INTERNAL_ERROR_BAD_THREAD_DISPATCH_DISABLE_LEVEL (page 519) will occur.

7.4. Directives 135

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.17 rtems_task_get_scheduler()

Gets the home scheduler of the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_scheduler(
2 rtems_id task_id,
3 rtems_id *scheduler_id
4);

PARAMETERS:

task_id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

scheduler_id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the home scheduler of the task will be stored in this object.

DESCRIPTION:

This directive returns the identifier of the home scheduler of the task specified by task_id in
scheduler_id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The scheduler_id parameter was NULL.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by task_id.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

136 Chapter 7. Task Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.18 rtems_task_set_scheduler()

Sets the home scheduler for the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_scheduler(
2 rtems_id task_id,
3 rtems_id scheduler_id,
4 rtems_task_priority priority
5);

PARAMETERS:

task_id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

scheduler_id
This parameter is the scheduler identifier of the new home scheduler for the task specified by
task_id.

priority
This parameter is the new real priority for the task with respect to the scheduler specified by
scheduler_id.

DESCRIPTION:

This directive sets the home scheduler to the scheduler specified by scheduler_id for the task
specified by task_id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_PRIORITY
The task priority specified by priority was invalid with respect to the scheduler specified by
scheduler_id.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by task_id.

RTEMS_RESOURCE_IN_USE
The task specified by task_id was enqueued on a wait queue.

RTEMS_RESOURCE_IN_USE
The task specified by task_id had a current priority which consisted of more than the real
priority.

RTEMS_RESOURCE_IN_USE
The task specified by task_id had a helping scheduler.

7.4. Directives 137

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

RTEMS_RESOURCE_IN_USE
The task specified by task_id was pinned.

RTEMS_UNSATISFIED
The scheduler specified by scheduler_id owned no processor.

RTEMS_UNSATISFIED
The scheduler specified by scheduler_id did not support the affinity set of the task specified
by task_id.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may change the priority of a task. This may cause the calling task to be
preempted.

138 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.19 rtems_task_get_affinity()

Gets the processor affinity of the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_affinity(
2 rtems_id id,
3 size_t cpusetsize,
4 cpu_set_t *cpuset
5);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

cpusetsize
This parameter is the size of the processor set referenced by cpuset in bytes.

cpuset
This parameter is the pointer to a cpu_set_t object. When the directive call is successful, the
processor affinity set of the task will be stored in this object. A set bit in the processor set
means that the corresponding processor is in the processor affinity set of the task, otherwise
the bit is cleared.

DESCRIPTION:

This directive returns the processor affinity of the task in cpuset of the task specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The cpuset parameter was NULL.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_INVALID_SIZE
The size specified by cpusetsize of the processor set was too small for the processor affinity
set of the task.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

7.4. Directives 139

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

140 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.20 rtems_task_set_affinity()

Sets the processor affinity of the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_affinity(
2 rtems_id id,
3 size_t cpusetsize,
4 const cpu_set_t *cpuset
5);

PARAMETERS:

id
This parameter is the task identifier. The constant RTEMS_SELF may be used to specify the
calling task.

cpusetsize
This parameter is the size of the processor set referenced by cpuset in bytes.

cpuset
This parameter is the pointer to a cpu_set_t object. The processor set defines the new pro-
cessor affinity set of the task. A set bit in the processor set means that the corresponding
processor shall be in the processor affinity set of the task, otherwise the bit shall be cleared.

DESCRIPTION:

This directive sets the processor affinity of the task specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The cpuset parameter was NULL.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_INVALID_NUMBER
The referenced processor set was not a valid new processor affinity set for the task.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The task resided on a remote node.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

7.4. Directives 141

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

• The directive may change the processor affinity of a task. This may cause the calling task
to be preempted.

142 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.4.21 rtems_task_iterate()

Iterates over all tasks and invokes the visitor routine for each task.

CALLING SEQUENCE:

1 void rtems_task_iterate(rtems_task_visitor visitor, void *arg);

PARAMETERS:

visitor
This parameter is the visitor routine invoked for each task.

arg
This parameter is the argument passed to each visitor routine invocation during the iteration.

DESCRIPTION:

This directive iterates over all tasks in the system. This operation covers all tasks of all APIs.
The user should be careful in accessing the contents of the TCB. The visitor argument arg is
passed to all invocations of visitor in addition to the TCB. The iteration stops immediately in
case the visitor routine returns true.

NOTES:

The visitor routine is invoked while owning the objects allocator lock. It is allowed to perform
blocking operations in the visitor routine, however, care must be taken so that no deadlocks via
the object allocator lock can occur.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

7.4. Directives 143

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.4

7.4.22 RTEMS_TASK_STORAGE_SIZE()

Gets the recommended task storage area size for the size and task attributes.

CALLING SEQUENCE:

1 size_t RTEMS_TASK_STORAGE_SIZE(size_t size, rtems_attribute attributes);

PARAMETERS:

size
This parameter is the size dedicated to the task stack and thread-local storage in bytes.

attributes
This parameter is the attribute set of the task using the storage area.

RETURN VALUES:

Returns the recommended task storage area size calculated from the input parameters.

144 Chapter 7. Task Manager

Chapter 7 Section 7.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.5 Deprecated Directives

7.5. Deprecated Directives 145

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.5

7.5.1 ITERATE_OVER_ALL_THREADS - Iterate Over Tasks

. Warning

This directive is deprecated. Its use is unsafe. Use rtems_task_iterate instead.

CALLING SEQUENCE:

1 typedef void (*rtems_per_thread_routine)(Thread_Control *the_thread);
2 void rtems_iterate_over_all_threads(
3 rtems_per_thread_routine routine
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive iterates over all of the existant threads in the system and invokes routine on
each of them. The user should be careful in accessing the contents of the_thread.

This routine is intended for use in diagnostic utilities and is not intented for routine use in an
operational system.

NOTES:
There is no protection while this routine is called. The thread control block may be in an
inconsistent state or may change due to interrupts or activity on other processors.

146 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.6 Removed Directives

7.6. Removed Directives 147

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.6

7.6.1 TASK_GET_NOTE - Get task notepad entry

. Warning

This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_note(
2 rtems_id id,
3 uint32_t notepad,
4 uint32_t *note
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL note value obtained successfully
RTEMS_INVALID_ADDRESS note parameter is NULL
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER invalid notepad location

DESCRIPTION:
This directive returns the note contained in the notepad location of the task specified by id.

NOTES:
This directive will not cause the running task to be preempted.

If id is set to RTEMS_SELF, the calling task accesses its own notepad.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_0 through
RTEMS_NOTEPAD_15.

Getting a note of a global task which does not reside on the local node will generate a request
to the remote node to obtain the notepad entry of the specified task.

148 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.6.2 TASK_SET_NOTE - Set task notepad entry

. Warning

This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_note(
2 rtems_id id,
3 uint32_t notepad,
4 uint32_t note
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL note set successfully
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER invalid notepad location

DESCRIPTION:
This directive sets the notepad entry for the task specified by id to the value note.

NOTES:
If id is set to RTEMS_SELF, the calling task accesses its own notepad.

This directive will not cause the running task to be preempted.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_0 through
RTEMS_NOTEPAD_15.

Setting a note of a global task which does not reside on the local node will generate a request
to the remote node to set the notepad entry of the specified task.

7.6. Removed Directives 149

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.6

7.6.3 TASK_VARIABLE_ADD - Associate per task variable

. Warning

This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_add(
2 rtems_id tid,
3 void **task_variable,
4 void (*dtor)(void *)
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable added successfully
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_INVALID_ID invalid task id
RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_ON_REMOTE_OBJECT not supported on remote tasks

DESCRIPTION:
This directive adds the memory location specified by the ptr argument to the context of the
given task. The variable will then be private to the task. The task can access and modify the
variable, but the modifications will not appear to other tasks, and other tasks’ modifications
to that variable will not affect the value seen by the task. This is accomplished by saving and
restoring the variable’s value each time a task switch occurs to or from the calling task. If
the dtor argument is non-NULL it specifies the address of a ‘destructor’ function which will be
called when the task is deleted. The argument passed to the destructor function is the task’s
value of the variable.

NOTES:
Task variables increase the context switch time to and from the tasks that own them so it is
desirable to minimize the number of task variables. One efficient method is to have a single
task variable that is a pointer to a dynamically allocated structure containing the task’s private
‘global’ data. In this case the destructor function could be ‘free’.

Per-task variables are disabled in SMP configurations and this service is not available.

150 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

7.6.4 TASK_VARIABLE_GET - Obtain value of a per task variable

. Warning

This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_get(
2 rtems_id tid,
3 void **task_variable,
4 void **task_variable_value
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable obtained successfully
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_INVALID_ADDRESS task_variable_value is NULL
RTEMS_INVALID_ADDRESS task_variable is not found
RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_ON_REMOTE_OBJECT not supported on remote tasks

DESCRIPTION:
This directive looks up the private value of a task variable for a specified task and stores that
value in the location pointed to by the result argument. The specified task is usually not the
calling task, which can get its private value by directly accessing the variable.

NOTES:
If you change memory which task_variable_value points to, remember to declare that mem-
ory as volatile, so that the compiler will optimize it correctly. In this case both the pointer
task_variable_value and data referenced by task_variable_value should be considered
volatile.

Per-task variables are disabled in SMP configurations and this service is not available.

7.6. Removed Directives 151

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 7 Section 7.6

7.6.5 TASK_VARIABLE_DELETE - Remove per task variable

. Warning

This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_delete(
2 rtems_id id,
3 void **task_variable
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable deleted successfully
RTEMS_INVALID_ID invalid task id
RTEMS_NO_MEMORY invalid task id
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_ILLEGAL_ON_REMOTE_OBJECT not supported on remote tasks

DESCRIPTION:
This directive removes the given location from a task’s context.

NOTES:
Per-task variables are disabled in SMP configurations and this service is not available.

152 Chapter 7. Task Manager

CHAPTER

EIGHT

INTERRUPT MANAGER

153

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.1

8.1 Introduction

Any real-time executive must provide a mechanism for quick response to externally generated
interrupts to satisfy the critical time constraints of the application. The Interrupt Manager
provides this mechanism for RTEMS. This manager permits quick interrupt response times by
providing the critical ability to alter task execution which allows a task to be preempted upon
exit from an ISR. The directives provided by the Interrupt Manager are:

• rtems_interrupt_catch() (page 162) - Establishes an interrupt service routine.

• rtems_interrupt_disable() (page 164) - Disables the maskable interrupts on the current
processor.

• rtems_interrupt_enable() (page 166) - Restores the previous interrupt level on the current
processor.

• rtems_interrupt_flash() (page 167) - Flashes interrupts on the current processor.

• rtems_interrupt_local_disable() (page 168) - Disables the maskable interrupts on the cur-
rent processor.

• rtems_interrupt_local_enable() (page 170) - Restores the previous interrupt level on the
current processor.

• rtems_interrupt_is_in_progress() (page 171) - Checks if an ISR is in progress on the current
processor.

• rtems_interrupt_lock_initialize() (page 172) - Initializes the ISR lock.

• rtems_interrupt_lock_destroy() (page 173) - Destroys the ISR lock.

• rtems_interrupt_lock_acquire() (page 174) - Acquires the ISR lock.

• rtems_interrupt_lock_release() (page 176) - Releases the ISR lock.

• rtems_interrupt_lock_acquire_isr() (page 177) - Acquires the ISR lock from within an ISR.

• rtems_interrupt_lock_release_isr() (page 178) - Releases the ISR lock from within an ISR.

• rtems_interrupt_lock_interrupt_disable() (page 179) - Disables maskable interrupts on the
current processor.

• RTEMS_INTERRUPT_LOCK_DECLARE() (page 180) - Declares an ISR lock object.

• RTEMS_INTERRUPT_LOCK_DEFINE() (page 181) - Defines an ISR lock object.

• RTEMS_INTERRUPT_LOCK_INITIALIZER() (page 182) - Statically initializes an ISR lock
object.

• RTEMS_INTERRUPT_LOCK_MEMBER() (page 183) - Defines an ISR lock member.

• RTEMS_INTERRUPT_LOCK_REFERENCE() (page 184) - Defines an ISR lock object refer-
ence.

• RTEMS_INTERRUPT_ENTRY_INITIALIZER() (page 185) - Statically initializes an interrupt
entry object.

• rtems_interrupt_entry_initialize() (page 186) - Initializes the interrupt entry.

• rtems_interrupt_entry_install() (page 187) - Installs the interrupt entry at the interrupt
vector.

154 Chapter 8. Interrupt Manager

Chapter 8 Section 8.1 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• rtems_interrupt_entry_remove() (page 189) - Removes the interrupt entry from the inter-
rupt vector.

• rtems_interrupt_handler_install() (page 190) - Installs the interrupt handler routine and
argument at the interrupt vector.

• rtems_interrupt_handler_remove() (page 192) - Removes the interrupt handler routine and
argument from the interrupt vector.

• rtems_interrupt_vector_is_enabled() (page 193) - Checks if the interrupt vector is enabled.

• rtems_interrupt_vector_enable() (page 194) - Enables the interrupt vector.

• rtems_interrupt_vector_disable() (page 195) - Disables the interrupt vector.

• rtems_interrupt_is_pending() (page 196) - Checks if the interrupt is pending.

• rtems_interrupt_raise() (page 198) - Raises the interrupt vector.

• rtems_interrupt_raise_on() (page 199) - Raises the interrupt vector on the processor.

• rtems_interrupt_clear() (page 200) - Clears the interrupt vector.

• rtems_interrupt_get_priority() (page 201) - Gets the priority of the interrupt vector.

• rtems_interrupt_set_priority() (page 202) - Sets the priority of the interrupt vector.

• rtems_interrupt_get_affinity() (page 204) - Gets the processor affinity set of the interrupt
vector.

• rtems_interrupt_set_affinity() (page 205) - Sets the processor affinity set of the interrupt
vector.

• rtems_interrupt_get_attributes() (page 207) - Gets the attributes of the interrupt vector.

• rtems_interrupt_handler_iterate() (page 208) - Iterates over all interrupt handler installed
at the interrupt vector.

• rtems_interrupt_server_initialize() (page 210) - Initializes the interrupt server tasks.

• rtems_interrupt_server_create() (page 212) - Creates an interrupt server.

• rtems_interrupt_server_handler_install() (page 213) - Installs the interrupt handler routine
and argument at the interrupt vector on the interrupt server.

• rtems_interrupt_server_handler_remove() (page 215) - Removes the interrupt handler rou-
tine and argument from the interrupt vector and the interrupt server.

• rtems_interrupt_server_set_affinity() (page 216) - Sets the processor affinity of the inter-
rupt server.

• rtems_interrupt_server_delete() (page 218) - Deletes the interrupt server.

• rtems_interrupt_server_suspend() (page 219) - Suspends the interrupt server.

• rtems_interrupt_server_resume() (page 220) - Resumes the interrupt server.

• rtems_interrupt_server_move() (page 221) - Moves the interrupt handlers installed at the
interrupt vector and the source interrupt server to the destination interrupt server.

• rtems_interrupt_server_handler_iterate() (page 222) - Iterates over all interrupt handler
installed at the interrupt vector and interrupt server.

• rtems_interrupt_server_entry_initialize() (page 224) - Initializes the interrupt server entry.

8.1. Introduction 155

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.1

• rtems_interrupt_server_action_prepend() (page 225) - Prepends the interrupt server action
to the list of actions of the interrupt server entry.

• rtems_interrupt_server_entry_destroy() (page 227) - Destroys the interrupt server entry.

• rtems_interrupt_server_entry_submit() (page 228) - Submits the interrupt server entry to
be serviced by the interrupt server.

• rtems_interrupt_server_entry_move() (page 229) - Moves the interrupt server entry to the
interrupt server.

• rtems_interrupt_server_request_initialize() (page 230) - Initializes the interrupt server re-
quest.

• rtems_interrupt_server_request_set_vector() (page 231) - Sets the interrupt vector in the
interrupt server request.

• rtems_interrupt_server_request_destroy() (page 232) - Destroys the interrupt server re-
quest.

• rtems_interrupt_server_request_submit() (page 233) - Submits the interrupt server request
to be serviced by the interrupt server.

156 Chapter 8. Interrupt Manager

Chapter 8 Section 8.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.2 Background

8.2.1 Processing an Interrupt

The interrupt manager allows the application to connect a function to a hardware interrupt
vector. When an interrupt occurs, the processor will automatically vector to RTEMS. RTEMS
saves and restores all registers which are not preserved by the normal C calling convention for
the target processor and invokes the user’s ISR. The user’s ISR is responsible for processing the
interrupt, clearing the interrupt if necessary, and device specific manipulation.

The rtems_interrupt_catch directive connects a procedure to an interrupt vector. The vector
number is managed using the rtems_vector_number data type.

The interrupt service routine is assumed to abide by these conventions and have a prototype
similar to the following:

1 rtems_isr user_isr(
2 rtems_vector_number vector
3);

The vector number argument is provided by RTEMS to allow the application to identify the
interrupt source. This could be used to allow a single routine to service interrupts from mul-
tiple instances of the same device. For example, a single routine could service interrupts from
multiple serial ports and use the vector number to identify which port requires servicing.

To minimize the masking of lower or equal priority level interrupts, the ISR should perform
the minimum actions required to service the interrupt. Other non-essential actions should be
handled by application tasks. Once the user’s ISR has completed, it returns control to the
RTEMS interrupt manager which will perform task dispatching and restore the registers saved
before the ISR was invoked.

The RTEMS interrupt manager guarantees that proper task scheduling and dispatching are per-
formed at the conclusion of an ISR. A system call made by the ISR may have readied a task of
higher priority than the interrupted task. Therefore, when the ISR completes, the postponed
dispatch processing must be performed. No dispatch processing is performed as part of direc-
tives which have been invoked by an ISR.

Applications must adhere to the following rule if proper task scheduling and dispatching is to
be performed:

ò Note

The interrupt manager must be used for all ISRs which may be interrupted by the highest
priority ISR which invokes an RTEMS directive.

Consider a processor which allows a numerically low interrupt level to interrupt a numerically
greater interrupt level. In this example, if an RTEMS directive is used in a level 4 ISR, then all
ISRs which execute at levels 0 through 4 must use the interrupt manager.

Interrupts are nested whenever an interrupt occurs during the execution of another ISR. RTEMS
supports efficient interrupt nesting by allowing the nested ISRs to terminate without performing
any dispatch processing. Only when the outermost ISR terminates will the postponed dispatch-
ing occur.

8.2. Background 157

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.2

8.2.2 RTEMS Interrupt Levels

Many processors support multiple interrupt levels or priorities. The exact number of inter-
rupt levels is processor dependent. RTEMS internally supports 256 interrupt levels which are
mapped to the processor’s interrupt levels. For specific information on the mapping between
RTEMS and the target processor’s interrupt levels, refer to the Interrupt Processing chapter of
the Applications Supplement document for a specific target processor.

8.2.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When these
sections are encountered, RTEMS disables all maskable interrupts before the execution of the
section and restores them to the previous level upon completion of the section. RTEMS has been
optimized to ensure that interrupts are disabled for a minimum length of time. The maximum
length of time interrupts are disabled by RTEMS is processor dependent and is detailed in the
Timing Specification chapter of the Applications Supplement document for a specific target
processor.

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level MUST
NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results may occur due
to the inability of RTEMS to protect its critical sections. However, ISRs that make no system
calls may safely execute as non-maskable interrupts.

158 Chapter 8. Interrupt Manager

Chapter 8 Section 8.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.3 Operations

8.3.1 Establishing an ISR

The rtems_interrupt_catch directive establishes an ISR for the system. The address of the ISR
and its associated CPU vector number are specified to this directive. This directive installs the
RTEMS interrupt wrapper in the processor’s Interrupt Vector Table and the address of the user’s
ISR in the RTEMS’ Vector Table. This directive returns the previous contents of the specified
vector in the RTEMS’ Vector Table.

8.3.2 Directives Allowed from an ISR

Using the interrupt manager ensures that RTEMS knows when a directive is being called from
an ISR. The ISR may then use system calls to synchronize itself with an application task. The
synchronization may involve messages, events or signals being passed by the ISR to the desired
task. Directives invoked by an ISR must operate only on objects which reside on the local node.
The following is a list of RTEMS system calls that may be made from an ISR:

• Task Management Although it is acceptable to operate on the RTEMS_SELF task (e.g. the
currently executing task), while in an ISR, this will refer to the interrupted task. Most of
the time, it is an application implementation error to use RTEMS_SELF from an ISR.

– rtems_task_suspend

– rtems_task_resume

• Interrupt Management

– rtems_interrupt_enable

– rtems_interrupt_disable

– rtems_interrupt_flash

– rtems_interrupt_lock_acquire

– rtems_interrupt_lock_release

– rtems_interrupt_lock_acquire_isr

– rtems_interrupt_lock_release_isr

– rtems_interrupt_is_in_progress

– rtems_interrupt_catch

• Clock Management

– rtems_clock_set

– rtems_clock_get_tod

– rtems_clock_get_tod_timeval

– rtems_clock_get_seconds_since_epoch

– rtems_clock_get_ticks_per_second

– rtems_clock_get_ticks_since_boot

– rtems_clock_get_uptime

• Timer Management

8.3. Operations 159

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.3

– rtems_timer_cancel

– rtems_timer_reset

– rtems_timer_fire_after

– rtems_timer_fire_when

– rtems_timer_server_fire_after

– rtems_timer_server_fire_when

• Event Management

– rtems_event_send

– rtems_event_system_send

– rtems_event_transient_send

• Semaphore Management

– rtems_semaphore_release

• Message Management

– rtems_message_queue_broadcast

– rtems_message_queue_send

– rtems_message_queue_urgent

• Signal Management

– rtems_signal_send

• Dual-Ported Memory Management

– rtems_port_external_to_internal

– rtems_port_internal_to_external

• IO Management The following services are safe to call from an ISR if and only if the device
driver service invoked is also safe. The IO Manager itself is safe but the invoked driver
entry point may or may not be.

– rtems_io_initialize

– rtems_io_open

– rtems_io_close

– rtems_io_read

– rtems_io_write

– rtems_io_control

• Fatal Error Management

– rtems_fatal

– rtems_fatal_error_occurred

• Multiprocessing

– rtems_multiprocessing_announce

160 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4 Directives

This section details the directives of the Interrupt Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

8.4. Directives 161

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.1 rtems_interrupt_catch()

Establishes an interrupt service routine.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_catch(
2 rtems_isr_entry new_isr_handler,
3 rtems_vector_number vector,
4 rtems_isr_entry *old_isr_handler
5);

PARAMETERS:

new_isr_handler
This parameter is the new interrupt service routine.

vector
This parameter is the interrupt vector number.

old_isr_handler
This parameter is the pointer to an rtems_isr_entry (page 47) object. When the directive call
is successful, the previous interrupt service routine established for this interrupt vector will
be stored in this object.

DESCRIPTION:

This directive establishes an interrupt service routine (ISR) for the interrupt specified by the
vector number. The new_isr_handler parameter specifies the entry point of the ISR. The entry
point of the previous ISR for the specified vector is returned in old_isr_handler.

To release an interrupt vector, pass the old handler’s address obtained when the vector was first
capture.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The interrupt vector number was illegal.

RTEMS_INVALID_ADDRESS
The new_isr_handler parameter was NULL.

RTEMS_INVALID_ADDRESS
The old_isr_handler parameter was NULL.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

162 Chapter 8. Interrupt Manager

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• The directive will not cause the calling task to be preempted.

• The directive is only available where the target architecture support enabled simple vec-
tored interrupts.

8.4. Directives 163

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.2 rtems_interrupt_disable()

Disables the maskable interrupts on the current processor.

CALLING SEQUENCE:

1 void rtems_interrupt_disable(rtems_interrupt_level isr_cookie);

PARAMETERS:

isr_cookie
This parameter is a variable of type rtems_interrupt_level (page 44) which will be used to save
the previous interrupt level.

DESCRIPTION:

This directive disables all maskable interrupts on the current processor and returns the previous
interrupt level in isr_cookie.

NOTES:

A later invocation of the rtems_interrupt_enable() (page 166) directive should be used to restore
the previous interrupt level.

This directive is implemented as a macro which sets the isr_cookie parameter.

1 #include <rtems.h>
2

3 void local_critical_section(void)
4 {
5 rtems_interrupt_level level;
6

7 // Please note that the rtems_interrupt_disable() is a macro. The
8 // previous interrupt level (before the maskable interrupts are
9 // disabled) is returned here in the level macro parameter. This

10 // would be wrong:
11 //
12 // rtems_interrupt_disable(&level);
13 rtems_interrupt_disable(level);
14

15 // Here is the critical section: maskable interrupts are disabled
16

17 {
18 rtems_interrupt_level nested_level;
19

20 rtems_interrupt_disable(nested_level);
21

22 // Here is a nested critical section
23

24 rtems_interrupt_enable(nested_level);
25 }
26

(continues on next page)

164 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

27 // Maskable interrupts are still disabled
28

29 rtems_interrupt_enable(level);
30 }

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• Where the system was built with SMP support enabled, the directive is not available. Its
use will result in compiler warnings and linker errors. The rtems_interrupt_local_disable()
(page 168) and rtems_interrupt_local_enable() (page 170) directives are available in all
build configurations.

8.4. Directives 165

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.3 rtems_interrupt_enable()

Restores the previous interrupt level on the current processor.

CALLING SEQUENCE:

1 void rtems_interrupt_enable(rtems_interrupt_level isr_cookie);

PARAMETERS:

isr_cookie
This parameter is the previous interrupt level to restore. The value must be obtained by a
previous call to rtems_interrupt_disable() (page 164) or rtems_interrupt_flash() (page 167).

DESCRIPTION:

This directive restores the interrupt level specified by isr_cookie on the current processor.

NOTES:

The isr_cookie parameter value must be obtained by a previous call to
rtems_interrupt_disable() (page 164) or rtems_interrupt_flash() (page 167). Using an
otherwise obtained value is undefined behaviour.

This directive is unsuitable to enable particular interrupt sources, for example in an interrupt
controller.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• While at least one maskable interrupt is pending, when the directive enables maskable
interrupts, the pending interrupts are immediately serviced. The interrupt service routines
may unblock higher priority tasks which may preempt the calling task.

• Where the system was built with SMP support enabled, the directive is not available. Its
use will result in compiler warnings and linker errors. The rtems_interrupt_local_disable()
(page 168) and rtems_interrupt_local_enable() (page 170) directives are available in all
build configurations.

166 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.4 rtems_interrupt_flash()

Flashes interrupts on the current processor.

CALLING SEQUENCE:

1 void rtems_interrupt_flash(rtems_interrupt_level isr_cookie);

PARAMETERS:

isr_cookie
This parameter is the previous interrupt level.

DESCRIPTION:

This directive is functionally equivalent to a calling rtems_interrupt_enable() (page 166) imme-
diately followed by a rtems_interrupt_disable() (page 164). On some architectures it is possible
to provide an optimized implementation for this sequence.

NOTES:

The isr_cookie parameter value must be obtained by a previous call to
rtems_interrupt_disable() (page 164) or rtems_interrupt_flash() (page 167). Using an
otherwise obtained value is undefined behaviour.

Historically, the interrupt flash directive was heavily used in the operating system implementa-
tion. However, this is no longer the case. The interrupt flash directive is provided for backward
compatibility reasons.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• Where the system was built with SMP support enabled, the directive is not available. Its
use will result in compiler warnings and linker errors. The rtems_interrupt_local_disable()
(page 168) and rtems_interrupt_local_enable() (page 170) directives are available in all
build configurations.

8.4. Directives 167

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.5 rtems_interrupt_local_disable()

Disables the maskable interrupts on the current processor.

CALLING SEQUENCE:

1 void rtems_interrupt_local_disable(rtems_interrupt_level isr_cookie);

PARAMETERS:

isr_cookie
This parameter is a variable of type rtems_interrupt_level (page 44) which will be used to save
the previous interrupt level.

DESCRIPTION:

This directive disables all maskable interrupts on the current processor and returns the previous
interrupt level in isr_cookie.

NOTES:

A later invocation of the rtems_interrupt_local_enable() (page 170) directive should be used to
restore the previous interrupt level.

This directive is implemented as a macro which sets the isr_cookie parameter.

Where the system was built with SMP support enabled, this will not ensure system wide mutual
exclusion. Use interrupt locks instead, see rtems_interrupt_lock_acquire() (page 174). Interrupt
disabled critical sections may be used to access processor-specific data structures or disable
thread dispatching.

1 #include <rtems.h>
2

3 void local_critical_section(void)
4 {
5 rtems_interrupt_level level;
6

7 // Please note that the rtems_interrupt_local_disable() is a macro.
8 // The previous interrupt level (before the maskable interrupts are
9 // disabled) is returned here in the level macro parameter. This would

10 // be wrong:
11 //
12 // rtems_interrupt_local_disable(&level);
13 rtems_interrupt_local_disable(level);
14

15 // Here is the critical section: maskable interrupts are disabled
16

17 {
18 rtems_interrupt_level nested_level;
19

20 rtems_interrupt_local_disable(nested_level);
21

22 // Here is a nested critical section
(continues on next page)

168 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

23

24 rtems_interrupt_local_enable(nested_level);
25 }
26

27 // Maskable interrupts are still disabled
28

29 rtems_interrupt_local_enable(level);
30 }

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 169

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.6 rtems_interrupt_local_enable()

Restores the previous interrupt level on the current processor.

CALLING SEQUENCE:

1 void rtems_interrupt_local_enable(rtems_interrupt_level isr_cookie);

PARAMETERS:

isr_cookie
This parameter is the previous interrupt level to restore. The value must be obtained by a
previous call to rtems_interrupt_local_disable() (page 168).

DESCRIPTION:

This directive restores the interrupt level specified by isr_cookie on the current processor.

NOTES:

The isr_cookie parameter value must be obtained by a previous call to
rtems_interrupt_local_disable() (page 168). Using an otherwise obtained value is unde-
fined behaviour.

This directive is unsuitable to enable particular interrupt sources, for example in an interrupt
controller.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• While at least one maskable interrupt is pending, when the directive enables maskable
interrupts, the pending interrupts are immediately serviced. The interrupt service routines
may unblock higher priority tasks which may preempt the calling task.

170 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.7 rtems_interrupt_is_in_progress()

Checks if an ISR is in progress on the current processor.

CALLING SEQUENCE:

1 bool rtems_interrupt_is_in_progress(void);

DESCRIPTION:

This directive returns true, if the current processor is currently servicing an interrupt, and false
otherwise. A return value of true indicates that the caller is an interrupt service routine, not a
task. The directives available to an interrupt service routine are restricted.

RETURN VALUES:

Returns true, if the current processor is currently servicing an interrupt, otherwise false.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 171

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.8 rtems_interrupt_lock_initialize()

Initializes the ISR lock.

CALLING SEQUENCE:

1 void rtems_interrupt_lock_initialize(
2 rtems_interrupt_lock *lock,
3 const char *name
4);

PARAMETERS:

lock
This parameter is the ISR lock to initialize.

name
This parameter is the ISR lock name. It shall be a string. The name is only used where the
system was built with profiling support enabled.

NOTES:

ISR locks may also be statically defined by RTEMS_INTERRUPT_LOCK_DEFINE() (page 181) or
statically initialized by RTEMS_INTERRUPT_LOCK_INITIALIZER() (page 182).

172 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.9 rtems_interrupt_lock_destroy()

Destroys the ISR lock.

CALLING SEQUENCE:

1 void rtems_interrupt_lock_destroy(rtems_interrupt_lock *lock);

PARAMETERS:

lock
This parameter is the ISR lock to destroy.

NOTES:

The lock must have been dynamically initialized by rtems_interrupt_lock_initialize() (page 172),
statically defined by RTEMS_INTERRUPT_LOCK_DEFINE() (page 181), or statically initialized by
RTEMS_INTERRUPT_LOCK_INITIALIZER() (page 182).

Concurrent lock use during the destruction or concurrent destruction leads to unpredictable
results.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 173

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.10 rtems_interrupt_lock_acquire()

Acquires the ISR lock.

CALLING SEQUENCE:

1 void rtems_interrupt_lock_acquire(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_context
4);

PARAMETERS:

lock
This parameter is the ISR lock to acquire.

lock_context
This parameter is the ISR lock context. This lock context shall be used to release the lock by
calling rtems_interrupt_lock_release() (page 176).

DESCRIPTION:

This directive acquires the ISR lock specified by lock using the lock context provided by
lock_context. Maskable interrupts will be disabled on the current processor.

NOTES:

A caller-specific lock context shall be provided for each acquire/release pair, for example an
automatic variable.

Where the system was built with SMP support enabled, this directive acquires an SMP lock. An
attempt to recursively acquire the lock may result in an infinite loop with maskable interrupts
disabled.

This directive establishes a non-preemptive critical section with system wide mutual exclusion
on the local node in all RTEMS build configurations.

1 #include <rtems.h>
2

3 void critical_section(rtems_interrupt_lock *lock)
4 {
5 rtems_interrupt_lock_context lock_context;
6

7 rtems_interrupt_lock_acquire(lock, &lock_context);
8

9 // Here is the critical section. Maskable interrupts are disabled.
10 // Where the system was built with SMP support enabled, this section
11 // is protected by an SMP lock.
12

13 rtems_interrupt_lock_release(lock, &lock_context);
14 }

174 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 175

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.11 rtems_interrupt_lock_release()

Releases the ISR lock.

CALLING SEQUENCE:

1 void rtems_interrupt_lock_release(rtems_interrupt_lock_context *lock);

PARAMETERS:

lock
This parameter is the ISR lock to release.

lock_context
This parameter is the ISR lock context. This lock context shall have been used to acquire the
lock by calling rtems_interrupt_lock_acquire() (page 174).

DESCRIPTION:

This directive releases the ISR lock specified by lock using the lock context provided by
lock_context. The previous interrupt level will be restored on the current processor.

NOTES:

The lock context shall be the one used to acquire the lock, otherwise the result is unpredictable.

Where the system was built with SMP support enabled, this directive releases an SMP lock.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• While at least one maskable interrupt is pending, when the directive enables maskable
interrupts, the pending interrupts are immediately serviced. The interrupt service routines
may unblock higher priority tasks which may preempt the calling task.

176 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.12 rtems_interrupt_lock_acquire_isr()

Acquires the ISR lock from within an ISR.

CALLING SEQUENCE:

1 void rtems_interrupt_lock_acquire_isr(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_context
4);

PARAMETERS:

lock
This parameter is the ISR lock to acquire within an ISR.

lock_context
This parameter is the ISR lock context. This lock context shall be used to release the lock by
calling rtems_interrupt_lock_release_isr() (page 178).

DESCRIPTION:

This directive acquires the ISR lock specified by lock using the lock context provided by
lock_context. The interrupt level will remain unchanged.

NOTES:

A caller-specific lock context shall be provided for each acquire/release pair, for example an
automatic variable.

Where the system was built with SMP support enabled, this directive acquires an SMP lock. An
attempt to recursively acquire the lock may result in an infinite loop.

This directive is intended for device drivers and should be called from the corresponding inter-
rupt service routine.

In case the corresponding interrupt service routine can be interrupted by higher priority inter-
rupts and these interrupts enter the critical section protected by this lock, then the result is
unpredictable. This directive may be used under specific circumstances as an optimization.
In doubt, use rtems_interrupt_lock_acquire() (page 174) and rtems_interrupt_lock_release()
(page 176).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 177

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.13 rtems_interrupt_lock_release_isr()

Releases the ISR lock from within an ISR.

CALLING SEQUENCE:

1 void rtems_interrupt_lock_release_isr(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_context
4);

PARAMETERS:

lock
This parameter is the ISR lock to release within an ISR.

lock_context
This parameter is the ISR lock context. This lock context shall have been used to acquire the
lock by calling rtems_interrupt_lock_acquire_isr() (page 177).

DESCRIPTION:

This directive releases the ISR lock specified by lock using the lock context provided by
lock_context. The interrupt level will remain unchanged.

NOTES:

The lock context shall be the one used to acquire the lock, otherwise the result is unpredictable.

Where the system was built with SMP support enabled, this directive releases an SMP lock.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

178 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.14 rtems_interrupt_lock_interrupt_disable()

Disables maskable interrupts on the current processor.

CALLING SEQUENCE:

1 void rtems_interrupt_lock_interrupt_disable(
2 rtems_interrupt_lock_context *lock_context
3);

PARAMETERS:

lock_context
This parameter is the ISR lock context for an acquire and release pair.

DESCRIPTION:

This directive disables maskable interrupts on the current processor and stores the previous
interrupt level in lock_context.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 179

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.15 RTEMS_INTERRUPT_LOCK_DECLARE()

Declares an ISR lock object.

CALLING SEQUENCE:

1 RTEMS_INTERRUPT_LOCK_DECLARE(specifier, designator);

PARAMETERS:

specifier
This parameter is the storage-class specifier for the ISR lock to declare, for example extern or
static.

designator
This parameter is the ISR lock object designator.

NOTES:

Do not add a “;” after this macro.

180 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.16 RTEMS_INTERRUPT_LOCK_DEFINE()

Defines an ISR lock object.

CALLING SEQUENCE:

1 RTEMS_INTERRUPT_LOCK_DEFINE(specifier, designator, const char *name);

PARAMETERS:

specifier
This parameter is the storage-class specifier for the ISR lock to declare, for example extern or
static.

designator
This parameter is the ISR lock object designator.

name
This parameter is the ISR lock name. It shall be a string. The name is only used where the
system was built with profiling support enabled.

NOTES:

Do not add a “;” after this macro.

ISR locks may also be dynamically initialized by rtems_interrupt_lock_initialize() (page 172) or
statically by RTEMS_INTERRUPT_LOCK_INITIALIZER() (page 182).

8.4. Directives 181

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.17 RTEMS_INTERRUPT_LOCK_INITIALIZER()

Statically initializes an ISR lock object.

CALLING SEQUENCE:

1 RTEMS_INTERRUPT_LOCK_INITIALIZER(const char *name);

PARAMETERS:

name
This parameter is the ISR lock name. It shall be a string. The name is only used where the
system was built with profiling support enabled.

NOTES:

ISR locks may also be dynamically initialized by rtems_interrupt_lock_initialize() (page 172) or
statically defined by RTEMS_INTERRUPT_LOCK_DEFINE() (page 181).

182 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.18 RTEMS_INTERRUPT_LOCK_MEMBER()

Defines an ISR lock member.

CALLING SEQUENCE:

1 RTEMS_INTERRUPT_LOCK_MEMBER(designator);

PARAMETERS:

designator
This parameter is the ISR lock member designator.

NOTES:

Do not add a “;” after this macro.

8.4. Directives 183

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.19 RTEMS_INTERRUPT_LOCK_REFERENCE()

Defines an ISR lock object reference.

CALLING SEQUENCE:

1 RTEMS_INTERRUPT_LOCK_REFERENCE(designator, rtems_interrupt_lock *target);

PARAMETERS:

designator
This parameter is the ISR lock reference designator.

target
This parameter is the target object to reference.

NOTES:

Do not add a “;” after this macro.

184 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.20 RTEMS_INTERRUPT_ENTRY_INITIALIZER()

Statically initializes an interrupt entry object.

CALLING SEQUENCE:

1 RTEMS_INTERRUPT_ENTRY_INITIALIZER(
2 rtems_interrupt_handler routine,
3 void *arg,
4 const char *info
5);

PARAMETERS:

routine
This parameter is the interrupt handler routine for the entry.

arg
This parameter is the interrupt handler argument for the entry.

info
This parameter is the descriptive information for the entry.

NOTES:

Alternatively, rtems_interrupt_entry_initialize() (page 186) may be used to dynamically initial-
ize an interrupt entry.

8.4. Directives 185

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.21 rtems_interrupt_entry_initialize()

Initializes the interrupt entry.

CALLING SEQUENCE:

1 void rtems_interrupt_entry_initialize(
2 rtems_interrupt_entry *entry,
3 rtems_interrupt_handler routine,
4 void *arg,
5 const char *info
6);

PARAMETERS:

entry
This parameter is the interrupt entry to initialize.

routine
This parameter is the interrupt handler routine for the entry.

arg
This parameter is the interrupt handler argument for the entry.

info
This parameter is the descriptive information for the entry.

NOTES:

Alternatively, RTEMS_INTERRUPT_ENTRY_INITIALIZER() (page 185) may be used to statically
initialize an interrupt entry.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

186 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.22 rtems_interrupt_entry_install()

Installs the interrupt entry at the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_entry_install(
2 rtems_vector_number vector,
3 rtems_option options,
4 rtems_interrupt_entry *entry
5);

PARAMETERS:

vector
This parameter is the interrupt vector number.

options
This parameter is the interrupt entry install option set.

entry
This parameter is the interrupt entry to install.

DESCRIPTION:

One of the following mutually exclusive options

• RTEMS_INTERRUPT_UNIQUE, and

• RTEMS_INTERRUPT_SHARED

shall be set in the options parameter.

The handler routine of the entry specified by entry will be called with the handler argument
of the entry when dispatched. The order in which shared interrupt handlers are dispatched for
one vector is defined by the installation order. The first installed handler is dispatched first.

If the option RTEMS_INTERRUPT_UNIQUE is set, then it will be ensured that the handler will be the
only one for the interrupt vector.

If the option RTEMS_INTERRUPT_SHARED is set, then multiple handlers may be installed for the
interrupt vector.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The entry parameter was NULL.

RTEMS_INCORRECT_STATE
The service was not initialized.

RTEMS_INVALID_ADDRESS
The handler routine of the entry was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

8.4. Directives 187

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

RTEMS_CALLED_FROM_ISR
The directive was called from within interrupt context.

RTEMS_INVALID_NUMBER
An option specified by options was not applicable.

RTEMS_RESOURCE_IN_USE
The RTEMS_INTERRUPT_UNIQUE option was set in entry and the interrupt vector was already
occupied by a handler.

RTEMS_RESOURCE_IN_USE
The RTEMS_INTERRUPT_SHARED option was set in entry and the interrupt vector was already
occupied by a unique handler.

RTEMS_TOO_MANY
The handler routine of the entry specified by entry was already installed for the interrupt
vector specified by vector with an argument equal to the handler argument of the entry.

NOTES:

When the directive call was successful, the ownership of the interrupt entry has been transferred
from the caller to the interrupt service. An installed interrupt entry may be removed from the
interrupt service by calling rtems_interrupt_entry_remove() (page 189).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The interrupt entry shall have been initialized by rtems_interrupt_entry_initialize()
(page 186) or RTEMS_INTERRUPT_ENTRY_INITIALIZER() (page 185).

188 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.23 rtems_interrupt_entry_remove()

Removes the interrupt entry from the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_entry_remove(
2 rtems_vector_number vector,
3 rtems_interrupt_entry *entry
4);

PARAMETERS:

vector
This parameter is the interrupt vector number.

entry
This parameter is the interrupt entry to remove.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The service was not initialized.

RTEMS_INVALID_ADDRESS
The entry parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_CALLED_FROM_ISR
The directive was called from within interrupt context.

RTEMS_UNSATISFIED
The entry specified by entry was not installed at the interrupt vector specified by vector.

NOTES:

When the directive call was successful, the ownership of the interrupt entry has been transferred
from the interrupt service to the caller.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The interrupt entry shall have been installed by rtems_interrupt_entry_install()
(page 187).

8.4. Directives 189

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.24 rtems_interrupt_handler_install()

Installs the interrupt handler routine and argument at the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_handler_install(
2 rtems_vector_number vector,
3 const char *info,
4 rtems_option options,
5 rtems_interrupt_handler routine,
6 void *arg
7);

PARAMETERS:

vector
This parameter is the interrupt vector number.

info
This parameter is the descriptive information of the interrupt handler to install.

options
This parameter is the interrupt handler install option set.

routine
This parameter is the interrupt handler routine to install.

arg
This parameter is the interrupt handler argument to install.

DESCRIPTION:

One of the following mutually exclusive options

• RTEMS_INTERRUPT_UNIQUE,

• RTEMS_INTERRUPT_SHARED, and

• RTEMS_INTERRUPT_REPLACE

shall be set in the options parameter.

The handler routine will be called with the argument specified by arg when dispatched. The
order in which shared interrupt handlers are dispatched for one vector is defined by the instal-
lation order. The first installed handler is dispatched first.

If the option RTEMS_INTERRUPT_UNIQUE is set, then it will be ensured that the handler will be the
only one for the interrupt vector.

If the option RTEMS_INTERRUPT_SHARED is set, then multiple handler may be installed for the
interrupt vector.

If the option RTEMS_INTERRUPT_REPLACE is set, then the handler specified by routine will replace
the first handler with the same argument for the interrupt vector if it exists, otherwise an error
status will be returned. A second handler with the same argument for the interrupt vector will
remain unchanged. The new handler will inherit the unique or shared options from the replaced
handler.

190 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

An informative description may be provided in info. It may be used for system debugging and
diagnostic tools. The referenced string has to be persistent as long as the handler is installed.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The service was not initialized.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_CALLED_FROM_ISR
The directive was called from within interrupt context.

RTEMS_NO_MEMORY
There was not enough memory available to allocate data structures to install the handler.

RTEMS_RESOURCE_IN_USE
The RTEMS_INTERRUPT_UNIQUE option was set in options and the interrupt vector was already
occupied by a handler.

RTEMS_RESOURCE_IN_USE
The RTEMS_INTERRUPT_SHARED option was set in options and the interrupt vector was already
occupied by a unique handler.

RTEMS_TOO_MANY
The handler specified by routine was already installed for the interrupt vector specified by
vector with an argument equal to the argument specified by arg.

RTEMS_UNSATISFIED
The RTEMS_INTERRUPT_REPLACE option was set in options and no handler to replace was in-
stalled.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

8.4. Directives 191

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.25 rtems_interrupt_handler_remove()

Removes the interrupt handler routine and argument from the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_handler_remove(
2 rtems_vector_number vector,
3 rtems_interrupt_handler routine,
4 void *arg
5);

PARAMETERS:

vector
This parameter is the interrupt vector number.

routine
This parameter is the interrupt handler routine to remove.

arg
This parameter is the interrupt handler argument to remove.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The service was not initialized.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_CALLED_FROM_ISR
The directive was called from within interrupt context.

RTEMS_UNSATISFIED
There was no handler routine and argument pair installed specified by routine and arg.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

192 Chapter 8. Interrupt Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.26 rtems_interrupt_vector_is_enabled()

Checks if the interrupt vector is enabled.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_vector_is_enabled(
2 rtems_vector_number vector,
3 bool *enabled
4);

PARAMETERS:

vector
This parameter is the interrupt vector number.

enabled
This parameter is the pointer to a bool object. When the directive call is successful, the
enabled status of the interrupt associated with the interrupt vector specified by vector will be
stored in this object. When the interrupt was enabled for the processor executing the directive
call at some time point during the call, the object value will be set to true, otherwise to false.

DESCRIPTION:

The directive checks if the interrupt associated with the interrupt vector specified by vector was
enabled for the processor executing the directive call at some time point during the call.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The enabled parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

NOTES:

Interrupt vectors may be enabled by rtems_interrupt_vector_enable() (page 194) and disabled
by rtems_interrupt_vector_disable() (page 195).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 193

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.27 rtems_interrupt_vector_enable()

Enables the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_vector_enable(rtems_vector_number vector);

PARAMETERS:

vector
This parameter is the number of the interrupt vector to enable.

DESCRIPTION:

The directive enables the interrupt vector specified by vector. This allows that interrupt
service requests are issued to the target processors of the interrupt vector. Interrupt ser-
vice requests for an interrupt vector may be raised by rtems_interrupt_raise() (page 198),
rtems_interrupt_raise_on() (page 199), external signals, or messages.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_UNSATISFIED
The request to enable the interrupt vector has not been satisfied.

NOTES:

The rtems_interrupt_get_attributes() (page 207) directive may be used to check if an interrupt
vector can be enabled. Interrupt vectors may be disabled by rtems_interrupt_vector_disable()
(page 195).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

194 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.28 rtems_interrupt_vector_disable()

Disables the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_vector_disable(rtems_vector_number vector);

PARAMETERS:

vector
This parameter is the number of the interrupt vector to disable.

DESCRIPTION:

The directive disables the interrupt vector specified by vector. This prevents that an interrupt
service request is issued to the target processors of the interrupt vector.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_UNSATISFIED
The request to disable the interrupt vector has not been satisfied.

NOTES:

The rtems_interrupt_get_attributes() (page 207) directive may be used to check if an interrupt
vector can be disabled. Interrupt vectors may be enabled by rtems_interrupt_vector_enable()
(page 194). There may be targets on which some interrupt vectors cannot be disabled, for
example a hardware watchdog interrupt or software generated interrupts.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 195

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.29 rtems_interrupt_is_pending()

Checks if the interrupt is pending.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_is_pending(
2 rtems_vector_number vector,
3 bool *pending
4);

PARAMETERS:

vector
This parameter is the interrupt vector number.

pending
This parameter is the pointer to a bool object. When the directive call is successful, the
pending status of the interrupt associated with the interrupt vector specified by vector will
be stored in this object. When the interrupt was pending for the processor executing the
directive call at some time point during the call, the object value will be set to true, otherwise
to false.

DESCRIPTION:

The directive checks if the interrupt associated with the interrupt vector specified by vector was
pending for the processor executing the directive call at some time point during the call.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The pending parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_UNSATISFIED
The request to get the pending status has not been satisfied.

NOTES:

Interrupts may be made pending by calling the rtems_interrupt_raise() (page 198) or
rtems_interrupt_raise_on() (page 199) directives or due to external signals or messages. The
pending state may be cleared by rtems_interrupt_clear() (page 200).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

196 Chapter 8. Interrupt Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• The directive will not cause the calling task to be preempted.

8.4. Directives 197

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.30 rtems_interrupt_raise()

Raises the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_raise(rtems_vector_number vector);

PARAMETERS:

vector
This parameter is the number of the interrupt vector to raise.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_UNSATISFIED
The request to raise the interrupt vector has not been satisfied.

NOTES:

The rtems_interrupt_get_attributes() (page 207) directive may be used to check if an interrupt
vector can be raised.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

198 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.31 rtems_interrupt_raise_on()

Raises the interrupt vector on the processor.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_raise_on(
2 rtems_vector_number vector,
3 uint32_t cpu_index
4);

PARAMETERS:

vector
This parameter is the number of the interrupt vector to raise.

cpu_index
This parameter is the index of the target processor of the interrupt vector to raise.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_NOT_CONFIGURED
The processor specified by cpu_index was not configured to be used by the application.

RTEMS_INCORRECT_STATE
The processor specified by cpu_index was configured to be used by the application, however,
it was not online.

RTEMS_UNSATISFIED
The request to raise the interrupt vector has not been satisfied.

NOTES:

The rtems_interrupt_get_attributes() (page 207) directive may be used to check if an interrupt
vector can be raised on a processor.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 199

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.32 rtems_interrupt_clear()

Clears the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_clear(rtems_vector_number vector);

PARAMETERS:

vector
This parameter is the number of the interrupt vector to clear.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_UNSATISFIED
The request to raise the interrupt vector has not been satisfied.

NOTES:

The rtems_interrupt_get_attributes() (page 207) directive may be used to check if an interrupt
vector can be cleared.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

200 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.33 rtems_interrupt_get_priority()

Gets the priority of the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_get_priority(
2 rtems_vector_number vector,
3 uint32_t *priority
4);

PARAMETERS:

vector
This parameter is the interrupt vector number.

priority
This parameter is the pointer to an uint32_t object. When the directive call is successful, the
priority of the interrupt vector will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The priority parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_UNSATISFIED
There is no priority associated with the interrupt vector.

NOTES:

The rtems_interrupt_set_priority() (page 202) directive may be used to set the priority associ-
ated with an interrupt vector.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 201

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.34 rtems_interrupt_set_priority()

Sets the priority of the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_set_priority(
2 rtems_vector_number vector,
3 uint32_t priority
4);

PARAMETERS:

vector
This parameter is the interrupt vector number.

priority
This parameter is the new priority for the interrupt vector.

DESCRIPTION:

This directive sets the priority of the interrupt specified by vector to the priority specified by
priority.

For processor-specific interrupts, the priority of the interrupt specific to a processor executing
the directive call will be set.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_INVALID_PRIORITY
The priority specified by priority was not a valid new priority for the interrupt vector.

RTEMS_UNSATISFIED
The request to set the priority of the interrupt vector has not been satisfied.

NOTES:

The rtems_interrupt_get_priority() (page 201) directive may be used to get the priority associ-
ated with an interrupt vector.

The interrupt prioritization support depends on the interrupt controller of the target. It is
strongly recommended to read the relevant hardware documentation. What happens when the
priority of a pending or active interrupt is changed, depends on the interrupt controller. In
general, you should set the interrupt priority of an interrupt vector before a handler is installed.
On some interrupt controllers, setting the priority to the maximum value (lowest importance)
effectively disables the interrupt.

On some architectures, a range of interrupt priority values may be not disabled
by the interrupt disable directives such as rtems_interrupt_disable() (page 164) and

202 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

rtems_interrupt_local_disable() (page 168). These interrupts are called non-maskable inter-
rupts. Handlers of non-maskable interrupts shall not use operating system services. In addi-
tion, non-maskable interrupts may be not installable through rtems_interrupt_entry_install()
(page 187) or rtems_interrupt_handler_install() (page 190), and may require architecture-
specific prologue and epilogue code.

The interrupt priority settings affect the maximum nesting depth while servicing interrupts.
The interrupt stack size calculation needs to take this into account, see also CONFIG-
URE_INTERRUPT_STACK_SIZE (page 574).

For the ARM Generic Interrupt Controller (GIC), an 8-bit priority value is supported. The gran-
ularity of the priority levels depends on the interrupt controller configuration. Some low-order
bits of a priority value may be read-as-zero (RAZ) and writes are ignored (WI). Where group
0 (FIQ) and group 1 (IRQ) interrupts are used, it is recommended to use the lower half of
the supported priority value range for the group 0 interrupts and the upper half for group 1
interrupts. This ensures that group 1 interrupts cannot preempt group 0 interrupts.

For the Armv7-M Nested Vector Interrupt Controller (NVIC), an 8-bit priority value is supported.
The granularity of the priority levels depends on the interrupt controller configuration. Some
lower bits of a priority value may be read-as-zero (RAZ) and writes are ignored (WI). Interrupts
with a priority value less than 128 are not disabled by the RTEMS interrupt disable directives.
Handlers of such interrupts shall not use operating system services.

For the RISC-V Platform-Level Interrupt Controller (PLIC), all priority values from 0 up to and
including the 0xffffffff are supported since the priority for the PLIC is defined by a write-any-
read-legal (WARL) register. Please note that for this directive in contrast to the PLIC, a higher
priority value is associated with a lower importance. The maximum priority value (mapped
to the value 0 for the PLIC) is reserved to mean “never interrupt” and effectively disables the
interrupt.

For the QorIQ Multicore Programmable Interrupt Controller (MPIC), a 4-bit priority value is
supported. Please note that for this directive in contrast to the MPIC, a higher priority value is
associated with a lower importance. The maximum priority value of 15 (mapped to the value 0
for the MPIC) inhibits signalling of this interrupt.

Consult the RTEMS CPU Architecture Supplement and the BSP documentation in the RTEMS User
Manual for further information.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 203

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.35 rtems_interrupt_get_affinity()

Gets the processor affinity set of the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_get_affinity(
2 rtems_vector_number vector,
3 size_t affinity_size,
4 cpu_set_t *affinity
5);

PARAMETERS:

vector
This parameter is the interrupt vector number.

affinity_size
This parameter is the size of the processor set referenced by affinity in bytes.

affinity
This parameter is the pointer to a cpu_set_t object. When the directive call is successful,
the processor affinity set of the interrupt vector will be stored in this object. A set bit in the
processor set means that the corresponding processor is in the processor affinity set of the
interrupt vector, otherwise the bit is cleared.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The affinity parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_INVALID_SIZE
The size specified by affinity_size of the processor set was too small for the processor
affinity set of the interrupt vector.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

204 Chapter 8. Interrupt Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.36 rtems_interrupt_set_affinity()

Sets the processor affinity set of the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_set_affinity(
2 rtems_vector_number vector,
3 size_t affinity_size,
4 const cpu_set_t *affinity
5);

PARAMETERS:

vector
This parameter is the interrupt vector number.

affinity_size
This parameter is the size of the processor set referenced by affinity in bytes.

affinity
This parameter is the pointer to a cpu_set_t object. The processor set defines the new pro-
cessor affinity set of the interrupt vector. A set bit in the processor set means that the corre-
sponding processor shall be in the processor affinity set of the interrupt vector, otherwise the
bit shall be cleared.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The affinity parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_INVALID_NUMBER
The referenced processor set was not a valid new processor affinity set for the interrupt vector.

RTEMS_UNSATISFIED
The request to set the processor affinity of the interrupt vector has not been satisfied.

NOTES:

The rtems_interrupt_get_attributes() (page 207) directive may be used to check if the processor
affinity of an interrupt vector can be set.

Only online processors of the affinity set specified by affinity_size and affinity are consid-
ered by the directive. Other processors of the set are ignored. If the set contains no online
processor, then the set is invalid and an error status is returned.

8.4. Directives 205

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

206 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.37 rtems_interrupt_get_attributes()

Gets the attributes of the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_get_attributes(
2 rtems_vector_number vector,
3 rtems_interrupt_attributes *attributes
4);

PARAMETERS:

vector
This parameter is the interrupt vector number.

attributes
This parameter is the pointer to an rtems_interrupt_attributes (page 42) object. When the
directive call is successful, the attributes of the interrupt vector will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The attributes parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

8.4. Directives 207

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.38 rtems_interrupt_handler_iterate()

Iterates over all interrupt handler installed at the interrupt vector.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_handler_iterate(
2 rtems_vector_number vector,
3 rtems_interrupt_per_handler_routine routine,
4 void *arg
5);

PARAMETERS:

vector
This parameter is the interrupt vector number.

routine
This parameter is the visitor routine.

arg
This parameter is the visitor argument.

DESCRIPTION:

For each installed handler at the interrupt vector the visitor function specified by routine will
be called with the argument specified by arg and the handler information, options, routine and
argument.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The service was not initialized.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_CALLED_FROM_ISR
The directive was called from within interrupt context.

NOTES:

The directive is intended for system information and diagnostics.

Never install or remove an interrupt handler within the visitor function. This may result in a
deadlock.

208 Chapter 8. Interrupt Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

8.4. Directives 209

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.39 rtems_interrupt_server_initialize()

Initializes the interrupt server tasks.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_initialize(
2 rtems_task_priority priority,
3 size_t stack_size,
4 rtems_mode modes,
5 rtems_attribute attributes,
6 uint32_t *server_count
7);

PARAMETERS:

priority
This parameter is the initial task priority of the created interrupt servers.

stack_size
This parameter is the task stack size of the created interrupt servers.

modes
This parameter is the initial mode set of the created interrupt servers.

attributes
This parameter is the attribute set of the created interrupt servers.

server_count
This parameter is the pointer to an uint32_t object or NULL. When the pointer is not equal to
NULL, the count of successfully created interrupt servers is stored in this object regardless of
the return status.

DESCRIPTION:

The directive tries to create an interrupt server task for each online processor in the system. The
tasks will have the initial priority specified by priority, the stack size specified by stack_size,
the initial mode set specified by modes, and the attribute set specified by attributes. The count
of successfully created server tasks will be returned in server_count if the pointer is not equal
to NULL.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The interrupt servers were already initialized.

The directive uses rtems_task_create() (page 109). If this directive fails, then its error status
will be returned.

210 Chapter 8. Interrupt Manager

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

NOTES:

Interrupt handlers may be installed on an interrupt server with
rtems_interrupt_server_handler_install() (page 213) and removed with
rtems_interrupt_server_handler_remove() (page 215) using a server index. In case of an
interrupt, the request will be forwarded to the interrupt server. The handlers are executed
within the interrupt server context. If one handler blocks on something this may delay the
processing of other handlers.

Interrupt servers may be deleted by rtems_interrupt_server_delete() (page 218).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

8.4. Directives 211

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.40 rtems_interrupt_server_create()

Creates an interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_create(
2 rtems_interrupt_server_control *control,
3 const rtems_interrupt_server_config *config,
4 uint32_t *server_index
5);

PARAMETERS:

control
This parameter is the pointer to an rtems_interrupt_server_control (page 45) object. When the
directive call was successful, the ownership of the object was transferred from the caller of
the directive to the interrupt server management.

config
This parameter is the interrupt server configuration.

server_index
This parameter is the pointer to an uint32_t object. When the directive call was successful,
the index of the created interrupt server will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

The directive uses rtems_task_create() (page 109). If this directive fails, then its error status
will be returned.

NOTES:

See also rtems_interrupt_server_initialize() (page 210) and rtems_interrupt_server_delete()
(page 218).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

212 Chapter 8. Interrupt Manager

https://en.cppreference.com/w/c/types/integer

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.41 rtems_interrupt_server_handler_install()

Installs the interrupt handler routine and argument at the interrupt vector on the interrupt
server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_handler_install(
2 uint32_t server_index,
3 rtems_vector_number vector,
4 const char *info,
5 rtems_option options,
6 rtems_interrupt_handler routine,
7 void *arg
8);

PARAMETERS:

server_index
This parameter is the interrupt server index. The constant RTEMS_INTERRUPT_SERVER_DEFAULT
may be used to specify the default interrupt server.

vector
This parameter is the interrupt vector number.

info
This parameter is the descriptive information of the interrupt handler to install.

options
This parameter is the interrupt handler install option set.

routine
This parameter is the interrupt handler routine to install.

arg
This parameter is the interrupt handler argument to install.

DESCRIPTION:

The handler routine specified by routine will be executed within the context of the interrupt
server task specified by server_index.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

RTEMS_CALLED_FROM_ISR
The directive was called from within interrupt context.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

8.4. Directives 213

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_INVALID_NUMBER
An option specified by info was not applicable.

RTEMS_RESOURCE_IN_USE
The RTEMS_INTERRUPT_UNIQUE option was set in info and the interrupt vector was already
occupied by a handler.

RTEMS_RESOURCE_IN_USE
The RTEMS_INTERRUPT_SHARED option was set in info and the interrupt vector was already
occupied by a unique handler.

RTEMS_TOO_MANY
The handler specified by routine was already installed for the interrupt vector specified by
vector with an argument equal to the argument specified by arg.

RTEMS_UNSATISFIED
The RTEMS_INTERRUPT_REPLACE option was set in info and no handler to replace was installed.

NOTES:

See also rtems_interrupt_handler_install() (page 190).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

214 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.42 rtems_interrupt_server_handler_remove()

Removes the interrupt handler routine and argument from the interrupt vector and the interrupt
server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_handler_remove(
2 uint32_t server_index,
3 rtems_vector_number vector,
4 rtems_interrupt_handler routine,
5 void *arg
6);

PARAMETERS:

server_index
This parameter is the interrupt server index. The constant RTEMS_INTERRUPT_SERVER_DEFAULT
may be used to specify the default interrupt server.

vector
This parameter is the interrupt vector number.

routine
This parameter is the interrupt handler routine to remove.

arg
This parameter is the interrupt handler argument to remove.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

RTEMS_UNSATISFIED
There was no handler routine and argument pair installed specified by routine and arg.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The directive sends a request to another task and waits for a response. This may cause
the calling task to be blocked and unblocked.

• The directive shall not be called from within the context of an interrupt server. Calling
the directive from within the context of an interrupt server is undefined behaviour.

8.4. Directives 215

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.43 rtems_interrupt_server_set_affinity()

Sets the processor affinity of the interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_set_affinity(
2 uint32_t server_index,
3 size_t affinity_size,
4 const cpu_set_t *affinity,
5 rtems_task_priority priority
6);

PARAMETERS:

server_index
This parameter is the interrupt server index. The constant RTEMS_INTERRUPT_SERVER_DEFAULT
may be used to specify the default interrupt server.

affinity_size
This parameter is the size of the processor set referenced by affinity in bytes.

affinity
This parameter is the pointer to a cpu_set_t object. The processor set defines the new pro-
cessor affinity set of the interrupt server. A set bit in the processor set means that the corre-
sponding processor shall be in the processor affinity set of the task, otherwise the bit shall be
cleared.

priority
This parameter is the new real priority for the interrupt server.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

The directive uses rtems_scheduler_ident_by_processor_set() (page 74),
rtems_task_set_scheduler() (page 137), and rtems_task_set_affinity() (page 141). If one
of these directive fails, then its error status will be returned.

NOTES:

The scheduler is set determined by the highest numbered processor in the affinity set specified
by affinity.

This operation is only reliable in case the interrupt server was suspended via
rtems_interrupt_server_suspend() (page 219).

216 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may change the processor affinity of a task. This may cause the calling task
to be preempted.

• The directive may change the priority of a task. This may cause the calling task to be
preempted.

8.4. Directives 217

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.44 rtems_interrupt_server_delete()

Deletes the interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_delete(uint32_t server_index);

PARAMETERS:

server_index
This parameter is the index of the interrupt server to delete.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the server index specified by server_index.

NOTES:

The interrupt server deletes itself, so after the return of the directive the interrupt server may
be still in the termination process depending on the task priorities of the system.

See also rtems_interrupt_server_create() (page 212).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive shall not be called from within the context of an interrupt server. Calling
the directive from within the context of an interrupt server is undefined behaviour.

• The directive sends a request to another task and waits for a response. This may cause
the calling task to be blocked and unblocked.

218 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.45 rtems_interrupt_server_suspend()

Suspends the interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_suspend(uint32_t server_index);

PARAMETERS:

server_index
This parameter is the index of the interrupt server to suspend. The constant
RTEMS_INTERRUPT_SERVER_DEFAULT may be used to specify the default interrupt server.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

NOTES:

Interrupt server may be resumed by rtems_interrupt_server_resume() (page 220).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive shall not be called from within the context of an interrupt server. Calling
the directive from within the context of an interrupt server is undefined behaviour.

• The directive sends a request to another task and waits for a response. This may cause
the calling task to be blocked and unblocked.

8.4. Directives 219

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.46 rtems_interrupt_server_resume()

Resumes the interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_resume(uint32_t server_index);

PARAMETERS:

server_index
This parameter is the index of the interrupt server to resume. The constant
RTEMS_INTERRUPT_SERVER_DEFAULT may be used to specify the default interrupt server.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

NOTES:

Interrupt server may be suspended by rtems_interrupt_server_suspend() (page 219).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive shall not be called from within the context of an interrupt server. Calling
the directive from within the context of an interrupt server is undefined behaviour.

• The directive sends a request to another task and waits for a response. This may cause
the calling task to be blocked and unblocked.

220 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.47 rtems_interrupt_server_move()

Moves the interrupt handlers installed at the interrupt vector and the source interrupt server to
the destination interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_move(
2 uint32_t source_server_index,
3 rtems_vector_number vector,
4 uint32_t destination_server_index
5);

PARAMETERS:

source_server_index
This parameter is the index of the source interrupt server. The constant
RTEMS_INTERRUPT_SERVER_DEFAULT may be used to specify the default interrupt server.

vector
This parameter is the interrupt vector number.

destination_server_index
This parameter is the index of the destination interrupt server. The constant
RTEMS_INTERRUPT_SERVER_DEFAULT may be used to specify the default interrupt server.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by source_server_index.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by
destination_server_index.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive shall not be called from within the context of an interrupt server. Calling
the directive from within the context of an interrupt server is undefined behaviour.

• The directive sends a request to another task and waits for a response. This may cause
the calling task to be blocked and unblocked.

8.4. Directives 221

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.48 rtems_interrupt_server_handler_iterate()

Iterates over all interrupt handler installed at the interrupt vector and interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_handler_iterate(
2 uint32_t server_index,
3 rtems_vector_number vector,
4 rtems_interrupt_per_handler_routine routine,
5 void *arg
6);

PARAMETERS:

server_index
This parameter is the index of the interrupt server.

vector
This parameter is the interrupt vector number.

routine
This parameter is the visitor routine.

arg
This parameter is the visitor argument.

DESCRIPTION:

For each installed handler at the interrupt vector and interrupt server the visitor function spec-
ified by vector will be called with the argument specified by routine and the handler informa-
tion, options, routine and argument.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

RTEMS_INVALID_ID
There was no interrupt vector associated with the number specified by vector.

NOTES:

The directive is intended for system information and diagnostics.

Never install or remove an interrupt handler within the visitor function. This may result in a
deadlock.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

222 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

8.4. Directives 223

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.49 rtems_interrupt_server_entry_initialize()

Initializes the interrupt server entry.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_entry_initialize(
2 uint32_t server_index,
3 rtems_interrupt_server_entry *entry
4);

PARAMETERS:

server_index
This parameter is the interrupt server index. The constant RTEMS_INTERRUPT_SERVER_DEFAULT
may be used to specify the default interrupt server.

entry
This parameter is the interrupt server entry to initialize.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

NOTES:

After initialization, the list of actions of the interrupt server entry is empty. Actions may
be prepended by rtems_interrupt_server_action_prepend() (page 225). Interrupt server en-
tries may be moved to another interrupt vector with rtems_interrupt_server_entry_move()
(page 229). Server entries may be submitted to get serviced by the interrupt server
with rtems_interrupt_server_entry_submit() (page 228). Server entries may be destroyed by
rtems_interrupt_server_entry_destroy() (page 227).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

224 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.50 rtems_interrupt_server_action_prepend()

Prepends the interrupt server action to the list of actions of the interrupt server entry.

CALLING SEQUENCE:

1 void rtems_interrupt_server_action_prepend(
2 rtems_interrupt_server_entry *entry,
3 rtems_interrupt_server_action *action,
4 rtems_interrupt_handler routine,
5 void *arg
6);

PARAMETERS:

entry
This parameter is the interrupt server entry to prepend the interrupt server action. It shall
have been initialized via rtems_interrupt_server_entry_initialize() (page 224).

action
This parameter is the interrupt server action to initialize and prepend to the list of actions of
the entry.

routine
This parameter is the interrupt handler routine to set in the action.

arg
This parameter is the interrupt handler argument to set in the action.

NOTES:

No error checking is performed by the directive.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

• The interrupt server entry shall have been initialized by
rtems_interrupt_server_entry_initialize() (page 224) and further optional calls to
rtems_interrupt_server_action_prepend() (page 225).

• The directive shall not be called concurrently with
rtems_interrupt_server_action_prepend() (page 225) with the same interrupt server
entry. Calling the directive under this condition is undefined behaviour.

• The directive shall not be called concurrently with rtems_interrupt_server_entry_move()
(page 229) with the same interrupt server entry. Calling the directive under this condition
is undefined behaviour.

8.4. Directives 225

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

• The directive shall not be called concurrently with rtems_interrupt_server_entry_submit()
(page 228) with the same interrupt server entry. Calling the directive under this condition
is undefined behaviour.

• The directive shall not be called while the interrupt server entry is pending on or serviced
by its current interrupt server. Calling the directive under these conditions is undefined
behaviour.

226 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.51 rtems_interrupt_server_entry_destroy()

Destroys the interrupt server entry.

CALLING SEQUENCE:

1 void rtems_interrupt_server_entry_destroy(
2 rtems_interrupt_server_entry *entry
3);

PARAMETERS:

entry
This parameter is the interrupt server entry to destroy.

NOTES:

No error checking is performed by the directive.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive shall not be called from within the context of an interrupt server. Calling
the directive from within the context of an interrupt server is undefined behaviour.

• The directive sends a request to another task and waits for a response. This may cause
the calling task to be blocked and unblocked.

• The interrupt server entry shall have been initialized by
rtems_interrupt_server_entry_initialize() (page 224) and further optional calls to
rtems_interrupt_server_action_prepend() (page 225).

8.4. Directives 227

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.52 rtems_interrupt_server_entry_submit()

Submits the interrupt server entry to be serviced by the interrupt server.

CALLING SEQUENCE:

1 void rtems_interrupt_server_entry_submit(
2 rtems_interrupt_server_entry *entry
3);

PARAMETERS:

entry
This parameter is the interrupt server entry to submit.

DESCRIPTION:

The directive appends the entry to the pending entries of the interrupt server. The interrupt
server is notified that a new entry is pending. Once the interrupt server is scheduled it services
the actions of all pending entries.

NOTES:

This directive may be used to do a two-step interrupt processing. The first step is done from
within interrupt context by a call to this directive. The second step is then done from within the
context of the interrupt server.

No error checking is performed by the directive.

A submitted entry may be destroyed by rtems_interrupt_server_entry_destroy() (page 227).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• The interrupt server entry shall have been initialized by
rtems_interrupt_server_entry_initialize() (page 224) and further optional calls to
rtems_interrupt_server_action_prepend() (page 225).

• The directive shall not be called concurrently with
rtems_interrupt_server_action_prepend() (page 225) with the same interrupt server
entry. Calling the directive under this condition is undefined behaviour.

• The directive shall not be called concurrently with rtems_interrupt_server_entry_move()
(page 229) with the same interrupt server entry. Calling the directive under this condition
is undefined behaviour.

228 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.53 rtems_interrupt_server_entry_move()

Moves the interrupt server entry to the interrupt server.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_entry_move(
2 rtems_interrupt_server_entry *entry,
3 uint32_t server_index
4);

PARAMETERS:

entry
This parameter is the interrupt server entry to move.

server_index
This parameter is the index of the destination interrupt server. The constant
RTEMS_INTERRUPT_SERVER_DEFAULT may be used to specify the default interrupt server.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The interrupt server entry shall have been initialized by
rtems_interrupt_server_entry_initialize() (page 224) and further optional calls to
rtems_interrupt_server_action_prepend() (page 225).

• The directive shall not be called concurrently with
rtems_interrupt_server_action_prepend() (page 225) with the same interrupt server
entry. Calling the directive under this condition is undefined behaviour.

• The directive shall not be called concurrently with rtems_interrupt_server_entry_move()
(page 229) with the same interrupt server entry. Calling the directive under this condition
is undefined behaviour.

• The directive shall not be called concurrently with rtems_interrupt_server_entry_submit()
(page 228) with the same interrupt server entry. Calling the directive under this condition
is undefined behaviour.

• The directive shall not be called while the interrupt server entry is pending on or serviced
by its current interrupt server. Calling the directive under these conditions is undefined
behaviour.

8.4. Directives 229

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.54 rtems_interrupt_server_request_initialize()

Initializes the interrupt server request.

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_server_request_initialize(
2 uint32_t server_index,
3 rtems_interrupt_server_request *request,
4 rtems_interrupt_handler routine,
5 void *arg
6);

PARAMETERS:

server_index
This parameter is the interrupt server index. The constant RTEMS_INTERRUPT_SERVER_DEFAULT
may be used to specify the default interrupt server.

request
This parameter is the interrupt server request to initialize.

routine
This parameter is the interrupt handler routine for the request action.

arg
This parameter is the interrupt handler argument for the request action.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no interrupt server associated with the index specified by server_index.

NOTES:

An interrupt server requests consists of an interrupt server entry and exactly one in-
terrupt server action. The interrupt vector of the request may be changed with
rtems_interrupt_server_request_set_vector() (page 231). Interrupt server requests may be sub-
mitted to get serviced by the interrupt server with rtems_interrupt_server_request_submit()
(page 233). Requests may be destroyed by rtems_interrupt_server_request_destroy() (page 232).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

230 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.55 rtems_interrupt_server_request_set_vector()

Sets the interrupt vector in the interrupt server request.

CALLING SEQUENCE:

1 void rtems_interrupt_server_request_set_vector(
2 rtems_interrupt_server_request *request,
3 rtems_vector_number vector
4);

PARAMETERS:

request
This parameter is the interrupt server request to change.

vector
This parameter is the interrupt vector number to be used by the request.

NOTES:

By default, the interrupt vector of an interrupt server request is set to a special value which is
outside the range of vectors supported by the interrupt controller hardware.

Calls to rtems_interrupt_server_request_submit() (page 233) will disable the interrupt vector of
the request. After processing of the request by the interrupt server the interrupt vector will be
enabled again.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

• The interrupt server request shall have been initialized by
rtems_interrupt_server_request_initialize() (page 230).

• The directive shall not be called concurrently with
rtems_interrupt_server_request_set_vector() (page 231) with the same interrupt server
request. Calling the directive under this condition is undefined behaviour.

• The directive shall not be called concurrently with
rtems_interrupt_server_request_submit() (page 233) with the same interrupt server
request. Calling the directive under this condition is undefined behaviour.

• The directive shall not be called while the interrupt server entry is pending on or serviced
by its current interrupt server. Calling the directive under these conditions is undefined
behaviour.

8.4. Directives 231

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

8.4.56 rtems_interrupt_server_request_destroy()

Destroys the interrupt server request.

CALLING SEQUENCE:

1 void rtems_interrupt_server_request_destroy(
2 rtems_interrupt_server_request *request
3);

PARAMETERS:

request
This parameter is the interrupt server request to destroy.

NOTES:

No error checking is performed by the directive.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive shall not be called from within the context of an interrupt server. Calling
the directive from within the context of an interrupt server is undefined behaviour.

• The directive sends a request to another task and waits for a response. This may cause
the calling task to be blocked and unblocked.

• The interrupt server request shall have been initialized by
rtems_interrupt_server_request_initialize() (page 230).

232 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

8.4.57 rtems_interrupt_server_request_submit()

Submits the interrupt server request to be serviced by the interrupt server.

CALLING SEQUENCE:

1 void rtems_interrupt_server_request_submit(
2 rtems_interrupt_server_request *request
3);

PARAMETERS:

request
This parameter is the interrupt server request to submit.

DESCRIPTION:

The directive appends the interrupt server entry of the request to the pending entries of the
interrupt server. The interrupt server is notified that a new entry is pending. Once the interrupt
server is scheduled it services the actions of all pending entries.

NOTES:

This directive may be used to do a two-step interrupt processing. The first step is done from
within interrupt context by a call to this directive. The second step is then done from within the
context of the interrupt server.

No error checking is performed by the directive.

A submitted request may be destroyed by rtems_interrupt_server_request_destroy() (page 232).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• The interrupt server request shall have been initialized by
rtems_interrupt_server_request_initialize() (page 230).

• The directive shall not be called concurrently with
rtems_interrupt_server_request_set_vector() (page 231) with the same interrupt server
request. Calling the directive under this condition is undefined behaviour.

8.4. Directives 233

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 8 Section 8.4

234 Chapter 8. Interrupt Manager

CHAPTER

NINE

CLOCK MANAGER

235

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.1

9.1 Introduction

The Clock Manager provides support for time of day and other time related capabilities. The
directives provided by the Clock Manager are:

• rtems_clock_set() (page 243) - Sets the CLOCK_REALTIME to the time of day.

• rtems_clock_get_tod() (page 245) - Gets the time of day associated with the current
CLOCK_REALTIME.

• rtems_clock_get_tod_timeval() (page 246) - Gets the seconds and microseconds elapsed
since the Unix epoch and the current CLOCK_REALTIME.

• rtems_clock_get_realtime() (page 247) - Gets the time elapsed since the Unix epoch mea-
sured using CLOCK_REALTIME in seconds and nanoseconds format.

• rtems_clock_get_realtime_bintime() (page 248) - Gets the time elapsed since the Unix
epoch measured using CLOCK_REALTIME in binary time format.

• rtems_clock_get_realtime_timeval() (page 249) - Gets the time elapsed since the Unix epoch
measured using CLOCK_REALTIME in seconds and microseconds format.

• rtems_clock_get_realtime_coarse() (page 250) - Gets the time elapsed since the Unix epoch
measured using CLOCK_REALTIME in coarse resolution in seconds and nanoseconds for-
mat.

• rtems_clock_get_realtime_coarse_bintime() (page 251) - Gets the time elapsed since the
Unix epoch measured using CLOCK_REALTIME in coarse resolution in binary time format.

• rtems_clock_get_realtime_coarse_timeval() (page 252) - Gets the time elapsed since the
Unix epoch measured using CLOCK_REALTIME in coarse resolution in seconds and mi-
croseconds format.

• rtems_clock_get_monotonic() (page 253) - Gets the time elapsed since some fixed time
point in the past measured using the CLOCK_MONOTONIC in seconds and nanoseconds
format.

• rtems_clock_get_monotonic_bintime() (page 254) - Gets the time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC in binary time format.

• rtems_clock_get_monotonic_sbintime() (page 255) - Gets the time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC in signed binary time
format.

• rtems_clock_get_monotonic_timeval() (page 256) - Gets the time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC in seconds and microsec-
onds format.

• rtems_clock_get_monotonic_coarse() (page 257) - Gets the time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC in coarse resolution in
seconds and nanoseconds format.

• rtems_clock_get_monotonic_coarse_bintime() (page 258) - Gets the time elapsed since
some fixed time point in the past measured using the CLOCK_MONOTONIC in coarse
resolution in binary time format.

• rtems_clock_get_monotonic_coarse_timeval() (page 259) - Gets the time elapsed since
some fixed time point in the past measured using the CLOCK_MONOTONIC in coarse
resolution in seconds and microseconds format.

236 Chapter 9. Clock Manager

Chapter 9 Section 9.1 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• rtems_clock_get_boot_time() (page 260) - Gets the time elapsed since the Unix epoch at
some time point during system initialization in seconds and nanoseconds format.

• rtems_clock_get_boot_time_bintime() (page 261) - Gets the time elapsed since the Unix
epoch at some time point during system initialization in binary time format.

• rtems_clock_get_boot_time_timeval() (page 262) - Gets the time elapsed since the Unix
epoch at some time point during system initialization in seconds and microseconds format.

• rtems_clock_get_seconds_since_epoch() (page 263) - Gets the seconds elapsed since the
RTEMS epoch and the current CLOCK_REALTIME.

• rtems_clock_get_ticks_per_second() (page 264) - Gets the number of clock ticks per second
configured for the application.

• rtems_clock_get_ticks_since_boot() (page 265) - Gets the number of clock ticks since some
time point during the system initialization or the last overflow of the clock tick counter.

• rtems_clock_get_uptime() (page 266) - Gets the seconds and nanoseconds elapsed since
some time point during the system initialization using CLOCK_MONOTONIC.

• rtems_clock_get_uptime_timeval() (page 267) - Gets the seconds and microseconds
elapsed since some time point during the system initialization using CLOCK_MONOTONIC.

• rtems_clock_get_uptime_seconds() (page 268) - Gets the seconds elapsed since some time
point during the system initialization using CLOCK_MONOTONIC.

• rtems_clock_get_uptime_nanoseconds() (page 269) - Gets the nanoseconds elapsed since
some time point during the system initialization using CLOCK_MONOTONIC.

• rtems_clock_tick_later() (page 270) - Gets a clock tick value which is at least delta clock
ticks in the future.

• rtems_clock_tick_later_usec() (page 271) - Gets a clock tick value which is at least delta
microseconds in the future.

• rtems_clock_tick_before() (page 272) - Indicates if the current clock tick counter is before
the ticks.

9.1. Introduction 237

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.2

9.2 Background

9.2.1 Required Support

For the features provided by the Clock Manager to be utilized, a Clock Driver is required. The
Clock Driver usually provides a clock interrupt which is serviced on each configured processor
at each clock tick. In addition, the Clock Driver provides three clock sources:

• clock tick

• CLOCK_REALTIME

• CLOCK_MONOTONIC

The time of these clock sources advances at each clock tick. This yields the time of the clock
sources in a coarse resolution. To get the time of the CLOCK_REALTIME or CLOCK_MONOTONIC clock
sources in a higher resolution, the Clock Driver may use a clock device to get the time between
clock ticks.

9.2.2 Time and Date Data Structures

The clock facilities of the Clock Manager operate upon calendar time. These directives utilize
the following date and time structure for the native time and date format:

1 typedef struct {
2 uint32_t year; /* greater than 1987 */
3 uint32_t month; /* 1 - 12 */
4 uint32_t day; /* 1 - 31 */
5 uint32_t hour; /* 0 - 23 */
6 uint32_t minute; /* 0 - 59 */
7 uint32_t second; /* 0 - 59 */
8 uint32_t ticks; /* elapsed between seconds */
9 } rtems_time_of_day;

The native date and time format is the only format supported when setting the system date
and time using the rtems_clock_set() (page 243) directive. Some applications expect to operate
on a UNIX-style date and time data structure. For example, the rtems_clock_get_tod_timeval()
(page 246) returns the date and time in struct timeval format.

Some directives use data structures defined by POSIX. The struct timeval data structure has
two members: tv_sec and tv_usec which are seconds and microseconds, respectively. The
struct timespec data structure has two members: tv_sec and tv_nsec which are seconds and
nanoseconds, respectively. For CLOCK_REALTIME time points, the tv_sec member in these data
structures is the number of seconds since the Unix epoch but will never be prior to the RTEMS
epoch.

The struct bintime and sbintime_t time formats used by some directives originate in FreeBSD.
The struct bintime data structure which represents time in a binary time format has two
members: sec and frac which are seconds and fractions of a second in units of 1/264 seconds,
respectively. The sbintime_t type is a signed 64-bit integer type used to represent time in units
of 1/232 seconds.

238 Chapter 9. Clock Manager

Chapter 9 Section 9.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.2.3 Clock Tick and Timeslicing

Timeslicing is a task scheduling discipline in which tasks of equal priority are executed for a
specific period of time before control of the CPU is passed to another task. It is also sometimes
referred to as the automatic round-robin scheduling algorithm. The length of time allocated to
each task is known as the quantum or timeslice.

The system’s timeslice is defined as an integral number of ticks, and is specified by the CON-
FIGURE_TICKS_PER_TIMESLICE (page 586) application configuration option. The timeslice is
defined for the entire system of tasks, but timeslicing is enabled and disabled on a per task
basis.

The clock tick directives implement timeslicing by decrementing the running task’s time-
remaining counter when both timeslicing and preemption are enabled. If the task’s timeslice
has expired, then that task will be preempted if there exists a ready task of equal priority.

9.2.4 Delays

A sleep timer allows a task to delay for a given interval or up until a given time, and
then wake and continue execution. This type of timer is created automatically by the
rtems_task_wake_after() (page 134) and rtems_task_wake_when() (page 135) directives and,
as a result, does not have an object identifier. Once activated, a sleep timer cannot be explicitly
deleted. Each task may activate one and only one sleep timer at a time.

9.2.5 Timeouts

Timeouts are a special type of timer automatically created when the timeout op-
tion is used on the rtems_barrier_wait() (page 363), rtems_event_receive() (page 401),
rtems_message_queue_receive() (page 387), rtems_region_get_segment() (page 444), and
rtems_semaphore_obtain() (page 343) directives. Each task may have one and only one timeout
active at a time. When a timeout expires, it unblocks the task with a timeout status code.

9.2. Background 239

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.3

9.3 Operations

9.3.1 Announcing a Tick

RTEMS provides the several clock tick directives which are called from the user’s real-time clock
ISR to inform RTEMS that a tick has elapsed. Depending on the timer hardware capabilities
the clock driver must choose the most appropriate clock tick directive. The tick frequency
value, defined in microseconds, is a configuration parameter found in the Configuration Table.
RTEMS divides one million microseconds (one second) by the number of microseconds per
tick to determine the number of calls to the clock tick directive per second. The frequency of
clock tick calls determines the resolution (granularity) for all time dependent RTEMS actions.
For example, calling the clock tick directive ten times per second yields a higher resolution
than calling the clock tick two times per second. The clock tick directives are responsible for
maintaining both calendar time and the dynamic set of timers.

9.3.2 Setting the Time

The rtems_clock_set directive allows a task or an ISR to set the date and time maintained by
RTEMS. If setting the date and time causes any outstanding timers to pass their deadline, then
the expired timers will be fired during the invocation of the rtems_clock_set directive.

9.3.3 Obtaining the Time

RTEMS provides multiple directives which can be used by an application to obtain the current
date and time or date and time related information. These directives allow a task or an ISR
to obtain the current date and time or date and time related information. The current date
and time can be returned in either native or UNIX-style format. Additionally, the application
can obtain date and time related information such as the number of seconds since the RTEMS
epoch, the number of ticks since the executive was initialized, and the number of ticks per
second. The following directives are available:

rtems_clock_get_tod
obtain native style date and time

rtems_clock_get_time_value
obtain UNIX-style date and time

rtems_clock_get_ticks_since_boot
obtain number of ticks since RTEMS was initialized

rtems_clock_get_seconds_since_epoch
obtain number of seconds since RTEMS epoch

rtems_clock_get_ticks_per_second
obtain number of clock ticks per second

Calendar time operations will return an error code if invoked before the date and time have
been set.

9.3.4 Transition Advice for the Removed rtems_clock_get()

The directive CLOCK_GET - Get date and time information (page 274) took an untyped pointer
with an options argument to indicate the time information desired. This has been replaced with
a set of typed directives:

• rtems_clock_get_seconds_since_epoch

240 Chapter 9. Clock Manager

Chapter 9 Section 9.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• rtems_clock_get_ticks_per_second

• rtems_clock_get_ticks_since_boot

• rtems_clock_get_tod

• rtems_clock_get_tod_timeval

These directives directly correspond to what were previously referred to as clock options. These
strongly typed directives were available for multiple releases in parallel with rtems_clock_get()
until that directive was removed.

9.3. Operations 241

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4 Directives

This section details the directives of the Clock Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

242 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.1 rtems_clock_set()

Sets the CLOCK_REALTIME to the time of day.

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_set(const rtems_time_of_day *time_of_day);

PARAMETERS:

time_of_day
This parameter is the time of day to set the clock.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The time_of_day parameter was NULL.

RTEMS_INVALID_CLOCK
The time of day specified by time_of_day was invalid.

NOTES:

The date, time, and ticks specified by time_of_day are all range-checked, and an error is re-
turned if any one is out of its valid range.

RTEMS can represent time points of the CLOCK_REALTIME clock in nanoseconds ranging from
1988-01-01T00:00:00.000000000Z to 2514-05-31T01:53:03.999999999Z. The future uptime
of the system shall be in this range, otherwise the system behaviour is undefined. Due to
implementation constraints, the time of day set by the directive shall be before 2100-01-
01:00:00.000000000Z. The latest valid time of day accepted by the POSIX clock_settime() is
2400-01-01T00:00:00.999999999Z.

The specified time is based on the configured clock tick rate, see the CONFIG-
URE_MICROSECONDS_PER_TICK (page 583) application configuration option.

Setting the time forward will fire all CLOCK_REALTIME timers which are scheduled at a time
point before or at the time set by the directive. This may unblock tasks, which may preempt the
calling task. User-provided timer routines will execute in the context of the caller.

It is allowed to call this directive from within interrupt context, however, this is not recom-
mended since an arbitrary number of timers may fire.

The directive shall be called at least once to enable the service of CLOCK_REALTIME related
directives. If the clock is not set at least once, they may return an error status.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive may change the priority of a task. This may cause the calling task to be
preempted.

9.4. Directives 243

https://en.cppreference.com/w/c/types/NULL
https://pubs.opengroup.org/onlinepubs/9699919799/functions/clock_settime.html

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

• The directive may unblock a task. This may cause the calling task to be preempted.

• The time of day set by the directive shall be 1988-01-01T00:00:00.000000000Z or later.

• The time of day set by the directive shall be before 2100-01-01T00:00:00.000000000Z.

244 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.2 rtems_clock_get_tod()

Gets the time of day associated with the current CLOCK_REALTIME.

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_tod(rtems_time_of_day *time_of_day);

PARAMETERS:

time_of_day
This parameter is the pointer to an rtems_time_of_day (page 59) object. When the directive
call is successful, the time of day associated with the CLOCK_REALTIME at some point during
the directive call will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The time_of_day parameter was NULL.

RTEMS_NOT_DEFINED
The CLOCK_REALTIME was not set. It can be set with rtems_clock_set() (page 243).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 245

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.3 rtems_clock_get_tod_timeval()

Gets the seconds and microseconds elapsed since the Unix epoch and the current
CLOCK_REALTIME.

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_tod_timeval(struct timeval *time_of_day);

PARAMETERS:

time_of_day
This parameter is the pointer to a struct timeval object. When the directive call is successful,
the seconds and microseconds elapsed since the Unix epoch and the CLOCK_REALTIME at
some point during the directive call will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The time_of_day parameter was NULL.

RTEMS_NOT_DEFINED
The CLOCK_REALTIME was not set. It can be set with rtems_clock_set() (page 243).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

246 Chapter 9. Clock Manager

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/sys/time.h.html
https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.4 rtems_clock_get_realtime()

Gets the time elapsed since the Unix epoch measured using CLOCK_REALTIME in seconds and
nanoseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_realtime(struct timespec *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timespec object. The time elapsed since the Unix
epoch measured using the CLOCK_REALTIME at some time point during the directive call will
be stored in this object. Calling the directive with a pointer equal to NULL is undefined
behaviour.

NOTES:

The directive accesses a device provided by the Clock Driver to get the time in the highest res-
olution available to the system. Alternatively, the rtems_clock_get_realtime_coarse() (page 250)
directive may be used to get the time in a lower resolution and with less runtime overhead.

See rtems_clock_get_realtime_bintime() (page 248) and rtems_clock_get_realtime_timeval()
(page 249) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 247

https://en.cppreference.com/w/c/chrono/timespec
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.5 rtems_clock_get_realtime_bintime()

Gets the time elapsed since the Unix epoch measured using CLOCK_REALTIME in binary time
format.

CALLING SEQUENCE:

1 void rtems_clock_get_realtime_bintime(struct bintime *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct bintime object. The time elapsed since the Unix
epoch measured using the CLOCK_REALTIME at some time point during the directive call will
be stored in this object. Calling the directive with a pointer equal to NULL is undefined
behaviour.

NOTES:

The directive accesses a device provided by the Clock Driver to get the time in the highest
resolution available to the system. Alternatively, the rtems_clock_get_realtime_coarse_bintime()
(page 251) directive may be used to get the time in a lower resolution and with less runtime
overhead.

See rtems_clock_get_realtime() (page 247) and rtems_clock_get_realtime_timeval() (page 249)
to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

248 Chapter 9. Clock Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.6 rtems_clock_get_realtime_timeval()

Gets the time elapsed since the Unix epoch measured using CLOCK_REALTIME in seconds and
microseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_realtime_timeval(struct timeval *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timeval object. The time elapsed since the Unix
epoch measured using the CLOCK_REALTIME at some time point during the directive call will
be stored in this object. Calling the directive with a pointer equal to NULL is undefined
behaviour.

NOTES:

The directive accesses a device provided by the Clock Driver to get the time in the highest
resolution available to the system. Alternatively, the rtems_clock_get_realtime_coarse_timeval()
(page 252) directive may be used to get the time in a lower resolution and with less runtime
overhead.

See rtems_clock_get_realtime() (page 247) and rtems_clock_get_realtime_bintime() (page 248)
to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 249

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/sys/time.h.html
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.7 rtems_clock_get_realtime_coarse()

Gets the time elapsed since the Unix epoch measured using CLOCK_REALTIME in coarse resolu-
tion in seconds and nanoseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_realtime_coarse(struct timespec *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timespec object. The time elapsed since the Unix
epoch measured using the CLOCK_REALTIME at some time point close to the directive call
will be stored in this object. Calling the directive with a pointer equal to NULL is undefined
behaviour.

NOTES:

The directive does not access a device to get the time. It uses a recent snapshot provided by the
Clock Driver. Alternatively, the rtems_clock_get_realtime() (page 247) directive may be used to
get the time in a higher resolution and with a higher runtime overhead.

See rtems_clock_get_realtime_coarse_bintime() (page 251) and
rtems_clock_get_realtime_coarse_timeval() (page 252) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

250 Chapter 9. Clock Manager

https://en.cppreference.com/w/c/chrono/timespec
https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.8 rtems_clock_get_realtime_coarse_bintime()

Gets the time elapsed since the Unix epoch measured using CLOCK_REALTIME in coarse resolu-
tion in binary time format.

CALLING SEQUENCE:

1 void rtems_clock_get_realtime_coarse_bintime(struct bintime *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct bintime object. The time elapsed since the Unix
epoch measured using the CLOCK_REALTIME at some time point close to the directive call
will be stored in this object. Calling the directive with a pointer equal to NULL is undefined
behaviour.

NOTES:

The directive does not access a device to get the time. It uses a recent snapshot provided by the
Clock Driver. Alternatively, the rtems_clock_get_realtime_bintime() (page 248) directive may be
used to get the time in a higher resolution and with a higher runtime overhead.

See rtems_clock_get_realtime_coarse() (page 250) and rtems_clock_get_realtime_coarse_timeval()
(page 252) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 251

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.9 rtems_clock_get_realtime_coarse_timeval()

Gets the time elapsed since the Unix epoch measured using CLOCK_REALTIME in coarse resolu-
tion in seconds and microseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_realtime_coarse_timeval(struct timeval *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timeval object. The time elapsed since the Unix
epoch measured using the CLOCK_REALTIME at some time point close to the directive call
will be stored in this object. Calling the directive with a pointer equal to NULL is undefined
behaviour.

NOTES:

The directive does not access a device to get the time. It uses a recent snapshot provided by the
Clock Driver. Alternatively, the rtems_clock_get_realtime_timeval() (page 249) directive may be
used to get the time in a higher resolution and with a higher runtime overhead.

See rtems_clock_get_realtime_coarse() (page 250) and rtems_clock_get_realtime_coarse_timeval()
(page 252) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

252 Chapter 9. Clock Manager

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/sys/time.h.html
https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.10 rtems_clock_get_monotonic()

Gets the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC in seconds and nanoseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_monotonic(struct timespec *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timespec object. The time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC at some time point during
the directive call will be stored in this object. Calling the directive with a pointer equal to
NULL is undefined behaviour.

NOTES:

The directive accesses a device provided by the Clock Driver to get the time in the highest resolu-
tion available to the system. Alternatively, the rtems_clock_get_monotonic_coarse() (page 257)
directive may be used to get the time with in a lower resolution and with less runtime overhead.

See rtems_clock_get_monotonic_bintime() (page 254), rtems_clock_get_monotonic_sbintime()
(page 255), and rtems_clock_get_monotonic_timeval() (page 256) to get the time in alternative
formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 253

https://en.cppreference.com/w/c/chrono/timespec
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.11 rtems_clock_get_monotonic_bintime()

Gets the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC in binary time format.

CALLING SEQUENCE:

1 void rtems_clock_get_monotonic_bintime(struct bintime *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct bintime object. The time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC at some time point during
the directive call will be stored in this object. Calling the directive with a pointer equal to
NULL is undefined behaviour.

NOTES:

The directive accesses a device provided by the Clock Driver to get the time in the highest res-
olution available to the system. Alternatively, the rtems_clock_get_monotonic_coarse_bintime()
(page 258) directive may be used to get the time in a lower resolution and with less runtime
overhead.

See rtems_clock_get_monotonic() (page 253), rtems_clock_get_monotonic_sbintime()
(page 255), and rtems_clock_get_monotonic_timeval() (page 256) to get the time in alter-
native formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

254 Chapter 9. Clock Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.12 rtems_clock_get_monotonic_sbintime()

Gets the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC in signed binary time format.

CALLING SEQUENCE:

1 int64_t rtems_clock_get_monotonic_sbintime(void);

RETURN VALUES:

Returns the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC at some time point during the directive call.

NOTES:

The directive accesses a device provided by the Clock Driver to get the time in the highest
resolution available to the system.

See rtems_clock_get_monotonic() (page 253), rtems_clock_get_monotonic_bintime() (page 254),
and rtems_clock_get_monotonic_timeval() (page 256) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 255

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.13 rtems_clock_get_monotonic_timeval()

Gets the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC in seconds and microseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_monotonic_timeval(struct timeval *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timeval object. The time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC at some time point during
the directive call will be stored in this object. Calling the directive with a pointer equal to
NULL is undefined behaviour.

NOTES:

The directive accesses a device provided by the Clock Driver to get the time in the highest res-
olution available to the system. Alternatively, the rtems_clock_get_monotonic_coarse_timeval()
(page 259) directive may be used to get the time in a lower resolution and with less runtime
overhead.

See rtems_clock_get_monotonic() (page 253), rtems_clock_get_monotonic_bintime() (page 254),
and rtems_clock_get_monotonic_sbintime() (page 255) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

256 Chapter 9. Clock Manager

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/sys/time.h.html
https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.14 rtems_clock_get_monotonic_coarse()

Gets the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC in coarse resolution in seconds and nanoseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_monotonic_coarse(struct timespec *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timespec object. The time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC at some time point close to
the directive call will be stored in this object. Calling the directive with a pointer equal to
NULL is undefined behaviour.

NOTES:

The directive does not access a device to get the time. It uses a recent snapshot provided by the
Clock Driver. Alternatively, the rtems_clock_get_monotonic() (page 253) directive may be used
to get the time in a higher resolution and with a higher runtime overhead.

See rtems_clock_get_monotonic_coarse_bintime() (page 258) and
rtems_clock_get_monotonic_coarse_timeval() (page 259) to get the time in alternative for-
mats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 257

https://en.cppreference.com/w/c/chrono/timespec
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.15 rtems_clock_get_monotonic_coarse_bintime()

Gets the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC in coarse resolution in binary time format.

CALLING SEQUENCE:

1 void rtems_clock_get_monotonic_coarse_bintime(struct bintime *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct bintime object. The time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC at some time point close to
the directive call will be stored in this object. Calling the directive with a pointer equal to
NULL is undefined behaviour.

NOTES:

The directive does not access a device to get the time. It uses a recent snapshot provided by the
Clock Driver. Alternatively, the rtems_clock_get_monotonic_bintime() (page 254) directive may
be used to get the time in a higher resolution and with a higher runtime overhead.

See rtems_clock_get_monotonic_coarse() (page 257) and rtems_clock_get_monotonic_coarse_timeval()
(page 259) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

258 Chapter 9. Clock Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.16 rtems_clock_get_monotonic_coarse_timeval()

Gets the time elapsed since some fixed time point in the past measured using the
CLOCK_MONOTONIC in coarse resolution in seconds and microseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_monotonic_coarse_timeval(struct timeval *time_snapshot);

PARAMETERS:

time_snapshot
This parameter is the pointer to a struct timeval object. The time elapsed since some fixed
time point in the past measured using the CLOCK_MONOTONIC at some time point close to
the directive call will be stored in this object. Calling the directive with a pointer equal to
NULL is undefined behaviour.

NOTES:

The directive does not access a device to get the time. It uses a recent snapshot provided by the
Clock Driver. Alternatively, the rtems_clock_get_monotonic_timeval() (page 256) directive may
be used to get the time in a higher resolution and with a higher runtime overhead.

See rtems_clock_get_monotonic_coarse() (page 257) and rtems_clock_get_monotonic_coarse_bintime()
(page 258) to get the time in alternative formats.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 259

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/sys/time.h.html
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.17 rtems_clock_get_boot_time()

Gets the time elapsed since the Unix epoch at some time point during system initialization in
seconds and nanoseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_boot_time(struct timespec *boot_time);

PARAMETERS:

boot_time
This parameter is the pointer to a struct timespec object. The time elapsed since the Unix
epoch at some time point during system initialization call will be stored in this object. Calling
the directive with a pointer equal to NULL is undefined behaviour.

NOTES:

See rtems_clock_get_boot_time_bintime() (page 261) and rtems_clock_get_boot_time_timeval()
(page 262) to get the boot time in alternative formats. Setting the CLOCK_REALTIME will also
set the boot time.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

260 Chapter 9. Clock Manager

https://en.cppreference.com/w/c/chrono/timespec
https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.18 rtems_clock_get_boot_time_bintime()

Gets the time elapsed since the Unix epoch at some time point during system initialization in
binary time format.

CALLING SEQUENCE:

1 void rtems_clock_get_boot_time_bintime(struct bintime *boot_time);

PARAMETERS:

boot_time
This parameter is the pointer to a struct bintime object. The time elapsed since the Unix
epoch at some time point during system initialization call will be stored in this object. Calling
the directive with a pointer equal to NULL is undefined behaviour.

NOTES:

See rtems_clock_get_boot_time() (page 260) and rtems_clock_get_boot_time_timeval()
(page 262) to get the boot time in alternative formats. Setting the CLOCK_REALTIME
will also set the boot time.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 261

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.19 rtems_clock_get_boot_time_timeval()

Gets the time elapsed since the Unix epoch at some time point during system initialization in
seconds and microseconds format.

CALLING SEQUENCE:

1 void rtems_clock_get_boot_time_timeval(struct timeval *boot_time);

PARAMETERS:

boot_time
This parameter is the pointer to a struct timeval object. The time elapsed since the Unix epoch
at some time point during system initialization call will be stored in this object. Calling the
directive with a pointer equal to NULL is undefined behaviour.

NOTES:

See rtems_clock_get_boot_time() (page 260) and rtems_clock_get_boot_time_bintime()
(page 261) to get the boot time in alternative formats. Setting the CLOCK_REALTIME
will also set the boot time.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

262 Chapter 9. Clock Manager

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/sys/time.h.html
https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.20 rtems_clock_get_seconds_since_epoch()

Gets the seconds elapsed since the RTEMS epoch and the current CLOCK_REALTIME.

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_seconds_since_epoch(
2 rtems_interval *seconds_since_rtems_epoch
3);

PARAMETERS:

seconds_since_rtems_epoch
This parameter is the pointer to an rtems_interval (page 47) object. When the directive call
is successful, the seconds elapsed since the RTEMS epoch and the CLOCK_REALTIME at some
point during the directive call will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The seconds_since_rtems_epoch parameter was NULL.

RTEMS_NOT_DEFINED
The CLOCK_REALTIME was not set. It can be set with rtems_clock_set() (page 243).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 263

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.21 rtems_clock_get_ticks_per_second()

Gets the number of clock ticks per second configured for the application.

CALLING SEQUENCE:

1 rtems_interval rtems_clock_get_ticks_per_second(void);

RETURN VALUES:

Returns the number of clock ticks per second configured for this application.

NOTES:

The number of clock ticks per second is defined indirectly by the CONFIG-
URE_MICROSECONDS_PER_TICK (page 583) configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

264 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.22 rtems_clock_get_ticks_since_boot()

Gets the number of clock ticks since some time point during the system initialization or the last
overflow of the clock tick counter.

CALLING SEQUENCE:

1 rtems_interval rtems_clock_get_ticks_since_boot(void);

RETURN VALUES:

Returns the number of clock ticks since some time point during the system initialization or the
last overflow of the clock tick counter.

NOTES:

With a 1ms clock tick, this counter overflows after 50 days since boot. This is the historical mea-
sure of uptime in an RTEMS system. The newer service rtems_clock_get_uptime() (page 266) is
another and potentially more accurate way of obtaining similar information.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

9.4. Directives 265

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.23 rtems_clock_get_uptime()

Gets the seconds and nanoseconds elapsed since some time point during the system initializa-
tion using CLOCK_MONOTONIC.

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_uptime(struct timespec *uptime);

PARAMETERS:

uptime
This parameter is the pointer to a struct timespec object. When the directive call is successful,
the seconds and nanoseconds elapsed since some time point during the system initialization
and some point during the directive call using CLOCK_MONOTONIC will be stored in this
object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The uptime parameter was NULL.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

266 Chapter 9. Clock Manager

https://en.cppreference.com/w/c/chrono/timespec
https://en.cppreference.com/w/c/types/NULL

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.24 rtems_clock_get_uptime_timeval()

Gets the seconds and microseconds elapsed since some time point during the system initializa-
tion using CLOCK_MONOTONIC.

CALLING SEQUENCE:

1 void rtems_clock_get_uptime_timeval(struct timeval *uptime);

PARAMETERS:

uptime
This parameter is the pointer to a struct timeval object. The seconds and microseconds
elapsed since some time point during the system initialization and some point during the
directive call using CLOCK_MONOTONIC will be stored in this object. The pointer shall be
valid, otherwise the behaviour is undefined.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 267

https://pubs.opengroup.org/onlinepubs/009695399/basedefs/sys/time.h.html

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.25 rtems_clock_get_uptime_seconds()

Gets the seconds elapsed since some time point during the system initialization using
CLOCK_MONOTONIC.

CALLING SEQUENCE:

1 time_t rtems_clock_get_uptime_seconds(void);

RETURN VALUES:

Returns the seconds elapsed since some time point during the system initialization and some
point during the directive call using CLOCK_MONOTONIC.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

268 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.26 rtems_clock_get_uptime_nanoseconds()

Gets the nanoseconds elapsed since some time point during the system initialization using
CLOCK_MONOTONIC.

CALLING SEQUENCE:

1 uint64_t rtems_clock_get_uptime_nanoseconds(void);

RETURN VALUES:

Returns the nanoseconds elapsed since some time point during the system initialization and
some point during the directive call using CLOCK_MONOTONIC.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 269

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.27 rtems_clock_tick_later()

Gets a clock tick value which is at least delta clock ticks in the future.

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_later(rtems_interval delta);

PARAMETERS:

delta
This parameter is the delta value in clock ticks.

RETURN VALUES:

Returns a clock tick counter value which is at least delta clock ticks in the future.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

270 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.4.28 rtems_clock_tick_later_usec()

Gets a clock tick value which is at least delta microseconds in the future.

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_later_usec(rtems_interval delta_in_usec);

PARAMETERS:

delta_in_usec
This parameter is the delta value in microseconds.

RETURN VALUES:

Returns a clock tick counter value which is at least delta_in_usec microseconds in the future.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

9.4. Directives 271

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.4

9.4.29 rtems_clock_tick_before()

Indicates if the current clock tick counter is before the ticks.

CALLING SEQUENCE:

1 bool rtems_clock_tick_before(rtems_interval ticks);

PARAMETERS:

ticks
This parameter is the ticks value to check.

RETURN VALUES:

Returns true, if current clock tick counter indicates a time before the time in ticks, otherwise
returns false.

NOTES:

This directive can be used to write busy loops with a timeout.

1 status busy(void)
2 {
3 rtems_interval timeout;
4

5 timeout = rtems_clock_tick_later_usec(10000);
6

7 do {
8 if (ok()) {
9 return success;

10 }
11 } while (rtems_clock_tick_before(timeout));
12

13 return timeout;
14 }

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• The directive requires a Clock Driver.

272 Chapter 9. Clock Manager

Chapter 9 Section 9.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

9.5 Removed Directives

9.5. Removed Directives 273

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 9 Section 9.5

9.5.1 CLOCK_GET - Get date and time information

. Warning

This directive was removed in RTEMS 5.1. See also Transition Advice for the Removed
rtems_clock_get() (page 240).

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get(
2 rtems_clock_get_options option,
3 void *time_buffer
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL current time obtained successfully
RTEMS_NOT_DEFINED system date and time is not set
RTEMS_INVALID_ADDRESS time_buffer is NULL

DESCRIPTION:
This directive obtains the system date and time. If the caller is attempting to obtain
the date and time (i.e. option is set to either RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH,
RTEMS_CLOCK_GET_TOD, or RTEMS_CLOCK_GET_TIME_VALUE) and the date and time has not
been set with a previous call to rtems_clock_set, then the RTEMS_NOT_DEFINED status code
is returned. The caller can always obtain the number of ticks per second (option is
RTEMS_CLOCK_GET_TICKS_PER_SECOND) and the number of ticks since the executive was ini-
tialized option is RTEMS_CLOCK_GET_TICKS_SINCE_BOOT).

The option argument may taken on any value of the enumerated type
rtems_clock_get_options. The data type expected for time_buffer is based on the
value of option as indicated below:

Option Return type
RTEMS_CLOCK_GET_TOD (rtems_time_of_day *)
RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH (rtems_interval *)
RTEMS_CLOCK_GET_TICKS_SINCE_BOOT (rtems_interval *)
RTEMS_CLOCK_GET_TICKS_PER_SECOND (rtems_interval *)
RTEMS_CLOCK_GET_TIME_VALUE (struct timeval *)

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re-initializing RTEMS causes
the system date and time to be reset to an uninitialized state. Another call to rtems_clock_set
is required to re-initialize the system date and time to application specific specifications.

274 Chapter 9. Clock Manager

CHAPTER

TEN

TIMER MANAGER

275

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.1

10.1 Introduction

The Timer Manager provides support for timer facilities. The directives provided by the Timer
Manager are:

• rtems_timer_create() (page 281) - Creates a timer.

• rtems_timer_ident() (page 283) - Identifies a timer by the object name.

• rtems_timer_cancel() (page 284) - Cancels the timer.

• rtems_timer_delete() (page 285) - Deletes the timer.

• rtems_timer_fire_after() (page 286) - Fires the timer after the interval.

• rtems_timer_fire_when() (page 288) - Fires the timer at the time of day.

• rtems_timer_initiate_server() (page 290) - Initiates the Timer Server.

• rtems_timer_server_fire_after() (page 292) - Fires the timer after the interval using the
Timer Server.

• rtems_timer_server_fire_when() (page 294) - Fires the timer at the time of day using the
Timer Server.

• rtems_timer_reset() (page 296) - Resets the timer.

• rtems_timer_get_information() (page 297) - Gets information about the timer.

276 Chapter 10. Timer Manager

Chapter 10 Section 10.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

10.2 Background

10.2.1 Required Support

A clock tick is required to support the functionality provided by this manager.

10.2.2 Timers

A timer is an RTEMS object which allows the application to schedule operations to occur at
specific times in the future. User supplied timer service routines are invoked by either a clock
tick directive or a special Timer Server task when the timer fires. Timer service routines may
perform any operations or directives which normally would be performed by the application
code which invoked a clock tick directive.

The timer can be used to implement watchdog routines which only fire to denote that an appli-
cation error has occurred. The timer is reset at specific points in the application to ensure that
the watchdog does not fire. Thus, if the application does not reset the watchdog timer, then the
timer service routine will fire to indicate that the application has failed to reach a reset point.
This use of a timer is sometimes referred to as a “keep alive” or a “deadman” timer.

10.2.3 Timer Server

The Timer Server task is responsible for executing the timer service routines associated with
all task-based timers. This task executes at a priority specified by rtems_timer_initiate_server()
and it may have a priority of zero (the highest priority). In uniprocessor configurations, it is
created non-preemptible.

By providing a mechanism where timer service routines execute in task rather than interrupt
space, the application is allowed a bit more flexibility in what operations a timer service routine
can perform. For example, the Timer Server can be configured to have a floating point context
in which case it would be safe to perform floating point operations from a task-based timer.
Most of the time, executing floating point instructions from an interrupt service routine is not
considered safe. The timer service routines invoked by the Timer Server may block, however,
since this blocks the Timer Server itself, other timer service routines that are already pending
do not run until the blocked timer service routine finished its work.

The Timer Server is designed to remain blocked until a task-based timer fires. This reduces the
execution overhead of the Timer Server.

10.2.4 Timer Service Routines

The timer service routine should adhere to C calling conventions and have a prototype similar
to the following:

1 rtems_timer_service_routine user_routine(
2 rtems_id timer_id,
3 void *user_data
4);

Where the timer_id parameter is the RTEMS object ID of the timer which is being fired and
user_data is a pointer to user-defined information which may be utilized by the timer service
routine. The argument user_data may be NULL.

10.2. Background 277

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.3

10.3 Operations

10.3.1 Creating a Timer

The rtems_timer_create directive creates a timer by allocating a Timer Control Block (TMCB),
assigning the timer a user-specified name, and assigning it a timer ID. Newly created timers do
not have a timer service routine associated with them and are not active.

10.3.2 Obtaining Timer IDs

When a timer is created, RTEMS generates a unique timer ID and assigns it to the created timer
until it is deleted. The timer ID may be obtained by either of two methods. First, as the result
of an invocation of the rtems_timer_create directive, the timer ID is stored in a user provided
location. Second, the timer ID may be obtained later using the rtems_timer_ident directive.
The timer ID is used by other directives to manipulate this timer.

10.3.3 Initiating an Interval Timer

The rtems_timer_fire_after and rtems_timer_server_fire_after directives initiate a timer
to fire a user provided timer service routine after the specified number of clock ticks have
elapsed. When the interval has elapsed, the timer service routine will be invoked from a clock
tick directive if it was initiated by the rtems_timer_fire_after directive and from the Timer
Server task if initiated by the rtems_timer_server_fire_after directive.

10.3.4 Initiating a Time of Day Timer

The rtems_timer_fire_when and rtems_timer_server_fire_when directive initiate a timer to
fire a user provided timer service routine when the specified time of day has been reached.
When the interval has elapsed, the timer service routine will be invoked from a clock tick
directive by the rtems_timer_fire_when directive and from the Timer Server task if initiated by
the rtems_timer_server_fire_when directive.

10.3.5 Canceling a Timer

The rtems_timer_cancel directive is used to halt the specified timer. Once canceled, the timer
service routine will not fire unless the timer is reinitiated. The timer can be reinitiated using
the rtems_timer_reset, rtems_timer_fire_after, and rtems_timer_fire_when directives.

10.3.6 Resetting a Timer

The rtems_timer_reset directive is used to restore an interval timer initiated by a previous
invocation of rtems_timer_fire_after or rtems_timer_server_fire_after to its original in-
terval length. If the timer has not been used or the last usage of this timer was by the
rtems_timer_fire_when or rtems_timer_server_fire_when directive, then an error is returned.
The timer service routine is not changed or fired by this directive.

10.3.7 Initiating the Timer Server

The rtems_timer_initiate_server directive is used to allocate and start the execution of the
Timer Server task. The application can specify both the stack size and attributes of the Timer
Server. The Timer Server executes at a priority higher than any application task and thus the
user can expect to be preempted as the result of executing the rtems_timer_initiate_server
directive.

278 Chapter 10. Timer Manager

Chapter 10 Section 10.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

10.3.8 Deleting a Timer

The rtems_timer_delete directive is used to delete a timer. If the timer is running and has not
expired, the timer is automatically canceled. The timer’s control block is returned to the TMCB
free list when it is deleted. A timer can be deleted by a task other than the task which created
the timer. Any subsequent references to the timer’s name and ID are invalid.

10.3. Operations 279

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4 Directives

This section details the directives of the Timer Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

280 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

10.4.1 rtems_timer_create()

Creates a timer.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_create(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name of the timer.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created timer will be stored in this object.

DESCRIPTION:

This directive creates a timer which resides on the local node. The timer has the user-defined
object name specified in name. The assigned object identifier is returned in id. This identifier is
used to access the timer with other timer related directives.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_TOO_MANY
There was no inactive object available to create a timer. The number of timers available to
the application is configured through the CONFIGURE_MAXIMUM_TIMERS (page 622) appli-
cation configuration option.

NOTES:

The processor used to maintain the timer is the processor of the calling task at some point
during the timer creation.

For control and maintenance of the timer, RTEMS allocates a TMCB from the local TMCB free
pool and initializes it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

10.4. Directives 281

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

• The number of timers available to the application is configured through the CONFIG-
URE_MAXIMUM_TIMERS (page 622) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

282 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

10.4.2 rtems_timer_ident()

Identifies a timer by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_ident(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name to look up.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a timer identifier associated with the timer name specified in name.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the local node.

NOTES:

If the timer name is not unique, then the timer identifier will match the first timer with that
name in the search order. However, this timer identifier is not guaranteed to correspond to the
desired timer.

The objects are searched from lowest to the highest index. Only the local node is searched.

The timer identifier is used with other timer related directives to access the timer.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

10.4. Directives 283

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4.3 rtems_timer_cancel()

Cancels the timer.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_cancel(rtems_id id);

PARAMETERS:

id
This parameter is the timer identifier.

DESCRIPTION:

This directive cancels the timer specified by id. This timer will be reiniti-
ated by the next invocation of rtems_timer_reset() (page 296), rtems_timer_fire_after()
(page 286), rtems_timer_fire_when() (page 288), rtems_timer_server_fire_after() (page 292),
or rtems_timer_server_fire_when() (page 294) with the same timer identifier.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

284 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

10.4.4 rtems_timer_delete()

Deletes the timer.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_delete(rtems_id id);

PARAMETERS:

id
This parameter is the timer identifier.

DESCRIPTION:

This directive deletes the timer specified by id. If the timer is running, it is automatically
canceled.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

NOTES:

The TMCB for the deleted timer is reclaimed by RTEMS.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

10.4. Directives 285

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4.5 rtems_timer_fire_after()

Fires the timer after the interval.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_fire_after(
2 rtems_id id,
3 rtems_interval ticks,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

PARAMETERS:

id
This parameter is the timer identifier.

ticks
This parameter is the interval until the routine is fired in clock ticks.

routine
This parameter is the routine to schedule.

user_data
This parameter is the argument passed to the routine when it is fired.

DESCRIPTION:

This directive initiates the timer specified by id. If the timer is running, it is automatically
canceled before being initiated. The timer is scheduled to fire after an interval of clock ticks
has passed specified by ticks. When the timer fires, the timer service routine routine will be
invoked with the argument user_data in the context of the clock tick ISR.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The ticks parameter was 0.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

286 Chapter 10. Timer Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• The directive will not cause the calling task to be preempted.

10.4. Directives 287

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4.6 rtems_timer_fire_when()

Fires the timer at the time of day.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_fire_when(
2 rtems_id id,
3 const rtems_time_of_day *wall_time,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

PARAMETERS:

id
This parameter is the timer identifier.

wall_time
This parameter is the time of day when the routine is fired.

routine
This parameter is the routine to schedule.

user_data
This parameter is the argument passed to the routine when it is fired.

DESCRIPTION:

This directive initiates the timer specified by id. If the timer is running, it is automatically
canceled before being initiated. The timer is scheduled to fire at the time of day specified by
wall_time. When the timer fires, the timer service routine routine will be invoked with the
argument user_data in the context of the clock tick ISR.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_NOT_DEFINED
The system date and time was not set.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

RTEMS_INVALID_ADDRESS
The wall_time parameter was NULL.

RTEMS_INVALID_CLOCK
The time of day was invalid.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

288 Chapter 10. Timer Manager

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

10.4. Directives 289

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4.7 rtems_timer_initiate_server()

Initiates the Timer Server.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_initiate_server(
2 rtems_task_priority priority,
3 size_t stack_size,
4 rtems_attribute attribute_set
5);

PARAMETERS:

priority
This parameter is the task priority.

stack_size
This parameter is the task stack size in bytes.

attribute_set
This parameter is the task attribute set.

DESCRIPTION:

This directive initiates the Timer Server task. This task is responsible for executing all timers
initiated via the rtems_timer_server_fire_after() (page 292) or rtems_timer_server_fire_when()
(page 294) directives.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The Timer Server was already initiated.

RTEMS_INVALID_PRIORITY
The task priority was invalid.

RTEMS_TOO_MANY
There was no inactive task object available to create the Timer Server task.

RTEMS_UNSATISFIED
There was not enough memory to allocate the task storage area. The task storage area con-
tains the task stack, the thread-local storage, and the floating point context.

RTEMS_UNSATISFIED
One of the task create extensions failed to create the Timer Server task.

NOTES:

The Timer Server task is created using the rtems_task_create() (page 109) directive and must
be accounted for when configuring the system.

290 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The number of timers available to the application is configured through the CONFIG-
URE_MAXIMUM_TIMERS (page 622) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

10.4. Directives 291

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4.8 rtems_timer_server_fire_after()

Fires the timer after the interval using the Timer Server.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_server_fire_after(
2 rtems_id id,
3 rtems_interval ticks,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

PARAMETERS:

id
This parameter is the timer identifier.

ticks
This parameter is the interval until the routine is fired in clock ticks.

routine
This parameter is the routine to schedule.

user_data
This parameter is the argument passed to the routine when it is fired.

DESCRIPTION:

This directive initiates the timer specified by id. If the timer is running, it is automatically
canceled before being initiated. The timer is scheduled to fire after an interval of clock ticks
has passed specified by ticks. When the timer fires, the timer service routine routine will be
invoked with the argument user_data in the context of the Timer Server task.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The Timer Server was not initiated.

RTEMS_INVALID_NUMBER
The ticks parameter was 0.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

292 Chapter 10. Timer Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

10.4. Directives 293

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4.9 rtems_timer_server_fire_when()

Fires the timer at the time of day using the Timer Server.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_server_fire_when(
2 rtems_id id,
3 const rtems_time_of_day *wall_time,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

PARAMETERS:

id
This parameter is the timer identifier.

wall_time
This parameter is the time of day when the routine is fired.

routine
This parameter is the routine to schedule.

user_data
This parameter is the argument passed to the routine when it is fired.

DESCRIPTION:

This directive initiates the timer specified by id. If the timer is running, it is automatically
canceled before being initiated. The timer is scheduled to fire at the time of day specified by
wall_time. When the timer fires, the timer service routine routine will be invoked with the
argument user_data in the context of the Timer Server task.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INCORRECT_STATE
The Timer Server was not initiated.

RTEMS_NOT_DEFINED
The system date and time was not set.

RTEMS_INVALID_ADDRESS
The routine parameter was NULL.

RTEMS_INVALID_ADDRESS
The wall_time parameter was NULL.

RTEMS_INVALID_CLOCK
The time of day was invalid.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

294 Chapter 10. Timer Manager

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

10.4. Directives 295

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

10.4.10 rtems_timer_reset()

Resets the timer.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_reset(rtems_id id);

PARAMETERS:

id
This parameter is the timer identifier.

DESCRIPTION:

This directive resets the timer specified by id. This timer must have been previously ini-
tiated with either the rtems_timer_fire_after() (page 286) or rtems_timer_server_fire_after()
(page 292) directive. If active the timer is canceled, after which the timer is reinitiated using the
same interval and timer service routine which the original rtems_timer_fire_after() (page 286)
or rtems_timer_server_fire_after() (page 292) directive used.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

RTEMS_NOT_DEFINED
The timer was not of the interval class.

NOTES:

If the timer has not been used or the last usage of this timer was by a
rtems_timer_fire_when() (page 288) or rtems_timer_server_fire_when() (page 294) directive,
then the RTEMS_NOT_DEFINED error is returned.

Restarting a cancelled after timer results in the timer being reinitiated with its previous timer
service routine and interval.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

296 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

10.4.11 rtems_timer_get_information()

Gets information about the timer.

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_get_information(
2 rtems_id id,
3 rtems_timer_information *the_info
4);

PARAMETERS:

id
This parameter is the timer identifier.

the_info
This parameter is the pointer to an rtems_timer_information (page 59) object. When the
directive call is successful, the information about the timer will be stored in this object.

DESCRIPTION:

This directive returns information about the timer.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The the_info parameter was NULL.

RTEMS_INVALID_ID
There was no timer associated with the identifier specified by id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

10.4. Directives 297

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 10 Section 10.4

298 Chapter 10. Timer Manager

CHAPTER

ELEVEN

RATE MONOTONIC MANAGER

299

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.1

11.1 Introduction

The Rate-Monotonic Manager provides facilities to implement tasks which execute in a periodic
fashion. Critically, it also gathers information about the execution of those periods and can
provide important statistics to the user which can be used to analyze and tune the application.
The directives provided by the Rate-Monotonic Manager are:

• rtems_rate_monotonic_create() (page 312) - Creates a period.

• rtems_rate_monotonic_ident() (page 314) - Identifies a period by the object name.

• rtems_rate_monotonic_cancel() (page 315) - Cancels the period.

• rtems_rate_monotonic_delete() (page 316) - Deletes the period.

• rtems_rate_monotonic_period() (page 317) - Concludes the current period and start the
next period, or gets the period status.

• rtems_rate_monotonic_get_status() (page 319) - Gets the detailed status of the period.

• rtems_rate_monotonic_get_statistics() (page 321) - Gets the statistics of the period.

• rtems_rate_monotonic_reset_statistics() (page 323) - Resets the statistics of the period.

• rtems_rate_monotonic_reset_all_statistics() (page 324) - Resets the statistics of all periods.

• rtems_rate_monotonic_report_statistics() (page 325) - Reports the period statistics using
the printk() (page 491) printer.

• rtems_rate_monotonic_report_statistics_with_plugin() (page 326) - Reports the period
statistics using the printer plugin.

300 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.2 Background

The rate monotonic manager provides facilities to manage the execution of periodic tasks.
This manager was designed to support application designers who utilize the Rate Monotonic
Scheduling Algorithm (RMS) to ensure that their periodic tasks will meet their deadlines, even
under transient overload conditions. Although designed for hard real-time systems, the ser-
vices provided by the rate monotonic manager may be used by any application which requires
periodic tasks.

11.2.1 Rate Monotonic Manager Required Support

A clock tick is required to support the functionality provided by this manager.

11.2.2 Period Statistics

This manager maintains a set of statistics on each period object. These statistics are reset
implictly at period creation time and may be reset or obtained at any time by the application.
The following is a list of the information kept:

owner
is the id of the thread that owns this period.

count
is the total number of periods executed.

missed_count
is the number of periods that were missed.

min_cpu_time
is the minimum amount of CPU execution time consumed on any execution of the periodic
loop.

max_cpu_time
is the maximum amount of CPU execution time consumed on any execution of the periodic
loop.

total_cpu_time
is the total amount of CPU execution time consumed by executions of the periodic loop.

min_wall_time
is the minimum amount of wall time that passed on any execution of the periodic loop.

max_wall_time
is the maximum amount of wall time that passed on any execution of the periodic loop.

total_wall_time
is the total amount of wall time that passed during executions of the periodic loop.

Each period is divided into two consecutive phases. The period starts with the active phase
of the task and is followed by the inactive phase of the task. In the inactive phase the task
is blocked and waits for the start of the next period. The inactive phase is skipped in case of
a period miss. The wall time includes the time during the active phase of the task on which
the task is not executing on a processor. The task is either blocked (for example it waits for a
resource) or a higher priority tasks executes, thus preventing it from executing. In case the wall
time exceeds the period time, then this is a period miss. The gap between the wall time and the
period time is the margin between a period miss or success.

11.2. Background 301

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.2

The period statistics information is inexpensive to maintain and can provide very useful insights
into the execution characteristics of a periodic task loop. But it is just information. The period
statistics reported must be analyzed by the user in terms of what the applications is. For exam-
ple, in an application where priorities are assigned by the Rate Monotonic Algorithm, it would
be very undesirable for high priority (i.e. frequency) tasks to miss their period. Similarly, in
nearly any application, if a task were supposed to execute its periodic loop every 10 milliseconds
and it averaged 11 milliseconds, then application requirements are not being met.

The information reported can be used to determine the “hot spots” in the application. Given
a period’s id, the user can determine the length of that period. From that information and
the CPU usage, the user can calculate the percentage of CPU time consumed by that periodic
task. For example, a task executing for 20 milliseconds every 200 milliseconds is consuming 10
percent of the processor’s execution time. This is usually enough to make it a good candidate
for optimization.

However, execution time alone is not enough to gauge the value of optimizing a particular
task. It is more important to optimize a task executing 2 millisecond every 10 milliseconds (20
percent of the CPU) than one executing 10 milliseconds every 100 (10 percent of the CPU). As
a general rule of thumb, the higher frequency at which a task executes, the more important it
is to optimize that task.

11.2.3 Periodicity Definitions

A periodic task is one which must be executed at a regular interval. The interval between suc-
cessive iterations of the task is referred to as its period. Periodic tasks can be characterized by
the length of their period and execution time. The period and execution time of a task can be
used to determine the processor utilization for that task. Processor utilization is the percentage
of processor time used and can be calculated on a per-task or system-wide basis. Typically,
the task’s worst-case execution time will be less than its period. For example, a periodic task’s
requirements may state that it should execute for 10 milliseconds every 100 milliseconds. Al-
though the execution time may be the average, worst, or best case, the worst-case execution
time is more appropriate for use when analyzing system behavior under transient overload
conditions.

In contrast, an aperiodic task executes at irregular intervals and has only a soft deadline. In
other words, the deadlines for aperiodic tasks are not rigid, but adequate response times are
desirable. For example, an aperiodic task may process user input from a terminal.

Finally, a sporadic task is an aperiodic task with a hard deadline and minimum interarrival time.
The minimum interarrival time is the minimum period of time which exists between successive
iterations of the task. For example, a sporadic task could be used to process the pressing of
a fire button on a joystick. The mechanical action of the fire button ensures a minimum time
period between successive activations, but the missile must be launched by a hard deadline.

11.2.4 Rate Monotonic Scheduling Algorithm

The Rate Monotonic Scheduling Algorithm (RMS) is important to real-time systems designers
because it allows one to sufficiently guarantee that a set of tasks is schedulable (see [LL73],
[LSD89], [SG90], [Bur91]).

A set of tasks is said to be schedulable if all of the tasks can meet their deadlines. RMS provides
a set of rules which can be used to perform a guaranteed schedulability analysis for a task
set. This analysis determines whether a task set is schedulable under worst-case conditions and
emphasizes the predictability of the system’s behavior. It has been proven that:

302 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RMS

RMS is an optimal fixed-priority algorithm for scheduling independent, preemptible, periodic
tasks on a single processor.

RMS is optimal in the sense that if a set of tasks can be scheduled by any fixed-priority algorithm,
then RMS will be able to schedule that task set. RMS bases it schedulability analysis on the
processor utilization level below which all deadlines can be met.

RMS calls for the static assignment of task priorities based upon their period. The shorter
a task’s period, the higher its priority. For example, a task with a 1 millisecond period has
higher priority than a task with a 100 millisecond period. If two tasks have the same period,
then RMS does not distinguish between the tasks. However, RTEMS specifies that when given
tasks of equal priority, the task which has been ready longest will execute first. RMS’s priority
assignment scheme does not provide one with exact numeric values for task priorities. For
example, consider the following task set and priority assignments:

Task Period (in milliseconds) Priority
1 100 Low
2 50 Medium
3 50 Medium
4 25 High

RMS only calls for task 1 to have the lowest priority, task 4 to have the highest priority, and tasks
2 and 3 to have an equal priority between that of tasks 1 and 4. The actual RTEMS priorities
assigned to the tasks must only adhere to those guidelines.

Many applications have tasks with both hard and soft deadlines. The tasks with hard deadlines
are typically referred to as the critical task set, with the soft deadline tasks being the non-
critical task set. The critical task set can be scheduled using RMS, with the non-critical tasks not
executing under transient overload, by simply assigning priorities such that the lowest priority
critical task (i.e. longest period) has a higher priority than the highest priority non-critical task.
Although RMS may be used to assign priorities to the non-critical tasks, it is not necessary. In
this instance, schedulability is only guaranteed for the critical task set.

11.2.5 Schedulability Analysis

RMS allows application designers to ensure that tasks can meet all deadlines under fixed-
priority assignment, even under transient overload, without knowing exactly when any given
task will execute by applying proven schedulability analysis rules.

11.2.5.1 Assumptions

The schedulability analysis rules for RMS were developed based on the following assumptions:

• The requests for all tasks for which hard deadlines exist are periodic, with a constant
interval between requests.

• Each task must complete before the next request for it occurs.

• The tasks are independent in that a task does not depend on the initiation or completion
of requests for other tasks.

11.2. Background 303

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.2

• The execution time for each task without preemption or interruption is constant and does
not vary.

• Any non-periodic tasks in the system are special. These tasks should not displace periodic
tasks while executing and do not have hard, critical deadlines.

Once the basic schedulability analysis is understood, some of the above assumptions can be
relaxed and the side-effects accounted for.

11.2.5.2 Processor Utilization Rule

The Processor Utilization Rule requires that processor utilization be calculated based upon the
period and execution time of each task. The fraction of processor time spent executing task
index is Time(i) / Period(i). The processor utilization can be calculated as follows where n
is the number of tasks in the set being analyzed:

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =

𝑛∑︁
𝑖=1

𝑇𝑖𝑚𝑒𝑖/𝑃𝑒𝑟𝑖𝑜𝑑𝑖

To ensure schedulability even under transient overload, the processor utilization must adhere
to the following rule:

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑛 * (2
1
𝑛 − 1)

As the number of tasks increases, the above formula approaches ln(2) for a worst-case utiliza-
tion factor of approximately 0.693. Many tasks sets can be scheduled with a greater utilization
factor. In fact, the average processor utilization threshold for a randomly generated task set is
approximately 0.88. See more detail in [LL73].

11.2.5.3 Processor Utilization Rule Example

This example illustrates the application of the Processor Utilization Rule to an application with
three critical periodic tasks. The following table details the RMS priority, period, execution
time, and processor utilization for each task:

Task RMS Priority Period Execution Time Processor Utilization
1 High 100 15 0.15
2 Medium 200 50 0.25
3 Low 300 100 0.33

The total processor utilization for this task set is 0.73 which is below the upper bound of 3 *
(2**(1/3) - 1), or 0.779, imposed by the Processor Utilization Rule. Therefore, this task set is
guaranteed to be schedulable using RMS.

11.2.5.4 First Deadline Rule

If a given set of tasks do exceed the processor utilization upper limit imposed by the Processor
Utilization Rule, they can still be guaranteed to meet all their deadlines by application of the
First Deadline Rule. This rule can be stated as follows:

For a given set of independent periodic tasks, if each task meets its first deadline
when all tasks are started at the same time, then the deadlines will always be met
for any combination of start times.

304 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

A key point with this rule is that ALL periodic tasks are assumed to start at the exact same
instant in time. Although this assumption may seem to be invalid, RTEMS makes it quite easy
to ensure. By having a non-preemptible user initialization task, all application tasks, regardless
of priority, can be created and started before the initialization deletes itself. This technique
ensures that all tasks begin to compete for execution time at the same instant - when the user
initialization task deletes itself. See more detail in [LSD89].

11.2.5.5 First Deadline Rule Example

The First Deadline Rule can ensure schedulability even when the Processor Utilization Rule
fails. The example below is a modification of the Processor Utilization Rule example where task
execution time has been increased from 15 to 25 units. The following table details the RMS
priority, period, execution time, and processor utilization for each task:

Task RMS Priority Period Execution Time Processor Utilization
1 High 100 25 0.25
2 Medium 200 50 0.25
3 Low 300 100 0.33

The total processor utilization for the modified task set is 0.83 which is above the upper bound of
3 * (2**(1/3) - 1), or 0.779, imposed by the Processor Utilization Rule. Therefore, this task set
is not guaranteed to be schedulable using RMS. However, the First Deadline Rule can guarantee
the schedulability of this task set. This rule calls for one to examine each occurrence of deadline
until either all tasks have met their deadline or one task failed to meet its first deadline. The
following table details the time of each deadline occurrence, the maximum number of times
each task may have run, the total execution time, and whether all the deadlines have been met:

Deadline Time Task 1 Task 2 Task 3 Total Execution Time All Deadlines Met?
100 1 1 1 25 + 50 + 100 = 175 NO
200 2 1 1 50 + 50 + 100 = 200 YES

The key to this analysis is to recognize when each task will execute. For example at time 100,
task 1 must have met its first deadline, but tasks 2 and 3 may also have begun execution. In
this example, at time 100 tasks 1 and 2 have completed execution and thus have met their first
deadline. Tasks 1 and 2 have used (25 + 50) = 75 time units, leaving (100 - 75) = 25 time
units for task 3 to begin. Because task 3 takes 100 ticks to execute, it will not have completed
execution at time 100. Thus at time 100, all of the tasks except task 3 have met their first
deadline.

At time 200, task 1 must have met its second deadline and task 2 its first deadline. As a result,
of the first 200 time units, task 1 uses (2 * 25) = 50 and task 2 uses 50, leaving (200 - 100)
time units for task 3. Task 3 requires 100 time units to execute, thus it will have completed
execution at time 200. Thus, all of the tasks have met their first deadlines at time 200, and the
task set is schedulable using the First Deadline Rule.

11.2. Background 305

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.2

11.2.5.6 Relaxation of Assumptions

The assumptions used to develop the RMS schedulability rules are uncommon in most real-time
systems. For example, it was assumed that tasks have constant unvarying execution time. It is
possible to relax this assumption, simply by using the worst-case execution time of each task.

Another assumption is that the tasks are independent. This means that the tasks do not wait
for one another or contend for resources. This assumption can be relaxed by accounting for the
amount of time a task spends waiting to acquire resources. Similarly, each task’s execution time
must account for any I/O performed and any RTEMS directive calls.

In addition, the assumptions did not account for the time spent executing interrupt service
routines. This can be accounted for by including all the processor utilization by interrupt service
routines in the utilization calculation. Similarly, one should also account for the impact of delays
in accessing local memory caused by direct memory access and other processors accessing local
dual-ported memory.

The assumption that nonperiodic tasks are used only for initialization or failure-recovery can
be relaxed by placing all periodic tasks in the critical task set. This task set can be scheduled
and analyzed using RMS. All nonperiodic tasks are placed in the non-critical task set. Although
the critical task set can be guaranteed to execute even under transient overload, the non-critical
task set is not guaranteed to execute.

In conclusion, the application designer must be fully cognizant of the system and its run-time
behavior when performing schedulability analysis for a system using RMS. Every hardware and
software factor which impacts the execution time of each task must be accounted for in the
schedulability analysis.

306 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.3 Operations

11.3.1 Creating a Rate Monotonic Period

The rtems_rate_monotonic_create directive creates a rate monotonic period which is to be
used by the calling task to delineate a period. RTEMS allocates a Period Control Block (PCB)
from the PCB free list. This data structure is used by RTEMS to manage the newly created rate
monotonic period. RTEMS returns a unique period ID to the application which is used by other
rate monotonic manager directives to access this rate monotonic period.

11.3.2 Manipulating a Period

The rtems_rate_monotonic_period directive is used to establish and maintain periodic
execution utilizing a previously created rate monotonic period. Once initiated by the
rtems_rate_monotonic_period directive, the period is said to run until it either expires or is
reinitiated. The state of the rate monotonic period results in one of the following scenarios:

• If the rate monotonic period is running, the calling task will be blocked for the remain-
der of the outstanding period and, upon completion of that period, the period will be
reinitiated with the specified period.

• If the rate monotonic period is not currently running and has not expired, it is initiated
with a length of period ticks and the calling task returns immediately.

• If the rate monotonic period has expired before the task invokes the
rtems_rate_monotonic_period directive, the postponed job will be released until
there is no more postponed jobs. The calling task returns immediately with a timeout
error status. In the watchdog routine, the period will still be updated periodically and
track the count of the postponed jobs [CvdBruggenC16]. Please note, the count of the
postponed jobs is only saturated until 0xffffffff.

11.3.3 Obtaining the Status of a Period

If the rtems_rate_monotonic_period directive is invoked with a period of RTEMS_PERIOD_STATUS
ticks, the current state of the specified rate monotonic period will be returned. The following
table details the relationship between the period’s status and the directive status code returned
by the rtems_rate_monotonic_period directive:

RTEMS_SUCCESSFUL period is running
RTEMS_TIMEOUT period has expired
RTEMS_NOT_DEFINED period has never been initiated

Obtaining the status of a rate monotonic period does not alter the state or length of that period.

11.3.4 Canceling a Period

The rtems_rate_monotonic_cancel directive is used to stop the period maintained by the spec-
ified rate monotonic period. The period is stopped and the rate monotonic period can be reini-
tiated using the rtems_rate_monotonic_period directive.

11.3. Operations 307

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.3

11.3.5 Deleting a Rate Monotonic Period

The rtems_rate_monotonic_delete directive is used to delete a rate monotonic period. If the
period is running and has not expired, the period is automatically canceled. The rate monotonic
period’s control block is returned to the PCB free list when it is deleted. A rate monotonic period
can be deleted by a task other than the task which created the period.

11.3.6 Examples

The following sections illustrate common uses of rate monotonic periods to construct periodic
tasks.

11.3.7 Simple Periodic Task

This example consists of a single periodic task which, after initialization, executes every 100
clock ticks.

1 rtems_task Periodic_task(rtems_task_argument arg)
2 {
3 rtems_name name;
4 rtems_id period;
5 rtems_status_code status;
6 name = rtems_build_name('P', 'E', 'R', 'D');
7 status = rtems_rate_monotonic_create(name, &period);
8 if (status != RTEMS_SUCCESSFUL) {
9 printf("rtems_monotonic_create failed with status of %d.\n", status);

10 exit(1);
11 }
12 while (1) {
13 if (rtems_rate_monotonic_period(period, 100) == RTEMS_TIMEOUT)
14 break;
15 /* Perform some periodic actions */
16 }
17 /* missed period so delete period and SELF */
18 status = rtems_rate_monotonic_delete(period);
19 if (status != RTEMS_SUCCESSFUL) {
20 printf("rtems_rate_monotonic_delete failed with status of %d.\n", status␣

→˓);
21 exit(1);
22 }
23 status = rtems_task_delete(RTEMS_SELF); /* should not return */
24 printf("rtems_task_delete returned with status of %d.\n", status);
25 exit(1);
26 }

The above task creates a rate monotonic period as part of its initialization. The first time the loop
is executed, the rtems_rate_monotonic_period directive will initiate the period for 100 ticks
and return immediately. Subsequent invocations of the rtems_rate_monotonic_period directive
will result in the task blocking for the remainder of the 100 tick period. If, for any reason,
the body of the loop takes more than 100 ticks to execute, the rtems_rate_monotonic_period
directive will return the RTEMS_TIMEOUT status. If the above task misses its deadline, it will
delete the rate monotonic period and itself.

308 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.3.8 Task with Multiple Periods

This example consists of a single periodic task which, after initialization, performs two sets of
actions every 100 clock ticks. The first set of actions is performed in the first forty clock ticks
of every 100 clock ticks, while the second set of actions is performed between the fortieth and
seventieth clock ticks. The last thirty clock ticks are not used by this task.

1 rtems_task Periodic_task(rtems_task_argument arg)
2 {
3 rtems_name name_1, name_2;
4 rtems_id period_1, period_2;
5 name_1 = rtems_build_name('P', 'E', 'R', '1');
6 name_2 = rtems_build_name('P', 'E', 'R', '2');
7 (void) rtems_rate_monotonic_create(name_1, &period_1);
8 (void) rtems_rate_monotonic_create(name_2, &period_2);
9 while (1) {

10 if (rtems_rate_monotonic_period(period_1, 100) == RTEMS_TIMEOUT)
11 break;
12 if (rtems_rate_monotonic_period(period_2, 40) == RTEMS_TIMEOUT)
13 break;
14 /*
15 * Perform first set of actions between clock
16 * ticks 0 and 39 of every 100 ticks.
17 */
18 if (rtems_rate_monotonic_period(period_2, 30) == RTEMS_TIMEOUT)
19 break;
20 /*
21 * Perform second set of actions between clock 40 and 69
22 * of every 100 ticks. THEN ...
23 *
24 * Check to make sure we didn't miss the period_2 period.
25 */
26 if (rtems_rate_monotonic_period(period_2, RTEMS_PERIOD_STATUS) ==␣

→˓RTEMS_TIMEOUT)
27 break;
28 (void) rtems_rate_monotonic_cancel(period_2);
29 }
30 /* missed period so delete period and SELF */
31 (void) rtems_rate_monotonic_delete(period_1);
32 (void) rtems_rate_monotonic_delete(period_2);
33 (void) rtems_task_delete(RTEMS_SELF);
34 }

The above task creates two rate monotonic periods as part of its initialization. The
first time the loop is executed, the rtems_rate_monotonic_period directive will initiate
the period_1 period for 100 ticks and return immediately. Subsequent invocations of the
rtems_rate_monotonic_period directive for period_1 will result in the task blocking for the
remainder of the 100 tick period. The period_2 period is used to control the execution
time of the two sets of actions within each 100 tick period established by period_1. The
rtems_rate_monotonic_cancel(period_2) call is performed to ensure that the period_2 pe-
riod does not expire while the task is blocked on the period_1 period. If this cancel operation
were not performed, every time the rtems_rate_monotonic_period(period_2, 40) call is ex-

11.3. Operations 309

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.3

ecuted, except for the initial one, a directive status of RTEMS_TIMEOUT is returned. It is important
to note that every time this call is made, the period_2 period will be initiated immediately and
the task will not block.

If, for any reason, the task misses any deadline, the rtems_rate_monotonic_period directive
will return the RTEMS_TIMEOUT directive status. If the above task misses its deadline, it will
delete the rate monotonic periods and itself.

310 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.4 Directives

This section details the directives of the Rate-Monotonic Manager. A subsection is dedicated to
each of this manager’s directives and lists the calling sequence, parameters, description, return
values, and notes of the directive.

11.4. Directives 311

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

11.4.1 rtems_rate_monotonic_create()

Creates a period.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_create(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name of the period.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created period will be stored in this object.

DESCRIPTION:

This directive creates a period which resides on the local node. The period has the user-defined
object name specified in name The assigned object identifier is returned in id. This identifier is
used to access the period with other rate monotonic related directives.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_TOO_MANY
There was no inactive object available to create a period. The number of periods available
to the application is configured through the CONFIGURE_MAXIMUM_PERIODS (page 617)
application configuration option.

NOTES:

The calling task is registered as the owner of the created period. Some directives can be only
used by this task for the created period.

For control and maintenance of the period, RTEMS allocates a PCB from the local PCB free pool
and initializes it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The number of periods available to the application is configured through the CONFIG-
URE_MAXIMUM_PERIODS (page 617) application configuration option.

312 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

11.4. Directives 313

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

11.4.2 rtems_rate_monotonic_ident()

Identifies a period by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_ident(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name to look up.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a period identifier associated with the period name specified in name.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the local node.

NOTES:

If the period name is not unique, then the period identifier will match the first period with that
name in the search order. However, this period identifier is not guaranteed to correspond to the
desired period.

The objects are searched from lowest to the highest index. Only the local node is searched.

The period identifier is used with other rate monotonic related directives to access the period.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

314 Chapter 11. Rate Monotonic Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.4.3 rtems_rate_monotonic_cancel()

Cancels the period.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_cancel(rtems_id id);

PARAMETERS:

id
This parameter is the rate monotonic period identifier.

DESCRIPTION:

This directive cancels the rate monotonic period specified by id. This period may be reinitiated
by the next invocation of rtems_rate_monotonic_period() (page 317).

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no rate monotonic period associated with the identifier specified by id.

RTEMS_NOT_OWNER_OF_RESOURCE
The rate monotonic period was not created by the calling task.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

• The directive may be used exclusively by the task which created the associated object.

11.4. Directives 315

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

11.4.4 rtems_rate_monotonic_delete()

Deletes the period.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_delete(rtems_id id);

PARAMETERS:

id
This parameter is the period identifier.

DESCRIPTION:

This directive deletes the period specified by id. If the period is running, it is automatically
canceled.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no period associated with the identifier specified by id.

NOTES:

The PCB for the deleted period is reclaimed by RTEMS.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

316 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.4.5 rtems_rate_monotonic_period()

Concludes the current period and start the next period, or gets the period status.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_period(
2 rtems_id id,
3 rtems_interval length
4);

PARAMETERS:

id
This parameter is the rate monotonic period identifier.

length
This parameter is the period length in clock ticks or RTEMS_PERIOD_STATUS to get the period
status.

DESCRIPTION:

This directive initiates the rate monotonic period specified by id with a length of period ticks
specified by length. If the period is running, then the calling task will block for the remainder
of the period before reinitiating the period with the specified period length. If the period was
not running (either expired or never initiated), the period is immediately initiated and the
directive returns immediately. If the period has expired, the postponed job will be released
immediately and the following calls of this directive will release postponed jobs until there is
no more deadline miss.

If invoked with a period length of RTEMS_PERIOD_STATUS ticks, the current state of the period
will be returned. The directive status indicates the current state of the period. This does not
alter the state or period length of the period.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no rate monotonic period associated with the identifier specified by id.

RTEMS_NOT_OWNER_OF_RESOURCE
The rate monotonic period was not created by the calling task.

RTEMS_NOT_DEFINED
The rate monotonic period has never been initiated (only possible when the length parameter
was equal to RTEMS_PERIOD_STATUS).

RTEMS_TIMEOUT
The rate monotonic period has expired.

11.4. Directives 317

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

NOTES:

Resetting the processor usage time of tasks has no impact on the period status and statistics.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be used exclusively by the task which created the associated object.

318 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.4.6 rtems_rate_monotonic_get_status()

Gets the detailed status of the period.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_get_status(
2 rtems_id id,
3 rtems_rate_monotonic_period_status *status
4);

PARAMETERS:

id
This parameter is the rate monotonic period identifier.

status
This parameter is the pointer to an rtems_rate_monotonic_period_status (page 50) object.
When the directive call is successful, the detailed period status will be stored in this object.

DESCRIPTION:

This directive returns the detailed status of the rate monotonic period specified by id. The de-
tailed status of the period will be returned in the members of the period status object referenced
by status:

• The owner member is set to the identifier of the owner task of the period.

• The state member is set to the current state of the period.

• The postponed_jobs_count member is set to the count of jobs which are not released yet.

• If the current state of the period is RATE_MONOTONIC_INACTIVE, the since_last_period
and executed_since_last_period members will be set to zero. Otherwise, both
members will contain time information since the last successful invocation of the
rtems_rate_monotonic_period() (page 317) directive by the owner task. More specifically,
the since_last_period member will be set to the time elapsed since the last successful
invocation. The executed_since_last_period member will be set to the processor time
consumed by the owner task since the last successful invocation.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no rate monotonic period associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The status parameter was NULL.

11.4. Directives 319

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be called from within interrupt context.

• The directive will not cause the calling task to be preempted.

320 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.4.7 rtems_rate_monotonic_get_statistics()

Gets the statistics of the period.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_get_statistics(
2 rtems_id id,
3 rtems_rate_monotonic_period_statistics *status
4);

PARAMETERS:

id
This parameter is the rate monotonic period identifier.

status
This parameter is the pointer to an rtems_rate_monotonic_period_statistics (page 49) object.
When the directive call is successful, the period statistics will be stored in this object.

DESCRIPTION:

This directive returns the statistics of the rate monotonic period specified by id. The statistics of
the period will be returned in the members of the period statistics object referenced by status:

• The count member is set to the number of periods executed.

• The missed_count member is set to the number of periods missed.

• The min_cpu_time member is set to the least amount of processor time used in the period.

• The max_cpu_time member is set to the highest amount of processor time used in the
period.

• The total_cpu_time member is set to the total amount of processor time used in the
period.

• The min_wall_time member is set to the least amount of CLOCK_MONOTONIC time used
in the period.

• The max_wall_time member is set to the highest amount of CLOCK_MONOTONIC time
used in the period.

• The total_wall_time member is set to the total amount of CLOCK_MONOTONIC time
used in the period.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no rate monotonic period associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The status parameter was NULL.

11.4. Directives 321

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be called from within interrupt context.

• The directive will not cause the calling task to be preempted.

322 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.4.8 rtems_rate_monotonic_reset_statistics()

Resets the statistics of the period.

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_reset_statistics(rtems_id id);

PARAMETERS:

id
This parameter is the rate monotonic period identifier.

DESCRIPTION:

This directive resets the statistics of the rate monotonic period specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no rate monotonic period associated with the identifier specified by id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be called from within interrupt context.

• The directive will not cause the calling task to be preempted.

11.4. Directives 323

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

11.4.9 rtems_rate_monotonic_reset_all_statistics()

Resets the statistics of all periods.

CALLING SEQUENCE:

1 void rtems_rate_monotonic_reset_all_statistics(void);

DESCRIPTION:

This directive resets the statistics information associated with all rate monotonic period in-
stances.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

324 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

11.4.10 rtems_rate_monotonic_report_statistics()

Reports the period statistics using the printk() (page 491) printer.

CALLING SEQUENCE:

1 void rtems_rate_monotonic_report_statistics(void);

DESCRIPTION:

This directive prints a report on all active periods which have executed at least one period using
the printk() (page 491) printer.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

11.4. Directives 325

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 11 Section 11.4

11.4.11 rtems_rate_monotonic_report_statistics_with_plugin()

Reports the period statistics using the printer plugin.

CALLING SEQUENCE:

1 void rtems_rate_monotonic_report_statistics_with_plugin(
2 const struct rtems_printer *printer
3);

PARAMETERS:

printer
This parameter is the printer plugin to output the report.

DESCRIPTION:

This directive prints a report on all active periods which have executed at least one period using
the printer plugin specified by printer.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

326 Chapter 11. Rate Monotonic Manager

CHAPTER

TWELVE

SEMAPHORE MANAGER

327

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.1

12.1 Introduction

The Semaphore Manager utilizes standard Dijkstra counting semaphores to provide synchro-
nization and mutual exclusion capabilities. The directives provided by the Semaphore Manager
are:

• rtems_semaphore_create() (page 335) - Creates a semaphore.

• rtems_semaphore_ident() (page 339) - Identifies a semaphore by the object name.

• rtems_semaphore_delete() (page 341) - Deletes the semaphore.

• rtems_semaphore_obtain() (page 343) - Obtains the semaphore.

• rtems_semaphore_release() (page 346) - Releases the semaphore.

• rtems_semaphore_flush() (page 348) - Flushes the semaphore.

• rtems_semaphore_set_priority() (page 350) - Sets the priority by scheduler for the
semaphore.

328 Chapter 12. Semaphore Manager

Chapter 12 Section 12.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

12.2 Background

A semaphore can be viewed as a protected variable whose value can be modified only with the
rtems_semaphore_create, rtems_semaphore_obtain, and rtems_semaphore_release directives.
RTEMS supports both binary and counting semaphores. A binary semaphore is restricted to
values of zero or one, while a counting semaphore can assume any non-negative integer value.

A binary semaphore (not a simple binary semaphore) can be used to control access to a single
resource. In particular, it can be used to enforce mutual exclusion for a critical section in user
code (mutex). In this instance, the semaphore would be created with an initial count of one to
indicate that no task is executing the critical section of code. Upon entry to the critical section, a
task must issue the rtems_semaphore_obtain directive to prevent other tasks from entering the
critical section. Upon exit from the critical section, the task that obtained the binary semaphore
must issue the rtems_semaphore_release directive to allow another task to execute the critical
section. A binary semaphore must be released by the task that obtained it.

A counting semaphore can be used to control access to a pool of two or more resources.
For example, access to three printers could be administered by a semaphore created with
an initial count of three. When a task requires access to one of the printers, it issues the
rtems_semaphore_obtain directive to obtain access to a printer. If a printer is not currently
available, the task can wait for a printer to become available or return immediately. When the
task has completed printing, it should issue the rtems_semaphore_release directive to allow
other tasks access to the printer.

Task synchronization may be achieved by creating a semaphore with an initial count of
zero. One task waits for the arrival of another task by issuing a rtems_semaphore_obtain
directive when it reaches a synchronization point. The other task performs a corresponding
rtems_semaphore_release operation when it reaches its synchronization point, thus unblock-
ing the pending task.

12.2.1 Nested Resource Access

Deadlock occurs when a task owning a binary semaphore attempts to acquire that same
semaphore and blocks as result. Since the semaphore is allocated to a task, it cannot be
deleted. Therefore, the task that currently holds the semaphore and is also blocked waiting
for that semaphore will never execute again.

RTEMS addresses this problem by allowing the task holding the binary semaphore to obtain the
same binary semaphore multiple times in a nested manner. Each rtems_semaphore_obtain must
be accompanied with a rtems_semaphore_release. The semaphore will only be made available
for acquisition by other tasks when the outermost rtems_semaphore_obtain is matched with a
rtems_semaphore_release.

Simple binary semaphores do not allow nested access and so can be used for task synchroniza-
tion.

12.2.2 Priority Inheritance

RTEMS supports priority inheritance (page 29) for local, binary semaphores that use the priority
task wait queue blocking discipline. In SMP configurations, the O(m) Independence-Preserving
Protocol (OMIP) (page 30) is used instead.

12.2. Background 329

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.2

12.2.3 Priority Ceiling

RTEMS supports priority ceiling (page 29) for local, binary semaphores that use the priority task
wait queue blocking discipline.

12.2.4 Multiprocessor Resource Sharing Protocol

RTEMS supports the Multiprocessor Resource Sharing Protocol (MrsP) (page 30) for local, binary
semaphores that use the priority task wait queue blocking discipline. In uniprocessor configu-
rations, the Immediate Ceiling Priority Protocol (ICPP) (page 29) is used instead.

12.2.5 Building a Semaphore Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The
following table lists the set of valid semaphore attributes:

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority
RTEMS_BINARY_SEMAPHORE restrict values to 0 and 1
RTEMS_COUNTING_SEMAPHORE no restriction on values (default)
RTEMS_SIMPLE_BINARY_
SEMAPHORE

restrict values to 0 and 1, do not allow nested access, allow
deletion of locked semaphore.

RTEMS_NO_INHERIT_PRIORITY do not use priority inheritance (default)
RTEMS_INHERIT_PRIORITY use priority inheritance
RTEMS_NO_PRIORITY_CEILING do not use priority ceiling (default)
RTEMS_PRIORITY_CEILING use priority ceiling
RTEMS_NO_MULTIPROCESSOR_
RESOURCE_SHARING

do not use Multiprocessor Resource Sharing Protocol (de-
fault)

RTEMS_MULTIPROCESSOR_
RESOURCE_SHARING

use Multiprocessor Resource Sharing Protocol

RTEMS_LOCAL local semaphore (default)
RTEMS_GLOBAL global semaphore

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An attribute listed as a default is not required to appear in the attribute list, although
it is a good programming practice to specify default attributes. If all defaults are desired, the
attribute RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a local semaphore
with the task priority waiting queue discipline. The attribute_set parameter passed
to the rtems_semaphore_create directive could be either RTEMS_PRIORITY or RTEMS_LOCAL
| RTEMS_PRIORITY. The attribute_set parameter can be set to RTEMS_PRIORITY because
RTEMS_LOCAL is the default for all created tasks. If a similar semaphore were to be known
globally, then the attribute_set parameter would be RTEMS_GLOBAL | RTEMS_PRIORITY.

Some combinatinos of these attributes are invalid. For example, priority ordered blocking dis-
cipline must be applied to a binary semaphore in order to use either the priority inheritance or
priority ceiling functionality. The following tree figure illustrates the valid combinations.

330 Chapter 12. Semaphore Manager

Chapter 12 Section 12.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

12.2.6 Building a SEMAPHORE_OBTAIN Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_semaphore_obtain directive are listed in the following table:

RTEMS_WAIT task will wait for semaphore (default)
RTEMS_NO_WAIT task should not wait

Option values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An option listed as a default is not required to appear in the list, although it is a
good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for a semaphore. The option
parameter passed to the rtems_semaphore_obtain directive should be RTEMS_NO_WAIT.

12.2. Background 331

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.3

12.3 Operations

12.3.1 Creating a Semaphore

The rtems_semaphore_create directive creates a binary or counting semaphore with a user-
specified name as well as an initial count. If a binary semaphore is created with a count of zero
(0) to indicate that it has been allocated, then the task creating the semaphore is considered
the current holder of the semaphore. At create time the method for ordering waiting tasks
in the semaphore’s task wait queue (by FIFO or task priority) is specified. Additionally, the
priority inheritance or priority ceiling algorithm may be selected for local, binary semaphores
that use the priority task wait queue blocking discipline. If the priority ceiling algorithm is
selected, then the highest priority of any task which will attempt to obtain this semaphore must
be specified. RTEMS allocates a Semaphore Control Block (SMCB) from the SMCB free list.
This data structure is used by RTEMS to manage the newly created semaphore. Also, a unique
semaphore ID is generated and returned to the calling task.

12.3.2 Obtaining Semaphore IDs

When a semaphore is created, RTEMS generates a unique semaphore ID and assigns it to the
created semaphore until it is deleted. The semaphore ID may be obtained by either of two
methods. First, as the result of an invocation of the rtems_semaphore_create directive, the
semaphore ID is stored in a user provided location. Second, the semaphore ID may be obtained
later using the rtems_semaphore_ident directive. The semaphore ID is used by other semaphore
manager directives to access this semaphore.

12.3.3 Acquiring a Semaphore

The rtems_semaphore_obtain directive is used to acquire the specified semaphore. A simplified
version of the rtems_semaphore_obtain directive can be described as follows:

If the semaphore’s count is greater than zero then decrement the semaphore’s count
else wait for release of semaphore then return SUCCESSFUL.

When the semaphore cannot be immediately acquired, one of the following situations applies:

• By default, the calling task will wait forever to acquire the semaphore.

• Specifying RTEMS_NO_WAIT forces an immediate return with an error status code.

• Specifying a timeout limits the interval the task will wait before returning with an error
status code.

If the task waits to acquire the semaphore, then it is placed in the semaphore’s task wait queue
in either FIFO or task priority order. If the task blocked waiting for a binary semaphore using
priority inheritance and the task’s priority is greater than that of the task currently holding the
semaphore, then the holding task will inherit the priority of the blocking task. All tasks waiting
on a semaphore are returned an error code when the semaphore is deleted.

When a task successfully obtains a semaphore using priority ceiling and the priority ceiling for
this semaphore is greater than that of the holder, then the holder’s priority will be elevated.

332 Chapter 12. Semaphore Manager

Chapter 12 Section 12.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

12.3.4 Releasing a Semaphore

The rtems_semaphore_release directive is used to release the specified semaphore. A simplified
version of the rtems_semaphore_release directive can be described as follows:

If there are no tasks are waiting on this semaphore then increment the semaphore’s
count else assign semaphore to a waiting task and return SUCCESSFUL.

If this is the outermost release of a binary semaphore that uses priority inheritance or prior-
ity ceiling and the task does not currently hold any other binary semaphores, then the task
performing the rtems_semaphore_release will have its priority restored to its normal value.

12.3.5 Deleting a Semaphore

The rtems_semaphore_delete directive removes a semaphore from the system and frees its
control block. A semaphore can be deleted by any local task that knows the semaphore’s ID.
As a result of this directive, all tasks blocked waiting to acquire the semaphore will be readied
and returned a status code which indicates that the semaphore was deleted. Any subsequent
references to the semaphore’s name and ID are invalid.

12.3. Operations 333

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

12.4 Directives

This section details the directives of the Semaphore Manager. A subsection is dedicated to
each of this manager’s directives and lists the calling sequence, parameters, description, return
values, and notes of the directive.

334 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

12.4.1 rtems_semaphore_create()

Creates a semaphore.

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_create(
2 rtems_name name,
3 uint32_t count,
4 rtems_attribute attribute_set,
5 rtems_task_priority priority_ceiling,
6 rtems_id *id
7);

PARAMETERS:

name
This parameter is the object name of the semaphore.

count
This parameter is the initial count of the semaphore. If the semaphore is a binary semaphore,
then a count of 0 will make the calling task the owner of the binary semaphore and a count
of 1 will create a binary semaphore without an owner.

attribute_set
This parameter is the attribute set of the semaphore.

priority_ceiling
This parameter is the priority ceiling if the semaphore is a binary semaphore with the priority
ceiling or MrsP locking protocol as defined by the attribute set.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created semaphore will be stored in this object.

DESCRIPTION:

This directive creates a semaphore which resides on the local node. The semaphore has the user-
defined object name specified in name and the initial count specified in count. The assigned
object identifier is returned in id. This identifier is used to access the semaphore with other
semaphore related directives.

The attribute set specified in attribute_set is built through a bitwise or of the attribute con-
stants described below. Not all combinations of attributes are allowed. Some attributes are
mutually exclusive. If mutually exclusive attributes are combined, the behaviour is undefined.
Attributes not mentioned below are not evaluated by this directive and have no effect. Default
attributes can be selected by using the RTEMS_DEFAULT_ATTRIBUTES constant. The attribute set
defines

• the scope of the semaphore: RTEMS_LOCAL (default) or RTEMS_GLOBAL,

• the task wait queue discipline used by the semaphore: RTEMS_FIFO (default) or
RTEMS_PRIORITY,

• the class of the semaphore: RTEMS_COUNTING_SEMAPHORE (default),
RTEMS_BINARY_SEMAPHORE, or RTEMS_SIMPLE_BINARY_SEMAPHORE, and

12.4. Directives 335

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

• the locking protocol of a binary semaphore: no locking proto-
col (default), RTEMS_INHERIT_PRIORITY, RTEMS_PRIORITY_CEILING, or
RTEMS_MULTIPROCESSOR_RESOURCE_SHARING.

The semaphore has a local or global scope in a multiprocessing network (this attribute does
not refer to SMP systems). The scope is selected by the mutually exclusive RTEMS_LOCAL and
RTEMS_GLOBAL attributes.

• A local scope is the default and can be emphasized through the use of the RTEMS_LOCAL
attribute. A local semaphore can be only used by the node which created it.

• A global scope is established if the RTEMS_GLOBAL attribute is set. Setting the global
attribute in a single node system has no effect.

The task wait queue discipline is selected by the mutually exclusive RTEMS_FIFO and
RTEMS_PRIORITY attributes.

• The FIFO discipline is the default and can be emphasized through use of the RTEMS_FIFO
attribute.

• The priority discipline is selected by the RTEMS_PRIORITY attribute. The locking protocols
require the priority discipline.

The semaphore class is selected by the mutually exclusive RTEMS_COUNTING_SEMAPHORE,
RTEMS_BINARY_SEMAPHORE, and RTEMS_SIMPLE_BINARY_SEMAPHORE attributes.

• The counting semaphore class is the default and can be emphasized through use of the
RTEMS_COUNTING_SEMAPHORE attribute.

• The binary semaphore class is selected by the RTEMS_BINARY_SEMAPHORE attribute. Binary
semaphores are mutual exclusion (mutex) synchronization primitives which may have an
owner. The count of a binary semaphore is restricted to 0 and 1 values.

• The simple binary semaphore class is selected by the RTEMS_SIMPLE_BINARY_SEMAPHORE
attribute. Simple binary semaphores have no owner. They may be used for task and
interrupt synchronization. The count of a simple binary semaphore is restricted to 0 and
1 values.

Binary semaphores may use a locking protocol. If a locking protocol is selected, then the scope
shall be local and the priority task wait queue discipline shall be selected. The locking protocol
is selected by the mutually exclusive RTEMS_INHERIT_PRIORITY, RTEMS_PRIORITY_CEILING, and
RTEMS_MULTIPROCESSOR_RESOURCE_SHARING attributes.

• The default is no locking protocol. This can be emphasized through use
of the RTEMS_NO_INHERIT_PRIORITY, RTEMS_NO_MULTIPROCESSOR_RESOURCE_SHARING, and
RTEMS_NO_PRIORITY_CEILING attributes.

• The priority inheritance locking protocol is selected by the RTEMS_INHERIT_PRIORITY
attribute.

• The priority ceiling locking protocol is selected by the RTEMS_PRIORITY_CEILING at-
tribute. For this locking protocol a priority ceiling shall be specified in priority_ceiling.

• The MrsP locking protocol is selected by the RTEMS_MULTIPROCESSOR_RESOURCE_SHARING
attribute in SMP configurations, otherwise this attribute selects the priority ceiling
locking protocol. For these locking protocols a priority ceiling shall be specified in
priority_ceiling. This priority is used to set the priority ceiling for all schedulers. This
can be changed later with the rtems_semaphore_set_priority() (page 350) directive using
the returned object identifier.

336 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NUMBER
The count parameter was invalid.

RTEMS_NOT_DEFINED
The attribute_set parameter was invalid.

RTEMS_TOO_MANY
There was no inactive object available to create a semaphore. The number of semaphores
available to the application is configured through the CONFIGURE_MAXIMUM_SEMAPHORES
(page 620) application configuration option.

RTEMS_TOO_MANY
In multiprocessing configurations, there was no inactive global object available to create a
global semaphore. The number of global objects available to the application is configured
through the CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configu-
ration option.

RTEMS_INVALID_PRIORITY
The priority_ceiling parameter was invalid.

NOTES:

For control and maintenance of the semaphore, RTEMS allocates a SMCB from the local SMCB
free pool and initializes it.

The SMCB for a global semaphore is allocated on the local node. Semaphores should not
be made global unless remote tasks must interact with the semaphore. This is to avoid the
system overhead incurred by the creation of a global semaphore. When a global semaphore is
created, the semaphore’s name and identifier must be transmitted to every node in the system
for insertion in the local copy of the global object table.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The number of semaphores available to the application is configured through the CON-
FIGURE_MAXIMUM_SEMAPHORES (page 620) application configuration option.

12.4. Directives 337

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

• The number of global objects available to the application is configured through the CON-
FIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configuration option.

338 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

12.4.2 rtems_semaphore_ident()

Identifies a semaphore by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

PARAMETERS:

name
This parameter is the object name to look up.

node
This parameter is the node or node set to search for a matching object.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a semaphore identifier associated with the semaphore name specified in
name.

The node to search is specified in node. It shall be

• a valid node number,

• the constant RTEMS_SEARCH_ALL_NODES to search in all nodes,

• the constant RTEMS_SEARCH_LOCAL_NODE to search in the local node only, or

• the constant RTEMS_SEARCH_OTHER_NODES to search in all nodes except the local node.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the specified nodes.

RTEMS_INVALID_NODE
In multiprocessing configurations, the specified node was invalid.

12.4. Directives 339

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

NOTES:

If the semaphore name is not unique, then the semaphore identifier will match the first
semaphore with that name in the search order. However, this semaphore identifier is not guar-
anteed to correspond to the desired semaphore.

The objects are searched from lowest to the highest index. If node is RTEMS_SEARCH_ALL_NODES,
all nodes are searched with the local node being searched first. All other nodes are searched
from lowest to the highest node number.

If node is a valid node number which does not represent the local node, then only the
semaphores exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the
global object table.

The semaphore identifier is used with other semaphore related directives to access the
semaphore.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

340 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

12.4.3 rtems_semaphore_delete()

Deletes the semaphore.

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_delete(rtems_id id);

PARAMETERS:

id
This parameter is the semaphore identifier.

DESCRIPTION:

This directive deletes the semaphore specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no semaphore associated with the identifier specified by id.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The semaphore resided on a remote node.

RTEMS_RESOURCE_IN_USE
The binary semaphore had an owner.

NOTES:

Binary semaphores with an owner cannot be deleted.

When a semaphore is deleted, all tasks blocked waiting to obtain the semaphore will be readied
and returned a status code which indicates that the semaphore was deleted.

The SMCB for the deleted semaphore is reclaimed by RTEMS.

When a global semaphore is deleted, the semaphore identifier must be transmitted to every
node in the system for deletion from the local copy of the global object table.

The semaphore must reside on the local node, even if the semaphore was created with the
RTEMS_GLOBAL attribute.

Proxies, used to represent remote tasks, are reclaimed when the semaphore is deleted.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

12.4. Directives 341

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

342 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

12.4.4 rtems_semaphore_obtain()

Obtains the semaphore.

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_obtain(
2 rtems_id id,
3 rtems_option option_set,
4 rtems_interval timeout
5);

PARAMETERS:

id
This parameter is the semaphore identifier.

option_set
This parameter is the option set.

timeout
This parameter is the timeout in clock ticks if the RTEMS_WAIT option is set. Use
RTEMS_NO_TIMEOUT to wait potentially forever.

DESCRIPTION:

This directive obtains the semaphore specified by id.

The option set specified in option_set is built through a bitwise or of the option constants
described below. Not all combinations of options are allowed. Some options are mutually
exclusive. If mutually exclusive options are combined, the behaviour is undefined. Options not
mentioned below are not evaluated by this directive and have no effect. Default options can be
selected by using the RTEMS_DEFAULT_OPTIONS constant.

The calling task can wait or try to obtain the semaphore according to the mutually exclusive
RTEMS_WAIT and RTEMS_NO_WAIT options.

• Waiting to obtain the semaphore is the default and can be emphasized through the use
of the RTEMS_WAIT option. The timeout parameter defines how long the calling task is
willing to wait. Use RTEMS_NO_TIMEOUT to wait potentially forever, otherwise set a timeout
interval in clock ticks.

• Trying to obtain the semaphore is selected by the RTEMS_NO_WAIT option. If this option is
defined, then the timeout parameter is ignored. When the semaphore cannot be immedi-
ately obtained, then the RTEMS_UNSATISFIED status is returned.

With either RTEMS_WAIT or RTEMS_NO_WAIT if the current semaphore count is positive, then it is
decremented by one and the semaphore is successfully obtained by returning immediately with
the RTEMS_SUCCESSFUL status code.

If the calling task chooses to return immediately and the current semaphore count is zero, then
the RTEMS_UNSATISFIED status code is returned indicating that the semaphore is not available.

If the calling task chooses to wait for a semaphore and the current semaphore count is zero,
then the calling task is placed on the semaphore’s wait queue and blocked. If a local, binary
semaphore was created with the RTEMS_INHERIT_PRIORITY attribute, then the priority of the
task currently holding the binary semaphore will inherit the current priority set of the blocking

12.4. Directives 343

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

task. The priority inheritance is carried out recursively. This means, that if the task currently
holding the binary semaphore is blocked on another local, binary semaphore using the priority
inheritance locking protocol, then the owner of this semaphore will inherit the current priority
sets of both tasks, and so on. A task has a current priority for each scheduler.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no semaphore associated with the identifier specified by id.

RTEMS_NOT_DEFINED
The semaphore uses a priority ceiling and there was no priority ceiling defined for the home
scheduler of the calling task.

RTEMS_UNSATISFIED
The semaphore could not be obtained immediately.

RTEMS_INVALID_PRIORITY
The semaphore uses a priority ceiling and the calling task had a current priority less than the
priority ceiling.

RTEMS_INCORRECT_STATE
Acquiring of the local, binary semaphore by the calling task would have cased a deadlock.

RTEMS_INCORRECT_STATE
The calling task attempted to recursively obtain a local, binary semaphore using the MrsP
locking protocol.

RTEMS_UNSATISFIED
The semaphore was flushed while the calling task was waiting to obtain the semaphore.

RTEMS_TIMEOUT
The timeout happened while the calling task was waiting to obtain the semaphore.

RTEMS_OBJECT_WAS_DELETED
The semaphore was deleted while the calling task was waiting to obtain the semaphore.

NOTES:

If a local, binary semaphore was created with the RTEMS_PRIORITY_CEILING or
RTEMS_MULTIPROCESSOR_RESOURCE_SHARING attribute, a task successfully obtains the semaphore,
and the priority of that task is greater than the ceiling priority for this semaphore, then the
priority of the task acquiring the semaphore is elevated to that of the ceiling.

Deadlock situations are detected for local, binary semaphores. If a deadlock is detected, then
the directive immediately returns the RTEMS_INCORRECT_STATE status code.

It is not allowed to recursively obtain (nested access) a local, binary semaphore using the MrsP
locking protocol and any attempt to do this will just return the RTEMS_INCORRECT_STATE status
code. This error can only happen in SMP configurations.

If the semaphore was created with the RTEMS_PRIORITY attribute, then the calling task is inserted
into the wait queue according to its priority. However, if the semaphore was created with the
RTEMS_FIFO attribute, then the calling task is placed at the rear of the wait queue.

344 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

Attempting to obtain a global semaphore which does not reside on the local node will generate
a request to the remote node to access the semaphore. If the semaphore is not available and
RTEMS_NO_WAIT was not specified, then the task must be blocked until the semaphore is released.
A proxy is allocated on the remote node to represent the task until the semaphore is released.

CONSTRAINTS:

The following constraints apply to this directive:

• When a local, counting semaphore or a local, simple binary semaphore is accessed and
the RTEMS_NO_WAIT option is set, the directive may be called from within interrupt context.

• When a local semaphore is accessed and the request can be immediately satisfied, the
directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• When the request cannot be immediately satisfied and the RTEMS_WAIT option is set, the
calling task blocks at some point during the directive call.

• The timeout functionality of the directive requires a clock tick.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

12.4. Directives 345

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

12.4.5 rtems_semaphore_release()

Releases the semaphore.

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_release(rtems_id id);

PARAMETERS:

id
This parameter is the semaphore identifier.

DESCRIPTION:

This directive releases the semaphore specified by id. If the semaphore’s wait queue is not
empty, then

• the first task on the wait queue is removed and unblocked, the semaphore’s count is not
changed, otherwise

• the semaphore’s count is incremented by one for counting semaphores and set to one for
binary and simple binary semaphores.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no semaphore associated with the identifier specified by id.

RTEMS_NOT_OWNER_OF_RESOURCE
The calling task was not the owner of the semaphore.

RTEMS_UNSATISFIED
The semaphore’s count already had the maximum value of UINT32_MAX.

NOTES:

The calling task may be preempted if it causes a higher priority task to be made ready for
execution.

The outermost release of a local, binary semaphore using the priority inheritance, priority ceil-
ing, or MrsP locking protocol may result in the calling task having its priority lowered. This
will occur if the highest priority of the calling task was available due to the ownership of the
released semaphore. If a task was on the semaphore’s wait queue, then the priority associated
with the semaphore will be transferred to the new owner.

Releasing a global semaphore which does not reside on the local node will generate a request
telling the remote node to release the semaphore.

If the task to be unblocked resides on a different node from the semaphore, then the semaphore
allocation is forwarded to the appropriate node, the waiting task is unblocked, and the proxy
used to represent the task is reclaimed.

346 Chapter 12. Semaphore Manager

https://en.cppreference.com/w/c/types/integer

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• When a local, counting semaphore or a local, simple binary semaphore is accessed, the
directive may be called from within interrupt context.

• When a local semaphore is accessed, the directive may be called from within device driver
initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

12.4. Directives 347

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

12.4.6 rtems_semaphore_flush()

Flushes the semaphore.

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_flush(rtems_id id);

PARAMETERS:

id
This parameter is the semaphore identifier.

DESCRIPTION:

This directive unblocks all tasks waiting on the semaphore specified by id. The semaphore’s
count is not changed by this directive. Tasks which are unblocked as the result of this direc-
tive will return from the rtems_semaphore_obtain() (page 343) directive with a status code of
RTEMS_UNSATISFIED to indicate that the semaphore was not obtained.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no semaphore associated with the identifier specified by id.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The semaphore resided on a remote node.

RTEMS_NOT_DEFINED
Flushing a semaphore using the MrsP locking protocol is undefined behaviour.

NOTES:

If the task to be unblocked resides on a different node from the semaphore, then the waiting
task is unblocked, and the proxy used to represent the task is reclaimed.

It is not allowed to flush a local, binary semaphore using the MrsP locking protocol and any
attempt to do this will just return the RTEMS_NOT_DEFINED status code. This error can only
happen in SMP configurations.

For barrier synchronization, the Barrier Manager (page 355) offers a cleaner alternative to using
the semaphore flush directive. Unlike POSIX barriers, they have a manual release option.

Using the semaphore flush directive for condition synchronization in concert with another
semaphore may be subject to the lost wake-up problem. The following attempt to implement a
condition variable is broken.

1 #include <rtems.h>
2 #include <assert.h>
3

4 void cnd_wait(rtems_id cnd, rtems_id mtx)
5 {

(continues on next page)

348 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

6 rtems_status_code sc;
7

8 sc = rtems_semaphore_release(mtx);
9 assert(sc == RTEMS_SUCCESSFUL);

10

11 // Here, a higher priority task may run and satisfy the condition.
12 // We may never wake up from the next semaphore obtain.
13

14 sc = rtems_semaphore_obtain(cnd, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
15 assert(sc == RTEMS_UNSATISFIED);
16

17 sc = rtems_semaphore_obtain(mtx, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
18 assert(sc == RTEMS_SUCCESSFUL);
19 }
20

21 void cnd_broadcast(rtems_id cnd)
22 {
23 rtems_status_code sc;
24

25 sc = rtems_semaphore_flush(cnd);
26 assert(sc == RTEMS_SUCCESSFUL);
27 }

CONSTRAINTS:

The following constraints apply to this directive:

• When a local, counting semaphore or a local, simple binary semaphore is accessed, the
directive may be called from within interrupt context.

• When a local semaphore is accessed, the directive may be called from within device driver
initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

12.4. Directives 349

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

12.4.7 rtems_semaphore_set_priority()

Sets the priority by scheduler for the semaphore.

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_set_priority(
2 rtems_id semaphore_id,
3 rtems_id scheduler_id,
4 rtems_task_priority new_priority,
5 rtems_task_priority *old_priority
6);

PARAMETERS:

semaphore_id
This parameter is the semaphore identifier.

scheduler_id
This parameter is the identifier of the scheduler corresponding to the new priority.

new_priority
This parameter is the new priority corresponding to the specified scheduler.

old_priority
This parameter is the pointer to an rtems_task_priority (page 57) object. When the directive
call is successful, the old priority of the semaphore corresponding to the specified scheduler
will be stored in this object.

DESCRIPTION:

This directive sets the priority of the semaphore specified by semaphore_id. The priority corre-
sponds to the scheduler specified by scheduler_id.

The special priority value RTEMS_CURRENT_PRIORITY can be used to get the current priority with-
out changing it.

The availability and use of a priority depends on the class and locking protocol of the
semaphore:

• For local, binary semaphores using the MrsP locking protocol, the ceiling priority for each
scheduler can be set by this directive.

• For local, binary semaphores using the priority ceiling protocol, the ceiling priority can be
set by this directive.

• For other semaphore classes and locking protocols, setting a priority is undefined be-
haviour.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The old_priority parameter was NULL.

350 Chapter 12. Semaphore Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_ID
There was no semaphore associated with the identifier specified by semaphore_id.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The semaphore resided on a remote node.

RTEMS_INVALID_PRIORITY
The new_priority parameter was invalid.

RTEMS_NOT_DEFINED
Setting a priority for the class or locking protocol of the semaphore is undefined behaviour.

NOTES:

Please have a look at the following example:

1 #include <assert.h>
2 #include <rtems.h>
3

4 #define SCHED_A rtems_build_name(' ', ' ', ' ', 'A')
5 #define SCHED_B rtems_build_name(' ', ' ', ' ', 'B')
6

7 static void Init(rtems_task_argument arg)
8 {
9 rtems_status_code sc;

10 rtems_id semaphore_id;
11 rtems_id scheduler_a_id;
12 rtems_id scheduler_b_id;
13 rtems_task_priority prio;
14

15 (void) arg;
16

17 // Get the scheduler identifiers
18 sc = rtems_scheduler_ident(SCHED_A, &scheduler_a_id);
19 assert(sc == RTEMS_SUCCESSFUL);
20 sc = rtems_scheduler_ident(SCHED_B, &scheduler_b_id);
21 assert(sc == RTEMS_SUCCESSFUL);
22

23 // Create a local, binary semaphore using the MrsP locking protocol
24 sc = rtems_semaphore_create(
25 rtems_build_name('M', 'R', 'S', 'P'),
26 1,
27 RTEMS_BINARY_SEMAPHORE | RTEMS_PRIORITY |
28 RTEMS_MULTIPROCESSOR_RESOURCE_SHARING,
29 1,
30 &semaphore_id
31);
32 assert(sc == RTEMS_SUCCESSFUL);
33

34 // The ceiling priority for each scheduler is equal to the priority
(continues on next page)

12.4. Directives 351

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

(continued from previous page)

35 // specified for the semaphore creation.
36 prio = RTEMS_CURRENT_PRIORITY;
37 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_a_id, prio, &prio);
38 assert(sc == RTEMS_SUCCESSFUL);
39 assert(prio == 1);
40

41 // Check the old value and set a new ceiling priority for scheduler B
42 prio = 2;
43 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_b_id, prio, &prio);
44 assert(sc == RTEMS_SUCCESSFUL);
45 assert(prio == 1);
46

47 // Check the ceiling priority values
48 prio = RTEMS_CURRENT_PRIORITY;
49 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_a_id, prio, &prio);
50 assert(sc == RTEMS_SUCCESSFUL);
51 assert(prio == 1);
52 prio = RTEMS_CURRENT_PRIORITY;
53 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_b_id, prio, &prio);
54 assert(sc == RTEMS_SUCCESSFUL);
55 assert(prio == 2);
56

57 sc = rtems_semaphore_delete(semaphore_id);
58 assert(sc == RTEMS_SUCCESSFUL);
59

60 rtems_shutdown_executive(0);
61 }
62

63 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
64 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
65 #define CONFIGURE_MAXIMUM_TASKS 1
66 #define CONFIGURE_MAXIMUM_SEMAPHORES 1
67 #define CONFIGURE_MAXIMUM_PROCESSORS 2
68

69 #define CONFIGURE_SCHEDULER_SIMPLE_SMP
70

71 #include <rtems/scheduler.h>
72

73 RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(a);
74 RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(b);
75

76 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \
77 RTEMS_SCHEDULER_TABLE_SIMPLE_SMP(a, SCHED_A), \
78 RTEMS_SCHEDULER_TABLE_SIMPLE_SMP(b, SCHED_B)
79

80 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \
81 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
82 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY)
83

(continues on next page)

352 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

84 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
85 #define CONFIGURE_INIT
86

87 #include <rtems/confdefs.h>

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may change the priority of a task. This may cause the calling task to be
preempted.

12.4. Directives 353

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 12 Section 12.4

354 Chapter 12. Semaphore Manager

CHAPTER

THIRTEEN

BARRIER MANAGER

355

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 13 Section 13.1

13.1 Introduction

The Barrier Manager provides a unique synchronization capability which can be used to have
a set of tasks block and be unblocked as a set. The directives provided by the Barrier Manager
are:

• rtems_barrier_create() (page 359) - Creates a barrier.

• rtems_barrier_ident() (page 361) - Identifies a barrier by the object name.

• rtems_barrier_delete() (page 362) - Deletes the barrier.

• rtems_barrier_wait() (page 363) - Waits at the barrier.

• rtems_barrier_release() (page 364) - Releases the barrier.

356 Chapter 13. Barrier Manager

Chapter 13 Section 13.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

13.2 Background

A barrier can be viewed as a gate at which tasks wait until the gate is opened. This has many
analogies in the real world. Horses and other farm animals may approach a closed gate and
gather in front of it, waiting for someone to open the gate so they may proceed. Similarly, ticket
holders gather at the gates of arenas before concerts or sporting events waiting for the arena
personnel to open the gates so they may enter.

Barriers are useful during application initialization. Each application task can perform its local
initialization before waiting for the application as a whole to be initialized. Once all tasks have
completed their independent initializations, the “application ready” barrier can be released.

13.2.1 Automatic Versus Manual Barriers

Just as with a real-world gate, barriers may be configured to be manually opened or automat-
ically opened. All tasks calling the rtems_barrier_wait directive will block until a controlling
task invokes the rtems_barrier_release directive.

Automatic barriers are created with a limit to the number of tasks which may simultaneously
block at the barrier. Once this limit is reached, all of the tasks are released. For example, if the
automatic limit is ten tasks, then the first nine tasks calling the rtems_barrier_wait directive
will block. When the tenth task calls the rtems_barrier_wait directive, the nine blocked tasks
will be released and the tenth task returns to the caller without blocking.

13.2.2 Building a Barrier Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The
following table lists the set of valid barrier attributes:

RTEMS_BARRIER_AUTOMATIC_RELEASE
automatically release the barrier when the configured number of tasks are blocked

RTEMS_BARRIER_MANUAL_RELEASE
only release the barrier when the application invokes the rtems_barrier_release directive.
(default)

ò Note

Barriers only support FIFO blocking order because all waiting tasks are released as a set.
Thus the released tasks will all become ready to execute at the same time and compete for
the processor based upon their priority.

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An attribute listed as a default is not required to appear in the attribute list, although
it is a good programming practice to specify default attributes. If all defaults are desired, the
attribute RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a barrier with the
automatic release policy. The attribute_set parameter passed to the rtems_barrier_create
directive will be RTEMS_BARRIER_AUTOMATIC_RELEASE. In this case, the user must also specify the
maximum_waiters parameter.

13.2. Background 357

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 13 Section 13.3

13.3 Directives

This section details the directives of the Barrier Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

358 Chapter 13. Barrier Manager

Chapter 13 Section 13.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

13.3.1 rtems_barrier_create()

Creates a barrier.

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_create(
2 rtems_name name,
3 rtems_attribute attribute_set,
4 uint32_t maximum_waiters,
5 rtems_id *id
6);

PARAMETERS:

name
This parameter is the object name of the barrier.

attribute_set
This parameter is the attribute set of the barrier.

maximum_waiters
This parameter is the maximum count of waiters on an automatic release barrier.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created barrier will be stored in this object.

DESCRIPTION:

This directive creates a barrier which resides on the local node. The barrier has the user-defined
object name specified in name and the initial count specified in attribute_set. The assigned
object identifier is returned in id. This identifier is used to access the barrier with other barrier
related directives.

The attribute set specified in attribute_set is built through a bitwise or of the attribute con-
stants described below. Not all combinations of attributes are allowed. Some attributes are
mutually exclusive. If mutually exclusive attributes are combined, the behaviour is undefined.
Attributes not mentioned below are not evaluated by this directive and have no effect. Default
attributes can be selected by using the RTEMS_DEFAULT_ATTRIBUTES constant.

The barrier class is selected by the mutually exclusive RTEMS_BARRIER_MANUAL_RELEASE and
RTEMS_BARRIER_AUTOMATIC_RELEASE attributes.

• The manual release class is the default and can be emphasized through use of the
RTEMS_BARRIER_MANUAL_RELEASE attribute. For this class, there is no limit on the number
of tasks that will block at the barrier. Only when the rtems_barrier_release() (page 364)
directive is invoked, are the tasks waiting at the barrier unblocked.

• The automatic release class is selected by the RTEMS_BARRIER_AUTOMATIC_RELEASE at-
tribute. For this class, tasks calling the rtems_barrier_wait() (page 363) directive will
block until there are maximum_waiters minus one tasks waiting at the barrier. When the
maximum_waiters task invokes the rtems_barrier_wait() (page 363) directive, the previous
maximum_waiters - 1 tasks are automatically released and the caller returns.

13.3. Directives 359

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 13 Section 13.3

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NUMBER
The maximum_waiters parameter was 0 for an automatic release barrier.

RTEMS_TOO_MANY
There was no inactive object available to create a barrier. The number of barriers available
to the application is configured through the CONFIGURE_MAXIMUM_BARRIERS (page 614)
application configuration option.

NOTES:

For control and maintenance of the barrier, RTEMS allocates a BCB from the local BCB free pool
and initializes it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The number of barriers available to the application is configured through the CONFIG-
URE_MAXIMUM_BARRIERS (page 614) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

360 Chapter 13. Barrier Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 13 Section 13.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

13.3.2 rtems_barrier_ident()

Identifies a barrier by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_ident(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name to look up.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a barrier identifier associated with the barrier name specified in name.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the local node.

NOTES:

If the barrier name is not unique, then the barrier identifier will match the first barrier with that
name in the search order. However, this barrier identifier is not guaranteed to correspond to
the desired barrier.

The objects are searched from lowest to the highest index. Only the local node is searched.

The barrier identifier is used with other barrier related directives to access the barrier.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

13.3. Directives 361

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 13 Section 13.3

13.3.3 rtems_barrier_delete()

Deletes the barrier.

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_delete(rtems_id id);

PARAMETERS:

id
This parameter is the barrier identifier.

DESCRIPTION:

This directive deletes the barrier specified by id. All tasks blocked waiting for the barrier to be
released will be readied and returned a status code which indicates that the barrier was deleted.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no barrier associated with the identifier specified by id.

NOTES:

The BCB for the deleted barrier is reclaimed by RTEMS.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

362 Chapter 13. Barrier Manager

Chapter 13 Section 13.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

13.3.4 rtems_barrier_wait()

Waits at the barrier.

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_wait(rtems_id id, rtems_interval timeout);

PARAMETERS:

id
This parameter is the barrier identifier.

timeout
This parameter is the timeout in clock ticks. Use RTEMS_NO_TIMEOUT to wait potentially forever.

DESCRIPTION:

This directive waits at the barrier specified by id. The timeout parameter defines how long the
calling task is willing to wait. Use RTEMS_NO_TIMEOUT to wait potentially forever, otherwise set a
timeout interval in clock ticks.

Conceptually, the calling task should always be thought of as blocking when it makes this call
and being unblocked when the barrier is released. If the barrier is configured for manual release,
this rule of thumb will always be valid. If the barrier is configured for automatic release, all
callers will block except for the one which trips the automatic release condition.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no barrier associated with the identifier specified by id.

RTEMS_TIMEOUT
The timeout happened while the calling task was waiting at the barrier.

RTEMS_OBJECT_WAS_DELETED
The barrier was deleted while the calling task was waiting at the barrier.

NOTES:

For automatic release barriers, the maximum count of waiting tasks is defined during barrier
creation, see rtems_barrier_create() (page 359).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The timeout functionality of the directive requires a clock tick.

13.3. Directives 363

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 13 Section 13.3

13.3.5 rtems_barrier_release()

Releases the barrier.

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_release(rtems_id id, uint32_t *released);

PARAMETERS:

id
This parameter is the barrier identifier.

released
This parameter is the pointer to an uint32_t object. When the directive call is successful, the
number of released tasks will be stored in this object.

DESCRIPTION:

This directive releases the barrier specified by id. All tasks waiting at the barrier will be un-
blocked. The number of released tasks will be returned in released.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The released parameter was NULL.

RTEMS_INVALID_ID
There was no barrier associated with the identifier specified by id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

364 Chapter 13. Barrier Manager

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL

CHAPTER

FOURTEEN

MESSAGE MANAGER

365

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.1

14.1 Introduction

The Message Manager provides communication and synchronization capabilities using RTEMS
message queues. The directives provided by the Message Manager are:

• rtems_message_queue_create() (page 372) - Creates a message queue.

• rtems_message_queue_construct() (page 375) - Constructs a message queue from the spec-
ified the message queue configuration.

• rtems_message_queue_ident() (page 377) - Identifies a message queue by the object name.

• rtems_message_queue_delete() (page 379) - Deletes the message queue.

• rtems_message_queue_send() (page 381) - Puts the message at the rear of the queue.

• rtems_message_queue_urgent() (page 383) - Puts the message at the front of the queue.

• rtems_message_queue_broadcast() (page 385) - Broadcasts the messages to the tasks wait-
ing at the queue.

• rtems_message_queue_receive() (page 387) - Receives a message from the queue.

• rtems_message_queue_get_number_pending() (page 389) - Gets the number of messages
pending on the queue.

• rtems_message_queue_flush() (page 390) - Flushes all messages on the queue.

• RTEMS_MESSAGE_QUEUE_BUFFER() (page 391) - Defines a structure which can be used
as a message queue buffer for messages of the specified maximum size.

366 Chapter 14. Message Manager

Chapter 14 Section 14.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.2 Background

14.2.1 Messages

A message is a variable length buffer where information can be stored to support communica-
tion. The length of the message and the information stored in that message are user-defined
and can be actual data, pointer(s), or empty.

14.2.2 Message Queues

A message queue permits the passing of messages among tasks and ISRs. Message queues
can contain a variable number of messages. Normally messages are sent to and received
from the queue in FIFO order using the rtems_message_queue_send directive. However, the
rtems_message_queue_urgent directive can be used to place messages at the head of a queue in
LIFO order.

Synchronization can be accomplished when a task can wait for a message to arrive at a queue.
Also, a task may poll a queue for the arrival of a message.

The maximum length message which can be sent is set on a per message queue basis. The
message content must be copied in general to/from an internal buffer of the message queue or
directly to a peer in certain cases. This copy operation is performed with interrupts disabled.
So it is advisable to keep the messages as short as possible.

14.2.3 Building a Message Queue Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set
of valid message queue attributes is provided in the following table:

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority
RTEMS_LOCAL local message queue (default)
RTEMS_GLOBAL global message queue

An attribute listed as a default is not required to appear in the attribute list, although it is a
good programming practice to specify default attributes. If all defaults are desired, the attribute
RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a local message
queue with the task priority waiting queue discipline. The attribute_set parameter to
the rtems_message_queue_create directive could be either RTEMS_PRIORITY or RTEMS_LOCAL
| RTEMS_PRIORITY. The attribute_set parameter can be set to RTEMS_PRIORITY because
RTEMS_LOCAL is the default for all created message queues. If a similar message queue were to
be known globally, then the attribute_set parameter would be RTEMS_GLOBAL | RTEMS_PRIORITY.

14.2.4 Building a MESSAGE_QUEUE_RECEIVE Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_message_queue_receive directive are listed in the following table:

RTEMS_WAIT task will wait for a message (default)
RTEMS_NO_WAIT task should not wait

14.2. Background 367

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.2

An option listed as a default is not required to appear in the option OR list, although it is a
good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for a message to arrive. The op-
tion parameter passed to the rtems_message_queue_receive directive should be RTEMS_NO_WAIT.

368 Chapter 14. Message Manager

Chapter 14 Section 14.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.3 Operations

14.3.1 Creating a Message Queue

The rtems_message_queue_create directive creates a message queue with the user-defined
name. The user specifies the maximum message size and maximum number of messages which
can be placed in the message queue at one time. The user may select FIFO or task priority as
the method for placing waiting tasks in the task wait queue. RTEMS allocates a Queue Control
Block (QCB) from the QCB free list to maintain the newly created queue as well as memory for
the message buffer pool associated with this message queue. RTEMS also generates a message
queue ID which is returned to the calling task.

For GLOBAL message queues, the maximum message size is effectively limited to the longest
message which the MPCI is capable of transmitting.

14.3.2 Obtaining Message Queue IDs

When a message queue is created, RTEMS generates a unique message queue ID. The message
queue ID may be obtained by either of two methods. First, as the result of an invocation of
the rtems_message_queue_create directive, the queue ID is stored in a user provided location.
Second, the queue ID may be obtained later using the rtems_message_queue_ident directive.
The queue ID is used by other message manager directives to access this message queue.

14.3.3 Receiving a Message

The rtems_message_queue_receive directive attempts to retrieve a message from the specified
message queue. If at least one message is in the queue, then the message is removed from the
queue, copied to the caller’s message buffer, and returned immediately along with the length of
the message. When messages are unavailable, one of the following situations applies:

• By default, the calling task will wait forever for the message to arrive.

• Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

• Specifying a timeout limits the period the task will wait before returning with an error
status.

If the task waits for a message, then it is placed in the message queue’s task wait queue in either
FIFO or task priority order. All tasks waiting on a message queue are returned an error code
when the message queue is deleted.

14.3.4 Sending a Message

Messages can be sent to a queue with the rtems_message_queue_send and
rtems_message_queue_urgent directives. These directives work identically when tasks
are waiting to receive a message. A task is removed from the task waiting queue, unblocked,
and the message is copied to a waiting task’s message buffer.

When no tasks are waiting at the queue, rtems_message_queue_send places the message at the
rear of the message queue, while rtems_message_queue_urgent places the message at the front
of the queue. The message is copied to a message buffer from this message queue’s buffer pool
and then placed in the message queue. Neither directive can successfully send a message to a
message queue which has a full queue of pending messages.

14.3. Operations 369

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.3

14.3.5 Broadcasting a Message

The rtems_message_queue_broadcast directive sends the same message to every task waiting
on the specified message queue as an atomic operation. The message is copied to each waiting
task’s message buffer and each task is unblocked. The number of tasks which were unblocked
is returned to the caller.

14.3.6 Deleting a Message Queue

The rtems_message_queue_delete directive removes a message queue from the system and
frees its control block as well as the memory associated with this message queue’s message
buffer pool. A message queue can be deleted by any local task that knows the message queue’s
ID. As a result of this directive, all tasks blocked waiting to receive a message from the message
queue will be readied and returned a status code which indicates that the message queue was
deleted. Any subsequent references to the message queue’s name and ID are invalid. Any
messages waiting at the message queue are also deleted and deallocated.

370 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4 Directives

This section details the directives of the Message Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

14.4. Directives 371

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

14.4.1 rtems_message_queue_create()

Creates a message queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_create(
2 rtems_name name,
3 uint32_t count,
4 size_t max_message_size,
5 rtems_attribute attribute_set,
6 rtems_id *id
7);

PARAMETERS:

name
This parameter is the object name of the message queue.

count
This parameter is the maximum count of pending messages supported by the message queue.

max_message_size
This parameter is the maximum size in bytes of a message supported by the message queue.

attribute_set
This parameter is the attribute set of the message queue.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created message queue will be stored in this object.

DESCRIPTION:

This directive creates a message queue which resides on the local node. The message queue has
the user-defined object name specified in name. Memory is allocated from the RTEMS Workspace
for the count of messages specified in count, each of max_message_size bytes in length. The
assigned object identifier is returned in id. This identifier is used to access the message queue
with other message queue related directives.

The attribute set specified in attribute_set is built through a bitwise or of the attribute con-
stants described below. Not all combinations of attributes are allowed. Some attributes are
mutually exclusive. If mutually exclusive attributes are combined, the behaviour is undefined.
Attributes not mentioned below are not evaluated by this directive and have no effect. Default
attributes can be selected by using the RTEMS_DEFAULT_ATTRIBUTES constant. The attribute set
defines

• the scope of the message queue: RTEMS_LOCAL (default) or RTEMS_GLOBAL and

• the task wait queue discipline used by the message queue: RTEMS_FIFO (default) or
RTEMS_PRIORITY.

The message queue has a local or global scope in a multiprocessing network (this attribute does
not refer to SMP systems). The scope is selected by the mutually exclusive RTEMS_LOCAL and
RTEMS_GLOBAL attributes.

372 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• A local scope is the default and can be emphasized through the use of the RTEMS_LOCAL
attribute. A local message queue can be only used by the node which created it.

• A global scope is established if the RTEMS_GLOBAL attribute is set. Setting the global
attribute in a single node system has no effect.

The task wait queue discipline is selected by the mutually exclusive RTEMS_FIFO and
RTEMS_PRIORITY attributes. The discipline defines the order in which tasks wait for a message
to receive on a currently empty message queue.

• The FIFO discipline is the default and can be emphasized through use of the RTEMS_FIFO
attribute.

• The priority discipline is selected by the RTEMS_PRIORITY attribute.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NUMBER
The count parameter was invalid.

RTEMS_INVALID_SIZE
The max_message_size parameter was invalid.

RTEMS_TOO_MANY
There was no inactive object available to create a message queue. The number
of message queue available to the application is configured through the CONFIG-
URE_MAXIMUM_MESSAGE_QUEUES (page 615) application configuration option.

RTEMS_TOO_MANY
In multiprocessing configurations, there was no inactive global object available to create a
global message queue. The number of global objects available to the application is configured
through the CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configu-
ration option.

RTEMS_INVALID_NUMBER
The product of count and max_message_size is greater than the maximum storage size.

RTEMS_UNSATISFIED
There was not enough memory available in the RTEMS Workspace to allocate the message
buffers for the message queue.

NOTES:

For message queues with a global scope, the maximum message size is effectively limited to the
longest message which the MPCI is capable of transmitting.

For control and maintenance of the message queue, RTEMS allocates a QCB from the local QCB
free pool and initializes it.

14.4. Directives 373

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

The QCB for a global message queue is allocated on the local node. Message queues should not
be made global unless remote tasks must interact with the message queue. This is to avoid the
system overhead incurred by the creation of a global message queue. When a global message
queue is created, the message queue’s name and identifier must be transmitted to every node
in the system for insertion in the local copy of the global object table.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The number of message queues available to the application is configured through the
CONFIGURE_MAXIMUM_MESSAGE_QUEUES (page 615) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

• The number of global objects available to the application is configured through the CON-
FIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configuration option.

374 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.2 rtems_message_queue_construct()

Constructs a message queue from the specified the message queue configuration.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_construct(
2 const rtems_message_queue_config *config,
3 rtems_id *id
4);

PARAMETERS:

config
This parameter is the pointer to an rtems_message_queue_config (page 47) object. It configures
the message queue.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the constructed message queue will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The config parameter was NULL.

RTEMS_INVALID_NAME
The message queue name in the configuration was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NUMBER
The maximum number of pending messages in the configuration was zero.

RTEMS_INVALID_SIZE
The maximum message size in the configuration was zero.

RTEMS_TOO_MANY
There was no inactive message queue object available to construct a message queue.

RTEMS_TOO_MANY
In multiprocessing configurations, there was no inactive global object available to construct a
global message queue.

RTEMS_INVALID_SIZE
The maximum message size in the configuration was too big and resulted in integer overflows
in calculations carried out to determine the size of the message buffer area.

RTEMS_INVALID_NUMBER
The maximum number of pending messages in the configuration was too big and resulted in
integer overflows in calculations carried out to determine the size of the message buffer area.

RTEMS_UNSATISFIED
The message queue storage area begin pointer in the configuration was NULL.

14.4. Directives 375

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

RTEMS_UNSATISFIED
The message queue storage area size in the configuration was not equal to the size calculated
from the maximum number of pending messages and the maximum message size.

NOTES:

In contrast to message queues created by rtems_message_queue_create() (page 372), the mes-
sage queues constructed by this directive use a user-provided message buffer storage area.

This directive is intended for applications which do not want to use the RTEMS Workspace
and instead statically allocate all operating system resources. An application based solely on
static allocation can avoid any runtime memory allocators. This can simplify the application
architecture as well as any analysis that may be required.

The value for CONFIGURE_MESSAGE_BUFFER_MEMORY (page 581) should not include mem-
ory for message queues constructed by rtems_message_queue_construct() (page 375).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The number of message queues available to the application is configured through the
CONFIGURE_MAXIMUM_MESSAGE_QUEUES (page 615) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

• The number of global objects available to the application is configured through the CON-
FIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configuration option.

376 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.3 rtems_message_queue_ident()

Identifies a message queue by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

PARAMETERS:

name
This parameter is the object name to look up.

node
This parameter is the node or node set to search for a matching object.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a message queue identifier associated with the message queue name
specified in name.

The node to search is specified in node. It shall be

• a valid node number,

• the constant RTEMS_SEARCH_ALL_NODES to search in all nodes,

• the constant RTEMS_SEARCH_LOCAL_NODE to search in the local node only, or

• the constant RTEMS_SEARCH_OTHER_NODES to search in all nodes except the local node.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the specified nodes.

RTEMS_INVALID_NODE
In multiprocessing configurations, the specified node was invalid.

14.4. Directives 377

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

NOTES:

If the message queue name is not unique, then the message queue identifier will match the first
message queue with that name in the search order. However, this message queue identifier is
not guaranteed to correspond to the desired message queue.

The objects are searched from lowest to the highest index. If node is RTEMS_SEARCH_ALL_NODES,
all nodes are searched with the local node being searched first. All other nodes are searched
from lowest to the highest node number.

If node is a valid node number which does not represent the local node, then only the message
queues exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the
global object table.

The message queue identifier is used with other message related directives to access the message
queue.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

378 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.4 rtems_message_queue_delete()

Deletes the message queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_delete(rtems_id id);

PARAMETERS:

id
This parameter is the message queue identifier.

DESCRIPTION:

This directive deletes the message queue specified by id. As a result of this directive, all tasks
blocked waiting to receive a message from this queue will be readied and returned a status code
which indicates that the message queue was deleted.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no message queue associated with the identifier specified by id.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The message queue resided on a remote node.

NOTES:

When the message queue is deleted, any messages in the queue are returned to the free message
buffer pool. Any information stored in those messages is lost. The message buffers allocated for
the message queue are reclaimed.

The QCB for the deleted message queue is reclaimed by RTEMS.

When a global message queue is deleted, the message queue identifier must be transmitted to
every node in the system for deletion from the local copy of the global object table.

The message queue must reside on the local node, even if the message queue was created with
the RTEMS_GLOBAL attribute.

Proxies, used to represent remote tasks, are reclaimed when the message queue is deleted.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

14.4. Directives 379

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

380 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.5 rtems_message_queue_send()

Puts the message at the rear of the queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_send(
2 rtems_id id,
3 const void *buffer,
4 size_t size
5);

PARAMETERS:

id
This parameter is the queue identifier.

buffer
This parameter is the begin address of the message buffer to send.

size
This parameter is the size in bytes of the message buffer to send.

DESCRIPTION:

This directive sends the message buffer of size bytes in length to the queue specified by id. If
a task is waiting at the queue, then the message is copied to the waiting task’s buffer and the
task is unblocked. If no tasks are waiting at the queue, then the message is copied to a message
buffer which is obtained from this message queue’s message buffer pool. The message buffer is
then placed at the rear of the queue.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no queue associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The buffer parameter was NULL.

RTEMS_INVALID_SIZE
The size of the message exceeded the maximum message size of the queue as defined by
rtems_message_queue_create() (page 372) or rtems_message_queue_construct() (page 375).

RTEMS_TOO_MANY
The maximum number of pending messages supported by the queue as defined by
rtems_message_queue_create() (page 372) or rtems_message_queue_construct() (page 375)
has been reached.

14.4. Directives 381

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be called from within interrupt context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

382 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.6 rtems_message_queue_urgent()

Puts the message at the front of the queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_urgent(
2 rtems_id id,
3 const void *buffer,
4 size_t size
5);

PARAMETERS:

id
This parameter is the queue identifier.

buffer
This parameter is the begin address of the message buffer to send urgently.

size
This parameter is the size in bytes of the message buffer to send urgently.

DESCRIPTION:

This directive sends the message buffer of size bytes in length to the queue specified by id. If
a task is waiting at the queue, then the message is copied to the waiting task’s buffer and the
task is unblocked. If no tasks are waiting at the queue, then the message is copied to a message
buffer which is obtained from this message queue’s message buffer pool. The message buffer is
then placed at the front of the queue.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no queue associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The buffer parameter was NULL.

RTEMS_INVALID_SIZE
The size of the message exceeded the maximum message size of the queue as defined by
rtems_message_queue_create() (page 372) or rtems_message_queue_construct() (page 375).

RTEMS_TOO_MANY
The maximum number of pending messages supported by the queue as defined by
rtems_message_queue_create() (page 372) or rtems_message_queue_construct() (page 375)
has been reached.

14.4. Directives 383

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be called from within interrupt context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

384 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.7 rtems_message_queue_broadcast()

Broadcasts the messages to the tasks waiting at the queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_broadcast(
2 rtems_id id,
3 const void *buffer,
4 size_t size,
5 uint32_t *count
6);

PARAMETERS:

id
This parameter is the queue identifier.

buffer
This parameter is the begin address of the message buffer to broadcast.

size
This parameter is the size in bytes of the message buffer to broadcast.

count
This parameter is the pointer to an uint32_t object. When the directive call is successful, the
number of unblocked tasks will be stored in this object.

DESCRIPTION:

This directive causes all tasks that are waiting at the queue specified by id to be unblocked and
sent the message contained in buffer. Before a task is unblocked, the message buffer of size
bytes in length is copied to that task’s message buffer. The number of tasks that were unblocked
is returned in count.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no queue associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The buffer parameter was NULL.

RTEMS_INVALID_ADDRESS
The count parameter was NULL.

RTEMS_INVALID_SIZE
The size of the message exceeded the maximum message size of the queue as defined by
rtems_message_queue_create() (page 372) or rtems_message_queue_construct() (page 375).

14.4. Directives 385

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

NOTES:

The execution time of this directive is directly related to the number of tasks waiting on the
message queue, although it is more efficient than the equivalent number of invocations of
rtems_message_queue_send() (page 381).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be called from within interrupt context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

386 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.8 rtems_message_queue_receive()

Receives a message from the queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_receive(
2 rtems_id id,
3 void *buffer,
4 size_t *size,
5 rtems_option option_set,
6 rtems_interval timeout
7);

PARAMETERS:

id
This parameter is the queue identifier.

buffer
This parameter is the begin address of the buffer to receive the message. The buffer shall
be large enough to receive a message of the maximum length of the queue as defined by
rtems_message_queue_create() (page 372) or rtems_message_queue_construct() (page 375).
The size parameter cannot be used to specify the size of the buffer.

size
This parameter is the pointer to a size_t object. When the directive call is successful, the size
in bytes of the received messages will be stored in this object. This parameter cannot be used
to specify the size of the buffer.

option_set
This parameter is the option set.

timeout
This parameter is the timeout in clock ticks if the RTEMS_WAIT option is set. Use
RTEMS_NO_TIMEOUT to wait potentially forever.

DESCRIPTION:

This directive receives a message from the queue specified by id.

The option set specified in option_set is built through a bitwise or of the option constants
described below. Not all combinations of options are allowed. Some options are mutually
exclusive. If mutually exclusive options are combined, the behaviour is undefined. Options not
mentioned below are not evaluated by this directive and have no effect. Default options can be
selected by using the RTEMS_DEFAULT_OPTIONS constant.

The calling task can wait or try to receive a message from the queue according to the mutually
exclusive RTEMS_WAIT and RTEMS_NO_WAIT options.

• Waiting to receive a message from the queue is the default and can be emphasized
through the use of the RTEMS_WAIT option. The timeout parameter defines how long the
calling task is willing to wait. Use RTEMS_NO_TIMEOUT to wait potentially forever, otherwise
set a timeout interval in clock ticks.

14.4. Directives 387

https://en.cppreference.com/w/c/types/size_t

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

• Trying to receive a message from the queue is selected by the RTEMS_NO_WAIT option. If
this option is defined, then the timeout parameter is ignored. When a message from the
queue cannot be immediately received, then the RTEMS_UNSATISFIED status is returned.

With either RTEMS_WAIT or RTEMS_NO_WAIT if there is at least one message in the queue, then
it is copied to the buffer, the size is set to return the length of the message in bytes, and this
directive returns immediately with the RTEMS_SUCCESSFUL status code. The buffer has to be big
enough to receive a message of the maximum length with respect to this message queue.

If the calling task chooses to return immediately and the queue is empty, then the directive
returns immediately with the RTEMS_UNSATISFIED status code. If the calling task chooses to wait
at the message queue and the queue is empty, then the calling task is placed on the message
wait queue and blocked. If the queue was created with the RTEMS_PRIORITY option specified,
then the calling task is inserted into the wait queue according to its priority. But, if the queue
was created with the RTEMS_FIFO option specified, then the calling task is placed at the rear of
the wait queue.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no queue associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The buffer parameter was NULL.

RTEMS_INVALID_ADDRESS
The size parameter was NULL.

RTEMS_UNSATISFIED
The queue was empty.

RTEMS_TIMEOUT
The timeout happened while the calling task was waiting to receive a message

RTEMS_OBJECT_WAS_DELETED
The queue was deleted while the calling task was waiting to receive a message.

CONSTRAINTS:

The following constraints apply to this directive:

• When a local queue is accessed and the RTEMS_NO_WAIT option is set, the directive may be
called from within interrupt context.

• The directive may be called from within task context.

• When the request cannot be immediately satisfied and the RTEMS_WAIT option is set, the
calling task blocks at some point during the directive call.

• The timeout functionality of the directive requires a clock tick.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

388 Chapter 14. Message Manager

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.9 rtems_message_queue_get_number_pending()

Gets the number of messages pending on the queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_get_number_pending(
2 rtems_id id,
3 uint32_t *count
4);

PARAMETERS:

id
This parameter is the queue identifier.

count
This parameter is the pointer to an uint32_t object. When the directive call is successful, the
number of pending messages will be stored in this object.

DESCRIPTION:

This directive returns the number of messages pending on the queue specified by id in count.
If no messages are present on the queue, count is set to zero.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no queue associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The count parameter was NULL.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may be called from within interrupt context.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

14.4. Directives 389

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

14.4.10 rtems_message_queue_flush()

Flushes all messages on the queue.

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_flush(rtems_id id, uint32_t *count);

PARAMETERS:

id
This parameter is the queue identifier.

count
This parameter is the pointer to an uint32_t object. When the directive call is successful, the
number of pending messages removed from the queue will be stored in this object.

DESCRIPTION:

This directive removes all pending messages from the queue specified by id. The number of
messages removed is returned in count. If no messages are present on the queue, count is set
to zero.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no queue associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The count parameter was NULL.

NOTES:

The directive does not flush tasks waiting to receive a message from the wait queue of the
message queue.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

390 Chapter 14. Message Manager

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

14.4.11 RTEMS_MESSAGE_QUEUE_BUFFER()

Defines a structure which can be used as a message queue buffer for messages of the specified
maximum size.

CALLING SEQUENCE:

1 RTEMS_MESSAGE_QUEUE_BUFFER(size_t maximum_message_size);

PARAMETERS:

maximum_message_size
This parameter is the maximum message size in bytes.

NOTES:

Use this macro to define the message buffer storage area for rtems_message_queue_construct()
(page 375).

14.4. Directives 391

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 14 Section 14.4

392 Chapter 14. Message Manager

CHAPTER

FIFTEEN

EVENT MANAGER

393

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 15 Section 15.1

15.1 Introduction

The Event Manager provides a high performance method of inter-task communication and syn-
chronization. The directives provided by the Event Manager are:

• rtems_event_send() (page 399) - Sends the event set to the task.

• rtems_event_receive() (page 401) - Receives or gets an event set from the calling task.

394 Chapter 15. Event Manager

Chapter 15 Section 15.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

15.2 Background

15.2.1 Event Sets

An event flag is used by a task (or ISR) to inform another task of the occurrence of a significant
situation. Thirty-two event flags are associated with each task. A collection of one or more
event flags is referred to as an event set. The data type rtems_event_set is used to manage
event sets.

The application developer should remember the following key characteristics of event opera-
tions when utilizing the event manager:

• Events provide a simple synchronization facility.

• Events are aimed at tasks.

• Tasks can wait on more than one event simultaneously.

• Events are independent of one another.

• Events do not hold or transport data.

• Events are not queued. In other words, if an event is sent more than once to a task before
being received, the second and subsequent send operations to that same task have no
effect.

An event set is posted when it is directed (or sent) to a task. A pending event is an event that
has been posted but not received. An event condition is used to specify the event set which the
task desires to receive and the algorithm which will be used to determine when the request is
satisfied. An event condition is satisfied based upon one of two algorithms which are selected
by the user. The RTEMS_EVENT_ANY algorithm states that an event condition is satisfied when at
least a single requested event is posted. The RTEMS_EVENT_ALL algorithm states that an event
condition is satisfied when every requested event is posted.

15.2.2 Building an Event Set or Condition

An event set or condition is built by a bitwise OR of the desired events. The set of valid events
is RTEMS_EVENT_0 through RTEMS_EVENT_31. If an event is not explicitly specified in the set or
condition, then it is not present. Events are specifically designed to be mutually exclusive,
therefore bitwise OR and addition operations are equivalent as long as each event appears
exactly once in the event set list.

For example, when sending the event set consisting of RTEMS_EVENT_6, RTEMS_EVENT_15,
and RTEMS_EVENT_31, the event parameter to the rtems_event_send directive should be
RTEMS_EVENT_6 | RTEMS_EVENT_15 | RTEMS_EVENT_31.

15.2.3 Building an EVENT_RECEIVE Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_event_receive directive are listed in the following table:

RTEMS_WAIT task will wait for event (default)
RTEMS_NO_WAIT task should not wait
RTEMS_EVENT_ALL return after all events (default)
RTEMS_EVENT_ANY return after any events

15.2. Background 395

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 15 Section 15.2

Option values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each option appears exactly once in the component
list. An option listed as a default is not required to appear in the option list, although it is a
good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for all events in a particular
event condition to arrive. The option parameter passed to the rtems_event_receive direc-
tive should be either RTEMS_EVENT_ALL | RTEMS_NO_WAIT or RTEMS_NO_WAIT. The option pa-
rameter can be set to RTEMS_NO_WAIT because RTEMS_EVENT_ALL is the default condition for
rtems_event_receive.

396 Chapter 15. Event Manager

Chapter 15 Section 15.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

15.3 Operations

15.3.1 Sending an Event Set

The rtems_event_send directive allows a task (or an ISR) to direct an event set to a target task.
Based upon the state of the target task, one of the following situations applies:

• Target Task is Blocked Waiting for Events

– If the waiting task’s input event condition is satisfied, then the task is made ready for
execution.

– If the waiting task’s input event condition is not satisfied, then the event set is posted
but left pending and the task remains blocked.

• Target Task is Not Waiting for Events

– The event set is posted and left pending.

15.3.2 Receiving an Event Set

The rtems_event_receive directive is used by tasks to accept a specific input event condition.
The task also specifies whether the request is satisfied when all requested events are available or
any single requested event is available. If the requested event condition is satisfied by pending
events, then a successful return code and the satisfying event set are returned immediately. If
the condition is not satisfied, then one of the following situations applies:

• By default, the calling task will wait forever for the event condition to be satisfied.

• Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

• Specifying a timeout limits the period the task will wait before returning with an error
status code.

15.3.3 Determining the Pending Event Set

A task can determine the pending event set by calling the rtems_event_receive directive with a
value of RTEMS_PENDING_EVENTS for the input event condition. The pending events are returned
to the calling task but the event set is left unaltered.

15.3.4 Receiving all Pending Events

A task can receive all of the currently pending events by calling the rtems_event_receive di-
rective with a value of RTEMS_ALL_EVENTS for the input event condition and RTEMS_NO_WAIT |
RTEMS_EVENT_ANY for the option set. The pending events are returned to the calling task and the
event set is cleared. If no events are pending then the RTEMS_UNSATISFIED status code will be
returned.

15.3. Operations 397

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 15 Section 15.4

15.4 Directives

This section details the directives of the Event Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

398 Chapter 15. Event Manager

Chapter 15 Section 15.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

15.4.1 rtems_event_send()

Sends the event set to the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_event_send(rtems_id id, rtems_event_set event_in);

PARAMETERS:

id
This parameter is the identifier of the target task to receive the event set.

event_in
This parameter is the event set to send.

DESCRIPTION:

This directive sends the event set, event_in, to the target task identified by id. Based upon the
state of the target task, one of the following situations applies:

• The target task is blocked waiting for events, then

– if the waiting task’s input event condition is satisfied, then the task is made ready for
execution, or

– otherwise, the event set is posted but left pending and the task remains blocked.

• The target task is not waiting for events, then the event set is posted and left pending.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

NOTES:

Events can be sent by tasks or an ISR.

Specifying RTEMS_SELF for id results in the event set being sent to the calling task.

The event set to send shall be built by a bitwise or of the desired events. The set of valid events
is RTEMS_EVENT_0 through RTEMS_EVENT_31. If an event is not explicitly specified in the set, then
it is not present.

Identical events sent to a task are not queued. In other words, the second, and subsequent,
posting of an event to a task before it can perform an rtems_event_receive() (page 401) has no
effect.

The calling task will be preempted if it has preemption enabled and a higher priority task is
unblocked as the result of this directive.

Sending an event set to a global task which does not reside on the local node will generate a
request telling the remote node to send the event set to the appropriate task.

15.4. Directives 399

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 15 Section 15.4

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

400 Chapter 15. Event Manager

Chapter 15 Section 15.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

15.4.2 rtems_event_receive()

Receives or gets an event set from the calling task.

CALLING SEQUENCE:

1 rtems_status_code rtems_event_receive(
2 rtems_event_set event_in,
3 rtems_option option_set,
4 rtems_interval ticks,
5 rtems_event_set *event_out
6);

PARAMETERS:

event_in
This parameter is the event set of interest. Use RTEMS_PENDING_EVENTS to get the pending
events.

option_set
This parameter is the option set.

ticks
This parameter is the timeout in clock ticks if the RTEMS_WAIT option is set. Use
RTEMS_NO_TIMEOUT to wait potentially forever.

event_out
This parameter is the pointer to an event set. The received or pending events are stored in
the referenced event set if the operation was successful.

DESCRIPTION:

This directive can be used to

• get the pending events of the calling task, or

• receive events.

To get the pending events use the constant RTEMS_PENDING_EVENTS for the event_in parameter.
The pending events are returned to the calling task but the event set of the calling task is left
unaltered. The option_set and ticks parameters are ignored in this case. The directive returns
immediately and does not block.

To receive events you have to define an input event condition and some options.

The option set specified in option_set is built through a bitwise or of the option constants
described below. Not all combinations of options are allowed. Some options are mutually
exclusive. If mutually exclusive options are combined, the behaviour is undefined. Options not
mentioned below are not evaluated by this directive and have no effect. Default options can be
selected by using the RTEMS_DEFAULT_OPTIONS constant. The option set defines

• if the calling task will wait or poll for the events, and

• if the calling task wants to receive all or any of the input events.

The calling task can wait or poll for the events.

15.4. Directives 401

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 15 Section 15.4

• Waiting for events is the default and can be emphasized through the use of the RTEMS_WAIT
option. The ticks parameter defines how long the calling task is willing to wait. Use
RTEMS_NO_TIMEOUT to wait potentially forever, otherwise set a timeout interval in clock
ticks.

• Not waiting for events (polling) is selected by the RTEMS_NO_WAIT option. If this option is
defined, then the ticks parameter is ignored.

The calling task can receive all or any of the input events specified in event_in.

• Receiving all input events is the default and can be emphasized through the use of the
RTEMS_EVENT_ALL option.

• Receiving any of the input events is selected by the RTEMS_EVENT_ANY option.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The event_out parameter was NULL.

RTEMS_UNSATISFIED
The events of interest were not immediately available.

RTEMS_TIMEOUT
The events of interest were not available within the specified timeout interval.

NOTES:

This directive only affects the events specified in event_in. Any pending events that do not
correspond to any of the events specified in event_in will be left pending.

To receive all events use the event set constant RTEMS_ALL_EVENTS for the event_in parameter.
Do not confuse this event set constant with the directive option RTEMS_EVENT_ALL.

A task can receive all of the pending events by calling the directive with a value of
RTEMS_ALL_EVENTS for the event_in parameter and the bitwise or of the RTEMS_NO_WAIT and
RTEMS_EVENT_ANY options for the option_set parameter. The pending events are returned and
the event set of the task is cleared. If no events are pending then the RTEMS_UNSATISFIED status
code will be returned.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The timeout functionality of the directive requires a clock tick.

402 Chapter 15. Event Manager

https://en.cppreference.com/w/c/types/NULL

CHAPTER

SIXTEEN

SIGNAL MANAGER

403

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 16 Section 16.1

16.1 Introduction

The Signal Manager provides the capabilities required for asynchronous communication. The
directives provided by the Signal Manager are:

• rtems_signal_catch() (page 410) - Establishes an asynchronous signal routine (ASR) for
the calling task.

• rtems_signal_send() (page 412) - Sends the signal set to the task.

404 Chapter 16. Signal Manager

Chapter 16 Section 16.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

16.2 Background

16.2.1 Signal Manager Definitions

The signal manager allows a task to optionally define an asynchronous signal routine (ASR). An
ASR is to a task what an ISR is to an application’s set of tasks. When the processor is interrupted,
the execution of an application is also interrupted and an ISR is given control. Similarly, when
a signal is sent to a task, that task’s execution path will be “interrupted” by the ASR. Sending a
signal to a task has no effect on the receiving task’s current execution state.

A signal flag is used by a task (or ISR) to inform another task of the occurrence of a significant
situation. Thirty-two signal flags are associated with each task. A collection of one or more
signals is referred to as a signal set. The data type rtems_signal_set is used to manipulate
signal sets.

A signal set is posted when it is directed (or sent) to a task. A pending signal is a signal that has
been sent to a task with a valid ASR, but has not been processed by that task’s ASR.

16.2.2 A Comparison of ASRs and ISRs

The format of an ASR is similar to that of an ISR with the following exceptions:

• ISRs are scheduled by the processor hardware. ASRs are scheduled by RTEMS.

• ISRs do not execute in the context of a task and may invoke only a subset of directives.
ASRs execute in the context of a task and may execute any directive.

• When an ISR is invoked, it is passed the vector number as its argument. When an ASR is
invoked, it is passed the signal set as its argument.

• An ASR has a task mode which can be different from that of the task. An ISR does not
execute as a task and, as a result, does not have a task mode.

16.2.3 Building a Signal Set

A signal set is built by a bitwise OR of the desired signals. The set of valid signals is
RTEMS_SIGNAL_0 through RTEMS_SIGNAL_31. If a signal is not explicitly specified in the signal
set, then it is not present. Signal values are specifically designed to be mutually exclusive,
therefore bitwise OR and addition operations are equivalent as long as each signal appears
exactly once in the component list.

This example demonstrates the signal parameter used when sending the signal set consist-
ing of RTEMS_SIGNAL_6, RTEMS_SIGNAL_15, and RTEMS_SIGNAL_31. The signal parameter pro-
vided to the rtems_signal_send directive should be RTEMS_SIGNAL_6 | RTEMS_SIGNAL_15 |
RTEMS_SIGNAL_31.

16.2.4 Building an ASR Mode

In general, an ASR’s mode is built by a bitwise OR of the desired mode components. The set
of valid mode components is the same as those allowed with the task_create and task_mode
directives. A complete list of mode options is provided in the following table:

16.2. Background 405

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 16 Section 16.2

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_
LEVEL(0)

is masked by RTEMS_INTERRUPT_MASK and enables all interrupts

RTEMS_INTERRUPT_
LEVEL(n)

is masked by RTEMS_INTERRUPT_MASK and sets interrupts level n

Mode values are specifically designed to be mutually exclusive, therefore bitwise OR and addi-
tion operations are equivalent as long as each mode appears exactly once in the component list.
A mode component listed as a default is not required to appear in the mode list, although it is a
good programming practice to specify default components. If all defaults are desired, the mode
DEFAULT_MODES should be specified on this call.

This example demonstrates the mode parameter used with the rtems_signal_catch to establish
an ASR which executes at interrupt level three and is non-preemptible. The mode should be set
to RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT to indicate the desired processor mode and
interrupt level.

406 Chapter 16. Signal Manager

Chapter 16 Section 16.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

16.3 Operations

16.3.1 Establishing an ASR

The rtems_signal_catch directive establishes an ASR for the calling task. The address of the
ASR and its execution mode are specified to this directive. The ASR’s mode is distinct from
the task’s mode. For example, the task may allow preemption, while that task’s ASR may have
preemption disabled. Until a task calls rtems_signal_catch the first time, its ASR is invalid,
and no signal sets can be sent to the task.

A task may invalidate its ASR and discard all pending signals by calling rtems_signal_catch
with a value of NULL for the ASR’s address. When a task’s ASR is invalid, new signal sets sent
to this task are discarded.

A task may disable ASR processing (RTEMS_NO_ASR) via the task_mode directive. When a task’s
ASR is disabled, the signals sent to it are left pending to be processed later when the ASR is
enabled.

Any directive that can be called from a task can also be called from an ASR. A task is only
allowed one active ASR. Thus, each call to rtems_signal_catch replaces the previous one.

Normally, signal processing is disabled for the ASR’s execution mode, but if signal processing is
enabled for the ASR, the ASR must be reentrant.

16.3.2 Sending a Signal Set

The rtems_signal_send directive allows both tasks and ISRs to send signals to a target task. The
target task and a set of signals are specified to the rtems_signal_send directive. The sending of
a signal to a task has no effect on the execution state of that task. If the task is not the currently
running task, then the signals are left pending and processed by the task’s ASR the next time
the task is dispatched to run. The ASR is executed immediately before the task is dispatched.
If the currently running task sends a signal to itself or is sent a signal from an ISR, its ASR is
immediately dispatched to run provided signal processing is enabled.

If an ASR with signals enabled is preempted by another task or an ISR and a new signal set is
sent, then a new copy of the ASR will be invoked, nesting the preempted ASR. Upon completion
of processing the new signal set, control will return to the preempted ASR. In this situation, the
ASR must be reentrant.

Like events, identical signals sent to a task are not queued. In other words, sending the same
signal multiple times to a task (without any intermediate signal processing occurring for the
task), has the same result as sending that signal to that task once.

16.3.3 Processing an ASR

Asynchronous signals were designed to provide the capability to generate software interrupts.
The processing of software interrupts parallels that of hardware interrupts. As a result, the dif-
ferences between the formats of ASRs and ISRs is limited to the meaning of the single argument
passed to an ASR. The ASR should have the following calling sequence and adhere to C calling
conventions:

1 rtems_asr user_routine(
2 rtems_signal_set signals
3);

16.3. Operations 407

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 16 Section 16.3

When the ASR returns to RTEMS the mode and execution path of the interrupted task (or ASR)
is restored to the context prior to entering the ASR.

408 Chapter 16. Signal Manager

Chapter 16 Section 16.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

16.4 Directives

This section details the directives of the Signal Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

16.4. Directives 409

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 16 Section 16.4

16.4.1 rtems_signal_catch()

Establishes an asynchronous signal routine (ASR) for the calling task.

CALLING SEQUENCE:

1 rtems_status_code rtems_signal_catch(
2 rtems_asr_entry asr_handler,
3 rtems_mode mode_set
4);

PARAMETERS:

asr_handler
This parameter is the handler to process an asynchronous signal set.

mode_set
This parameter is the task mode while an asynchronous signal set is processed by the handler.
See rtems_task_mode() (page 132).

DESCRIPTION:

This directive establishes an asynchronous signal routine (ASR) for the calling task. The
asr_handler parameter specifies the entry point of the ASR. A task may have at most one
handler installed at a time. The most recently installed handler is used. When asr_handler
is NULL, the ASR for the calling task is invalidated and all pending signals are cleared. Any
signals sent to a task with an invalid ASR are discarded. The mode_set parameter specifies the
execution mode for the ASR. This execution mode supersedes the task’s execution mode while
the ASR is executing.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_NOT_IMPLEMENTED
The RTEMS_NO_PREEMPT was set in mode_set and the system configuration had no implemen-
tation for this mode.

RTEMS_NOT_IMPLEMENTED
The RTEMS_INTERRUPT_LEVEL() was set to a positive level in mode_set and the system config-
uration had no implementation for this mode.

NOTES:

It is strongly recommended to disable ASR processing during ASR processing by setting
RTEMS_NO_ASR in mode_set, otherwise a recursion may happen during ASR processing. Un-
controlled recursion may lead to stack overflows.

Using the same mutex (in particular a recursive mutex) in normal task context and during ASR
processing may result in undefined behaviour.

Asynchronous signal handlers can access thread-local storage (TLS). When thread-local storage
is shared between normal task context and ASR processing, it may be protected by disabled
interrupts.

410 Chapter 16. Signal Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 16 Section 16.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

16.4. Directives 411

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 16 Section 16.4

16.4.2 rtems_signal_send()

Sends the signal set to the task.

CALLING SEQUENCE:

1 rtems_status_code rtems_signal_send(
2 rtems_id id,
3 rtems_signal_set signal_set
4);

PARAMETERS:

id
This parameter is the identifier of the target task to receive the signal set.

signal_set
This parameter is the signal set to send.

DESCRIPTION:

This directive sends the signal set, signal_set, to the target task identified by id.

If a caller sends a signal set to a task with an invalid ASR, then an error code is returned to the
caller. If a caller sends a signal set to a task whose ASR is valid but disabled, then the signal set
will be caught and left pending for the ASR to process when it is enabled. If a caller sends a
signal set to a task with an ASR that is both valid and enabled, then the signal set is caught and
the ASR will execute the next time the task is dispatched to run.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The signal_set parameter was 0.

RTEMS_INVALID_ID
There was no task associated with the identifier specified by id.

RTEMS_NOT_DEFINED
The target task had no valid ASR installed.

NOTES:

Sending a signal set to a task has no effect on that task’s state. If a signal set is sent to a blocked
task, then the task will remain blocked and the signals will be processed when the task becomes
the running task.

Sending a signal set to a global task which does not reside on the local node will generate a
request telling the remote node to send the signal set to the specified task.

412 Chapter 16. Signal Manager

Chapter 16 Section 16.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• When the directive operates on a local object, the directive will not cause the calling task
to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

16.4. Directives 413

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 16 Section 16.4

414 Chapter 16. Signal Manager

CHAPTER

SEVENTEEN

PARTITION MANAGER

415

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.1

17.1 Introduction

The Partition Manager provides facilities to dynamically allocate memory in fixed-size units.
The directives provided by the Partition Manager are:

• rtems_partition_create() (page 420) - Creates a partition.

• rtems_partition_ident() (page 423) - Identifies a partition by the object name.

• rtems_partition_delete() (page 425) - Deletes the partition.

• rtems_partition_get_buffer() (page 427) - Tries to get a buffer from the partition.

• rtems_partition_return_buffer() (page 429) - Returns the buffer to the partition.

416 Chapter 17. Partition Manager

Chapter 17 Section 17.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

17.2 Background

17.2.1 Partition Manager Definitions

A partition is a physically contiguous memory area divided into fixed-size buffers that can be
dynamically allocated and deallocated.

Partitions are managed and maintained as a list of buffers. Buffers are obtained from the front
of the partition’s free buffer chain and returned to the rear of the same chain. When a buffer is
on the free buffer chain, RTEMS uses two pointers of memory from each buffer as the free buffer
chain. When a buffer is allocated, the entire buffer is available for application use. Therefore,
modifying memory that is outside of an allocated buffer could destroy the free buffer chain or
the contents of an adjacent allocated buffer.

17.2.2 Building a Partition Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set
of valid partition attributes is provided in the following table:

RTEMS_LOCAL local partition (default)
RTEMS_GLOBAL global partition

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each attribute appears exactly once in the component
list. An attribute listed as a default is not required to appear in the attribute list, although it is a
good programming practice to specify default attributes. If all defaults are desired, the attribute
RTEMS_DEFAULT_ATTRIBUTES should be specified on this call. The attribute_set parameter should
be RTEMS_GLOBAL to indicate that the partition is to be known globally.

17.2. Background 417

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.3

17.3 Operations

17.3.1 Creating a Partition

The rtems_partition_create directive creates a partition with a user-specified name.
The partition’s name, starting address, length and buffer size are all specified to the
rtems_partition_create directive. RTEMS allocates a Partition Control Block (PTCB) from
the PTCB free list. This data structure is used by RTEMS to manage the newly created partition.
The number of buffers in the partition is calculated based upon the specified partition length
and buffer size. If successful,the unique partition ID is returned to the calling task.

17.3.2 Obtaining Partition IDs

When a partition is created, RTEMS generates a unique partition ID and assigned it to the
created partition until it is deleted. The partition ID may be obtained by either of two methods.
First, as the result of an invocation of the rtems_partition_create directive, the partition ID
is stored in a user provided location. Second, the partition ID may be obtained later using the
rtems_partition_ident directive. The partition ID is used by other partition manager directives
to access this partition.

17.3.3 Acquiring a Buffer

A buffer can be obtained by calling the rtems_partition_get_buffer directive. If a buffer is
available, then it is returned immediately with a successful return code. Otherwise, an unsuc-
cessful return code is returned immediately to the caller. Tasks cannot block to wait for a buffer
to become available.

17.3.4 Releasing a Buffer

Buffers are returned to a partition’s free buffer chain with the rtems_partition_return_buffer
directive. This directive returns an error status code if the returned buffer was not previously
allocated from this partition.

17.3.5 Deleting a Partition

The rtems_partition_delete directive allows a partition to be removed and returned to
RTEMS. When a partition is deleted, the PTCB for that partition is returned to the PTCB free
list. A partition with buffers still allocated cannot be deleted. Any task attempting to do so will
be returned an error status code.

418 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

17.4 Directives

This section details the directives of the Partition Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

17.4. Directives 419

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.4

17.4.1 rtems_partition_create()

Creates a partition.

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_create(
2 rtems_name name,
3 void *starting_address,
4 uintptr_t length,
5 size_t buffer_size,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

PARAMETERS:

name
This parameter is the object name of the partition.

starting_address
This parameter is the starting address of the buffer area used by the partition.

length
This parameter is the length in bytes of the buffer area used by the partition.

buffer_size
This parameter is the size in bytes of a buffer managed by the partition.

attribute_set
This parameter is the attribute set of the partition.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created partition will be stored in this object.

DESCRIPTION:

This directive creates a partition of fixed size buffers from a physically contiguous memory space
which starts at starting_address and is length bytes in size. Each allocated buffer is to be of
buffer_size in bytes. The partition has the user-defined object name specified in name. The
assigned object identifier is returned in id. This identifier is used to access the partition with
other partition related directives.

The attribute set specified in attribute_set is built through a bitwise or of the attribute con-
stants described below. Not all combinations of attributes are allowed. Some attributes are
mutually exclusive. If mutually exclusive attributes are combined, the behaviour is undefined.
Attributes not mentioned below are not evaluated by this directive and have no effect. Default
attributes can be selected by using the RTEMS_DEFAULT_ATTRIBUTES constant.

The partition has a local or global scope in a multiprocessing network (this attribute does
not refer to SMP systems). The scope is selected by the mutually exclusive RTEMS_LOCAL and
RTEMS_GLOBAL attributes.

• A local scope is the default and can be emphasized through the use of the RTEMS_LOCAL
attribute. A local partition can be only used by the node which created it.

420 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• A global scope is established if the RTEMS_GLOBAL attribute is set. The memory space used
for the partition must reside in shared memory. Setting the global attribute in a single
node system has no effect.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_SIZE
The length parameter was 0.

RTEMS_INVALID_SIZE
The buffer_size parameter was 0.

RTEMS_INVALID_SIZE
The length parameter was less than the buffer_size parameter.

RTEMS_INVALID_SIZE
The buffer_size parameter was not an integral multiple of the pointer size.

RTEMS_INVALID_SIZE
The buffer_size parameter was less than two times the pointer size.

RTEMS_INVALID_ADDRESS
The starting_address parameter was not on a pointer size boundary.

RTEMS_TOO_MANY
There was no inactive object available to create a partition. The number of partitions available
to the application is configured through the CONFIGURE_MAXIMUM_PARTITIONS (page 616)
application configuration option.

RTEMS_TOO_MANY
In multiprocessing configurations, there was no inactive global object available to create a
global semaphore. The number of global objects available to the application is configured
through the CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configu-
ration option.

NOTES:

The partition buffer area specified by the starting_address must be properly aligned. It must
be possible to directly store target architecture pointers and also the user data. For exam-
ple, if the user data contains some long double or vector data types, the partition buffer
area and the buffer size must take the alignment of these types into account which is usu-
ally larger than the pointer alignment. A cache line alignment may be also a factor. Use
RTEMS_PARTITION_ALIGNMENT to specify the minimum alignment of a partition buffer type.

The buffer_size parameter must be an integral multiple of the pointer size on the target ar-
chitecture. Additionally, buffer_size must be large enough to hold two pointers on the target
architecture. This is required for RTEMS to manage the buffers when they are free.

17.4. Directives 421

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.4

For control and maintenance of the partition, RTEMS allocates a PTCB from the local PTCB free
pool and initializes it. Memory from the partition buffer area is not used by RTEMS to store the
PTCB.

The PTCB for a global partition is allocated on the local node. Partitions should not be made
global unless remote tasks must interact with the partition. This is to avoid the overhead in-
curred by the creation of a global partition. When a global partition is created, the partition’s
name and identifier must be transmitted to every node in the system for insertion in the local
copy of the global object table.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The number of partitions available to the application is configured through the CONFIG-
URE_MAXIMUM_PARTITIONS (page 616) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

• The number of global objects available to the application is configured through the CON-
FIGURE_MP_MAXIMUM_GLOBAL_OBJECTS (page 735) application configuration option.

422 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

17.4.2 rtems_partition_ident()

Identifies a partition by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

PARAMETERS:

name
This parameter is the object name to look up.

node
This parameter is the node or node set to search for a matching object.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a partition identifier associated with the partition name specified in name.

The node to search is specified in node. It shall be

• a valid node number,

• the constant RTEMS_SEARCH_ALL_NODES to search in all nodes,

• the constant RTEMS_SEARCH_LOCAL_NODE to search in the local node only, or

• the constant RTEMS_SEARCH_OTHER_NODES to search in all nodes except the local node.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the specified nodes.

RTEMS_INVALID_NODE
In multiprocessing configurations, the specified node was invalid.

17.4. Directives 423

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.4

NOTES:

If the partition name is not unique, then the partition identifier will match the first partition with
that name in the search order. However, this partition identifier is not guaranteed to correspond
to the desired partition.

The objects are searched from lowest to the highest index. If node is RTEMS_SEARCH_ALL_NODES,
all nodes are searched with the local node being searched first. All other nodes are searched
from lowest to the highest node number.

If node is a valid node number which does not represent the local node, then only the partitions
exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of the
global object table.

The partition identifier is used with other partition related directives to access the partition.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

424 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

17.4.3 rtems_partition_delete()

Deletes the partition.

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_delete(rtems_id id);

PARAMETERS:

id
This parameter is the partition identifier.

DESCRIPTION:

This directive deletes the partition specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no partition associated with the identifier specified by id.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
The partition resided on a remote node.

RTEMS_RESOURCE_IN_USE
There were buffers of the partition still in use.

NOTES:

The partition cannot be deleted if any of its buffers are still allocated.

The PTCB for the deleted partition is reclaimed by RTEMS.

When a global partition is deleted, the partition identifier must be transmitted to every node in
the system for deletion from the local copy of the global object table.

The partition must reside on the local node, even if the partition was created with the
RTEMS_GLOBAL attribute.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the directive operates on a global object, the directive sends a message to remote
nodes. This may preempt the calling task.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

17.4. Directives 425

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.4

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

426 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

17.4.4 rtems_partition_get_buffer()

Tries to get a buffer from the partition.

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_get_buffer(rtems_id id, void **buffer);

PARAMETERS:

id
This parameter is the partition identifier.

buffer
This parameter is the pointer to a void pointer object. When the directive call is successful,
the pointer to the allocated buffer will be stored in this object.

DESCRIPTION:

This directive allows a buffer to be obtained from the partition specified by id. The address of
the allocated buffer is returned through the buffer parameter.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no partition associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The buffer parameter was NULL.

RTEMS_UNSATISFIED
There was no free buffer available to allocate and return.

NOTES:

The buffer start alignment is determined by the memory area and buffer size used to create the
partition.

A task cannot wait on a buffer to become available.

Getting a buffer from a global partition which does not reside on the local node will generate a
request telling the remote node to allocate a buffer from the partition.

CONSTRAINTS:

The following constraints apply to this directive:

• When the directive operates on a local object, the directive may be called from within
interrupt context.

• The directive may be called from within task context.

• When the directive operates on a local object, the directive will not cause the calling task
to be preempted.

17.4. Directives 427

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.4

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

428 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

17.4.5 rtems_partition_return_buffer()

Returns the buffer to the partition.

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_return_buffer(rtems_id id, void *buffer);

PARAMETERS:

id
This parameter is the partition identifier.

buffer
This parameter is the pointer to the buffer to return.

DESCRIPTION:

This directive returns the buffer specified by buffer to the partition specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no partition associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The buffer referenced by buffer was not in the partition.

NOTES:

Returning a buffer multiple times is an error. It will corrupt the internal state of the partition.

CONSTRAINTS:

The following constraints apply to this directive:

• When the directive operates on a local object, the directive may be called from within
interrupt context.

• The directive may be called from within task context.

• When the directive operates on a local object, the directive will not cause the calling task
to be preempted.

• When the directive operates on a remote object, the directive sends a message to the
remote node and waits for a reply. This will preempt the calling task.

17.4. Directives 429

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 17 Section 17.4

430 Chapter 17. Partition Manager

CHAPTER

EIGHTEEN

REGION MANAGER

431

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.1

18.1 Introduction

The Region Manager provides facilities to dynamically allocate memory in variable sized units.
The directives provided by the Region Manager are:

• rtems_region_create() (page 438) - Creates a region.

• rtems_region_ident() (page 440) - Identifies a region by the object name.

• rtems_region_delete() (page 441) - Deletes the region.

• rtems_region_extend() (page 442) - Extends the region.

• rtems_region_get_segment() (page 444) - Gets a segment from the region.

• rtems_region_return_segment() (page 446) - Returns the segment to the region.

• rtems_region_resize_segment() (page 447) - Changes the size of the segment.

• rtems_region_get_information() (page 449) - Gets the region information.

• rtems_region_get_free_information() (page 450) - Gets the region free information.

• rtems_region_get_segment_size() (page 452) - Gets the size of the region segment.

432 Chapter 18. Region Manager

Chapter 18 Section 18.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

18.2 Background

18.2.1 Region Manager Definitions

A region makes up a physically contiguous memory space with user-defined boundaries from
which variable-sized segments are dynamically allocated and deallocated. A segment is a vari-
able size section of memory which is allocated in multiples of a user-defined page size. This
page size is required to be a multiple of four greater than or equal to four. For example, if a re-
quest for a 350-byte segment is made in a region with 256-byte pages, then a 512-byte segment
is allocated.

Regions are organized as doubly linked chains of variable sized memory blocks. Memory re-
quests are allocated using a first-fit algorithm. If available, the requester receives the number of
bytes requested (rounded up to the next page size). RTEMS requires some overhead from the
region’s memory for each segment that is allocated. Therefore, an application should only mod-
ify the memory of a segment that has been obtained from the region. The application should
NOT modify the memory outside of any obtained segments and within the region’s boundaries
while the region is currently active in the system.

Upon return to the region, the free block is coalesced with its neighbors (if free) on both sides
to produce the largest possible unused block.

18.2.2 Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set
of valid region attributes is provided in the following table:

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An attribute listed as a default is not required to appear in the attribute list, although
it is a good programming practice to specify default attributes. If all defaults are desired, the
attribute RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a region with the
task priority waiting queue discipline. The attribute_set parameter to the rtems_region_create
directive should be RTEMS_PRIORITY.

18.2.3 Building an Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_region_get_segment directive are listed in the following table:

RTEMS_WAIT task will wait for segment (default)
RTEMS_NO_WAIT task should not wait

Option values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each option appears exactly once in the component
list. An option listed as a default is not required to appear in the option list, although it is a

18.2. Background 433

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.2

good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for a segment. The option
parameter passed to the rtems_region_get_segment directive should be RTEMS_NO_WAIT.

434 Chapter 18. Region Manager

Chapter 18 Section 18.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

18.3 Operations

18.3.1 Creating a Region

The rtems_region_create directive creates a region with the user-defined name. The user may
select FIFO or task priority as the method for placing waiting tasks in the task wait queue.
RTEMS allocates a Region Control Block (RNCB) from the RNCB free list to maintain the newly
created region. RTEMS also generates a unique region ID which is returned to the calling task.

It is not possible to calculate the exact number of bytes available to the user since RTEMS
requires overhead for each segment allocated. For example, a region with one segment that
is the size of the entire region has more available bytes than a region with two segments that
collectively are the size of the entire region. This is because the region with one segment
requires only the overhead for one segment, while the other region requires the overhead for
two segments.

Due to automatic coalescing, the number of segments in the region dynamically changes. There-
fore, the total overhead required by RTEMS dynamically changes.

18.3.2 Obtaining Region IDs

When a region is created, RTEMS generates a unique region ID and assigns it to the created
region until it is deleted. The region ID may be obtained by either of two methods. First, as the
result of an invocation of the rtems_region_create directive, the region ID is stored in a user
provided location. Second, the region ID may be obtained later using the rtems_region_ident
directive. The region ID is used by other region manager directives to access this region.

18.3.3 Adding Memory to a Region

The rtems_region_extend directive may be used to add memory to an existing region. The
caller specifies the size in bytes and starting address of the memory being added.

18.3.4 Acquiring a Segment

The rtems_region_get_segment directive attempts to acquire a segment from a specified region.
If the region has enough available free memory, then a segment is returned successfully to the
caller. When the segment cannot be allocated, one of the following situations applies:

• By default, the calling task will wait forever to acquire the segment.

• Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

• Specifying a timeout limits the interval the task will wait before returning with an error
status code.

If the task waits for the segment, then it is placed in the region’s task wait queue in either FIFO
or task priority order. All tasks waiting on a region are returned an error when the message
queue is deleted.

18.3.5 Releasing a Segment

When a segment is returned to a region by the rtems_region_return_segment directive, it is
merged with its unallocated neighbors to form the largest possible segment. The first task on
the wait queue is examined to determine if its segment request can now be satisfied. If so, it is
given a segment and unblocked. This process is repeated until the first task’s segment request
cannot be satisfied.

18.3. Operations 435

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.3

18.3.6 Obtaining the Size of a Segment

The rtems_region_get_segment_size directive returns the size in bytes of the specified seg-
ment. The size returned includes any “extra” memory included in the segment because of
rounding up to a page size boundary.

18.3.7 Changing the Size of a Segment

The rtems_region_resize_segment directive is used to change the size in bytes of the specified
segment. The size may be increased or decreased. When increasing the size of a segment, it is
possible that the request cannot be satisfied. This directive provides functionality similar to the
realloc() function in the Standard C Library.

18.3.8 Deleting a Region

A region can be removed from the system and returned to RTEMS with the
rtems_region_delete directive. When a region is deleted, its control block is returned to the
RNCB free list. A region with segments still allocated is not allowed to be deleted. Any task
attempting to do so will be returned an error. As a result of this directive, all tasks blocked
waiting to obtain a segment from the region will be readied and returned a status code which
indicates that the region was deleted.

436 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

18.4 Directives

This section details the directives of the Region Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

18.4. Directives 437

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

18.4.1 rtems_region_create()

Creates a region.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_create(
2 rtems_name name,
3 void *starting_address,
4 uintptr_t length,
5 uintptr_t page_size,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

PARAMETERS:

name
This parameter is the object name of the region.

starting_address
This parameter is the starting address of the memory area managed by the region.

length
This parameter is the length in bytes of the memory area managed by the region.

page_size
This parameter is the alignment of the starting address and length of each allocated segment
of the region.

attribute_set
This parameter is the attribute set of the region.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created region will be stored in this object.

DESCRIPTION:

This directive creates a region which resides on the local node. The region has the user-defined
object name specified in name. The assigned object identifier is returned in id. This identifier is
used to access the region with other region related directives.

The region manages the contiguous memory area which starts at starting_address and is
length bytes long. The memory area shall be large enough to contain some internal region
administration data.

The starting address and length of segments allocated from the region will be an integral
multiple of page_size. The specified page size will be aligned to an implementation-dependent
minimum alignment if necessary.

The attribute set specified in attribute_set is built through a bitwise or of the attribute con-
stants described below. Not all combinations of attributes are allowed. Some attributes are
mutually exclusive. If mutually exclusive attributes are combined, the behaviour is undefined.
Attributes not mentioned below are not evaluated by this directive and have no effect. Default
attributes can be selected by using the RTEMS_DEFAULT_ATTRIBUTES constant.

438 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The task wait queue discipline is selected by the mutually exclusive RTEMS_FIFO and
RTEMS_PRIORITY attributes. The discipline defines the order in which tasks wait for allocatable
segments on a currently empty region.

• The FIFO discipline is the default and can be emphasized through use of the RTEMS_FIFO
attribute.

• The priority discipline is selected by the RTEMS_PRIORITY attribute.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_ADDRESS
The starting_address parameter was NULL.

RTEMS_TOO_MANY
There was no inactive object available to create a region. The number of regions available
to the application is configured through the CONFIGURE_MAXIMUM_REGIONS (page 619)
application configuration option.

RTEMS_INVALID_SIZE
The page_size parameter was invalid.

RTEMS_INVALID_SIZE
The memory area specified in starting_address and length was too small.

NOTES:

For control and maintenance of the region, RTEMS allocates a RNCB from the local RNCB free
pool and initializes it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The number of regions available to the application is configured through the CONFIG-
URE_MAXIMUM_REGIONS (page 619) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

18.4. Directives 439

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

18.4.2 rtems_region_ident()

Identifies a region by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_ident(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name to look up.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a region identifier associated with the region name specified in name.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the local node.

NOTES:

If the region name is not unique, then the region identifier will match the first region with that
name in the search order. However, this region identifier is not guaranteed to correspond to the
desired region.

The objects are searched from lowest to the highest index. Only the local node is searched.

The region identifier is used with other region related directives to access the region.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

440 Chapter 18. Region Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

18.4.3 rtems_region_delete()

Deletes the region.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_delete(rtems_id id);

PARAMETERS:

id
This parameter is the region identifier.

DESCRIPTION:

This directive deletes the region specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

RTEMS_RESOURCE_IN_USE
There were segments of the region still in use.

NOTES:

The region cannot be deleted if any of its segments are still allocated.

The RNCB for the deleted region is reclaimed by RTEMS.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

18.4. Directives 441

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

18.4.4 rtems_region_extend()

Extends the region.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_extend(
2 rtems_id id,
3 void *starting_address,
4 uintptr_t length
5);

PARAMETERS:

id
This parameter is the region identifier.

starting_address
This parameter is the starting address of the memory area to extend the region.

length
This parameter is the length in bytes of the memory area to extend the region.

DESCRIPTION:

This directive adds the memory area which starts at starting_address for length bytes to the
region specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The starting_address parameter was NULL.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The memory area specified by starting_address and length was insufficient to extend the
heap.

NOTES:

There are no alignment requirements for the memory area. The memory area must be big
enough to contain some maintenance blocks. It must not overlap parts of the current heap
memory areas. Disconnected memory areas added to the heap will lead to used blocks which
cover the gaps. Extending with an inappropriate memory area will corrupt the heap resulting
in undefined behaviour.

442 Chapter 18. Region Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

18.4. Directives 443

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

18.4.5 rtems_region_get_segment()

Gets a segment from the region.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_segment(
2 rtems_id id,
3 uintptr_t size,
4 rtems_option option_set,
5 rtems_interval timeout,
6 void **segment
7);

PARAMETERS:

id
This parameter is the region identifier.

size
This parameter is the size in bytes of the segment to allocate.

option_set
This parameter is the option set.

timeout
This parameter is the timeout in clock ticks if the RTEMS_WAIT option is set. Use
RTEMS_NO_TIMEOUT to wait potentially forever.

segment
This parameter is the pointer to a void pointer object. When the directive call is successful,
the begin address of the allocated segment will be stored in this object.

DESCRIPTION:

This directive gets a segment from the region specified by id.

The option set specified in option_set is built through a bitwise or of the option constants
described below. Not all combinations of options are allowed. Some options are mutually
exclusive. If mutually exclusive options are combined, the behaviour is undefined. Options not
mentioned below are not evaluated by this directive and have no effect. Default options can be
selected by using the RTEMS_DEFAULT_OPTIONS constant.

The calling task can wait or try to get a segment from the region according to the mutually
exclusive RTEMS_WAIT and RTEMS_NO_WAIT options.

• Waiting to get a segment from the region is the default and can be emphasized through
the use of the RTEMS_WAIT option. The timeout parameter defines how long the calling
task is willing to wait. Use RTEMS_NO_TIMEOUT to wait potentially forever, otherwise set a
timeout interval in clock ticks.

• Trying to get a segment from the region is selected by the RTEMS_NO_WAIT option. If this
option is defined, then the timeout parameter is ignored. When a segment from the region
cannot be immediately allocated, then the RTEMS_UNSATISFIED status is returned.

444 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

With either RTEMS_WAIT or RTEMS_NO_WAIT if there is a segment of the requested size is available,
then it is returned in segment and this directive returns immediately with the RTEMS_SUCCESSFUL
status code.

If the calling task chooses to return immediately and the region has no segment of the requested
size available, then the directive returns immediately with the RTEMS_UNSATISFIED status code.
If the calling task chooses to wait for a segment, then the calling task is placed on the region
wait queue and blocked. If the region was created with the RTEMS_PRIORITY option specified,
then the calling task is inserted into the wait queue according to its priority. But, if the region
was created with the RTEMS_FIFO option specified, then the calling task is placed at the rear of
the wait queue.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The segment parameter was NULL.

RTEMS_INVALID_SIZE
The size parameter was zero.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

RTEMS_INVALID_SIZE
The size parameter exceeded the maximum segment size which is possible for the region.

RTEMS_UNSATISFIED
The region had no segment of the requested size immediately available.

RTEMS_TIMEOUT
The timeout happened while the calling task was waiting to get a segment from the region.

NOTES:

The actual length of the allocated segment may be larger than the requested size because a
segment size is always a multiple of the region’s page size.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• When the request cannot be immediately satisfied and the RTEMS_WAIT option is set, the
calling task blocks at some point during the directive call.

• The timeout functionality of the directive requires a clock tick.

18.4. Directives 445

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

18.4.6 rtems_region_return_segment()

Returns the segment to the region.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_return_segment(rtems_id id, void *segment);

PARAMETERS:

id
This parameter is the region identifier.

segment
This parameter is the begin address of the segment to return.

DESCRIPTION:

This directive returns the segment specified by segment to the region specified by id. The
returned segment is merged with its neighbors to form the largest possible segment. The first
task on the wait queue is examined to determine if its segment request can now be satisfied. If
so, it is given a segment and unblocked. This process is repeated until the first task’s segment
request cannot be satisfied.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The segment was not within the region.

NOTES:

This directive will cause the calling task to be preempted if one or more local tasks are waiting
for a segment and the following conditions exist:

• A waiting task has a higher priority than the calling task.

• The size of the segment required by the waiting task is less than or equal to the size of the
segment returned.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

446 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

18.4.7 rtems_region_resize_segment()

Changes the size of the segment.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_resize_segment(
2 rtems_id id,
3 void *segment,
4 uintptr_t size,
5 uintptr_t *old_size
6);

PARAMETERS:

id
This parameter is the region identifier.

segment
This parameter is the begin address of the segment to resize.

size
This parameter is the requested new size of the segment.

old_size
This parameter is the pointer to an uintptr_t object. When the directive call is successful, the
old size of the segment will be stored in this object.

DESCRIPTION:

This directive is used to increase or decrease the size of the segment of the region specified
by id. When increasing the size of a segment, it is possible that there is no memory available
contiguous to the segment. In this case, the request is unsatisfied.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The old_size parameter was NULL.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The segment was not within the region.

RTEMS_UNSATISFIED
The region was unable to resize the segment.

18.4. Directives 447

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

NOTES:

If an attempt to increase the size of a segment fails, then the application may want to allocate
a new segment of the desired size, copy the contents of the original segment to the new, larger
segment and then return the original segment.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

448 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

18.4.8 rtems_region_get_information()

Gets the region information.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_information(
2 rtems_id id,
3 Heap_Information_block *the_info
4);

PARAMETERS:

id
This parameter is the region identifier.

the_info
This parameter is the pointer to a Heap_Information_block object. When the directive call is
successful, the information of the region will be stored in this object.

DESCRIPTION:

This directive is used to obtain information about the used and free memory in the region
specified by id. This is a snapshot at the time of the call. The information will be returned in
the structure pointed to by the_info.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The the_info parameter was NULL.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

NOTES:

This is primarily intended as a mechanism to obtain a diagnostic information. This method
forms am O(n) scan of the free and an O(n) scan of the used blocks in the region to calculate
the information provided. Given that the execution time is driven by the number of used and
free blocks, it can take a non-deterministic time to execute.

To get only the free information of the region use rtems_region_get_free_information()
(page 450).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

18.4. Directives 449

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

18.4.9 rtems_region_get_free_information()

Gets the region free information.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_free_information(
2 rtems_id id,
3 Heap_Information_block *the_info
4);

PARAMETERS:

id
This parameter is the region identifier.

the_info
This parameter is the pointer to a Heap_Information_block object. When the directive call is
successful, the free information of the region will be stored in this object.

DESCRIPTION:

This directive is used to obtain information about the free memory in the region specified by
id. This is a snapshot at the time of the call. The information will be returned in the structure
pointed to by the_info.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The the_info parameter was NULL.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

NOTES:

This directive uses the same structure to return information as the
rtems_region_get_information() (page 449) directive but does not fill in the used information.

This is primarily intended as a mechanism to obtain a diagnostic information. This method
forms am O(n) scan of the free in the region to calculate the information provided. Given
that the execution time is driven by the number of used and free blocks, it can take
a non-deterministic time to execute. Typically, there are many used blocks and a much
smaller number of used blocks making a call to this directive less expensive than a call to
rtems_region_get_information() (page 449).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

450 Chapter 18. Region Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

18.4. Directives 451

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

18.4.10 rtems_region_get_segment_size()

Gets the size of the region segment.

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_segment_size(
2 rtems_id id,
3 void *segment,
4 uintptr_t *size
5);

PARAMETERS:

id
This parameter is the region identifier.

segment
This parameter is the begin address of the segment.

size
This parameter is the pointer to a uintptr_t object. When the directive call is successful, the
size of the segment in bytes will be stored in this object.

DESCRIPTION:

This directive obtains the size in bytes of the segment specified by segment of the region specified
by id in size.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The segment parameter was NULL.

RTEMS_INVALID_ADDRESS
The size parameter was NULL.

RTEMS_INVALID_ID
There was no region associated with the identifier specified by id.

RTEMS_INVALID_ADDRESS
The segment was not within the region.

NOTES:

The actual length of the allocated segment may be larger than the requested size because a
segment size is always a multiple of the region’s page size.

452 Chapter 18. Region Manager

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

18.4. Directives 453

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 18 Section 18.4

454 Chapter 18. Region Manager

CHAPTER

NINETEEN

DUAL-PORTED MEMORY MANAGER

455

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 19 Section 19.1

19.1 Introduction

The Dual-Ported Memory Manager provides a mechanism for converting addresses between
internal and external representations for multiple dual-ported memory areas (DPMA). The di-
rectives provided by the Dual-Ported Memory Manager are:

• rtems_port_create() (page 460) - Creates a port.

• rtems_port_ident() (page 462) - Identifies a port by the object name.

• rtems_port_delete() (page 463) - Deletes the port.

• rtems_port_external_to_internal() (page 464) - Converts the external address to the inter-
nal address.

• rtems_port_internal_to_external() (page 465) - Converts the internal address to the exter-
nal address.

456 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

19.2 Background

A dual-ported memory area (DPMA) is an contiguous block of RAM owned by a particular
processor but which can be accessed by other processors in the system. The owner accesses the
memory using internal addresses, while other processors must use external addresses. RTEMS
defines a port as a particular mapping of internal and external addresses.

There are two system configurations in which dual-ported memory is commonly found. The first
is tightly-coupled multiprocessor computer systems where the dual-ported memory is shared
between all nodes and is used for inter-node communication. The second configuration is
computer systems with intelligent peripheral controllers. These controllers typically utilize the
DPMA for high-performance data transfers.

19.2. Background 457

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 19 Section 19.3

19.3 Operations

19.3.1 Creating a Port

The rtems_port_create directive creates a port into a DPMA with the user-defined name. The
user specifies the association between internal and external representations for the port being
created. RTEMS allocates a Dual-Ported Memory Control Block (DPCB) from the DPCB free list
to maintain the newly created DPMA. RTEMS also generates a unique dual-ported memory port
ID which is returned to the calling task. RTEMS does not initialize the dual-ported memory area
or access any memory within it.

19.3.2 Obtaining Port IDs

When a port is created, RTEMS generates a unique port ID and assigns it to the created port
until it is deleted. The port ID may be obtained by either of two methods. First, as the result
of an invocation of the``rtems_port_create`` directive, the task ID is stored in a user provided
location. Second, the port ID may be obtained later using the rtems_port_ident directive. The
port ID is used by other dual-ported memory manager directives to access this port.

19.3.3 Converting an Address

The rtems_port_external_to_internal directive is used to convert an address from external to
internal representation for the specified port. The rtems_port_internal_to_external directive
is used to convert an address from internal to external representation for the specified port.
If an attempt is made to convert an address which lies outside the specified DPMA, then the
address to be converted will be returned.

19.3.4 Deleting a DPMA Port

A port can be removed from the system and returned to RTEMS with the rtems_port_delete
directive. When a port is deleted, its control block is returned to the DPCB free list.

458 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

19.4 Directives

This section details the directives of the Dual-Ported Memory Manager. A subsection is dedicated
to each of this manager’s directives and lists the calling sequence, parameters, description,
return values, and notes of the directive.

19.4. Directives 459

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 19 Section 19.4

19.4.1 rtems_port_create()

Creates a port.

CALLING SEQUENCE:

1 rtems_status_code rtems_port_create(
2 rtems_name name,
3 void *internal_start,
4 void *external_start,
5 uint32_t length,
6 rtems_id *id
7);

PARAMETERS:

name
This parameter is the object name of the port.

internal_start
This parameter is the internal start address of the memory area.

external_start
This parameter is the external start address of the memory area.

length
This parameter is the length in bytes of the memory area.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created port will be stored in this object.

DESCRIPTION:

This directive creates a port which resides on the local node. The port has the user-defined
object name specified in name. The assigned object identifier is returned in id. This identifier is
used to access the port with other dual-ported memory port related directives.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_ADDRESS
The internal_start parameter was not properly aligned.

RTEMS_INVALID_ADDRESS
The external_start parameter was not properly aligned.

RTEMS_TOO_MANY
There was no inactive object available to create a port. The number of port available to the

460 Chapter 19. Dual-Ported Memory Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 19 Section 19.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

application is configured through the CONFIGURE_MAXIMUM_PORTS (page 618) application
configuration option.

NOTES:

The internal_start and external_start parameters must be on a boundary defined by the
target processor architecture.

For control and maintenance of the port, RTEMS allocates a DPCB from the local DPCB free
pool and initializes it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The number of ports available to the application is configured through the CONFIG-
URE_MAXIMUM_PORTS (page 618) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

19.4. Directives 461

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 19 Section 19.4

19.4.2 rtems_port_ident()

Identifies a port by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_port_ident(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name to look up.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains a port identifier associated with the port name specified in name.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the local node.

NOTES:

If the port name is not unique, then the port identifier will match the first port with that name
in the search order. However, this port identifier is not guaranteed to correspond to the desired
port.

The objects are searched from lowest to the highest index. Only the local node is searched.

The port identifier is used with other dual-ported memory related directives to access the port.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

462 Chapter 19. Dual-Ported Memory Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 19 Section 19.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

19.4.3 rtems_port_delete()

Deletes the port.

CALLING SEQUENCE:

1 rtems_status_code rtems_port_delete(rtems_id id);

PARAMETERS:

id
This parameter is the port identifier.

DESCRIPTION:

This directive deletes the port specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no port associated with the identifier specified by id.

NOTES:

The DPCB for the deleted port is reclaimed by RTEMS.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

19.4. Directives 463

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 19 Section 19.4

19.4.4 rtems_port_external_to_internal()

Converts the external address to the internal address.

CALLING SEQUENCE:

1 rtems_status_code rtems_port_external_to_internal(
2 rtems_id id,
3 void *external,
4 void **internal
5);

PARAMETERS:

id
This parameter is the port identifier.

external
This parameter is the external address to convert.

internal
This parameter is the pointer to a void pointer object. When the directive call is successful,
the external address associated with the internal address will be stored in this object.

DESCRIPTION:

This directive converts a dual-ported memory address from external to internal representation
for the specified port. If the given external address is invalid for the specified port, then the
internal address is set to the given external address.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The id parameter was invalid.

RTEMS_INVALID_ADDRESS
The internal parameter was NULL.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

464 Chapter 19. Dual-Ported Memory Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 19 Section 19.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

19.4.5 rtems_port_internal_to_external()

Converts the internal address to the external address.

CALLING SEQUENCE:

1 rtems_status_code rtems_port_internal_to_external(
2 rtems_id id,
3 void *internal,
4 void **external
5);

PARAMETERS:

id
This parameter is the port identifier.

internal
This parameter is the internal address to convert.

external
This parameter is the pointer to a void pointer object. When the directive call is successful,
the external address associated with the internal address will be stored in this object.

DESCRIPTION:

This directive converts a dual-ported memory address from internal to external representation
so that it can be passed to owner of the DPMA represented by the specified port. If the given
internal address is an invalid dual-ported address, then the external address is set to the given
internal address.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The id parameter was invalid.

RTEMS_INVALID_ADDRESS
The external parameter was NULL.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive will not cause the calling task to be preempted.

19.4. Directives 465

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 19 Section 19.4

466 Chapter 19. Dual-Ported Memory Manager

CHAPTER

TWENTY

I/O MANAGER

467

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.1

20.1 Introduction

The Input/Output (I/O) Manager provides a well-defined mechanism for accessing device
drivers and a structured methodology for organizing device drivers. The directives provided
by the I/O Manager are:

• rtems_io_register_driver() (page 474) - Registers and initializes the device with the speci-
fied device driver address table and device major number in the Device Driver Table.

• rtems_io_unregister_driver() (page 476) - Removes a device driver specified by the device
major number from the Device Driver Table.

• rtems_io_initialize() (page 477) - Initializes the device specified by the device major and
minor numbers.

• rtems_io_register_name() (page 478) - Registers the device specified by the device major
and minor numbers in the file system under the specified name.

• rtems_io_open() (page 479) - Opens the device specified by the device major and minor
numbers.

• rtems_io_close() (page 480) - Closes the device specified by the device major and minor
numbers.

• rtems_io_read() (page 481) - Reads from the device specified by the device major and
minor numbers.

• rtems_io_write() (page 482) - Writes to the device specified by the device major and minor
numbers.

• rtems_io_control() (page 483) - Controls the device specified by the device major and
minor numbers.

468 Chapter 20. I/O Manager

Chapter 20 Section 20.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

20.2 Background

20.2.1 Device Driver Table

Each application utilizing the RTEMS I/O manager must specify the address of a Device Driver
Table in its Configuration Table. This table contains each device driver’s entry points that is
to be initialised by RTEMS during initialization. Each device driver may contain the following
entry points:

• Initialization

• Open

• Close

• Read

• Write

• Control

If the device driver does not support a particular entry point, then that entry in the Configuration
Table should be NULL. RTEMS will return RTEMS_SUCCESSFUL as the executive’s and zero (0) as
the device driver’s return code for these device driver entry points.

Applications can register and unregister drivers with the RTEMS I/O manager avoiding the need
to have all drivers statically defined and linked into this table.

The confdefs.h entry CONFIGURE_MAXIMUM_DRIVERS configures the number of driver slots avail-
able to the application.

20.2.2 Major and Minor Device Numbers

Each call to the I/O manager must provide a device’s major and minor numbers as arguments.
The major number is the index of the requested driver’s entry points in the Device Driver Table,
and is used to select a specific device driver. The exact usage of the minor number is driver
specific, but is commonly used to distinguish between a number of devices controlled by the
same driver.

The data types rtems_device_major_number and rtems_device_minor_number are used to ma-
nipulate device major and minor numbers, respectively.

20.2.3 Device Names

The I/O Manager provides facilities to associate a name with a particular device. Directives
are provided to register the name of a device and to look up the major/minor number pair
associated with a device name.

20.2.4 Device Driver Environment

Application developers, as well as device driver developers, must be aware of the following
regarding the RTEMS I/O Manager:

• A device driver routine executes in the context of the invoking task. Thus if the driver
blocks, the invoking task blocks.

• The device driver is free to change the modes of the invoking task, although the driver
should restore them to their original values.

20.2. Background 469

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.2

• Device drivers may be invoked from ISRs.

• Only local device drivers are accessible through the I/O manager.

• A device driver routine may invoke all other RTEMS directives, including I/O directives,
on both local and global objects.

Although the RTEMS I/O manager provides a framework for device drivers, it makes no as-
sumptions regarding the construction or operation of a device driver.

20.2.5 Runtime Driver Registration

Board support package and application developers can select wether a device driver is statically
entered into the default device table or registered at runtime.

Dynamic registration helps applications where:

• The BSP and kernel libraries are common to a range of applications for a specific target
platform. An application may be built upon a common library with all drivers. The
application selects and registers the drivers. Uniform driver name lookup protects the
application.

• The type and range of drivers may vary as the application probes a bus during initializa-
tion.

• Support for hot swap bus system such as Compact PCI.

• Support for runtime loadable driver modules.

20.2.6 Device Driver Interface

When an application invokes an I/O manager directive, RTEMS determines which device driver
entry point must be invoked. The information passed by the application to RTEMS is then
passed to the correct device driver entry point. RTEMS will invoke each device driver entry
point assuming it is compatible with the following prototype:

1 rtems_device_driver io_entry(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument_block
5);

The format and contents of the parameter block are device driver and entry point dependent.

It is recommended that a device driver avoid generating error codes which conflict with those
used by application components. A common technique used to generate driver specific error
codes is to make the most significant part of the status indicate a driver specific code.

20.2.7 Device Driver Initialization

RTEMS automatically initializes all device drivers when multitasking is initiated via the
rtems_initialize_executive directive. RTEMS initializes the device drivers by invoking each
device driver initialization entry point with the following parameters:

major
the major device number for this device driver.

470 Chapter 20. I/O Manager

Chapter 20 Section 20.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

minor
zero.

argument_block
will point to the Configuration Table.

The returned status will be ignored by RTEMS. If the driver cannot successfully initialize the
device, then it should invoke the fatal_error_occurred directive.

20.2. Background 471

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.3

20.3 Operations

20.3.1 Register and Lookup Name

The rtems_io_register directive associates a name with the specified device (i.e. major/minor
number pair). Device names are typically registered as part of the device driver initialization
sequence. The rtems_io_lookup directive is used to determine the major/minor number pair
associated with the specified device name. The use of these directives frees the application from
being dependent on the arbitrary assignment of major numbers in a particular application. No
device naming conventions are dictated by RTEMS.

20.3.2 Accessing an Device Driver

The I/O manager provides directives which enable the application program to utilize de-
vice drivers in a standard manner. There is a direct correlation between the RTEMS I/O
manager directives rtems_io_initialize, rtems_io_open, rtems_io_close, rtems_io_read,
rtems_io_write, and rtems_io_control and the underlying device driver entry points.

472 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

20.4 Directives

This section details the directives of the I/O Manager. A subsection is dedicated to each of this
manager’s directives and lists the calling sequence, parameters, description, return values, and
notes of the directive.

20.4. Directives 473

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.4

20.4.1 rtems_io_register_driver()

Registers and initializes the device with the specified device driver address table and device
major number in the Device Driver Table.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_register_driver(
2 rtems_device_major_number major,
3 const rtems_driver_address_table *driver_table,
4 rtems_device_major_number *registered_major
5);

PARAMETERS:

major
This parameter is the device major number. Use a value of zero to let the system obtain a
device major number automatically.

driver_table
This parameter is the device driver address table.

registered_major
This parameter is the pointer to an rtems_device_major_number (page 39) object. When the
directive call is successful, the device major number of the registered device will be stored in
this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The device major number of the device was NULL.

RTEMS_INVALID_ADDRESS
The device driver address table was empty.

RTEMS_INVALID_NUMBER
The device major number of the device was out of range, see CONFIG-
URE_MAXIMUM_DRIVERS (page 611).

RTEMS_TOO_MANY
The system was unable to obtain a device major number.

RTEMS_RESOURCE_IN_USE
The device major number was already in use.

RTEMS_CALLED_FROM_ISR
The directive was called from interrupt context.

Other status codes may be returned by rtems_io_initialize() (page 477).

474 Chapter 20. I/O Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

NOTES:

If the device major number equals zero a device major number will be obtained. The device
major number of the registered driver will be returned.

After a successful registration, the rtems_io_initialize() (page 477) directive will be called to
initialize the device.

20.4. Directives 475

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.4

20.4.2 rtems_io_unregister_driver()

Removes a device driver specified by the device major number from the Device Driver Table.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_unregister_driver(
2 rtems_device_major_number major
3);

PARAMETERS:

major
This parameter is the major number of the device.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_UNSATISFIED
The device major number was invalid.

RTEMS_CALLED_FROM_ISR
The directive was called from interrupt context.

NOTES:

Currently no specific checks are made and the driver is not closed.

476 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

20.4.3 rtems_io_initialize()

Initializes the device specified by the device major and minor numbers.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

PARAMETERS:

major
This parameter is the major number of the device.

minor
This parameter is the minor number of the device.

argument
This parameter is the argument passed to the device driver initialization entry.

DESCRIPTION:

This directive calls the device driver initialization entry registered in the Device Driver Table for
the specified device major number.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The device major number was invalid.

Other status codes may be returned by the device driver initialization entry.

NOTES:

This directive is automatically invoked for each device driver defined by the application con-
figuration during the system initialization and via the rtems_io_register_driver() (page 474)
directive.

A device driver initialization entry is responsible for initializing all hardware and data structures
associated with a device. If necessary, it can allocate memory to be used during other operations.

20.4. Directives 477

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.4

20.4.4 rtems_io_register_name()

Registers the device specified by the device major and minor numbers in the file system under
the specified name.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_register_name(
2 const char *device_name,
3 rtems_device_major_number major,
4 rtems_device_minor_number minor
5);

PARAMETERS:

device_name
This parameter is the device name in the file system.

major
This parameter is the device major number.

minor
This parameter is the device minor number.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_TOO_MANY
The name was already in use or other errors occurred.

NOTES:

The device is registered as a character device.

478 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

20.4.5 rtems_io_open()

Opens the device specified by the device major and minor numbers.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_open(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

PARAMETERS:

major
This parameter is the major number of the device.

minor
This parameter is the minor number of the device.

argument
This parameter is the argument passed to the device driver close entry.

DESCRIPTION:

This directive calls the device driver open entry registered in the Device Driver Table for the
specified device major number.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The device major number was invalid.

Other status codes may be returned by the device driver open entry.

NOTES:

The open entry point is commonly used by device drivers to provide exclusive access to a device.

20.4. Directives 479

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.4

20.4.6 rtems_io_close()

Closes the device specified by the device major and minor numbers.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

PARAMETERS:

major
This parameter is the major number of the device.

minor
This parameter is the minor number of the device.

argument
This parameter is the argument passed to the device driver close entry.

DESCRIPTION:

This directive calls the device driver close entry registered in the Device Driver Table for the
specified device major number.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The device major number was invalid.

Other status codes may be returned by the device driver close entry.

NOTES:

The close entry point is commonly used by device drivers to relinquish exclusive access to a
device.

480 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

20.4.7 rtems_io_read()

Reads from the device specified by the device major and minor numbers.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_read(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

PARAMETERS:

major
This parameter is the major number of the device.

minor
This parameter is the minor number of the device.

argument
This parameter is the argument passed to the device driver read entry.

DESCRIPTION:

This directive calls the device driver read entry registered in the Device Driver Table for the
specified device major number.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The device major number was invalid.

Other status codes may be returned by the device driver read entry.

NOTES:

Read operations typically require a buffer address as part of the argument parameter block. The
contents of this buffer will be replaced with data from the device.

20.4. Directives 481

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.4

20.4.8 rtems_io_write()

Writes to the device specified by the device major and minor numbers.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_write(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

PARAMETERS:

major
This parameter is the major number of the device.

minor
This parameter is the minor number of the device.

argument
This parameter is the argument passed to the device driver write entry.

DESCRIPTION:

This directive calls the device driver write entry registered in the Device Driver Table for the
specified device major number.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The device major number was invalid.

Other status codes may be returned by the device driver write entry.

NOTES:

Write operations typically require a buffer address as part of the argument parameter block.
The contents of this buffer will be sent to the device.

482 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

20.4.9 rtems_io_control()

Controls the device specified by the device major and minor numbers.

CALLING SEQUENCE:

1 rtems_status_code rtems_io_control(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

PARAMETERS:

major
This parameter is the major number of the device.

minor
This parameter is the minor number of the device.

argument
This parameter is the argument passed to the device driver I/O control entry.

DESCRIPTION:

This directive calls the device driver I/O control entry registered in the Device Driver Table for
the specified device major number.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NUMBER
The device major number was invalid.

Other status codes may be returned by the device driver I/O control entry.

NOTES:

The exact functionality of the driver entry called by this directive is driver dependent. It should
not be assumed that the control entries of two device drivers are compatible. For example, an
RS-232 driver I/O control operation may change the baud of a serial line, while an I/O control
operation for a floppy disk driver may cause a seek operation.

20.4. Directives 483

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 20 Section 20.4

484 Chapter 20. I/O Manager

CHAPTER

TWENTYONE

KERNEL CHARACTER I/O SUPPORT

485

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 21 Section 21.1

21.1 Introduction

The kernel character input/output support is an extension of the I/O Manager (page 467) to
output characters to the kernel character output device and receive characters from the kernel
character input device using a polled and non-blocking implementation.

The directives may be used to print debug and test information. The kernel character
input/output support should work even if no Console Driver is configured, see CONFIG-
URE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 597). The kernel character input and out-
put device is provided by the BSP. Applications may change the device. The directives provided
by the Kernel Character I/O Support are:

• rtems_putc() (page 488) - Outputs the character to the kernel character output device.

• rtems_put_char() (page 489) - Puts the character using rtems_putc() (page 488)

• putk() (page 490) - Outputs the characters of the string and a newline character to the
kernel character output device.

• printk() (page 491) - Outputs the characters defined by the format string and the argu-
ments to the kernel character output device.

• vprintk() (page 492) - Outputs the characters defined by the format string and the variable
argument list to the kernel character output device.

• rtems_printk_printer() (page 493) - Outputs the characters defined by the format string
and the variable argument list to the kernel character output device.

• getchark() (page 494) - Tries to dequeue a character from the kernel character input
device.

486 Chapter 21. Kernel Character I/O Support

Chapter 21 Section 21.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

21.2 Directives

This section details the directives of the Kernel Character I/O Support. A subsection is dedicated
to each of this manager’s directives and lists the calling sequence, parameters, description,
return values, and notes of the directive.

21.2. Directives 487

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 21 Section 21.2

21.2.1 rtems_putc()

Outputs the character to the kernel character output device.

CALLING SEQUENCE:

1 void rtems_putc(char c);

PARAMETERS:

c
This parameter is the character to output.

DESCRIPTION:

The directive outputs the character specified by c to the kernel character output device using the
polled character output implementation provided by BSP_output_char. The directive performs
a character translation from NL to CR followed by NR.

If the kernel character output device is concurrently accessed, then interleaved output may
occur.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

488 Chapter 21. Kernel Character I/O Support

Chapter 21 Section 21.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

21.2.2 rtems_put_char()

Puts the character using rtems_putc() (page 488)

CALLING SEQUENCE:

1 void rtems_put_char(int c, void *unused);

PARAMETERS:

c
This parameter is the character to output.

unused
This parameter is an unused argument.

NOTES:

The directive is provided to support the RTEMS Testing Framework.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

21.2. Directives 489

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 21 Section 21.2

21.2.3 putk()

Outputs the characters of the string and a newline character to the kernel character output
device.

CALLING SEQUENCE:

1 int putk(const char *s);

PARAMETERS:

s
This parameter is the string to output.

RETURN VALUES:

Returns the number of characters output to the kernel character output device.

NOTES:

The directive may be used to print debug and test information. It uses rtems_putc() (page 488)
to output the characters. This directive performs a character translation from NL to CR followed
by NR.

If the kernel character output device is concurrently accessed, then interleaved output may
occur.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

490 Chapter 21. Kernel Character I/O Support

Chapter 21 Section 21.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

21.2.4 printk()

Outputs the characters defined by the format string and the arguments to the kernel character
output device.

CALLING SEQUENCE:

1 int printk(const char *fmt, ...);

PARAMETERS:

fmt
This parameter is a printf()-style format string.

...
This parameter is a list of optional parameters required by the format string.

RETURN VALUES:

Returns the number of characters output to the kernel character output device.

NOTES:

The directive may be used to print debug and test information. It uses rtems_putc() (page 488)
to output the characters. This directive performs a character translation from NL to CR followed
by NR.

If the kernel character output device is concurrently accessed, then interleaved output may
occur.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• Formatting of floating point numbers is not supported.

21.2. Directives 491

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 21 Section 21.2

21.2.5 vprintk()

Outputs the characters defined by the format string and the variable argument list to the kernel
character output device.

CALLING SEQUENCE:

1 int vprintk(const char *fmt, va_list ap);

PARAMETERS:

fmt
This parameter is a printf()-style format string.

ap
This parameter is the variable argument list required by the format string.

RETURN VALUES:

Returns the number of characters output to the kernel character output device.

NOTES:

The directive may be used to print debug and test information. It uses rtems_putc() (page 488)
to output the characters. This directive performs a character translation from NL to CR followed
by NR.

If the kernel character output device is concurrently accessed, then interleaved output may
occur.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• Formatting of floating point numbers is not supported.

492 Chapter 21. Kernel Character I/O Support

Chapter 21 Section 21.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

21.2.6 rtems_printk_printer()

Outputs the characters defined by the format string and the variable argument list to the kernel
character output device.

CALLING SEQUENCE:

1 int rtems_printk_printer(void *unused, const char *fmt, va_list ap);

PARAMETERS:

unused
This parameter is an unused argument.

fmt
This parameter is a printf()-style format string.

ap
This parameter is the variable argument list required by the format string.

RETURN VALUES:

Returns the number of characters output to the kernel character output device.

NOTES:

The directive may be used to print debug and test information. It uses rtems_putc() (page 488)
to output the characters. This directive performs a character translation from NL to CR followed
by NR.

If the kernel character output device is concurrently accessed, then interleaved output may
occur.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

• Formatting of floating point numbers is not supported.

21.2. Directives 493

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 21 Section 21.2

21.2.7 getchark()

Tries to dequeue a character from the kernel character input device.

CALLING SEQUENCE:

1 int getchark(void);

DESCRIPTION:

The directive tries to dequeue a character from the kernel character input device using the
polled character input implementation referenced by BSP_poll_char if it is available.

RETURN VALUES:

-1
The BSP_poll_char pointer was equal to NULL.

-1
There was no character enqueued on the kernel character input device.

Returns the character least recently enqueued on the kernel character input device as an un-
signed character value.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

494 Chapter 21. Kernel Character I/O Support

https://en.cppreference.com/w/c/types/NULL

CHAPTER

TWENTYTWO

CACHE MANAGER

495

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.1

22.1 Introduction

The Cache Manager provides functions to perform maintenance operations for data and instruc-
tion caches.

The actual actions of the Cache Manager operations depend on the hardware and the imple-
mentation provided by the CPU architecture port or a board support package. Cache implemen-
tations tend to be highly hardware dependent. The directives provided by the Cache Manager
are:

• rtems_cache_flush_multiple_data_lines() (page 498) - Flushes the data cache lines covering
the memory area.

• rtems_cache_invalidate_multiple_data_lines() (page 499) - Invalidates the data cache lines
covering the memory area.

• rtems_cache_invalidate_multiple_instruction_lines() (page 500) - Invalidates the instruc-
tion cache lines covering the memory area.

• rtems_cache_instruction_sync_after_code_change() (page 501) - Ensures necessary syn-
chronization required after code changes.

• rtems_cache_get_maximal_line_size() (page 502) - Gets the maximal cache line size in
bytes of all caches (data, instruction, or unified).

• rtems_cache_get_data_line_size() (page 503) - Gets the data cache line size in bytes.

• rtems_cache_get_instruction_line_size() (page 504) - Gets the instruction cache line size in
bytes.

• rtems_cache_get_data_cache_size() (page 505) - Gets the data cache size in bytes for the
cache level.

• rtems_cache_get_instruction_cache_size() (page 506) - Gets the instruction cache size in
bytes for the cache level.

• rtems_cache_flush_entire_data() (page 507) - Flushes the entire data cache.

• rtems_cache_invalidate_entire_data() (page 508) - Invalidates the entire data cache.

• rtems_cache_invalidate_entire_instruction() (page 509) - Invalidates the entire instruction
cache.

• rtems_cache_enable_data() (page 510) - Enables the data cache.

• rtems_cache_disable_data() (page 511) - Disables the data cache.

• rtems_cache_enable_instruction() (page 512) - Enables the instruction cache.

• rtems_cache_disable_instruction() (page 513) - Disables the instruction cache.

• rtems_cache_aligned_malloc() (page 514) - Allocates memory from the C Program Heap
which begins at a cache line boundary.

496 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2 Directives

This section details the directives of the Cache Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

22.2. Directives 497

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.1 rtems_cache_flush_multiple_data_lines()

Flushes the data cache lines covering the memory area.

CALLING SEQUENCE:

1 void rtems_cache_flush_multiple_data_lines(const void *begin, size_t size);

PARAMETERS:

begin
This parameter is the begin address of the memory area to flush.

size
This parameter is the size in bytes of the memory area to flush.

DESCRIPTION:

Dirty data cache lines covering the area are transfered to memory. Depending on the cache
implementation this may mark the lines as invalid.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

498 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.2 rtems_cache_invalidate_multiple_data_lines()

Invalidates the data cache lines covering the memory area.

CALLING SEQUENCE:

1 void rtems_cache_invalidate_multiple_data_lines(
2 const void *begin,
3 size_t size
4);

PARAMETERS:

begin
This parameter is the begin address of the memory area to invalidate.

size
This parameter is the size in bytes of the memory area to invalidate.

DESCRIPTION:

The cache lines covering the area are marked as invalid. A later read access in the area will load
the data from memory.

NOTES:

In case the area is not aligned on cache line boundaries, then this operation may destroy unre-
lated data.

On some systems, the cache lines may be flushed before they are invalidated.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 499

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.3 rtems_cache_invalidate_multiple_instruction_lines()

Invalidates the instruction cache lines covering the memory area.

CALLING SEQUENCE:

1 void rtems_cache_invalidate_multiple_instruction_lines(
2 const void *begin,
3 size_t size
4);

PARAMETERS:

begin
This parameter is the begin address of the memory area to invalidate.

size
This parameter is the size in bytes of the memory area to invalidate.

DESCRIPTION:

The cache lines covering the area are marked as invalid. A later instruction fetch from the area
will result in a load from memory.

NOTES:

In SMP configurations, on processors without instruction cache snooping, this operation will
invalidate the instruction cache lines on all processors.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

500 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.4 rtems_cache_instruction_sync_after_code_change()

Ensures necessary synchronization required after code changes.

CALLING SEQUENCE:

1 void rtems_cache_instruction_sync_after_code_change(
2 const void *begin,
3 size_t size
4);

PARAMETERS:

begin
This parameter is the begin address of the code area to synchronize.

size
This parameter is the size in bytes of the code area to synchronize.

NOTES:

When code is loaded or modified, then most systems require synchronization instructions to up-
date the instruction caches so that the loaded or modified code is fetched. For example, systems
with separate data and instruction caches or systems without instruction cache snooping. The
directives should be used by run time loader for example.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 501

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.5 rtems_cache_get_maximal_line_size()

Gets the maximal cache line size in bytes of all caches (data, instruction, or unified).

CALLING SEQUENCE:

1 size_t rtems_cache_get_maximal_line_size(void);

RETURN VALUES:

0
There is no cache present.

Returns the maximal cache line size in bytes of all caches (data, instruction, or unified).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

502 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.6 rtems_cache_get_data_line_size()

Gets the data cache line size in bytes.

CALLING SEQUENCE:

1 size_t rtems_cache_get_data_line_size(void);

RETURN VALUES:

0
There is no data cache present.

Returns the data cache line size in bytes. For multi-level caches this is the maximum of the
cache line sizes of all levels.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 503

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.7 rtems_cache_get_instruction_line_size()

Gets the instruction cache line size in bytes.

CALLING SEQUENCE:

1 size_t rtems_cache_get_instruction_line_size(void);

RETURN VALUES:

0
There is no instruction cache present.

Returns the instruction cache line size in bytes. For multi-level caches this is the maximum of
the cache line sizes of all levels.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

504 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.8 rtems_cache_get_data_cache_size()

Gets the data cache size in bytes for the cache level.

CALLING SEQUENCE:

1 size_t rtems_cache_get_data_cache_size(uint32_t level);

PARAMETERS:

level
This parameter is the requested data cache level. The cache level zero specifies the entire
data cache.

RETURN VALUES:

0
There is no data cache present at the requested cache level.

Returns the data cache size in bytes of the requested cache level.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 505

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.9 rtems_cache_get_instruction_cache_size()

Gets the instruction cache size in bytes for the cache level.

CALLING SEQUENCE:

1 size_t rtems_cache_get_instruction_cache_size(uint32_t level);

PARAMETERS:

level
This parameter is the requested instruction cache level. The cache level zero specifies the
entire instruction cache.

RETURN VALUES:

0
There is no instruction cache present at the requested cache level.

Returns the instruction cache size in bytes of the requested cache level.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

506 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.10 rtems_cache_flush_entire_data()

Flushes the entire data cache.

CALLING SEQUENCE:

1 void rtems_cache_flush_entire_data(void);

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 507

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.11 rtems_cache_invalidate_entire_data()

Invalidates the entire data cache.

CALLING SEQUENCE:

1 void rtems_cache_invalidate_entire_data(void);

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

508 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.12 rtems_cache_invalidate_entire_instruction()

Invalidates the entire instruction cache.

CALLING SEQUENCE:

1 void rtems_cache_invalidate_entire_instruction(void);

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 509

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.13 rtems_cache_enable_data()

Enables the data cache.

CALLING SEQUENCE:

1 void rtems_cache_enable_data(void);

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

510 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.14 rtems_cache_disable_data()

Disables the data cache.

CALLING SEQUENCE:

1 void rtems_cache_disable_data(void);

NOTES:

On some targets or configurations, calling this directive may cause a fatal error
with a fatal source of INTERNAL_ERROR_CORE (page 518) and fatal code of INTER-
NAL_ERROR_CANNOT_DISABLE_DATA_CACHE (page 519). The data cache may be necessary
to provide atomic operations. In SMP configurations, the data cache may be required to ensure
data coherency. See the BSP documentation in the RTEMS User Manual for more information.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 511

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.15 rtems_cache_enable_instruction()

Enables the instruction cache.

CALLING SEQUENCE:

1 void rtems_cache_enable_instruction(void);

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

512 Chapter 22. Cache Manager

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

22.2.16 rtems_cache_disable_instruction()

Disables the instruction cache.

CALLING SEQUENCE:

1 void rtems_cache_disable_instruction(void);

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

22.2. Directives 513

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 22 Section 22.2

22.2.17 rtems_cache_aligned_malloc()

Allocates memory from the C Program Heap which begins at a cache line boundary.

CALLING SEQUENCE:

1 void *rtems_cache_aligned_malloc(size_t size);

PARAMETERS:

size
This parameter is the size in bytes of the memory area to allocate.

RETURN VALUES:

NULL
There is not enough memory available to satisfy the allocation request.

Returns the begin address of the allocated memory. The begin address is on a cache line bound-
ary.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

514 Chapter 22. Cache Manager

https://en.cppreference.com/w/c/types/NULL

CHAPTER

TWENTYTHREE

FATAL ERROR MANAGER

515

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.1

23.1 Introduction

The Fatal Error Manager processes all fatal or irrecoverable errors and other sources of system
termination (for example after exit()). Fatal errors are identified by the fatal source and code
pair. The directives provided by the Fatal Error Manager are:

• rtems_fatal() (page 526) - Invokes the fatal error handler.

• rtems_panic() (page 527) - Prints the message and invokes the fatal error handler.

• rtems_shutdown_executive() (page 528) - Invokes the fatal error handler.

• rtems_exception_frame_print() (page 529) - Prints the exception frame.

• rtems_fatal_source_text() (page 530) - Returns a descriptive text for the fatal source.

• rtems_internal_error_text() (page 531) - Returns a descriptive text for the internal error
code.

• rtems_fatal_error_occurred() (page 532) - Invokes the fatal error handler.

516 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

23.2 Background

23.2.1 Overview

The fatal error manager is called upon detection of an irrecoverable error condition by either
RTEMS or the application software. Fatal errors are also used in case it is difficult or impossible
to return an error condition by other means, e.g. a return value of a directive call. Fatal errors
can be detected from various sources, for example

• the executive (RTEMS),

• support libraries,

• user system code,

• user application code, and

• processor interrupts and exceptions (data abort, instruction prefetch errors, ECC errors,
spurious interrupts, etc.).

RTEMS automatically invokes the fatal error manager upon detection of an error it considers
to be fatal. Similarly, the user should invoke the fatal error manager upon detection of a fatal
error.

Each user extensions set may include a fatal error handler. The fatal error handler in the initial
extension sets can be used to provide access to debuggers and monitors which may be present
on the target hardware. If any user-supplied fatal error handlers are installed, the fatal error
manager will invoke them. Usually, the board support package provides a fatal error extension
which resets the board. If no user handlers are configured or if all the user handler return
control to the fatal error manager, then the CPU port provided idle loop executes.

23.2.2 System Termination Procedure

The _Terminate() handler is invoked to terminate the system. It is called by all services which
determine that a system termination is required. For example, it is called by all higher level
directives which announce a fatal error, see Announcing a Fatal Error (page 524).

The first action of the system termination handler is to disable maskable interrupts. This ensures
that interrupts on this processor do not interfere with the system termination procedure. This
reduces the likelihood to end up in a recursive system termination procedure.

The second action of the system termination handler is to call the fatal extensions of the user
extensions.

The fatal extensions are called with three parameters:

• the fatal source (page 518),

• a legacy parameter which is always set to false, and

• an error code with a fatal source dependent content.

The fatal extensions of the initial extension sets are invoked first. For them, the following exe-
cution environment is required

• a valid stack pointer and enough stack space,

• a valid code memory, and

• valid read-only data.

23.2. Background 517

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.2

In uniprocessor configurations, the read-write data (including .bss segment) is not required.
In SMP configurations, however, the read-write data must have been initialized to determine
the state of the other processors and request them to shut-down if necessary. The board sup-
port package (BSP) may install an initial extension that performs a system reset. See the BSP
documentation in the RTEMS User Manual for more information how the system reset is done.
The BSP provided fatal extension can be disabled by the CONFIGURE_DISABLE_BSP_SETTINGS
(page 568) application configuration option. It is recommended to provide an application-
specific fatal extension using the CONFIGURE_INITIAL_EXTENSIONS (page 573) application
configuration option.

In certain error conditions, it may be unreliable to carry out the following steps of the termi-
nation procedure since the read-write data may be corrupt. One of the fatal extensions of the
initial extension set should reset the system to stop the system termination procedure.

After invoking the fatal extensions of the initial extension sets, the fatal extensions of the dy-
namic extension sets are invoked. For this procedure valid read-write data is required.

The last action of the system termination handler is to execute the CPU port provided idle loop
with maskable interrupts disabled. Please note, that properly configured applications should
not reach this point.

23.2.3 Fatal Sources

The following fatal sources are defined for RTEMS via the rtems_fatal_source enumeration.
Each symbolic name has the corresponding numeric fatal source in parenthesis.

INTERNAL_ERROR_CORE (0)
Errors of the core operating system. See Internal Error Codes (page 519).

INTERNAL_ERROR_RTEMS_API (1)
Errors of the Classic API.

INTERNAL_ERROR_POSIX_API (2)
Errors of the POSIX API.

RTEMS_FATAL_SOURCE_BDBUF (3)
Fatal source for the block device cache. See rtems_bdbuf_fatal_code.

RTEMS_FATAL_SOURCE_APPLICATION (4)
Fatal source for application-specific errors. The fatal code is application-specific.

RTEMS_FATAL_SOURCE_EXIT (5)
Fatal source of exit(). The fatal code is the exit() status code.

RTEMS_FATAL_SOURCE_BSP (6)
Fatal source for BSP errors. The fatal codes are defined in <bsp/fatal.h>. Examples are
interrupt and exception initialization. See bsp_fatal_code and bsp_fatal().

RTEMS_FATAL_SOURCE_ASSERT (7)
Fatal source of assert(). The fatal code is the pointer value of the assert context. See
rtems_assert_context.

RTEMS_FATAL_SOURCE_STACK_CHECKER (8)
Fatal source of the stack checker. The fatal code is the object name of the executing task.

RTEMS_FATAL_SOURCE_EXCEPTION (9)
Fatal source of the exceptions. The fatal code is the pointer value of the exception frame
pointer. See rtems_exception_frame and rtems_exception_frame_print.

518 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RTEMS_FATAL_SOURCE_SMP (10)
Fatal source of SMP domain. See SMP_Fatal_code.

RTEMS_FATAL_SOURCE_PANIC (11)
Fatal source of rtems_panic(), see rtems_panic.

RTEMS_FATAL_SOURCE_INVALID_HEAP_FREE (12)
Fatal source for invalid C program heap frees via free(). The fatal code is the bad pointer.

RTEMS_FATAL_SOURCE_HEAP (13)
Fatal source for heap errors. The fatal code is the address to a heap error context. See
Heap_Error_context.

23.2.4 Internal Error Codes

The following error codes are defined for the INTERNAL_ERROR_CORE fatal source. Each symbolic
name has the corresponding numeric error code in parenthesis.

INTERNAL_ERROR_TOO_LITTLE_WORKSPACE (2)
There is not enough memory for the workspace. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_THREAD_EXITTED (5)
A non-POSIX thread entry function returned. This is an API usage error.

An example code to provoke this fatal error is:

1 rtems_task task(rtems_task_argument arg)
2 {
3 /* Classic API tasks must not return */
4 }
5

6 void create_bad_task(void)
7 {
8 rtems_status_code sc;
9 rtems_id task_id;

10

11 sc = rtems_task_create(
12 rtems_build_name('T', 'A', 'S', 'K'),
13 1,
14 RTEMS_MINIMUM_STACK_SIZE,
15 RTEMS_DEFAULT_MODES,
16 RTEMS_DEFAULT_ATTRIBUTES,
17 &task_id
18);
19 assert(sc == RTEMS_SUCCESSFUL);
20

21 sc = rtems_task_start(task_id, task, 0);
22 assert(sc == RTEMS_SUCCESSFUL);
23 }

INTERNAL_ERROR_INCONSISTENT_MP_INFORMATION (6)
This fatal error can only occur on MPCI configurations. The MPCI nodes or global objects
configuration is inconsistent. This fatal error may occur during system initialization. It is an
application configuration error.

23.2. Background 519

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.2

INTERNAL_ERROR_INVALID_NODE (7)
This fatal error can only occur on MPCI configurations. The own MPCI node number is invalid.
This fatal error may occur during system initialization. It is an application configuration error.

INTERNAL_ERROR_NO_MPCI (8)
This fatal error can only occur on MPCI configurations. There is no MPCI configuration table.
This fatal error may occur during system initialization. It is an application configuration error.

INTERNAL_ERROR_BAD_PACKET (9)
This fatal error can only occur on MPCI configurations. The MPCI server thread received a
bad packet.

INTERNAL_ERROR_OUT_OF_PACKETS (10)
This fatal error can only occur on MPCI configurations. The MPCI packet pool is empty. It is
an application configuration error.

INTERNAL_ERROR_OUT_OF_GLOBAL_OBJECTS (11)
This fatal error can only occur on MPCI configurations. The MPCI global objects pool is empty.
It is an application configuration error.

INTERNAL_ERROR_OUT_OF_PROXIES (12)
This fatal error can only occur on MPCI configurations. The MPCI thread proxy pool is empty.
It is an application configuration error.

INTERNAL_ERROR_INVALID_GLOBAL_ID (13)
This fatal error can only occur on MPCI configurations. The system cannot find the global
object for a specific object identifier. In case this happens, then this is probably an operating
system bug.

INTERNAL_ERROR_NO_MEMORY_FOR_HEAP (23)
There is not enough memory for the C program heap. This fatal error may occur during
system initialization. It is an application configuration error.

INTERNAL_ERROR_CPU_ISR_INSTALL_VECTOR (24)
The use of _CPU_ISR_install_vector() is illegal on this system.

INTERNAL_ERROR_RESOURCE_IN_USE (25)
This fatal error can only occur on debug configurations. It happens in case a thread which
owns mutexes is deleted. Mutexes owned by a deleted thread are in an inconsistent state.

INTERNAL_ERROR_RTEMS_INIT_TASK_ENTRY_IS_NULL (26)
An RTEMS initialization task entry function is NULL. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_THREAD_QUEUE_DEADLOCK (28)
A deadlock was detected during a thread queue enqueue operation.

INTERNAL_ERROR_THREAD_QUEUE_ENQUEUE_STICKY_FROM_BAD_STATE (29)
This fatal error can only happen in SMP configurations. It is not allowed to obtain MrsP
semaphores in a context with thread dispatching disabled, for example interrupt context.

An example code to provoke this fatal error is:

1 rtems_timer_service_routine bad(rtems_id timer_id, void *arg)
2 {
3 rtems_id *sem_id;
4

(continues on next page)

520 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

5 sem_id = arg;
6

7 rtems_semaphore_obtain(*sem_id, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
8 assert(0);
9 }

10

11 rtems_task fire_bad_timer(rtems_task_argument arg)
12 {
13 rtems_status_code sc;
14 rtems_id sem_id;
15 rtems_id timer_id;
16

17 sc = rtems_semaphore_create(
18 rtems_build_name('M', 'R', 'S', 'P'),
19 1,
20 RTEMS_MULTIPROCESSOR_RESOURCE_SHARING
21 | RTEMS_BINARY_SEMAPHORE,
22 1,
23 &sem_id
24);
25 assert(sc == RTEMS_SUCCESSFUL);
26

27 sc = rtems_timer_create(
28 rtems_build_name('E', 'V', 'I', 'L'),
29 &timer_id
30);
31 assert(sc == RTEMS_SUCCESSFUL);
32

33 sc = rtems_semaphore_obtain(sem_id, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
34 assert(sc == RTEMS_SUCCESSFUL);
35

36 sc = rtems_timer_fire_after(timer_id, 1, bad, &sem_id);
37 assert(sc == RTEMS_SUCCESSFUL);
38

39 rtems_task_wake_after(2);
40 assert(0);
41 }

INTERNAL_ERROR_BAD_THREAD_DISPATCH_DISABLE_LEVEL (30)
It is illegal to call blocking operating system services with thread dispatching disabled, for
example in interrupt context.

An example code to provoke this fatal error is:

1 void bad(rtems_id id, void *arg)
2 {
3 rtems_task_wake_after(RTEMS_YIELD_PROCESSOR);
4 assert(0);
5 }
6

(continues on next page)

23.2. Background 521

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.2

(continued from previous page)

7 void fire_bad_timer(void)
8 {
9 rtems_status_code sc;

10 rtems_id id;
11

12 sc = rtems_timer_create(
13 rtems_build_name('E', 'V', 'I', 'L'),
14 &id
15);
16 assert(sc == RTEMS_SUCCESSFUL);
17

18 sc = rtems_timer_fire_after(id, 1, bad, NULL);
19 assert(sc == RTEMS_SUCCESSFUL);
20

21 rtems_task_wake_after(2);
22 assert(0);
23 }

INTERNAL_ERROR_BAD_THREAD_DISPATCH_ENVIRONMENT (31)
In SMP configurations, it is a fatal error to call blocking operating system with interrupts dis-
abled, since this prevents delivery of inter-processor interrupts. This could lead to executing
threads which are not allowed to execute resulting in undefined system behaviour.

Some CPU ports, for example the ARM Cortex-M port, have a similar problem, since the
interrupt state is not a part of the thread context.

This fatal error is detected in the operating system core function _Thread_Do_dispatch()
responsible to carry out a thread dispatch.

An example code to provoke this fatal error is:

1 void bad(void)
2 {
3 rtems_interrupt_level level;
4

5 rtems_interrupt_local_disable(level);
6 rtems_task_suspend(RTEMS_SELF);
7 rtems_interrupt_local_enable(level);
8 }

INTERNAL_ERROR_RTEMS_INIT_TASK_CREATE_FAILED (32)
The creation of the RTEMS initialization task failed. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_POSIX_INIT_THREAD_CREATE_FAILED (33)
The creation of the POSIX initialization thread failed. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_LIBIO_STDOUT_FD_OPEN_FAILED (36)
Open of the standard output file descriptor failed or resulted in an unexpected file descriptor
number. This fatal error may occur during system initialization. It is an application configu-
ration error.

522 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

INTERNAL_ERROR_LIBIO_STDERR_FD_OPEN_FAILED (37)
Open of the standard error file descriptor failed or resulted in an unexpected file descriptor
number. This fatal error may occur during system initialization. It is an application configu-
ration error.

INTERNAL_ERROR_ILLEGAL_USE_OF_FLOATING_POINT_UNIT (38)
The floating point unit was used illegally, for example in interrupt context on some architec-
tures.

INTERNAL_ERROR_ARC4RANDOM_GETENTROPY_FAIL (39)
A getentropy() system call failed in one of the ARC4RANDOM(3) functions. This fatal error
can only be fixed with a different implementation of getentropy().

INTERNAL_ERROR_NO_MEMORY_FOR_PER_CPU_DATA (40)
This fatal error may happen during workspace initialization. There is not enough memory
available to populate the per-CPU data areas, see <rtems/score/percpudata.h>.

INTERNAL_ERROR_TOO_LARGE_TLS_SIZE (41)
This fatal error may happen during system initialization. The actual thread-local
storage (TLS) size of the application exceeds the configured maximum, see CONFIG-
URE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE (page 578). You can get the thread-local
storage size of an application using the RTEMS tool rtems-execinfo.

INTERNAL_ERROR_RTEMS_INIT_TASK_CONSTRUCT_FAILED (42)
The construction of the RTEMS initialization task failed. This fatal error may occur during
system initialization. It is an application configuration error.

INTERNAL_ERROR_IDLE_THREAD_CREATE_FAILED (43)
The creation of an IDLE task failed. This fatal error may occur during system initialization. It
happens if a task create extension fails for an IDLE task.

INTERNAL_ERROR_NO_MEMORY_FOR_IDLE_TASK_STORAGE (44)
There was not enough memory available to allocate an IDLE task stack. This fatal error may
occur during system initialization. It is an application configuration error.

INTERNAL_ERROR_IDLE_THREAD_STACK_TOO_SMALL (45)
The task stack size of an IDLE task would have been less than the configured stack size for
IDLE tasks, see CONFIGURE_IDLE_TASK_STACK_SIZE (page 708). This fatal error may occur
during system initialization. It is an application configuration error.

INTERNAL_ERROR_CANNOT_DISABLE_DATA_CACHE (46)
This fatal error may be caused by rtems_cache_disable_data() (page 511) if the data cache
cannot be disabled for a particular target or configuration. The data cache may be necessary
to provide atomic operations. In SMP configurations, the data cache may be required to ensure
data coherency. See the BSP documentation in the RTEMS User Manual for more information.

23.2. Background 523

https://man.openbsd.org/arc4random.3
https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/rtems/score/percpudata.h

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.3

23.3 Operations

23.3.1 Announcing a Fatal Error

A fatal error can be announced by calling for example rtems_fatal() (page 526),
rtems_shutdown_executive() (page 528), rtems_panic() (page 527), rtems_fatal_error_occurred()
(page 532), or exit().

524 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

23.4 Directives

This section details the directives of the Fatal Error Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

23.4. Directives 525

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.4

23.4.1 rtems_fatal()

Invokes the fatal error handler.

CALLING SEQUENCE:

1 void rtems_fatal(
2 rtems_fatal_source fatal_source,
3 rtems_fatal_code fatal_code
4);

PARAMETERS:

fatal_source
This parameter is the fatal source.

fatal_code
This parameter is the fatal code.

DESCRIPTION:

This directive processes fatal errors. The fatal source is set to the value of the fatal_source
parameter. The fatal code is set to the value of the fatal_code parameter.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not return to the caller.

• The directive invokes the fatal error extensions in extension forward order.

• The directive does not invoke handlers registered by atexit() or on_exit().

• The directive may terminate the system.

526 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

23.4.2 rtems_panic()

Prints the message and invokes the fatal error handler.

CALLING SEQUENCE:

1 void rtems_panic(const char *fmt, ...);

PARAMETERS:

fmt
This parameter is the message format.

...
This parameter is a list of optional parameters required by the message format.

DESCRIPTION:

This directive prints a message via printk() (page 491) specified by the fmt parameter and
optional parameters and then invokes the fatal error handler. The fatal source is set to
RTEMS_FATAL_SOURCE_PANIC. The fatal code is set to the value of the fmt parameter value.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not return to the caller.

• The directive invokes the fatal error extensions in extension forward order.

• The directive does not invoke handlers registered by atexit() or on_exit().

• The directive may terminate the system.

23.4. Directives 527

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.4

23.4.3 rtems_shutdown_executive()

Invokes the fatal error handler.

CALLING SEQUENCE:

1 void rtems_shutdown_executive(uint32_t fatal_code);

PARAMETERS:

fatal_code
This parameter is the fatal code.

DESCRIPTION:

This directive processes fatal errors. The fatal source is set to RTEMS_FATAL_SOURCE_EXIT. The
fatal code is set to the value of the fatal_code parameter.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not return to the caller.

• The directive invokes the fatal error extensions in extension forward order.

• The directive does not invoke handlers registered by atexit() or on_exit().

• The directive may terminate the system.

528 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

23.4.4 rtems_exception_frame_print()

Prints the exception frame.

CALLING SEQUENCE:

1 void rtems_exception_frame_print(const rtems_exception_frame *frame);

PARAMETERS:

frame
This parameter is the reference to the exception frame to print.

DESCRIPTION:

The exception frame is printed in an architecture-dependent format using printk() (page 491).

23.4. Directives 529

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.4

23.4.5 rtems_fatal_source_text()

Returns a descriptive text for the fatal source.

CALLING SEQUENCE:

1 const char *rtems_fatal_source_text(rtems_fatal_source fatal_source);

PARAMETERS:

fatal_source
This parameter is the fatal source.

RETURN VALUES:

“?”
The fatal_source parameter value was not a fatal source.

Returns a descriptive text for the fatal source. The text for the fatal source is the enumerator
constant name.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

530 Chapter 23. Fatal Error Manager

Chapter 23 Section 23.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

23.4.6 rtems_internal_error_text()

Returns a descriptive text for the internal error code.

CALLING SEQUENCE:

1 const char *rtems_internal_error_text(rtems_fatal_code internal_error_code);

PARAMETERS:

internal_error_code
This parameter is the internal error code.

RETURN VALUES:

“?”
The internal_error_code parameter value was not an internal error code.

Returns a descriptive text for the internal error code. The text for the internal error code is the
enumerator constant name.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

23.4. Directives 531

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 23 Section 23.4

23.4.7 rtems_fatal_error_occurred()

Invokes the fatal error handler.

CALLING SEQUENCE:

1 void rtems_fatal_error_occurred(uint32_t fatal_code);

PARAMETERS:

fatal_code
This parameter is the fatal code.

DESCRIPTION:

This directive processes fatal errors. The fatal source is set to INTERNAL_ERROR_RTEMS_API. The
fatal code is set to the value of the fatal_code parameter.

NOTES:

This directive is deprecated and should not be used in new code. It is recommended to not use
this directive since error locations cannot be uniquely identified. A recommended alternative
directive is rtems_fatal() (page 526).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not return to the caller.

• The directive invokes the fatal error extensions in extension forward order.

• The directive does not invoke handlers registered by atexit() or on_exit().

• The directive may terminate the system.

532 Chapter 23. Fatal Error Manager

CHAPTER

TWENTYFOUR

BOARD SUPPORT PACKAGES

533

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 24 Section 24.1

24.1 Introduction

A board support package (BSP) is a collection of user-provided facilities which interface RTEMS
and an application with a specific hardware platform. These facilities may include hardware
initialization, device drivers, user extensions, and a Multiprocessor Communications Interface
(MPCI). However, a minimal BSP need only support processor reset and initialization and, if
needed, a clock tick.

534 Chapter 24. Board Support Packages

Chapter 24 Section 24.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

24.2 Reset and Initialization

An RTEMS based application is initiated or re-initiated when the processor is reset. This ini-
tialization code is responsible for preparing the target platform for the RTEMS application.
Although the exact actions performed by the initialization code are highly processor and target
dependent, the logical functionality of these actions are similar across a variety of processors
and target platforms.

Normally, the BSP and some of the application initialization is intertwined in the RTEMS initial-
ization sequence controlled by the shared function boot_card().

The reset application initialization code is executed first when the processor is reset. All of the
hardware must be initialized to a quiescent state by this software before initializing RTEMS.
When in quiescent state, devices do not generate any interrupts or require any servicing by the
application. Some of the hardware components may be initialized in this code as well as any
application initialization that does not involve calls to RTEMS directives.

The processor’s Interrupt Vector Table which will be used by the application may need to be
set to the required value by the reset application initialization code. Because interrupts are
enabled automatically by RTEMS as part of the context switch to the first task, the Interrupt
Vector Table MUST be set before this directive is invoked to ensure correct interrupt vectoring.
The processor’s Interrupt Vector Table must be accessible by RTEMS as it will be modified by
the when installing user Interrupt Service Routines (ISRs) On some CPUs, RTEMS installs it’s
own Interrupt Vector Table as part of initialization and thus these requirements are met auto-
matically. The reset code which is executed before the call to any RTEMS initialization routines
has the following requirements:

• Must not make any blocking RTEMS directive calls.

• If the processor supports multiple privilege levels, must leave the processor in the most
privileged, or supervisory, state.

• Must allocate a stack of sufficient size to execute the initialization and shutdown of the
system. This stack area will NOT be used by any task once the system is initialized. This
stack is often reserved via the linker script or in the assembly language start up file.

• Must initialize the stack pointer for the initialization process to that allocated.

• Must initialize the processor’s Interrupt Vector Table.

• Must disable all maskable interrupts.

• If the processor supports a separate interrupt stack, must allocate the interrupt stack and
initialize the interrupt stack pointer.

At the end of the initialization sequence, RTEMS does not return to the BSP initialization code,
but instead context switches to the highest priority task to begin application execution. This
task is typically a User Initialization Task which is responsible for performing both local and
global application initialization which is dependent on RTEMS facilities. It is also responsible
for initializing any higher level RTEMS services the application uses such as networking and
blocking device drivers.

24.2. Reset and Initialization 535

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 24 Section 24.2

24.2.1 Interrupt Stack Requirements

The worst-case stack usage by interrupt service routines must be taken into account when de-
signing an application. If the processor supports interrupt nesting, the stack usage must include
the deepest nest level. The worst-case stack usage must account for the following requirements:

• Processor’s interrupt stack frame

• Processor’s subroutine call stack frame

• RTEMS system calls

• Registers saved on stack

• Application subroutine calls

The size of the interrupt stack must be greater than or equal to the confugured minimum stack
size.

24.2.2 Processors with a Separate Interrupt Stack

Some processors support a separate stack for interrupts. When an interrupt is vectored and the
interrupt is not nested, the processor will automatically switch from the current stack to the
interrupt stack. The size of this stack is based solely on the worst-case stack usage by interrupt
service routines.

The dedicated interrupt stack for the entire application on some architectures is supplied and
initialized by the reset and initialization code of the user’s Board Support Package. Whether
allocated and initialized by the BSP or RTEMS, since all ISRs use this stack, the stack size must
take into account the worst case stack usage by any combination of nested ISRs.

24.2.3 Processors Without a Separate Interrupt Stack

Some processors do not support a separate stack for interrupts. In this case, without special
assistance every task’s stack must include enough space to handle the task’s worst-case stack
usage as well as the worst-case interrupt stack usage. This is necessary because the worst-case
interrupt nesting could occur while any task is executing.

On many processors without dedicated hardware managed interrupt stacks, RTEMS manages a
dedicated interrupt stack in software. If this capability is supported on a CPU, then it is logically
equivalent to the processor supporting a separate interrupt stack in hardware.

536 Chapter 24. Board Support Packages

Chapter 24 Section 24.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

24.3 Device Drivers

Device drivers consist of control software for special peripheral devices and provide a logical in-
terface for the application developer. The RTEMS I/O manager provides directives which allow
applications to access these device drivers in a consistent fashion. A Board Support Package may
include device drivers to access the hardware on the target platform. These devices typically
include serial and parallel ports, counter/timer peripherals, real-time clocks, disk interfaces,
and network controllers.

For more information on device drivers, refer to the I/O Manager chapter.

24.3.1 Clock Tick Device Driver

Most RTEMS applications will include a clock tick device driver which invokes a clock tick di-
rective at regular intervals. The clock tick is necessary if the application is to utilize timeslicing,
the clock manager, the timer manager, the rate monotonic manager, or the timeout option on
blocking directives.

The clock tick is usually provided as an interrupt from a counter/timer or a real-time clock de-
vice. When a counter/timer is used to provide the clock tick, the device is typically programmed
to operate in continuous mode. This mode selection causes the device to automatically reload
the initial count and continue the countdown without programmer intervention. This reduces
the overhead required to manipulate the counter/timer in the clock tick ISR and increases the
accuracy of tick occurrences. The initial count can be based on the microseconds_per_tick field
in the RTEMS Configuration Table. An alternate approach is to set the initial count for a fixed
time period (such as one millisecond) and have the ISR invoke a clock tick directive on the
configured microseconds_per_tick boundaries. Obviously, this can induce some error if the
configured microseconds_per_tick is not evenly divisible by the chosen clock interrupt quan-
tum.

It is important to note that the interval between clock ticks directly impacts the granularity of
RTEMS timing operations. In addition, the frequency of clock ticks is an important factor in the
overall level of system overhead. A high clock tick frequency results in less processor time being
available for task execution due to the increased number of clock tick ISRs.

24.3. Device Drivers 537

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 24 Section 24.4

24.4 User Extensions

RTEMS allows the application developer to augment selected features by invoking user-supplied
extension routines when the following system events occur:

• Task creation

• Task initiation

• Task reinitiation

• Task deletion

• Task context switch

• Post task context switch

• Task begin

• Task exits

• Fatal error detection

User extensions can be used to implement a wide variety of functions including execution pro-
filing, non-standard coprocessor support, debug support, and error detection and recovery. For
example, the context of a non-standard numeric coprocessor may be maintained via the user
extensions. In this example, the task creation and deletion extensions are responsible for allo-
cating and deallocating the context area, the task initiation and reinitiation extensions would
be responsible for priming the context area, and the task context switch extension would save
and restore the context of the device.

For more information on user extensions, refer to User Extensions Manager (page 541).

538 Chapter 24. Board Support Packages

Chapter 24 Section 24.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

24.5 Multiprocessor Communications Interface (MPCI)

RTEMS requires that an MPCI layer be provided when a multiple node application is developed.
This MPCI layer must provide an efficient and reliable communications mechanism between the
multiple nodes. Tasks on different nodes communicate and synchronize with one another via
the MPCI. Each MPCI layer must be tailored to support the architecture of the target platform.

For more information on the MPCI, refer to the Multiprocessing Manager chapter.

24.5.1 Tightly-Coupled Systems

A tightly-coupled system is a multiprocessor configuration in which the processors communicate
solely via shared global memory. The MPCI can simply place the RTEMS packets in the shared
memory space. The two primary considerations when designing an MPCI for a tightly-coupled
system are data consistency and informing another node of a packet.

The data consistency problem may be solved using atomic “test and set” operations to provide
a “lock” in the shared memory. It is important to minimize the length of time any particular
processor locks a shared data structure.

The problem of informing another node of a packet can be addressed using one of two tech-
niques. The first technique is to use an interprocessor interrupt capability to cause an interrupt
on the receiving node. This technique requires that special support hardware be provided by
either the processor itself or the target platform. The second technique is to have a node poll
for arrival of packets. The drawback to this technique is the overhead associated with polling.

24.5.2 Loosely-Coupled Systems

A loosely-coupled system is a multiprocessor configuration in which the processors communi-
cate via some type of communications link which is not shared global memory. The MPCI sends
the RTEMS packets across the communications link to the destination node. The characteristics
of the communications link vary widely and have a significant impact on the MPCI layer. For
example, the bandwidth of the communications link has an obvious impact on the maximum
MPCI throughput.

The characteristics of a shared network, such as Ethernet, lend themselves to supporting an
MPCI layer. These networks provide both the point-to-point and broadcast capabilities which
are expected by RTEMS.

24.5.3 Systems with Mixed Coupling

A mixed-coupling system is a multiprocessor configuration in which the processors commu-
nicate via both shared memory and communications links. A unique characteristic of mixed-
coupling systems is that a node may not have access to all communication methods. There
may be multiple shared memory areas and communication links. Therefore, one of the pri-
mary functions of the MPCI layer is to efficiently route RTEMS packets between nodes. This
routing may be based on numerous algorithms. In addition, the router may provide alternate
communications paths in the event of an overload or a partial failure.

24.5.4 Heterogeneous Systems

Designing an MPCI layer for a heterogeneous system requires special considerations by the
developer. RTEMS is designed to eliminate many of the problems associated with sharing data
in a heterogeneous environment. The MPCI layer need only address the representation of thirty-
two (32) bit unsigned quantities.

24.5. Multiprocessor Communications Interface (MPCI) 539

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 24 Section 24.5

For more information on supporting a heterogeneous system, refer the Supporting Heteroge-
neous Environments in the Multiprocessing Manager chapter.

540 Chapter 24. Board Support Packages

CHAPTER

TWENTYFIVE

USER EXTENSIONS MANAGER

541

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 25 Section 25.1

25.1 Introduction

The User Extensions Manager allows the application developer to augment the executive by
allowing them to supply extension routines which are invoked at critical system events. The
directives provided by the User Extensions Manager are:

• rtems_extension_create() (page 550) - Creates an extension set.

• rtems_extension_delete() (page 552) - Deletes the extension set.

• rtems_extension_ident() (page 553) - Identifies an extension set by the object name.

542 Chapter 25. User Extensions Manager

Chapter 25 Section 25.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

25.2 Background

User extensions (call-back functions) are invoked by the system when the following events occur

• thread creation,

• thread start,

• thread restart,

• thread switch,

• thread begin,

• thread exitted (return from thread entry function),

• thread termination,

• thread deletion, and

• fatal error detection (system termination).

The user extensions have event-specific arguments, invocation orders and execution contexts.
Extension sets can be installed at run-time via rtems_extension_create() (dynamic extension
sets) or at link-time via the application configuration option CONFIGURE_INITIAL_EXTENSIONS
(page 573) (initial extension sets).

The execution context of user extensions varies. Some user extensions are invoked with own-
ership of the allocator mutex. The allocator mutex protects dynamic memory allocations and
object creation/deletion. Some user extensions are invoked with thread dispatching disabled.
The fatal error extension is invoked in an arbitrary context.

25.2.1 Extension Sets

User extensions are maintained as a set. All user extensions are optional and may be NULL.
Together a set of these user extensions typically performs a specific functionality such as perfor-
mance monitoring or debugger support. The extension set is defined via the following structure.

1 typedef struct {
2 rtems_task_create_extension thread_create;
3 rtems_task_start_extension thread_start;
4 rtems_task_restart_extension thread_restart;
5 rtems_task_delete_extension thread_delete;
6 rtems_task_switch_extension thread_switch;
7 rtems_task_begin_extension thread_begin;
8 rtems_task_exitted_extension thread_exitted;
9 rtems_fatal_extension fatal;

10 rtems_task_terminate_extension thread_terminate;
11 } rtems_extensions_table;

25.2.2 TCB Extension Area

There is no system-provided storage for the initial extension sets.

The task control block (TCB) contains a pointer for each dynamic extension set. The pointer
is initialized to NULL during thread initialization before the thread create extension is invoked.
The pointer may be used by the dynamic extension set to maintain thread-specific data.

25.2. Background 543

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 25 Section 25.2

The TCB extension is an array of pointers in the TCB. The index into the table can be obtained
from the extension identifier returned when the extension object is created:

1 index = rtems_object_id_get_index(extension_id);

The number of pointers in the area is the same as the number of dynamic user extension sets
configured. This allows an application to augment the TCB with user-defined information.
For example, an application could implement task profiling by storing timing statistics in the
TCB’s extended memory area. When a task context switch is being executed, the thread switch
extension could read a real-time clock to calculate how long the task being swapped out has
run as well as timestamp the starting time for the task being swapped in.

If used, the extended memory area for the TCB should be allocated and the TCB extension
pointer should be set at the time the task is created or started by either the thread create or
thread start extension. The application is responsible for managing this extended memory area
for the TCBs. The memory may be reinitialized by the thread restart extension and should be
deallocated by the thread delete extension when the task is deleted. Since the TCB extension
buffers would most likely be of a fixed size, the RTEMS partition manager could be used to
manage the application’s extended memory area. The application could create a partition of
fixed size TCB extension buffers and use the partition manager’s allocation and deallocation
directives to obtain and release the extension buffers.

25.2.3 Order of Invocation

The user extensions are invoked in either extension forward order or extension reverse order. By
invoking the user extensions in these orders, extensions can be built upon one another. At the
following system events, the user extensions are invoked in forward order

• thread creation,

• thread start,

• thread restart,

• thread switch,

• thread begin,

• thread exitted (return from thread entry function), and

• fatal error detection.

At the following system events, the user extensions are invoked in reverse order:

• thread termination, and

• thread deletion.

At these system events, the user extensions are invoked in reverse order to insure that if an
extension set is built upon another, the more complicated user extension is invoked before the
user extension it is built upon. An example is use of the thread delete extension by the Standard
C Library. Extension sets which are installed after the Standard C Library will operate correctly
even if they utilize the C Library because the C Library’s thread delete extension is invoked after
that of the other thread delete extensions.

544 Chapter 25. User Extensions Manager

Chapter 25 Section 25.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

25.2.4 Thread Create Extension

The thread create extension is invoked during thread creation, for example via
rtems_task_create() or pthread_create(). The thread create extension is defined as follows.

1 typedef bool (*rtems_task_create_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *created
4);

The executing is a pointer to the TCB of the currently executing thread. The created is a
pointer to the TCB of the created thread. The created thread is completely initialized with
respect to the operating system.

The executing thread is the owner of the allocator mutex except during creation of the idle
threads. Since the allocator mutex allows nesting the normal memory allocation routines can
be used.

A thread create extension will frequently attempt to allocate resources. If this allocation fails,
then the thread create extension must return false and the entire thread create operation will
fail, otherwise it must return true.

The thread create extension is invoked in forward order with thread dispatching enabled (except
during system initialization).

25.2.5 Thread Start Extension

The thread start extension is invoked during a thread start, for example via rtems_task_start()
or pthread_create(). The thread start extension is defined as follows.

1 typedef void (*rtems_task_start_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *started
4);

The executing is a pointer to the TCB of the currently executing thread. The started is a
pointer to the TCB of the started thread. It is invoked after the environment of the started
thread has been loaded and the started thread has been made ready. So, in SMP configurations,
the thread may already run on another processor before the thread start extension is actually
invoked. Thread switch and thread begin extensions may run before or in parallel with the
thread start extension in SMP configurations.

The thread start extension is invoked in forward order with thread dispatching disabled.

25.2.6 Thread Restart Extension

The thread restart extension is invoked during a thread restart, for example via
rtems_task_restart(). The thread restart extension is defined as follows.

1 typedef void (*rtems_task_restart_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *restarted
4);

25.2. Background 545

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 25 Section 25.2

Both executing and restarted are pointers the TCB of the currently executing thread. It is
invoked in the context of the executing thread right before the execution context is reloaded.
The thread stack reflects the previous execution context.

The thread restart extension is invoked in forward order with thread dispatching enabled (ex-
cept during system initialization). The thread life is protected. Thread restart and delete re-
quests issued by thread restart extensions lead to recursion. The POSIX cleanup handlers, POSIX
key destructors and thread-local object destructors run in this context.

25.2.7 Thread Switch Extension

The thread switch extension is defined as follows.

1 typedef void (*rtems_task_switch_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *heir
4);

The invocation conditions of the thread switch extension depend on whether RTEMS was config-
ured for uniprocessor or SMP systems. A user must pay attention to the differences to correctly
implement a thread switch extension.

In uniprocessor configurations, the thread switch extension is invoked before the context switch
from the currently executing thread to the heir thread. The executing is a pointer to the TCB of
the currently executing thread. The heir is a pointer to the TCB of the heir thread. The context
switch initiated through the multitasking start is not covered by the thread switch extension.

In SMP configurations, the thread switch extension is invoked after the context switch to the
new executing thread (previous heir thread). The executing is a pointer to the TCB of the
previously executing thread. Despite the name, this is not the currently executing thread. The
heir is a pointer to the TCB of the newly executing thread. This is the currently executing
thread. The context switches initiated through the multitasking start are covered by the thread
switch extension. The reason for the differences to uniprocessor configurations is that the con-
text switch may update the heir thread of the processor, see Thread Dispatch Details (page 867).
The thread switch extensions are invoked with disabled interrupts and with ownership of a per-
processor SMP lock. Thread switch extensions may run in parallel on multiple processors. It is
recommended to use thread-local or per-processor data structures for thread switch extensions.
A global SMP lock should be avoided for performance reasons.

The thread switch extension is invoked in forward order with thread dispatching disabled.

25.2.8 Thread Begin Extension

The thread begin extension is invoked during a thread begin before the thread entry function is
called. The thread begin extension is defined as follows.

1 typedef void (*rtems_task_begin_extension)(
2 rtems_tcb *executing
3);

The executing is a pointer to the TCB of the currently executing thread. The thread begin
extension executes in a normal thread context and may allocate resources for the executing
thread. In particular, it has access to thread-local storage of the executing thread.

546 Chapter 25. User Extensions Manager

Chapter 25 Section 25.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The thread begin extension is invoked in forward order with thread dispatching enabled. The
thread switch extension may be called multiple times for this thread before or during the thread
begin extension is invoked.

25.2.9 Thread Exitted Extension

The thread exitted extension is invoked once the thread entry function returns. The thread
exitted extension is defined as follows.

1 typedef void (*rtems_task_exitted_extension)(
2 rtems_tcb *executing
3);

The executing is a pointer to the TCB of the currently executing thread.

This extension is invoked in forward order with thread dispatching enabled.

25.2.10 Thread Termination Extension

The thread termination extension is invoked in case a termination request is recognized by the
currently executing thread. Termination requests may result due to calls of rtems_task_delete(),
pthread_exit(), or pthread_cancel(). The thread termination extension is defined as follows.

1 typedef void (*rtems_task_terminate_extension)(
2 rtems_tcb *executing
3);

The executing is a pointer to the TCB of the currently executing thread.

It is invoked in the context of the terminated thread right before the thread dispatch to the heir
thread. The POSIX cleanup handlers, POSIX key destructors and thread-local object destructors
run in this context. Depending on the order, the thread termination extension has access to
thread-local storage and thread-specific data of POSIX keys.

The thread terminate extension is invoked in reverse order with thread dispatching enabled.
The thread life is protected. Thread restart and delete requests issued by thread terminate
extensions lead to recursion.

25.2.11 Thread Delete Extension

The thread delete extension is invoked in case a zombie thread is killed. A thread becomes a
zombie thread after it terminated. The thread delete extension is defined as follows.

1 typedef void (*rtems_task_delete_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *deleted
4);

The executing is a pointer to the TCB of the currently executing thread. The deleted is a
pointer to the TCB of the deleted thread. The executing and deleted pointers are never equal.

The executing thread is the owner of the allocator mutex. Since the allocator mutex allows
nesting the normal memory allocation routines can be used.

The thread delete extension is invoked in reverse order with thread dispatching enabled.

25.2. Background 547

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 25 Section 25.2

Please note that a thread delete extension is not immediately invoked with a call to
rtems_task_delete() or similar. The thread must first terminate and this may take some time.
The thread delete extension is invoked by rtems_task_create() or similar as a result of a lazy
garbage collection of zombie threads.

25.2.12 Fatal Error Extension

The fatal error extension is invoked during system termination (page 517). The fatal error
extension is defined as follows.

1 typedef void(*rtems_fatal_extension)(
2 rtems_fatal_source source,
3 bool always_set_to_false,
4 rtems_fatal_code code
5);

The source parameter is the fatal source indicating the subsystem the fatal condition originated
in. The always_set_to_false parameter is always set to false and provided only for backward
compatibility reasons. The code parameter is the fatal error code. This value must be interpreted
with respect to the source.

The fatal error extension is invoked in forward order.

It is strongly advised to use initial extension sets to install a fatal error extension. Usually, the
initial extension set of board support package provides a fatal error extension which resets the
board. In this case, the dynamic fatal error extensions are not invoked.

548 Chapter 25. User Extensions Manager

Chapter 25 Section 25.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

25.3 Directives

This section details the directives of the User Extensions Manager. A subsection is dedicated to
each of this manager’s directives and lists the calling sequence, parameters, description, return
values, and notes of the directive.

25.3. Directives 549

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 25 Section 25.3

25.3.1 rtems_extension_create()

Creates an extension set.

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_create(
2 rtems_name name,
3 const rtems_extensions_table *extension_table,
4 rtems_id *id
5);

PARAMETERS:

name
This parameter is the object name of the extension set.

extension_table
This parameter is the table with the extensions to be used by the extension set.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the identifier of the created extension set will be stored in this object.

DESCRIPTION:

This directive creates an extension set which resides on the local node. The extension set has
the user-defined object name specified in name. The assigned object identifier is returned in id.
This identifier is used to access the extension set with other extension set related directives.

The extension set is initialized using the extension table specified in extension_table.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
The name parameter was invalid.

RTEMS_INVALID_ADDRESS
The extension_table parameter was NULL.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_TOO_MANY
There was no inactive object available to create an extension set. The num-
ber of extension sets available to the application is configured through the CONFIG-
URE_MAXIMUM_USER_EXTENSIONS (page 623) application configuration option.

550 Chapter 25. User Extensions Manager

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 25 Section 25.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

NOTES:

The user-provided extension table is not used after the return of the directive.

Each extension of the extension table is optional and may be NULL. All extensions except the
task switch extension of the extension table are atomically and immediately installed. A task
switch extension is separately installed after the other extensions. The extensions of the exten-
sion table are invoked upon the next system event supporting an extension.

An alternative to dynamically created extension sets are initial extensions, see CONFIG-
URE_INITIAL_EXTENSIONS (page 573). Initial extensions are recommended for extension sets
which provide a fatal error extension.

For control and maintenance of the extension set, RTEMS allocates a ESCB from the local ESCB
free pool and initializes it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The number of extension sets available to the application is configured through the CON-
FIGURE_MAXIMUM_USER_EXTENSIONS (page 623) application configuration option.

25.3. Directives 551

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 25 Section 25.3

25.3.2 rtems_extension_delete()

Deletes the extension set.

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_delete(rtems_id id);

PARAMETERS:

id
This parameter is the extension set identifier.

DESCRIPTION:

This directive deletes the extension set specified by id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no extension set associated with the identifier specified by id.

NOTES:

The ESCB for the deleted extension set is reclaimed by RTEMS.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

552 Chapter 25. User Extensions Manager

Chapter 25 Section 25.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

25.3.3 rtems_extension_ident()

Identifies an extension set by the object name.

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_ident(rtems_name name, rtems_id *id);

PARAMETERS:

name
This parameter is the object name to look up.

id
This parameter is the pointer to an rtems_id (page 41) object. When the directive call is
successful, the object identifier of an object with the specified name will be stored in this
object.

DESCRIPTION:

This directive obtains an extension set identifier associated with the extension set name specified
in name.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was NULL.

RTEMS_INVALID_NAME
The name parameter was 0.

RTEMS_INVALID_NAME
There was no object with the specified name on the local node.

NOTES:

If the extension set name is not unique, then the extension set identifier will match the first
extension set with that name in the search order. However, this extension set identifier is not
guaranteed to correspond to the desired extension set.

The objects are searched from lowest to the highest index. Only the local node is searched.

The extension set identifier is used with other extension related directives to access the exten-
sion set.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive will not cause the calling task to be preempted.

25.3. Directives 553

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 25 Section 25.3

554 Chapter 25. User Extensions Manager

CHAPTER

TWENTYSIX

CONFIGURING A SYSTEM

555

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.1

26.1 Introduction

The application configuration information group provides an API to get the configuration of an
application.

RTEMS must be configured for an application. This configuration encompasses a variety of
information including the length of each clock tick, the maximum number of each informa-
tion RTEMS object that can be created, the application initialization tasks, the task scheduling
algorithm to be used, and the device drivers in the application.

Although this information is contained in data structures that are used by RTEMS at system
initialization time, the data structures themselves must not be generated by hand. RTEMS
provides a set of macros system which provides a simple standard mechanism to automate the
generation of these structures.

The RTEMS header file <rtems/confdefs.h> is at the core of the automatic generation of system
configuration. It is based on the idea of setting macros which define configuration parameters
of interest to the application and defaulting or calculating all others. This variety of macros
can automatically produce all of the configuration data required for an RTEMS application. The
term confdefs is shorthand for a Configuration Defaults.

As a general rule, application developers only specify values for the configuration parameters
of interest to them. They define what resources or features they require. In most cases, when
a parameter is not specified, it defaults to zero (0) instances, a standards compliant value, or
disabled as appropriate. For example, by default there will be 256 task priority levels but this
can be lowered by the application. This number of priority levels is required to be compliant
with the RTEID/ORKID standards upon which the Classic API is based. There are similar cases
where the default is selected to be compliant with the POSIX standard.

For each configuration parameter in the configuration tables, the macro corresponding to that
field is discussed. The RTEMS Maintainers expect that all systems can be easily configured using
the <rtems/confdefs.h> mechanism and that using this mechanism will avoid internal RTEMS
configuration changes impacting applications.

Some application configuration settings and other system parameters can be queried by the
application. The directives provided by the Application Configuration Information are:

• rtems_get_build_label() (page 743) - Gets the RTEMS build label.

• rtems_get_copyright_notice() (page 744) - Gets the RTEMS copyright notice.

• rtems_get_target_hash() (page 745) - Gets the RTEMS target hash.

• rtems_get_version_string() (page 746) - Gets the RTEMS version string.

• rtems_configuration_get_do_zero_of_workspace() (page 747) - Indicates if the RTEMS
Workspace is configured to be zeroed during system initialization for this application.

• rtems_configuration_get_idle_task_stack_size() (page 748) - Gets the IDLE task stack size
in bytes of this application.

• rtems_configuration_get_idle_task() (page 749) - Gets the IDLE task body of this applica-
tion.

• rtems_configuration_get_interrupt_stack_size() (page 750) - Gets the interrupt stack size
in bytes of this application.

• rtems_configuration_get_maximum_barriers() (page 751) - Gets the resource number of
Barrier Manager (page 355) objects configured for this application.

556 Chapter 26. Configuring a System

Chapter 26 Section 26.1 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• rtems_configuration_get_maximum_extensions() (page 752) - Gets the resource number of
User Extensions Manager (page 541) objects configured for this application.

• rtems_configuration_get_maximum_message_queues() (page 753) - Gets the resource num-
ber of Message Manager (page 365) objects configured for this application.

• rtems_configuration_get_maximum_partitions() (page 754) - Gets the resource number of
Partition Manager (page 415) objects configured for this application.

• rtems_configuration_get_maximum_periods() (page 755) - Gets the resource number of
Rate Monotonic Manager (page 299) objects configured for this application.

• rtems_configuration_get_maximum_ports() (page 756) - Gets the resource number of
Dual-Ported Memory Manager (page 455) objects configured for this application.

• rtems_configuration_get_maximum_processors() (page 757) - Gets the maximum number
of processors configured for this application.

• rtems_configuration_get_maximum_regions() (page 758) - Gets the resource number of
Region Manager (page 431) objects configured for this application.

• rtems_configuration_get_maximum_semaphores() (page 759) - Gets the resource number
of Semaphore Manager (page 327) objects configured for this application.

• rtems_configuration_get_maximum_tasks() (page 760) - Gets the resource number of Task
Manager (page 97) objects configured for this application.

• rtems_configuration_get_maximum_timers() (page 761) - Gets the resource number of
Timer Manager (page 275) objects configured for this application.

• rtems_configuration_get_microseconds_per_tick() (page 762) - Gets the number of mi-
croseconds per clock tick configured for this application.

• rtems_configuration_get_milliseconds_per_tick() (page 763) - Gets the number of millisec-
onds per clock tick configured for this application.

• rtems_configuration_get_nanoseconds_per_tick() (page 764) - Gets the number of mi-
croseconds per clock tick configured for this application.

• rtems_configuration_get_number_of_initial_extensions() (page 765) - Gets the number of
initial extensions configured for this application.

• rtems_configuration_get_stack_allocate_for_idle_hook() (page 766) - Gets the task stack
allocator allocate hook used to allocate the stack of each IDLE task configured for this
application.

• rtems_configuration_get_stack_allocate_hook() (page 767) - Gets the task stack allocator
allocate hook configured for this application.

• rtems_configuration_get_stack_allocate_init_hook() (page 768) - Gets the task stack allo-
cator initialization hook configured for this application.

• rtems_configuration_get_stack_allocator_avoids_work_space() (page 769) - Indicates if the
task stack allocator is configured to avoid the RTEMS Workspace for this application.

• rtems_configuration_get_stack_free_hook() (page 770) - Gets the task stack allocator free
hook configured for this application.

• rtems_configuration_get_stack_space_size() (page 771) - Gets the configured size in bytes
of the memory space used to allocate thread stacks for this application.

26.1. Introduction 557

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.1

• rtems_configuration_get_ticks_per_timeslice() (page 772) - Gets the clock ticks per times-
lice configured for this application.

• rtems_configuration_get_unified_work_area() (page 773) - Indicates if the RTEMS
Workspace and C Program Heap are configured to be unified for this application.

• rtems_configuration_get_user_extension_table() (page 774) - Gets the initial extensions ta-
ble configured for this application.

• rtems_configuration_get_user_multiprocessing_table() (page 775) - Gets the MPCI configu-
ration table configured for this application.

• rtems_configuration_get_work_space_size() (page 776) - Gets the RTEMS Workspace size
in bytes configured for this application.

• rtems_configuration_get_rtems_api_configuration() (page 777) - Gets the Classic API Con-
figuration Table of this application.

• rtems_resource_is_unlimited() (page 778) - Indicates if the resource is unlimited.

• rtems_resource_maximum_per_allocation() (page 779) - Gets the maximum number per
allocation of a resource number.

• rtems_resource_unlimited() (page 780) - Augments the resource number so that it indi-
cates an unlimited resource.

558 Chapter 26. Configuring a System

Chapter 26 Section 26.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.2 Default Value Selection Philosophy

The user should be aware that the defaults are intentionally set as low as possible. By default,
no application resources are configured. The <rtems/confdefs.h> file ensures that at least one
application task or thread is configured and that at least one of the initialization task/thread
tables is configured.

26.2. Default Value Selection Philosophy 559

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.3

26.3 Sizing the RTEMS Workspace

The RTEMS Workspace is a user-specified block of memory reserved for use by RTEMS. The
application should NOT modify this memory. This area consists primarily of the RTEMS data
structures whose exact size depends upon the values specified in the Configuration Table. In
addition, task stacks and floating point context areas are dynamically allocated from the RTEMS
Workspace.

The <rtems/confdefs.h> mechanism calculates the size of the RTEMS Workspace automatically.
It assumes that all tasks are floating point and that all will be allocated the minimum stack
space. This calculation includes the amount of memory that will be allocated for internal use
by RTEMS. The automatic calculation may underestimate the workspace size truly needed by
the application, in which case one can use the CONFIGURE_MEMORY_OVERHEAD (page 580)
macro to add a value to the estimate. See Specify Memory Overhead for more details.

The memory area for the RTEMS Workspace is determined by the BSP. In case the RTEMS
Workspace is too large for the available memory, then a fatal run-time error occurs and the
system terminates.

The file <rtems/confdefs.h> will calculate the value of the work_space_size parameter of
the Configuration Table. There are many parameters the application developer can specify
to help <rtems/confdefs.h> in its calculations. Correctly specifying the application require-
ments via parameters such as CONFIGURE_EXTRA_TASK_STACKS (page 571) and CONFIG-
URE_MAXIMUM_TASKS (page 621) is critical for production software.

For each class of objects, the allocation can operate in one of two ways. The default way has an
ceiling on the maximum number of object instances which can concurrently exist in the system.
Memory for all instances of that object class is reserved at system initialization. The second way
allocates memory for an initial number of objects and increases the current allocation by a fixed
increment when required. Both ways allocate space from inside the RTEMS Workspace.

See Unlimited Objects (page 564) for more details about the second way, which allows for
dynamic allocation of objects and therefore does not provide determinism. This mode is useful
mostly for when the number of objects cannot be determined ahead of time or when porting
software for which you do not know the object requirements.

The space needed for stacks and for RTEMS objects will vary from one version of RTEMS and
from one target processor to another. Therefore it is safest to use <rtems/confdefs.h> and
specify your application’s requirements in terms of the numbers of objects and multiples of
RTEMS_MINIMUM_STACK_SIZE, as far as is possible. The automatic estimates of space required
will in general change when:

• a configuration parameter is changed,

• task or interrupt stack sizes change,

• the floating point attribute of a task changes,

• task floating point attribute is altered,

• RTEMS is upgraded, or

• the target processor is changed.

Failure to provide enough space in the RTEMS Workspace may result in fatal run-time errors
terminating the system.

560 Chapter 26. Configuring a System

Chapter 26 Section 26.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.4 Potential Issues with RTEMS Workspace Size Estimation

The <rtems/confdefs.h> file estimates the amount of memory required for the RTEMS
Workspace. This estimate is only as accurate as the information given to <rtems/confdefs.
h> and may be either too high or too low for a variety of reasons. Some of the reasons that
<rtems/confdefs.h> may reserve too much memory for RTEMS are:

• All tasks/threads are assumed to be floating point.

Conversely, there are many more reasons that the resource estimate could be too low:

• Task/thread stacks greater than minimum size must be accounted for explicitly by devel-
oper.

• Memory for messages is not included.

• Device driver requirements are not included.

• Network stack requirements are not included.

• Requirements for add-on libraries are not included.

In general, <rtems/confdefs.h> is very accurate when given enough information. However, it
is quite easy to use a library and forget to account for its resources.

26.4. Potential Issues with RTEMS Workspace Size Estimation 561

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.5

26.5 Configuration Example

In the following example, the configuration information for a system with a single message
queue, four (4) tasks, and a timeslice of fifty (50) milliseconds is as follows:

1 #include <bsp.h>
2 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
3 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
4 #define CONFIGURE_MICROSECONDS_PER_TICK 1000 /* 1 millisecond */
5 #define CONFIGURE_TICKS_PER_TIMESLICE 50 /* 50 milliseconds */
6 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
7 #define CONFIGURE_MAXIMUM_TASKS 4
8 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 1
9 #define CONFIGURE_MESSAGE_BUFFER_MEMORY \

10 CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(20, sizeof(struct USER_MESSAGE))
11 #define CONFIGURE_INIT
12 #include <rtems/confdefs.h>

In this example, only a few configuration parameters are specified. The impact of these are as
follows:

• The example specified CONFIGURE_RTEMS_INIT_TASKS_TABLE (page 634) but did not
specify any additional parameters. This results in a configuration of an application which
will begin execution of a single initialization task named Init which is non-preemptible
and at priority one (1).

• By specifying CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER (page 596), this appli-
cation is configured to have a clock tick device driver. Without a clock tick device driver,
RTEMS has no way to know that time is passing and will be unable to support delays
and wall time. Further configuration details about time are provided. Per CONFIG-
URE_MICROSECONDS_PER_TICK (page 583) and CONFIGURE_TICKS_PER_TIMESLICE
(page 586), the user specified they wanted a clock tick to occur each millisecond, and
that the length of a timeslice would be fifty (50) milliseconds.

• By specifying CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 597), the ap-
plication will include a console device driver. Although the console device driver may
support a combination of multiple serial ports and display and keyboard combinations,
it is only required to provide a single device named /dev/console. This device will
be used for Standard Input, Output and Error I/O Streams. Thus when CONFIG-
URE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 597) is specified, implicitly three
(3) file descriptors are reserved for the Standard I/O Streams and those file descriptors
are associated with /dev/console during initialization. All console devices are expected
to support the POSIX*termios* interface.

• The example above specifies via CONFIGURE_MAXIMUM_TASKS (page 621) that the ap-
plication requires a maximum of four (4) simultaneously existing Classic API tasks. Simi-
larly, by specifying CONFIGURE_MAXIMUM_MESSAGE_QUEUES (page 615), there may be
a maximum of only one (1) concurrently existent Classic API message queues.

• The most surprising configuration parameter in this example is the use of CONFIG-
URE_MESSAGE_BUFFER_MEMORY (page 581). Message buffer memory is allocated from
the RTEMS Workspace and must be accounted for. In this example, the single message
queue will have up to twenty (20) messages of type struct USER_MESSAGE.

• The CONFIGURE_INIT (page 572) constant must be defined in order to make <rtems/

562 Chapter 26. Configuring a System

Chapter 26 Section 26.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

confdefs.h> instantiate the configuration data structures. This can only be defined in one
source file per application that includes <rtems/confdefs.h> or the symbol table will be
instantiated multiple times and linking errors produced.

This example illustrates that parameters have default values. Among other things, the applica-
tion implicitly used the following defaults:

• All unspecified types of communications and synchronization objects in the Classic and
POSIX Threads API have maximums of zero (0).

• The filesystem will be the default filesystem which is the In-Memory File System (IMFS).

• The application will have the default number of priority levels.

• The minimum task stack size will be that recommended by RTEMS for the target architec-
ture.

26.5. Configuration Example 563

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.6

26.6 Unlimited Objects

In real-time embedded systems the RAM is normally a limited, critical resource and dynamic
allocation is avoided as much as possible to ensure predictable, deterministic execution times.
For such cases, see Sizing the RTEMS Workspace (page 560) for an overview of how to tune
the size of the workspace. Frequently when users are porting software to RTEMS the precise
resource requirements of the software is unknown. In these situations users do not need to
control the size of the workspace very tightly because they just want to get the new software to
run; later they can tune the workspace size as needed.

The following object classes in the Classic API can be configured in unlimited mode:

• Barriers

• Message Queues

• Partitions

• Periods

• Ports

• Regions

• Semaphores

• Tasks

• Timers

Additionally, the following object classes from the POSIX API can be configured in unlimited
mode:

• Keys – pthread_key_create()

• Key Value Pairs – pthread_setspecific()

• Message Queues – mq_open()

• Named Semaphores – sem_open()

• Shared Memory – shm_open()

• Threads – pthread_create()

• Timers – timer_create()

. Warning

The following object classes can not be configured in unlimited mode:

• Drivers

• File Descriptors

• POSIX Queued Signals

• User Extensions

Due to the memory requirements of unlimited objects it is strongly recommended to use them
only in combination with the unified work areas. See Separate or Unified Work Areas for more
information on unified work areas.

564 Chapter 26. Configuring a System

Chapter 26 Section 26.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The following example demonstrates how the two simple configuration defines for unlimited
objects and unified works areas can replace many seperate configuration defines for supported
object classes:

1 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
2 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
3 #define CONFIGURE_UNIFIED_WORK_AREAS
4 #define CONFIGURE_UNLIMITED_OBJECTS
5 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
6 #define CONFIGURE_INIT
7 #include <rtems/confdefs.h>

Users are cautioned that using unlimited objects is not recommended for production software
unless the dynamic growth is absolutely required. It is generally considered a safer embed-
ded systems programming practice to know the system limits rather than experience an out of
memory error at an arbitrary and largely unpredictable time in the field.

26.6.1 Unlimited Objects by Class

When the number of objects is not known ahead of time, RTEMS provides an auto-
extending mode that can be enabled individually for each object type by using the macro
rtems_resource_unlimited() (page 780). This takes a value as a parameter, and is used to set
the object maximum number field in an API Configuration table. The value is an allocation unit
size. When RTEMS is required to grow the object table it is grown by this size. The kernel
will return the object memory back to the RTEMS Workspace when an object is destroyed. The
kernel will only return an allocated block of objects to the RTEMS Workspace if at least half the
allocation size of free objects remain allocated. RTEMS always keeps one allocation block of
objects allocated. Here is an example of using rtems_resource_unlimited():

1 #define CONFIGURE_MAXIMUM_TASKS rtems_resource_unlimited(5)

Object maximum specifications can be evaluated with the rtems_resource_is_unlimited()
(page 778) and rtems_resource_maximum_per_allocation() (page 779) macros.

26.6.2 Unlimited Objects by Default

To ease the burden of developers who are porting new software RTEMS also provides
the capability to make all object classes listed above operate in unlimited mode in a sim-
ple manner. The application developer is only responsible for enabling unlimited objects
(CONFIGURE_UNLIMITED_OBJECTS (page 589)) and specifying the allocation size (CONFIG-
URE_UNLIMITED_ALLOCATION_SIZE (page 588)).

1 #define CONFIGURE_UNLIMITED_OBJECTS
2 #define CONFIGURE_UNLIMITED_ALLOCATION_SIZE 5

26.6. Unlimited Objects 565

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7 General System Configuration

This section describes general system configuration options.

566 Chapter 26. Configuring a System

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.1 CONFIGURE_DIRTY_MEMORY

CONSTANT:

CONFIGURE_DIRTY_MEMORY

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the memory areas used for the RTEMS
Workspace and the C Program Heap are dirtied with a 0xCF byte pattern during system ini-
tialization.

NOTES:

Dirtying memory can add significantly to system initialization time. It may assist in finding code
that incorrectly assumes the contents of free memory areas is cleared to zero during system
initialization. In case CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY (page 591) is also
defined, then the memory is first dirtied and then zeroed.

See also CONFIGURE_MALLOC_DIRTY (page 575).

26.7. General System Configuration 567

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.2 CONFIGURE_DISABLE_BSP_SETTINGS

CONSTANT:

CONFIGURE_DISABLE_BSP_SETTINGS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the optional BSP provided settings listed below
are disabled.

The optional BSP provided default values for the following application configuration options
are disabled:

• CONFIGURE_IDLE_TASK_BODY (page 706)

• CONFIGURE_IDLE_TASK_STACK_SIZE (page 708)

• CONFIGURE_INTERRUPT_STACK_SIZE (page 574)

The optional BSP provided initial extension set is disabled (see initial extension sets). The
optional BSP provided prerequisite IO device drivers are disabled (see Device Driver Configura-
tion). The optional BSP provided support for sbrk() is disabled.

This configuration option provides an all or nothing choice with respect to the optional BSP
provided settings.

568 Chapter 26. Configuring a System

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.3 CONFIGURE_DISABLE_NEWLIB_REENTRANCY

CONSTANT:

CONFIGURE_DISABLE_NEWLIB_REENTRANCY

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Newlib reentrancy support per thread is
disabled and a global reentrancy structure is used.

NOTES:

You can enable this option to reduce the size of the TCB. Use this option with care, since it
can lead to race conditions and undefined system behaviour. For example, errno is no longer a
thread-local variable if this option is enabled.

26.7. General System Configuration 569

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.4 CONFIGURE_EXECUTIVE_RAM_SIZE

CONSTANT:

CONFIGURE_EXECUTIVE_RAM_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

If this configuration option is undefined, then the RTEMS Workspace and task stack space size
is calculated by <rtems/confdefs.h> based on the values configuration options.

DESCRIPTION:

The value of this configuration option defines the RTEMS Workspace size in bytes.

NOTES:

This is an advanced configuration option. Use it only if you know exactly what you are doing.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINTPTR_MAX.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

570 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.5 CONFIGURE_EXTRA_TASK_STACKS

CONSTANT:

CONFIGURE_EXTRA_TASK_STACKS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the number of bytes the applications wishes to
add to the task stack requirements calculated by <rtems/confdefs.h>.

NOTES:

This parameter is very important. If the application creates tasks with stacks larger then the
minimum, then that memory is not accounted for by <rtems/confdefs.h>.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

26.7. General System Configuration 571

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.6 CONFIGURE_INIT

CONSTANT:

CONFIGURE_INIT

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

There is no default configuration associated with this configuration option. If <rtems/confdefs.
h> is included and this configuration option is not defined, then only white space is included.

DESCRIPTION:

While this configuration option is defined, when the <rtems/confdefs.h> is included, the sys-
tem settings defined by present application configuration options are statically allocated and
initialized. All user provided application configuration options defined before the include of
<rtems/confdefs.h> are evaluated. They define the actual system settings.

572 Chapter 26. Configuring a System

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.7 CONFIGURE_INITIAL_EXTENSIONS

CONSTANT:

CONFIGURE_INITIAL_EXTENSIONS

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is the empty list.

DESCRIPTION:

The value of this configuration option is used to initialize the table of initial user extensions.

NOTES:

The value of this configuration option is placed before the entries of BSP_INITIAL_EXTENSION
and after the entries of all other initial user extensions.

It is recommended that applications provide a fatal extension to customize the System Termina-
tion Procedure (page 517).

CONSTRAINTS:

The value of the configuration option shall be a list of initializers for structures of type
rtems_extensions_table (page 40).

26.7. General System Configuration 573

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.8 CONFIGURE_INTERRUPT_STACK_SIZE

CONSTANT:

CONFIGURE_INTERRUPT_STACK_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

If the CONFIGURE_DISABLE_BSP_SETTINGS (page 568) configuration option is not defined
and BSP_INTERRUPT_STACK_SIZE is provided by the BSP, then the default value is defined by
BSP_INTERRUPT_STACK_SIZE, otherwise the default value is CPU_STACK_MINIMUM_SIZE.

DESCRIPTION:

The value of this configuration option defines the size of an interrupt stack in bytes.

NOTES:

There is one interrupt stack available for each configured processor (CONFIG-
URE_MAXIMUM_PROCESSORS (page 577)). The interrupt stack areas are statically allocated
in a special linker section (.rtemsstack.interrupt). The placement of this linker section is
BSP-specific.

Some BSPs use the interrupt stack as the initialization stack which is used to perform the se-
quential system initialization before the multithreading is started.

The interrupt stacks are covered by the stack checker, see CONFIG-
URE_STACK_CHECKER_ENABLED (page 585). However, using a too small interrupt stack
size may still result in undefined behaviour.

The interrupt stack size may depend on the interrupt priority settings, see also
rtems_interrupt_set_priority() (page 202).

In releases before RTEMS 5.1 the default value was CONFIGURE_MINIMUM_TASK_STACK_SIZE
(page 584) instead of CPU_STACK_MINIMUM_SIZE.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to a BSP-specific and
application-specific minimum value.

• The value of the configuration option shall be small enough so that the interrupt stack
area calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
size_t.

• The value of the configuration option shall be aligned according to
CPU_INTERRUPT_STACK_ALIGNMENT.

574 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/size_t

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.9 CONFIGURE_MALLOC_DIRTY

CONSTANT:

CONFIGURE_MALLOC_DIRTY

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then each memory area returned by C Program
Heap allocator functions such as malloc() is dirtied with a 0xCF byte pattern before it is handed
over to the application.

NOTES:

The dirtying performed by this option is carried out for each successful memory allocation from
the C Program Heap in contrast to CONFIGURE_DIRTY_MEMORY (page 567) which dirties the
memory only once during the system initialization.

26.7. General System Configuration 575

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.10 CONFIGURE_MAXIMUM_FILE_DESCRIPTORS

CONSTANT:

CONFIGURE_MAXIMUM_FILE_DESCRIPTORS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 3.

DESCRIPTION:

The value of this configuration option defines the maximum number of file like objects that can
be concurrently open.

NOTES:

The default value of three file descriptors allows RTEMS to support standard input, output, and
error I/O streams on /dev/console.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to SIZE_MAX.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

576 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/limits

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.11 CONFIGURE_MAXIMUM_PROCESSORS

CONSTANT:

CONFIGURE_MAXIMUM_PROCESSORS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 1.

DESCRIPTION:

The value of this configuration option defines the maximum number of processors an applica-
tion intends to use. The number of actually available processors depends on the hardware and
may be less. It is recommended to use the smallest value suitable for the application in order to
save memory. Each processor needs an IDLE task stack and interrupt stack for example.

NOTES:

If there are more processors available than configured, the rest will be ignored.

This configuration option is only evaluated in SMP configurations of RTEMS (e.g. RTEMS was
built with the SMP build configuration option enabled). In all other configurations it has no
effect.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to one.

• The value of the configuration option shall be less than or equal to
CPU_MAXIMUM_PROCESSORS.

26.7. General System Configuration 577

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.12 CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE

CONSTANT:

CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

If the value of this configuration option is greater than zero, then it defines the maximum thread-
local storage size, otherwise the thread-local storage size is defined by the linker depending on
the thread-local storage objects used by the application in the statically-linked executable.

NOTES:

This configuration option can be used to reserve space for the dynamic linking of modules with
thread-local storage objects.

If the thread-local storage size defined by the thread-local storage objects used by the appli-
cation in the statically-linked executable is greater than a non-zero value of this configuration
option, then a fatal error will occur during system initialization.

Use RTEMS_ALIGN_UP() and RTEMS_TASK_STORAGE_ALIGNMENT to adjust the size to meet the min-
imum alignment requirement of a thread-local storage area.

The actual thread-local storage size is determined when the application executable is linked.
The rtems-exeinfo command line tool included in the RTEMS Tools can be used to obtain the
thread-local storage size and alignment of an application executable.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to SIZE_MAX.

• The value of the configuration option shall be an integral multiple of
RTEMS_TASK_STORAGE_ALIGNMENT.

578 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/limits

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.13 CONFIGURE_MAXIMUM_THREAD_NAME_SIZE

CONSTANT:

CONFIGURE_MAXIMUM_THREAD_NAME_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 16.

DESCRIPTION:

The value of this configuration option defines the maximum thread name size including the
terminating NUL character.

NOTES:

The default value was chosen for Linux compatibility, see pthread_setname_np().

The size of the thread control block is increased by the maximum thread name size.

This configuration option is available since RTEMS 5.1.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to SIZE_MAX.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

26.7. General System Configuration 579

http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html
https://en.cppreference.com/w/c/types/limits

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.14 CONFIGURE_MEMORY_OVERHEAD

CONSTANT:

CONFIGURE_MEMORY_OVERHEAD

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the number of kilobytes the application wishes to
add to the RTEMS Workspace size calculated by <rtems/confdefs.h>.

NOTES:

This configuration option should only be used when it is suspected that a bug in <rtems/
confdefs.h> has resulted in an underestimation. Typically the memory allocation will be too
low when an application does not account for all message queue buffers or task stacks, see
CONFIGURE_MESSAGE_BUFFER_MEMORY (page 581).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the RTEMS Workspace
size calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

580 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.15 CONFIGURE_MESSAGE_BUFFER_MEMORY

CONSTANT:

CONFIGURE_MESSAGE_BUFFER_MEMORY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the number of bytes reserved for message queue
buffers in the RTEMS Workspace.

NOTES:

The configuration options CONFIGURE_MAXIMUM_MESSAGE_QUEUES (page 615) and CON-
FIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES (page 638) define only how many message
queues can be created by the application. The memory for the message buffers is configured by
this option. For each message queue you have to reserve some memory for the message buffers.
The size depends on the maximum number of pending messages and the maximum size of
the messages of a message queue. Use the CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE() macro to
specify the message buffer memory for each message queue and sum them up to define the
value for CONFIGURE_MAXIMUM_MESSAGE_QUEUES.

The interface for the CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE() help macro is as follows:

1 CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(max_messages, max_msg_size)

Where max_messages is the maximum number of pending messages and max_msg_size is the
maximum size in bytes of the messages of the corresponding message queue. Both parameters
shall be compile time constants. Not using this help macro (e.g. just using max_messages *
max_msg_size) may result in an underestimate of the RTEMS Workspace size.

The following example illustrates how the CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE() help
macro can be used to assist in calculating the message buffer memory required. In this example,
there are two message queues used in this application. The first message queue has a maximum
of 24 pending messages with the message structure defined by the type one_message_type. The
other message queue has a maximum of 500 pending messages with the message structure
defined by the type other_message_type.

1 #define CONFIGURE_MESSAGE_BUFFER_MEMORY (\
2 CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(\
3 24, \
4 sizeof(one_message_type) \
5) \
6 + CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(\
7 500, \
8 sizeof(other_message_type) \

(continues on next page)

26.7. General System Configuration 581

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

(continued from previous page)

9) \
10)

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the RTEMS Workspace
size calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

582 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.16 CONFIGURE_MICROSECONDS_PER_TICK

CONSTANT:

CONFIGURE_MICROSECONDS_PER_TICK

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 10000.

DESCRIPTION:

The value of this configuration option defines the length of time in microseconds between clock
ticks (clock tick quantum).

When the clock tick quantum value is too low, the system will spend so much time processing
clock ticks that it does not have processing time available to perform application work. In this
case, the system will become unresponsive.

The lowest practical time quantum varies widely based upon the speed of the target hardware
and the architectural overhead associated with interrupts. In general terms, you do not want to
configure it lower than is needed for the application.

The clock tick quantum should be selected such that it all blocking and delay times in the
application are evenly divisible by it. Otherwise, rounding errors will be introduced which may
negatively impact the application.

NOTES:

This configuration option has no impact if the Clock Driver is not configured, see CONFIG-
URE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 593).

There may be Clock Driver specific limits on the resolution or maximum value of a clock tick
quantum.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to a value defined by
the Clock Driver.

• The value of the configuration option shall be less than or equal to a value defined by the
Clock Driver.

• The resulting clock ticks per second should be an integer.

26.7. General System Configuration 583

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.17 CONFIGURE_MINIMUM_TASK_STACK_SIZE

CONSTANT:

CONFIGURE_MINIMUM_TASK_STACK_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is CPU_STACK_MINIMUM_SIZE.

DESCRIPTION:

The value of this configuration option defines the minimum stack size in bytes for every user
task or thread in the system.

NOTES:

Adjusting this parameter should be done with caution. Examining the actual stack us-
age using the stack checker usage reporting facility is recommended (see also CONFIG-
URE_STACK_CHECKER_ENABLED (page 585)).

This parameter can be used to lower the minimum from that recommended. This can be used
in low memory systems to reduce memory consumption for stacks. However, this shall be done
with caution as it could increase the possibility of a blown task stack.

This parameter can be used to increase the minimum from that recommended. This can be used
in higher memory systems to reduce the risk of stack overflow without performing analysis on
actual consumption.

By default, this configuration parameter defines also the minimum stack size of POSIX threads.
This can be changed with the CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE (page 644)
configuration option.

In releases before RTEMS 5.1 the CONFIGURE_MINIMUM_TASK_STACK_SIZE was used to define the
default value of CONFIGURE_INTERRUPT_STACK_SIZE (page 574).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

• The value of the configuration option shall be greater than or equal to a BSP-specific and
application-specific minimum value.

584 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.18 CONFIGURE_STACK_CHECKER_ENABLED

CONSTANT:

CONFIGURE_STACK_CHECKER_ENABLED

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the stack checker is enabled.

NOTES:

The stack checker performs run-time stack bounds checking. This increases the time required
to create tasks as well as adding overhead to each context switch.

In 4.9 and older, this configuration option was named STACK_CHECKER_ON.

26.7. General System Configuration 585

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.19 CONFIGURE_TICKS_PER_TIMESLICE

CONSTANT:

CONFIGURE_TICKS_PER_TIMESLICE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 50.

DESCRIPTION:

The value of this configuration option defines the length of the timeslice quantum in ticks for
each task.

NOTES:

This configuration option has no impact if the Clock Driver is not configured, see CONFIG-
URE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 593).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to one.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

586 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.20 CONFIGURE_UNIFIED_WORK_AREAS

CONSTANT:

CONFIGURE_UNIFIED_WORK_AREAS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then there will be separate memory pools for the
RTEMS Workspace and C Program Heap.

DESCRIPTION:

In case this configuration option is defined, then the RTEMS Workspace and the C Program
Heap will be one pool of memory.

NOTES:

Having separate pools does have some advantages in the event a task blows a stack or writes
outside its memory area. However, in low memory systems the overhead of the two pools plus
the potential for unused memory in either pool is very undesirable.

In high memory environments, this is desirable when you want to use the Unlimited Objects
(page 564) option. You will be able to create objects until you run out of all available memory
rather then just until you run out of RTEMS Workspace.

26.7. General System Configuration 587

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.21 CONFIGURE_UNLIMITED_ALLOCATION_SIZE

CONSTANT:

CONFIGURE_UNLIMITED_ALLOCATION_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 8.

DESCRIPTION:

If CONFIGURE_UNLIMITED_OBJECTS (page 589) is defined, then the value of this configuration
option defines the default objects maximum of all object classes supporting Unlimited Objects
(page 564) to rtems_resource_unlimited(CONFIGURE_UNLIMITED_ALLOCATION_SIZE).

NOTES:

By allowing users to declare all resources as being unlimited the user can avoid identifying and
limiting the resources used.

The object maximum of each class can be configured also individually using the
rtems_resource_unlimited() (page 780) macro.

CONSTRAINTS:

The value of the configuration option shall meet the constraints of all object classes to which it
is applied.

588 Chapter 26. Configuring a System

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.22 CONFIGURE_UNLIMITED_OBJECTS

CONSTANT:

CONFIGURE_UNLIMITED_OBJECTS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then unlimited objects are used by default.

NOTES:

When using unlimited objects, it is common practice to also specify CONFIG-
URE_UNIFIED_WORK_AREAS (page 587) so the system operates with a single pool of memory
for both RTEMS Workspace and C Program Heap.

This option does not override an explicit configuration for a particular object class by the user.

See also CONFIGURE_UNLIMITED_ALLOCATION_SIZE (page 588).

26.7. General System Configuration 589

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.7

26.7.23 CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION

CONSTANT:

CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the system initialization is verbose.

NOTES:

You may use this feature to debug system initialization issues. The printk() (page 491) function
is used to print the information.

590 Chapter 26. Configuring a System

Chapter 26 Section 26.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.7.24 CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

CONSTANT:

CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the memory areas used for the RTEMS
Workspace and the C Program Heap are zeroed with a 0x00 byte pattern during system ini-
tialization.

NOTES:

Zeroing memory can add significantly to the system initialization time. It is not necessary
for RTEMS but is often assumed by support libraries. In case CONFIGURE_DIRTY_MEMORY
(page 567) is also defined, then the memory is first dirtied and then zeroed.

26.7. General System Configuration 591

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8 Device Driver Configuration

This section describes configuration options related to the device drivers. Note that network
device drivers are not covered by the following options.

592 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.1 CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then a Clock Driver may be initialized during system
initialization.

DESCRIPTION:

In case this configuration option is defined, then no Clock Driver is initialized during system
initialization.

NOTES:

This configuration parameter is intended to prevent the common user error of using the Hello
World example as the baseline for an application and leaving out a clock tick source.

The application shall define exactly one of the following configuration options

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER (page 596),

• CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER, or

• CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER (page 605),

otherwise a compile time error in the configuration file will occur.

26.8. Device Driver Configuration 593

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.2 CONFIGURE_APPLICATION_EXTRA_DRIVERS

CONSTANT:

CONFIGURE_APPLICATION_EXTRA_DRIVERS

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is the empty list.

DESCRIPTION:

The value of this configuration option is used to initialize the Device Driver Table.

NOTES:

The value of this configuration option is placed after the entries of other device driver configu-
ration options.

See CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS (page 608) for an alternative place-
ment of application device driver initializers.

CONSTRAINTS:

The value of the configuration option shall be a list of initializers for structures of type
rtems_driver_address_table (page 40).

594 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.3 CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the ATA Driver is initialized during system
initialization.

NOTES:

Most BSPs do not include support for an ATA Driver.

If this option is defined and the BSP does not have this device driver, then the user will get a
link time error for an undefined symbol.

26.8. Device Driver Configuration 595

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.4 CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Clock Driver is initialized during system
initialization.

NOTES:

The Clock Driver is responsible for providing a regular interrupt which invokes a clock tick
directive.

The application shall define exactly one of the following configuration options

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER,

• CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 593), or

• CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER (page 605),

otherwise a compile time error in the configuration file will occur.

596 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.5 CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Console Driver is initialized during system
initialization.

NOTES:

The Console Driver is responsible for providing the /dev/console device file. This device is used
to initialize the standard input, output, and error file descriptors.

BSPs should be constructed in a manner that allows printk() (page 491) to work properly
without the need for the Console Driver to be configured.

The

• CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER,

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER (page 602), and

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER (page 603)

configuration options are mutually exclusive.

26.8. Device Driver Configuration 597

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.6 CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Frame Buffer Driver is initialized during
system initialization.

NOTES:

Most BSPs do not include support for a Frame Buffer Driver. This is because many boards do
not include the required hardware.

If this option is defined and the BSP does not have this device driver, then the user will get a
link time error for an undefined symbol.

598 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.7 CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the IDE Driver is initialized during system
initialization.

NOTES:

Most BSPs do not include support for an IDE Driver.

If this option is defined and the BSP does not have this device driver, then the user will get a
link time error for an undefined symbol.

26.8. Device Driver Configuration 599

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.8 CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the /dev/null Driver is initialized during
system initialization.

NOTES:

This device driver is supported by all BSPs.

600 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.9 CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Real-Time Clock Driver is initialized during
system initialization.

NOTES:

Most BSPs do not include support for a real-time clock (RTC). This is because many boards do
not include the required hardware.

If this is defined and the BSP does not have this device driver, then the user will get a link time
error for an undefined symbol.

26.8. Device Driver Configuration 601

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.10 CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Simple Console Driver is initialized during
system initialization.

NOTES:

This device driver is responsible for providing the /dev/console device file. This device is used
to initialize the standard input, output, and error file descriptors.

This device driver reads via getchark() (page 494).

This device driver writes via rtems_putc() (page 488).

The Termios framework is not used. There is no support to change device settings, e.g. baud,
stop bits, parity, etc.

The

• CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 597),

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER, and

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER (page 603)

configuration options are mutually exclusive.

602 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.11 CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Simple Task Console Driver is initialized
during system initialization.

NOTES:

This device driver is responsible for providing the /dev/console device file. This device is used
to initialize the standard input, output, and error file descriptors.

This device driver reads via getchark() (page 494).

This device driver writes into a write buffer. The count of characters written into the write
buffer is returned. It might be less than the requested count, in case the write buffer is full. The
write is non-blocking and may be called from interrupt context. A dedicated task reads from
the write buffer and outputs the characters via rtems_putc() (page 488). This task runs with the
least important priority. The write buffer size is 2047 characters and it is not configurable.

Use fsync(STDOUT_FILENO) or fdatasync(STDOUT_FILENO) to drain the write buffer.

The Termios framework is not used. There is no support to change device settings, e.g. baud,
stop bits, parity, etc.

The

• CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 597),

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER (page 602), and

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER

configuration options are mutually exclusive.

26.8. Device Driver Configuration 603

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.12 CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Stub Driver is initialized during system
initialization.

NOTES:

This device driver simply provides entry points that return successful and is primarily a test
fixture. It is supported by all BSPs.

604 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.13 CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Benchmark Timer Driver is initialized
during system initialization.

NOTES:

The Benchmark Timer Driver is intended for the benchmark tests of the RTEMS Testsuite. Ap-
plications should not use this driver.

The application shall define exactly one of the following configuration options

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER (page 596),

• CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 593), or

• CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER,

otherwise a compile time error will occur.

26.8. Device Driver Configuration 605

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.14 CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Watchdog Driver is initialized during sys-
tem initialization.

NOTES:

Most BSPs do not include support for a watchdog device driver. This is because many boards
do not include the required hardware.

If this is defined and the BSP does not have this device driver, then the user will get a link time
error for an undefined symbol.

606 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.15 CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the /dev/zero Driver is initialized during
system initialization.

NOTES:

This device driver is supported by all BSPs.

26.8. Device Driver Configuration 607

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.16 CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS

CONSTANT:

CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is the empty list.

DESCRIPTION:

The value of this configuration option is used to initialize the Device Driver Table.

NOTES:

The value of this configuration option is placed after the entries defined by
CONFIGURE_BSP_PREREQUISITE_DRIVERS and before all other device driver configuration
options.

See CONFIGURE_APPLICATION_EXTRA_DRIVERS (page 594) for an alternative placement of
application device driver initializers.

CONSTRAINTS:

The value of the configuration option shall be a list of initializers for structures of type
rtems_driver_address_table (page 40).

608 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.17 CONFIGURE_ATA_DRIVER_TASK_PRIORITY

CONSTANT:

CONFIGURE_ATA_DRIVER_TASK_PRIORITY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 140.

DESCRIPTION:

The value of this configuration option defines the ATA task priority.

NOTES:

This configuration option is only evaluated if the configuration option CONFIG-
URE_APPLICATION_NEEDS_ATA_DRIVER (page 595) is defined.

CONSTRAINTS:

The value of the configuration option shall be a valid Classic API task priority. The set of valid
task priorities depends on the scheduler configuration.

26.8. Device Driver Configuration 609

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

26.8.18 CONFIGURE_EXCEPTION_TO_SIGNAL_MAPPING

CONSTANT:

CONFIGURE_EXCEPTION_TO_SIGNAL_MAPPING

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the machine exception to POSIX signal map-
ping is configured during system initialization.

NOTES:

This device driver is responsible for setting up a mapping from machine exceptions to POSIX
signals so that applications may consume them and alter task execution as necessary.

This is especially useful for applications written in Ada or C++.

610 Chapter 26. Configuring a System

Chapter 26 Section 26.8 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.8.19 CONFIGURE_MAXIMUM_DRIVERS

CONSTANT:

CONFIGURE_MAXIMUM_DRIVERS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

This is computed by default, and is set to the number of statically configured device drivers
configured using the following configuration options:

• CONFIGURE_APPLICATION_EXTRA_DRIVERS (page 594)

• CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER (page 595)

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER (page 596)

• CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 597)

• CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER (page 598)

• CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER (page 599)

• CONFIGURE_APPLICATION_NEEDS_LIBBLOCK (page 685)

• CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER (page 600)

• CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER (page 601)

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER (page 602)

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER (page 603)

• CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER (page 604)

• CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER (page 605)

• CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER (page 606)

• CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER (page 607)

• CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS (page 608)

If the CONFIGURE_DISABLE_BSP_SETTINGS (page 568) configuration option is not defined and
the BSP provides CONFIGURE_BSP_PREREQUISITE_DRIVERS, then the BSP-provided prerequisite
device drivers are also taken into account.

DESCRIPTION:

The value of this configuration option defines the number of device drivers.

NOTES:

If the application will dynamically install device drivers, then the configuration option value
shall be larger than the number of statically configured device drivers.

26.8. Device Driver Configuration 611

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.8

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be less than or equal to SIZE_MAX.

• The value of the configuration option shall be greater than or equal than the number of
statically configured device drivers.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

612 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/limits

Chapter 26 Section 26.9 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.9 Classic API Configuration

This section describes configuration options related to the Classic API.

26.9. Classic API Configuration 613

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.9

26.9.1 CONFIGURE_MAXIMUM_BARRIERS

CONSTANT:

CONFIGURE_MAXIMUM_BARRIERS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Barriers that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

614 Chapter 26. Configuring a System

Chapter 26 Section 26.9 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.9.2 CONFIGURE_MAXIMUM_MESSAGE_QUEUES

CONSTANT:

CONFIGURE_MAXIMUM_MESSAGE_QUEUES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Message
Queues that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564). You have to account for the memory used to store the messages of each message
queue, see CONFIGURE_MESSAGE_BUFFER_MEMORY (page 581).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

26.9. Classic API Configuration 615

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.9

26.9.3 CONFIGURE_MAXIMUM_PARTITIONS

CONSTANT:

CONFIGURE_MAXIMUM_PARTITIONS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Partitions
that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

616 Chapter 26. Configuring a System

Chapter 26 Section 26.9 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.9.4 CONFIGURE_MAXIMUM_PERIODS

CONSTANT:

CONFIGURE_MAXIMUM_PERIODS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Periods that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

26.9. Classic API Configuration 617

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.9

26.9.5 CONFIGURE_MAXIMUM_PORTS

CONSTANT:

CONFIGURE_MAXIMUM_PORTS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Ports that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

618 Chapter 26. Configuring a System

Chapter 26 Section 26.9 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.9.6 CONFIGURE_MAXIMUM_REGIONS

CONSTANT:

CONFIGURE_MAXIMUM_REGIONS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Regions that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

26.9. Classic API Configuration 619

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.9

26.9.7 CONFIGURE_MAXIMUM_SEMAPHORES

CONSTANT:

CONFIGURE_MAXIMUM_SEMAPHORES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Semaphore
that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

In SMP configurations, the size of a Semaphore Control Block depends on the scheduler count
(see Configuration Step 3 - Scheduler Table (page 727)). The semaphores using the Multiproces-
sor Resource Sharing Protocol (MrsP) (page 30) need a ceiling priority per scheduler.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

620 Chapter 26. Configuring a System

Chapter 26 Section 26.9 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.9.8 CONFIGURE_MAXIMUM_TASKS

CONSTANT:

CONFIGURE_MAXIMUM_TASKS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Tasks that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

The calculations for the required memory in the RTEMS Workspace for tasks assume that each
task has a minimum stack size and has floating point support enabled. The configuration option
CONFIGURE_EXTRA_TASK_STACKS (page 571) is used to specify task stack requirements above
the minimum size required.

The maximum number of POSIX threads is specified by CONFIG-
URE_MAXIMUM_POSIX_THREADS (page 642).

A future enhancement to <rtems/confdefs.h> could be to eliminate the assumption that all
tasks have floating point enabled. This would require the addition of a new configuration
parameter to specify the number of tasks which enable floating point support.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

26.9. Classic API Configuration 621

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.9

26.9.9 CONFIGURE_MAXIMUM_TIMERS

CONSTANT:

CONFIGURE_MAXIMUM_TIMERS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API Timers that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

622 Chapter 26. Configuring a System

Chapter 26 Section 26.9 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.9.10 CONFIGURE_MAXIMUM_USER_EXTENSIONS

CONSTANT:

CONFIGURE_MAXIMUM_USER_EXTENSIONS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of Classic API User Exten-
sions that can be concurrently active.

NOTES:

This object class cannot be configured in unlimited allocation mode.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

26.9. Classic API Configuration 623

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.9

26.9.11 CONFIGURE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE

CONSTANT:

CONFIGURE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the minimum count of Classic API Tasks which
are constructed by rtems_task_construct() (page 113).

NOTES:

By default, the calculation for the required memory in the RTEMS Workspace for tasks assumes
that all Classic API Tasks are created by rtems_task_create() (page 109). This configuration
option can be used to reduce the required memory for the system-provided task storage areas
since tasks constructed by rtems_task_construct() (page 113) use a user-provided task storage
area.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to CONFIG-
URE_MAXIMUM_TASKS (page 621).

624 Chapter 26. Configuring a System

Chapter 26 Section 26.10 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.10 Classic API Initialization Task Configuration

This section describes configuration options related to the Classic API initialization task.

26.10. Classic API Initialization Task Configuration 625

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.10

26.10.1 CONFIGURE_INIT_TASK_ARGUMENTS

CONSTANT:

CONFIGURE_INIT_TASK_ARGUMENTS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines task argument of the Classic API initialization
task.

CONSTRAINTS:

The value of the configuration option shall be convertible to an integer of type
rtems_task_argument (page 54).

626 Chapter 26. Configuring a System

Chapter 26 Section 26.10 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.10.2 CONFIGURE_INIT_TASK_ATTRIBUTES

CONSTANT:

CONFIGURE_INIT_TASK_ATTRIBUTES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is RTEMS_DEFAULT_ATTRIBUTES.

DESCRIPTION:

The value of this configuration option defines the task attributes of the Classic API initialization
task.

CONSTRAINTS:

The value of the configuration option shall be a valid task attribute set.

26.10. Classic API Initialization Task Configuration 627

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.10

26.10.3 CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE

CONSTANT:

CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

This configuration option has no default value. If it is not specified, then the Clas-
sic API initialization task will be created with the stack size defined by the CONFIG-
URE_INIT_TASK_STACK_SIZE (page 633) configuration option.

DESCRIPTION:

The value of this configuration option defines the task storage size of the Classic API initializa-
tion task.

NOTES:

If this configuration option is specified, then

• a task storage area of the specified size is statically allocated by <rtems/confdefs.h> for
the Classic API initialization task,

• the Classic API initialization task is constructed by rtems_task_construct() (page 113) in-
stead of using rtems_task_create() (page 109),

• the maximum thread-local storage size defined by CONFIG-
URE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE (page 578) is used for the Classic
API initialization task,

• the Classic API initialization task should be accounted for in CONFIG-
URE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE (page 624), and

• the task storage area used for the Classic API initialization task is not reclaimed by the
system if the task is deleted.

The

• CONFIGURE_INIT_TASK_STACK_SIZE (page 633) and

• CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE

configuration options are mutually exclusive.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to CONFIG-
URE_MINIMUM_TASK_STACK_SIZE (page 584).

• The value of the configuration option shall be defined using
RTEMS_TASK_STORAGE_SIZE() (page 144).

628 Chapter 26. Configuring a System

Chapter 26 Section 26.10 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.10.4 CONFIGURE_INIT_TASK_ENTRY_POINT

CONSTANT:

CONFIGURE_INIT_TASK_ENTRY_POINT

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is Init.

DESCRIPTION:

The value of this configuration option initializes the entry point of the Classic API initialization
task.

NOTES:

The application shall provide the function referenced by this configuration option.

CONSTRAINTS:

The value of the configuration option shall be defined to a valid function pointer of the type
void (*entry_point)(rtems_task_argument).

26.10. Classic API Initialization Task Configuration 629

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.10

26.10.5 CONFIGURE_INIT_TASK_INITIAL_MODES

CONSTANT:

CONFIGURE_INIT_TASK_INITIAL_MODES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

In SMP configurations, the default value is RTEMS_DEFAULT_MODES otherwise the default value is
RTEMS_NO_PREEMPT.

DESCRIPTION:

The value of this configuration option defines the initial execution mode of the Classic API
initialization task.

CONSTRAINTS:

The value of the configuration option shall be a valid task mode set.

630 Chapter 26. Configuring a System

Chapter 26 Section 26.10 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.10.6 CONFIGURE_INIT_TASK_NAME

CONSTANT:

CONFIGURE_INIT_TASK_NAME

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is rtems_build_name('U', 'I', '1', ' ').

DESCRIPTION:

The value of this configuration option defines the name of the Classic API initialization task.

NOTES:

Use rtems_build_name() (page 902) to define the task name.

CONSTRAINTS:

The value of the configuration option shall be convertible to an integer of type rtems_name.

26.10. Classic API Initialization Task Configuration 631

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.10

26.10.7 CONFIGURE_INIT_TASK_PRIORITY

CONSTANT:

CONFIGURE_INIT_TASK_PRIORITY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 1.

DESCRIPTION:

The value of this configuration option defines the initial priority of the Classic API initialization
task.

CONSTRAINTS:

The value of the configuration option shall be a valid Classic API task priority. The set of valid
task priorities depends on the scheduler configuration.

632 Chapter 26. Configuring a System

Chapter 26 Section 26.10 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.10.8 CONFIGURE_INIT_TASK_STACK_SIZE

CONSTANT:

CONFIGURE_INIT_TASK_STACK_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 584).

DESCRIPTION:

The value of this configuration option defines the task stack size of the Classic API initialization
task.

NOTES:

The

• CONFIGURE_INIT_TASK_STACK_SIZE and

• CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE (page 628)

configuration options are mutually exclusive.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to CONFIG-
URE_MINIMUM_TASK_STACK_SIZE (page 584).

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

26.10. Classic API Initialization Task Configuration 633

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.10

26.10.9 CONFIGURE_RTEMS_INIT_TASKS_TABLE

CONSTANT:

CONFIGURE_RTEMS_INIT_TASKS_TABLE

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then exactly one Classic API initialization task is
configured.

NOTES:

The application shall define at least one of the following configuration options

• CONFIGURE_RTEMS_INIT_TASKS_TABLE,

• CONFIGURE_POSIX_INIT_THREAD_TABLE (page 648), or

• CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION (page 707)

otherwise a compile time error in the configuration file will occur.

The Classic API initialization task performs the Global Construction (page 92).

634 Chapter 26. Configuring a System

Chapter 26 Section 26.11 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.11 POSIX API Configuration

This section describes configuration options related to the POSIX API. Most POSIX API objects
are available by default since RTEMS 5.1. The queued signals and timers are only available if
RTEMS was built with the enable POSIX build configuration option.

26.11. POSIX API Configuration 635

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.11

26.11.1 CONFIGURE_MAXIMUM_POSIX_KEYS

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_KEYS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of POSIX API Keys that can
be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

636 Chapter 26. Configuring a System

Chapter 26 Section 26.11 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.11.2 CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is CONFIGURE_MAXIMUM_POSIX_KEYS (page 636) * (CONFIG-
URE_MAXIMUM_TASKS (page 621) + CONFIGURE_MAXIMUM_POSIX_THREADS (page 642)).

DESCRIPTION:

The value of this configuration option defines the maximum number of key value pairs used by
POSIX API Keys that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

A key value pair is created by pthread_setspecific() if the value is not NULL, otherwise it is
deleted.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

26.11. POSIX API Configuration 637

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.11

26.11.3 CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of POSIX API Message
Queues that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564). You have to account for the memory used to store the messages of each message
queue, see CONFIGURE_MESSAGE_BUFFER_MEMORY (page 581).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the RTEMS Workspace
size calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

638 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.11 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.11.4 CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of POSIX API Queued
Signals that can be concurrently active.

NOTES:

Unlimited objects are not available for queued signals.

Queued signals are only available if RTEMS was built with the POSIX API build configuration
option enabled.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the RTEMS Workspace
size calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

• The value of the configuration option shall be zero if the POSIX API is not enabled (e.g.
RTEMS was built without the RTEMS_POSIX_API = True build configuration option). Oth-
erwise a compile time error in the configuration file will occur.

26.11. POSIX API Configuration 639

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.11

26.11.5 CONFIGURE_MAXIMUM_POSIX_SEMAPHORES

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_SEMAPHORES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of POSIX API Named
Semaphores that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

Named semaphores are created with sem_open(). Semaphores initialized with sem_init() are
not affected by this configuration option since the storage space for these semaphores is user-
provided.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the RTEMS Workspace
size calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

640 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.11 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.11.6 CONFIGURE_MAXIMUM_POSIX_SHMS

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_SHMS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of POSIX API Shared Mem-
ory objects that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the RTEMS Workspace
size calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

26.11. POSIX API Configuration 641

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.11

26.11.7 CONFIGURE_MAXIMUM_POSIX_THREADS

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_THREADS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of POSIX API Threads that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

This calculations for the required memory in the RTEMS Workspace for threads assume that
each thread has a minimum stack size and has floating point support enabled. The config-
uration option CONFIGURE_EXTRA_TASK_STACKS (page 571) is used to specify thread stack
requirements above the minimum size required.

The maximum number of Classic API Tasks is specified by CONFIGURE_MAXIMUM_TASKS
(page 621).

All POSIX threads have floating point enabled.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

642 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.11 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.11.8 CONFIGURE_MAXIMUM_POSIX_TIMERS

CONSTANT:

CONFIGURE_MAXIMUM_POSIX_TIMERS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum number of POSIX API Timers that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 564).

Timers are only available if RTEMS was built with the POSIX API build configuration option
enabled.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to 65535.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option may be defined through rtems_resource_unlimited()
(page 780) the enable unlimited objects for the object class, if the value passed to
rtems_resource_unlimited() (page 780) satisfies all other constraints of the configuration
option.

• The value of the configuration option shall be zero if the POSIX API is not enabled (e.g.
RTEMS was built without the RTEMS_POSIX_API = True build configuration option). Oth-
erwise a compile time error in the configuration file will occur.

26.11. POSIX API Configuration 643

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.11

26.11.9 CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE

CONSTANT:

CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is two times the value of CONFIGURE_MINIMUM_TASK_STACK_SIZE
(page 584).

DESCRIPTION:

The value of this configuration option defines the minimum stack size in bytes for every POSIX
thread in the system.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

• The value of the configuration option shall be greater than or equal to a BSP-specific and
application-specific minimum value.

644 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.12 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.12 POSIX Initialization Thread Configuration

This section describes configuration options related to the POSIX initialization thread.

26.12. POSIX Initialization Thread Configuration 645

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.12

26.12.1 CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT

CONSTANT:

CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is POSIX_Init.

DESCRIPTION:

The value of this configuration option initializes the entry point of the POSIX API initialization
thread.

NOTES:

The application shall provide the function referenced by this configuration option.

CONSTRAINTS:

The value of the configuration option shall be defined to a valid function pointer of the type
void *(*entry_point)(void *).

646 Chapter 26. Configuring a System

Chapter 26 Section 26.12 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.12.2 CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE

CONSTANT:

CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE (page 644).

DESCRIPTION:

The value of this configuration option defines the thread stack size of the POSIX API initializa-
tion thread.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to CONFIG-
URE_MINIMUM_TASK_STACK_SIZE (page 584).

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

26.12. POSIX Initialization Thread Configuration 647

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.12

26.12.3 CONFIGURE_POSIX_INIT_THREAD_TABLE

CONSTANT:

CONFIGURE_POSIX_INIT_THREAD_TABLE

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then exactly one POSIX initialization thread is
configured.

NOTES:

The application shall define at least one of the following configuration options

• CONFIGURE_RTEMS_INIT_TASKS_TABLE (page 634),

• CONFIGURE_POSIX_INIT_THREAD_TABLE, or

• CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION (page 707)

otherwise a compile time error in the configuration file will occur.

If no Classic API initialization task is configured, then the POSIX API initialization thread per-
forms the Global Construction (page 92).

648 Chapter 26. Configuring a System

Chapter 26 Section 26.13 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.13 Event Recording Configuration

This section describes configuration options related to the event recording.

26.13. Event Recording Configuration 649

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.13

26.13.1 CONFIGURE_RECORD_EXTENSIONS_ENABLED

CONSTANT:

CONFIGURE_RECORD_EXTENSIONS_ENABLED

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case

• this configuration option is defined

• and CONFIGURE_RECORD_PER_PROCESSOR_ITEMS (page 654) is properly defined,

then the event record extensions are enabled.

NOTES:

The record extensions capture thread create, start, restart, delete, switch, begin, exitted and
terminate events.

650 Chapter 26. Configuring a System

Chapter 26 Section 26.13 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.13.2 CONFIGURE_RECORD_FATAL_DUMP_BASE64

CONSTANT:

CONFIGURE_RECORD_FATAL_DUMP_BASE64

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case

• this configuration option is defined

• and CONFIGURE_RECORD_PER_PROCESSOR_ITEMS (page 654) is properly defined,

• and CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB (page 652) is undefined,

then the event records are dumped in Base64 encoding in a fatal error extension (see System
Termination Procedure (page 517)).

NOTES:

This extension can be used to produce crash dumps.

26.13. Event Recording Configuration 651

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.13

26.13.3 CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB

CONSTANT:

CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case

• this configuration option is defined

• and CONFIGURE_RECORD_PER_PROCESSOR_ITEMS (page 654) is properly defined,

then the event records are compressed by zlib and dumped in Base64 encoding in a fatal error
extension (see System Termination Procedure (page 517)).

NOTES:

The zlib compression needs about 512KiB of RAM. This extension can be used to produce crash
dumps.

652 Chapter 26. Configuring a System

Chapter 26 Section 26.13 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.13.4 CONFIGURE_RECORD_INTERRUPTS_ENABLED

CONSTANT:

CONFIGURE_RECORD_INTERRUPTS_ENABLED

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case

• this configuration option is defined

• and CONFIGURE_RECORD_PER_PROCESSOR_ITEMS (page 654) is properly defined,

then the interrupt event recording is enabled.

NOTES:

The interrupt event recording generates interrupt entry and exit events when interrupt entries
are dispatched.

26.13. Event Recording Configuration 653

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.13

26.13.5 CONFIGURE_RECORD_PER_PROCESSOR_ITEMS

CONSTANT:

CONFIGURE_RECORD_PER_PROCESSOR_ITEMS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the event record item count per processor.

NOTES:

The event record buffers are statically allocated for each configured processor (CONFIG-
URE_MAXIMUM_PROCESSORS (page 577)). If the value of this configuration option is zero,
then nothing is allocated.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to 16.

• The value of the configuration option shall be less than or equal to SIZE_MAX.

• The value of the configuration option shall be a power of two.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

654 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/limits

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14 Filesystem Configuration

This section describes configuration options related to filesytems. By default, the In-
Memory Filesystem (IMFS) is used as the base filesystem (also known as root filesys-
tem). In order to save some memory for your application, you can disable the filesys-
tem support with the CONFIGURE_APPLICATION_DISABLE_FILESYSTEM (page 656) con-
figuration option. Alternatively, you can strip down the features of the base filesys-
tem with the CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM (page 683) and CONFIG-
URE_USE_DEVFS_AS_BASE_FILESYSTEM (page 682) configuration options. These three con-
figuration options are mutually exclusive. They are intended for an advanced application con-
figuration.

Features of the IMFS can be disabled and enabled with the following configuration options:

• CONFIGURE_IMFS_DISABLE_CHMOD (page 665)

• CONFIGURE_IMFS_DISABLE_CHOWN (page 666)

• CONFIGURE_IMFS_DISABLE_LINK (page 667)

• CONFIGURE_IMFS_DISABLE_MKNOD (page 668)

• CONFIGURE_IMFS_DISABLE_MKNOD_FILE (page 670)

• CONFIGURE_IMFS_DISABLE_MOUNT (page 671)

• CONFIGURE_IMFS_DISABLE_READDIR (page 672)

• CONFIGURE_IMFS_DISABLE_READLINK (page 673)

• CONFIGURE_IMFS_DISABLE_RENAME (page 674)

• CONFIGURE_IMFS_DISABLE_RMNOD (page 675)

• CONFIGURE_IMFS_DISABLE_SYMLINK (page 676)

• CONFIGURE_IMFS_DISABLE_UNMOUNT (page 677)

• CONFIGURE_IMFS_DISABLE_UTIME (page 678)

• CONFIGURE_IMFS_ENABLE_MKFIFO (page 679)

26.14. Filesystem Configuration 655

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.1 CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

CONSTANT:

CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then a base filesystem and the configured filesystems
are initialized during system initialization.

DESCRIPTION:

In case this configuration option is defined, then no base filesystem is initialized during system
initialization and no filesystems are configured.

NOTES:

Filesystems shall be initialized to support file descriptor based device drivers and basic in-
put/output functions such as printf(). Filesystems can be disabled to reduce the memory
footprint of an application.

656 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.2 CONFIGURE_FILESYSTEM_ALL

CONSTANT:

CONFIGURE_FILESYSTEM_ALL

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the following configuration options will be
defined as well

• CONFIGURE_FILESYSTEM_DOSFS (page 658),

• CONFIGURE_FILESYSTEM_FTPFS (page 659),

• CONFIGURE_FILESYSTEM_IMFS (page 660),

• CONFIGURE_FILESYSTEM_JFFS2 (page 661),

• CONFIGURE_FILESYSTEM_NFS (page 662),

• CONFIGURE_FILESYSTEM_RFS (page 663), and

• CONFIGURE_FILESYSTEM_TFTPFS (page 664).

26.14. Filesystem Configuration 657

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.3 CONFIGURE_FILESYSTEM_DOSFS

CONSTANT:

CONFIGURE_FILESYSTEM_DOSFS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the DOS (FAT) filesystem is registered, so that
instances of this filesystem can be mounted by the application.

NOTES:

This filesystem requires a Block Device Cache configuration, see CONFIG-
URE_APPLICATION_NEEDS_LIBBLOCK (page 685).

658 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.4 CONFIGURE_FILESYSTEM_FTPFS

CONSTANT:

CONFIGURE_FILESYSTEM_FTPFS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the FTP filesystem (FTP client) is registered,
so that instances of this filesystem can be mounted by the application.

26.14. Filesystem Configuration 659

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.5 CONFIGURE_FILESYSTEM_IMFS

CONSTANT:

CONFIGURE_FILESYSTEM_IMFS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the In-Memory Filesystem (IMFS) is registered,
so that instances of this filesystem can be mounted by the application.

NOTES:

Applications will rarely need this configuration option. This configuration option is intended
for test programs. You do not need to define this configuration option for the base filesystem
(also known as root filesystem).

660 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.6 CONFIGURE_FILESYSTEM_JFFS2

CONSTANT:

CONFIGURE_FILESYSTEM_JFFS2

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the JFFS2 filesystem is registered, so that
instances of this filesystem can be mounted by the application.

26.14. Filesystem Configuration 661

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.7 CONFIGURE_FILESYSTEM_NFS

CONSTANT:

CONFIGURE_FILESYSTEM_NFS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Network Filesystem (NFS) client is regis-
tered, so that instances of this filesystem can be mounted by the application.

662 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.8 CONFIGURE_FILESYSTEM_RFS

CONSTANT:

CONFIGURE_FILESYSTEM_RFS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the RTEMS Filesystem (RFS) is registered, so
that instances of this filesystem can be mounted by the application.

NOTES:

This filesystem requires a Block Device Cache configuration, see CONFIG-
URE_APPLICATION_NEEDS_LIBBLOCK (page 685).

26.14. Filesystem Configuration 663

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.9 CONFIGURE_FILESYSTEM_TFTPFS

CONSTANT:

CONFIGURE_FILESYSTEM_TFTPFS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the TFTP filesystem (TFTP client) is registered,
so that instances of this filesystem can be mounted by the application.

664 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.10 CONFIGURE_IMFS_DISABLE_CHMOD

CONSTANT:

CONFIGURE_IMFS_DISABLE_CHMOD

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports changing the mode of
files.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support changing the
mode of files (no support for chmod()).

26.14. Filesystem Configuration 665

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.11 CONFIGURE_IMFS_DISABLE_CHOWN

CONSTANT:

CONFIGURE_IMFS_DISABLE_CHOWN

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports changing the ownership
of files.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support changing the
ownership of files (no support for chown()).

666 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.12 CONFIGURE_IMFS_DISABLE_LINK

CONSTANT:

CONFIGURE_IMFS_DISABLE_LINK

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports hard links.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support hard links (no
support for link()).

26.14. Filesystem Configuration 667

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.13 CONFIGURE_IMFS_DISABLE_MKNOD

CONSTANT:

CONFIGURE_IMFS_DISABLE_MKNOD

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports making files.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support making files
(no support for mknod()).

668 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.14 CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE

CONSTANT:

CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports making device files.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support making device
files.

26.14. Filesystem Configuration 669

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.15 CONFIGURE_IMFS_DISABLE_MKNOD_FILE

CONSTANT:

CONFIGURE_IMFS_DISABLE_MKNOD_FILE

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports making regular files.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support making regular
files.

670 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.16 CONFIGURE_IMFS_DISABLE_MOUNT

CONSTANT:

CONFIGURE_IMFS_DISABLE_MOUNT

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports mounting other filesys-
tems.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support mounting other
filesystems (no support for mount()).

26.14. Filesystem Configuration 671

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.17 CONFIGURE_IMFS_DISABLE_READDIR

CONSTANT:

CONFIGURE_IMFS_DISABLE_READDIR

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports reading directories.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support reading direc-
tories (no support for readdir()). It is still possible to open files in a directory.

672 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.18 CONFIGURE_IMFS_DISABLE_READLINK

CONSTANT:

CONFIGURE_IMFS_DISABLE_READLINK

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports reading symbolic links.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support reading sym-
bolic links (no support for readlink()).

26.14. Filesystem Configuration 673

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.19 CONFIGURE_IMFS_DISABLE_RENAME

CONSTANT:

CONFIGURE_IMFS_DISABLE_RENAME

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports renaming files.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support renaming files
(no support for rename()).

674 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.20 CONFIGURE_IMFS_DISABLE_RMNOD

CONSTANT:

CONFIGURE_IMFS_DISABLE_RMNOD

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports removing files.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support removing files
(no support for rmnod()).

26.14. Filesystem Configuration 675

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.21 CONFIGURE_IMFS_DISABLE_SYMLINK

CONSTANT:

CONFIGURE_IMFS_DISABLE_SYMLINK

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports creating symbolic links.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support creating sym-
bolic links (no support for symlink()).

676 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.22 CONFIGURE_IMFS_DISABLE_UNMOUNT

CONSTANT:

CONFIGURE_IMFS_DISABLE_UNMOUNT

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports unmounting other filesys-
tems.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support unmounting
other filesystems (no support for unmount()).

26.14. Filesystem Configuration 677

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.23 CONFIGURE_IMFS_DISABLE_UTIME

CONSTANT:

CONFIGURE_IMFS_DISABLE_UTIME

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS supports changing file times.

DESCRIPTION:

In case this configuration option is defined, then the root IMFS does not support changing file
times (no support for utime()).

678 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.24 CONFIGURE_IMFS_ENABLE_MKFIFO

CONSTANT:

CONFIGURE_IMFS_ENABLE_MKFIFO

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the root IMFS does not support making FIFOs (no
support for mkfifo()).

DESCRIPTION:

In case this configuration option is defined, then the root IMFS supports making FIFOs.

26.14. Filesystem Configuration 679

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.25 CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK

CONSTANT:

CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 128.

DESCRIPTION:

The value of this configuration option defines the block size for in-memory files managed by the
IMFS.

NOTES:

The configured block size has two impacts. The first is the average amount of unused memory
in the last block of each file. For example, when the block size is 512, on average one-half of
the last block of each file will remain unused and the memory is wasted. In contrast, when the
block size is 16, the average unused memory per file is only 8 bytes. However, it requires more
allocations for the same size file and thus more overhead per block for the dynamic memory
management.

Second, the block size has an impact on the maximum size file that can be stored in the IMFS.
With smaller block size, the maximum file size is correspondingly smaller. The following shows
the maximum file size possible based on the configured block size:

• when the block size is 16 bytes, the maximum file size is 1,328 bytes.

• when the block size is 32 bytes, the maximum file size is 18,656 bytes.

• when the block size is 64 bytes, the maximum file size is 279,488 bytes.

• when the block size is 128 bytes, the maximum file size is 4,329,344 bytes.

• when the block size is 256 bytes, the maximum file size is 68,173,568 bytes.

• when the block size is 512 bytes, the maximum file size is 1,082,195,456 bytes.

CONSTRAINTS:

The value of the configuration option shall be equal to 16, 32, 64, 128, 256, or 512.

680 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.26 CONFIGURE_JFFS2_DELAYED_WRITE_TASK_PRIORITY

CONSTANT:

CONFIGURE_JFFS2_DELAYED_WRITE_TASK_PRIORITY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 15.

DESCRIPTION:

The value of this configuration option defines the JFFS2 delayed write task priority.

CONSTRAINTS:

The value of the configuration option shall be a valid Classic API task priority. The set of valid
task priorities depends on the scheduler configuration.

26.14. Filesystem Configuration 681

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.14

26.14.27 CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM

CONSTANT:

CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then an IMFS with a reduced feature set will be the
base filesystem (also known as root filesystem).

NOTES:

In case this configuration option is defined, then the following configuration options will be
defined as well

• CONFIGURE_IMFS_DISABLE_CHMOD (page 665),

• CONFIGURE_IMFS_DISABLE_CHOWN (page 666),

• CONFIGURE_IMFS_DISABLE_LINK (page 667),

• CONFIGURE_IMFS_DISABLE_MKNOD_FILE (page 670),

• CONFIGURE_IMFS_DISABLE_MOUNT (page 671),

• CONFIGURE_IMFS_DISABLE_READDIR (page 672),

• CONFIGURE_IMFS_DISABLE_READLINK (page 673),

• CONFIGURE_IMFS_DISABLE_RENAME (page 674),

• CONFIGURE_IMFS_DISABLE_RMNOD (page 675),

• CONFIGURE_IMFS_DISABLE_SYMLINK (page 676),

• CONFIGURE_IMFS_DISABLE_UTIME (page 678), and

• CONFIGURE_IMFS_DISABLE_UNMOUNT (page 677).

In addition, a simplified path evaluation is enabled. It allows only a look up of absolute paths.

This configuration of the IMFS is basically a device-only filesystem. It is comparable in func-
tionality to the pseudo-filesystem name space provided before RTEMS release 4.5.0.

682 Chapter 26. Configuring a System

Chapter 26 Section 26.14 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.14.28 CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

CONSTANT:

CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then an IMFS with a reduced feature set will be the
base filesystem (also known as root filesystem).

NOTES:

In case this configuration option is defined, then the following configuration options will be
defined as well

• CONFIGURE_IMFS_DISABLE_CHMOD (page 665),

• CONFIGURE_IMFS_DISABLE_CHOWN (page 666),

• CONFIGURE_IMFS_DISABLE_LINK (page 667),

• CONFIGURE_IMFS_DISABLE_READLINK (page 673),

• CONFIGURE_IMFS_DISABLE_RENAME (page 674),

• CONFIGURE_IMFS_DISABLE_SYMLINK (page 676),

• CONFIGURE_IMFS_DISABLE_UTIME (page 678), and

• CONFIGURE_IMFS_DISABLE_UNMOUNT (page 677).

26.14. Filesystem Configuration 683

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.15

26.15 Block Device Cache Configuration

This section describes configuration options related to the Block Device Cache (bdbuf).

684 Chapter 26. Configuring a System

Chapter 26 Section 26.15 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.15.1 CONFIGURE_APPLICATION_NEEDS_LIBBLOCK

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_LIBBLOCK

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Block Device Cache is initialized during
system initialization.

NOTES:

Each option of the Block Device Cache (bdbuf) configuration can be explicitly set by the user
with the configuration options below. The Block Device Cache is used for example by the RFS
and DOSFS filesystems.

26.15. Block Device Cache Configuration 685

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.15

26.15.2 CONFIGURE_BDBUF_BUFFER_MAX_SIZE

CONSTANT:

CONFIGURE_BDBUF_BUFFER_MAX_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 4096.

DESCRIPTION:

The value of this configuration option defines the maximum size of a buffer in bytes.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be an integral multiple of CONFIG-
URE_BDBUF_BUFFER_MIN_SIZE (page 687).

686 Chapter 26. Configuring a System

Chapter 26 Section 26.15 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.15.3 CONFIGURE_BDBUF_BUFFER_MIN_SIZE

CONSTANT:

CONFIGURE_BDBUF_BUFFER_MIN_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 512.

DESCRIPTION:

The value of this configuration option defines the minimum size of a buffer in bytes.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

26.15. Block Device Cache Configuration 687

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.15

26.15.4 CONFIGURE_BDBUF_CACHE_MEMORY_SIZE

CONSTANT:

CONFIGURE_BDBUF_CACHE_MEMORY_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 32768.

DESCRIPTION:

The value of this configuration option defines the size of the cache memory in bytes.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to SIZE_MAX.

688 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/limits

Chapter 26 Section 26.15 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.15.5 CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS

CONSTANT:

CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the maximum blocks per read-ahead request.

NOTES:

A value of 0 disables the read-ahead task (default). The read-ahead task will issue speculative
read transfers if a sequential access pattern is detected. This can improve the performance on
some systems.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

26.15. Block Device Cache Configuration 689

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.15

26.15.6 CONFIGURE_BDBUF_MAX_WRITE_BLOCKS

CONSTANT:

CONFIGURE_BDBUF_MAX_WRITE_BLOCKS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 16.

DESCRIPTION:

The value of this configuration option defines the maximum blocks per write request.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

690 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.15 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.15.7 CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY

CONSTANT:

CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 15.

DESCRIPTION:

The value of this configuration option defines the read-ahead task priority.

CONSTRAINTS:

The value of the configuration option shall be a valid Classic API task priority. The set of valid
task priorities depends on the scheduler configuration.

26.15. Block Device Cache Configuration 691

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.15

26.15.8 CONFIGURE_BDBUF_TASK_STACK_SIZE

CONSTANT:

CONFIGURE_BDBUF_TASK_STACK_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is RTEMS_MINIMUM_STACK_SIZE.

DESCRIPTION:

The value of this configuration option defines the task stack size of the Block Device Cache tasks
in bytes.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to CONFIG-
URE_MINIMUM_TASK_STACK_SIZE (page 584).

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

• The value of the configuration option shall be small enough so that the task stack space
calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
uintptr_t.

692 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.15 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.15.9 CONFIGURE_SWAPOUT_BLOCK_HOLD

CONSTANT:

CONFIGURE_SWAPOUT_BLOCK_HOLD

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 1000.

DESCRIPTION:

The value of this configuration option defines the swapout task maximum block hold time in
milliseconds.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

26.15. Block Device Cache Configuration 693

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.15

26.15.10 CONFIGURE_SWAPOUT_SWAP_PERIOD

CONSTANT:

CONFIGURE_SWAPOUT_SWAP_PERIOD

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 250.

DESCRIPTION:

The value of this configuration option defines the swapout task swap period in milliseconds.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

694 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.15 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.15.11 CONFIGURE_SWAPOUT_TASK_PRIORITY

CONSTANT:

CONFIGURE_SWAPOUT_TASK_PRIORITY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 15.

DESCRIPTION:

The value of this configuration option defines the swapout task priority.

CONSTRAINTS:

The value of the configuration option shall be a valid Classic API task priority. The set of valid
task priorities depends on the scheduler configuration.

26.15. Block Device Cache Configuration 695

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.15

26.15.12 CONFIGURE_SWAPOUT_WORKER_TASKS

CONSTANT:

CONFIGURE_SWAPOUT_WORKER_TASKS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the swapout worker task count.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

696 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.15 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.15.13 CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY

CONSTANT:

CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 15.

DESCRIPTION:

The value of this configuration option defines the swapout worker task priority.

CONSTRAINTS:

The value of the configuration option shall be a valid Classic API task priority. The set of valid
task priorities depends on the scheduler configuration.

26.15. Block Device Cache Configuration 697

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.16

26.16 Task Stack Allocator Configuration

This section describes configuration options related to the task stack allocator. RTEMS allows
the application or BSP to define its own allocation and deallocation methods for task stacks. This
can be used to place task stacks in special areas of memory or to utilize a Memory Management
Unit so that stack overflows are detected in hardware.

698 Chapter 26. Configuring a System

Chapter 26 Section 26.16 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.16.1 CONFIGURE_TASK_STACK_ALLOCATOR

CONSTANT:

CONFIGURE_TASK_STACK_ALLOCATOR

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is _Workspace_Allocate, which indicates that task stacks will be allocated
from the RTEMS Workspace.

DESCRIPTION:

The value of this configuration option initializes the stack allocator allocate handler.

NOTES:

A correctly configured system shall configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT (page 702)

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR (page 703)

CONSTRAINTS:

The value of the configuration option shall be defined to a valid function pointer of the type
void *(*allocate)(size_t).

26.16. Task Stack Allocator Configuration 699

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.16

26.16.2 CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE

CONSTANT:

CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the system is informed that the task stack
allocator does not use the RTEMS Workspace.

NOTES:

This configuration option may be used if a custom task stack allocator is configured, see CON-
FIGURE_TASK_STACK_ALLOCATOR (page 699).

700 Chapter 26. Configuring a System

Chapter 26 Section 26.16 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.16.3 CONFIGURE_TASK_STACK_ALLOCATOR_FOR_IDLE

CONSTANT:

CONFIGURE_TASK_STACK_ALLOCATOR_FOR_IDLE

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

By default, the IDLE task storage area will be allocated from the RTEMS Workspace.

DESCRIPTION:

The value of this configuration option is the address for the stack allocator allocate handler used
to allocate the task storage area of each IDLE task.

NOTES:

This configuration option is independent of the other thread stack allocator configuration op-
tions. It is assumed that any memory allocated for the task storage area of an IDLE task will not
be from the RTEMS Workspace.

The IDLE task stack allocator may increase the size of the allocated memory area to account for
the actually allocated memory area.

The

• CONFIGURE_IDLE_TASK_STORAGE_SIZE (page 709), and

• CONFIGURE_TASK_STACK_ALLOCATOR_FOR_IDLE

configuration options are mutually exclusive.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be defined to a valid function pointer of the
type void *(*allocate)(uint32_t, size_t *).

• The IDLE task stack allocator shall return a pointer to the allocated memory area or ter-
minate the system with a fatal error if the allocation request cannot be satisfied.

• The IDLE task stack allocator may increase the size of the allocated memory area.

26.16. Task Stack Allocator Configuration 701

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.16

26.16.4 CONFIGURE_TASK_STACK_ALLOCATOR_INIT

CONSTANT:

CONFIGURE_TASK_STACK_ALLOCATOR_INIT

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is NULL.

DESCRIPTION:

The value of this configuration option initializes the stack allocator initialization handler.

NOTES:

A correctly configured system shall configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR (page 699)

• CONFIGURE_TASK_STACK_DEALLOCATOR (page 703)

CONSTRAINTS:

The value of the configuration option shall be defined to a valid function pointer of the type
void (*initialize)(size_t) or to NULL.

702 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 26 Section 26.16 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.16.5 CONFIGURE_TASK_STACK_DEALLOCATOR

CONSTANT:

CONFIGURE_TASK_STACK_DEALLOCATOR

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is _Workspace_Free, which indicates that task stacks will be allocated from
the RTEMS Workspace.

DESCRIPTION:

The value of this configuration option initializes the stack allocator deallocate handler.

NOTES:

A correctly configured system shall configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT (page 702)

• CONFIGURE_TASK_STACK_ALLOCATOR (page 699)

• CONFIGURE_TASK_STACK_DEALLOCATOR

CONSTRAINTS:

The value of the configuration option shall be defined to a valid function pointer of the type
void (*deallocate)(void *).

26.16. Task Stack Allocator Configuration 703

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.16

26.16.6 CONFIGURE_TASK_STACK_FROM_ALLOCATOR

CONSTANT:

CONFIGURE_TASK_STACK_FROM_ALLOCATOR

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is a macro which supports the system heap allocator.

DESCRIPTION:

The value of this configuration option is used to calculate the task stack space size.

NOTES:

This configuration option may be used if a custom task stack allocator is configured, see CON-
FIGURE_TASK_STACK_ALLOCATOR (page 699).

CONSTRAINTS:

The value of the configuration option shall be defined to a macro which accepts exactly one
parameter and returns an unsigned integer. The parameter will be an allocation size and the
macro shall return this size plus the overhead of the allocator to manage an allocation request
for this size.

704 Chapter 26. Configuring a System

Chapter 26 Section 26.17 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.17 Idle Task Configuration

This section describes configuration options related to the idle tasks.

26.17. Idle Task Configuration 705

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.17

26.17.1 CONFIGURE_IDLE_TASK_BODY

CONSTANT:

CONFIGURE_IDLE_TASK_BODY

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

If the CONFIGURE_DISABLE_BSP_SETTINGS (page 568) configuration option is not defined
and BSP_IDLE_TASK_BODY is provided by the BSP, then the default value is defined by
BSP_IDLE_TASK_BODY, otherwise the default value is _CPU_Thread_Idle_body.

DESCRIPTION:

The value of this configuration option initializes the IDLE thread body.

NOTES:

IDLE threads shall not block. A blocking IDLE thread results in undefined system behaviour
because the scheduler assume that at least one ready thread exists.

IDLE threads can be used to initialize the application, see configuration option CONFIG-
URE_IDLE_TASK_INITIALIZES_APPLICATION (page 707).

The BSP may have knowledge of the specific CPU model, system controller logic, and peripheral
buses, so a BSP-specific IDLE task may be capable of turning components off to save power
during extended periods of no task activity.

CONSTRAINTS:

The value of the configuration option shall be defined to a valid function pointer of the type
void *(*idle_body)(uintptr_t).

706 Chapter 26. Configuring a System

Chapter 26 Section 26.17 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.17.2 CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

CONSTANT:

CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the user is assumed to provide one or more
initialization tasks.

DESCRIPTION:

This configuration option is defined to indicate that the user has configured no user initialization
tasks or threads and that the user provided IDLE task will perform application initialization and
then transform itself into an IDLE task.

NOTES:

If you use this option be careful, the user IDLE task cannot block at all during the initialization
sequence. Further, once application initialization is complete, it shall make itself preemptible
and enter an idle body loop.

The IDLE task shall run at the lowest priority of all tasks in the system.

If this configuration option is defined, then it is mandatory to configure a user IDLE task with
the CONFIGURE_IDLE_TASK_BODY (page 706) configuration option, otherwise a compile time
error in the configuration file will occur.

The application shall define at least one of the following configuration options

• CONFIGURE_RTEMS_INIT_TASKS_TABLE (page 634),

• CONFIGURE_POSIX_INIT_THREAD_TABLE (page 648), or

• CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

otherwise a compile time error in the configuration file will occur.

If no Classic API initialization task and no POSIX API initialization thread is configured, then no
Global Construction (page 92) is performed.

26.17. Idle Task Configuration 707

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.17

26.17.3 CONFIGURE_IDLE_TASK_STACK_SIZE

CONSTANT:

CONFIGURE_IDLE_TASK_STACK_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

If the CONFIGURE_DISABLE_BSP_SETTINGS (page 568) configuration option is not de-
fined and BSP_IDLE_TASK_STACK_SIZE is provided by the BSP, then the default value is de-
fined by BSP_IDLE_TASK_STACK_SIZE, otherwise the default value is defined by the CONFIG-
URE_MINIMUM_TASK_STACK_SIZE (page 584) configuration option.

DESCRIPTION:

The value of this configuration option defines the task stack size for an IDLE task.

NOTES:

In SMP configurations, there is one IDLE task per configured processor, see CONFIG-
URE_MAXIMUM_PROCESSORS (page 577).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to a BSP-specific and
application-specific minimum value.

• The value of the configuration option shall be small enough so that the IDLE task stack
area calculation carried out by <rtems/confdefs.h> does not overflow an integer of type
size_t.

708 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/size_t

Chapter 26 Section 26.17 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.17.4 CONFIGURE_IDLE_TASK_STORAGE_SIZE

CONSTANT:

CONFIGURE_IDLE_TASK_STORAGE_SIZE

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

This configuration option has no default value. If it is not specified, then the task storage area
for each IDLE task will allocated from the RTEMS Workspace or through a custom IDLE task
stack allocator.

DESCRIPTION:

If this configuration option is specified, then the task storage areas for the IDLE tasks are stati-
cally allocated by <rtems/confdefs.h>. The value of this configuration option defines the size
in bytes of the task storage area of each IDLE task in the system.

NOTES:

By default, the IDLE task storage areas are allocated from the RTEMS Workspace. Appli-
cations which do not want to use a heap allocator can use this configuration option to
use statically allocated memory for the IDLE task storage areas. The task storage area
contains the task stack, the thread-local storage, and the floating-point context on archi-
tectures with a separate floating-point context. The size of the thread-local storage area
is defined at link time or by the CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE
(page 578) configuration option. You have to estimate the actual thread-local storage size
if you want to use this configuration option. If the IDLE task stack size would be less than
the value defined by the CONFIGURE_IDLE_TASK_STACK_SIZE (page 708) configuration op-
tion, for example because the thread-local storage size is larger than expected, then the sys-
tem terminates with the INTERNAL_ERROR_CORE (page 518) fatal source and the INTER-
NAL_ERROR_IDLE_THREAD_STACK_TOO_SMALL (page 519) fatal code during system initial-
ization.

The value of this configuration option is passed to RTEMS_TASK_STORAGE_SIZE() (page 144)
by <rtems/confdefs.h> to determine the actual size of the statically allocated area to take
architecture-specific overheads into account.

The

• CONFIGURE_IDLE_TASK_STORAGE_SIZE, and

• CONFIGURE_TASK_STACK_ALLOCATOR_FOR_IDLE (page 701)

configuration options are mutually exclusive.

CONSTRAINTS:

The value of the configuration option shall be greater than or equal to CONFIG-
URE_IDLE_TASK_STACK_SIZE (page 708).

26.17. Idle Task Configuration 709

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18 General Scheduler Configuration

This section describes configuration options related to selecting a scheduling algorithm for an
application. A scheduler configuration is optional and only necessary in very specific circum-
stances. A normal application configuration does not need any of the configuration options
described in this section.

By default, the Deterministic Priority Scheduler (page 68) algorithm is used in uniprocessor
configurations. In case SMP is enabled and the configured maximum processors (CONFIG-
URE_MAXIMUM_PROCESSORS (page 577)) is greater than one, then the Earliest Deadline First
SMP Scheduler (page 70) is selected as the default scheduler algorithm.

For the schedulers provided by RTEMS (see Scheduling Concepts (page 61)), the configuration is
straightforward. All that is required is to define the configuration option which specifies which
scheduler you want for in your application.

The pluggable scheduler interface also enables the user to provide their own scheduling algo-
rithm. If you choose to do this, you must define multiple configuration option.

710 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.1 CONFIGURE_CBS_MAXIMUM_SERVERS

CONSTANT:

CONFIGURE_CBS_MAXIMUM_SERVERS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is CONFIGURE_MAXIMUM_TASKS (page 621).

DESCRIPTION:

The value of this configuration option defines the maximum number Constant Bandwidth
Servers that can be concurrently active.

NOTES:

This configuration option is only evaluated if the configuration option CONFIG-
URE_SCHEDULER_CBS (page 714) is defined.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to SIZE_MAX.

• The value of the configuration option shall be less than or equal to a BSP-specific and
application-specific value which depends on the size of the memory available to the appli-
cation.

26.18. General Scheduler Configuration 711

https://en.cppreference.com/w/c/types/limits

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18.2 CONFIGURE_MAXIMUM_PRIORITY

CONSTANT:

CONFIGURE_MAXIMUM_PRIORITY

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 255.

DESCRIPTION:

For the following schedulers

• Deterministic Priority Scheduler (page 68), which is the default in uniprocessor configura-
tions and can be configured through the CONFIGURE_SCHEDULER_PRIORITY (page 718)
configuration option,

• Deterministic Priority SMP Scheduler (page 70) which can be configured through the CON-
FIGURE_SCHEDULER_PRIORITY_SMP (page 720) configuration option, and

• Arbitrary Processor Affinity Priority SMP Scheduler (page 70) which can be configured
through the CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP (page 719) configura-
tion option

this configuration option specifies the maximum numeric priority of any task for these sched-
ulers and one less that the number of priority levels for these schedulers. For all other schedulers
provided by RTEMS, this configuration option has no effect.

NOTES:

The numerically greatest priority is the logically lowest priority in the system and will thus be
used by the IDLE task.

Priority zero is reserved for internal use by RTEMS and is not available to applications.

Reducing the number of priorities through this configuration option reduces the amount of
memory allocated by the schedulers listed above. These schedulers use a chain control structure
per priority and this structure consists of three pointers. On a 32-bit architecture, the allocated
memory is 12 bytes * (CONFIGURE_MAXIMUM_PRIORITY + 1), e.g. 3072 bytes for 256 priority
levels (default), 48 bytes for 4 priority levels (CONFIGURE_MAXIMUM_PRIORITY == 3).

The default value is 255, because RTEMS shall support 256 priority levels to be compliant with
various standards. These priorities range from 0 to 255.

CONSTRAINTS:

The value of the configuration option shall be equal to 3, 7, 31, 63, 127, or 255.

712 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.3 CONFIGURE_SCHEDULER_ASSIGNMENTS

CONSTANT:

CONFIGURE_SCHEDULER_ASSIGNMENTS

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value of this configuration option is computed so that the default scheduler is
assigned to each configured processor (up to 32).

DESCRIPTION:

The value of this configuration option is used to initialize the initial scheduler to processor
assignments.

NOTES:

Where the system was built with SMP support enabled, this configuration option is evaluated,
otherwise it is ignored.

This is an advanced configuration option, see Clustered Scheduler Configuration (page 726).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be a list of the following macros:

– RTEMS_SCHEDULER_ASSIGN(scheduler_index, attributes)

– RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER

The scheduler_index macro parameter shall be a valid index of the scheduler table de-
fined by the CONFIGURE_SCHEDULER_TABLE_ENTRIES (page 724) configuration option.

The attributes macro parameter shall be set to exactly one of the following constants:

– RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY

– RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL

• The value of the configuration option shall be a list of exactly CONFIG-
URE_MAXIMUM_PROCESSORS (page 577) elements.

26.18. General Scheduler Configuration 713

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18.4 CONFIGURE_SCHEDULER_CBS

CONSTANT:

CONFIGURE_SCHEDULER_CBS

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Constant Bandwidth Server Scheduling
(CBS) (page 69) algorithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for exactly one processor.

714 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.5 CONFIGURE_SCHEDULER_EDF

CONSTANT:

CONFIGURE_SCHEDULER_EDF

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Earliest Deadline First Scheduler (page 68)
algorithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for exactly one processor.

26.18. General Scheduler Configuration 715

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18.6 CONFIGURE_SCHEDULER_EDF_SMP

CONSTANT:

CONFIGURE_SCHEDULER_EDF_SMP

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Earliest Deadline First SMP Scheduler
(page 70) algorithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for up to 32 processors.

This scheduler algorithm is the default in SMP configurations if CONFIG-
URE_MAXIMUM_PROCESSORS (page 577) is greater than one.

716 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.7 CONFIGURE_SCHEDULER_NAME

CONSTANT:

CONFIGURE_SCHEDULER_NAME

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is

• "MEDF" for the Earliest Deadline First SMP Scheduler (page 70),

• "MPA " for the Arbitrary Processor Affinity Priority SMP Scheduler (page 70),

• "MPD " for the Deterministic Priority SMP Scheduler (page 70),

• "MPS " for the Simple Priority SMP Scheduler (page 70),

• "UCBS" for the Constant Bandwidth Server Scheduling (CBS) (page 69),

• "UEDF" for the Earliest Deadline First Scheduler (page 68),

• "UPD " for the Deterministic Priority Scheduler (page 68), and

• "UPS " for the Simple Priority Scheduler (page 68).

DESCRIPTION:

The value of this configuration option defines the name of the default scheduler.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

Schedulers can be identified via rtems_scheduler_ident() (page 72).

Use rtems_build_name() (page 902) to define the scheduler name.

CONSTRAINTS:

The value of the configuration option shall be convertible to an integer of type rtems_name.

26.18. General Scheduler Configuration 717

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18.8 CONFIGURE_SCHEDULER_PRIORITY

CONSTANT:

CONFIGURE_SCHEDULER_PRIORITY

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Deterministic Priority Scheduler (page 68)
algorithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for exactly one processor.

This scheduler algorithm is the default when CONFIGURE_MAXIMUM_PROCESSORS (page 577)
is exactly one.

The memory allocated for this scheduler depends on the CONFIGURE_MAXIMUM_PRIORITY
(page 712) configuration option.

718 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.9 CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP

CONSTANT:

CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Arbitrary Processor Affinity Priority SMP
Scheduler (page 70) algorithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for up to 32 processors.

The memory allocated for this scheduler depends on the CONFIGURE_MAXIMUM_PRIORITY
(page 712) configuration option.

26.18. General Scheduler Configuration 719

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18.10 CONFIGURE_SCHEDULER_PRIORITY_SMP

CONSTANT:

CONFIGURE_SCHEDULER_PRIORITY_SMP

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Deterministic Priority SMP Scheduler
(page 70) algorithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for up to 32 processors.

The memory allocated for this scheduler depends on the CONFIGURE_MAXIMUM_PRIORITY
(page 712) configuration option.

720 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.11 CONFIGURE_SCHEDULER_SIMPLE

CONSTANT:

CONFIGURE_SCHEDULER_SIMPLE

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Simple Priority Scheduler (page 68) algo-
rithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for exactly one processor.

26.18. General Scheduler Configuration 721

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18.12 CONFIGURE_SCHEDULER_SIMPLE_SMP

CONSTANT:

CONFIGURE_SCHEDULER_SIMPLE_SMP

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Simple Priority SMP Scheduler (page 70)
algorithm is made available to the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

In case no explicit Clustered Scheduler Configuration (page 726) is present, then it is used as the
scheduler for up to 32 processors.

722 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.13 CONFIGURE_SCHEDULER_STRONG_APA

CONSTANT:

CONFIGURE_SCHEDULER_STRONG_APA

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the Strong APA algorithm is made available to
the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

This scheduler algorithm is not correctly implemented. Do not use it.

26.18. General Scheduler Configuration 723

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.18

26.18.14 CONFIGURE_SCHEDULER_TABLE_ENTRIES

CONSTANT:

CONFIGURE_SCHEDULER_TABLE_ENTRIES

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value of this configuration option is the definition of exactly one table entry for the
configured scheduler.

DESCRIPTION:

The value of this configuration option is used to initialize the table of configured schedulers.

NOTES:

Schedulers registered in the scheduler table by this configuration option are available to the
application. The scheduler table entry index defines the index of the scheduler.

This is an advanced configuration option, see Clustered Scheduler Configuration (page 726).

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be a list of the following macros:

– RTEMS_SCHEDULER_TABLE_CBS(name, obj_name)

– RTEMS_SCHEDULER_TABLE_EDF(name, obj_name)

– RTEMS_SCHEDULER_TABLE_EDF_SMP(name, obj_name)

– RTEMS_SCHEDULER_TABLE_PRIORITY_AFFINITY_SMP(name, obj_name)

– RTEMS_SCHEDULER_TABLE_PRIORITY(name, obj_name)

– RTEMS_SCHEDULER_TABLE_PRIORITY_SMP(name, obj_name)

– RTEMS_SCHEDULER_TABLE_SIMPLE(name, obj_name)

– RTEMS_SCHEDULER_TABLE_SIMPLE_SMP(name, obj_name)

– RTEMS_SCHEDULER_TABLE_STRONG_APA(name, obj_name)

The name macro parameter shall be the name associated with the scheduler data struc-
tures, see Clustered Scheduler Configuration (page 726).

The obj_name macro parameter shall be the scheduler object name. It is recommended to
define the scheduler object name through rtems_build_name() (page 902).

• Where the system was build with SMP support enabled, the table shall have one or more
entries, otherwise it shall have exactly one entry.

724 Chapter 26. Configuring a System

Chapter 26 Section 26.18 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.18.15 CONFIGURE_SCHEDULER_USER

CONSTANT:

CONFIGURE_SCHEDULER_USER

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

In case this configuration option is defined, then the user shall provide a scheduler algorithm to
the application.

NOTES:

This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

RTEMS allows the application to provide its own task/thread scheduling algorithm. In order to
do this, one shall define CONFIGURE_SCHEDULER_USER to indicate the application provides its own
scheduling algorithm. If CONFIGURE_SCHEDULER_USER is defined then the following additional
macros shall be defined:

• CONFIGURE_SCHEDULER shall be defined to a static definition of the scheduler data struc-
tures of the user scheduler.

• CONFIGURE_SCHEDULER_TABLE_ENTRIES shall be defined to a scheduler table entry initializer
for the user scheduler.

• CONFIGURE_SCHEDULER_USER_PER_THREAD shall be defined to the type of the per-thread in-
formation of the user scheduler.

At this time, the mechanics and requirements for writing a new scheduler are evolving and
not fully documented. It is recommended that you look at the existing Deterministic Prior-
ity Scheduler in cpukit/score/src/schedulerpriority*.c for guidance. For guidance on the
configuration macros, please examine cpukit/include/rtems/confdefs/scheduler.h for how
these are defined for the Deterministic Priority Scheduler.

26.18. General Scheduler Configuration 725

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.19

26.19 Clustered Scheduler Configuration

This section describes configuration options related to clustered scheduling. A clustered sched-
uler configuration is optional. It is an advanced configuration area and only necessary in specific
circumstances.

Clustered scheduling helps to control the worst-case latencies in a multiprocessor system (SMP).
The goal is to reduce the amount of shared state in the system and thus prevention of lock
contention. Modern multiprocessor systems tend to have several layers of data and instruction
caches. With clustered scheduling it is possible to honour the cache topology of a system and
thus avoid expensive cache synchronization traffic.

We have clustered scheduling in case the set of processors of a system is partitioned into non-
empty pairwise-disjoint subsets. These subsets are called clusters. Clusters with a cardinality of
one are partitions. Each cluster is owned by exactly one scheduler.

In order to use clustered scheduling the application designer has to answer two questions.

1. How is the set of processors partitioned into clusters?

2. Which scheduler algorithm is used for which cluster?

The schedulers are statically configured.

26.19.1 Configuration Step 1 - Scheduler Algorithms

Firstly, the application must select which scheduling algorithms are available with the following
defines

• CONFIGURE_SCHEDULER_EDF_SMP (page 716),

• CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP (page 719),

• CONFIGURE_SCHEDULER_PRIORITY_SMP (page 720), and

• CONFIGURE_SCHEDULER_SIMPLE_SMP (page 722).

This is necessary to calculate the per-thread overhead introduced by the scheduler algorithms.
After these definitions the configuration file must #include <rtems/scheduler.h> to have access
to scheduler-specific configuration macros.

It is possible to make more than one scheduler algorithm available to the application. For
example a Simple Priority SMP Scheduler (page 70) could be used in a partition for low latency
tasks in addition to an EDF SMP Scheduler (page 70) for a general-purpose cluster. Since the
per-thread overhead depends on the scheduler algorithm only the scheduler algorithms used by
the application should be configured.

26.19.2 Configuration Step 2 - Schedulers

Each scheduler needs some data structures. Use the following macros to create the scheduler
data structures for a particular scheduler identified in the configuration by name.

• RTEMS_SCHEDULER_EDF_SMP(name),

• RTEMS_SCHEDULER_PRIORITY_AFFINITY_SMP(name, prio_count),

• RTEMS_SCHEDULER_PRIORITY_SMP(name, prio_count), and

• RTEMS_SCHEDULER_SIMPLE_SMP(name).

726 Chapter 26. Configuring a System

Chapter 26 Section 26.19 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The name parameter is used as part of a designator for scheduler-specific data structures, so the
usual C/C++ designator rules apply. This name is not the scheduler object name. Additional
parameters are scheduler-specific.

26.19.3 Configuration Step 3 - Scheduler Table

The schedulers are registered in the system via the scheduler table. To populate the scheduler
table define CONFIGURE_SCHEDULER_TABLE_ENTRIES to a list of the following scheduler table entry
initializers

• RTEMS_SCHEDULER_TABLE_EDF_SMP(name, obj_name),

• RTEMS_SCHEDULER_TABLE_PRIORITY_AFFINITY_SMP(name, obj_name),

• RTEMS_SCHEDULER_TABLE_PRIORITY_SMP(name, obj_name), and

• RTEMS_SCHEDULER_TABLE_SIMPLE_SMP(name, obj_name).

The name parameter must correspond to the parameter defining the scheduler data structures
of configuration step 2. The obj_name determines the scheduler object name and can be used in
rtems_scheduler_ident() to get the scheduler object identifier. The scheduler index is defined
by the index of the scheduler table. It is a configuration error to add a scheduler multiple times
to the scheduler table.

26.19.4 Configuration Step 4 - Processor to Scheduler Assignment

The last step is to define which processor uses which scheduler. For this purpose a sched-
uler assignment table must be defined. The entry count of this table must be equal to the
configured maximum processors (CONFIGURE_MAXIMUM_PROCESSORS (page 577)). A pro-
cessor assignment to a scheduler can be optional or mandatory. The boot processor must
have a scheduler assigned. In case the system needs more mandatory processors than avail-
able then a fatal run-time error will occur. To specify the scheduler assignments define
CONFIGURE_SCHEDULER_ASSIGNMENTS to a list of

• RTEMS_SCHEDULER_ASSIGN(scheduler_index, attr) and

• RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER

macros. The scheduler_index parameter must be a valid index into the scheduler table defined
by configuration step 3. The attr parameter defines the scheduler assignment attributes. By de-
fault, a scheduler assignment to a processor is optional. For the scheduler assignment attribute
use one of the mutually exclusive variants

• RTEMS_SCHEDULER_ASSIGN_DEFAULT,

• RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY, and

• RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL.

It is possible to add/remove processors to/from schedulers at run-time, see
rtems_scheduler_add_processor() and rtems_scheduler_remove_processor().

26.19.5 Configuration Example

The following example shows a scheduler configuration for a hypothetical product using two
chip variants. One variant has four processors which is used for the normal product line and
another provides eight processors for the high-performance product line. The first processor
performs hard-real time control of actuators and sensors. The second processor is not used by

26.19. Clustered Scheduler Configuration 727

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.19

RTEMS at all and runs a Linux instance to provide a graphical user interface. The additional
processors are used for a worker thread pool to perform data processing operations.

The processors managed by RTEMS use two Deterministic Priority SMP schedulers capable of
dealing with 256 priority levels. The scheduler with index zero has the name "IO ". The
scheduler with index one has the name "WORK". The scheduler assignments of the first, third
and fourth processor are mandatory, so the system must have at least four processors, otherwise
a fatal run-time error will occur during system startup. The processor assignments for the fifth
up to the eighth processor are optional so that the same application can be used for the normal
and high-performance product lines. The second processor has no scheduler assigned and runs
Linux. A hypervisor will ensure that the two systems cannot interfere in an undesirable way.

1 #define CONFIGURE_MAXIMUM_PROCESSORS 8
2 #define CONFIGURE_MAXIMUM_PRIORITY 255
3

4 /* Configuration Step 1 - Scheduler Algorithms */
5 #define CONFIGURE_SCHEDULER_PRIORITY_SMP
6 #include <rtems/scheduler.h>
7

8 /* Configuration Step 2 - Schedulers */
9 RTEMS_SCHEDULER_PRIORITY_SMP(io, CONFIGURE_MAXIMUM_PRIORITY + 1);

10 RTEMS_SCHEDULER_PRIORITY_SMP(work, CONFIGURE_MAXIMUM_PRIORITY + 1);
11

12 /* Configuration Step 3 - Scheduler Table */
13 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \
14 RTEMS_SCHEDULER_TABLE_PRIORITY_SMP(\
15 io, \
16 rtems_build_name('I', 'O', ' ', ' ') \
17), \
18 RTEMS_SCHEDULER_TABLE_PRIORITY_SMP(\
19 work, \
20 rtems_build_name('W', 'O', 'R', 'K') \
21)
22

23 /* Configuration Step 4 - Processor to Scheduler Assignment */
24 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \
25 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
26 RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER, \
27 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
28 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
29 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \
30 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \
31 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \
32 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL)

26.19.6 Configuration Errors

In case one of the scheduler indices in CONFIGURE_SCHEDULER_ASSIGNMENTS is invalid a link-time
error will occur with an undefined reference to RTEMS_SCHEDULER_INVALID_INDEX.

Some fatal errors may occur in case of scheduler configuration inconsistencies or a lack of
processors on the system. The fatal source is RTEMS_FATAL_SOURCE_SMP.

728 Chapter 26. Configuring a System

Chapter 26 Section 26.19 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• SMP_FATAL_BOOT_PROCESSOR_NOT_ASSIGNED_TO_SCHEDULER - the boot processor must have
a scheduler assigned.

• SMP_FATAL_MANDATORY_PROCESSOR_NOT_PRESENT - there exists a mandatory processor be-
yond the range of physically or virtually available processors. The processor demand
must be reduced for this system.

• SMP_FATAL_START_OF_MANDATORY_PROCESSOR_FAILED - the start of a mandatory pro-
cessor failed during system initialization. The system may not have this proces-
sor at all or it could be a problem with a boot loader for example. Check the
CONFIGURE_SCHEDULER_ASSIGNMENTS definition.

• SMP_FATAL_MULTITASKING_START_ON_UNASSIGNED_PROCESSOR - it is not allowed to start
multitasking on a processor with no scheduler assigned.

26.19. Clustered Scheduler Configuration 729

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.20

26.20 FACE Technical Standard Related Configuration

This section describes configuration options related to adapting RTEMS behavior to be aligned
with the FACE Technical Standard. The FACE Technical Standard is a product of the FACE
Consortium which operates under the Open Group. The FACE Consortium was founded by
avionics organizations to improve the portability of cockpit software across various platforms.
It addresses technical and business concerns.

Most important from an RTEMS perspective, the FACE Technical Standard defines four POSIX
profiles: Security, Safety Base, Safety Extended, and the General Purpose Profile. Each has
an increasingly larger subset of POSIX APIs. In the Security and Safety profiles, ARINC 653 is
required. It is optional in the General Purpose Profile.

The RTEMS Project has been tracking alignment with the FACE POSIX profiles and they are
included in the “RTEMS POSIX 1003.1 Compliance Guide.”

730 Chapter 26. Configuring a System

Chapter 26 Section 26.20 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.20.1 CONFIGURE_POSIX_TIMERS_FACE_BEHAVIOR

CONSTANT:

CONFIGURE_POSIX_TIMERS_FACE_BEHAVIOR

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:

If this configuration option is defined, then POSIX timers may not be created to use the
CLOCK_REALTIME. Per POSIX, this is allowed behavior but per the FACE Technical Standard,
it is not. Using POSIX timers based on CLOCK_REALTIME (e.g., time of day) is unsafe for
real-time safety systems as setting CLOCK_REALTIME will perturb any active timers.

If this option is not defined, POSIX timers may be created to use the CLOCK_REALTIME in
compliance with the POSIX specification.

26.20. FACE Technical Standard Related Configuration 731

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.21

26.21 Multiprocessing Configuration

This section describes multiprocessing related configuration options. The options are only used
if RTEMS was built when the multiprocessing build configuration option is enabled. The multi-
processing configuration is distinct from the SMP configuration. Additionally, this class of con-
figuration options are only applicable if the configuration option CONFIGURE_MP_APPLICATION
(page 734) is defined. The multiprocessing (MPCI) support must not be confused with the SMP
support.

732 Chapter 26. Configuring a System

Chapter 26 Section 26.21 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.21.1 CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK

CONSTANT:

CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 0.

DESCRIPTION:

The value of this configuration option defines the number of bytes the applications wishes to
add to the MPCI task stack on top of CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 584).

NOTES:

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 734) is de-
fined.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

• The value of the configuration option shall be small enough so that the MPCI receive
server stack area calculation carried out by <rtems/confdefs.h> does not overflow an
integer of type size_t.

26.21. Multiprocessing Configuration 733

https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/size_t

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.21

26.21.2 CONFIGURE_MP_APPLICATION

CONSTANT:

CONFIGURE_MP_APPLICATION

OPTION TYPE:

This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:

If this configuration option is undefined, then the multiprocessing services are not initialized.

DESCRIPTION:

This configuration option is defined to indicate that the application intends to be part of a
multiprocessing configuration. Additional configuration options are assumed to be provided.

NOTES:

This configuration option shall be undefined if the multiprocessing support is not enabled (e.g.
RTEMS was built without the multiprocessing build configuration option enabled). Otherwise
a compile time error in the configuration file will occur.

734 Chapter 26. Configuring a System

Chapter 26 Section 26.21 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.21.3 CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS

CONSTANT:

CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 32.

DESCRIPTION:

The value of this configuration option defines the maximum number of concurrently active
global objects in a multiprocessor system.

NOTES:

This value corresponds to the total number of objects which can be created with the
RTEMS_GLOBAL attribute.

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 734) is de-
fined.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

26.21. Multiprocessing Configuration 735

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.21

26.21.4 CONFIGURE_MP_MAXIMUM_NODES

CONSTANT:

CONFIGURE_MP_MAXIMUM_NODES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 2.

DESCRIPTION:

The value of this configuration option defines the maximum number of nodes in a multiproces-
sor system.

NOTES:

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 734) is de-
fined.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

736 Chapter 26. Configuring a System

https://en.cppreference.com/w/c/types/integer

Chapter 26 Section 26.21 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.21.5 CONFIGURE_MP_MAXIMUM_PROXIES

CONSTANT:

CONFIGURE_MP_MAXIMUM_PROXIES

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is 32.

DESCRIPTION:

The value of this configuration option defines the maximum number of concurrently active
thread/task proxies on this node in a multiprocessor system.

NOTES:

Since a proxy is used to represent a remote task/thread which is blocking on this node. This
configuration parameter reflects the maximum number of remote tasks/threads which can be
blocked on objects on this node, see Proxies (page 847).

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 734) is de-
fined.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

26.21. Multiprocessing Configuration 737

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.21

26.21.6 CONFIGURE_MP_MPCI_TABLE_POINTER

CONSTANT:

CONFIGURE_MP_MPCI_TABLE_POINTER

OPTION TYPE:

This configuration option is an initializer define.

DEFAULT VALUE:

The default value is &MPCI_table.

DESCRIPTION:

The value of this configuration option initializes the MPCI Configuration Table.

NOTES:

RTEMS provides a Shared Memory MPCI Device Driver which can be used on any Multiproces-
sor System assuming the BSP provides the proper set of supporting methods.

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 734) is de-
fined.

CONSTRAINTS:

The value of the configuration option shall be a pointer to rtems_mpci_table.

738 Chapter 26. Configuring a System

Chapter 26 Section 26.21 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.21.7 CONFIGURE_MP_NODE_NUMBER

CONSTANT:

CONFIGURE_MP_NODE_NUMBER

OPTION TYPE:

This configuration option is an integer define.

DEFAULT VALUE:

The default value is NODE_NUMBER.

DESCRIPTION:

The value of this configuration option defines the node number of this node in a multiprocessor
system.

NOTES:

In the RTEMS Multiprocessing Test Suite, the node number is derived from the Makefile variable
NODE_NUMBER. The same code is compiled with the NODE_NUMBER set to different values. The test
programs behave differently based upon their node number.

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 734) is de-
fined.

CONSTRAINTS:

The following constraints apply to this configuration option:

• The value of the configuration option shall be greater than or equal to zero.

• The value of the configuration option shall be less than or equal to UINT32_MAX.

26.21. Multiprocessing Configuration 739

https://en.cppreference.com/w/c/types/integer

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.22

26.22 PCI Library Configuration

This section defines the system configuration parameters supported by rtems/confdefs.h re-
lated to configuring the PCI Library for RTEMS.

The PCI Library startup behaviour can be configured in four different ways depending on how
CONFIGURE_PCI_CONFIG_LIB is defined:

PCI_LIB_AUTO
Used to enable the PCI auto configuration software. PCI will be automatically probed, PCI
buses enumerated, all devices and bridges will be initialized using Plug & Play software rou-
tines. The PCI device tree will be populated based on the PCI devices found in the system, PCI
devices will be configured by allocating address region resources automatically in PCI space
according to the BSP or host bridge driver set up.

PCI_LIB_READ
Used to enable the PCI read configuration software. The current PCI configuration is read
to create the RAM representation (the PCI device tree) of the PCI devices present. PCI de-
vices are assumed to already have been initialized and PCI buses enumerated, it is therefore
required that a BIOS or a boot loader has set up configuration space prior to booting into
RTEMS.

PCI_LIB_STATIC
Used to enable the PCI static configuration software. The user provides a PCI tree with
information how all PCI devices are to be configured at compile time by linking in a custom
struct pci_bus pci_hb tree. The static PCI library will not probe PCI for devices, instead it
will assume that all devices defined by the user are present, it will enumerate the PCI buses
and configure all PCI devices in static configuration accordingly. Since probe and allocation
software is not needed the startup is faster, has smaller footprint and does not require dynamic
memory allocation.

PCI_LIB_PERIPHERAL
Used to enable the PCI peripheral configuration. It is similar to PCI_LIB_STATIC, but it will
never write the configuration to the PCI devices since PCI peripherals are not allowed to
access PCI configuration space.

Note that selecting PCI_LIB_STATIC or PCI_LIB_PERIPHERAL but not defining pci_hb will reuslt
in link errors. Note also that in these modes Plug & Play is not performed.

740 Chapter 26. Configuring a System

Chapter 26 Section 26.23 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.23 Ada Configuration

The GNU Ada runtime library (libgnarl) uses threads, mutexes, condition variables, and signals
from the pthreads API. It uses also thread-local storage for the Ada Task Control Block (ATCB).
From these resources only the threads need to be accounted for in the configuration. You
should include the Ada tasks in your setting of the CONFIGURE_MAXIMUM_POSIX_THREADS
(page 642) configuration option.

26.23. Ada Configuration 741

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24 Directives

This section details the directives of the Application Configuration Information. A subsection
is dedicated to each of this manager’s directives and lists the calling sequence, parameters,
description, return values, and notes of the directive.

742 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.1 rtems_get_build_label()

Gets the RTEMS build label.

CALLING SEQUENCE:

1 const char *rtems_get_build_label(void);

DESCRIPTION:

The build label is a user-provided string defined by the build configuration through the
RTEMS_BUILD_LABEL build option. The format of the string is completely user-defined.

RETURN VALUES:

Returns a pointer to the RTEMS build label.

NOTES:

The build label can be used to distinguish test suite results obtained from different build con-
figurations. A use case is to record test results with performance data to track performance
regressions. For this a database of performance limits is required. The build label and the
target hash obtained from rtems_get_target_hash() (page 745) can be used as a key to obtain
performance limits.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 743

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.2 rtems_get_copyright_notice()

Gets the RTEMS copyright notice.

CALLING SEQUENCE:

1 const char *rtems_get_copyright_notice(void);

RETURN VALUES:

Returns a pointer to the RTEMS copyright notice.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

744 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.3 rtems_get_target_hash()

Gets the RTEMS target hash.

CALLING SEQUENCE:

1 const char *rtems_get_target_hash(void);

DESCRIPTION:

The target hash is calculated from BSP-specific values which characterize a target system. The
target hash is encoded as a base64url string. The target hash algorithm is unspecified.

RETURN VALUES:

Returns a pointer to the RTEMS target hash.

NOTES:

For example, the device tree, settings of the memory controller, processor and bus frequencies,
a serial number of a chip may be used to calculate the target hash.

The target hash can be used to distinguish test suite results obtained from different target
systems. See also rtems_get_build_label() (page 743).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 745

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.4 rtems_get_version_string()

Gets the RTEMS version string.

CALLING SEQUENCE:

1 const char *rtems_get_version_string(void);

RETURN VALUES:

Returns a pointer to the RTEMS version string.

NOTES:

The version string has no particular format. Parsing the string may break across RTEMS releases.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

746 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.5 rtems_configuration_get_do_zero_of_workspace()

Indicates if the RTEMS Workspace is configured to be zeroed during system initialization for
this application.

CALLING SEQUENCE:

1 bool rtems_configuration_get_do_zero_of_workspace(void);

RETURN VALUES:

Returns true, if the RTEMS Workspace is configured to be zeroed during system initialization
for this application, otherwise false.

NOTES:

The setting is defined by the CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY (page 591)
application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 747

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.6 rtems_configuration_get_idle_task_stack_size()

Gets the IDLE task stack size in bytes of this application.

CALLING SEQUENCE:

1 size_t rtems_configuration_get_idle_task_stack_size(void);

RETURN VALUES:

Returns the IDLE task stack size in bytes of this application.

NOTES:

The IDLE task stack size is defined by the CONFIGURE_IDLE_TASK_STACK_SIZE (page 708)
application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

748 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.7 rtems_configuration_get_idle_task()

Gets the IDLE task body of this application.

CALLING SEQUENCE:

1 void *(*)(uintptr_t) rtems_configuration_get_idle_task(void);

RETURN VALUES:

Returns the IDLE task body of this application.

NOTES:

The IDLE task body is defined by the CONFIGURE_IDLE_TASK_BODY (page 706) application
configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 749

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.8 rtems_configuration_get_interrupt_stack_size()

Gets the interrupt stack size in bytes of this application.

CALLING SEQUENCE:

1 size_t rtems_configuration_get_interrupt_stack_size(void);

RETURN VALUES:

Returns the interrupt stack size in bytes of this application.

NOTES:

The interrupt stack size is defined by the CONFIGURE_INTERRUPT_STACK_SIZE (page 574)
application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

750 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.9 rtems_configuration_get_maximum_barriers()

Gets the resource number of Barrier Manager (page 355) objects configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_barriers(void);

RETURN VALUES:

Returns the resource number of Barrier Manager (page 355) objects configured for this applica-
tion.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_BARRIERS (page 614) ap-
plication configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 751

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.10 rtems_configuration_get_maximum_extensions()

Gets the resource number of User Extensions Manager (page 541) objects configured for this
application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_extensions(void);

RETURN VALUES:

Returns the resource number of User Extensions Manager (page 541) objects configured for this
application.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_USER_EXTENSIONS (page 623)
application configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

752 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.11 rtems_configuration_get_maximum_message_queues()

Gets the resource number of Message Manager (page 365) objects configured for this applica-
tion.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_message_queues(void);

RETURN VALUES:

Returns the resource number of Message Manager (page 365) objects configured for this appli-
cation.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_MESSAGE_QUEUES (page 615)
application configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 753

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.12 rtems_configuration_get_maximum_partitions()

Gets the resource number of Partition Manager (page 415) objects configured for this applica-
tion.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_partitions(void);

RETURN VALUES:

Returns the resource number of Partition Manager (page 415) objects configured for this appli-
cation.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_PARTITIONS (page 616)
application configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

754 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.13 rtems_configuration_get_maximum_periods()

Gets the resource number of Rate Monotonic Manager (page 299) objects configured for this
application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_periods(void);

RETURN VALUES:

Returns the resource number of Rate Monotonic Manager (page 299) objects configured for this
application.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_PERIODS (page 617) ap-
plication configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 755

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.14 rtems_configuration_get_maximum_ports()

Gets the resource number of Dual-Ported Memory Manager (page 455) objects configured for
this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_ports(void);

RETURN VALUES:

Returns the resource number of Dual-Ported Memory Manager (page 455) objects configured for
this application.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_PORTS (page 618) ap-
plication configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

756 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.15 rtems_configuration_get_maximum_processors()

Gets the maximum number of processors configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_processors(void);

RETURN VALUES:

Returns the maximum number of processors configured for this application.

NOTES:

The actual number of processors available to the application is returned by
rtems_scheduler_get_processor_maximum() (page 80) which less than or equal to the con-
figured maximum number of processors (CONFIGURE_MAXIMUM_PROCESSORS (page 577)).

In uniprocessor configurations, this macro is a compile time constant which evaluates to one.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 757

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.16 rtems_configuration_get_maximum_regions()

Gets the resource number of Region Manager (page 431) objects configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_regions(void);

RETURN VALUES:

Returns the resource number of Region Manager (page 431) objects configured for this applica-
tion.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_REGIONS (page 619) ap-
plication configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

758 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.17 rtems_configuration_get_maximum_semaphores()

Gets the resource number of Semaphore Manager (page 327) objects configured for this appli-
cation.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_semaphores(void);

RETURN VALUES:

Returns the resource number of Semaphore Manager (page 327) objects configured for this
application.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_SEMAPHORES (page 620)
application configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 759

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.18 rtems_configuration_get_maximum_tasks()

Gets the resource number of Task Manager (page 97) objects configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_tasks(void);

RETURN VALUES:

Returns the resource number of Task Manager (page 97) objects configured for this application.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_TASKS (page 621) ap-
plication configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

760 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.19 rtems_configuration_get_maximum_timers()

Gets the resource number of Timer Manager (page 275) objects configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_maximum_timers(void);

RETURN VALUES:

Returns the resource number of Timer Manager (page 275) objects configured for this applica-
tion.

NOTES:

The resource number is defined by the CONFIGURE_MAXIMUM_TIMERS (page 622) ap-
plication configuration option. See also rtems_resource_is_unlimited() (page 778) and
rtems_resource_maximum_per_allocation() (page 779).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 761

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.20 rtems_configuration_get_microseconds_per_tick()

Gets the number of microseconds per clock tick configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_microseconds_per_tick(void);

RETURN VALUES:

Returns the number of microseconds per clock tick configured for this application.

NOTES:

The number of microseconds per clock tick is defined by the CONFIG-
URE_MICROSECONDS_PER_TICK (page 583) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

762 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.21 rtems_configuration_get_milliseconds_per_tick()

Gets the number of milliseconds per clock tick configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_milliseconds_per_tick(void);

RETURN VALUES:

Returns the number of milliseconds per clock tick configured for this application.

NOTES:

The number of milliseconds per clock tick is defined by the CONFIG-
URE_MICROSECONDS_PER_TICK (page 583) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 763

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.22 rtems_configuration_get_nanoseconds_per_tick()

Gets the number of microseconds per clock tick configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_nanoseconds_per_tick(void);

RETURN VALUES:

Returns the number of microseconds per clock tick configured for this application.

NOTES:

The number of nanoseconds per clock tick is defined by the CONFIG-
URE_MICROSECONDS_PER_TICK (page 583) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

764 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.23 rtems_configuration_get_number_of_initial_extensions()

Gets the number of initial extensions configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_number_of_initial_extensions(void);

RETURN VALUES:

Returns the number of initial extensions configured for this application.

NOTES:

The number of initial extensions is defined by the CONFIGURE_INITIAL_EXTENSIONS
(page 573) application configuration option and related options.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 765

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.24 rtems_configuration_get_stack_allocate_for_idle_hook()

Gets the task stack allocator allocate hook used to allocate the stack of each IDLE task configured
for this application.

CALLING SEQUENCE:

1 void *(*)(uint32_t, size_t *)
2 rtems_configuration_get_stack_allocate_for_idle_hook(void);

RETURN VALUES:

Returns the task stack allocator allocate hook used to allocate the stack of each IDLE task con-
figured for this application.

NOTES:

The task stack allocator allocate hook for idle tasks is defined by the CONFIG-
URE_TASK_STACK_ALLOCATOR_FOR_IDLE (page 701) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

766 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.25 rtems_configuration_get_stack_allocate_hook()

Gets the task stack allocator allocate hook configured for this application.

CALLING SEQUENCE:

1 void *(*)(size_t) rtems_configuration_get_stack_allocate_hook(void);

RETURN VALUES:

Returns the task stack allocator allocate hook configured for this application.

NOTES:

The task stack allocator allocate hook is defined by the CONFIGURE_TASK_STACK_ALLOCATOR
(page 699) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 767

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.26 rtems_configuration_get_stack_allocate_init_hook()

Gets the task stack allocator initialization hook configured for this application.

CALLING SEQUENCE:

1 void (*)(size_t) rtems_configuration_get_stack_allocate_init_hook(void);

RETURN VALUES:

Returns the task stack allocator initialization hook configured for this application.

NOTES:

The task stack allocator initialization hook is defined by the CONFIG-
URE_TASK_STACK_ALLOCATOR_INIT (page 702) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

768 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.27 rtems_configuration_get_stack_allocator_avoids_work_space()

Indicates if the task stack allocator is configured to avoid the RTEMS Workspace for this appli-
cation.

CALLING SEQUENCE:

1 bool rtems_configuration_get_stack_allocator_avoids_work_space(void);

RETURN VALUES:

Returns true, if the task stack allocator is configured to avoid the RTEMS Workspace for this
application, otherwise false.

NOTES:

The setting is defined by the CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE
(page 700) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 769

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.28 rtems_configuration_get_stack_free_hook()

Gets the task stack allocator free hook configured for this application.

CALLING SEQUENCE:

1 void (*)(void *) rtems_configuration_get_stack_free_hook(void);

RETURN VALUES:

Returns the task stack allocator free hook configured for this application.

NOTES:

The task stack allocator free hook is defined by the CONFIGURE_TASK_STACK_DEALLOCATOR
(page 703) application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

770 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.29 rtems_configuration_get_stack_space_size()

Gets the configured size in bytes of the memory space used to allocate thread stacks for this
application.

CALLING SEQUENCE:

1 uintptr_t rtems_configuration_get_stack_space_size(void);

RETURN VALUES:

Returns the configured size in bytes of the memory space used to allocate thread stacks for this
application.

NOTES:

The size takes only threads and tasks into account with are known at the application configura-
tion time.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 771

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.30 rtems_configuration_get_ticks_per_timeslice()

Gets the clock ticks per timeslice configured for this application.

CALLING SEQUENCE:

1 uint32_t rtems_configuration_get_ticks_per_timeslice(void);

RETURN VALUES:

Returns the clock ticks per timeslice configured for this application.

NOTES:

The clock ticks per timeslice is defined by the CONFIGURE_TICKS_PER_TIMESLICE (page 586)
application configuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

772 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.31 rtems_configuration_get_unified_work_area()

Indicates if the RTEMS Workspace and C Program Heap are configured to be unified for this
application.

CALLING SEQUENCE:

1 bool rtems_configuration_get_unified_work_area(void);

RETURN VALUES:

Returns true, if the RTEMS Workspace and C Program Heap are configured to be unified for this
application, otherwise false.

NOTES:

The setting is defined by the CONFIGURE_UNIFIED_WORK_AREAS (page 587) application con-
figuration option.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 773

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.32 rtems_configuration_get_user_extension_table()

Gets the initial extensions table configured for this application.

CALLING SEQUENCE:

1 const rtems_extensions_table *rtems_configuration_get_user_extension_table(
2 void
3);

RETURN VALUES:

Returns a pointer to the initial extensions table configured for this application.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

774 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.33 rtems_configuration_get_user_multiprocessing_table()

Gets the MPCI configuration table configured for this application.

CALLING SEQUENCE:

1 const MPCI_Configuration *rtems_configuration_get_user_multiprocessing_table(
2 void
3);

RETURN VALUES:

Returns a pointer to the MPCI configuration table configured for this application.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 775

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.34 rtems_configuration_get_work_space_size()

Gets the RTEMS Workspace size in bytes configured for this application.

CALLING SEQUENCE:

1 uintptr_t rtems_configuration_get_work_space_size(void);

RETURN VALUES:

Returns the RTEMS Workspace size in bytes configured for this application.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

776 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.35 rtems_configuration_get_rtems_api_configuration()

Gets the Classic API Configuration Table of this application.

CALLING SEQUENCE:

1 const rtems_api_configuration_table *
2 rtems_configuration_get_rtems_api_configuration(void);

RETURN VALUES:

Returns a pointer to the Classic API Configuration Table of this application.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

26.24. Directives 777

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.36 rtems_resource_is_unlimited()

Indicates if the resource is unlimited.

CALLING SEQUENCE:

1 bool rtems_resource_is_unlimited(uint32_t resource);

PARAMETERS:

resource
This parameter is the resource number.

RETURN VALUES:

Returns true, if the resource is unlimited, otherwise false.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

778 Chapter 26. Configuring a System

Chapter 26 Section 26.24 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.24.37 rtems_resource_maximum_per_allocation()

Gets the maximum number per allocation of a resource number.

CALLING SEQUENCE:

1 uint32_t rtems_resource_maximum_per_allocation(uint32_t resource);

PARAMETERS:

resource
This parameter is the resource number.

RETURN VALUES:

Returns the maximum number per allocation of a resource number.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

26.24. Directives 779

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.24

26.24.38 rtems_resource_unlimited()

Augments the resource number so that it indicates an unlimited resource.

CALLING SEQUENCE:

1 uint32_t rtems_resource_unlimited(uint32_t resource);

PARAMETERS:

resource
This parameter is the resource number to augment.

RETURN VALUES:

Returns the resource number augmented to indicate an unlimited resource.

NOTES:

This directive should be used to configure unlimited objects, see Unlimited Objects (page 564).

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

780 Chapter 26. Configuring a System

Chapter 26 Section 26.25 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.25 Obsolete Configuration Options

26.25.1 CONFIGURE_BDBUF_BUFFER_COUNT

This configuration option was introduced in RTEMS 4.7.0 and is obsolete since RTEMS 4.10.0.

26.25.2 CONFIGURE_BDBUF_BUFFER_SIZE

This configuration option was introduced in RTEMS 4.7.0 and is obsolete since RTEMS 4.10.0.

26.25.3 CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS

This configuration option was introduced in RTEMS 4.9.0 and is obsolete since RTEMS 5.1.

26.25.4 CONFIGURE_ENABLE_GO

This configuration option is obsolete since RTEMS 5.1.

26.25.5 CONFIGURE_GNAT_RTEMS

This configuration option was present in all RTEMS versions since 1997 and is obsolete since
RTEMS 5.1. See also Ada Configuration (page 741).

26.25.6 CONFIGURE_HAS_OWN_CONFIGURATION_TABLE

This configuration option is obsolete since RTEMS 5.1.

26.25.7 CONFIGURE_HAS_OWN_BDBUF_TABLE

This configuration option was introduced in RTEMS 4.7.0 and is obsolete since RTEMS 4.10.0.

26.25.8 CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1.

26.25.9 CONFIGURE_HAS_OWN_INIT_TASK_TABLE

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1. If you used this configuration option or you think that there should be a way
to configure more than one Classic API initialization task, then please ask on the Users Mailing
List.

26.25.10 CONFIGURE_HAS_OWN_MOUNT_TABLE

This configuration option is obsolete since RTEMS 5.1.

26.25.11 CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE

This configuration option is obsolete since RTEMS 5.1.

26.25. Obsolete Configuration Options 781

https://lists.rtems.org/mailman/listinfo/users/
https://lists.rtems.org/mailman/listinfo/users/

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.25

26.25.12 CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS

This configuration option was present in all RTEMS versions since 1998 and is obsolete since
RTEMS 5.1. See also CONFIGURE_MAXIMUM_FILE_DESCRIPTORS (page 576).

26.25.13 CONFIGURE_MAXIMUM_ADA_TASKS

This configuration option was present in all RTEMS versions since 1997 and is obsolete since
RTEMS 5.1. See also Ada Configuration (page 741).

26.25.14 CONFIGURE_MAXIMUM_DEVICES

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1.

26.25.15 CONFIGURE_MAXIMUM_FAKE_ADA_TASKS

This configuration option was present in all RTEMS versions since 1997 and is obsolete since
RTEMS 5.1. See also Ada Configuration (page 741).

26.25.16 CONFIGURE_MAXIMUM_GO_CHANNELS

This configuration option is obsolete since RTEMS 5.1.

26.25.17 CONFIGURE_MAXIMUM_GOROUTINES

This configuration option is obsolete since RTEMS 5.1.

26.25.18 CONFIGURE_MAXIMUM_MRSP_SEMAPHORES

This configuration option is obsolete since RTEMS 5.1.

26.25.19 CONFIGURE_NUMBER_OF_TERMIOS_PORTS

This configuration option is obsolete since RTEMS 5.1.

26.25.20 CONFIGURE_MAXIMUM_POSIX_BARRIERS

This configuration option is obsolete since RTEMS 5.1.

26.25.21 CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES

This configuration option is obsolete since RTEMS 5.1.

26.25.22 CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS

This configuration option was introduced in RTEMS 4.10.0 and is obsolete since RTEMS 5.1.

26.25.23 CONFIGURE_MAXIMUM_POSIX_MUTEXES

This configuration option is obsolete since RTEMS 5.1.

782 Chapter 26. Configuring a System

Chapter 26 Section 26.25 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

26.25.24 CONFIGURE_MAXIMUM_POSIX_RWLOCKS

This configuration option is obsolete since RTEMS 5.1.

26.25.25 CONFIGURE_MAXIMUM_POSIX_SPINLOCKS

This configuration option is obsolete since RTEMS 5.1.

26.25.26 CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1. If you used this configuration option or you think that there should be a way
to configure more than one POSIX initialization thread, then please ask on the Users Mailing
List.

26.25.27 CONFIGURE_SMP_APPLICATION

This configuration option was introduced in RTEMS 4.11.0 and is obsolete since RTEMS 5.1.

26.25.28 CONFIGURE_SMP_MAXIMUM_PROCESSORS

This configuration option was introduced in RTEMS 4.11.0 and is obsolete since RTEMS 5.1.
See also CONFIGURE_MAXIMUM_PROCESSORS (page 577).

26.25.29 CONFIGURE_TERMIOS_DISABLED

This configuration option is obsolete since RTEMS 5.1.

26.25. Obsolete Configuration Options 783

https://lists.rtems.org/mailman/listinfo/users/
https://lists.rtems.org/mailman/listinfo/users/

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 26 Section 26.25

784 Chapter 26. Configuring a System

CHAPTER

TWENTYSEVEN

SELF-CONTAINED OBJECTS

785

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.1

27.1 Introduction

One of the original design goals of RTEMS was the support for heterogeneous computing
based on message passing. This was realized by synchronization objects with an architecture-
independent identifier provided by the system during object creation (a 32-bit unsigned integer
used as a bitfield) and a user-defined four character name. This approach in the so called Classic
API has some weaknesses:

• Dynamic memory (the workspace) is used to allocate object pools. This requires a com-
plex configuration with heavy use of the C pre-processor. The unlimited objects support
optionally expands and shrinks the object pool. Dynamic memory is strongly discouraged
by some coding standards, e.g. MISRA C:2012 [BBB+13].

• Objects are created via function calls which return an object identifier. The object opera-
tions use this identifier and map it internally to an object representation.

• The object identifier is only known at run-time. This hinders compiler optimizations and
static analysis.

• The objects reside in a table, e.g. they are subject to false sharing of cache lines [Dre07].

• The object operations use a rich set of options and attributes. For each object operation
these parameters must be evaluated and validated at run-time to figure out what to do
exactly for this operation.

For applications that use fine grained locking the mapping of the identifier to the object repre-
sentation and the parameter evaluation are a significant overhead that may degrade the per-
formance dramatically. An example is the new network stack (libbsd) which uses hundreds of
locks in a basic setup. Another example is the OpenMP support (libgomp).

To overcome these issues new self-contained synchronization objects are available since RTEMS
4.11. Self-contained synchronization objects encapsulate all their state in exactly one data struc-
ture. The user must provide the storage space for this structure and nothing more. The user is
responsible for the object life-cycle. Initialization and destruction of self-contained synchroniza-
tion objects cannot fail provided all function parameters are valid. In particular, a not enough
memory error cannot happen. It is possible to statically initialize self-contained synchronization
objects. This allows an efficient use of static analysis tools.

Several header files define self-contained synchronization objects. The Newlib <sys/lock.h>
header file provides

• mutexes,

• recursive mutexes,

• condition variables,

• counting semaphores,

• binary semaphores, and

• Futex synchronization [FRK02].

They are used internally in Newlib (e.g. for FILE objects), for the C++11 threads and the
OpenMP support (libgomp). The Newlib provided self-contained synchronization objects focus
on performance. There are no error checks to catch software errors, e.g. invalid parame-
ters. The application configuration is significantly simplified, since it is no longer necessary to

786 Chapter 27. Self-Contained Objects

https://gitlab.rtems.org/rtems/pkg/rtems-libbsd

Chapter 27 Section 27.1 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

account for lock objects used by Newlib and GCC. The Newlib defined self-contained synchro-
nization objects can be a statically initialized and reside in the .bss section. Destruction is a
no-operation.

The header file <pthread.h> provides

• POSIX barriers (pthread_barrier_t),

• POSIX condition variables (pthread_cond_t),

• POSIX mutexes (pthread_mutex_t),

• POSIX reader/writer locks (pthread_rwlock_t), and

• POSIX spinlocks (pthread_spinlock_t)

as self-contained synchronization objects. The POSIX synchronization objects are used for ex-
ample by the Ada run-time support. The header file <semaphore.h> provides self-contained

• POSIX unnamed semaphores (sem_t initialized via sem_init()).

27.1. Introduction 787

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.2

27.2 RTEMS Thread API

To give RTEMS users access to self-contained synchronization objects an API is necessary. One
option would be to simply use the POSIX threads API (pthreads), C11 threads or C++11
threads. However, these standard APIs lack for example binary semaphores which are im-
portant for task/interrupt synchronization. The timed operations use in general time values
specified by seconds and nanoseconds. Setting up the time values in seconds (time_t has 64
bits) and nanoseconds is burdened with a high overhead compared to time values in clock ticks
for relative timeouts. The POSIX API mutexes can be configured for various protocols and op-
tions, this adds a run-time overhead. There are a variety of error conditions. This is a problem
in combination with some coding standards, e.g. MISRA C:2012. APIs used by Linux (e.g.
<linux/mutex.h>) or the FreeBSD kernel (e.g. MUTEX(9)) are better suited as a template for
high-performance synchronization objects. The goal of the RTEMS Thread API is to offer the
highest performance with the lowest space-overhead on RTEMS. It should be suitable for device
drivers.

788 Chapter 27. Self-Contained Objects

http://lxr.free-electrons.com/source/include/linux/mutex.h
https://www.freebsd.org/cgi/man.cgi?query=mutex&sektion=9

Chapter 27 Section 27.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.3 Mutual Exclusion

The rtems_mutex and rtems_recursive_mutex objects provide mutual-exclusion synchroniza-
tion using the Priority Inheritance Protocol (page 29) in uniprocessor configurations or the O(m)
Independence-Preserving Protocol (OMIP) (page 30) in SMP configurations. Recursive locking
should be used with care [Wil12]. The storage space for these object must be provided by the
user. There are no defined comparison or assignment operators for these type. Only the object
itself may be used for performing synchronization. The result of referring to copies of the object
in calls to

• rtems_mutex_lock(),

• rtems_recursive_mutex_lock(),

• rtems_mutex_try_lock(),

• rtems_recursive_mutex_try_lock(),

• rtems_mutex_unlock(),

• rtems_recursive_mutex_unlock(),

• rtems_mutex_set_name(),

• rtems_recursive_mutex_set_name(),

• rtems_mutex_get_name(),

• rtems_recursive_mutex_get_name(),

• rtems_mutex_destroy(), and

• rtems_recursive_mutex_destroy()

is undefined. Objects of the type rtems_mutex must be initialized via

• RTEMS_MUTEX_INITIALIZER(), or

• rtems_mutex_init().

They must be destroyed via

• rtems_mutex_destroy().

Objects of the type rtems_recursive_mutex must be initialized via

• RTEMS_RECURSIVE_MUTEX_INITIALIZER(), or

• rtems_recursive_mutex_init().

They must be destroyed via

• rtems_recursive_mutex_destroy().

27.3. Mutual Exclusion 789

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.3

27.3.1 Static mutex initialization

CALLING SEQUENCE:

1 rtems_mutex mutex = RTEMS_MUTEX_INITIALIZER(
2 name
3);
4

5 rtems_recursive_mutex mutex = RTEMS_RECURSIVE_MUTEX_INITIALIZER(
6 name
7);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to rtems_mutex_init() or
rtems_recursive_mutex_init() respectively.

NOTES:
Global mutexes with a name of NULL may reside in the .bss section.

790 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.3.2 Run-time mutex initialization

CALLING SEQUENCE:

1 void rtems_mutex_init(
2 rtems_mutex *mutex,
3 const char *name
4);
5

6 void rtems_recursive_mutex_init(
7 rtems_recursive_mutex *mutex,
8 const char *name
9);

DESCRIPTION:
Initializes the mutex with the specified name.

NOTES:
The name must be persistent throughout the life-time of the mutex. A name of NULL is valid.
The mutex is unlocked after initialization.

27.3. Mutual Exclusion 791

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.3

27.3.3 Lock the mutex

CALLING SEQUENCE:

1 void rtems_mutex_lock(
2 rtems_mutex *mutex
3);
4

5 void rtems_recursive_mutex_lock(
6 rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Locks the mutex.

NOTES:
This function must be called from thread context with interrupts enabled. In case the mutex
is currently locked by another thread, then the thread is blocked until it becomes the mutex
owner. Threads wait in priority order.

A recursive lock happens in case the mutex owner tries to lock the mutex again. The result
of recursively locking a mutex depends on the mutex variant. For a normal (non-recursive)
mutex (rtems_mutex) the result is unpredictable. It could block the owner indefinetly or
lead to a fatal deadlock error. A recursive mutex (rtems_recursive_mutex) can be locked
recursively by the mutex owner.

Each mutex lock operation must have a corresponding unlock operation.

792 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.3.4 Try to lock the mutex

CALLING SEQUENCE:

1 int rtems_mutex_try_lock(
2 rtems_mutex *mutex
3);
4

5 int rtems_recursive_mutex_try_lock(
6 rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Tries to lock the mutex. In case the mutex is not locked, it will be locked and the function
returns with a return value of 0. If the mutex is already locked, the function will return with
a value of EBUSY.

NOTES:
This function must be called from thread context with interrupts enabled.

For recursively locking a mutex, please also see the notes for rtems_mutex_lock() and
rtems_recursive_mutex_lock().

Each mutex lock operation must have a corresponding unlock operation.

27.3. Mutual Exclusion 793

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.3

27.3.5 Unlock the mutex

CALLING SEQUENCE:

1 void rtems_mutex_unlock(
2 rtems_mutex *mutex
3);
4

5 void rtems_recursive_mutex_unlock(
6 rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Unlocks the mutex.

NOTES:
This function must be called from thread context with interrupts enabled. In case the cur-
rently executing thread is not the owner of the mutex, then the result is unpredictable.

Exactly the outer-most unlock will make a recursive mutex available to other threads.

794 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.3.6 Set mutex name

CALLING SEQUENCE:

1 void rtems_mutex_set_name(
2 rtems_mutex *mutex,
3 const char *name
4);
5

6 void rtems_recursive_mutex_set_name(
7 rtems_recursive_mutex *mutex,
8 const char *name
9);

DESCRIPTION:
Sets the mutex name to name.

NOTES:
The name must be persistent throughout the life-time of the mutex. A name of NULL is valid.

27.3. Mutual Exclusion 795

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.3

27.3.7 Get mutex name

CALLING SEQUENCE:

1 const char *rtems_mutex_get_name(
2 const rtems_mutex *mutex
3);
4

5 const char *rtems_recursive_mutex_get_name(
6 const rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Returns the mutex name.

NOTES:
The name may be NULL.

27.3.8 Mutex destruction

CALLING SEQUENCE:

1 void rtems_mutex_destroy(
2 rtems_mutex *mutex
3);
4

5 void rtems_recursive_mutex_destroy(
6 rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Destroys the mutex.

NOTES:
In case the mutex is locked or still in use, then the result is unpredictable.

796 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.4 Condition Variables

The rtems_condition_variable object provides a condition variable synchronization object.
The storage space for this object must be provided by the user. There are no defined compar-
ison or assignment operators for this type. Only the object itself may be used for performing
synchronization. The result of referring to copies of the object in calls to

• rtems_condition_variable_wait(),

• rtems_condition_variable_signal(),

• rtems_condition_variable_broadcast(),

• rtems_condition_variable_set_name(),

• rtems_condition_variable_get_name(), and

• rtems_condition_variable_destroy()

is undefined. Objects of this type must be initialized via

• RTEMS_CONDITION_VARIABLE_INITIALIZER(), or

• rtems_condition_variable_init().

They must be destroyed via

• rtems_condition_variable_destroy().

27.4. Condition Variables 797

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.4

27.4.1 Static condition variable initialization

CALLING SEQUENCE:

1 rtems_condition_variable condition_variable = RTEMS_CONDITION_VARIABLE_
→˓INITIALIZER(

2 name
3);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to
rtems_condition_variable_init().

NOTES:
Global condition variables with a name of NULL may reside in the .bss section.

798 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.4.2 Run-time condition variable initialization

CALLING SEQUENCE:

1 void rtems_condition_variable_init(
2 rtems_condition_variable *condition_variable,
3 const char *name
4);

DESCRIPTION:
Initializes the condition_variable with the specified name.

NOTES:
The name must be persistent throughout the life-time of the condition variable. A name of NULL
is valid.

27.4. Condition Variables 799

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.4

27.4.3 Wait for condition signal

CALLING SEQUENCE:

1 void rtems_condition_variable_wait(
2 rtems_condition_variable *condition_variable,
3 rtems_mutex *mutex
4);

DESCRIPTION:
Atomically waits for a condition signal and unlocks the mutex. Once the condition is signalled
to the thread it wakes up and locks the mutex again.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

800 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.4.4 Signals a condition change

CALLING SEQUENCE:

1 void rtems_condition_variable_signal(
2 rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Signals a condition change to the highest priority waiting thread. If no threads wait currently
on this condition variable, then nothing happens.

27.4. Condition Variables 801

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.4

27.4.5 Broadcasts a condition change

CALLING SEQUENCE:

1 void rtems_condition_variable_broadcast(
2 rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Signals a condition change to all waiting thread. If no threads wait currently on this condition
variable, then nothing happens.

802 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.4.6 Set condition variable name

CALLING SEQUENCE:

1 void rtems_condition_variable_set_name(
2 rtems_condition_variable *condition_variable,
3 const char *name
4);

DESCRIPTION:
Sets the condition_variable name to name.

NOTES:
The name must be persistent throughout the life-time of the condition variable. A name of NULL
is valid.

27.4. Condition Variables 803

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.4

27.4.7 Get condition variable name

CALLING SEQUENCE:

1 const char *rtems_condition_variable_get_name(
2 const rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Returns the condition_variable name.

NOTES:
The name may be NULL.

27.4.8 Condition variable destruction

CALLING SEQUENCE:

1 void rtems_condition_variable_destroy(
2 rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Destroys the condition_variable.

NOTES:
In case the condition variable still in use, then the result is unpredictable.

804 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.5 Counting Semaphores

The rtems_counting_semaphore object provides a counting semaphore synchronization object.
The storage space for this object must be provided by the user. There are no defined compar-
ison or assignment operators for this type. Only the object itself may be used for performing
synchronization. The result of referring to copies of the object in calls to

• rtems_counting_semaphore_wait(),

• rtems_counting_semaphore_wait_timed_ticks(),

• rtems_counting_semaphore_try_wait(),

• rtems_counting_semaphore_post(),

• rtems_counting_semaphore_set_name(),

• rtems_counting_semaphore_get_name(), and

• rtems_counting_semaphore_destroy()

is undefined. Objects of this type must be initialized via

• RTEMS_COUNTING_SEMAPHORE_INITIALIZER(), or

• rtems_counting_semaphore_init().

They must be destroyed via

• rtems_counting_semaphore_destroy().

27.5. Counting Semaphores 805

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.5

27.5.1 Static counting semaphore initialization

CALLING SEQUENCE:

1 rtems_counting_semaphore counting_semaphore = RTEMS_COUNTING_SEMAPHORE_
→˓INITIALIZER(

2 name,
3 value
4);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to
rtems_counting_semaphore_init().

NOTES:
Global counting semaphores with a name of NULL may reside in the .bss section.

806 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.5.2 Run-time counting semaphore initialization

CALLING SEQUENCE:

1 void rtems_counting_semaphore_init(
2 rtems_counting_semaphore *counting_semaphore,
3 const char *name,
4 unsigned int value
5);

DESCRIPTION:
Initializes the counting_semaphore with the specified name and value. The initial value is set
to value.

NOTES:
The name must be persistent throughout the life-time of the counting semaphore. A name of
NULL is valid.

27.5. Counting Semaphores 807

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.5

27.5.3 Wait for a counting semaphore

CALLING SEQUENCE:

1 void rtems_counting_semaphore_wait(
2 rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Waits for the counting_semaphore. In case the current semaphore value is positive, then the
value is decremented and the function returns immediately, otherwise the thread is blocked
waiting for a semaphore post.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

808 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.5.4 Wait for a counting semaphore with timeout in ticks

CALLING SEQUENCE:

1 int rtems_counting_semaphore_wait_timed_ticks(
2 rtems_counting_semaphore *counting_semaphore,
3 uint32_t ticks
4);

DIRECTIVE STATUS CODES:

0 The semaphore wait was successful.
ETIMEDOUT The semaphore wait timed out.

DESCRIPTION:
Waits for the counting_semaphore with a timeout in ticks. In case the current semaphore
value is positive, then the value is decremented and the function returns immediately with
a return value of 0, otherwise the thread is blocked waiting for a semaphore post. The time
waiting for a semaphore post is limited by ticks. A ticks value of zero specifies an infinite
timeout.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

27.5. Counting Semaphores 809

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.5

27.5.5 Tries to wait for a counting semaphore

CALLING SEQUENCE:

1 int rtems_counting_semaphore_try_wait(
2 rtems_counting_semaphore *counting_semaphore
3);

DIRECTIVE STATUS CODES:

0 The semaphore wait was successful.
EAGAIN The semaphore wait failed.

DESCRIPTION:
Tries to wait for the counting_semaphore. In case the current semaphore value is positive,
then the value is decremented and the function returns immediately with a return value of 0,
otherwise it returns immediately with a return value of EAGAIN.

NOTES:
This function may be called from interrupt context. In case it is called from thread context,
then interrupts must be enabled.

810 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.5.6 Post a counting semaphore

CALLING SEQUENCE:

1 void rtems_counting_semaphore_post(
2 rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Posts the counting_semaphore. In case at least one thread is waiting on the counting
semaphore, then the highest priority thread is woken up, otherwise the current value is incre-
mented.

NOTES:
This function may be called from interrupt context. In case it is called from thread context,
then interrupts must be enabled.

27.5. Counting Semaphores 811

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.5

27.5.7 Set counting semaphore name

CALLING SEQUENCE:

1 void rtems_counting_semaphore_set_name(
2 rtems_counting_semaphore *counting_semaphore,
3 const char *name
4);

DESCRIPTION:
Sets the counting_semaphore name to name.

NOTES:
The name must be persistent throughout the life-time of the counting semaphore. A name of
NULL is valid.

812 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.5.8 Get counting semaphore name

CALLING SEQUENCE:

1 const char *rtems_counting_semaphore_get_name(
2 const rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Returns the counting_semaphore name.

NOTES:
The name may be NULL.

27.5.9 Counting semaphore destruction

CALLING SEQUENCE:

1 void rtems_counting_semaphore_destroy(
2 rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Destroys the counting_semaphore.

NOTES:
In case the counting semaphore still in use, then the result is unpredictable.

27.5. Counting Semaphores 813

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.6

27.6 Binary Semaphores

The rtems_binary_semaphore object provides a binary semaphore synchronization object. The
storage space for this object must be provided by the user. There are no defined comparison or
assignment operators for this type. Only the object itself may be used for performing synchro-
nization. The result of referring to copies of the object in calls to

• rtems_binary_semaphore_wait(),

• rtems_binary_semaphore_wait_timed_ticks(),

• rtems_binary_semaphore_try_wait(),

• rtems_binary_semaphore_post(),

• rtems_binary_semaphore_set_name(),

• rtems_binary_semaphore_get_name(), and

• rtems_binary_semaphore_destroy()

is undefined. Objects of this type must be initialized via

• RTEMS_BINARY_SEMAPHORE_INITIALIZER(), or

• rtems_binary_semaphore_init().

They must be destroyed via

• rtems_binary_semaphore_destroy().

814 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.6.1 Static binary semaphore initialization

CALLING SEQUENCE:

1 rtems_binary_semaphore binary_semaphore = RTEMS_BINARY_SEMAPHORE_INITIALIZER(
2 name
3);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to
rtems_binary_semaphore_init().

NOTES:
Global binary semaphores with a name of NULL may reside in the .bss section.

27.6. Binary Semaphores 815

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.6

27.6.2 Run-time binary semaphore initialization

CALLING SEQUENCE:

1 void rtems_binary_semaphore_init(
2 rtems_binary_semaphore *binary_semaphore,
3 const char *name
4);

DESCRIPTION:
Initializes the binary_semaphore with the specified name. The initial value is set to zero.

NOTES:
The name must be persistent throughout the life-time of the binary semaphore. A name of NULL
is valid.

816 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.6.3 Wait for a binary semaphore

CALLING SEQUENCE:

1 void rtems_binary_semaphore_wait(
2 rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Waits for the binary_semaphore. In case the current semaphore value is one, then the value
is set to zero and the function returns immediately, otherwise the thread is blocked waiting
for a semaphore post.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

27.6. Binary Semaphores 817

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.6

27.6.4 Wait for a binary semaphore with timeout in ticks

CALLING SEQUENCE:

1 int rtems_binary_semaphore_wait_timed_ticks(
2 rtems_binary_semaphore *binary_semaphore,
3 uint32_t ticks
4);

DIRECTIVE STATUS CODES:

0 The semaphore wait was successful.
ETIMEDOUT The semaphore wait timed out.

DESCRIPTION:
Waits for the binary_semaphore with a timeout in ticks. In case the current semaphore value
is one, then the value is set to zero and the function returns immediately with a return value
of 0, otherwise the thread is blocked waiting for a semaphore post. The time waiting for a
semaphore post is limited by ticks. A ticks value of zero specifies an infinite timeout.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

818 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.6.5 Tries to wait for a binary semaphore

CALLING SEQUENCE:

1 int rtems_binary_semaphore_try_wait(
2 rtems_binary_semaphore *binary_semaphore
3);

DIRECTIVE STATUS CODES:

0 The semaphore wait was successful.
EAGAIN The semaphore wait failed.

DESCRIPTION:
Tries to wait for the binary_semaphore. In case the current semaphore value is one, then the
value is set to zero and the function returns immediately with a return value of 0, otherwise
it returns immediately with a return value of EAGAIN.

NOTES:
This function may be called from interrupt context. In case it is called from thread context,
then interrupts must be enabled.

27.6. Binary Semaphores 819

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.6

27.6.6 Post a binary semaphore

CALLING SEQUENCE:

1 void rtems_binary_semaphore_post(
2 rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Posts the binary_semaphore. In case at least one thread is waiting on the binary semaphore,
then the highest priority thread is woken up, otherwise the current value is set to one.

NOTES:
This function may be called from interrupt context. In case it is called from thread context,
then interrupts must be enabled.

820 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.6 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.6.7 Set binary semaphore name

CALLING SEQUENCE:

1 void rtems_binary_semaphore_set_name(
2 rtems_binary_semaphore *binary_semaphore,
3 const char *name
4);

DESCRIPTION:
Sets the binary_semaphore name to name.

NOTES:
The name must be persistent throughout the life-time of the binary semaphore. A name of NULL
is valid.

27.6. Binary Semaphores 821

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.6

27.6.8 Get binary semaphore name

CALLING SEQUENCE:

1 const char *rtems_binary_semaphore_get_name(
2 const rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Returns the binary_semaphore name.

NOTES:
The name may be NULL.

27.6.9 Binary semaphore destruction

CALLING SEQUENCE:

1 void rtems_binary_semaphore_destroy(
2 rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Destroys the binary_semaphore.

NOTES:
In case the binary semaphore still in use, then the result is unpredictable.

822 Chapter 27. Self-Contained Objects

Chapter 27 Section 27.7 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

27.7 Threads

. Warning

The self-contained threads support is work in progress. In contrast to the synchronization
objects the self-contained thread support is not just an API glue layer to already existing
implementations.

The rtems_thread object provides a thread of execution.

CALLING SEQUENCE:

1 RTEMS_THREAD_INITIALIZER(
2 name,
3 thread_size,
4 priority,
5 flags,
6 entry,
7 arg
8);
9

10 void rtems_thread_start(
11 rtems_thread *thread,
12 const char *name,
13 size_t thread_size,
14 uint32_t priority,
15 uint32_t flags,
16 void (*entry)(void *),
17 void *arg
18);
19

20 void rtems_thread_restart(
21 rtems_thread *thread,
22 void *arg
23) RTEMS_NO_RETURN;
24

25 void rtems_thread_event_send(
26 rtems_thread *thread,
27 uint32_t events
28);
29

30 uint32_t rtems_thread_event_poll(
31 rtems_thread *thread,
32 uint32_t events_of_interest
33);
34

35 uint32_t rtems_thread_event_wait_all(
36 rtems_thread *thread,
37 uint32_t events_of_interest

(continues on next page)

27.7. Threads 823

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 27 Section 27.7

(continued from previous page)

38);
39

40 uint32_t rtems_thread_event_wait_any(
41 rtems_thread *thread,
42 uint32_t events_of_interest
43);
44

45 void rtems_thread_destroy(
46 rtems_thread *thread
47);
48

49 void rtems_thread_destroy_self(
50 void
51) RTEMS_NO_RETURN;

824 Chapter 27. Self-Contained Objects

CHAPTER

TWENTYEIGHT

REGULATOR MANAGER

825

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.1

28.1 Introduction

The Regulator Manager provides a set of directives to manage a data flow from a source to a
destination. The focus is on regulating the bursty input so that it is delivered to the destination
at a regular rate. The directives provided by the Regulator Manager are:

• rtems_regulator_create() (page 832) - Creates a regulator.

• rtems_regulator_delete() (page 834) - Deletes the regulator.

• rtems_regulator_obtain_buffer() (page 836) - Obtain buffer from a regulator.

• rtems_regulator_release_buffer() (page 837) - Release buffer to a regulator.

• rtems_regulator_send() (page 838) - Send buffer to a regulator.

• rtems_regulator_get_statistics() (page 840) - Obtain statistics for a regulator.

826 Chapter 28. Regulator Manager

Chapter 28 Section 28.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

28.2 Background

The regulator provides facilities to accept bursty input and buffer it as needed before delivering
it at a pre-defined periodic rate. The input is referred to as the Source, with the output referred
to as the Destination. Messages are accepted from the Source and delivered to the Destination
by a user-provided Delivery function.

The Regulator implementation uses the RTEMS Classic API Partition Manager to manage the
buffer pool and the RTEMS Classic API Message Queue Manager to send the buffer to the De-
livery thread. The Delivery thread invokes a user-provided delivery function to get the message
to the Destination.

28.2.1 Regulator Buffering

The regulator is designed to sit logically between two entities – a source and a destination,
where it limits the traffic sent to the destination to prevent it from being flooded with messages
from the source. This can be used to accommodate bursts of input from a source and meter it
out to a destination. The maximum number of messages which can be buffered in the regulator
is specified by the maximum_messages field in the rtems_regulator_attributes (page 50) structure
passed as an argument to rtems_regulator_create() (page 832).

The regulator library accepts an input stream of messages from a source and delivers them to
a destination. The regulator assumes that the input stream from the source contains sporadic
bursts of data which can exceed the acceptable rate of the destination. By limiting the message
rate, the regulator prevents an overflow of messages.

The regulator can be configured for the input buffering required to manage the maximum burst
and for the metering rate for the delivery. The delivery rate is in messages per second. If the
sender produces data too fast, the regulator will buffer the configured number of messages.

A configuration capability is provided to allow for adaptation to different message streams. The
regulator can also support running multiple instances, which could be used on independent
message streams.

It is assumed that the application has a design limit on the number of messages which may be
buffered. All messages accepted by the regulator, assuming no overflow on input, will eventually
be output by the Delivery thread.

28.2.2 Message Delivery Rate

The Source sends buffers to the Regulator instance. The Regulator then sends the buffer via a
message queue which delivers them to the Delivery thread. The Delivery thread executes period-
ically at a rate specified by the delivery_thread_period field in the rtems_regulator_attributes
(page 50) structure passed as an argument to rtems_regulator_create() (page 832).

During each period, the Delivery thread attempts to receive up to
maximum_to_dequeue_per_period number of buffers and invoke the Delivery function
to deliver each of them to the Destination. The maximum_to_dequeue_per_period
field in the rtems_regulator_attributes (page 50) structure passed as an argument to
rtems_regulator_create() (page 832).

For example, consider a Source that may produce a burst of up to seven messages every five
seconds. But the Destination cannot handle a burst of seven and either drops messages or gives
an error. This can be accommodated by a Regulator instance configured as follows:

• maximum_messages - 7

28.2. Background 827

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.2

• delivery_thread_period - one second

• maximum_to_dequeue_per_period - 3

In this scenario, the application will use the Delivery thread rtems_regulator_send() (page 838)
to enqueue the seven messages when they arrive. The Delivery thread will deliver three mes-
sages per second. The following illustrates this sequence:

• Time 0: Source sends seven messages

• Time 1: Delivery of messages 1 to 3

• Time 3: Delivery of messages 4 to 6

• Time 3: Delivery of message 7

• Time 4: No messages to deliver

This configuration of the regulator ensures that the Destination does not overflow.

828 Chapter 28. Regulator Manager

Chapter 28 Section 28.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

28.3 Operations

28.3.1 Application Sourcing Data

The application interacting with the Source will obtain buffers from the regulator instance, fill
them with information, and send them to the regulator instance. This allows the regulator to
buffer bursty input.

A regulator instance is used as follows from the Source side:

1 while (1) {
2 use rtems_regulator_obtain_buffer to obtain a buffer
3 // Perform some input operation to fetch data into the buffer
4 rtems_regulator_send(buffer, size of message)
5 }

The delivery of message buffers to the Destination and subsequent release is performed in the
context of the delivery thread by either the delivery function or delivery thread. Details are
below.

The sequence diagram below shows the interaction between a message Source, a Regulator
instance, and RTEMS, given the usage described in the above paragraphs.

As illustrated in the preceding sequence diagram, the Source usually corresponds to application
software reading a system input. The Source obtains a buffer from the Regulator instance and
fills it with incoming data. The application explicitly obtaining a buffer and filling it in allows
for zero copy operations on the Source side.

After the Source has sent the message to the Regulator instance, the Source is free to process
another input and the Regulator instance will ensure that the buffer is delivered to the Delivery
function and Destination.

28.3.2 Delivery Function

The Delivery function is provided by the application for a specific Regulator instance. De-
pending on the Destination, it may use a function which copies the buffer contents (e.g.,
write()) or which operates directly on the buffer contents (e.g. DMA from buffer). In
the case of a Destination which copies the buffer contents, the buffer can be released via
rtems_regulator_release_buffer() (page 837) as soon as the function or copying completes. In the
case where the delivery uses the buffer and returns, the call to rtems_regulator_release_buffer()

28.3. Operations 829

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.3

(page 837) will occur when the use of the buffer is complete (e.g. completion of DMA transfer).
This explicit and deliberate exposure of buffering provides the application with the ability to
avoid copying the contents.

830 Chapter 28. Regulator Manager

Chapter 28 Section 28.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

28.4 Directives

This section details the directives of the Regulator Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

28.4. Directives 831

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.4

28.4.1 rtems_regulator_create()

Creates a regulator.

CALLING SEQUENCE:

1 rtems_status_code rtems_regulator_create(
2 rtems_regulator_attributes *attributes,
3 rtems_regulator_instance **regulator
4);

PARAMETERS:

attributes
This parameter is the attributes associated with the regulator being created.

regulator
This parameter is the pointer to a regulator instance. When the directive call is successful, a
pointer to the created regulator will be stored in this object.

DESCRIPTION:

This function creates an instance of a regulator. It uses the provided attributes to create
the instance return in regulator. This instance will allocate the buffers associated with the
regulator instance as well as the Delivery Thread.

The attributes parameter points to an instance of rtems_regulator_attributes (page 50) which
is filled in to reflect the desired configuration of the regulator instance. It defines multiple
characteristics of the the Delivery thread dedicated to this regulator instance including the
priority and stack size. It also defines the period of the Delivery thread and the maximum
number of messages that may be delivered per period via invocation of the delivery function.

For each regulator instance, the following resources are allocated:

• A memory area for the regulator control block using malloc().

• A RTEMS Classic API Message Queue is constructed with message buffer memory allo-
cated using malloc(). Each message consists of a pointer to the contents and a length
field.

• A RTEMS Classic API Partition.

• A RTEMS Classic API Rate Monotonic Period.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The attributes parameter was NULL.

RTEMS_INVALID_ADDRESS
The regulator parameter was NULL.

RTEMS_INVALID_ADDRESS
The deliverer field in the structure pointed to by the attributes parameter was NULL.

832 Chapter 28. Regulator Manager

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 28 Section 28.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

RTEMS_INVALID_SIZE
The maximum_messages field in the structure pointed to by the attributes parameter was 0.

RTEMS_INVALID_NUMBER
The maximum_to_dequeue_per_period field in the structure pointed to by the attributes pa-
rameter was 0.

RTEMS_NO_MEMORY
The allocation of memory for the regulator instance failed.

RTEMS_NO_MEMORY
The allocation of memory for the buffers failed.

RTEMS_NO_MEMORY
The allocation of memory for the internal message queue failed.

NOTES:

rtems_regulator_create() (page 832) uses rtems_partition_create() (page 420),
rtems_message_queue_construct() (page 375), rtems_task_create() (page 109), and
rtems_task_start() (page 118). If any of those directives return a status indicating fail-
ure, it will be returned to the caller.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The number of tasks available to the application is configured through the CONFIG-
URE_MAXIMUM_TASKS (page 621) application configuration option.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may allocate memory from the RTEMS Workspace.

28.4. Directives 833

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.4

28.4.2 rtems_regulator_delete()

Deletes the regulator.

CALLING SEQUENCE:

1 rtems_status_code rtems_regulator_delete(
2 rtems_regulator_instance *regulator,
3 rtems_interval ticks
4);

PARAMETERS:

regulator
This parameter points to the regulator instance.

ticks
This parameter specifies the maximum length of time to wait.

DESCRIPTION:

This directive is used to delete the specified regulator instance. It will deallocate the resources
that were allocated by the rtems_regulator_create() (page 832) directive.

This directive ensures that no buffers are outstanding either because the Source is holding one
of more buffers or because they are being held by the regulator instance pending delivery.

If the Delivery Thread has been created and is running, this directive will request the thread to
voluntarily exit. This call will wait up to ticks for the thread to exit.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The regulator parameter was NULL.

RTEMS_INCORRECT_STATE
The regulator instance was not initialized.

RTEMS_RESOURCE_IN_USE
The regulator instance has buffers outstanding.

RTEMS_TIMEOUT
The regulator instance was not able to be deleted within the specific number of ticks.

NOTES:

It is the responsibility of the user to ensure that any resources such as sockets or open file
descriptors used by the Source or delivery function are also deleted if necessary. It is likely safer
to delete those delivery resources after deleting the regulator instance rather than before.

It is the responsibility of the user to ensure that all buffers associated with this regulator instance
have been released and that none are in the process of being delivered.

834 Chapter 28. Regulator Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 28 Section 28.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

• The calling task does not have to be the task that created the object. Any local task that
knows the object identifier can delete the object.

• Where the object class corresponding to the directive is configured to use unlimited ob-
jects, the directive may free memory to the RTEMS Workspace.

28.4. Directives 835

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.4

28.4.3 rtems_regulator_obtain_buffer()

Obtain buffer from regulator.

CALLING SEQUENCE:

1 rtems_status_code rtems_regulator_obtain_buffer(
2 rtems_regulator_instance *regulator,
3 void **buffer
4);

PARAMETERS:

regulator
This parameter is the regulator instance to operate upon.

buffer
This parameter will point to the buffer allocated.

DESCRIPTION:

This function is used to obtain a buffer from the regulator’s pool. The buffer returned is
assumed to be filled in with contents and used in a subsequent call to rtems_regulator_send()
(page 838).

When the buffer is delivered, it is expected to be released. If the buffer is not successfully
accepted by this method, then it should be returned using rtems_regulator_release_buffer()
(page 837) or used to send another message.

The buffer returned is of the maximum_message_size specified in the attributes passed in to
rtems_regulator_create() (page 832).

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The regulator parameter was NULL.

RTEMS_INCORRECT_STATE
The regulator instance was not initialized.

NOTES:

rtems_regulator_obtain_buffer() (page 836) uses rtems_partition_get_buffer() (page 427) and if
it returns a status indicating failure, it will be returned to the caller.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

836 Chapter 28. Regulator Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 28 Section 28.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

28.4.4 rtems_regulator_release_buffer()

Release buffer to regulator.

CALLING SEQUENCE:

1 rtems_status_code rtems_regulator_release_buffer(
2 rtems_regulator_instance *regulator,
3 void *buffer
4);

PARAMETERS:

regulator
This parameter is the regulator instance to operate upon.

buffer
This parameter will point to the buffer to be released.

DESCRIPTION:

This function is used to release a buffer to the regulator’s pool. It is assumed that the buffer
returned will not be used by the application anymore.

The buffer must have previously been allocated by rtems_regulator_obtain_buffer() (page 836)
and NOT yet passed to rtems_regulator_send() (page 838), or it has been sent and delivery has
been completed by the delivery function.

If a subsequent rtems_regulator_send() (page 838) using this buffer is successful, the buffer
will eventually be processed by the delivery thread and released.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The regulator parameter was NULL.

RTEMS_INCORRECT_STATE
The regulator instance was not initialized.

NOTES:

rtems_regulator_release_buffer() (page 837) uses rtems_partition_return_buffer() (page 429)
and if it returns a status indicating failure, it will be returned to the caller.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

28.4. Directives 837

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.4

28.4.5 rtems_regulator_send()

Send buffer to regulator.

CALLING SEQUENCE:

1 rtems_status_code rtems_regulator_send(
2 rtems_regulator_instance *regulator,
3 void *message,
4 size_t length
5);

PARAMETERS:

regulator
This parameter is the regulator instance to operate upon.

message
This parameter points to the buffer to send.

length
This parameter specifies the number of bytes in the message.

DESCRIPTION:

This method is used by the producer to send a message to the regulator for later delivery by the
delivery thread. The message is contained in the memory pointed to by message and is length
bytes in length.

It is required that the message buffer was obtained via rtems_regulator_obtain_buffer()
(page 836).

It is assumed that the message buffer has been filled in with application content to deliver.

If the rtems_regulator_send() (page 838) is successful, the message buffer is enqueued inside the
regulator instance for subsequent delivery. After the message is delivered, it may be released by
either delivery function or other application code depending on the implementation.

The status RTEMS_TOO_MANY is returned if the regulator’s internal queue is full. This indicates
that the configured maximum number of messages was insufficient. It is the responsibility of
the caller to decide whether to hold messages, drop them, or print a message that the maximum
number of messages should be increased

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The regulator parameter was NULL.

RTEMS_INCORRECT_STATE
The regulator instance was not initialized.

838 Chapter 28. Regulator Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 28 Section 28.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

NOTES:

rtems_regulator_send() (page 838) uses rtems_message_queue_send() (page 381) and if it re-
turns a status indicating failure, it will be returned to the caller.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

28.4. Directives 839

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.4

28.4.6 rtems_regulator_get_statistics()

Obtain statistics from regulator.

CALLING SEQUENCE:

1 rtems_status_code rtems_regulator_get_statistics(
2 rtems_regulator_instance *regulator,
3 rtems_regulator_statistics *statistics
4);

PARAMETERS:

regulator
This parameter is the regulator instance to operate upon.

statistics
This parameter points to the statistics structure to be filled in.

DESCRIPTION:

This method is used by the application to obtain the current statistics for this regulator. The
statistics information provided includes:

• the number of buffers obtained via rtems_regulator_obtain_buffer() (page 836)

• the number of buffers released via rtems_regulator_release_buffer() (page 837)

• the number of buffers delivered by the Delivery Thread via the deliverer function speci-
fied in the rtems_regulator_attributes (page 50) structure provided to InterfaceRtemsReg-
ulatorCreate` via the attibutes parameter.

• the period_statistics for the Delivery Thread. For more details on period statistics, see
rtems_rate_monotonic_period_statistics (page 49).

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The regulator or statistics parameter was NULL.

RTEMS_INCORRECT_STATE
The regulator instance was not initialized.

NOTES:

The number of buffers outstanding is released minus obtained. The regulator instance cannot
be deleted using rtems_regulator_delete() (page 834) until all buffers are released.

The obtained and released values are cumulative over the life of the Regulator instance
and are likely to larger than the maximum_messages value in the attributes structure
(rtems_regulator_attributes (page 50) provided to rtems_regulator_create() (page 832).

840 Chapter 28. Regulator Manager

https://en.cppreference.com/w/c/types/NULL

Chapter 28 Section 28.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

28.4. Directives 841

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 28 Section 28.4

842 Chapter 28. Regulator Manager

CHAPTER

TWENTYNINE

MULTIPROCESSING MANAGER

843

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 29 Section 29.1

29.1 Introduction

The Multiprocessing Manager provides support for heterogeneous multiprocessing systems
based on message passing in a network of multiprocessing nodes.

In multiprocessor real-time systems, new requirements, such as sharing data and global re-
sources between processors, are introduced. This requires an efficient and reliable communi-
cations vehicle which allows all processors to communicate with each other as necessary. In
addition, the ramifications of multiple processors affect each and every characteristic of a real-
time system, almost always making them more complicated.

RTEMS addresses these issues by providing simple and flexible real-time multiprocessing capa-
bilities. The executive easily lends itself to both tightly-coupled and loosely-coupled configura-
tions of the target system hardware. In addition, RTEMS supports systems composed of both
homogeneous and heterogeneous mixtures of processors and target boards.

A major design goal of the RTEMS executive was to transcend the physical boundaries of the
target hardware configuration. This goal is achieved by presenting the application software
with a logical view of the target system where the boundaries between processor nodes are
transparent. As a result, the application developer may designate objects such as tasks, queues,
events, signals, semaphores, and memory blocks as global objects. These global objects may
then be accessed by any task regardless of the physical location of the object and the accessing
task. RTEMS automatically determines that the object being accessed resides on another pro-
cessor and performs the actions required to access the desired object. Simply stated, RTEMS
allows the entire system, both hardware and software, to be viewed logically as a single system.
The directives provided by the Multiprocessing Manager are:

• rtems_multiprocessing_announce() (page 854) - Announces the arrival of a packet.

844 Chapter 29. Multiprocessing Manager

Chapter 29 Section 29.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

29.2 Background

RTEMS makes no assumptions regarding the connection media or topology of a multiproces-
sor system. The tasks which compose a particular application can be spread among as many
processors as needed to satisfy the application’s timing requirements. The application tasks can
interact using a subset of the RTEMS directives as if they were on the same processor. These
directives allow application tasks to exchange data, communicate, and synchronize regardless
of which processor they reside upon.

The RTEMS multiprocessor execution model is multiple instruction streams with multiple data
streams (MIMD). This execution model has each of the processors executing code independent
of the other processors. Because of this parallelism, the application designer can more easily
guarantee deterministic behavior.

By supporting heterogeneous environments, RTEMS allows the systems designer to select the
most efficient processor for each subsystem of the application. Configuring RTEMS for a hetero-
geneous environment is no more difficult than for a homogeneous one. In keeping with RTEMS
philosophy of providing transparent physical node boundaries, the minimal heterogeneous pro-
cessing required is isolated in the MPCI layer.

29.2.1 Nodes

A processor in a RTEMS system is referred to as a node. Each node is assigned a unique non-
zero node number by the application designer. RTEMS assumes that node numbers are as-
signed consecutively from one to the maximum_nodes configuration parameter. The node num-
ber, node, and the maximum number of nodes, maximum_nodes, in a system are found in the
Multiprocessor Configuration Table. The maximum_nodes field and the number of global objects,
maximum_global_objects, is required to be the same on all nodes in a system.

The node number is used by RTEMS to identify each node when performing remote opera-
tions. Thus, the Multiprocessor Communications Interface Layer (MPCI) must be able to route
messages based on the node number.

29.2.2 Global Objects

All RTEMS objects which are created with the GLOBAL attribute will be known on all other
nodes. Global objects can be referenced from any node in the system, although certain directive
specific restrictions (e.g. one cannot delete a remote object) may apply. A task does not have
to be global to perform operations involving remote objects. The maximum number of global
objects is the system is user configurable and can be found in the maximum_global_objects field
in the Multiprocessor Configuration Table. The distribution of tasks to processors is performed
during the application design phase. Dynamic task relocation is not supported by RTEMS.

29.2.3 Global Object Table

RTEMS maintains two tables containing object information on every node in a multiprocessor
system: a local object table and a global object table. The local object table on each node is
unique and contains information for all objects created on this node whether those objects are
local or global. The global object table contains information regarding all global objects in the
system and, consequently, is the same on every node.

Since each node must maintain an identical copy of the global object table, the maximum
number of entries in each copy of the table must be the same. The maximum number of entries
in each copy is determined by the maximum_global_objects parameter in the Multiprocessor

29.2. Background 845

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 29 Section 29.2

Configuration Table. This parameter, as well as the maximum_nodes parameter, is required to
be the same on all nodes. To maintain consistency among the table copies, every node in the
system must be informed of the creation or deletion of a global object.

29.2.4 Remote Operations

When an application performs an operation on a remote global object, RTEMS must generate
a Remote Request (RQ) message and send it to the appropriate node. After completing the
requested operation, the remote node will build a Remote Response (RR) message and send
it to the originating node. Messages generated as a side-effect of a directive (such as deleting
a global task) are known as Remote Processes (RP) and do not require the receiving node to
respond.

Other than taking slightly longer to execute directives on remote objects, the application is
unaware of the location of the objects it acts upon. The exact amount of overhead required for
a remote operation is dependent on the media connecting the nodes and, to a lesser degree, on
the efficiency of the user-provided MPCI routines.

The following shows the typical transaction sequence during a remote application:

1. The application issues a directive accessing a remote global object.

2. RTEMS determines the node on which the object resides.

3. RTEMS calls the user-provided MPCI routine GET_PACKET to obtain a packet in which to
build a RQ message.

4. After building a message packet, RTEMS calls the user-provided MPCI routine
SEND_PACKET to transmit the packet to the node on which the object resides (referred
to as the destination node).

5. The calling task is blocked until the RR message arrives, and control of the processor is
transferred to another task.

6. The MPCI layer on the destination node senses the arrival of a packet (commonly in an
ISR), and calls the rtems_multiprocessing_announce directive. This directive readies the
Multiprocessing Server.

7. The Multiprocessing Server calls the user-provided MPCI routine RECEIVE_PACKET, per-
forms the requested operation, builds an RR message, and returns it to the originating
node.

8. The MPCI layer on the originating node senses the arrival of a packet (typically via an in-
terrupt), and calls the RTEMS rtems_multiprocessing_announce directive. This directive
readies the Multiprocessing Server.

9. The Multiprocessing Server calls the user-provided MPCI routine RECEIVE_PACKET, readies
the original requesting task, and blocks until another packet arrives. Control is transferred
to the original task which then completes processing of the directive.

If an uncorrectable error occurs in the user-provided MPCI layer, the fatal error handler should
be invoked. RTEMS assumes the reliable transmission and reception of messages by the MPCI
and makes no attempt to detect or correct errors.

846 Chapter 29. Multiprocessing Manager

Chapter 29 Section 29.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

29.2.5 Proxies

A proxy is an RTEMS data structure which resides on a remote node and is used to represent
a task which must block as part of a remote operation. This action can occur as part of the
rtems_semaphore_obtain and rtems_message_queue_receive directives. If the object were lo-
cal, the task’s control block would be available for modification to indicate it was blocking on a
message queue or semaphore. However, the task’s control block resides only on the same node
as the task. As a result, the remote node must allocate a proxy to represent the task until it can
be readied.

The maximum number of proxies is defined in the Multiprocessor Configuration Table. Each
node in a multiprocessor system may require a different number of proxies to be configured.
The distribution of proxy control blocks is application dependent and is different from the dis-
tribution of tasks.

29.2.6 Multiprocessor Configuration Table

The Multiprocessor Configuration Table contains information needed by RTEMS when used in
a multiprocessor system. This table is discussed in detail in the section Multiprocessor Configu-
ration Table of the Configuring a System chapter.

29.2. Background 847

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 29 Section 29.3

29.3 Multiprocessor Communications Interface Layer

The Multiprocessor Communications Interface Layer (MPCI) is a set of user-provided proce-
dures which enable the nodes in a multiprocessor system to communicate with one another.
These routines are invoked by RTEMS at various times in the preparation and processing of
remote requests. Interrupts are enabled when an MPCI procedure is invoked. It is assumed that
if the execution mode and/or interrupt level are altered by the MPCI layer, that they will be
restored prior to returning to RTEMS.

The MPCI layer is responsible for managing a pool of buffers called packets and for sending
these packets between system nodes. Packet buffers contain the messages sent between the
nodes. Typically, the MPCI layer will encapsulate the packet within an envelope which contains
the information needed by the MPCI layer. The number of packets available is dependent on
the MPCI layer implementation.

The entry points to the routines in the user’s MPCI layer should be placed in the Multiprocessor
Communications Interface Table. The user must provide entry points for each of the following
table entries in a multiprocessor system:

initialization initialize the MPCI
get_packet obtain a packet buffer
return_packet return a packet buffer
send_packet send a packet to another node
receive_packet called to get an arrived packet

A packet is sent by RTEMS in each of the following situations:

• an RQ is generated on an originating node;

• an RR is generated on a destination node;

• a global object is created;

• a global object is deleted;

• a local task blocked on a remote object is deleted;

• during system initialization to check for system consistency.

If the target hardware supports it, the arrival of a packet at a node may generate an inter-
rupt. Otherwise, the real-time clock ISR can check for the arrival of a packet. In any case, the
rtems_multiprocessing_announce directive must be called to announce the arrival of a packet.
After exiting the ISR, control will be passed to the Multiprocessing Server to process the packet.
The Multiprocessing Server will call the get_packet entry to obtain a packet buffer and the
receive_entry entry to copy the message into the buffer obtained.

29.3.1 INITIALIZATION

The INITIALIZATION component of the user-provided MPCI layer is called as part of the
rtems_initialize_executive directive to initialize the MPCI layer and associated hardware.
It is invoked immediately after all of the device drivers have been initialized. This component
should be adhere to the following prototype:

848 Chapter 29. Multiprocessing Manager

Chapter 29 Section 29.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

1 rtems_mpci_entry user_mpci_initialization(void);

Operations on global objects cannot be performed until this component is invoked. The INI-
TIALIZATION component is invoked only once in the life of any system. If the MPCI layer
cannot be successfully initialized, the fatal error manager should be invoked by this routine.

One of the primary functions of the MPCI layer is to provide the executive with packet buffers.
The INITIALIZATION routine must create and initialize a pool of packet buffers. There must be
enough packet buffers so RTEMS can obtain one whenever needed.

29.3.2 GET_PACKET

The GET_PACKET component of the user-provided MPCI layer is called when RTEMS must
obtain a packet buffer to send or broadcast a message. This component should be adhere to the
following prototype:

1 rtems_mpci_entry user_mpci_get_packet(
2 rtems_packet_prefix **packet
3);

where packet is the address of a pointer to a packet. This routine always succeeds and, upon
return, packet will contain the address of a packet. If for any reason, a packet cannot be
successfully obtained, then the fatal error manager should be invoked.

RTEMS has been optimized to avoid the need for obtaining a packet each time a message is sent
or broadcast. For example, RTEMS sends response messages (RR) back to the originator in the
same packet in which the request message (RQ) arrived.

29.3.3 RETURN_PACKET

The RETURN_PACKET component of the user-provided MPCI layer is called when RTEMS needs
to release a packet to the free packet buffer pool. This component should be adhere to the
following prototype:

1 rtems_mpci_entry user_mpci_return_packet(
2 rtems_packet_prefix *packet
3);

where packet is the address of a packet. If the packet cannot be successfully returned, the fatal
error manager should be invoked.

29.3.4 RECEIVE_PACKET

The RECEIVE_PACKET component of the user-provided MPCI layer is called when RTEMS needs
to obtain a packet which has previously arrived. This component should be adhere to the
following prototype:

1 rtems_mpci_entry user_mpci_receive_packet(
2 rtems_packet_prefix **packet
3);

where packet is a pointer to the address of a packet to place the message from another node. If
a message is available, then packet will contain the address of the message from another node.
If no messages are available, this entry packet should contain NULL.

29.3. Multiprocessor Communications Interface Layer 849

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 29 Section 29.3

29.3.5 SEND_PACKET

The SEND_PACKET component of the user-provided MPCI layer is called when RTEMS needs
to send a packet containing a message to another node. This component should be adhere to
the following prototype:

1 rtems_mpci_entry user_mpci_send_packet(
2 uint32_t node,
3 rtems_packet_prefix **packet
4);

where node is the node number of the destination and packet is the address of a packet which
containing a message. If the packet cannot be successfully sent, the fatal error manager should
be invoked.

If node is set to zero, the packet is to be broadcasted to all other nodes in the system. Although
some MPCI layers will be built upon hardware which support a broadcast mechanism, others
may be required to generate a copy of the packet for each node in the system.

Many MPCI layers use the packet_length field of the rtems_packet_prefix portion of the
packet to avoid sending unnecessary data. This is especially useful if the media connecting
the nodes is relatively slow.

The to_convert field of the rtems_packet_prefix portion of the packet indicates how much of
the packet in 32-bit units may require conversion in a heterogeneous system.

29.3.6 Supporting Heterogeneous Environments

Developing an MPCI layer for a heterogeneous system requires a thorough understanding of
the differences between the processors which comprise the system. One difficult problem is the
varying data representation schemes used by different processor types. The most pervasive data
representation problem is the order of the bytes which compose a data entity. Processors which
place the least significant byte at the smallest address are classified as little endian processors.
Little endian byte-ordering is shown below:

1 +---------------+----------------+---------------+----------------+
2 | | | | |
3 | Byte 3 | Byte 2 | Byte 1 | Byte 0 |
4 | | | | |
5 +---------------+----------------+---------------+----------------+

Conversely, processors which place the most significant byte at the smallest address are classified
as big endian processors. Big endian byte-ordering is shown below:

1 +---------------+----------------+---------------+----------------+
2 | | | | |
3 | Byte 0 | Byte 1 | Byte 2 | Byte 3 |
4 | | | | |
5 +---------------+----------------+---------------+----------------+

Unfortunately, sharing a data structure between big endian and little endian processors requires
translation into a common endian format. An application designer typically chooses the com-
mon endian format to minimize conversion overhead.

850 Chapter 29. Multiprocessing Manager

Chapter 29 Section 29.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

Another issue in the design of shared data structures is the alignment of data structure ele-
ments. Alignment is both processor and compiler implementation dependent. For example,
some processors allow data elements to begin on any address boundary, while others impose
restrictions. Common restrictions are that data elements must begin on either an even address
or on a long word boundary. Violation of these restrictions may cause an exception or impose a
performance penalty.

Other issues which commonly impact the design of shared data structures include the represen-
tation of floating point numbers, bit fields, decimal data, and character strings. In addition, the
representation method for negative integers could be one’s or two’s complement. These fac-
tors combine to increase the complexity of designing and manipulating data structures shared
between processors.

RTEMS addressed these issues in the design of the packets used to communicate between nodes.
The RTEMS packet format is designed to allow the MPCI layer to perform all necessary conver-
sion without burdening the developer with the details of the RTEMS packet format. As a result,
the MPCI layer must be aware of the following:

• All packets must begin on a four byte boundary.

• Packets are composed of both RTEMS and application data. All RTEMS data is treated as
32-bit unsigned quantities and is in the first to_convert 32-bit quantities of the packet.
The to_convert field is part of the rtems_packet_prefix portion of the packet.

• The RTEMS data component of the packet must be in native endian format. Endian
conversion may be performed by either the sending or receiving MPCI layer.

• RTEMS makes no assumptions regarding the application data component of the packet.

29.3. Multiprocessor Communications Interface Layer 851

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 29 Section 29.4

29.4 Operations

29.4.1 Announcing a Packet

The rtems_multiprocessing_announce directive is called by the MPCI layer to inform RTEMS
that a packet has arrived from another node. This directive can be called from an interrupt
service routine or from within a polling routine.

852 Chapter 29. Multiprocessing Manager

Chapter 29 Section 29.5 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

29.5 Directives

This section details the directives of the Multiprocessing Manager. A subsection is dedicated to
each of this manager’s directives and lists the calling sequence, parameters, description, return
values, and notes of the directive.

29.5. Directives 853

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 29 Section 29.5

29.5.1 rtems_multiprocessing_announce()

Announces the arrival of a packet.

CALLING SEQUENCE:

1 void rtems_multiprocessing_announce(void);

DESCRIPTION:

This directive informs RTEMS that a multiprocessing communications packet has arrived from
another node. This directive is called by the user-provided MPCI, and is only used in multipro-
cessing configurations.

NOTES:

This directive is typically called from an ISR.

This directive does not generate activity on remote nodes.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within interrupt context.

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may unblock a task. This may cause the calling task to be preempted.

854 Chapter 29. Multiprocessing Manager

CHAPTER

THIRTY

SYMMETRIC MULTIPROCESSING (SMP)

855

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.1

30.1 Introduction

RTEMS Symmetric Multiprocessing (SMP) support is available on a subset of target architec-
tures supported by RTEMS. Further on some target architectures, it is only available on a subset
of BSPs. The user is advised to check the BSP specific documentation and RTEMS source code
to verify the status of SMP support for a specific BSP. The following architectures have support
for SMP:

• AArch64,

• ARMv7-A,

• i386,

• PowerPC,

• RISC-V, and

• SPARC.

. Warning

SMP support is only available if RTEMS was built with the SMP build configuration option
enabled.

RTEMS is supposed to be a real-time operating system. What does this mean in the context
of SMP? The RTEMS interpretation of real-time on SMP is the support for Clustered Scheduling
(page 858) with priority based schedulers and adequate locking protocols. One aim is to enable
a schedulability analysis under the sporadic task model [Bra11] [BW13].

856 Chapter 30. Symmetric Multiprocessing (SMP)

Chapter 30 Section 30.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

30.2 Background

30.2.1 Application Configuration

By default, the maximum processor count is set to one in the application configuration.
To enable SMP, the application configuration option CONFIGURE_MAXIMUM_PROCESSORS
(page 577) must be defined to a value greater than one. It is recommended to use the smallest
value suitable for the application in order to save memory. Each processor needs an idle thread
and interrupt stack for example.

The default scheduler for SMP applications supports up to 32 processors and is a global fixed
priority scheduler, see also Clustered Scheduler Configuration (page 726).

The following compile-time test can be used to check if the SMP support is available or not.

1 #include <rtems.h>
2

3 #ifdef RTEMS_SMP
4 #warning "SMP support is enabled"
5 #else
6 #warning "SMP support is disabled"
7 #endif

30.2.2 Examples

For example applications see testsuites/smptests.

30.2.3 Uniprocessor versus SMP Parallelism

Uniprocessor systems have long been used in embedded systems. In this hardware model, there
are some system execution characteristics which have long been taken for granted:

• one task executes at a time

• hardware events result in interrupts

There is no true parallelism. Even when interrupts appear to occur at the same time, they are
processed in largely a serial fashion. This is true even when the interupt service routines are
allowed to nest. From a tasking viewpoint, it is the responsibility of the real-time operatimg sys-
tem to simulate parallelism by switching between tasks. These task switches occur in response
to hardware interrupt events and explicit application events such as blocking for a resource or
delaying.

With symmetric multiprocessing, the presence of multiple processors allows for true concur-
rency and provides for cost-effective performance improvements. Uniprocessors tend to in-
crease performance by increasing clock speed and complexity. This tends to lead to hot, power
hungry microprocessors which are poorly suited for many embedded applications.

The true concurrency is in sharp contrast to the single task and interrupt model of uniprocessor
systems. This results in a fundamental change to uniprocessor system characteristics listed
above. Developers are faced with a different set of characteristics which, in turn, break some
existing assumptions and result in new challenges. In an SMP system with N processors, these
are the new execution characteristics.

• N tasks execute in parallel

• hardware events result in interrupts

30.2. Background 857

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/testsuites/smptests

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.2

There is true parallelism with a task executing on each processor and the possibility of inter-
rupts occurring on each processor. Thus in contrast to their being one task and one interrupt
to consider on a uniprocessor, there are N tasks and potentially N simultaneous interrupts to
consider on an SMP system.

This increase in hardware complexity and presence of true parallelism results in the application
developer needing to be even more cautious about mutual exclusion and shared data access
than in a uniprocessor embedded system. Race conditions that never or rarely happened when
an application executed on a uniprocessor system, become much more likely due to multiple
threads executing in parallel. On a uniprocessor system, these race conditions would only
happen when a task switch occurred at just the wrong moment. Now there are N-1 tasks
executing in parallel all the time and this results in many more opportunities for small windows
in critical sections to be hit.

30.2.4 Task Affinity

RTEMS provides services to manipulate the affinity of a task. Affinity is used to specify the
subset of processors in an SMP system on which a particular task can execute.

By default, tasks have an affinity which allows them to execute on any available processor.

Task affinity is a possible feature to be supported by SMP-aware schedulers. However, only a
subset of the available schedulers support affinity. Although the behavior is scheduler specific,
if the scheduler does not support affinity, it is likely to ignore all attempts to set affinity.

The scheduler with support for arbitary processor affinities uses a proof of concept implemen-
tation. See https://gitlab.rtems.org/rtems/programs/gsoc/-/issues/34

30.2.5 Task Migration

With more than one processor in the system tasks can migrate from one processor to another.
There are four reasons why tasks migrate in RTEMS.

• The scheduler changes explicitly via rtems_task_set_scheduler() or similar directives.

• The task processor affinity changes explicitly via rtems_task_set_affinity() or similar di-
rectives.

• The task resumes execution after a blocking operation. On a priority based scheduler it
will evict the lowest priority task currently assigned to a processor in the processor set
managed by the scheduler instance.

• The task moves temporarily to another scheduler instance due to locking protocols like
the Multiprocessor Resource Sharing Protocol (MrsP) (page 30) or the O(m) Independence-
Preserving Protocol (OMIP) (page 30).

Task migration should be avoided so that the working set of a task can stay on the most local
cache level.

30.2.6 Clustered Scheduling

The scheduler is responsible to assign processors to some of the threads which are ready to
execute. Trouble starts if more ready threads than processors exist at the same time. There are
various rules how the processor assignment can be performed attempting to fulfill additional
constraints or yield some overall system properties. As a matter of fact it is impossible to meet
all requirements at the same time. The way a scheduler works distinguishes real-time operating
systems from general purpose operating systems.

858 Chapter 30. Symmetric Multiprocessing (SMP)

https://gitlab.rtems.org/rtems/programs/gsoc/-/issues/34

Chapter 30 Section 30.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

We have clustered scheduling in case the set of processors of a system is partitioned into non-
empty pairwise-disjoint subsets of processors. These subsets are called clusters. Clusters with
a cardinality of one are partitions. Each cluster is owned by exactly one scheduler instance. In
case the cluster size equals the processor count, it is called global scheduling.

Modern SMP systems have multi-layer caches. An operating system which neglects cache con-
straints in the scheduler will not yield good performance. Real-time operating systems usually
provide priority (fixed or job-level) based schedulers so that each of the highest priority threads
is assigned to a processor. Priority based schedulers have difficulties in providing cache locality
for threads and may suffer from excessive thread migrations [Bra11] [CMV14]. Schedulers that
use local run queues and some sort of load-balancing to improve the cache utilization may not
fulfill global constraints [GCB13] and are more difficult to implement than one would normally
expect [LLF+16].

Clustered scheduling was implemented for RTEMS SMP to best use the cache topology of a
system and to keep the worst-case latencies under control. The low-level SMP locks use FIFO
ordering. So, the worst-case run-time of operations increases with each processor involved.
The scheduler configuration is quite flexible and done at link-time, see Clustered Scheduler Con-
figuration (page 726). It is possible to re-assign processors to schedulers during run-time via
rtems_scheduler_add_processor() and rtems_scheduler_remove_processor(). The schedulers
are implemented in an object-oriented fashion.

The problem is to provide synchronization primitives for inter-cluster synchronization (more
than one cluster is involved in the synchronization process). In RTEMS there are currently
some means available

• events,

• message queues,

• mutexes using the O(m) Independence-Preserving Protocol (OMIP) (page 30),

• mutexes using the Multiprocessor Resource Sharing Protocol (MrsP) (page 30), and

• binary and counting semaphores.

The clustered scheduling approach enables separation of functions with real-time requirements
and functions that profit from fairness and high throughput provided the scheduler instances
are fully decoupled and adequate inter-cluster synchronization primitives are used.

To set the scheduler of a task see rtems_scheduler_ident() and rtems_task_set_scheduler().

30.2.7 OpenMP

OpenMP support for RTEMS is available via the GCC provided libgomp. There is libgomp
support for RTEMS in the POSIX configuration of libgomp since GCC 4.9 (requires a Newlib
snapshot after 2015-03-12). In GCC 6.1 or later (requires a Newlib snapshot after 2015-07-
30 for <sys/lock.h> provided self-contained synchronization objects) there is a specialized
libgomp configuration for RTEMS which offers a significantly better performance compared to
the POSIX configuration of libgomp. In addition application configurable thread pools for each
scheduler instance are available in GCC 6.1 or later.

The run-time configuration of libgomp is done via environment variables documented in the
libgomp manual. The environment variables are evaluated in a constructor function which
executes in the context of the first initialization task before the actual initialization task function
is called (just like a global C++ constructor). To set application specific values, a higher priority
constructor function must be used to set up the environment variables.

30.2. Background 859

https://gcc.gnu.org/onlinedocs/libgomp/

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.2

1 #include <stdlib.h>
2 void __attribute__((constructor(1000))) config_libgomp(void)
3 {
4 setenv("OMP_DISPLAY_ENV", "VERBOSE", 1);
5 setenv("GOMP_SPINCOUNT", "30000", 1);
6 setenv("GOMP_RTEMS_THREAD_POOLS", "1$2@SCHD", 1);
7 }

The environment variable GOMP_RTEMS_THREAD_POOLS is RTEMS-specific. It determines the
thread pools for each scheduler instance. The format for GOMP_RTEMS_THREAD_POOLS is a list of
optional <thread-pool-count>[$<priority>]@<scheduler-name> configurations separated by :
where:

• <thread-pool-count> is the thread pool count for this scheduler instance.

• $<priority> is an optional priority for the worker threads of a thread pool according to
pthread_setschedparam. In case a priority value is omitted, then a worker thread will
inherit the priority of the OpenMP master thread that created it. The priority of the
worker thread is not changed by libgomp after creation, even if a new OpenMP master
thread using the worker has a different priority.

• @<scheduler-name> is the scheduler instance name according to the RTEMS application
configuration.

In case no thread pool configuration is specified for a scheduler instance, then each OpenMP
master thread of this scheduler instance will use its own dynamically allocated thread pool.
To limit the worker thread count of the thread pools, each OpenMP master thread must call
omp_set_num_threads.

Lets suppose we have three scheduler instances IO, WRK0, and WRK1 with
GOMP_RTEMS_THREAD_POOLS set to "1@WRK0:3$4@WRK1". Then there are no thread pool re-
strictions for scheduler instance IO. In the scheduler instance WRK0 there is one thread pool
available. Since no priority is specified for this scheduler instance, the worker thread inherits
the priority of the OpenMP master thread that created it. In the scheduler instance WRK1 there
are three thread pools available and their worker threads run at priority four.

30.2.8 Atomic Operations

There is no public RTEMS API for atomic operations. It is recommended to use the standard C
<stdatomic.h> or C++ <atomic> APIs in applications.

860 Chapter 30. Symmetric Multiprocessing (SMP)

https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

Chapter 30 Section 30.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

30.3 Application Issues

Most operating system services provided by the uniprocessor RTEMS are available in SMP con-
figurations as well. However, applications designed for an uniprocessor environment may need
some changes to correctly run in an SMP configuration.

As discussed earlier, SMP systems have opportunities for true parallelism which was not possible
on uniprocessor systems. Consequently, multiple techniques that provided adequate critical
sections on uniprocessor systems are unsafe on SMP systems. In this section, some of these
unsafe techniques will be discussed.

In general, applications must use proper operating system provided mutual exclusion mecha-
nisms to ensure correct behavior.

30.3.1 Task variables

Task variables are ordinary global variables with a dedicated value for each thread. During a
context switch from the executing thread to the heir thread, the value of each task variable is
saved to the thread control block of the executing thread and restored from the thread control
block of the heir thread. This is inherently broken if more than one executing thread exists.
Alternatives to task variables are POSIX keys and TLS. All use cases of task variables in the
RTEMS code base were replaced with alternatives. The task variable API has been removed in
RTEMS 5.1.

30.3.2 Highest Priority Thread Never Walks Alone

On a uniprocessor system, it is safe to assume that when the highest priority task in an appli-
cation executes, it will execute without being preempted until it voluntarily blocks. Interrupts
may occur while it is executing, but there will be no context switch to another task unless the
highest priority task voluntarily initiates it.

Given the assumption that no other tasks will have their execution interleaved with the highest
priority task, it is possible for this task to be constructed such that it does not need to acquire a
mutex for protected access to shared data.

In an SMP system, it cannot be assumed there will never be a single task executing. It should
be assumed that every processor is executing another application task. Further, those tasks
will be ones which would not have been executed in a uniprocessor configuration and should
be assumed to have data synchronization conflicts with what was formerly the highest priority
task which executed without conflict.

30.3.3 Disabling of Thread Preemption

A thread which disables preemption prevents that a higher priority thread gets hold of its proces-
sor involuntarily. In uniprocessor configurations, this can be used to ensure mutual exclusion
at thread level. In SMP configurations, however, more than one executing thread may exist.
Thus, it is impossible to ensure mutual exclusion using this mechanism. In order to prevent
that applications using preemption for this purpose, would show inappropriate behaviour, this
feature is disabled in SMP configurations and its use would case run-time errors.

30.3. Application Issues 861

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.3

30.3.4 Disabling of Interrupts

A low overhead means that ensures mutual exclusion in uniprocessor configurations is the dis-
abling of interrupts around a critical section. This is commonly used in device driver code. In
SMP configurations, however, disabling the interrupts on one processor has no effect on other
processors. So, this is insufficient to ensure system-wide mutual exclusion. The macros

• rtems_interrupt_disable(),

• rtems_interrupt_enable(), and

• rtems_interrupt_flash().

are disabled in SMP configurations and its use will cause compile-time warnings and link-time
errors. In the unlikely case that interrupts must be disabled on the current processor, the

• rtems_interrupt_local_disable(), and

• rtems_interrupt_local_enable().

macros are now available in all configurations.

Since disabling of interrupts is insufficient to ensure system-wide mutual exclusion on SMP a
new low-level synchronization primitive was added – interrupt locks. The interrupt locks are
a simple API layer on top of the SMP locks used for low-level synchronization in the operating
system core. Currently, they are implemented as a ticket lock. In uniprocessor configurations,
they degenerate to simple interrupt disable/enable sequences by means of the C pre-processor.
It is disallowed to acquire a single interrupt lock in a nested way. This will result in an infinite
loop with interrupts disabled. While converting legacy code to interrupt locks, care must be
taken to avoid this situation to happen.

1 #include <rtems.h>
2

3 void legacy_code_with_interrupt_disable_enable(void)
4 {
5 rtems_interrupt_level level;
6

7 rtems_interrupt_disable(level);
8 /* Critical section */
9 rtems_interrupt_enable(level);

10 }
11

12 RTEMS_INTERRUPT_LOCK_DEFINE(static, lock, "Name")
13

14 void smp_ready_code_with_interrupt_lock(void)
15 {
16 rtems_interrupt_lock_context lock_context;
17

18 rtems_interrupt_lock_acquire(&lock, &lock_context);
19 /* Critical section */
20 rtems_interrupt_lock_release(&lock, &lock_context);
21 }

An alternative to the RTEMS-specific interrupt locks are POSIX spinlocks. The
pthread_spinlock_t is defined as a self-contained object, e.g. the user must provide the storage
for this synchronization object.

862 Chapter 30. Symmetric Multiprocessing (SMP)

Chapter 30 Section 30.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

1 #include <assert.h>
2 #include <pthread.h>
3

4 pthread_spinlock_t lock;
5

6 void smp_ready_code_with_posix_spinlock(void)
7 {
8 int error;
9

10 error = pthread_spin_lock(&lock);
11 assert(error == 0);
12 /* Critical section */
13 error = pthread_spin_unlock(&lock);
14 assert(error == 0);
15 }

In contrast to POSIX spinlock implementation on Linux or FreeBSD, it is not allowed to call
blocking operating system services inside the critical section. A recursive lock attempt is a
severe usage error resulting in an infinite loop with interrupts disabled. Nesting of different
locks is allowed. The user must ensure that no deadlock can occur. As a non-portable feature
the locks are zero-initialized, e.g. statically initialized global locks reside in the .bss section
and there is no need to call pthread_spin_init().

30.3.5 Interrupt Service Routines Execute in Parallel With Threads

On a machine with more than one processor, interrupt service routines (this includes timer ser-
vice routines installed via rtems_timer_fire_after()) and threads can execute in parallel. Inter-
rupt service routines must take this into account and use proper locking mechanisms to protect
critical sections from interference by threads (interrupt locks or POSIX spinlocks). This likely
requires code modifications in legacy device drivers.

30.3.6 Timers Do Not Stop Immediately

Timer service routines run in the context of the clock interrupt. On uniprocessor configurations,
it is sufficient to disable interrupts and remove a timer from the set of active timers to stop
it. In SMP configurations, however, the timer service routine may already run and wait on an
SMP lock owned by the thread which is about to stop the timer. This opens the door to subtle
synchronization issues. During destruction of objects, special care must be taken to ensure that
timer service routines cannot access (partly or fully) destroyed objects.

30.3.7 False Sharing of Cache Lines Due to Objects Table

The Classic API and most POSIX API objects are indirectly accessed via an object identifier. The
user-level functions validate the object identifier and map it to the actual object structure which
resides in a global objects table for each object class. So, unrelated objects are packed together
in a table. This may result in false sharing of cache lines. The effect of false sharing of cache
lines can be observed with the TMFINE 1 test program on a suitable platform, e.g. QorIQ T4240.
High-performance SMP applications need full control of the object storage [Dre07]. Therefore,
self-contained synchronization objects are now available for RTEMS.

30.3. Application Issues 863

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/testsuites/tmtests/tmfine01

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.4

30.4 Implementation Details

This section covers some implementation details of the RTEMS SMP support.

30.4.1 Low-Level Synchronization

All low-level synchronization primitives are implemented using C11 atomic operations, so no
target-specific hand-written assembler code is necessary. Four synchronization primitives are
currently available

• ticket locks (mutual exclusion),

• MCS locks (mutual exclusion),

• barriers, implemented as a sense barrier, and

• sequence locks [Boe12].

A vital requirement for low-level mutual exclusion is FIFO fairness since we are interested in a
predictable system and not maximum throughput. With this requirement, there are only few
options to resolve this problem. For reasons of simplicity, the ticket lock algorithm was chosen
to implement the SMP locks. However, the API is capable to support MCS locks, which may
be interesting in the future for systems with a processor count in the range of 32 or more, e.g.
NUMA, many-core systems.

The test program SMPLOCK 1 can be used to gather performance and fairness data for several
scenarios. The SMP lock performance and fairness measured on the QorIQ T4240 follows as an
example. This chip contains three L2 caches. Each L2 cache is shared by eight processors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Active Workers

0.0

0.5

1.0

1.5

2.0

2.5

O
p
e
ra
ti
o
n
 C
o
u
n
t

1e7 SMP Lock Performance

Ticket Lock
MCS Lock
TAS Lock
TTAS Lock

864 Chapter 30. Symmetric Multiprocessing (SMP)

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/testsuites/smptests/smplock01

Chapter 30 Section 30.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Active Workers

10-6

10-5

10-4

10-3

10-2

10-1

100

N
o
rm

e
d
 C
o
e
ff
ic
ie
n
t
o
f
V
a
ri
a
ti
o
n

SMP Lock Fairness

Ticket Lock
MCS Lock
TAS Lock
TTAS Lock

30.4.2 Internal Locking

In SMP configurations, the operating system uses non-recursive SMP locks for low-level mutual
exclusion. The locking domains are roughly

• a particular data structure,

• the thread queue operations,

• the thread state changes, and

• the scheduler operations.

For a good average-case performance it is vital that every high-level synchronization object, e.g.
mutex, has its own SMP lock. In the average-case, only this SMP lock should be involved to carry
out a specific operation, e.g. obtain/release a mutex. In general, the high-level synchronization
objects have a thread queue embedded and use its SMP lock.

In case a thread must block on a thread queue, then things get complicated. The executing
thread first acquires the SMP lock of the thread queue and then figures out that it needs to
block. The procedure to block the thread on this particular thread queue involves state changes
of the thread itself and for this thread-specific SMP locks must be used.

In order to determine if a thread is blocked on a thread queue or not thread-specific SMP locks
must be used. A thread priority change must propagate this to the thread queue (possibly
recursively). Care must be taken to not have a lock order reversal between thread queue and
thread-specific SMP locks.

Each scheduler instance has its own SMP lock. For the scheduler helping protocol multiple
scheduler instances may be in charge of a thread. It is not possible to acquire two scheduler
instance SMP locks at the same time, otherwise deadlocks would happen. A thread-specific SMP
lock is used to synchronize the thread data shared by different scheduler instances.

The thread state SMP lock protects various things, e.g. the thread state, join operations, signals,
post-switch actions, the home scheduler instance, etc.

30.4. Implementation Details 865

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.4

30.4.3 Profiling

To identify the bottlenecks in the system, support for profiling of low-level synchronization is
optionally available. The profiling support is an RTEMS build time configuration option and
is implemented with an acceptable overhead, even for production systems. A low-overhead
counter for short time intervals must be provided by the hardware.

Profiling reports are generated in XML for most test programs of the RTEMS testsuite (more than
500 test programs). This gives a good sample set for statistics. For example the maximum thread
dispatch disable time, the maximum interrupt latency or lock contention can be determined.

1 <ProfilingReport name="SMPMIGRATION 1">
2 <PerCPUProfilingReport processorIndex="0">
3 <MaxThreadDispatchDisabledTime unit="ns">36636</MaxThreadDispatchDisabledTime>
4 <MeanThreadDispatchDisabledTime unit="ns">5065</

→˓MeanThreadDispatchDisabledTime>
5 <TotalThreadDispatchDisabledTime unit="ns">3846635988
6 </TotalThreadDispatchDisabledTime>
7 <ThreadDispatchDisabledCount>759395</ThreadDispatchDisabledCount>
8 <MaxInterruptDelay unit="ns">8772</MaxInterruptDelay>
9 <MaxInterruptTime unit="ns">13668</MaxInterruptTime>

10 <MeanInterruptTime unit="ns">6221</MeanInterruptTime>
11 <TotalInterruptTime unit="ns">6757072</TotalInterruptTime>
12 <InterruptCount>1086</InterruptCount>
13 </PerCPUProfilingReport>
14 <PerCPUProfilingReport processorIndex="1">
15 <MaxThreadDispatchDisabledTime unit="ns">39408</MaxThreadDispatchDisabledTime>
16 <MeanThreadDispatchDisabledTime unit="ns">5060</

→˓MeanThreadDispatchDisabledTime>
17 <TotalThreadDispatchDisabledTime unit="ns">3842749508
18 </TotalThreadDispatchDisabledTime>
19 <ThreadDispatchDisabledCount>759391</ThreadDispatchDisabledCount>
20 <MaxInterruptDelay unit="ns">8412</MaxInterruptDelay>
21 <MaxInterruptTime unit="ns">15868</MaxInterruptTime>
22 <MeanInterruptTime unit="ns">3525</MeanInterruptTime>
23 <TotalInterruptTime unit="ns">3814476</TotalInterruptTime>
24 <InterruptCount>1082</InterruptCount>
25 </PerCPUProfilingReport>
26 <!-- more reports omitted --->
27 <SMPLockProfilingReport name="Scheduler">
28 <MaxAcquireTime unit="ns">7092</MaxAcquireTime>
29 <MaxSectionTime unit="ns">10984</MaxSectionTime>
30 <MeanAcquireTime unit="ns">2320</MeanAcquireTime>
31 <MeanSectionTime unit="ns">199</MeanSectionTime>
32 <TotalAcquireTime unit="ns">3523939244</TotalAcquireTime>
33 <TotalSectionTime unit="ns">302545596</TotalSectionTime>
34 <UsageCount>1518758</UsageCount>
35 <ContentionCount initialQueueLength="0">759399</ContentionCount>
36 <ContentionCount initialQueueLength="1">759359</ContentionCount>
37 <ContentionCount initialQueueLength="2">0</ContentionCount>
38 <ContentionCount initialQueueLength="3">0</ContentionCount>
39 </SMPLockProfilingReport>

(continues on next page)

866 Chapter 30. Symmetric Multiprocessing (SMP)

Chapter 30 Section 30.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

40 </ProfilingReport>

30.4.4 Scheduler Helping Protocol

The scheduler provides a helping protocol to support locking protocols like the O(m)
Independence-Preserving Protocol (OMIP) (page 30) or the Multiprocessor Resource Sharing Pro-
tocol (MrsP) (page 30). Each thread has a scheduler node for each scheduler instance in
the system which are located in its TCB. A thread has exactly one home scheduler instance
which is set during thread creation. The home scheduler instance can be changed with
rtems_task_set_scheduler(). Due to the locking protocols a thread may gain access to scheduler
nodes of other scheduler instances. This allows the thread to temporarily migrate to another
scheduler instance in case of preemption.

The scheduler infrastructure is based on an object-oriented design. The scheduler operations
for a thread are defined as virtual functions. For the scheduler helping protocol the following
operations must be implemented by an SMP-aware scheduler

• ask a scheduler node for help,

• reconsider the help request of a scheduler node,

• withdraw a schedule node.

All currently available SMP-aware schedulers use a framework which is customized via inline
functions. This eases the implementation of scheduler variants. Up to now, only priority-based
schedulers are implemented.

In case a thread is allowed to use more than one scheduler node it will ask these nodes for help

• in case of preemption, or

• an unblock did not schedule the thread, or

• a yield was successful.

The actual ask for help scheduler operations are carried out as a side-effect of the thread dis-
patch procedure. Once a need for help is recognized, a help request is registered in one of
the processors related to the thread and a thread dispatch is issued. This indirection leads to
a better decoupling of scheduler instances. Unrelated processors are not burdened with extra
work for threads which participate in resource sharing. Each ask for help operation indicates if
it could help or not. The procedure stops after the first successful ask for help. Unsuccessful ask
for help operations will register this need in the scheduler context.

After a thread dispatch the reconsider help request operation is used to clean up stale help
registrations in the scheduler contexts.

The withdraw operation takes away scheduler nodes once the thread is no longer allowed to
use them, e.g. it released a mutex. The availability of scheduler nodes for a thread is controlled
by the thread queues.

30.4.5 Thread Dispatch Details

This section gives background information to developers interested in the interrupt latencies
introduced by thread dispatching. A thread dispatch consists of all work which must be done
to stop the currently executing thread on a processor and hand over this processor to an heir
thread.

30.4. Implementation Details 867

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.4

In SMP systems, scheduling decisions on one processor must be propagated to other processors
through inter-processor interrupts. A thread dispatch which must be carried out on another
processor does not happen instantaneously. Thus, several thread dispatch requests might be
in the air and it is possible that some of them may be out of date before the corresponding
processor has time to deal with them. The thread dispatch mechanism uses three per-processor
variables,

• the executing thread,

• the heir thread, and

• a boolean flag indicating if a thread dispatch is necessary or not.

Updates of the heir thread are done via a normal store operation. The thread dispatch necessary
indicator of another processor is set as a side-effect of an inter-processor interrupt. So, this
change notification works without the use of locks. The thread context is protected by a TTAS
lock embedded in the context to ensure that it is used on at most one processor at a time.
Normally, only thread-specific or per-processor locks are used during a thread dispatch. This
implementation turned out to be quite efficient and no lock contention was observed in the
testsuite. The heavy-weight thread dispatch sequence is only entered in case the thread dispatch
indicator is set.

The context-switch is performed with interrupts enabled. During the transition from the exe-
cuting to the heir thread neither the stack of the executing nor the heir thread must be used
during interrupt processing. For this purpose a temporary per-processor stack is set up which
may be used by the interrupt prologue before the stack is switched to the interrupt stack.

30.4.6 Per-Processor Data

RTEMS provides two means for per-processor data:

1. Per-processor data which is used by RTEMS itself is contained in the Per_CPU_Control
structure. The application configuration via <rtems/confdefs.h> creates a table of these
structures (_Per_CPU_Information[]). The table is dimensioned according to the count of
configured processors (CONFIGURE_MAXIMUM_PROCESSORS (page 577)).

2. For low level support libraries an API for statically allocated per-processor data is available
via <rtems/score/percpudata.h>. This API is not intended for general application use.
Please ask on the development mailing list in case you want to use it.

30.4.7 Thread Pinning

Thread pinning ensures that a thread is only dispatched to the processor on which it is pinned.
It may be used to access per-processor data structures in critical sections with enabled thread
dispatching, e.g. a pinned thread is allowed to block. The _Thread_Pin() operation will pin the
executing thread to its current processor. A thread may be pinned recursively, the last unpin
request via _Thread_Unpin() revokes the pinning.

Thread pinning should be used only for short critical sections and not all the time. Thread
pinning is a very low overhead operation in case the thread is not preempted during the pinning.
A preemption will result in scheduler operations to ensure that the thread executes only on
its pinned processor. Thread pinning must be used with care, since it prevents help through
the locking protocols. This makes the OMIP (page 30) and MrsP (page 30) locking protocols
ineffective if pinned threads are involved.

868 Chapter 30. Symmetric Multiprocessing (SMP)

https://gitlab.rtems.org/rtems/rtos/rtems/-/blob/main/cpukit/include/rtems/score/percpudata.h

Chapter 30 Section 30.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

The thread pinning is not intended for general application use. Please ask on the development
mailing list in case you want to use it.

30.4. Implementation Details 869

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 30 Section 30.4

870 Chapter 30. Symmetric Multiprocessing (SMP)

CHAPTER

THIRTYONE

PCI LIBRARY

871

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 31 Section 31.1

31.1 Introduction

The Peripheral Component Interconnect (PCI) bus is a very common computer bus architecture
that is found in almost every PC today. The PCI bus is normally located at the motherboard
where some PCI devices are soldered directly onto the PCB and expansion slots allows the user
to add custom devices easily. There is a wide range of PCI hardware available implementing all
sorts of interfaces and functions.

This section describes the PCI Library available in RTEMS used to access the PCI bus in a
portable way across computer architectures supported by RTEMS.

The PCI Library aims to be compatible with PCI 2.3 with a couple of limitations, for example
there is no support for hot-plugging, 64-bit memory space and cardbus bridges.

In order to support different architectures and with small foot-print embedded systems in mind
the PCI Library offers four different configuration options listed below. It is selected during
compile time by defining the appropriate macros in confdefs.h. It is also possible to enable
PCI_LIB_NONE (No Configuration) which can be used for debuging PCI access functions.

• Auto Configuration (Plug & Play)

• Read Configuration (read BIOS or boot loader configuration)

• Static Configuration (write user defined configuration)

• Peripheral Configuration (no access to cfg-space)

872 Chapter 31. PCI Library

Chapter 31 Section 31.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

31.2 Background

The PCI bus is constructed in a way where on-board devices and devices in expansion slots can
be automatically found (probed) and configured using Plug & Play completely implemented in
software. The bus is set up once during boot up. The Plug & Play information can be read
and written from PCI configuration space. A PCI device is identified in configuration space
by a unique bus, slot and function number. Each PCI slot can have up to 8 functions and
interface to another PCI sub-bus by implementing a PCI-to-PCI bridge according to the PCI
Bridge Architecture specification.

Using the unique [bus:slot:func] any device can be configured regardless of how PCI is currently
set up as long as all PCI buses are enumerated correctly. The enumeration is done during
probing, all bridges are given a bus number in order for the bridges to respond to accesses from
both directions. The PCI library can assign address ranges to which a PCI device should respond
using Plug & Play technique or a static user defined configuration. After the configuration has
been performed the PCI device drivers can find devices by the read-only PCI Class type, Vendor
ID and Device ID information found in configuration space for each device.

In some systems there is a boot loader or BIOS which have already configured all PCI devices,
but on embedded targets it is quite common that there is no BIOS or boot loader, thus RTEMS
must configure the PCI bus. Only the PCI host may do configuration space access, the host
driver or BSP is responsible to translate the [bus:slot:func] into a valid PCI configuration space
access.

If the target is not a host, but a peripheral, configuration space can not be accessed, the periph-
eral is set up by the host during start up. In complex embedded PCI systems the peripheral may
need to access other PCI boards than the host. In such systems a custom (static) configuration
of both the host and peripheral may be a convenient solution.

The PCI bus defines four interrupt signals INTA#..INTD#. The interrupt signals must be mapped
into a system interrupt/vector, it is up to the BSP or host driver to know the mapping, however
the BIOS or boot loader may use the 8-bit read/write “Interrupt Line” register to pass the knowl-
edge along to the OS.

The PCI standard defines and recommends that the backplane route the interupt lines in a sys-
tematic way, however in standard there is no such requirement. The PCI Auto Configuration
Library implements the recommended way of routing which is very common but it is also sup-
ported to some extent to override the interrupt routing from the BSP or Host Bridge driver using
the configuration structure.

31.2.1 Software Components

The PCI library is located in cpukit/libpci, it consists of different parts:

• PCI Host bridge driver interface

• Configuration routines

• Access (Configuration, I/O and Memory space) routines

• Interrupt routines (implemented by BSP)

• Print routines

• Static/peripheral configuration creation

• PCI shell command

31.2. Background 873

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 31 Section 31.2

31.2.2 PCI Configuration

During start up the PCI bus must be configured in order for host and peripherals to access one
another using Memory or I/O accesses and that interrupts are properly handled. Three different
spaces are defined and mapped separately:

1. I/O space (IO)

2. non-prefetchable Memory space (MEMIO)

3. prefetchable Memory space (MEM)

Regions of the same type (I/O or Memory) may not overlap which is guaranteed by the software.
MEM regions may be mapped into MEMIO regions, but MEMIO regions can not be mapped
into MEM, for that could lead to prefetching of registers. The interrupt pin which a board is
driving can be read out from PCI configuration space, however it is up to software to know
how interrupt signals are routed between PCI-to-PCI bridges and how PCI INT[A..D]# pins are
mapped to system IRQ. In systems where previous software (boot loader or BIOS) has already
set up this the configuration is overwritten or simply read out.

In order to support different configuration methods the following configuration libraries are
selectable by the user:

• Auto Configuration (run Plug & Play software)

• Read Configuration (relies on a boot loader or BIOS)

• Static Configuration (write user defined setup, no Plug & Play)

• Peripheral Configuration (user defined setup, no access to configuration space)

A host driver can be made to support all three configuration methods, or any combination. It
may be defined by the BSP which approach is used.

The configuration software is called from the PCI driver (pci_config_init()).

Regardless of configuration method a PCI device tree is created in RAM during initialization,
the tree can be accessed to find devices and resources without accessing configuration space
later on. The user is responsible to create the device tree at compile time when using the
static/peripheral method.

31.2.2.1 RTEMS Configuration selection

The active configuration method can be selected at compile time in the same way as other
project parameters by including rtems/confdefs.h and setting

• CONFIGURE_INIT

• RTEMS_PCI_CONFIG_LIB

• CONFIGURE_PCI_LIB = PCI_LIB_(AUTO,STATIC,READ,PERIPHERAL)

See the RTEMS configuration section how to setup the PCI library.

31.2.2.2 Auto Configuration

The auto configuration software enumerates PCI buses and initializes all PCI devices found
using Plug & Play. The auto configuration software requires that a configuration setup has been
registered by the driver or BSP in order to setup the I/O and Memory regions at the correct
address ranges. PCI interrupt pins can optionally be routed over PCI-to-PCI bridges and mapped

874 Chapter 31. PCI Library

Chapter 31 Section 31.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

to a system interrupt number. BAR resources are sorted by size and required alignment, unused
“dead” space may be created when PCI bridges are present due to the PCI bridge window size
does not equal the alignment. To cope with that resources are reordered to fit smaller BARs
into the dead space to minimize the PCI space required. If a BAR or ROM register can not be
allocated a PCI address region (due to too few resources available) the register will be given
the value of pci_invalid_address which defaults to 0.

The auto configuration routines support:

• PCI 2.3

• Little and big endian PCI bus

• one I/O 16 or 32-bit range (IO)

• memory space (MEMIO)

• prefetchable memory space (MEM), if not present MEM will be mapped into MEMIO

• multiple PCI buses - PCI-to-PCI bridges

• standard BARs, PCI-to-PCI bridge BARs, ROM BARs

• Interrupt routing over bridges

• Interrupt pin to system interrupt mapping

Not supported:

• hot-pluggable devices

• Cardbus bridges

• 64-bit memory space

• 16-bit and 32-bit I/O address ranges at the same time

In PCI 2.3 there may exist I/O BARs that must be located at the low 64kBytes address range, in
order to support this the host driver or BSP must make sure that I/O addresses region is within
this region.

31.2.2.3 Read Configuration

When a BIOS or boot loader already has setup the PCI bus the configuration can be read di-
rectly from the PCI resource registers and buses are already enumerated, this is a much simpler
approach than configuring PCI ourselves. The PCI device tree is automatically created based on
the current configuration and devices present. After initialization is done there is no difference
between the auto or read configuration approaches.

31.2.2.4 Static Configuration

To support custom configurations and small-footprint PCI systems, the user may provide the
PCI device tree which contains the current configuration. The PCI buses are enumerated and all
resources are written to PCI devices during initialization. When this approach is selected PCI
boards must be located at the same slots every time and devices can not be removed or added,
Plug & Play is not performed. Boards of the same type may of course be exchanged.

The user can create a configuration by calling pci_cfg_print() on a running system that has
had PCI setup by the auto or read configuration routines, it can be called from the PCI shell
command. The user must provide the PCI device tree named pci_hb.

31.2. Background 875

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 31 Section 31.2

31.2.2.5 Peripheral Configuration

On systems where a peripheral PCI device needs to access other PCI devices than the host the
peripheral configuration approach may be handy. Most PCI devices answers on the PCI host’s
requests and start DMA accesses into the Hosts memory, however in some complex systems PCI
devices may want to access other devices on the same bus or at another PCI bus.

A PCI peripheral is not allowed to do PCI configuration cycles, which means that it must either
rely on the host to give it the addresses it needs, or that the addresses are predefined.

This configuration approach is very similar to the static option, however the configuration is
never written to PCI bus, instead it is only used for drivers to find PCI devices and resources
using the same PCI API as for the host

31.2.3 PCI Access

The PCI access routines are low-level routines provided for drivers, configuration software,
etc. in order to access different regions in a way not dependent upon the host driver, BSP or
platform.

• PCI configuration space

• PCI I/O space

• Registers over PCI memory space

• Translate PCI address into CPU accessible address and vice versa

By using the access routines drivers can be made portable over different architectures. The
access routines take the architecture endianness into consideration and let the host driver or
BSP implement I/O space and configuration space access.

Some non-standard hardware may also define the PCI bus big-endian, for example the LEON2
AT697 PCI host bridge and some LEON3 systems may be configured that way. It is up to the
BSP to set the appropriate PCI endianness on compile time (BSP_PCI_BIG_ENDIAN) in order for
inline macros to be correctly defined. Another possibility is to use the function pointers defined
by the access layer to implement drivers that support “run-time endianness detection”.

31.2.3.1 Configuration space

Configuration space is accessed using the routines listed below. The pci_dev_t type is used to
specify a specific PCI bus, device and function. It is up to the host driver or BSP to create a valid
access to the requested PCI slot. Requests made to slots that are not supported by hardware
should result in PCISTS_MSTABRT and/or data must be ignored (writes) or 0xFFFFFFFF is always
returned (reads).

1 /* Configuration Space Access Read Routines */
2 extern int pci_cfg_r8(pci_dev_t dev, int ofs, uint8_t *data);
3 extern int pci_cfg_r16(pci_dev_t dev, int ofs, uint16_t *data);
4 extern int pci_cfg_r32(pci_dev_t dev, int ofs, uint32_t *data);
5

6 /* Configuration Space Access Write Routines */
7 extern int pci_cfg_w8(pci_dev_t dev, int ofs, uint8_t data);
8 extern int pci_cfg_w16(pci_dev_t dev, int ofs, uint16_t data);
9 extern int pci_cfg_w32(pci_dev_t dev, int ofs, uint32_t data);

876 Chapter 31. PCI Library

Chapter 31 Section 31.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

31.2.3.2 I/O space

The BSP or driver provide special routines in order to access I/O space. Some architectures have
a special instruction accessing I/O space, others have it mapped into a “PCI I/O window” in the
standard address space accessed by the CPU. The window size may vary and must be taken into
consideration by the host driver. The below routines must be used to access I/O space. The
address given to the functions is not the PCI I/O addresses, the caller must have translated PCI
I/O addresses (available in the PCI BARs) into a BSP or host driver custom address, see Access
functions (page 877) for how addresses are translated.

1 /* Read a register over PCI I/O Space */
2 extern uint8_t pci_io_r8(uint32_t adr);
3 extern uint16_t pci_io_r16(uint32_t adr);
4 extern uint32_t pci_io_r32(uint32_t adr);
5

6 /* Write a register over PCI I/O Space */
7 extern void pci_io_w8(uint32_t adr, uint8_t data);
8 extern void pci_io_w16(uint32_t adr, uint16_t data);
9 extern void pci_io_w32(uint32_t adr, uint32_t data);

31.2.3.3 Registers over Memory space

PCI host bridge hardware normally swap data accesses into the endianness of the host architec-
ture in order to lower the load of the CPU, peripherals can do DMA without swapping. However,
the host controller can not separate a standard memory access from a memory access to a regis-
ter, registers may be mapped into memory space. This leads to register content being swapped,
which must be swapped back. The below routines makes it possible to access registers over
PCI memory space in a portable way on different architectures, the BSP or architecture must
provide necessary functions in order to implement this.

1 static inline uint16_t pci_ld_le16(volatile uint16_t *addr);
2 static inline void pci_st_le16(volatile uint16_t *addr, uint16_t val);
3 static inline uint32_t pci_ld_le32(volatile uint32_t *addr);
4 static inline void pci_st_le32(volatile uint32_t *addr, uint32_t val);
5 static inline uint16_t pci_ld_be16(volatile uint16_t *addr);
6 static inline void pci_st_be16(volatile uint16_t *addr, uint16_t val);
7 static inline uint32_t pci_ld_be32(volatile uint32_t *addr);
8 static inline void pci_st_be32(volatile uint32_t *addr, uint32_t val);

In order to support non-standard big-endian PCI bus the above pci_* functions is required,
pci_ld_le16 != ld_le16 on big endian PCI buses.

31.2.3.4 Access functions

The PCI Access Library can provide device drivers with function pointers executing the above
Configuration, I/O and Memory space accesses. The functions have the same arguments and
return values as the above functions.

The pci_access_func() function defined below can be used to get a function pointer of a specific
access type.

1 /* Get Read/Write function for accessing a register over PCI Memory Space
2 * (non-inline functions).

(continues on next page)

31.2. Background 877

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 31 Section 31.2

(continued from previous page)

3 *
4 * Arguments
5 * wr 0(Read), 1(Write)
6 * size 1(Byte), 2(Word), 4(Double Word)
7 * func Where function pointer will be stored
8 * endian PCI_LITTLE_ENDIAN or PCI_BIG_ENDIAN
9 * type 1(I/O), 3(REG over MEM), 4(CFG)

10 *
11 * Return
12 * 0 Found function
13 * others No such function defined by host driver or BSP
14 */
15 int pci_access_func(int wr, int size, void **func, int endian, int type);

PCI device drivers may be written to support run-time detection of endianess, this is mosly for
debugging or for development systems. When the product is finally deployed macros switch to
using the inline functions instead which have been configured for the correct endianness.

31.2.3.5 PCI address translation

When PCI addresses, both I/O and memory space, is not mapped 1:1 address translation before
access is needed. If drivers read the PCI resources directly using configuration space routines or
in the device tree, the addresses given are PCI addresses. The below functions can be used to
translate PCI addresses into CPU accessible addresses or vice versa, translation may be different
for different PCI spaces/regions.

1 /* Translate PCI address into CPU accessible address */
2 static inline int pci_pci2cpu(uint32_t *address, int type);
3

4 /* Translate CPU accessible address into PCI address (for DMA) */
5 static inline int pci_cpu2pci(uint32_t *address, int type);

31.2.4 PCI Interrupt

The PCI specification defines four different interrupt lines INTA#..INTD#, the interrupts are low
level sensitive which make it possible to support multiple interrupt sources on the same inter-
rupt line. Since the lines are level sensitive the interrupt sources must be acknowledged before
clearing the interrupt contoller, or the interrupt controller must be masked. The BSP must
provide a routine for clearing/acknowledging the interrupt controller, it is up to the interrupt
service routine to acknowledge the interrupt source.

The PCI Library relies on the BSP for implementing shared interrupt handling through the
BSP_PCI_shared_interrupt_* functions/macros, they must be defined when including bsp.h.

PCI device drivers may use the pci_interrupt_* routines in order to call the BSP specific functions
in a platform independent way. The PCI interrupt interface has been made similar to the RTEMS
IRQ extension so that a BSP can use the standard RTEMS interrupt functions directly.

878 Chapter 31. PCI Library

Chapter 31 Section 31.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

31.2.5 PCI Shell command

The RTEMS shell has a PCI command ‘pci’ which makes it possible to read/write configuration
space, print the current PCI configuration and print out a configuration C-file for the static or
peripheral library.

31.2. Background 879

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 31 Section 31.2

880 Chapter 31. PCI Library

CHAPTER

THIRTYTWO

STACK BOUNDS CHECKER

881

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 32 Section 32.1

32.1 Introduction

The stack bounds checker is an RTEMS support component that determines if a task has overrun
its run-time stack. The routines provided by the stack bounds checker manager are:

• rtems_stack_checker_is_blown (page 885) - Has the Current Task Blown its Stack

• rtems_stack_checker_report_usage (page 885) - Report Task Stack Usage

882 Chapter 32. Stack Bounds Checker

Chapter 32 Section 32.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

32.2 Background

32.2.1 Task Stack

Each task in a system has a fixed size stack associated with it. This stack is allocated when the
task is created. As the task executes, the stack is used to contain parameters, return addresses,
saved registers, and local variables. The amount of stack space required by a task is dependent
on the exact set of routines used. The peak stack usage reflects the worst case of subroutine
pushing information on the stack. For example, if a subroutine allocates a local buffer of 1024
bytes, then this data must be accounted for in the stack of every task that invokes that routine.

Recursive routines make calculating peak stack usage difficult, if not impossible. Each call to
the recursive routine consumes n bytes of stack space. If the routine recursives 1000 times, then
1000 * n bytes of stack space are required.

32.2.2 Execution

The stack bounds checker operates as a set of task extensions. At task creation time, the task’s
stack is filled with a pattern to indicate the stack is unused. As the task executes, it will overwrite
this pattern in memory. At each task switch, the stack bounds checker’s task switch extension is
executed. This extension checks that:

• the last n bytes of the task’s stack have not been overwritten. If this pattern has been
damaged, it indicates that at some point since this task was context switch to the CPU, it
has used too much stack space.

• the current stack pointer of the task is not within the address range allocated for use as
the task’s stack.

If either of these conditions is detected, then a blown stack error is reported using the printk
routine.

The number of bytes checked for an overwrite is processor family dependent. The minimum
stack frame per subroutine call varies widely between processor families. On CISC families like
the Motorola MC68xxx and Intel ix86, all that is needed is a return address. On more complex
RISC processors, the minimum stack frame per subroutine call may include space to save a
significant number of registers.

Another processor dependent feature that must be taken into account by the stack bounds
checker is the direction that the stack grows. On some processor families, the stack grows up or
to higher addresses as the task executes. On other families, it grows down to lower addresses.
The stack bounds checker implementation uses the stack description definitions provided by
every RTEMS port to get for this information.

32.2. Background 883

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 32 Section 32.3

32.3 Operations

32.3.1 Initializing the Stack Bounds Checker

The stack checker is initialized automatically when its task create extension runs for the first
time.

The application must include the stack bounds checker extension set in its set of Initial Ex-
tensions. This set of extensions is defined as STACK_CHECKER_EXTENSION. If using <rtems/
confdefs.h> for Configuration Table generation, then all that is necessary is to define the macro
CONFIGURE_STACK_CHECKER_ENABLED before including <rtems/confdefs.h> as shown below:

1 #define CONFIGURE_STACK_CHECKER_ENABLED
2 ...
3 #include <rtems/confdefs.h>

32.3.2 Checking for Blown Task Stack

The application may check whether the stack pointer of currently executing task is within proper
bounds at any time by calling the rtems_stack_checker_is_blown method. This method return
FALSE if the task is operating within its stack bounds and has not damaged its pattern area.

32.3.3 Reporting Task Stack Usage

The application may dynamically report the stack usage for every task in the system by calling
the rtems_stack_checker_report_usage routine. This routine prints a table with the peak usage
and stack size of every task in the system. The following is an example of the report generated:

1 ID NAME LOW HIGH AVAILABLE USED
2 0x04010001 IDLE 0x003e8a60 0x003e9667 2952 200
3 0x08010002 TA1 0x003e5750 0x003e7b57 9096 1168
4 0x08010003 TA2 0x003e31c8 0x003e55cf 9096 1168
5 0x08010004 TA3 0x003e0c40 0x003e3047 9096 1104
6 0xffffffff INTR 0x003ecfc0 0x003effbf 12160 128

Notice the last line. The task id is 0xffffffff and its name is INTR. This is not actually a task,
it is the interrupt stack.

32.3.4 When a Task Overflows the Stack

When the stack bounds checker determines that a stack overflow has occurred, it will attempt
to print a message using printk identifying the task and then shut the system down. If the stack
overflow has caused corruption, then it is possible that the message cannot be printed.

The following is an example of the output generated:

1 BLOWN STACK!!! Offending task(0x3eb360): id=0x08010002; name=0x54413120
2 stack covers range 0x003e5750 - 0x003e7b57 (9224 bytes)
3 Damaged pattern begins at 0x003e5758 and is 128 bytes long

The above includes the task id and a pointer to the task control block as well as enough infor-
mation so one can look at the task’s stack and see what was happening.

884 Chapter 32. Stack Bounds Checker

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

32.4 Routines

This section details the stack bounds checker’s routines. A subsection is dedicated to each of
routines and describes the calling sequence, related constants, usage, and status codes.

32.4.1 STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack

CALLING SEQUENCE:

1 bool rtems_stack_checker_is_blown(void);

STATUS CODES:

TRUE Stack is operating within its stack limits
FALSE Current stack pointer is outside allocated area

DESCRIPTION:
This method is used to determine if the current stack pointer of the currently executing task
is within bounds.

NOTES:
This method checks the current stack pointer against the high and low addresses of the stack
memory allocated when the task was created and it looks for damage to the high water mark
pattern for the worst case usage of the task being called.

32.4.2 STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage

CALLING SEQUENCE:

1 void rtems_stack_checker_report_usage(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine prints a table with the peak stack usage and stack space allocation of every task
in the system.

NOTES:
NONE

32.4. Routines 885

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 32 Section 32.4

886 Chapter 32. Stack Bounds Checker

CHAPTER

THIRTYTHREE

CPU USAGE STATISTICS

887

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 33 Section 33.1

33.1 Introduction

The CPU usage statistics manager is an RTEMS support component that provides a convenient
way to manipulate the CPU usage information associated with each task. The routines provided
by the CPU usage statistics manager are:

• rtems_cpu_usage_report (page 892) - Report CPU Usage Statistics

• rtems_cpu_usage_reset (page 893) - Reset CPU Usage Statistics

888 Chapter 33. CPU Usage Statistics

Chapter 33 Section 33.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

33.2 Background

When analyzing and debugging real-time applications, it is important to be able to know how
much CPU time each task in the system consumes. This support component provides a mecha-
nism to easily obtain this information with little burden placed on the target.

The raw data is gathered as part of performing a context switch. RTEMS keeps track of how
many clock ticks have occurred which the task being switched out has been executing. If the
task has been running less than 1 clock tick, then for the purposes of the statistics, it is assumed
to have executed 1 clock tick. This results in some inaccuracy but the alternative is for the task
to have appeared to execute 0 clock ticks.

RTEMS versions newer than the 4.7 release series, support the ability to obtain timestamps with
nanosecond granularity if the BSP provides support. It is a desirable enhancement to change
the way the usage data is gathered to take advantage of this recently added capability. Please
consider sponsoring the core RTEMS development team to add this capability.

33.2. Background 889

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 33 Section 33.3

33.3 Operations

33.3.1 Report CPU Usage Statistics

The application may dynamically report the CPU usage for every task in the system by calling
the rtems_cpu_usage_report routine. This routine prints a table with the following information
per task:

• task id

• task name

• number of clock ticks executed

• percentage of time consumed by this task

The following is an example of the report generated:

1 +--+
2 |CPU USAGE BY THREAD |
3 +-----------+--+-------------------------+
4 |ID | NAME | SECONDS | PERCENT |
5 +-----------+--+---------------+---------+
6 |0x04010001 | IDLE | 0 | 0.000 |
7 +-----------+--+---------------+---------+
8 |0x08010002 | TA1 | 1203 | 0.748 |
9 +-----------+--+---------------+---------+

10 |0x08010003 | TA2 | 203 | 0.126 |
11 +-----------+--+---------------+---------+
12 |0x08010004 | TA3 | 202 | 0.126 |
13 +-----------+--+---------------+---------+
14 |TICKS SINCE LAST SYSTEM RESET: 1600 |
15 |TOTAL UNITS: 1608 |
16 +--+

Notice that the TOTAL UNITS is greater than the ticks per reset. This is an artifact of the way
in which RTEMS keeps track of CPU usage. When a task is context switched into the CPU, the
number of clock ticks it has executed is incremented. While the task is executing, this number
is incremented on each clock tick. Otherwise, if a task begins and completes execution between
successive clock ticks, there would be no way to tell that it executed at all.

Another thing to keep in mind when looking at idle time, is that many systems - especially
during debug - have a task providing some type of debug interface. It is usually fine to think of
the total idle time as being the sum of the IDLE task and a debug task that will not be included
in a production build of an application.

33.3.2 Reset CPU Usage Statistics

Invoking the rtems_cpu_usage_reset routine resets the CPU usage statistics for all tasks in the
system.

890 Chapter 33. CPU Usage Statistics

Chapter 33 Section 33.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

33.4 Directives

This section details the CPU usage statistics manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

33.4. Directives 891

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 33 Section 33.4

33.4.1 cpu_usage_report - Report CPU Usage Statistics

CALLING SEQUENCE:

1 void rtems_cpu_usage_report(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine prints out a table detailing the CPU usage statistics for all tasks in the system.

NOTES:
The table is printed using the printk routine.

892 Chapter 33. CPU Usage Statistics

Chapter 33 Section 33.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

33.4.2 cpu_usage_reset - Reset CPU Usage Statistics

CALLING SEQUENCE:

1 void rtems_cpu_usage_reset(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine re-initializes the CPU usage statistics for all tasks in the system to their initial
state. The initial state is that a task has not executed and thus has consumed no CPU time.

NOTES:
NONE

33.4. Directives 893

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 33 Section 33.4

894 Chapter 33. CPU Usage Statistics

CHAPTER

THIRTYFOUR

OBJECT SERVICES

895

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.1

34.1 Introduction

RTEMS provides a collection of services to assist in the management and usage of the objects
created and utilized via other managers. These services assist in the manipulation of RTEMS
objects independent of the API used to create them. The directives provided by the Object
Services are:

• rtems_build_id() (page 901) - Builds the object identifier from the API, class, MPCI node,
and index components.

• rtems_build_name() (page 902) - Builds the object name composed of the four characters.

• rtems_object_get_classic_name() (page 903) - Gets the object name associated with the
object identifier.

• rtems_object_get_name() (page 904) - Gets the object name associated with the object
identifier as a string.

• rtems_object_set_name() (page 905) - Sets the object name of the object associated with
the object identifier.

• rtems_object_id_get_api() (page 906) - Gets the API component of the object identifier.

• rtems_object_id_get_class() (page 907) - Gets the class component of the object identifier.

• rtems_object_id_get_node() (page 908) - Gets the MPCI node component of the object
identifier.

• rtems_object_id_get_index() (page 909) - Gets the index component of the object identifier.

• rtems_object_id_api_minimum() (page 910) - Gets the lowest valid value for the API com-
ponent of an object identifier.

• rtems_object_id_api_maximum() (page 911) - Gets the highest valid value for the API
component of an object identifier.

• rtems_object_api_minimum_class() (page 912) - Gets the lowest valid class value of the
object API.

• rtems_object_api_maximum_class() (page 913) - Gets the highest valid class value of the
object API.

• rtems_object_get_api_name() (page 914) - Gets a descriptive name of the object API.

• rtems_object_get_api_class_name() (page 915) - Gets a descriptive name of the object class
of the object API.

• rtems_object_get_class_information() (page 916) - Gets the object class information of the
object class of the object API.

• rtems_object_get_local_node() (page 917) - Gets the local MPCI node number.

• RTEMS_OBJECT_ID_INITIAL() (page 918) - Builds the object identifier with the lowest
index from the API, class, and MPCI node components.

896 Chapter 34. Object Services

Chapter 34 Section 34.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.2 Background

34.2.1 APIs

RTEMS implements multiple APIs including an Internal API, the Classic API, and the POSIX
API. These APIs share the common foundation of SuperCore objects and thus share object man-
agement code. This includes a common scheme for object Ids and for managing object names
whether those names be in the thirty-two bit form used by the Classic API or C strings.

The object Id contains a field indicating the API that an object instance is associated with. This
field holds a numerically small non-zero integer.

34.2.2 Object Classes

Each API consists of a collection of managers. Each manager is responsible for instances of a
particular object class. Classic API Tasks and POSIX Mutexes example classes.

The object Id contains a field indicating the class that an object instance is associated with. This
field holds a numerically small non-zero integer. In all APIs, a class value of one is reserved for
tasks or threads.

34.2.3 Object Names

Every RTEMS object which has an Id may also have a name associated with it. Depending on
the API, names may be either thirty-two bit integers as in the Classic API or strings as in the
POSIX API.

Some objects have Ids but do not have a defined way to associate a name with them. For
example, POSIX threads have Ids but per POSIX do not have names. In RTEMS, objects
not defined to have thirty-two bit names may have string names assigned to them via the
rtems_object_set_name service. The original impetus in providing this service was so the nor-
mally anonymous POSIX threads could have a user defined name in CPU Usage Reports.

34.2. Background 897

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.3

34.3 Operations

34.3.1 Decomposing and Recomposing an Object Id

Services are provided to decompose an object Id into its subordinate components. The following
services are used to do this:

• rtems_object_id_get_api

• rtems_object_id_get_class

• rtems_object_id_get_node

• rtems_object_id_get_index

The following C language example illustrates the decomposition of an Id and printing the values.

1 void printObjectId(rtems_id id)
2 {
3 printf(
4 "API=%d Class=%" PRIu32 " Node=%" PRIu32 " Index=%" PRIu16 "\n",
5 rtems_object_id_get_api(id),
6 rtems_object_id_get_class(id),
7 rtems_object_id_get_node(id),
8 rtems_object_id_get_index(id)
9);

10 }

This prints the components of the Ids as integers.

It is also possible to construct an arbitrary Id using the rtems_build_id service. The following
C language example illustrates how to construct the “next Id.”

1 rtems_id nextObjectId(rtems_id id)
2 {
3 return rtems_build_id(
4 rtems_object_id_get_api(id),
5 rtems_object_id_get_class(id),
6 rtems_object_id_get_node(id),
7 rtems_object_id_get_index(id) + 1
8);
9 }

Note that this Id may not be valid in this system or associated with an allocated object.

34.3.2 Printing an Object Id

RTEMS also provides services to associate the API and Class portions of an Object Id with strings.
This allows the application developer to provide more information about an object in diagnostic
messages.

In the following C language example, an Id is decomposed into its constituent parts and “pretty-
printed.”

898 Chapter 34. Object Services

Chapter 34 Section 34.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

1 void prettyPrintObjectId(rtems_id id)
2 {
3 int tmpAPI;
4 uint32_t tmpClass;
5

6 tmpAPI = rtems_object_id_get_api(id),
7 tmpClass = rtems_object_id_get_class(id),
8

9 printf(
10 "API=%s Class=%s Node=%" PRIu32 " Index=%" PRIu16 "\n",
11 rtems_object_get_api_name(tmpAPI),
12 rtems_object_get_api_class_name(tmpAPI, tmpClass),
13 rtems_object_id_get_node(id),
14 rtems_object_id_get_index(id)
15);
16 }

34.3. Operations 899

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4 Directives

This section details the directives of the Object Services. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

900 Chapter 34. Object Services

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.1 rtems_build_id()

Builds the object identifier from the API, class, MPCI node, and index components.

CALLING SEQUENCE:

1 rtems_id rtems_build_id(
2 uint32_t api,
3 uint32_t the_class,
4 uint32_t node,
5 uint32_t index
6);

PARAMETERS:

api
This parameter is the API of the object identifier to build.

the_class
This parameter is the class of the object identifier to build.

node
This parameter is the MPCI node of the object identifier to build.

index
This parameter is the index of the object identifier to build.

RETURN VALUES:

Returns the object identifier built from the API, class, MPCI node, and index components.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

34.4. Directives 901

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.2 rtems_build_name()

Builds the object name composed of the four characters.

CALLING SEQUENCE:

1 rtems_name rtems_build_name(char c1, char c2, char c3, char c4);

PARAMETERS:

c1
This parameter is the first character of the name.

c2
This parameter is the second character of the name.

c3
This parameter is the third character of the name.

c4
This parameter is the fourth character of the name.

DESCRIPTION:

This directive takes the four characters provided as arguments and composes a 32-bit object
name with c1 in the most significant 8-bits and c4 in the least significant 8-bits.

RETURN VALUES:

Returns the object name composed of the four characters.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

902 Chapter 34. Object Services

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.3 rtems_object_get_classic_name()

Gets the object name associated with the object identifier.

CALLING SEQUENCE:

1 rtems_status_code rtems_object_get_classic_name(
2 rtems_id id,
3 rtems_name *name
4);

PARAMETERS:

id
This parameter is the object identifier to get the name.

name
This parameter is the pointer to an rtems_name (page 48) object. When the directive call is
successful, the object name associated with the object identifier will be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The name parameter was NULL.

RTEMS_INVALID_ID
There was no object information available for the object identifier.

RTEMS_INVALID_ID
The object name associated with the object identifier was a string.

RTEMS_INVALID_ID
There was no object associated with the object identifier.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

34.4. Directives 903

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.4 rtems_object_get_name()

Gets the object name associated with the object identifier as a string.

CALLING SEQUENCE:

1 char *rtems_object_get_name(rtems_id id, size_t length, char *name);

PARAMETERS:

id
This parameter is the object identifier to get the name.

length
This parameter is the buffer length in bytes.

name
This parameter is the pointer to a buffer of the specified length.

DESCRIPTION:

The object name is stored in the name buffer. If the name buffer length is greater than zero,
then the stored object name will be NUL terminated. The stored object name may be truncated
to fit the length. There is no indication if a truncation occurred. Every attempt is made to return
name as a printable string even if the object has the Classic API 32-bit integer style name.

RETURN VALUES:

NULL
The length parameter was 0.

NULL
The name parameter was NULL.

NULL
There was no object information available for the object identifier.

NULL
There was no object associated with the object identifier.

Returns the name parameter value, if there is an object name associated with the object identifier.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

904 Chapter 34. Object Services

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.5 rtems_object_set_name()

Sets the object name of the object associated with the object identifier.

CALLING SEQUENCE:

1 rtems_status_code rtems_object_set_name(rtems_id id, const char *name);

PARAMETERS:

id
This parameter is the object identifier of the object to set the name.

name
This parameter is the object name to set.

DESCRIPTION:

This directive will set the object name based upon the user string.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The name parameter was NULL.

RTEMS_INVALID_ID
There was no object information available for the object identifier.

RTEMS_INVALID_ID
There was no object associated with the object identifier.

RTEMS_NO_MEMORY
There was no memory available to duplicate the name.

NOTES:

This directive can be used to set the name of objects which do not have a naming scheme per
their API.

If the object specified by id is of a class that has a string name, this directive will free the existing
name to the RTEMS Workspace and allocate enough memory from the RTEMS Workspace to
make a copy of the string located at name.

If the object specified by id is of a class that has a 32-bit integer style name, then the first four
characters in name will be used to construct the name.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within device driver initialization context.

• The directive may be called from within task context.

• The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

34.4. Directives 905

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.6 rtems_object_id_get_api()

Gets the API component of the object identifier.

CALLING SEQUENCE:

1 int rtems_object_id_get_api(rtems_id id);

PARAMETERS:

id
This parameter is the object identifier with the API component to get.

RETURN VALUES:

Returns the API component of the object identifier.

NOTES:

This directive does not validate the object identifier provided in id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

906 Chapter 34. Object Services

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.7 rtems_object_id_get_class()

Gets the class component of the object identifier.

CALLING SEQUENCE:

1 int rtems_object_id_get_class(rtems_id id);

PARAMETERS:

id
This parameter is the object identifier with the class component to get.

RETURN VALUES:

Returns the class component of the object identifier.

NOTES:

This directive does not validate the object identifier provided in id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

34.4. Directives 907

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.8 rtems_object_id_get_node()

Gets the MPCI node component of the object identifier.

CALLING SEQUENCE:

1 int rtems_object_id_get_node(rtems_id id);

PARAMETERS:

id
This parameter is the object identifier with the MPCI node component to get.

RETURN VALUES:

Returns the MPCI node component of the object identifier.

NOTES:

This directive does not validate the object identifier provided in id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

908 Chapter 34. Object Services

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.9 rtems_object_id_get_index()

Gets the index component of the object identifier.

CALLING SEQUENCE:

1 int rtems_object_id_get_index(rtems_id id);

PARAMETERS:

id
This parameter is the object identifier with the index component to get.

RETURN VALUES:

Returns the index component of the object identifier.

NOTES:

This directive does not validate the object identifier provided in id.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

34.4. Directives 909

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.10 rtems_object_id_api_minimum()

Gets the lowest valid value for the API component of an object identifier.

CALLING SEQUENCE:

1 int rtems_object_id_api_minimum(void);

RETURN VALUES:

Returns the lowest valid value for the API component of an object identifier.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

910 Chapter 34. Object Services

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.11 rtems_object_id_api_maximum()

Gets the highest valid value for the API component of an object identifier.

CALLING SEQUENCE:

1 int rtems_object_id_api_maximum(void);

RETURN VALUES:

Returns the highest valid value for the API component of an object identifier.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive is implemented by a macro and may be called from within C/C++ constant
expressions. In addition, a function implementation of the directive exists for bindings to
other programming languages.

• The directive will not cause the calling task to be preempted.

34.4. Directives 911

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.12 rtems_object_api_minimum_class()

Gets the lowest valid class value of the object API.

CALLING SEQUENCE:

1 int rtems_object_api_minimum_class(int api);

PARAMETERS:

api
This parameter is the object API to get the lowest valid class value.

RETURN VALUES:

-1
The object API was invalid.

Returns the lowest valid class value of the object API.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

912 Chapter 34. Object Services

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.13 rtems_object_api_maximum_class()

Gets the highest valid class value of the object API.

CALLING SEQUENCE:

1 int rtems_object_api_maximum_class(int api);

PARAMETERS:

api
This parameter is the object API to get the highest valid class value.

RETURN VALUES:

0
The object API was invalid.

Returns the highest valid class value of the object API.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

34.4. Directives 913

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.14 rtems_object_get_api_name()

Gets a descriptive name of the object API.

CALLING SEQUENCE:

1 const char *rtems_object_get_api_name(int api);

PARAMETERS:

api
This parameter is the object API to get the name.

RETURN VALUES:

“BAD API”
The API was invalid.

Returns a descriptive name of the API, if the API was valid.

NOTES:

The string returned is from constant space. Do not modify or free it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

914 Chapter 34. Object Services

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.15 rtems_object_get_api_class_name()

Gets a descriptive name of the object class of the object API.

CALLING SEQUENCE:

1 const char *rtems_object_get_api_class_name(int the_api, int the_class);

PARAMETERS:

the_api
This parameter is the object API of the object class.

the_class
This parameter is the object class of the object API to get the name.

RETURN VALUES:

“BAD API”
The API was invalid.

“BAD CLASS”
The class of the API was invalid.

Returns a descriptive name of the class of the API, if the class of the API and the API were valid.

NOTES:

The string returned is from constant space. Do not modify or free it.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

34.4. Directives 915

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.16 rtems_object_get_class_information()

Gets the object class information of the object class of the object API.

CALLING SEQUENCE:

1 rtems_status_code rtems_object_get_class_information(
2 int the_api,
3 int the_class,
4 rtems_object_api_class_information *info
5);

PARAMETERS:

the_api
This parameter is the object API of the object class.

the_class
This parameter is the object class of the object API to get the class information.

info
This parameter is the pointer to an rtems_object_api_class_information (page 48) object.
When the directive call is successful, the object class information of the class of the API will
be stored in this object.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The info parameter was NULL.

RTEMS_INVALID_NUMBER
The class of the API or the API was invalid.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

916 Chapter 34. Object Services

https://en.cppreference.com/w/c/types/NULL

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

34.4.17 rtems_object_get_local_node()

Gets the local MPCI node number.

CALLING SEQUENCE:

1 uint16_t rtems_object_get_local_node(void);

RETURN VALUES:

Returns the local MPCI node number.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

34.4. Directives 917

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 34 Section 34.4

34.4.18 RTEMS_OBJECT_ID_INITIAL()

Builds the object identifier with the lowest index from the API, class, and MPCI node compo-
nents.

CALLING SEQUENCE:

1 rtems_id RTEMS_OBJECT_ID_INITIAL(
2 uint32_t api,
3 uint32_t class,
4 uint32_t node
5);

PARAMETERS:

api
This parameter is the API of the object identifier to build.

class
This parameter is the class of the object identifier to build.

node
This parameter is the MPCI node of the object identifier to build.

RETURN VALUES:

Returns the object identifier with the lowest index built from the API, class, and MPCI node
components.

CONSTRAINTS:

The following constraints apply to this directive:

• The directive may be called from within any runtime context.

• The directive will not cause the calling task to be preempted.

918 Chapter 34. Object Services

CHAPTER

THIRTYFIVE

CHAINS

919

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.1

35.1 Introduction

The Chains API is an interface to the Super Core (score) chain implementation. The Super Core
uses chains for all list type functions. This includes wait queues and task queues. The Chains
API provided by RTEMS is:

• rtems_chain_initialize (page 925) - initialize the chain with nodes

• rtems_chain_initialize_empty (page 926) - initialize the chain as empty

• rtems_chain_is_null_node (page 927) - Is the node NULL ?

• rtems_chain_head (page 928) - Return the chain’s head

• rtems_chain_tail (page 929) - Return the chain’s tail

• rtems_chain_are_nodes_equal (page 930) - Are the node’s equal ?

• rtems_chain_is_empty (page 931) - Is the chain empty ?

• rtems_chain_is_first (page 932) - Is the Node the first in the chain ?

• rtems_chain_is_last (page 933) - Is the Node the last in the chain ?

• rtems_chain_has_only_one_node (page 934) - Does the node have one node ?

• rtems_chain_node_count_unprotected (page 935) - Returns the node count of the chain
(unprotected)

• rtems_chain_is_head (page 936) - Is the node the head ?

• rtems_chain_is_tail (page 937) - Is the node the tail ?

• rtems_chain_extract (page 938) - Extract the node from the chain

• rtems_chain_extract_unprotected (page 939) - Extract the node from the chain (unpro-
tected)

• rtems_chain_get (page 940) - Return the first node on the chain

• rtems_chain_get_unprotected (page 941) - Return the first node on the chain (unprotected)

• rtems_chain_insert (page 942) - Insert the node into the chain

• rtems_chain_insert_unprotected (page 943) - Insert the node into the chain (unprotected)

• rtems_chain_append (page 944) - Append the node to chain

• rtems_chain_append_unprotected (page 945) - Append the node to chain (unprotected)

• rtems_chain_prepend (page 946) - Prepend the node to the end of the chain

• rtems_chain_prepend_unprotected (page 947) - Prepend the node to chain (unprotected)

920 Chapter 35. Chains

Chapter 35 Section 35.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.2 Background

The Chains API maps to the Super Core Chains API. Chains are implemented as a double linked
list of nodes anchored to a control node. The list starts at the control node and is terminated at
the control node. A node has previous and next pointers. Being a double linked list nodes can
be inserted and removed without the need to travse the chain.

Chains have a small memory footprint and can be used in interrupt service routines and are
thread safe in a multi-threaded environment. The directives list which operations disable inter-
rupts.

Chains are very useful in Board Support packages and applications.

35.2.1 Nodes

A chain is made up from nodes that orginate from a chain control object. A node is of type
rtems_chain_node. The node is designed to be part of a user data structure and a cast is used
to move from the node address to the user data structure address. For example:

1 typedef struct foo
2 {
3 rtems_chain_node node;
4 int bar;
5 } foo;

creates a type foo that can be placed on a chain. To get the foo structure from the list you
perform the following:

1 foo* get_foo(rtems_chain_control* control)
2 {
3 return (foo*) rtems_chain_get(control);
4 }

The node is placed at the start of the user’s structure to allow the node address on the chain to
be easly cast to the user’s structure address.

35.2.2 Controls

A chain is anchored with a control object. Chain control provide the user with access to the
nodes on the chain. The control is head of the node.

1 [Control]
2 first ------------------------>
3 permanent_null <--------------- [NODE]
4 last ------------------------->

The implementation does not require special checks for manipulating the first and last nodes on
the chain. To accomplish this the rtems_chain_control structure is treated as two overlapping
rtems_chain_node structures. The permanent head of the chain overlays a node structure on
the first and permanent_null fields. The permanent_tail of the chain overlays a node structure
on the permanent_null and last elements of the structure.

35.2. Background 921

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.3

35.3 Operations

35.3.1 Multi-threading

Chains are designed to be used in a multi-threading environment. The directives list which
operations mask interrupts. Chains supports tasks and interrupt service routines appending and
extracting nodes with out the need for extra locks. Chains how-ever cannot insure the integrity
of a chain for all operations. This is the responsibility of the user. For example an interrupt
service routine extracting nodes while a task is iterating over the chain can have unpredictable
results.

35.3.2 Creating a Chain

To create a chain you need to declare a chain control then add nodes to the control. Consider a
user structure and chain control:

1 typedef struct foo
2 {
3 rtems_chain_node node;
4 char* data;
5 } foo;
6 rtems_chain_control chain;

Add nodes with the following code:

1 rtems_chain_initialize_empty (&chain);
2

3 for (i = 0; i < count; i++)
4 {
5 foo* bar = malloc (sizeof (foo));
6 if (!bar)
7 return -1;
8 bar->data = malloc (size);
9 rtems_chain_append (&chain, &bar->node);

10 }

The chain is initialized and the nodes allocated and appended to the chain. This is an example
of a pool of buffers.

35.3.3 Iterating a Chain

Iterating a chain is a common function. The example shows how to iterate the buffer pool chain
created in the last section to find buffers starting with a specific string. If the buffer is located it
is extracted from the chain and placed on another chain:

1 void foobar (const char* match,
2 rtems_chain_control* chain,
3 rtems_chain_control* out)
4 {
5 rtems_chain_node* node;
6 foo* bar;
7

(continues on next page)

922 Chapter 35. Chains

Chapter 35 Section 35.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

(continued from previous page)

8 rtems_chain_initialize_empty (out);
9

10 node = rtems_chain_first (chain);
11

12 while (!rtems_chain_is_tail (chain, node))
13 {
14 bar = (foo*) node;
15 rtems_chain_node* next_node = rtems_chain_next(node);
16 if (strcmp (match, bar->data) == 0)
17 {
18 rtems_chain_extract (node);
19 rtems_chain_append (out, node);
20 }
21 node = next_node;
22 }
23 }

35.3. Operations 923

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4 Directives

The section details the Chains directives.

924 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.1 Initialize Chain With Nodes

CALLING SEQUENCE:

1 void rtems_chain_initialize(
2 rtems_chain_control *the_chain,
3 void *starting_address,
4 size_t number_nodes,
5 size_t node_size
6)

RETURNS:
Returns nothing.

DESCRIPTION:
This function take in a pointer to a chain control and initializes it to contain a set of chain
nodes. The chain will contain number_nodes chain nodes from the memory pointed to by
start_address. Each node is assumed to be node_size bytes.

NOTES:
This call will discard any nodes on the chain.

This call does NOT inititialize any user data on each node.

35.4. Directives 925

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.2 Initialize Empty

CALLING SEQUENCE:

1 void rtems_chain_initialize_empty(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This function take in a pointer to a chain control and initializes it to empty.

NOTES:
This call will discard any nodes on the chain.

926 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.3 Is Null Node ?

CALLING SEQUENCE:

1 bool rtems_chain_is_null_node(
2 const rtems_chain_node *the_node
3);

RETURNS:
Returns true is the node point is NULL and false if the node is not NULL.

DESCRIPTION:
Tests the node to see if it is a NULL returning true if a null.

35.4. Directives 927

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.4 Head

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_head(
2 rtems_chain_control *the_chain
3)

RETURNS:
Returns the permanent head node of the chain.

DESCRIPTION:
This function returns a pointer to the first node on the chain.

928 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.5 Tail

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_tail(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns the permanent tail node of the chain.

DESCRIPTION:
This function returns a pointer to the last node on the chain.

35.4. Directives 929

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.6 Are Two Nodes Equal ?

CALLING SEQUENCE:

1 bool rtems_chain_are_nodes_equal(
2 const rtems_chain_node *left,
3 const rtems_chain_node *right
4);

RETURNS:
This function returns true if the left node and the right node are equal, and false otherwise.

DESCRIPTION:
This function returns true if the left node and the right node are equal, and false otherwise.

930 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.7 Is the Chain Empty

CALLING SEQUENCE:

1 bool rtems_chain_is_empty(
2 rtems_chain_control *the_chain
3);

RETURNS:
This function returns true if there a no nodes on the chain and false otherwise.

DESCRIPTION:
This function returns true if there a no nodes on the chain and false otherwise.

35.4. Directives 931

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.8 Is this the First Node on the Chain ?

CALLING SEQUENCE:

1 bool rtems_chain_is_first(
2 const rtems_chain_node *the_node
3);

RETURNS:
This function returns true if the node is the first node on a chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the first node on a chain and false otherwise.

932 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.9 Is this the Last Node on the Chain ?

CALLING SEQUENCE:

1 bool rtems_chain_is_last(
2 const rtems_chain_node *the_node
3);

RETURNS:
This function returns true if the node is the last node on a chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the last node on a chain and false otherwise.

35.4. Directives 933

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.10 Does this Chain have only One Node ?

CALLING SEQUENCE:

1 bool rtems_chain_has_only_one_node(
2 const rtems_chain_control *the_chain
3);

RETURNS:
This function returns true if there is only one node on the chain and false otherwise.

DESCRIPTION:
This function returns true if there is only one node on the chain and false otherwise.

934 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.11 Returns the node count of the chain (unprotected)

CALLING SEQUENCE:

1 size_t rtems_chain_node_count_unprotected(
2 const rtems_chain_control *the_chain
3);

RETURNS:
This function returns the node count of the chain.

DESCRIPTION:
This function returns the node count of the chain.

35.4. Directives 935

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.12 Is this Node the Chain Head ?

CALLING SEQUENCE:

1 bool rtems_chain_is_head(
2 rtems_chain_control *the_chain,
3 rtems_const chain_node *the_node
4);

RETURNS:
This function returns true if the node is the head of the chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the head of the chain and false otherwise.

936 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.13 Is this Node the Chain Tail ?

CALLING SEQUENCE:

1 bool rtems_chain_is_tail(
2 rtems_chain_control *the_chain,
3 const rtems_chain_node *the_node
4)

RETURNS:
This function returns true if the node is the tail of the chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the tail of the chain and false otherwise.

35.4. Directives 937

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.14 Extract a Node

CALLING SEQUENCE:

1 void rtems_chain_extract(
2 rtems_chain_node *the_node
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine extracts the node from the chain on which it resides.

NOTES:
Interrupts are disabled while extracting the node to ensure the atomicity of the operation.

Use rtems_chain_extract_unprotected to avoid disabling of interrupts.

938 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.15 Extract a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_extract_unprotected(
2 rtems_chain_node *the_node
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine extracts the node from the chain on which it resides.

NOTES:
The function does nothing to ensure the atomicity of the operation.

35.4. Directives 939

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.16 Get the First Node

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_get(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns a pointer a node. If a node was removed, then a pointer to that node is returned. If
the chain was empty, then NULL is returned.

DESCRIPTION:
This function removes the first node from the chain and returns a pointer to that node. If the
chain is empty, then NULL is returned.

NOTES:
Interrupts are disabled while obtaining the node to ensure the atomicity of the operation.

Use rtems_chain_get_unprotected() to avoid disabling of interrupts.

940 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.17 Get the First Node (unprotected)

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_get_unprotected(
2 rtems_chain_control *the_chain
3);

RETURNS:
A pointer to the former first node is returned.

DESCRIPTION:
Removes the first node from the chain and returns a pointer to it. In case the chain was empty,
then the results are unpredictable.

NOTES:
The function does nothing to ensure the atomicity of the operation.

35.4. Directives 941

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.18 Insert a Node

CALLING SEQUENCE:

1 void rtems_chain_insert(
2 rtems_chain_node *after_node,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine inserts a node on a chain immediately following the specified node.

NOTES:
Interrupts are disabled during the insert to ensure the atomicity of the operation.

Use rtems_chain_insert_unprotected() to avoid disabling of interrupts.

942 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.19 Insert a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_insert_unprotected(
2 rtems_chain_node *after_node,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine inserts a node on a chain immediately following the specified node.

NOTES:
The function does nothing to ensure the atomicity of the operation.

35.4. Directives 943

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.20 Append a Node

CALLING SEQUENCE:

1 void rtems_chain_append(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine appends a node to the end of a chain.

NOTES:
Interrupts are disabled during the append to ensure the atomicity of the operation.

Use rtems_chain_append_unprotected to avoid disabling of interrupts.

944 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.21 Append a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_append_unprotected(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine appends a node to the end of a chain.

NOTES:
The function does nothing to ensure the atomicity of the operation.

35.4. Directives 945

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

35.4.22 Prepend a Node

CALLING SEQUENCE:

1 void rtems_chain_prepend(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine prepends a node to the front of the chain.

NOTES:
Interrupts are disabled during the prepend to ensure the atomicity of the operation.

Use rtems_chain_prepend_unprotected to avoid disabling of interrupts.

946 Chapter 35. Chains

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

35.4.23 Prepend a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_prepend_unprotected(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine prepends a node to the front of the chain.

NOTES:
The function does nothing to ensure the atomicity of the operation.

35.4. Directives 947

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 35 Section 35.4

948 Chapter 35. Chains

CHAPTER

THIRTYSIX

RED-BLACK TREES

949

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 36 Section 36.1

36.1 Introduction

The Red-Black Tree API is an interface to the SuperCore (score) rbtree implementation. Within
RTEMS, red-black trees are used when a binary search tree is needed, including dynamic priority
thread queues and non-contiguous heap memory. The Red-Black Tree API provided by RTEMS
is:

• rtems_rtems_rbtree_node - Red-Black Tree node embedded in another struct

• rtems_rtems_rbtree_control - Red-Black Tree control node for an entire tree

• rtems_rtems_rbtree_initialize - initialize the red-black tree with nodes

• rtems_rtems_rbtree_initialize_empty - initialize the red-black tree as empty

• rtems_rtems_rbtree_set_off_tree - Clear a node’s links

• rtems_rtems_rbtree_root - Return the red-black tree’s root node

• rtems_rtems_rbtree_min - Return the red-black tree’s minimum node

• rtems_rtems_rbtree_max - Return the red-black tree’s maximum node

• rtems_rtems_rbtree_left - Return a node’s left child node

• rtems_rtems_rbtree_right - Return a node’s right child node

• rtems_rtems_rbtree_parent - Return a node’s parent node

• rtems_rtems_rbtree_are_nodes_equal - Are the node’s equal ?

• rtems_rtems_rbtree_is_empty - Is the red-black tree empty ?

• rtems_rtems_rbtree_is_min - Is the Node the minimum in the red-black tree ?

• rtems_rtems_rbtree_is_max - Is the Node the maximum in the red-black tree ?

• rtems_rtems_rbtree_is_root - Is the Node the root of the red-black tree ?

• rtems_rtems_rbtree_find - Find the node with a matching key in the red-black tree

• rtems_rtems_rbtree_predecessor - Return the in-order predecessor of a node.

• rtems_rtems_rbtree_successor - Return the in-order successor of a node.

• rtems_rtems_rbtree_extract - Remove the node from the red-black tree

• rtems_rtems_rbtree_get_min - Remove the minimum node from the red-black tree

• rtems_rtems_rbtree_get_max - Remove the maximum node from the red-black tree

• rtems_rtems_rbtree_peek_min - Returns the minimum node from the red-black tree

• rtems_rtems_rbtree_peek_max - Returns the maximum node from the red-black tree

• rtems_rtems_rbtree_insert - Add the node to the red-black tree

950 Chapter 36. Red-Black Trees

Chapter 36 Section 36.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

36.2 Background

The Red-Black Trees API is a thin layer above the SuperCore Red-Black Trees implementation. A
Red-Black Tree is defined by a control node with pointers to the root, minimum, and maximum
nodes in the tree. Each node in the tree consists of a parent pointer, two children pointers, and
a color attribute. A tree is parameterized as either unique, meaning identical keys are rejected,
or not, in which case duplicate keys are allowed.

Users must provide a comparison functor that gets passed to functions that need to compare
nodes. In addition, no internal synchronization is offered within the red-black tree implemen-
tation, thus users must ensure at most one thread accesses a red-black tree instance at a time.

36.2.1 Nodes

A red-black tree is made up from nodes that orginate from a red-black tree control object.
A node is of type rtems_rtems_rbtree_node. The node is designed to be part of a user data
structure. To obtain the encapsulating structure users can use the RTEMS_CONTAINER_OF macro.
The node can be placed anywhere within the user’s structure and the macro will calculate the
structure’s address from the node’s address.

36.2.2 Controls

A red-black tree is rooted with a control object. Red-Black Tree control provide the user
with access to the nodes on the red-black tree. The implementation does not require
special checks for manipulating the root of the red-black tree. To accomplish this the
rtems_rtems_rbtree_control structure is treated as a rtems_rtems_rbtree_node structure with
a NULL parent and left child pointing to the root.

36.2. Background 951

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 36 Section 36.3

36.3 Operations

Examples for using the red-black trees can be found in the testsuites/sptests/sprbtree01/
init.c file.

952 Chapter 36. Red-Black Trees

Chapter 36 Section 36.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

36.4 Directives

36.4.1 Documentation for the Red-Black Tree Directives

Source documentation for the Red-Black Tree API can be found in the generated Doxygen output
for cpukit/sapi.

36.4. Directives 953

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 36 Section 36.4

954 Chapter 36. Red-Black Trees

CHAPTER

THIRTYSEVEN

TIMESPEC HELPERS

955

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.1

37.1 Introduction

The Timespec helpers manager provides directives to assist in manipulating instances of the
POSIX struct timespec structure.

The directives provided by the timespec helpers manager are:

• rtems_timespec_set (page 960) - Set timespec’s value

• rtems_timespec_zero (page 961) - Zero timespec’s value

• rtems_timespec_is_valid (page 962) - Check if timespec is valid

• rtems_timespec_add_to (page 963) - Add two timespecs

• rtems_timespec_subtract (page 964) - Subtract two timespecs

• rtems_timespec_divide (page 965) - Divide two timespecs

• rtems_timespec_divide_by_integer (page 966) - Divide timespec by integer

• rtems_timespec_less_than (page 967) - Less than operator

• rtems_timespec_greater_than (page 968) - Greater than operator

• rtems_timespec_equal_to (page 969) - Check if two timespecs are equal

• rtems_timespec_get_seconds (page 970) - Obtain seconds portion of timespec

• rtems_timespec_get_nanoseconds (page 971) - Obtain nanoseconds portion of timespec

• rtems_timespec_to_ticks (page 972) - Convert timespec to number of ticks

• rtems_timespec_from_ticks (page 973) - Convert ticks to timespec

956 Chapter 37. Timespec Helpers

Chapter 37 Section 37.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.2 Background

37.2.1 Time Storage Conventions

Time can be stored in many ways. One of them is the struct timespec format which is a struc-
ture that consists of the fields tv_sec to represent seconds and tv_nsec to represent nanosec-
onds. The``struct timeval`` structure is simular and consists of seconds (stored in tv_sec) and
microseconds (stored in tv_usec). Either``struct timespec`` or struct timeval can be used to
represent elapsed time, time of executing some operations, or time of day.

37.2. Background 957

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.3

37.3 Operations

37.3.1 Set and Obtain Timespec Value

A user may write a specific time by passing the desired seconds and nanoseconds values and
the destination struct timespec using the rtems_timespec_set directive.

The rtems_timespec_zero directive is used to zero the seconds and nanoseconds portions of a
struct timespec instance.

Users may obtain the seconds or nanoseconds portions of a struct timespec instance with the
rtems_timespec_get_seconds or rtems_timespec_get_nanoseconds methods, respectively.

37.3.2 Timespec Math

A user can perform multiple operations on struct timespec instances. The helpers in this
manager assist in adding, subtracting, and performing divison on struct timespec instances.

• Adding two struct timespec can be done using the rtems_timespec_add_to directive.
This directive is used mainly to calculate total amount of time consumed by multiple
operations.

• The rtems_timespec_subtract is used to subtract two struct timespecs instances and
determine the elapsed time between those two points in time.

• The rtems_timespec_divide is used to use to divide one struct timespec instance by
another. This calculates the percentage with a precision to three decimal points.

• The rtems_timespec_divide_by_integer is used to divide a struct timespec instance by
an integer. It is commonly used in benchmark calculations to dividing duration by the
number of iterations performed.

37.3.3 Comparing struct timespec Instances

A user can compare two struct timespec instances using the rtems_timespec_less_than,
rtems_timespec_greater_than or rtems_timespec_equal_to routines.

37.3.4 Conversions and Validity Check

Conversion to and from clock ticks may be performed by using the rtems_timespec_to_ticks
and rtems_timespec_from_ticks directives.

User can also check validity of timespec with rtems_timespec_is_valid routine.

958 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4 Directives

This section details the Timespec Helpers manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

37.4. Directives 959

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

37.4.1 TIMESPEC_SET - Set struct timespec Instance

CALLING SEQUENCE:

1 void rtems_timespec_set(
2 struct timespec *time,
3 time_t seconds,
4 uint32_t nanoseconds
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive sets the struct timespec time to the desired seconds and nanoseconds values.

NOTES:
This method does NOT check if nanoseconds is less than the maximum number of nanosec-
onds in a second.

960 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4.2 TIMESPEC_ZERO - Zero struct timespec Instance

CALLING SEQUENCE:

1 void rtems_timespec_zero(
2 struct timespec *time
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine sets the contents of the struct timespec instance time to zero.

NOTES:
NONE

37.4. Directives 961

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

37.4.3 TIMESPEC_IS_VALID - Check validity of a struct timespec instance

CALLING SEQUENCE:

1 bool rtems_timespec_is_valid(
2 const struct timespec *time
3);

DIRECTIVE STATUS CODES:
This method returns true if the instance is valid, and false otherwise.

DESCRIPTION:
This routine check validity of a struct timespec instance. It checks if the nanoseconds
portion of the struct timespec instanceis in allowed range (less than the maximum number
of nanoseconds per second).

NOTES:
NONE

962 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4.4 TIMESPEC_ADD_TO - Add Two struct timespec Instances

CALLING SEQUENCE:

1 uint32_t rtems_timespec_add_to(
2 struct timespec *time,
3 const struct timespec *add
4);

DIRECTIVE STATUS CODES:
The method returns the number of seconds time increased by.

DESCRIPTION:
This routine adds two struct timespec instances. The second argument is added to the first.
The parameter time is the base time to which the add parameter is added.

NOTES:
NONE

37.4. Directives 963

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

37.4.5 TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances

CALLING SEQUENCE:

1 void rtems_timespec_subtract(
2 const struct timespec *start,
3 const struct timespec *end,
4 struct timespec *result
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine subtracts start from end saves the difference in result. The primary use of this
directive is to calculate elapsed time.

NOTES:
It is possible to subtract when end is less than start and it produce negative result. When
doing this you should be careful and remember that only the seconds portion of a struct
timespec instance is signed, which means that nanoseconds portion is always increasing.
Due to that when your timespec has seconds = -1 and nanoseconds = 500,000,000 it means
that result is -0.5 second, NOT the expected -1.5!

964 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4.6 TIMESPEC_DIVIDE - Divide Two struct timespec Instances

CALLING SEQUENCE:

1 void rtems_timespec_divide(
2 const struct timespec *lhs,
3 const struct timespec *rhs,
4 uint32_t *ival_percentage,
5 uint32_t *fval_percentage
6);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine divides the struct timespec instance lhs by the struct timespec instance rhs.
The result is returned in the ival_percentage and fval_percentage, representing the integer
and fractional results of the division respectively.

The ival_percentage is integer value of calculated percentage and fval_percentage is frac-
tional part of calculated percentage.

NOTES:
The intended use is calculating percentges to three decimal points.

When dividing by zero, this routine return both ival_percentage and fval_percentage equal
zero.

The division is performed using exclusively integer operations.

37.4. Directives 965

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

37.4.7 TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by an In-
teger

CALLING SEQUENCE:

1 int rtems_timespec_divide_by_integer(
2 const struct timespec *time,
3 uint32_t iterations,
4 struct timespec *result
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine divides the struct timespec instance time by the integer value iterations. The
result is saved in result.

NOTES:
The expected use is to assist in benchmark calculations where you typically divide a duration
(time) by a number of iterations what gives average time.

966 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4.8 TIMESPEC_LESS_THAN - Less than operator

CALLING SEQUENCE:

1 bool rtems_timespec_less_than(
2 const struct timespec *lhs,
3 const struct timespec *rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is less than rhs and struct false otherwise.

DESCRIPTION:
This method is the less than operator for struct timespec instances. The first parameter is
the left hand side and the second is the right hand side of the comparison.

NOTES:
NONE

37.4. Directives 967

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

37.4.9 TIMESPEC_GREATER_THAN - Greater than operator

CALLING SEQUENCE:

1 bool rtems_timespec_greater_than(
2 const struct timespec *_lhs,
3 const struct timespec *_rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is greater than rhs and struct false otherwise.

DESCRIPTION:
This method is greater than operator for struct timespec instances.

NOTES:
NONE

968 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4.10 TIMESPEC_EQUAL_TO - Check equality of timespecs

CALLING SEQUENCE:

1 bool rtems_timespec_equal_to(
2 const struct timespec *lhs,
3 const struct timespec *rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is equal to rhs and struct false otherwise.

DESCRIPTION:
This method is equality operator for struct timespec instances.

NOTES:
NONE

37.4. Directives 969

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

37.4.11 TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec Instance

CALLING SEQUENCE:

1 time_t rtems_timespec_get_seconds(
2 struct timespec *time
3);

DIRECTIVE STATUS CODES:
This method returns the seconds portion of the specified struct timespec instance.

DESCRIPTION:
This method returns the seconds portion of the specified struct timespec instance time.

NOTES:
NONE

970 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4.12 TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the struct
timespec Instance

CALLING SEQUENCE:

1 uint32_t rtems_timespec_get_nanoseconds(
2 struct timespec *_time
3);

DIRECTIVE STATUS CODES:
This method returns the nanoseconds portion of the specified struct timespec instance.

DESCRIPTION:
This method returns the nanoseconds portion of the specified timespec which is pointed by
_time.

NOTES:
NONE

37.4. Directives 971

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

37.4.13 TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks

CALLING SEQUENCE:

1 uint32_t rtems_timespec_to_ticks(
2 const struct timespec *time
3);

DIRECTIVE STATUS CODES:
This directive returns the number of ticks computed.

DESCRIPTION:
This directive converts the time timespec to the corresponding number of clock ticks.

NOTES:
NONE

972 Chapter 37. Timespec Helpers

Chapter 37 Section 37.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

37.4.14 TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representation

CALLING SEQUENCE:

1 void rtems_timespec_from_ticks(
2 uint32_t ticks,
3 struct timespec *time
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine converts the ticks to the corresponding struct timespec representation and
stores it in time.

NOTES:
NONE

37.4. Directives 973

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 37 Section 37.4

974 Chapter 37. Timespec Helpers

CHAPTER

THIRTYEIGHT

CONSTANT BANDWIDTH SERVER
SCHEDULER API

975

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.1

38.1 Introduction

Unlike simple schedulers, the Constant Bandwidth Server (CBS) requires a special API for tasks
to indicate their scheduling parameters. The directives provided by the CBS API are:

• rtems_cbs_initialize (page 982) - Initialize the CBS library

• rtems_cbs_cleanup (page 983) - Cleanup the CBS library

• rtems_cbs_create_server (page 984) - Create a new bandwidth server

• rtems_cbs_attach_thread (page 985) - Attach a thread to server

• rtems_cbs_detach_thread (page 986) - Detach a thread from server

• rtems_cbs_destroy_server (page 987) - Destroy a bandwidth server

• rtems_cbs_get_server_id (page 988) - Get an ID of a server

• rtems_cbs_get_parameters (page 989) - Get scheduling parameters of a server

• rtems_cbs_set_parameters (page 990) - Set scheduling parameters of a server

• rtems_cbs_get_execution_time (page 991) - Get elapsed execution time

• rtems_cbs_get_remaining_budget (page 992) - Get remainig execution time

• rtems_cbs_get_approved_budget (page 993) - Get scheduler approved execution time

976 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.2 Background

38.2.1 Constant Bandwidth Server Definitions

The Constant Bandwidth Server API enables tasks to communicate with the scheduler and
indicate its scheduling parameters. The scheduler has to be set up first (by defining
CONFIGURE_SCHEDULER_CBS macro).

The difference to a plain EDF is the presence of servers. It is a budget aware extention of the
EDF scheduler, therefore, tasks attached to servers behave in a similar way as with EDF unless
they exceed their budget.

The intention of servers is reservation of a certain computation time (budget) of the processor
for all subsequent periods. The structure rtems_cbs_parameters determines the behavior of a
server. It contains deadline which is equal to period, and budget which is the time the server
is allowed to spend on CPU per each period. The ratio between those two parameters yields
the maximum percentage of the CPU the server can use (bandwidth). Moreover, thanks to this
limitation the overall utilization of CPU is under control, and the sum of bandwidths of all
servers in the system yields the overall reserved portion of processor. The rest is still available
for ordinary tasks that are not attached to any server.

In order to make the server effective to the executing tasks, tasks have to be attached to the
servers. The rtems_cbs_server_id is a type denoting an id of a server and rtems_id a type for
id of tasks. .. index:: CBS periodic tasks

38.2.2 Handling Periodic Tasks

Each task’s execution begins with a default background priority (see the chapter Scheduling
Concepts to understand the concept of priorities in EDF). Once you decide the tasks should
start periodic execution, you have two possibilities. Either you use only the Rate Monotonic
manager which takes care of periodic behavior, or you declare deadline and budget using the
CBS API in which case these properties are constant for all subsequent periods, unless you
change them using the CBS API again. Task now only has to indicate and end of each period
using rtems_rate_monotonic_period. .. index:: CBS overrun handler

38.2.3 Registering a Callback Function

In case tasks attached to servers are not aware of their execution time and happen to exceed
it, the scheduler does not guarantee execution any more and pulls the priority of the task
to background, which would possibly lead to immediate preemption (if there is at least one
ready task with a higher pirority). However, the task is not blocked but a callback function
is invoked. The callback function (rtems_cbs_budget_overrun) might be optionally registered
upon a server creation (rtems_cbs_create_server).

This enables the user to define what should happen in case of budget overrun. There is obvi-
ously no space for huge operations because the priority is down and not real time any more,
however, you still can at least in release resources for other tasks, restart the task or log an error
information. Since the routine is called directly from kernel, use printk() instead of printf().

The calling convention of the callback function is:

1 void overrun_handler(
2 rtems_cbs_server_id server_id
3);

38.2. Background 977

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.2

38.2.4 Limitations

When using this scheduler you have to keep in mind several things:

• it_limitations

• In the current implementation it is possible to attach only a single task to each server.

• If you have a task attached to a server and you voluntatily block it in the beginning of
its execution, its priority will be probably pulled to background upon unblock, thus not
guaranteed deadline any more. This is because you are effectively raising computation
time of the task. When unbocking, you should be always sure that the ratio between
remaining computation time and remaining deadline is not higher that the utilization you
have agreed with the scheduler.

978 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.3 Operations

38.3.1 Setting up a server

The directive rtems_cbs_create_server is used to create a new server that is characterized
by rtems_cbs_parameters. You also might want to register the rtems_cbs_budget_overrun
callback routine. After this step tasks can be attached to the server. The directive
rtems_cbs_set_parameters can change the scheduling parameters to avoid destroying and cre-
ating a new server again.

38.3.2 Attaching Task to a Server

If a task is attached to a server using rtems_cbs_attach_thread, the task’s computation time
per period is limited by the server and the deadline (period) of task is equal to deadline of the
server which means if you conclude a period using rate_monotonic_period, the length of next
period is always determined by the server’s property.

The task has a guaranteed bandwidth given by the server but should not exceed it,
otherwise the priority is pulled to background until the start of next period and the
rtems_cbs_budget_overrun callback function is invoked.

When attaching a task to server, the preemptability flag of the task is raised, otherwise it would
not be possible to control the execution of the task.

38.3.3 Detaching Task from a Server

The directive rtems_cbs_detach_thread is just an inverse operation to the previous one, the
task continues its execution with the initial priority.

Preemptability of the task is restored to the initial value.

38.3.4 Examples

The following example presents a simple common use of the API.

You can see the initialization and cleanup call here, if there are multiple tasks in the system, it
is obvious that the initialization should be called before creating the task.

Notice also that in this case we decided to register an overrun handler, instead of which there
could be NULL. This handler just prints a message to terminal, what else may be done here
depends on a specific application.

During the periodic execution, remaining budget should be watched to avoid overrun.

1 void overrun_handler (
2 rtems_cbs_server_id server_id
3)
4 {
5 printk("Budget overrun, fixing the task\n");
6 return;
7 }
8

9 rtems_task Tasks_Periodic(
10 rtems_task_argument argument
11)

(continues on next page)

38.3. Operations 979

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.3

(continued from previous page)

12 {
13 rtems_id rmid;
14 rtems_cbs_server_id server_id;
15 rtems_cbs_parameters params;
16

17 params.deadline = 10;
18 params.budget = 4;
19

20 rtems_cbs_initialize();
21 rtems_cbs_create_server(¶ms, &overrun_handler, &server_id);
22 rtems_cbs_attach_thread(server_id, RTEMS_SELF);
23 rtems_rate_monotonic_create(argument, &rmid);
24

25 while (1) {
26 if (rtems_rate_monotonic_period(rmid, params.deadline) == RTEMS_TIMEOUT)
27 break;
28 /* Perform some periodic action */
29 }
30

31 rtems_rate_monotonic_delete(rmid);
32 rtems_cbs_cleanup();
33 exit(1);
34 }

980 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.4 Directives

This section details the Constant Bandwidth Server’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

38.4. Directives 981

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.4

38.4.1 CBS_INITIALIZE - Initialize the CBS library

CALLING SEQUENCE:

1 int rtems_cbs_initialize(void);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful initialization
RTEMS_CBS_ERROR_NO_MEMORY not enough memory for data

DESCRIPTION:
This routine initializes the library in terms of allocating necessary memory for the servers. In
case not enough memory is available in the system, RTEMS_CBS_ERROR_NO_MEMORY is returned,
otherwise RTEMS_CBS_OK.

NOTES:
Additional memory per each server is allocated upon invocation of rtems_cbs_create_server.

Tasks in the system are not influenced, they still keep executing with their initial parameters.

982 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.4.2 CBS_CLEANUP - Cleanup the CBS library

CALLING SEQUENCE:

1 int rtems_cbs_cleanup(void);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK always successful

DESCRIPTION:
This routine detaches all tasks from their servers, destroys all servers and returns memory
back to the system.

NOTES:
All tasks continue executing with their initial priorities.

38.4. Directives 983

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.4

38.4.3 CBS_CREATE_SERVER - Create a new bandwidth server

CALLING SEQUENCE:

1 int rtems_cbs_create_server (
2 rtems_cbs_parameters *params,
3 rtems_cbs_budget_overrun budget_overrun_callback,
4 rtems_cbs_server_id *server_id
5);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully created
RTEMS_CBS_ERROR_NO_MEMORY not enough memory for data
RTEMS_CBS_ERROR_FULL maximum servers exceeded
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument

DESCRIPTION:
This routine prepares an instance of a constant bandwidth server. The input parame-
ter rtems_cbs_parameters specifies scheduling parameters of the server (period and bud-
get). If these are not valid, RTEMS_CBS_ERROR_INVALID_PARAMETER is returned. The
budget_overrun_callback is an optional callback function, which is invoked in case the
server’s budget within one period is exceeded. Output parameter server_id becomes an id
of the newly created server. If there is not enough memory, the RTEMS_CBS_ERROR_NO_MEMORY
is returned. If the maximum server count in the system is exceeded, RTEMS_CBS_ERROR_FULL
is returned.

NOTES:
No task execution is being influenced so far.

984 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.4.4 CBS_ATTACH_THREAD - Attach a thread to server

CALLING SEQUENCE:

1 int rtems_cbs_attach_thread (
2 rtems_cbs_server_id server_id,
3 rtems_id task_id
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully attached
RTEMS_CBS_ERROR_FULL server maximum tasks exceeded
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
Attaches a task (task_id) to a server (server_id). The server has to be previously created.
Now, the task starts to be scheduled according to the server parameters and not using initial
priority. This implementation allows only one task per server, if the user tries to bind another
task to the same server, RTEMS_CBS_ERROR_FULL is returned.

NOTES:
Tasks attached to servers become preemptible.

38.4. Directives 985

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.4

38.4.5 CBS_DETACH_THREAD - Detach a thread from server

CALLING SEQUENCE:

1 int rtems_cbs_detach_thread (
2 rtems_cbs_server_id server_id,
3 rtems_id task_id
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully detached
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive detaches a thread from server. The task continues its execution with initial
priority.

NOTES:
The server can be reused for any other task.

986 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.4.6 CBS_DESTROY_SERVER - Destroy a bandwidth server

CALLING SEQUENCE:

1 int rtems_cbs_destroy_server (
2 rtems_cbs_server_id server_id
3);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully destroyed
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive destroys a server. If any task was attached to the server, the task is detached
and continues its execution according to EDF rules with initial properties.

NOTES:
This again enables one more task to be created.

38.4. Directives 987

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.4

38.4.7 CBS_GET_SERVER_ID - Get an ID of a server

CALLING SEQUENCE:

1 int rtems_cbs_get_server_id (
2 rtems_id task_id,
3 rtems_cbs_server_id *server_id
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns an id of server belonging to a given task.

988 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.4.8 CBS_GET_PARAMETERS - Get scheduling parameters of a server

CALLING SEQUENCE:

1 rtems_cbs_get_parameters (
2 rtems_cbs_server_id server_id,
3 rtems_cbs_parameters *params
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns a structure with current scheduling parameters of a given server (period
and execution time).

NOTES:
It makes no difference if any task is assigned or not.

38.4. Directives 989

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.4

38.4.9 CBS_SET_PARAMETERS - Set scheduling parameters

CALLING SEQUENCE:

1 int rtems_cbs_set_parameters (
2 rtems_cbs_server_id server_id,
3 rtems_cbs_parameters *params
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive sets new scheduling parameters to the server. This operation can be performed
regardless of whether a task is assigned or not. If a task is assigned, the parameters become
effective imediately, therefore it is recommended to apply the change between two subsequent
periods.

NOTES:
There is an upper limit on both period and budget equal to (2^31)-1 ticks.

990 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.4.10 CBS_GET_EXECUTION_TIME - Get elapsed execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_execution_time (
2 rtems_cbs_server_id server_id,
3 time_t *exec_time,
4 time_t *abs_time
5);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This routine returns consumed execution time (exec_time) of a server during the current
period.

NOTES:
Absolute time (abs_time) not supported now.

38.4. Directives 991

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.4

38.4.11 CBS_GET_REMAINING_BUDGET - Get remaining execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_remaining_budget (
2 rtems_cbs_server_id server_id,
3 time_t *remaining_budget
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns remaining execution time of a given server for current period.

NOTES:
If the execution time approaches zero, the assigned task should finish computations of the
current period.

992 Chapter 38. Constant Bandwidth Server Scheduler API

Chapter 38 Section 38.4 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

38.4.12 CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_approved_budget (
2 rtems_cbs_server_id server_id,
3 time_t *appr_budget
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns server’s approved budget for subsequent periods.

38.4. Directives 993

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 38 Section 38.4

994 Chapter 38. Constant Bandwidth Server Scheduler API

CHAPTER

THIRTYNINE

ADA SUPPORT

995

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 39 Section 39.1

39.1 Introduction

RTEMS has long had support for the Ada programming language by supporting the GNU Ada
Compiler (GNAT). There are two primary components to this support:

• Ada Programming Language Support

• Classic API Ada Bindings

996 Chapter 39. Ada Support

Chapter 39 Section 39.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

39.2 Ada Programming Language Support

The Ada programming natively supports multi-threaded programming with its own tasking and
concurrency model. Native Ada multi-threaded applications should work using GNAT/RTEMS
with no changes.

The application developer will have to account for the specific requirements of the GNAT Run-
Time when configuring RTEMS. There are example Ada programs with RTEMS configuration
and startup sequences.

39.2. Ada Programming Language Support 997

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 39 Section 39.3

39.3 Classic API Ada Bindings

An Ada language binding exists for a subset of the RTEMS Classic API. In the early 1990’s,
there were C and Ada implementations of RTEMS which were functionally equivalent. The
source structure was as similar as possible. In fact, the top level c/ directory at one point had
a sibling ada/. The current Ada language bindings and test code was derived from that Ada
implementation.

The Ada binding specifically excludes some methods which are either not safe or not intended
for use from Ada programs. However, methods are generally only added to this binding when
a user makes a requests. Thus some methods that could be supported are not. If in doubt, ask
about a methods and contribute bindings.

The bindings are located in the c/src/ada directory of the RTEMS source tree. The tests are in
c/src/ada-tests. The bindings following a simple pattern to map the C Classic API calls into
Ada subprograms. The following rules are used:

• All RTEMS interfaces are in the RTEMS Ada package. The rtems_ and RTEMS_ prefixes in
the C version of the Classic API thus correspond to “RTEMS.” in Ada symbol nomenclature.
For example, rtems_task_create() in C is RTEMS.Task_Create() in Ada.

• Classic API directives tend to return an rtems_status_code. Some directives also have
an output parameter such as an object id on a create operation. Ada subprograms are
either pure functions with only a single return value or subprograms. For consistency, the
returned status code is always the last parameter of the Ada calling sequence.

Caution should be exercised when writing programs which mix Ada tasks, Classic API tasks,
and POSIX API threads. Ada tasks use a priority numbering scheme defined by the Ada pro-
gramming language. Each Ada task is implemented in GNAT/RTEMS as a single POSIX thread.
Thus Ada task priorities must be mapped onto POSIX thread priorities. Complicating matters,
Classic API tasks and POSIX API threads use different numbering schemes for priority. Low
numbers are high priority in the Classic API while indicating low priority in the POSIX threads
API. Experience writing mixed threading model programs teaches that creating a table of the
priorities used in the application with the value in all tasking models used is helpful.

The GNAT run-time uses a priority ceiling mutex to protect its data structures. The priority
ceiling value is one priority more important than the most important Ada task priority (in POSIX
API terms). Do not invoke any services implemented in Ada from a thread or task which is of
greater priority. This will result in a priority ceiling violation error and lead to a failure in the
Ada run-time.

Exercise extreme caution when considering writing code in Ada which will execute in the con-
text of an interrupt handler. Hardware interrupts are processed outside the context of any
thread in RTEMS and this can lead to violating assumptions in the GNAT run-time. Specifically
a priority ceiling mutex should never be used from an ISR and it is difficult to predict when the
Ada compiler or run-time will use a mutex.

RTEMS has two capabilities which can assist in avoiding this problem. The Classic API Timer
Manager allows the creation of Timer Service Routines which execute in the context of a task
rather than the clock tick Interrupt Service Routine. Similarly, there is support for Interrupt
Tasks which is a mechanism to defer the processing of the event from the hardware interrupt
level to a thread.

998 Chapter 39. Ada Support

CHAPTER

FORTY

LINKER SETS

999

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.1

40.1 Introduction

Linker sets are a flexible means to create arrays of items out of a set of object files at link-time.
For example it is possible to define an item I of type T in object file A and an item J of type T in
object file B to be a member of a linker set S. The linker will then collect these two items I and
J and place them in consecutive memory locations, so that they can be accessed like a normal
array defined in one object file. The size of a linker set is defined by its begin and end markers.
A linker set may be empty. It should only contain items of the same type.

The following macros are provided to create, populate and use linker sets.

• RTEMS_LINKER_SET_BEGIN (page 1004) - Designator of the linker set begin marker

• RTEMS_LINKER_SET_END (page 1005) - Designator of the linker set end marker

• RTEMS_LINKER_SET_SIZE (page 1006) - The linker set size in characters

• RTEMS_LINKER_SET_ITEM_COUNT (page 1007) - The linker set item count

• RTEMS_LINKER_SET_IS_EMPTY (page 1008) - Is the linker set empty?

• RTEMS_LINKER_SET_FOREACH (page 1009) - Iterate through the linker set items

• RTEMS_LINKER_ROSET_DECLARE (page 1010) - Declares a read-only linker set

• RTEMS_LINKER_ROSET (page 1011) - Defines a read-only linker set

• RTEMS_LINKER_ROSET_ITEM_DECLARE (page 1012) - Declares a read-only linker set
item

• RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE (page 1013) - Declares an ordered
read-only linker set item

• RTEMS_LINKER_ROSET_ITEM_REFERENCE (page 1014) - References a read-only linker
set item

• RTEMS_LINKER_ROSET_ITEM (page 1015) - Defines a read-only linker set item

• RTEMS_LINKER_ROSET_ITEM_ORDERED (page 1016) - Defines an ordered read-only
linker set item

• RTEMS_LINKER_ROSET_CONTENT (page 1017) - Marks a declaration as a read-only
linker set content

• RTEMS_LINKER_RWSET_DECLARE (page 1018) - Declares a read-write linker set

• RTEMS_LINKER_RWSET (page 1019) - Defines a read-write linker set

• RTEMS_LINKER_RWSET_ITEM_DECLARE (page 1020) - Declares a read-write linker set
item

• RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE (page 1021) - Declares an ordered
read-write linker set item

• RTEMS_LINKER_RWSET_ITEM_REFERENCE (page 1022) - References a read-write linker
set item

• RTEMS_LINKER_RWSET_ITEM (page 1023) - Defines a read-write linker set item

• RTEMS_LINKER_RWSET_ITEM_ORDERED (page 1024) - Defines an ordered read-write
linker set item

1000 Chapter 40. Linker Sets

Chapter 40 Section 40.1 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

• RTEMS_LINKER_RWSET_CONTENT (page 1025) - Marks a declaration as a read-write
linker set content

40.1. Introduction 1001

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.2

40.2 Background

Linker sets are used not only in RTEMS, but also for example in Linux, in FreeBSD, for the GNU
C constructor extension and for global C++ constructors. They provide a space efficient and
flexible means to initialize modules. A linker set consists of

• dedicated input sections for the linker (e.g. .ctors and .ctors.* in the case of global
constructors),

• a begin marker (e.g. provided by crtbegin.o, and

• an end marker (e.g. provided by crtend.o).

A module may place a certain data item into the dedicated input section. The linker will collect
all such data items in this section and create a begin and end marker. The initialization code
can then use the begin and end markers to find all the collected data items (e.g. pointers to
initialization functions).

In the linker command file of the GNU linker we need the following output section descriptions.

1 /* To be placed in a read-only memory region */
2 .rtemsroset : {
3 KEEP (*(SORT(.rtemsroset.*)))
4 }
5 /* To be placed in a read-write memory region */
6 .rtemsrwset : {
7 KEEP (*(SORT(.rtemsrwset.*)))
8 }

The KEEP() ensures that a garbage collection by the linker will not discard the content of this
section. This would normally be the case since the linker set items are not referenced directly.
The SORT() directive sorts the input sections lexicographically. Please note the lexicographical
order of the .begin, .content and .end section name parts in the RTEMS linker sets macros
which ensures that the position of the begin and end markers are right.

So, what is the benefit of using linker sets to initialize modules? They can be used to
initialize and include only those RTEMS managers and other components which are used
by the application. For example, in case an application uses message queues, it must
call rtems_message_queue_create(). In the module implementing this function, we can
place a linker set item and register the message queue handler constructor. Otherwise,
in case the application does not use message queues, there will be no reference to the
rtems_message_queue_create() function and the constructor is not registered, thus nothing
of the message queue handler will be in the final executable.

For an example see test program sptests/splinkersets01.

1002 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3 Directives

40.3. Directives 1003

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.1 RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker

CALLING SEQUENCE:

1 type *begin = RTEMS_LINKER_SET_BEGIN(set);

DESCRIPTION:
This macro generates the designator of the begin marker of the linker set identified by set.
The item at the begin marker address is the first member of the linker set if it exists, e.g. the
linker set is not empty. A linker set is empty, if and only if the begin and end markers have
the same address.

The set parameter itself must be a valid C designator on which no macro expansion is per-
formed. It uniquely identifies the linker set.

NOTE:
The compiler may try to be smart. In general it will not work to assign linker set be-
gin and end addresses to pointer variables and treat them like ordinary pointers. The
compiler may exploit the fact that actually two distinct objects are involved and use
this to optimize. To avoid trouble use RTEMS_LINKER_SET_SIZE - The linker set size
in characters (page 1006), RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count
(page 1007), RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty? (page 1008) and
RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items (page 1009).

1004 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.2 RTEMS_LINKER_SET_END - Designator of the linker set end marker

CALLING SEQUENCE:

1 type *end = RTEMS_LINKER_SET_END(set);

DESCRIPTION:
This macro generates the designator of the end marker of the linker set identified by set.
The item at the end marker address is not a member of the linker set. The set parameter
itself must be a valid C designator on which no macro expansion is performed. It uniquely
identifies the linker set.

40.3. Directives 1005

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.3 RTEMS_LINKER_SET_SIZE - The linker set size in characters

CALLING SEQUENCE:

1 size_t size = RTEMS_LINKER_SET_SIZE(set);

DESCRIPTION:
This macro returns the size of the linker set identified by set in characters. The set parameter
itself must be a valid C designator on which no macro expansion is performed. It uniquely
identifies the linker set.

1006 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.4 RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count

CALLING SEQUENCE:

1 size_t item_count = RTEMS_LINKER_SET_ITEM_COUNT(set);

DESCRIPTION:
This macro returns the item count of the linker set identified by set. The set parameter itself
must be a valid C designator on which no macro expansion is performed. It uniquely identifies
the linker set.

40.3. Directives 1007

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.5 RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty?

CALLING SEQUENCE:

1 bool is_empty = RTEMS_LINKER_SET_IS_EMPTY(set);

DESCRIPTION:
This macro returns true if the linker set identified by set is empty, otherwise returns false. The
set parameter itself must be a valid C designator on which no macro expansion is performed.
It uniquely identifies the linker set.

1008 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.6 RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET(myset, int);
2

3 int count(void)
4 {
5 int *item;
6 int n;
7

8 n = 0;
9 RTEMS_LINKER_SET_FOREACH(myset, item) {

10 n += *item;
11 }
12

13 return n;
14 }

DESCRIPTION:
This macro generates a for loop statement which iterates through each item of a linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The item parameter must be a
pointer to an item of the linker set. It iterates through all items of the linker set from begin
to end.

40.3. Directives 1009

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.7 RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_DECLARE(set, type);

DESCRIPTION:
This macro generates declarations for the begin and end markers of a read-only linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

1010 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.8 RTEMS_LINKER_ROSET - Defines a read-only linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET(set, type);

DESCRIPTION:
This macro generates definitions for the begin and end markers of a read-only linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

40.3. Directives 1011

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.9 RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_DECLARE(set, type, item);

DESCRIPTION:
This macro generates a declaration of an item contained in the read-only linker set
identified by set. For a description of the set, type, and item parameters see
RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item (page 1015).

1012 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.10 RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE - Declares an ordered
read-only linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE(set, type, item, order);

DESCRIPTION:
This macro generates a declaration of an ordered item contained in the read-only linker
set identified by set. For a description of the set, type, item, and order parameters
see RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-only linker set item
(page 1016).

40.3. Directives 1013

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.11 RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only linker
set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_REFERENCE(set, type, item);

DESCRIPTION:
This macro generates a reference to an item contained in the read-only linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

1014 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.12 RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM(set, type, item);

DESCRIPTION:
This macro generates a definition of an item contained in the read-only linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

40.3. Directives 1015

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.13 RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-only
linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_ORDERED(set, type, item, order);

DESCRIPTION:
This macro generates a definition of an ordered item contained in the read-only linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines the
type of the linker set items. The type must be the same for all macro invocations of a par-
ticular linker set. The item parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies an item in the linker set. The order parame-
ter must be a valid linker input section name part on which macro expansion is performed.
The items are lexicographically ordered according to the order parameter within a linker set.
Ordered items are placed before unordered items in the linker set.

NOTES:
To be resilient to typos in the order parameter, it is recommended to use the following con-
struct in macros defining items for a particular linker set (see enum in XYZ_ITEM()).

1 #include <rtems/linkersets.h>
2

3 typedef struct {
4 int foo;
5 } xyz_item;
6

7 /* The XYZ-order defines */
8 #define XYZ_ORDER_FIRST 0x00001000
9 #define XYZ_ORDER_AND_SO_ON 0x00002000

10

11 /* Defines an ordered XYZ-item */
12 #define XYZ_ITEM(item, order) \
13 enum { xyz_##item = order }; \
14 RTEMS_LINKER_ROSET_ITEM_ORDERED(\
15 xyz, const xyz_item *, item, order \
16) = { &item }
17

18 /* Example item */
19 static const xyz_item some_item = { 123 };
20 XYZ_ITEM(some_item, XYZ_ORDER_FIRST);

1016 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.14 RTEMS_LINKER_ROSET_CONTENT - Marks a declaration as a read-only
linker set content

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_CONTENT(set, decl);

DESCRIPTION:
This macro marks a declaration as a read-only linker set content. The linker set is identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The decl parameter must be an arbitrary
variable declaration.

40.3. Directives 1017

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.15 RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_DECLARE(set, type);

DESCRIPTION:
This macro generates declarations for the begin and end markers of a read-write linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

1018 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.16 RTEMS_LINKER_RWSET - Defines a read-write linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET(set, type);

DESCRIPTION:
This macro generates definitions for the begin and end markers of a read-write linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

40.3. Directives 1019

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.17 RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker set
item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_DECLARE(set, type, item);

DESCRIPTION:
This macro generates a declaration of an item contained in the read-write linker set
identified by set. For a description of the set, type, and item parameters see
RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item (page 1023).

1020 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.18 RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE - Declares an ordered
read-write linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE(set, type, item, order);

DESCRIPTION:
This macro generates a declaration of an ordered item contained in the read-write linker
set identified by set. For a description of the set, type, item, and order parameters
see RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-write linker set item
(page 1024).

40.3. Directives 1021

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.19 RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write linker
set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_REFERENCE(set, type, item);

DESCRIPTION:
This macro generates a reference to an item contained in the read-write linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

1022 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.20 RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM(set, type, item);

DESCRIPTION:
This macro generates a definition of an item contained in the read-write linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

40.3. Directives 1023

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

40.3.21 RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-write
linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_ORDERED(set, type, item, order);

DESCRIPTION:
This macro generates a definition of an ordered item contained in the read-write linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines the
type of the linker set items. The type must be the same for all macro invocations of a par-
ticular linker set. The item parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies an item in the linker set. The order parame-
ter must be a valid linker input section name part on which macro expansion is performed.
The items are lexicographically ordered according to the order parameter within a linker set.
Ordered items are placed before unordered items in the linker set.

NOTES:
To be resilient to typos in the order parameter, it is recommended to use the following con-
struct in macros defining items for a particular linker set (see enum in XYZ_ITEM()).

1 #include <rtems/linkersets.h>
2

3 typedef struct {
4 int foo;
5 } xyz_item;
6

7 /* The XYZ-order defines */
8 #define XYZ_ORDER_FIRST 0x00001000
9 #define XYZ_ORDER_AND_SO_ON 0x00002000

10

11 /* Defines an ordered XYZ-item */
12 #define XYZ_ITEM(item, order) \
13 enum { xyz_##item = order }; \
14 RTEMS_LINKER_RWSET_ITEM_ORDERED(\
15 xyz, const xyz_item *, item, order \
16) = { &item }
17

18 /* Example item */
19 static const xyz_item some_item = { 123 };
20 XYZ_ITEM(some_item, XYZ_ORDER_FIRST);

1024 Chapter 40. Linker Sets

Chapter 40 Section 40.3 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

40.3.22 RTEMS_LINKER_RWSET_CONTENT - Marks a declaration as a read-write
linker set content

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_CONTENT(set, decl);

DESCRIPTION:
This macro marks a declaration as a read-write linker set content. The linker set is identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The decl parameter must be an arbitrary
variable declaration.

40.3. Directives 1025

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 40 Section 40.3

1026 Chapter 40. Linker Sets

CHAPTER

FORTYONE

DIRECTIVE STATUS CODES

1027

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 41 Section 41.1

41.1 Introduction

The directive status code directives are:

• rtems_status_text (page 1030) - Return the name for the status code

1028 Chapter 41. Directive Status Codes

Chapter 41 Section 41.2 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

41.2 Directives

The directives are:

RTEMS_SUCCESSFUL successful completion
RTEMS_TASK_EXITTED returned from a task
RTEMS_MP_NOT_CONFIGURED multiprocessing not configured
RTEMS_INVALID_NAME invalid object name
RTEMS_INVALID_ID invalid object id
RTEMS_TOO_MANY too many
RTEMS_TIMEOUT timed out waiting
RTEMS_OBJECT_WAS_DELETED object was deleted while waiting
RTEMS_INVALID_SIZE invalid specified size
RTEMS_INVALID_ADDRESS invalid address specified
RTEMS_INVALID_NUMBER number was invalid
RTEMS_NOT_DEFINED item not initialized
RTEMS_RESOURCE_IN_USE resources outstanding
RTEMS_UNSATISFIED request not satisfied
RTEMS_INCORRECT_STATE task is in wrong state
RTEMS_ALREADY_SUSPENDED task already in state
RTEMS_ILLEGAL_ON_SELF illegal for calling task
RTEMS_ILLEGAL_ON_REMOTE_
OBJECT

illegal for remote object

RTEMS_CALLED_FROM_ISR invalid environment
RTEMS_INVALID_PRIORITY invalid task priority
RTEMS_INVALID_CLOCK invalid time buffer
RTEMS_INVALID_NODE invalid node id
RTEMS_NOT_CONFIGURED directive not configured
RTEMS_NOT_OWNER_OF_
RESOURCE

not owner of resource

RTEMS_NOT_IMPLEMENTED directive not implemented or feature not available in con-
figuration

RTEMS_INTERNAL_ERROR RTEMS inconsistency detected
RTEMS_NO_MEMORY could not get enough memory
RTEMS_IO_ERROR driver I/O error
RTEMS_INTERRUPTED returned by driver to indicate interrupted operation

41.2. Directives 1029

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 41 Section 41.2

41.2.1 STATUS_TEXT - Returns the enumeration name for a status code

CALLING SEQUENCE:

1 const char *rtems_status_text(
2 rtems_status_code code
3);

DIRECTIVE STATUS CODES
The status code enumeration name or “?” in case the status code is invalid.

DESCRIPTION:
Returns the enumeration name for the specified status code.

1030 Chapter 41. Directive Status Codes

CHAPTER

FORTYTWO

EXAMPLE APPLICATION

1 /*
2 * This file contains an example of a simple RTEMS
3 * application. It instantiates the RTEMS Configuration
4 * Information using confdef.h and contains two tasks:
5 * a user initialization task and a simple task.
6 */
7

8 #include <rtems.h>
9

10 rtems_task user_application(rtems_task_argument argument);
11

12 rtems_task init_task(
13 rtems_task_argument ignored
14)
15 {
16 rtems_id tid;
17 rtems_status_code status;
18 rtems_name name;
19

20 name = rtems_build_name('A', 'P', 'P', '1')
21

22 status = rtems_task_create(
23 name, 1, RTEMS_MINIMUM_STACK_SIZE,
24 RTEMS_NO_PREEMPT, RTEMS_FLOATING_POINT, &tid
25);
26 if (status != RTEMS_SUCCESSFUL) {
27 printf("rtems_task_create failed with status of %d.\n", status);
28 exit(1);
29 }
30

31 status = rtems_task_start(tid, user_application, 0);
32 if (status != RTEMS_SUCCESSFUL) {
33 printf("rtems_task_start failed with status of %d.\n", status);
34 exit(1);
35 }
36

37 status = rtems_task_delete(SELF); /* should not return */
(continues on next page)

1031

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 42 Section 42.0

(continued from previous page)

38

39 printf("rtems_task_delete returned with status of %d.\n", status);
40 exit(1);
41 }
42

43 rtems_task user_application(rtems_task_argument argument)
44 {
45 /* application specific initialization goes here */
46 while (1) { /* infinite loop */
47 /* APPLICATION CODE GOES HERE
48 *
49 * This code will typically include at least one
50 * directive which causes the calling task to
51 * give up the processor.
52 */
53 }
54 }
55

56 /* The Console Driver supplies Standard I/O. */
57 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
58 /* The Clock Driver supplies the clock tick. */
59 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
60 #define CONFIGURE_MAXIMUM_TASKS 2
61 #define CONFIGURE_INIT_TASK_NAME rtems_build_name('E', 'X', 'A', 'M')
62 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
63 #define CONFIGURE_INIT
64 #include <rtems/confdefs.h>

1032 Chapter 42. Example Application

CHAPTER

FORTYTHREE

GLOSSARY

ABI
This term is an acronym for Application Binary Interface.

active
A term used to describe an object which has been created by an application.

AMP
This term is an acronym for Asymmetric Multiprocessing.

APA
This term is an acronym for Arbitrary Processor Affinity. APA schedulers allow a thread to
have an arbitrary affinity to a processor set, rather than a restricted mapping to only one
processor of the set or the ability to run on all processors of the set.

It has two variants, Weak APA and Strong APA.

aperiodic task
A task which must execute only at irregular intervals and has only a soft deadline.

API
This term is an acronym for Application Programming Interface.

application
In this document, software which makes use of RTEMS.

ASR
This term is an acronym for Asynchronous Signal Routine.

assembler language
The assembler language is a programming language which can be translated very easily into
machine code and data. For this project assembler languages are restricted to languages
accepted by the GNU assembler program for the target architectures.

asynchronous
Not related in order or timing to other occurrences in the system.

Asynchronous Signal Routine
Similar to a hardware interrupt except that it is associated with a task and is run in the context
of a task. The directives provided by the signal manager are used to service signals.

atomic operations
Atomic operations are defined in terms of C11.

awakened
A term used to describe a task that has been unblocked and may be scheduled to the CPU.

1033

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

BCB
This term is an acronym for Barrier Control Block.

big endian
A data representation scheme in which the bytes composing a numeric value are arranged
such that the most significant byte is at the lowest address.

bit-mapped
A data encoding scheme in which each bit in a variable is used to represent something differ-
ent. This makes for compact data representation.

block
A physically contiguous area of memory.

blocked task
The task state entered by a task which has been previously started and cannot continue exe-
cution until the reason for waiting has been satisfied. Blocked tasks are not an element of the
set of ready tasks of a scheduler instance.

Board Support Package
A collection of device initialization and control routines specific to a particular type of board
or collection of boards.

broadcast
To simultaneously send a message to a logical set of destinations.

BSP
This term is an acronym for Board Support Package.

buffer
A fixed length block of memory allocated from a partition.

C language
The C language for this project is defined in terms of C11.

C++11
The standard ISO/IEC 14882:2011.

C++14
The standard ISO/IEC 14882:2014.

C++17
The standard ISO/IEC 14882:2017.

C++20
The standard ISO/IEC 14882:2020.

C11
The standard ISO/IEC 9899:2011.

C17
The standard ISO/IEC 9899:2018.

calling convention
The processor and compiler dependent rules which define the mechanism used to invoke
subroutines in a high-level language. These rules define the passing of arguments, the call
and return mechanism, and the register set which must be preserved.

CCB
This term is an acronym for Change Control Board.

1034 Chapter 43. Glossary

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

Central Processing Unit
This term is equivalent to the terms processor and microprocessor.

chain
A data structure which allows for efficient dynamic addition and removal of elements. It
differs from an array in that it is not limited to a predefined size.

Clock Driver
The Clock Driver is a driver which provides the clock tick and a time counter. The time counter
is used to drive the CLOCK_REALTIME and CLOCK_MONOTONIC. The Clock Driver can be
initialized by the application with the CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
(page 596) and CONFIGURE_MICROSECONDS_PER_TICK (page 583) application configura-
tion options.

clock tick
The clock tick is a coarse time measure provided by RTEMS. The Clock Driver emits clock
ticks at rate specified by the CONFIGURE_MICROSECONDS_PER_TICK (page 583) application
configuration option. In contrast to CLOCK_REALTIME and CLOCK_MONOTONIC, the clock
tick rate is not affected by incremental adjustments.

CLOCK_MONOTONIC
The CLOCK_MONOTONIC is a clock provided by RTEMS which measures the time since an
unspecified starting point. In contrast to CLOCK_REALTIME, this clock cannot be set. It may
be affected by incremental adjustments for example carried out by the NTP or the use of a
PPS signal. See also CLOCK_REALTIME, clock tick, and Clock Driver.

CLOCK_REALTIME
The CLOCK_REALTIME is a clock provided by RTEMS which measures the real time (also
known as wall-clock time). It is defined by POSIX. In particular, every day is treated as if it
contains exactly 86400 seconds and leap seconds are ignored. This clock can be set by the
application which may result in time jumps. It may be affected by incremental adjustments for
example carried out by the NTP or the use of a PPS signal. RTEMS can represent time points
of this clock in nanoseconds ranging from 1988-01-01T00:00:00.000000000Z to 2514-05-
31T01:53:03.999999999Z. See also CLOCK_MONOTONIC, clock tick, and Clock Driver.

cluster
We have clustered scheduling in case the set of processors of a system is partitioned into non-
empty pairwise disjoint subsets. These subsets are called clusters. Clusters with a cardinality
of one are partitions. Each cluster is owned by exactly one scheduler instance.

coalesce
The process of merging adjacent holes into a single larger hole. Sometimes this process is
referred to as garbage collection.

Configuration Table
A table which contains information used to tailor RTEMS for a particular application.

context
All of the processor registers and operating system data structures associated with a task.

context switch
Alternate term for task switch. Taking control of the processor from one task and transferring
it to another task.

control block
A data structure used by the executive to define and control an object.

1035

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

core
When used in this manual, this term refers to the internal executive utility functions. In the
interest of application portability, the core of the executive should not be used directly by
applications.

CPU
This term is an acronym for Central Processing Unit.

critical section
A section of code which must be executed indivisibly.

CRT
This term is an acronym for Cathode Ray Tube. Normally used in reference to the man-
machine interface.

current priority
The current priority of a task is the task priority with respect to the home scheduler of the task.
It is an aggregation of the real priority and temporary priority adjustments due to locking
protocols, the rate-monotonic period objects on some schedulers such as EDF, and the POSIX
sporadic server. The current priority is an eligible priority.

deadline
A fixed time limit by which a task must have completed a set of actions. Beyond this point,
the results are of reduced value and may even be considered useless or harmful.

device
A peripheral used by the application that requires special operation software. See also device
driver.

device driver
Control software for special peripheral devices used by the application.

Device Driver Table
A table which contains the entry points for each of the configured device drivers.

directives
RTEMS’ provided routines that provide support mechanisms for real-time applications.

dispatch
The act of loading a task’s context onto the CPU and transferring control of the CPU to that
task.

Doorstop
Doorstop is a requirements management tool.

dormant
The state entered by a task after it is created and before it has been started.

DPCB
This term is an acronym for Dual-Ported Memory Control Block.

dual-ported
A term used to describe memory which can be accessed at two different addresses.

dynamic extension sets
The dynamic extension sets are a list of user extensions. The list is defined by the system ser-
vices used by the application and directive calls such as rtems_extension_create() (page 550).
See also initial extension sets.

1036 Chapter 43. Glossary

https://github.com/doorstop-dev/doorstop

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

EARS
This term is an acronym for Easy Approach to Requirements Syntax.

EDF
This term is an acronym for Earliest Deadline First.

ELF
This term is an acronym for Executable and Linkable Format.

eligible priority
An eligible priority of a task is the task priority with respect to the corresponding eligible
scheduler of the task. An eligible priority is either the current priority or a helping priority of a
task.

eligible scheduler
An eligible scheduler of a task is a scheduler which can be used by the task to allocate a
processor for the task.

embedded
An application that is delivered as a hidden part of a larger system. For example, the soft-
ware in a fuel-injection control system is an embedded application found in many late-model
automobiles.

entry point
The address at which a function or task begins to execute. In C, the entry point of a function
is the function’s name.

envelope
A buffer provided by the MPCI layer to RTEMS which is used to pass messages between nodes
in a multiprocessor system. It typically contains routing information needed by the MPCI. The
contents of an envelope are referred to as a packet.

error code
This term has the same meaning as status code.

ESCB
This term is an acronym for Extension Set Control Block.

events
A method for task communication and synchronization. The directives provided by the event
manager are used to service events.

exception
A synonym for interrupt.

executing task
The task state entered by a task after it has been given control of the processor. In SMP
configurations, a task may be registered as executing on more than one processor for short
time frames during task migration. Blocked tasks can be executing until they issue a thread
dispatch.

executive
In this document, this term is used to referred to RTEMS. Commonly, an executive is a small
real-time operating system used in embedded systems.

exported
An object known by all nodes in a multiprocessor system. An object created with the GLOBAL
attribute will be exported.

1037

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

extension forward order
The user extensions may be invoked in extension forward order. In forward order, all user
extensions of the initial extension sets are invoked before all user extensions of the dynamic
extension sets. In the initial extension sets the order is defined by the table index. The user
extension with the lowest table index is invoked first. In the dynamic extension sets the order
is defined by the registration order. The first registered user extension is invoked first. See
also extension reverse order.

extension reverse order
The user extensions may be invoked in extension reverse order. In reverse order, all user
extensions of the dynamic extension sets are invoked before all user extensions of the initial
extension sets. In the dynamic extension sets the order is defined by the registration order.
The last registered user extension is invoked first. In the initial extension sets the order is
defined by the table index. The user extension with the highest table index is invoked first.
See also extension forward order.

external address
The address used to access dual-ported memory by all the nodes in a system which do not
own the memory.

FIFO
This term is an acronym for First In First Out.

First In First Out
A discipline for manipulating entries in a data structure. See also Last In First Out.

floating point coprocessor
A component used in computer systems to enhance performance in mathematically intensive
situations. It is typically viewed as a logical extension of the primary processor.

formal model
A model of a computing component (hardware or software) that has a mathematically based
semantics.

freed
A resource that has been released by the application to RTEMS.

Futex
This term is an abbreviation for Fast User-Space Locking. The futex support in RTEMS is pro-
vided for the barriers of the OpenMP library provided by GCC. It could be used to implement
high performance SMP synchronization primitives which offer random-fairness.

GCC
This term is an acronym for GNU Compiler Collection.

global
An object that has been created with the GLOBAL attribute and exported to all nodes in a
multiprocessor system.

global construction
In the global construction, the C++ global constructors and constructor functions are in-
voked. See Global Construction (page 92).

GNAT
GNAT is the GNU compiler for Ada, integrated into the GCC.

GNU
This term is an acronym for GNU’s Not Unix.

1038 Chapter 43. Glossary

https://man7.org/linux/man-pages/man2/futex.2.html
https://gcc.gnu.org/
https://www.gnu.org/

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

GPL
This term is an acronym for GNU General Public License.

GPLv2
This term is an acronym for GNU General Public License Version 2.

GPLv3
This term is an acronym for GNU General Public License Version 3.

GR712RC
The GR712RC is a system-on-chip containing two processors of the SPARC target architecture.

GR740
The GR740 is a system-on-chip containing four processors of the SPARC target architecture.

handler
The equivalent of a manager, except that it is internal to RTEMS and forms part of the core.
A handler is a collection of routines which provide a related set of functions. For example,
there is a handler used by RTEMS to manage all objects.

hard real-time system
A real-time system in which a missed deadline causes the worked performed to have no value
or to result in a catastrophic effect on the integrity of the system.

heap
A data structure used to dynamically allocate and deallocate variable sized blocks of memory.

heir task
A task is an heir if it is registered as an heir in a processor of the system. A task can be the
heir on at most one processor in the system. In case the executing and heir tasks differ on
a processor and a thread dispatch is marked as necessary, then the next thread dispatch will
make the heir task the executing task.

helping priority
A helping priority of a task is the task priority with respect to the corresponding helping
scheduler of the task. A helping priority is an eligible priority.

helping scheduler
A helping scheduler of a task is a scheduler which is a eligible scheduler and which is not the
home scheduler of the task.

heterogeneous
A multiprocessor computer system composed of dissimilar processors.

higher priority
A task H has a higher priority than a task L, if task H is more important than task L.

home scheduler
The home scheduler of a task is a scheduler which is an eligible scheduler and which
is assigned to the task during its initialization or explicitly via a directive call such as
rtems_task_set_scheduler() (page 137).

homogeneous
A multiprocessor computer system composed of a single type of processor.

I/O
This term is an acronym for Input/Output.

1039

https://www.gnu.org/licenses
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gaisler.com/index.php/products/components/gr712rc
https://www.gaisler.com/index.php/products/components/gr740

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

ID
An RTEMS assigned identification tag used to access an active object.

IDLE task
A special low priority task which assumes control of the CPU when no other task is able to
execute.

ineligible scheduler
An ineligible scheduler of a task is a scheduler which is not an eligible scheduler.

initial extension sets
The initial extension sets are a table of user extensions. The table is defined by the appli-
cation configuration for example through the CONFIGURE_INITIAL_EXTENSIONS (page 573)
application configuration option. The initial extension sets cannot be altered during runtime
through directive calls. See also dynamic extension sets.

interface
A specification of the methodology used to connect multiple independent subsystems.

internal address
The address used to access dual-ported memory by the node which owns the memory.

interrupt
A hardware facility that causes the CPU to suspend execution, save its status, and transfer
control to a specific location.

interrupt level
A mask used to by the CPU to determine which pending interrupts should be serviced. If a
pending interrupt is below the current interrupt level, then the CPU does not recognize that
interrupt.

interrupt service
An interrupt service consists of an Interrupt Service Routine which is called with a user provided
argument upon reception of an interrupt service request. The routine is invoked in interrupt
context. Interrupt service requests may have a priority and an affinity to a set of processors.
An interrupt service is a software component.

Interrupt Service Routine
An ISR is invoked by the CPU to process a pending interrupt.

ISR
This term is an acronym for Interrupt Service Routine.

ISVV
This term is an acronym for Independent Software Verification and Validation.

kernel
In this document, this term is used as a synonym for executive.

Last In First Out
A discipline for manipulating entries in a data structure. See also First In First Out.

LIFO
This term is an acronym for Last In First Out.

Linear Temporal Logic
This is a logic that states properties about (possibly infinite) sequences of states.

1040 Chapter 43. Glossary

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

list
A data structure which allows for dynamic addition and removal of entries. It is not statically
limited to a particular size.

little endian
A data representation scheme in which the bytes composing a numeric value are arranged
such that the least significant byte is at the lowest address.

LLVM
This term is an acronym for Low Level Virtual Machine. The LLVM Project is a collection of
modular and reusable compiler and toolchain technologies.

local
An object which was created with the LOCAL attribute and is accessible only on the node it
was created and resides upon. In a single processor configuration, all objects are local.

local operation
The manipulation of an object which resides on the same node as the calling task.

logical address
An address used by an application. In a system without memory management, logical ad-
dresses will equal physical addresses.

loosely-coupled
A multiprocessor configuration where shared memory is not used for communication.

lower priority
A task L has a lower priority than a task H, if task L is less important than task H.

LTL
This term is an acronym for Linear Temporal Logic.

major number
The index of a device driver in the Device Driver Table.

manager
A group of related RTEMS’ directives which provide access and control over resources.

MCS
This term is an acronym for Mellor-Crummey Scott.

memory pool
Used interchangeably with heap.

message
A sixteen byte entity used to communicate between tasks. Messages are sent to message
queues and stored in message buffers.

message buffer
A block of memory used to store messages.

message queue
An RTEMS object used to synchronize and communicate between tasks by transporting mes-
sages between sending and receiving tasks.

Message Queue Control Block
A data structure associated with each message queue used by RTEMS to manage that message
queue.

1041

https://www.llvm.org

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

minor number
A numeric value passed to a device driver, the exact usage of which is driver dependent.

mode
An entry in a task’s control block that is used to determine if the task allows preemption,
timeslicing, processing of signals, and the interrupt disable level used by the task.

MPCI
This term is an acronym for Multiprocessor Communications Interface Layer.

MrsP
This term is an acronym for Multiprocessor Resource-Sharing Protocol.

multiprocessing
The simultaneous execution of two or more processes by a multiple processor computer sys-
tem.

multiprocessor
A computer with multiple CPUs available for executing applications.

Multiprocessor Communications Interface Layer
A set of user-provided routines which enable the nodes in a multiprocessor system to commu-
nicate with one another.

Multiprocessor Configuration Table
The data structure defining the characteristics of the multiprocessor target system with which
RTEMS will communicate.

multitasking
The alternation of execution amongst a group of processes on a single CPU. A scheduling
algorithm is used to determine which process executes at which time.

mutual exclusion
A term used to describe the act of preventing other tasks from accessing a resource simulta-
neously.

nested
A term used to describe an ASR that occurs during another ASR or an ISR that occurs during
another ISR.

node
A term used to reference a processor running RTEMS in a multiprocessor system.

non-existent
The state occupied by an uncreated or deleted task.

NTP
This term is an acronym for Network Time Protocol.

NUMA
This term is an acronym for Non-Uniform Memory Access.

numeric coprocessor
A component used in computer systems to enhance performance in mathematically intensive
situations. It is typically viewed as a logical extension of the primary processor.

OBC
This term is an acronym for On-Board Computer.

1042 Chapter 43. Glossary

https://en.wikipedia.org/wiki/Network_Time_Protocol

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

object
In this document, this term is used to refer collectively to tasks, timers, message queues,
partitions, regions, semaphores, ports, and rate monotonic periods. All RTEMS objects have
IDs and user-assigned names.

object-oriented
A term used to describe systems with common mechanisms for utilizing a variety of entities.
Object-oriented systems shield the application from implementation details.

OMIP
This term is an acronym for O(m) Independence-Preserving Protocol. OMIP is a generaliza-
tion of the priority inheritance locking protocol to clustered scheduling. The m denotes the
number of processors in the system.

OpenMP
This term is an acronym for Open Multi-Processing.

operating system
The software which controls all the computer’s resources and provides the base upon which
application programs can be written.

overhead
The portion of the CPUs processing power consumed by the operating system.

packet
A buffer which contains the messages passed between nodes in a multiprocessor system. A
packet is the contents of an envelope.

partition
This term has two definitions:

1. A partition is an RTEMS object which is used to allocate and deallocate fixed size blocks
of memory from an dynamically specified area of memory.

2. A cluster with a cardinality of one is a partition.

Partition Control Block
A data structure associated with each partition used by RTEMS to manage that partition.

PCB
This term is an acronym for Period Control Block.

pending
A term used to describe a task blocked waiting for an event, message, semaphore, or signal.

periodic task
A task which must execute at regular intervals and comply with a hard deadline.

physical address
The actual hardware address of a resource.

poll
A mechanism used to determine if an event has occurred by periodically checking for a par-
ticular status. Typical events include arrival of data, completion of an action, and errors.

pool
A collection from which resources are allocated.

portability
A term used to describe the ease with which software can be rehosted on another computer.

1043

https://www.openmp.org/

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

POSIX
This term is an acronym for Portable Operating System Interface.

posting
The act of sending an event, message, semaphore, or signal to a task.

PPS
This term is an acronym for Pulse-Per-Second.

preempt
The act of forcing a task to relinquish the processor and dispatching to another task.

priority
The priority is a mechanism used to represent the relative importance of an element in a set
of items.

For example, RTEMS uses task priorities to determine which task should execute on a proces-
sor. In RTEMS, priorities are represented by non-negative integers.

For the Classic API, if a numerical priority value A is greater than a numerical priority value B,
then A expresses a lower priority than B. If a numerical priority value C is less than a numerical
priority value D, then C expresses a higher priority than D.

For the POSIX API, if a numerical priority value R is less than a numerical priority value S, then
R expresses a lower priority than S. If a numerical priority value T is greater than a numerical
priority value U, then T expresses a higher priority than U.

priority boosting
A simple approach to extend the priority inheritance protocol for clustered scheduling is pri-
ority boosting. In case a mutex is owned by a task of another cluster, then the priority of the
owner task is raised to an artificially high priority. This approach is not used in RTEMS, see
also OMIP.

priority inheritance
An algorithm that calls for the lower priority task holding a resource to have its priority
increased to that of the highest priority task blocked waiting for that resource. This avoids
the problem of priority inversion.

priority inversion
A form of indefinite postponement which occurs when a high priority tasks requests access
to shared resource currently allocated to low priority task. The high priority task must block
until the low priority task releases the resource.

processor utilization
The percentage of processor time used by a task or a set of tasks.

proxy
An RTEMS control structure used to represent, on a remote node, a task which must block as
part of a remote operation.

Proxy Control Block
A data structure associated with each proxy used by RTEMS to manage that proxy.

PTCB
This term is an acronym for Partition Control Block.

PXCB
This term is an acronym for Proxy Control Block.

1044 Chapter 43. Glossary

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Pulse-per-second_signal

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

QCB
This term is an acronym for Message Queue Control Block.

quantum
The application defined unit of time in which the processor is allocated.

queue
Alternate term for message queue.

ready task
A task occupies this state when it is available to be given control of a processor. A ready
task has no processor assigned. The scheduler decided that other tasks are currently more
important. A task that is ready to execute and has a processor assigned is called scheduled.

real priority
Each task has exactly one real priority. The real priority is always with respect to the home
scheduler of a task. It is defined during task initialization. It may be changed by directives
such as rtems_task_set_priority() (page 128) and rtems_task_set_scheduler() (page 137). The
real priority is the foundation of the current priority.

real-time
A term used to describe systems which are characterized by requiring deterministic response
times to external stimuli. The external stimuli require that the response occur at a precise
time or the response is incorrect.

reentrant
A term used to describe routines which do not modify themselves or global variables.

refinement
A refinement is a relationship between a specification and its implementation as code.

region
An RTEMS object which is used to allocate and deallocate variable size blocks of memory
from a dynamically specified area of memory.

Region Control Block
A data structure associated with each region used by RTEMS to manage that region.

registers
Registers are locations physically located within a component, typically used for device control
or general purpose storage.

reification
Another term used to denote refinement.

remote
Any object that does not reside on the local node.

remote operation
The manipulation of an object which does not reside on the same node as the calling task.

ReqIF
This term is an acronym for Requirements Interchange Format.

resource
A hardware or software entity to which access must be controlled.

resume
Removing a task from the suspend state. If the task’s state is ready following a call to the

1045

https://www.omg.org/spec/ReqIF/About-ReqIF/

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

rtems_task_resume directive, then the task is available for scheduling.

return code
This term has the same meaning as status code.

return value
The value returned by a function. A return value may be a status code.

RNCB
This term is an acronym for Region Control Block.

round-robin
A task scheduling discipline in which tasks of equal priority are executed in the order in which
they are made ready.

RS-232
A standard for serial communications.

RTEMS
This term is an acronym for Real-Time Executive for Multiprocessor Systems.

RTEMS epoch
The RTEMS epoch is a point in time. It is 1988-01-01T00:00:00Z in ISO 8601 time format.

running
The state of a rate monotonic timer while it is being used to delineate a period. The timer
exits this state by either expiring or being canceled.

scenario
In the context of formal verification, in a setting that involves many concurrent tasks that
interleave in arbitrary ways, a scenario describes a single specific possible interleaving. One
interpretation of the behaviour of a concurrent system is the set of all its scenarios.

schedulable
A set of tasks which can be guaranteed to meet their deadlines based upon a specific schedul-
ing algorithm.

schedule
The process of choosing which task should next enter the executing state.

scheduled task
A task is scheduled if it is allowed to execute and has a processor assigned. Such a task
executes currently on a processor or is about to start execution. A task about to start execution
it is an heir task on exactly one processor in the system.

scheduler
A scheduler or scheduling algorithm allocates processors to a subset of its set of ready tasks.
So it manages access to the processor resource. Various algorithms exist to choose the tasks
allowed to use a processor out of the set of ready tasks. One method is to assign each task a
priority number and assign the tasks with the lowest priority number to one processor of the
set of processors owned by a scheduler instance.

A scheduler is either an eligible scheduler or a ineligible scheduler for a task. An eligible sched-
uler is either the home scheduler or a helping scheduler for a task.

scheduler instance
A scheduler instance is a scheduling algorithm with a corresponding context to store its in-
ternal state. Each processor in the system is owned by at most one scheduler instance. The

1046 Chapter 43. Glossary

https://en.wikipedia.org/wiki/ISO_8601

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

processor to scheduler instance assignment is determined at application configuration time.
See Configuring a System (page 555).

segments
Variable sized memory blocks allocated from a region.

semantics
This term refers to the meaning of text or utterances in some language. In a software engi-
neering context these will be programming, modelling or specification languages.

semaphore
An RTEMS object which is used to synchronize tasks and provide mutually exclusive access
to resources.

Semaphore Control Block
A data structure associated with each semaphore used by RTEMS to manage that semaphore.

shared memory
Memory which is accessible by multiple nodes in a multiprocessor system.

signal
An RTEMS provided mechanism to communicate asynchronously with a task. Upon reception
of a signal, the ASR of the receiving task will be invoked.

signal set
A thirty-two bit entity which is used to represent a task’s collection of pending signals and the
signals sent to a task.

SIS
This term is an acronym for Simple Instruction Simulator. The SIS is a SPARC V7/V8 and
RISC-V RV32IMACFD target architecture simulator.

SMCB
This term is an acronym for Semaphore Control Block.

SMP
This term is an acronym for Symmetric Multiprocessing.

SMP barriers
The SMP barriers ensure that a defined set of independent threads of execution on a set of
processors reaches a common synchronization point in time. They are implemented using
atomic operations. Currently a sense barrier is used in RTEMS.

SMP locks
The SMP locks ensure mutual exclusion on the lowest level and are a replacement for the
sections of disabled interrupts. Interrupts are usually disabled while holding an SMP lock.
They are implemented using atomic operations. Currently a ticket lock is used in RTEMS.

soft real-time system
A real-time system in which a missed deadline does not compromise the integrity of the
system.

software component
This term is defined by ECSS-E-ST-40C 3.2.28 as a “part of a software system”. For this project
a software component shall be any of the following items and nothing else:

• software unit

• explicitly defined ELF symbol in a source code file

1047

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

• assembler language data in a source code file

• C language object with static storage duration

• C language object with thread-local storage duration

• thread

• interrupt service

• collection of software components (this is a software architecture element)

Please note that explicitly defined ELF symbols and assembler language data are considered
a software component only if they are defined in a source code file. For example, this rules
out symbols and data generated as side-effects by the toolchain (compiler, assembler, linker)
such as jump tables, linker trampolines, exception frame information, etc.

software item
This term has the same meaning as software product.

software product
The software product is the RTEMS real-time operating system.

software unit
This term is defined by ECSS-E-ST-40C 3.2.24 as a “separately compilable piece of source
code”. For this project a software unit shall be any of the following items and nothing else:

• assembler language function in a source code file

• C language function (external and internal linkage)

A software unit is a software component.

source code
This project uses the source code definition of the Linux Information Project: “Source code
(also referred to as source or code) is the version of software as it is originally written (i.e.,
typed into a computer) by a human in plain text (i.e., human readable alphanumeric charac-
ters).”

SPARC
This term is an acronym for Scalable Processor ARChitecture. See also target architecture.

sporadic task
A task which executes at irregular intervals and must comply with a hard deadline. A mini-
mum period of time between successive iterations of the task can be guaranteed.

stack
A data structure that is managed using a Last In First Out (LIFO) discipline. Each task has a
stack associated with it which is used to store return information and local variables.

status code
A status code indicates the completion status of an operation. For example most RTEMS
directives return a status code through the return value to indicate a successful operation or
error conditions.

Strong APA
Strong APA is a specialization of APA. Schedulers which implement strong APA recursively
searches for a processor in the thread’s affinity set, whenever a thread becomes ready for exe-
cution, followed by the processors in the affinity set of threads that are assigned the processor
present in the ready thread’s affinity set. This is done to find a thread to processor mapping

1048 Chapter 43. Glossary

http://www.linfo.org/source_code.html
https://en.wikipedia.org/wiki/SPARC

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

that does not violate the priority ordering and to provide a thread to processor mapping with
a higher total priority of the threads allocated a processor. Similar analysis is done when a
thread blocks. See also [CGB14].

suspend
A term used to describe a task that is not competing for the CPU because it has had a
rtems_task_suspend directive.

synchronous
Related in order or timing to other occurrences in the system.

system call
In this document, this is used as an alternate term for directive.

system-on-chip
This project uses the system on a chip definition of Wikipedia: “A system on a chip or system-
on-chip is an integrated circuit that integrates most or all components of a computer or other
electronic system.”

Systems on a chip are target systems for applications using RTEMS.

target
The system on which the application will ultimately execute.

target architecture
The target architecture is the instruction set architecture (ISA) of the target. Some RTEMS
features depend on the target architecture. For the details consult the RTEMS CPU Architecture
Supplement.

TAS
This term is an acronym for Test-And-Set.

task
This project uses the thread definition of Wikipedia: “a thread of execution is the smallest
sequence of programmed instructions that can be managed independently by a scheduler,
which is typically a part of the operating system.”

It consists normally of a set of registers and a stack. The scheduler assigns processors to a
subset of the ready tasks. The terms task and thread are synonym in RTEMS. The term task is
used throughout the Classic API, however, internally in the operating system implementation
and the POSIX API the term thread is used.

A task is a software component.

Task Control Block
A data structure associated with each task used by RTEMS to manage that task.

task entry
The task entry is invoked to execute the task’s job. Before the task entry is invoked, the
thread begin user extensions run in the context of the task. After the return of the task entry,
the thread exitted user extensions run in the context of the task. The first user initialization
task performs the global construction after running the thread begin extensions and before the
task entry is invoked. See also rtems_task_start() (page 118).

task migration
Task migration happens in case a task stops execution on one processor and resumes execution
on another processor.

1049

https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Thread_(computing)

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

task priority
A task priority of a task determines its importance relative to other tasks.

The scheduler use task priorities to determine which ready task gets a processor allocated, see
scheduled task. The eligible priorities of a task define the position of the task in a wait queue
which uses the priority discipline. Each task has at least the real priority.

Task priorities are used in wait queues which use the priority discipline to determine the
dequeueing order of tasks.

task processor affinity
The set of processors on which a task is allowed to execute.

task switch
Alternate terminology for context switch. Taking control of the processor from one task and
given to another.

TCB
This term is an acronym for Task Control Block.

thread
This term has the same meaning as task.

thread dispatch
The thread dispatch transfers control of the processor from the currently executing thread to
the heir thread of the processor.

tick
The basic unit of time used by RTEMS. It is a user-configurable number of microseconds. The
current tick expires when a clock tick directive is invoked.

tightly-coupled
A multiprocessor configuration system which communicates via shared memory.

timeout
An argument provided to a number of directives which determines the maximum length of
time an application task is willing to wait to acquire the resource if it is not immediately
available.

timer
An RTEMS object used to invoke subprograms at a later time.

Timer Control Block
A data structure associated with each timer used by RTEMS to manage that timer.

timeslice
The application defined unit of time in which the processor is allocated.

timeslicing
A task scheduling discipline in which tasks of equal priority are executed for a specific period
of time before being preempted by another task.

TLS
This term is an acronym for Thread-Local Storage [Dre13]. TLS is available in C11 and
C++11. The support for TLS depends on the CPU port [RTE].

TMCB
This term is an acronym for Timer Control Block.

1050 Chapter 43. Glossary

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

transient overload
A temporary rise in system activity which may cause deadlines to be missed. Rate Monotonic
Scheduling can be used to determine if all deadlines will be met under transient overload.

TTAS
This term is an acronym for Test and Test-And-Set.

Unix epoch
The Unix epoch is a point in time. It is 1970-01-01T00:00:00Z in ISO 8601 time format.

User Extension Table
A table which contains the entry points for each user extensions.

user extensions
User extensions are software routines provided by the application to enhance the function-
ality of RTEMS. An active user extension is either in the initial extension sets or the dynamic
extension sets. User extensions are invoked in extension forward order or extension reverse
order.

User Initialization Tasks Table
A table which contains the information needed to create and start each of the user initializa-
tion tasks.

user-provided
These terms are used to designate any software routines which must be written by the appli-
cation designer.

user-supplied
This term has the same meaning as user-provided.

vector
Memory pointers used by the processor to fetch the address of routines which will handle
various exceptions and interrupts.

wait queue
The list of tasks blocked pending the release of a particular resource. Message queues, re-
gions, and semaphores have a wait queue associated with them.

Weak APA
Weak APA is a specialization of APA. This refers to Linux’s push and pull implementation of
APA model. When a thread becomes ready for execution, it is allocated a processor if there
is an idle processor, or a processor executing a lower priority thread in its affinity set. Unlike
Strong APA, no thread is migrated from its processor to find a thread to processor mapping.
See also [CGB14].

YAML
This term is an acronym for YAML Ain’t Markup Language.

yield
When a task voluntarily releases control of the processor.

1051

https://en.wikipedia.org/wiki/ISO_8601
https://yaml.org/

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

1052 Chapter 43. Glossary

BIBLIOGRAPHY

[RTE] RTEMS CPU Architecture Supplement. URL: https://docs.rtems.org/branches/
master/cpu-supplement.pdf.

[BBB+13] Dave Banham, Andrew Banks, Mark Bradbury, Paul Burden, Mark Dawson-
Butterworth, Mike Hennell, Chris Hills, Steve Montgomery, Chris Tapp, and Liz
Whiting. MISRA C:2012 Guidelines for the Use of the C Language in Critical Systems.
MISRA Limited, March 2013. ISBN 978-1906400101.

[Boe12] Hans-J. Boehm. Can Seqlocks Get Along With Programming Language Memory
Models? Technical Report, HP Laboratories, June 2012. HPL-2012-68. URL: http:
//www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf.

[Bra11] Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Oper-
ating Systems. PhD thesis, The University of North Carolina at Chapel Hill, 2011.
URL: http://www.cs.unc.edu/~bbb/diss/brandenburg-diss.pdf.

[Bra13] Björn B. Brandenburg. A Fully Preemptive Multiprocessor Semaphore Protocol
for Latency-Sensitive Real-Time Applications. In Proceedings of the 25th Euromi-
cro Conference on Real-Time Systems (ECRTS 2013), 292–302. 2013. URL: http:
//www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf.

[Bur91] A. Burns. Scheduling hard real-time systems: a review. Software Engineering Jour-
nal, 6:116–128, 1991.

[BW01] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX. Addison-Wesley, November 2001. ISBN
978-0321417459.

[BW13] A. Burns and A. J. Wellings. A Schedulability Compatible Multiprocessor Resource
Sharing Protocol - MrsP. In Proceedings of the 25th Euromicro Conference on Real-
Time Systems (ECRTS 2013). 2013. URL: http://www-users.cs.york.ac.uk/~burns/
MRSPpaper.pdf.

[CBHM15] Sebastiano Catellani, Luca Bonato, Sebastian Huber, and Enrico Mezzetti. Chal-
lenges in the Implementation of MrsP. In Reliable Software Technologies - Ada-
Europe 2015, 179–195. 2015.

[CGB14] Felipe Cerqueira, Arpan Gujarati, and Björn B. Brandenburg. Linux’s Processor
Affinity API, Refined: Shifting Real-Time Tasks towards Higher Schedulability. In
Proceedings of the 35th IEEE Real-Time Systems Symposium (RTSS 2014). 2014.
URL: http://www.mpi-sws.org/~bbb/papers/pdf/rtss14f.pdf.

1053

https://docs.rtems.org/branches/master/cpu-supplement.pdf
https://docs.rtems.org/branches/master/cpu-supplement.pdf
http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
http://www.cs.unc.edu/~bbb/diss/brandenburg-diss.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf
http://www-users.cs.york.ac.uk/~burns/MRSPpaper.pdf
http://www-users.cs.york.ac.uk/~burns/MRSPpaper.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/rtss14f.pdf

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

[CvdBruggenC16] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen. Overrun
Handling for Mixed-Criticality Support in RTEMS. In Mixed Criticality Systems -
WMC 2016, 13–14. 2016. URL: http://ls12-www.cs.tu-dortmund.de/daes/media/
documents/publications/downloads/2016-wmc.pdf.

[CMV14] Davide Compagnin, Enrico Mezzetti, and Tullio Vardanega. Putting RUN into prac-
tice: implementation and evaluation. In Proceedings of the 26th Euromicro Confer-
ence on Real-Time Systems (ECRTS 2014). 2014.

[Dre07] Ulrich Drepper. What Every Programmer Should Know About Memory. 2007. URL:
http://www.akkadia.org/drepper/cpumemory.pdf.

[Dre13] Ulrich Drepper. ELF Handling For Thread-Local Storage. 2013. URL: http://www.
akkadia.org/drepper/tls.pdf.

[FRK02] Hubertus Franke, Rusty Russel, and Matthew Kirkwood. Fuss, Futexes and Fur-
wocks: Fast Userlevel Locking in Linux. In Proceedings of the Ottawa Linux
Symposium 2002, 479–495. 2002. URL: https://www.kernel.org/doc/ols/2002/
ols2002-pages-479-495.pdf.

[GN06] Thomas Gleixner and Douglas Niehaus. Hrtimers and Beyond: Transforming the
Linux Time Subsystems. In Proceedings of the Linux Symposium, 333–346. 2006.
URL: https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf.

[GCB13] Arpan Gujarati, Felipe Cerqueira, and Björn B. Brandenburg. Schedulability Anal-
ysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities. In
Proceedings of the 25th Euromicro Conference on Real-Time Systems (ECRTS 2013).
2013. URL: https://people.mpi-sws.org/~bbb/papers/pdf/ecrts13a-rev1.pdf.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: ex-
act characterization and average case behavior. In Real-Time Systems Symposium,
166–171. 1989.

[LL73] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. Journal of the ACM, 20:46–61, 1973.

[LLF+16] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma, and
Alexandra Fedorova. The Linux Scheduler: a Decade of Wasted Cores. In Proceed-
ings of the Eleventh European Conference on Computer Systems (EuroSys '16). 2016.
URL: https://hal.archives-ouvertes.fr/hal-01295194/document.

[Mot88] Motorola. Real Time Executive Interface Definition. Motorola Inc., Microcom-
puter Division and Software Components Group, Inc., January 1988. DRAFT
2.1. URL: https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.
1/RTEID-2_1.pdf.

[SG90] Lui Sha and J. B. Goodenough. Real-time scheduling theory and Ada. Computer,
23:53–62, 1990.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Proto-
cols: An Approach to Real-Time Synchronization. IEEE Transactions on Computers,
39:1175–1185, 1990.

[VC95] G. Varghese and A. Costello. Redesigning the BSD callout and timer facili-
ties. Technical Report, Washington University in St. Louis, November 1995.
WUCS-95-23. URL: http://web.mit.edu/afs.new/sipb/user/daveg/ATHENA/Info/
wucs-95-23.ps.

1054 Bibliography

http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-wmc.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-wmc.pdf
http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
https://people.mpi-sws.org/~bbb/papers/pdf/ecrts13a-rev1.pdf
https://hal.archives-ouvertes.fr/hal-01295194/document
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
http://web.mit.edu/afs.new/sipb/user/daveg/ATHENA/Info/wucs-95-23.ps
http://web.mit.edu/afs.new/sipb/user/daveg/ATHENA/Info/wucs-95-23.ps

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

[VL87] G. Varghese and T. Lauck. Hashed and Hierarchical Timing Wheels: Data Struc-
tures for the Efficient Implementation of a Timer Facility. In Proceedings of the
11th ACM Symposium on Operating Systems Principles. 1987. URL: http://www.cs.
columbia.edu/~nahum/w6998/papers/sosp87-timing-wheels.pdf.

[VIT90] VITA. Open Real-Time Kernel Interface Definition. VITA, the VMEbus International
Trade Association, August 1990. Draft 2.1. URL: https://ftp.rtems.org/pub/rtems/
publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf.

[Wil12] Anthony Williams. C++ Concurrency in Action - Practical Multithreading. Manning
Publications Co, 2012. ISBN 978-1933988771.

Bibliography 1055

http://www.cs.columbia.edu/~nahum/w6998/papers/sosp87-timing-wheels.pdf
http://www.cs.columbia.edu/~nahum/w6998/papers/sosp87-timing-wheels.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

1056 Bibliography

INDEX

Symbols
/dev/null, 600
/dev/zero, 607
_Terminate, 517

A
ABI, 1031
active, 1031
Ada, 993
add memory, 442
add memory to a region, 442
AMP, 1031
announce, 526
announce fatal error, 526
APA, 1031
aperiodic task, 302, 1031
API, 1031
application, 1031
Application architecture, 10
ASR, 405, 1031
ASR mode, 405
ASR vs. ISR, 405
assembler language, 1031
asynchronous, 1031
Asynchronous Signal Routine, 1031
asynchronous signal routine, 405
atomic operations, 1031
attach a thread to server, 985
awakened, 1031

B
barrier, 353
BCB, 1032
big endian, 1032
binary semaphores, 326
bit-mapped, 1032
block, 1032
blocked task, 1032
Board Support Package, 1032
Board Support Packages, 532
broadcast, 1032

broadcast message to a queue, 385
BSP, 532, 1032
BSP_output_char_function_type, 37
BSP_polling_getchar_function_type, 37
BSPs, 532
buffer, 1032
buffers, 417
building, 103, 104, 395, 405, 417, 433

C
C language, 1032
C Program Heap, 587
C++11, 1032
C++14, 1032
C++17, 1032
C++20, 1032
C11, 1032
C17, 1032
cache, 494
calling convention, 1032
cancel a period, 315
cancel a timer, 284
cbs, 973
CBS limitations, 977
CBS parameters, 976
CCB, 1032
Central Processing Unit, 1033
chain, 1033
chain append a node, 944
chain append a node unprotected, 945
chain extract a node, 938
chain extract a node unprotected, 939
chain get first node, 940, 941
chain get head, 928
chain get tail, 929
chain initialize, 925
chain initialize empty, 926
chain insert a node, 942
chain insert a node unprotected, 943
chain is chain empty, 931
chain is node null, 927

1057

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

chain is node the first, 932
chain is node the head, 936
chain is node the last, 933
chain is node the tail, 937
chain iterate, 922
chain only one node, 934, 935
chains, 918
chare are nodes equal, 930
cleanup the CBS library, 983
clear C Program Heap, 591
clear RTEMS Workspace, 591
clock, 233
Clock Driver, 1033
clock tick, 1033
clock tick quantum, 583
CLOCK_MONOTONIC, 1033
CLOCK_REALTIME, 1033
close a device, 480
cluster, 1033
coalesce, 1033
communication and synchronization, 27
conclude current period, 317
Configuration Table, 1033
configure message queue buffer memory, 581
CONFIGURE_APPLICATION_DISABLE_

FILESYSTEM, 656
CONFIGURE_APPLICATION_DOES_NOT_NEED_

CLOCK_DRIVER, 593
CONFIGURE_APPLICATION_EXTRA_DRIVERS, 594
CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER,

595
CONFIGURE_APPLICATION_NEEDS_CLOCK_

DRIVER, 596
CONFIGURE_APPLICATION_NEEDS_CONSOLE_

DRIVER, 597
CONFIGURE_APPLICATION_NEEDS_FRAME_

BUFFER_DRIVER, 598
CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER,

599
CONFIGURE_APPLICATION_NEEDS_LIBBLOCK, 685
CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER,

600
CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER,

601
CONFIGURE_APPLICATION_NEEDS_SIMPLE_

CONSOLE_DRIVER, 602
CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_

CONSOLE_DRIVER, 603
CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER,

604
CONFIGURE_APPLICATION_NEEDS_TIMER_

DRIVER, 605
CONFIGURE_APPLICATION_NEEDS_WATCHDOG_

DRIVER, 606
CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER,

607
CONFIGURE_APPLICATION_PREREQUISITE_

DRIVERS, 608
CONFIGURE_ATA_DRIVER_TASK_PRIORITY, 609
CONFIGURE_BDBUF_BUFFER_COUNT, 781
CONFIGURE_BDBUF_BUFFER_MAX_SIZE, 686
CONFIGURE_BDBUF_BUFFER_MIN_SIZE, 687
CONFIGURE_BDBUF_BUFFER_SIZE, 781
CONFIGURE_BDBUF_CACHE_MEMORY_SIZE, 688
CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS,

689
CONFIGURE_BDBUF_MAX_WRITE_BLOCKS, 690
CONFIGURE_BDBUF_READ_AHEAD_TASK_

PRIORITY, 691
CONFIGURE_BDBUF_TASK_STACK_SIZE, 692
CONFIGURE_CBS_MAXIMUM_SERVERS, 711
CONFIGURE_DIRTY_MEMORY, 567
CONFIGURE_DISABLE_BSP_SETTINGS, 568
CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS,

781
CONFIGURE_DISABLE_NEWLIB_REENTRANCY, 569
CONFIGURE_ENABLE_GO, 781
CONFIGURE_EXCEPTION_TO_SIGNAL_MAPPING,

610
CONFIGURE_EXECUTIVE_RAM_SIZE, 570
CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_

STACK, 733
CONFIGURE_EXTRA_TASK_STACKS, 571
CONFIGURE_FILESYSTEM_ALL, 657
CONFIGURE_FILESYSTEM_DOSFS, 658
CONFIGURE_FILESYSTEM_FTPFS, 659
CONFIGURE_FILESYSTEM_IMFS, 660
CONFIGURE_FILESYSTEM_JFFS2, 661
CONFIGURE_FILESYSTEM_NFS, 662
CONFIGURE_FILESYSTEM_RFS, 663
CONFIGURE_FILESYSTEM_TFTPFS, 664
CONFIGURE_GNAT_RTEMS, 781
CONFIGURE_HAS_OWN_BDBUF_TABLE, 781
CONFIGURE_HAS_OWN_CONFIGURATION_TABLE,

781
CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE,

781
CONFIGURE_HAS_OWN_INIT_TASK_TABLE, 781
CONFIGURE_HAS_OWN_MOUNT_TABLE, 781
CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE,

781
CONFIGURE_IDLE_TASK_BODY, 706

1058 Index

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

CONFIGURE_IDLE_TASK_INITIALIZES_
APPLICATION, 707

CONFIGURE_IDLE_TASK_STACK_SIZE, 708
CONFIGURE_IDLE_TASK_STORAGE_SIZE, 709
CONFIGURE_IMFS_DISABLE_CHMOD, 665
CONFIGURE_IMFS_DISABLE_CHOWN, 666
CONFIGURE_IMFS_DISABLE_LINK, 667
CONFIGURE_IMFS_DISABLE_MKNOD, 668
CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE, 669
CONFIGURE_IMFS_DISABLE_MKNOD_FILE, 670
CONFIGURE_IMFS_DISABLE_MOUNT, 671
CONFIGURE_IMFS_DISABLE_READDIR, 672
CONFIGURE_IMFS_DISABLE_READLINK, 673
CONFIGURE_IMFS_DISABLE_RENAME, 674
CONFIGURE_IMFS_DISABLE_RMNOD, 675
CONFIGURE_IMFS_DISABLE_SYMLINK, 676
CONFIGURE_IMFS_DISABLE_UNMOUNT, 677
CONFIGURE_IMFS_DISABLE_UTIME, 678
CONFIGURE_IMFS_ENABLE_MKFIFO, 679
CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK,

680
CONFIGURE_INIT, 572
CONFIGURE_INIT_TASK_ARGUMENTS, 626
CONFIGURE_INIT_TASK_ATTRIBUTES, 627
CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_

SIZE, 628
CONFIGURE_INIT_TASK_ENTRY_POINT, 629
CONFIGURE_INIT_TASK_INITIAL_MODES, 630
CONFIGURE_INIT_TASK_NAME, 631
CONFIGURE_INIT_TASK_PRIORITY, 632
CONFIGURE_INIT_TASK_STACK_SIZE, 633
CONFIGURE_INITIAL_EXTENSIONS, 573
CONFIGURE_INTERRUPT_STACK_SIZE, 574
CONFIGURE_JFFS2_DELAYED_WRITE_TASK_

PRIORITY, 681
CONFIGURE_LIBIO_MAXIMUM_FILE_

DESCRIPTORS, 781
CONFIGURE_MALLOC_DIRTY, 575
CONFIGURE_MAXIMUM_ADA_TASKS, 782
CONFIGURE_MAXIMUM_BARRIERS, 614
CONFIGURE_MAXIMUM_DEVICES, 782
CONFIGURE_MAXIMUM_DRIVERS, 611
CONFIGURE_MAXIMUM_FAKE_ADA_TASKS, 782
CONFIGURE_MAXIMUM_FILE_DESCRIPTORS, 576
CONFIGURE_MAXIMUM_GO_CHANNELS, 782
CONFIGURE_MAXIMUM_GOROUTINES, 782
CONFIGURE_MAXIMUM_MESSAGE_QUEUES, 615
CONFIGURE_MAXIMUM_MRSP_SEMAPHORES, 782
CONFIGURE_MAXIMUM_PARTITIONS, 616
CONFIGURE_MAXIMUM_PERIODS, 617
CONFIGURE_MAXIMUM_PORTS, 618

CONFIGURE_MAXIMUM_POSIX_BARRIERS, 782
CONFIGURE_MAXIMUM_POSIX_CONDITION_

VARIABLES, 782
CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS,

637
CONFIGURE_MAXIMUM_POSIX_KEYS, 636
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_

DESCRIPTORS, 782
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES,

638
CONFIGURE_MAXIMUM_POSIX_MUTEXES, 782
CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS,

639
CONFIGURE_MAXIMUM_POSIX_RWLOCKS, 782
CONFIGURE_MAXIMUM_POSIX_SEMAPHORES, 640
CONFIGURE_MAXIMUM_POSIX_SHMS, 641
CONFIGURE_MAXIMUM_POSIX_SPINLOCKS, 783
CONFIGURE_MAXIMUM_POSIX_THREADS, 642
CONFIGURE_MAXIMUM_POSIX_TIMERS, 643
CONFIGURE_MAXIMUM_PRIORITY, 712
CONFIGURE_MAXIMUM_PROCESSORS, 577
CONFIGURE_MAXIMUM_REGIONS, 619
CONFIGURE_MAXIMUM_SEMAPHORES, 620
CONFIGURE_MAXIMUM_TASKS, 621
CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_

SIZE, 578
CONFIGURE_MAXIMUM_THREAD_NAME_SIZE, 579
CONFIGURE_MAXIMUM_TIMERS, 622
CONFIGURE_MAXIMUM_USER_EXTENSIONS, 623
CONFIGURE_MEMORY_OVERHEAD, 580
CONFIGURE_MESSAGE_BUFFER_MEMORY, 581
CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE, 581
CONFIGURE_MICROSECONDS_PER_TICK, 583
CONFIGURE_MINIMUM_POSIX_THREAD_STACK_

SIZE, 644
CONFIGURE_MINIMUM_TASK_STACK_SIZE, 584
CONFIGURE_MINIMUM_TASKS_WITH_USER_

PROVIDED_STORAGE, 624
CONFIGURE_MP_APPLICATION, 734
CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS, 735
CONFIGURE_MP_MAXIMUM_NODES, 736
CONFIGURE_MP_MAXIMUM_PROXIES, 737
CONFIGURE_MP_MPCI_TABLE_POINTER, 738
CONFIGURE_MP_NODE_NUMBER, 739
CONFIGURE_NUMBER_OF_TERMIOS_PORTS, 782
CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_

TABLE, 783
CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT,

646
CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE,

647

Index 1059

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

CONFIGURE_POSIX_INIT_THREAD_TABLE, 648
CONFIGURE_POSIX_TIMERS_FACE_BEHAVIOR, 731
CONFIGURE_RECORD_EXTENSIONS_ENABLED, 650
CONFIGURE_RECORD_FATAL_DUMP_BASE64, 651
CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB,

652
CONFIGURE_RECORD_INTERRUPTS_ENABLED, 653
CONFIGURE_RECORD_PER_PROCESSOR_ITEMS, 654
CONFIGURE_RTEMS_INIT_TASKS_TABLE, 634
CONFIGURE_SCHEDULER_ASSIGNMENTS, 713
CONFIGURE_SCHEDULER_CBS, 714
CONFIGURE_SCHEDULER_EDF, 715
CONFIGURE_SCHEDULER_EDF_SMP, 716
CONFIGURE_SCHEDULER_NAME, 717
CONFIGURE_SCHEDULER_PRIORITY, 718
CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_

SMP, 719
CONFIGURE_SCHEDULER_PRIORITY_SMP, 720
CONFIGURE_SCHEDULER_SIMPLE, 721
CONFIGURE_SCHEDULER_SIMPLE_SMP, 722
CONFIGURE_SCHEDULER_STRONG_APA, 723
CONFIGURE_SCHEDULER_TABLE_ENTRIES, 724
CONFIGURE_SCHEDULER_USER, 725
CONFIGURE_SMP_APPLICATION, 783
CONFIGURE_SMP_MAXIMUM_PROCESSORS, 783
CONFIGURE_STACK_CHECKER_ENABLED, 585
CONFIGURE_SWAPOUT_BLOCK_HOLD, 693
CONFIGURE_SWAPOUT_SWAP_PERIOD, 694
CONFIGURE_SWAPOUT_TASK_PRIORITY, 695
CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY,

697
CONFIGURE_SWAPOUT_WORKER_TASKS, 696
CONFIGURE_TASK_STACK_ALLOCATOR, 699
CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_

WORK_SPACE, 700
CONFIGURE_TASK_STACK_ALLOCATOR_FOR_IDLE,

701
CONFIGURE_TASK_STACK_ALLOCATOR_INIT, 702
CONFIGURE_TASK_STACK_DEALLOCATOR, 703
CONFIGURE_TASK_STACK_FROM_ALLOCATOR, 704
CONFIGURE_TERMIOS_DISABLED, 783
CONFIGURE_TICKS_PER_TIMESLICE, 586
CONFIGURE_UNIFIED_WORK_AREAS, 587
CONFIGURE_UNLIMITED_ALLOCATION_SIZE, 588
CONFIGURE_UNLIMITED_OBJECTS, 589
CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM,

682
CONFIGURE_USE_MINIIMFS_AS_BASE_

FILESYSTEM, 683
CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION,

590

CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY,
591

configuring a system, 553
constant bandwidth server scheduling, 69
context, 1033
context switch, 1033
control block, 1033
convert external to internal address, 464
convert internal to external address, 465
core, 1034
counting semaphores, 326
CPU, 1034
CPU Usage, 885
create a barrier, 359
create a message queue, 372
create a new bandwidth server, 984
create a partition, 420
create a period, 312
create a port, 460
create a region, 438
create a regulator, 832
create a semaphore, 335
create a task, 109
create a timer, 281
create an extension set, 550
critical section, 1034
CRT, 1034
current priority, 1034
current task mode, 132
current task priority, 128, 130

D
data types, 34
deadline, 1034
definition, 99, 302, 395, 417, 433, 456, 532,

845, 846, 848
delay a task for a count of clock ticks,

134
delay a task until a wall time, 135
delays, 239
delete a barrier, 362
delete a message queue, 379
delete a partition, 425
delete a period, 316
delete a port, 463
delete a region, 441
delete a regulator, 834
delete a semaphore, 341
delete a task, 122
delete a timer, 285
delete an extension set, 552

1060 Index

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

deleting a task, 124
destroy a bandwidth server, 987
detach a thread from server, 986
device, 1034
device driver, 1034
device driver interface, 470
Device Driver Table, 469, 1034
device drivers, 465
device names, 469
directives, 1034
disable interrupts, 164, 168
disabling interrupts, 158
dispatch, 1034
dispatching, 65
distributed multiprocessing, 26
Doorstop, 1034
dormant, 1034
DPCB, 1034
dual ported memory, 453, 456
dual-ported, 1034
dynamic extension sets, 1034

E
earliest deadline first scheduling, 68
EARS, 1035
EDF, 1035
ELF, 1035
eligible priority, 1035
eligible scheduler, 1035
embedded, 1035
enable interrupts, 166, 170
entry point, 1035
envelope, 1035
error code, 1035
ESCB, 1035
establish an ASR, 410
establish an ISR, 162
event condition, 395
event flag, 395
event set, 395
events, 391, 1035
exception, 1035
exception frame, 529
executing task, 1035
executive, 1035
exported, 1035
extension forward order, 1036
extension reverse order, 1036
external address, 1036
external addresses, 456

F
fatal error, 526, 530, 531
fatal error detection, 517
fatal error processing, 517
fatal error user extension, 517
fatal errors, 514
FIFO, 1036
fire a task-based timer at time of day,

294
fire a timer after an interval, 286
fire a timer at time of day, 288
fire task-based a timer after an interval,

292
First In First Out, 1036
flash interrupts, 167
floating point, 102
floating point coprocessor, 1036
flush a semaphore, 348
flush messages on a queue, 390
formal model, 1036
freed, 1036
Futex, 1036

G
GCC, 1036
get an ID of a server, 988
get buffer from partition, 427
get class from object ID, 27
get elapsed execution time, 991
get ID of a partition, 423
get index from object ID, 27
get node from object ID, 27
get number of pending messages, 389
get per-task variable, 151
get remaining execution time, 992
get scheduler approved execution time, 993
get scheduling parameters of a server, 989
get segment from region, 444
get size of segment, 452
get statistics of period, 321
get status of period, 319
get task mode, 132
get task notepad entry, 148
get task preemption mode, 132
get task priority, 128, 130
getchark(), 494
global, 1036
global construction, 92, 1036
global objects, 845
global objects table, 845
global scope, 26

Index 1061

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

GNAT, 1036
GNU, 1036
GPL, 1037
GPLv2, 1037
GPLv3, 1037
GR712RC, 1037
GR740, 1037

H
handler, 1037
hard real-time system, 1037
heap, 1037
heir task, 1037
helping priority, 1037
helping scheduler, 1037
heterogeneous, 1037
heterogeneous multiprocessing, 850
higher priority, 1037
home scheduler, 1037
homogeneous, 1037

I
I/O, 1037
ID, 1038
IDLE task, 1038
IDLE task storage size, 709
immediate ceiling priority protocol, 29
ineligible scheduler, 1038
initial extension sets, 1038
initialization tasks, 87
initialize a device driver, 477
initialize RTEMS, 95
initialize the CBS library, 982
initiate the Timer Server, 290
install an ASR, 410
install an ISR, 162
interface, 1038
internal address, 1038
internal addresses, 456
Internal Architecture, 11
interrupt, 1038
interrupt level, 101, 1038
interrupt levels, 157
interrupt processing, 157
interrupt service, 1038
Interrupt Service Routine, 1038
interrupt stack size, 574
interrupts, 152
IO control, 483
IO Manager, 465
is interrupt in progress, 171
ISR, 1038

ISR vs. ASR, 405
ISVV, 1038

K
kernel, 1038
Kernel Character I/O Support, 483

L
Last In First Out, 1038
libpci, 869
LIFO, 1038
Linear Temporal Logic, 1038
linkersets, 998
list, 1039
little endian, 1039
LLVM, 1039
local, 1039
local operation, 1039
local scope, 26
lock a semaphore, 343
locking protocols, 28
logical address, 1039
loosely-coupled, 1039
lower priority, 1039
LTL, 1039

M
major device number, 469
major number, 1039
manager, 1039
manual round robin, 65
maximum file descriptors, 576
maximum priority, 712
maximum thread name size, 579
MCS, 1039
memory for a single message queue's

buffers, 581
memory for task tasks, 571
memory management, 33
memory pool, 1039
message, 1039
message buffer, 1039
message queue, 1039
message queue attributes, 367
Message Queue Control Block, 1039
message queues, 364
messages, 364
minimum POSIX thread stack size, 644
minimum task stack size, 584
minor device number, 469
minor number, 1040
mode, 1040

1062 Index

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

MPCI, 848, 1040
MPCI and remote operations, 846
MPCI entry points, 848
MrsP, 1040
multiprocessing, 26, 841, 1040
multiprocessing topologies, 844
multiprocessor, 1040
Multiprocessor Communications Interface

Layer, 1040
Multiprocessor Configuration Table, 1040
Multiprocessor Resource Sharing Protocol

(MrsP), 29
multitasking, 1040
mutual exclusion, 326, 1040

N
nested, 1040
node, 1040
nodes, 845
non-existent, 1040
NTP, 1040
NUMA, 1040
number of priority levels, 712
numeric coprocessor, 1040

O
O(m) Independence-Preserving Protocol

(OMIP), 30
OBC, 1040
object, 1041
object id, 25
object id composition, 25
object manipulation, 893
object name, 25
object-oriented, 1041
objects, 24
obtain a semaphore, 343
obtain buffer from partition, 427
obtain buffer from regulator, 836
obtain ID of a partition, 423
obtain ID of caller, 117
obtain per-task variable, 151
obtain region information, 449
obtain region information on free blocks,

450
obtain statistics from regulator, 840
obtain statistics of period, 321
obtain status of period, 319
obtain task mode, 132
obtain task priority, 128, 130
obtain the ID of a timer, 283
obtain the time of day, 274

obtaining class from object ID, 27
obtaining index from object ID, 27
obtaining node from object ID, 27
OMIP, 1041
open a device, 479
OpenMP, 1041
operating system, 1041
overhead, 1041

P
packet, 1041
panic, 527
partition, 417, 1041
partition attribute set, 417
Partition Control Block, 1041
partitions, 413
PCB, 1041
PCI, 869
PCI address translation, 878
PCI Interrupt, 878
PCI_LIB_AUTO, 740
PCI_LIB_PERIPHERAL, 740
PCI_LIB_READ, 740
PCI_LIB_STATIC, 740
pending, 1041
per-task variable, 150, 152
period initiation, 317
period statistics report, 325, 326
periodic task, 302, 1041
periodic tasks, 297
physical address, 1041
poll, 1041
pool, 1041
portability, 1041
ports, 453
POSIX, 1042
posting, 1042
PPS, 1042
preempt, 1042
preemption, 64, 101
prepend node, 946
prepend node unprotected, 947
print period statistics report, 325, 326
printk(), 491
priority, 100, 1042
priority boosting, 1042
priority ceiling protocol, 29
priority inheritance, 1042
priority inheritance protocol, 29
priority inversion, 29, 1042
priority scheduling, 63

Index 1063

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

processor utilization, 1042
proxy, 846, 1042
Proxy Control Block, 1042
PTCB, 1042
put message at front of queue, 383
putk(), 490
PXCB, 1042

Q
QCB, 1043
quantum, 1043
queue, 1043

R
rate mononitonic tasks, 297
Rate Monotonic Scheduling Algorithm, 302
rbtree doc, 953
rbtrees, 947
read from a device, 481
ready task, 1043
real priority, 1043
real-time, 1043
Real-time applications, 8
Real-time executive, 9
receive message from a queue, 387
Red-Black Trees, 947
reentrant, 1043
refinement, 1043
region, 433, 442, 1043
region attribute set, 433
Region Control Block, 1043
regions, 429
register a device driver, 474
register a device in the file system, 478
registers, 1043
regulator, 824
reification, 1043
release a barrier, 364
release a semaphore, 346
release buffer back to regulator, 837
remote, 1043
remote operation, 1043
ReqIF, 1043
reset a timer, 296
reset statistics of all periods, 324
reset statistics of period, 323
resize segment, 447
resource, 1043
restarting a task, 120
restore interrupt level, 166, 170
resume, 1043
resuming a task, 126

return buffer to partition, 429
return code, 1044
return segment to region, 446
return value, 1044
RMS Algorithm, 302
RMS First Deadline Rule, 304
RMS Processor Utilization Rule, 304
RMS schedulability analysis, 303
RNCB, 1044
round robin scheduling, 64
round-robin, 1044
RS-232, 1044
RTEMS, 1044
RTEMS Data Types, 34
RTEMS epoch, 1044
rtems extensions table index, 544
RTEMS Workspace, 587
rtems_api_configuration_table, 37
rtems_asr, 38, 407, 977
rtems_asr_entry, 38
rtems_assert_context, 38
rtems_attribute, 39
rtems_barrier_create(), 359
rtems_barrier_delete(), 362
rtems_barrier_ident(), 26, 361
rtems_barrier_release(), 364
rtems_barrier_wait(), 363
rtems_build_id(), 901
rtems_build_name(), 25, 902
rtems_cache_aligned_malloc(), 514
rtems_cache_disable_data(), 511
rtems_cache_disable_instruction(), 513
rtems_cache_enable_data(), 510
rtems_cache_enable_instruction(), 512
rtems_cache_flush_entire_data(), 507
rtems_cache_flush_multiple_data_lines(),

498
rtems_cache_get_data_cache_size(), 505
rtems_cache_get_data_line_size(), 503
rtems_cache_get_instruction_cache_

size(), 506
rtems_cache_get_instruction_line_size(),

504
rtems_cache_get_maximal_line_size(), 502
rtems_cache_instruction_sync_after_code_

change(), 501
rtems_cache_invalidate_entire_data(), 508
rtems_cache_invalidate_entire_

instruction(), 509
rtems_cache_invalidate_multiple_data_

lines(), 499

1064 Index

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

rtems_cache_invalidate_multiple_
instruction_lines(), 500

rtems_cbs_attach_thread(), 985
rtems_cbs_cleanup(), 983
rtems_cbs_create_server(), 984
rtems_cbs_destroy_server(), 987
rtems_cbs_detach_thread(), 986
rtems_cbs_get_approved_budget(), 993
rtems_cbs_get_execution_time(), 991
rtems_cbs_get_parameters(), 989
rtems_cbs_get_remaining_budget(), 992
rtems_cbs_get_server_id(), 988
rtems_cbs_initialize(), 982
rtems_cbs_parameters, 976
rtems_cbs_set_parameters(), 990
rtems_chain_append(), 944
rtems_chain_append_unprotected(), 945
rtems_chain_are_nodes_equal(), 930
rtems_chain_extract(), 938
rtems_chain_extract_unprotected(), 939
rtems_chain_get(), 940
rtems_chain_get_unprotected(), 941
rtems_chain_has_only_one_node(), 934
rtems_chain_head(), 928
rtems_chain_initialize(), 925
rtems_chain_initialize_empty(), 926
rtems_chain_insert(), 942
rtems_chain_insert_unprotected(), 943
rtems_chain_is_empty(), 931
rtems_chain_is_first(), 932
rtems_chain_is_head(), 936
rtems_chain_is_last(), 933
rtems_chain_is_null_node(), 927
rtems_chain_is_tail(), 937
rtems_chain_node_count_unprotected(), 935
rtems_chain_prepend(), 946
rtems_chain_prepend_unprotected(), 947
rtems_chain_tail(), 929
rtems_clock_get(), 274
rtems_clock_get_boot_time(), 260
rtems_clock_get_boot_time_bintime(), 261
rtems_clock_get_boot_time_timeval(), 262
rtems_clock_get_monotonic(), 253
rtems_clock_get_monotonic_bintime(), 254
rtems_clock_get_monotonic_coarse(), 257
rtems_clock_get_monotonic_coarse_

bintime(), 258
rtems_clock_get_monotonic_coarse_

timeval(), 259
rtems_clock_get_monotonic_sbintime(), 255
rtems_clock_get_monotonic_timeval(), 256

rtems_clock_get_options, 274
rtems_clock_get_realtime(), 247
rtems_clock_get_realtime_bintime(), 248
rtems_clock_get_realtime_coarse(), 250
rtems_clock_get_realtime_coarse_

bintime(), 251
rtems_clock_get_realtime_coarse_

timeval(), 252
rtems_clock_get_realtime_timeval(), 249
rtems_clock_get_seconds_since_epoch(),

263
rtems_clock_get_ticks_per_second(), 264
rtems_clock_get_ticks_since_boot(), 265
rtems_clock_get_tod(), 245
rtems_clock_get_tod_timeval(), 246
rtems_clock_get_uptime(), 266
rtems_clock_get_uptime_nanoseconds(), 269
rtems_clock_get_uptime_seconds(), 268
rtems_clock_get_uptime_timeval(), 267
rtems_clock_set(), 243
rtems_clock_tick_before(), 272
rtems_clock_tick_later(), 270
rtems_clock_tick_later_usec(), 271
rtems_configuration_get_do_zero_of_

workspace(), 747
rtems_configuration_get_idle_task(), 749
rtems_configuration_get_idle_task_stack_

size(), 748
rtems_configuration_get_interrupt_stack_

size(), 750
rtems_configuration_get_maximum_

barriers(), 751
rtems_configuration_get_maximum_

extensions(), 752
rtems_configuration_get_maximum_message_

queues(), 753
rtems_configuration_get_maximum_

partitions(), 754
rtems_configuration_get_maximum_

periods(), 755
rtems_configuration_get_maximum_ports(),

756
rtems_configuration_get_maximum_

processors(), 757
rtems_configuration_get_maximum_

regions(), 758
rtems_configuration_get_maximum_

semaphores(), 759
rtems_configuration_get_maximum_tasks(),

760
rtems_configuration_get_maximum_

Index 1065

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

timers(), 761
rtems_configuration_get_microseconds_

per_tick(), 762
rtems_configuration_get_milliseconds_

per_tick(), 763
rtems_configuration_get_nanoseconds_per_

tick(), 764
rtems_configuration_get_number_of_

initial_extensions(), 765
rtems_configuration_get_rtems_api_

configuration(), 777
rtems_configuration_get_stack_allocate_

for_idle_hook(), 766
rtems_configuration_get_stack_allocate_

hook(), 767
rtems_configuration_get_stack_allocate_

init_hook(), 768
rtems_configuration_get_stack_allocator_

avoids_work_space(), 769
rtems_configuration_get_stack_free_

hook(), 770
rtems_configuration_get_stack_space_

size(), 771
rtems_configuration_get_ticks_per_

timeslice(), 772
rtems_configuration_get_unified_work_

area(), 773
rtems_configuration_get_user_extension_

table(), 774
rtems_configuration_get_user_

multiprocessing_table(), 775
rtems_configuration_get_work_space_

size(), 776
rtems_cpu_usage_report(), 892
rtems_cpu_usage_reset(), 893
rtems_device_driver, 39
rtems_device_driver_entry, 39
rtems_device_major_number, 39, 469
rtems_device_minor_number, 39, 469
rtems_driver_address_table, 39
rtems_event_receive(), 401
rtems_event_send(), 399
rtems_event_set, 40, 395
rtems_exception_frame, 40
rtems_exception_frame_print(), 529
rtems_extension_create(), 550
rtems_extension_delete(), 552
rtems_extension_ident(), 26, 553
rtems_extensions_table, 40, 543
rtems_fatal(), 526
rtems_fatal_code, 40

rtems_fatal_error_occurred(), 532
rtems_fatal_extension, 41, 548
rtems_fatal_source, 41
rtems_fatal_source_text(), 530
rtems_get_build_label(), 743
rtems_get_copyright_notice(), 744
rtems_get_target_hash(), 745
rtems_get_version_string(), 746
RTEMS_GLOBAL, 26
rtems_id, 25, 41
rtems_initialization_tasks_table, 41
rtems_initialize_executive(), 95
rtems_internal_error_text(), 531
rtems_interrupt_attributes, 42
rtems_interrupt_catch(), 162
rtems_interrupt_clear(), 200
rtems_interrupt_disable(), 164
rtems_interrupt_enable(), 166
rtems_interrupt_entry, 44
rtems_interrupt_entry_initialize(), 186
RTEMS_INTERRUPT_ENTRY_INITIALIZER(), 185
rtems_interrupt_entry_install(), 187
rtems_interrupt_entry_remove(), 189
rtems_interrupt_flash(), 167
rtems_interrupt_get_affinity(), 204
rtems_interrupt_get_attributes(), 207
rtems_interrupt_get_priority(), 201
rtems_interrupt_handler, 44
rtems_interrupt_handler_install(), 190
rtems_interrupt_handler_iterate(), 208
rtems_interrupt_handler_remove(), 192
rtems_interrupt_is_in_progress(), 171
rtems_interrupt_is_pending(), 196
rtems_interrupt_level, 44
rtems_interrupt_local_disable(), 168
rtems_interrupt_local_enable(), 170
rtems_interrupt_lock, 44
rtems_interrupt_lock_acquire(), 174
rtems_interrupt_lock_acquire_isr(), 177
rtems_interrupt_lock_context, 44
RTEMS_INTERRUPT_LOCK_DECLARE(), 180
RTEMS_INTERRUPT_LOCK_DEFINE(), 181
rtems_interrupt_lock_destroy(), 173
rtems_interrupt_lock_initialize(), 172
RTEMS_INTERRUPT_LOCK_INITIALIZER(), 182
rtems_interrupt_lock_interrupt_

disable(), 179
RTEMS_INTERRUPT_LOCK_MEMBER(), 183
RTEMS_INTERRUPT_LOCK_REFERENCE(), 184
rtems_interrupt_lock_release(), 176
rtems_interrupt_lock_release_isr(), 178

1066 Index

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

rtems_interrupt_per_handler_routine, 45
rtems_interrupt_raise(), 198
rtems_interrupt_raise_on(), 199
rtems_interrupt_server_action, 45
rtems_interrupt_server_action_prepend(),

225
rtems_interrupt_server_config, 45
rtems_interrupt_server_control, 45
rtems_interrupt_server_create(), 212
rtems_interrupt_server_delete(), 218
rtems_interrupt_server_entry, 45
rtems_interrupt_server_entry_destroy(),

227
rtems_interrupt_server_entry_

initialize(), 224
rtems_interrupt_server_entry_move(), 229
rtems_interrupt_server_entry_submit(),

228
rtems_interrupt_server_handler_

install(), 213
rtems_interrupt_server_handler_

iterate(), 222
rtems_interrupt_server_handler_remove(),

215
rtems_interrupt_server_initialize(), 210
rtems_interrupt_server_move(), 221
rtems_interrupt_server_request, 46
rtems_interrupt_server_request_

destroy(), 232
rtems_interrupt_server_request_

initialize(), 230
rtems_interrupt_server_request_set_

vector(), 231
rtems_interrupt_server_request_submit(),

233
rtems_interrupt_server_resume(), 220
rtems_interrupt_server_set_affinity(),

216
rtems_interrupt_server_suspend(), 219
rtems_interrupt_set_affinity(), 205
rtems_interrupt_set_priority(), 202
rtems_interrupt_signal_variant, 46
rtems_interrupt_vector_disable(), 195
rtems_interrupt_vector_enable(), 194
rtems_interrupt_vector_is_enabled(), 193
rtems_interval, 32, 46
rtems_io_close(), 480
rtems_io_control(), 483
rtems_io_initialize(), 477
rtems_io_open(), 479
rtems_io_read(), 481

rtems_io_register_driver(), 474
rtems_io_register_name(), 478
rtems_io_unregister_driver(), 476
rtems_io_write(), 482
rtems_isr, 47, 157
rtems_isr_entry, 47
rtems_iterate_over_all_threads(), 146
RTEMS_LINKER_ROSET, 1010
RTEMS_LINKER_ROSET_CONTENT, 1016
RTEMS_LINKER_ROSET_DECLARE, 1009
RTEMS_LINKER_ROSET_ITEM, 1014
RTEMS_LINKER_ROSET_ITEM_DECLARE, 1011
RTEMS_LINKER_ROSET_ITEM_ORDERED, 1015
RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE,

1012
RTEMS_LINKER_ROSET_ITEM_REFERENCE, 1013
RTEMS_LINKER_RWSET, 1018
RTEMS_LINKER_RWSET_CONTENT, 1024
RTEMS_LINKER_RWSET_DECLARE, 1017
RTEMS_LINKER_RWSET_ITEM, 1022
RTEMS_LINKER_RWSET_ITEM_DECLARE, 1019
RTEMS_LINKER_RWSET_ITEM_ORDERED, 1023
RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE,

1020
RTEMS_LINKER_RWSET_ITEM_REFERENCE, 1021
RTEMS_LINKER_SET_BEGIN, 1003
RTEMS_LINKER_SET_END, 1004
RTEMS_LINKER_SET_FOREACH, 1008
RTEMS_LINKER_SET_IS_EMPTY, 1007
RTEMS_LINKER_SET_ITEM_COUNT, 1006
RTEMS_LINKER_SET_SIZE, 1005
RTEMS_LOCAL, 26
rtems_message_queue_broadcast(), 385
RTEMS_MESSAGE_QUEUE_BUFFER(), 391
rtems_message_queue_config, 47
rtems_message_queue_construct(), 375
rtems_message_queue_create(), 372
rtems_message_queue_delete(), 379
rtems_message_queue_flush(), 390
rtems_message_queue_get_number_

pending(), 389
rtems_message_queue_ident(), 26, 377
rtems_message_queue_receive(), 387
rtems_message_queue_send(), 381
rtems_message_queue_urgent(), 383
rtems_mode, 47
rtems_mp_packet_classes, 47
rtems_mpci_entry, 48, 848
rtems_mpci_get_packet_entry, 48
rtems_mpci_initialization_entry, 48
rtems_mpci_receive_packet_entry, 48

Index 1067

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

rtems_mpci_return_packet_entry, 48
rtems_mpci_send_packet_entry, 48
rtems_mpci_table, 48
rtems_multiprocessing_announce(), 854
rtems_multiprocessing_table, 48
rtems_name, 25, 48
rtems_object_api_class_information, 48
rtems_object_api_maximum_class(), 913
rtems_object_api_minimum_class(), 912
rtems_object_get_api_class_name(), 915
rtems_object_get_api_name(), 914
rtems_object_get_class_information(), 916
rtems_object_get_classic_name(), 903
rtems_object_get_local_node(), 917
rtems_object_get_name(), 25, 904
rtems_object_id_api_maximum(), 911
rtems_object_id_api_minimum(), 910
rtems_object_id_get_api(), 27, 906
rtems_object_id_get_class(), 27, 907
rtems_object_id_get_index(), 27, 909
rtems_object_id_get_node(), 27, 908
RTEMS_OBJECT_ID_INITIAL(), 918
rtems_object_set_name(), 905
rtems_option, 49
rtems_packet_prefix, 49
rtems_panic(), 527
rtems_partition_create(), 420
rtems_partition_delete(), 425
rtems_partition_get_buffer(), 427
rtems_partition_ident(), 26, 423
rtems_partition_return_buffer(), 429
rtems_port_create(), 460
rtems_port_delete(), 463
rtems_port_external_to_internal(), 464
rtems_port_ident(), 26, 462
rtems_port_internal_to_external(), 465
rtems_printk_printer(), 493
rtems_put_char(), 489
rtems_putc(), 488
rtems_rate_monotonic_cancel(), 315
rtems_rate_monotonic_create(), 312
rtems_rate_monotonic_delete(), 316
rtems_rate_monotonic_get_statistics(),

321
rtems_rate_monotonic_get_status(), 319
rtems_rate_monotonic_ident(), 314
rtems_rate_monotonic_period(), 317
rtems_rate_monotonic_period_states, 49
rtems_rate_monotonic_period_statistics,

49
rtems_rate_monotonic_period_status, 50

rtems_rate_monotonic_report_
statistics(), 325

rtems_rate_monotonic_report_statistics_
with_plugin(), 326

rtems_rate_monotonic_reset_all_
statistics(), 324

rtems_rate_monotonic_reset_statistics(),
323

rtems_region_create(), 438
rtems_region_delete(), 441
rtems_region_extend(), 442
rtems_region_get_free_information(), 450
rtems_region_get_information(), 449
rtems_region_get_segment(), 444
rtems_region_get_segment_size(), 452
rtems_region_ident(), 26, 440
rtems_region_resize_segment(), 447
rtems_region_return_segment(), 446
rtems_regulator_attributes, 50
rtems_regulator_create(), 832
rtems_regulator_delete(), 834
rtems_regulator_deliverer, 51
rtems_regulator_get_statistics(), 840
rtems_regulator_obtain_buffer(), 836
rtems_regulator_release_buffer(), 837
rtems_regulator_send(), 838
rtems_regulator_statistics, 51
rtems_resource_is_unlimited(), 778
rtems_resource_maximum_per_allocation(),

779
rtems_resource_unlimited(), 780
rtems_scheduler_add_processor(), 82
rtems_scheduler_get_maximum_priority(),

76
rtems_scheduler_get_processor(), 79
rtems_scheduler_get_processor_maximum(),

80
rtems_scheduler_get_processor_set(), 81
rtems_scheduler_ident(), 72
rtems_scheduler_ident_by_processor(), 73
rtems_scheduler_ident_by_processor_

set(), 74
rtems_scheduler_map_priority_from_

posix(), 78
rtems_scheduler_map_priority_to_posix(),

77
rtems_scheduler_remove_processor(), 83
rtems_semaphore_create(), 335
rtems_semaphore_delete(), 341
rtems_semaphore_flush(), 348
rtems_semaphore_ident(), 26, 339

1068 Index

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

rtems_semaphore_obtain(), 343
rtems_semaphore_release(), 346
rtems_semaphore_set_priority(), 350
rtems_shutdown_executive(), 528
rtems_signal_catch(), 410
rtems_signal_send(), 412
rtems_signal_set, 51, 405
rtems_stack_allocate_hook, 52
rtems_stack_allocate_init_hook, 52
rtems_stack_free_hook, 52
rtems_status_code, 52, 1027
rtems_status_text(), 1028
rtems_task, 53, 102
rtems_task_argument, 54
rtems_task_begin_extension, 54, 546
rtems_task_config, 54
rtems_task_construct(), 113
rtems_task_create(), 109
rtems_task_create_extension, 55
rtems_task_create_extension(), 544
rtems_task_delete(), 122
rtems_task_delete_extension, 56, 547
rtems_task_entry, 56
rtems_task_exit(), 124
rtems_task_exitted_extension, 56, 547
rtems_task_get_affinity(), 139
rtems_task_get_note(), 107, 148
rtems_task_get_priority(), 130
rtems_task_get_scheduler(), 136
rtems_task_ident(), 26, 115
rtems_task_is_suspended(), 127
rtems_task_iterate(), 143
rtems_task_mode, 100
rtems_task_mode(), 132
rtems_task_priority, 57, 100
rtems_task_restart(), 120
rtems_task_restart_extension, 57, 545
rtems_task_resume(), 126
rtems_task_self(), 117
rtems_task_set_affinity(), 141
rtems_task_set_note(), 107, 149
rtems_task_set_priority(), 128
rtems_task_set_scheduler(), 137
rtems_task_start(), 118
rtems_task_start_extension, 57, 545
RTEMS_TASK_STORAGE_SIZE(), 144
rtems_task_suspend(), 125
rtems_task_switch_extension, 57, 546
rtems_task_terminate_extension, 58, 547
rtems_task_variable_add(), 107, 150
rtems_task_variable_delete(), 107, 152

rtems_task_variable_get(), 107, 151
rtems_task_visitor, 58
rtems_task_wake_after(), 134
rtems_task_wake_when(), 135
rtems_tcb, 59
rtems_time_of_day, 32, 59, 238
rtems_timer_cancel(), 284
rtems_timer_create(), 281
rtems_timer_delete(), 285
rtems_timer_fire_after(), 286
rtems_timer_fire_when(), 288
rtems_timer_get_information(), 297
rtems_timer_ident(), 26, 283
rtems_timer_information, 59
rtems_timer_initiate_server(), 290
rtems_timer_reset(), 296
rtems_timer_server_fire_after(), 292
rtems_timer_server_fire_when(), 294
rtems_timer_service_routine, 59, 277
rtems_timer_service_routine_entry, 60
rtems_timespec_add_to(), 963
rtems_timespec_divide(), 965
rtems_timespec_divide_by_integer(), 966
rtems_timespec_equal_to(), 969
rtems_timespec_from_ticks(), 973
rtems_timespec_get_nanoseconds(), 971
rtems_timespec_get_seconds(), 970
rtems_timespec_greater_than(), 968
rtems_timespec_is_valid(), 962
rtems_timespec_less_than(), 967
rtems_timespec_set(), 960
rtems_timespec_subtract(), 964
rtems_timespec_to_ticks(), 972
rtems_timespec_zero(), 961
rtems_vector_number, 60, 157
running, 1044
runtime driver registration, 470

S
sbintime_t, 238
scenario, 1044
schedulable, 1044
schedule, 1044
scheduled task, 1044
scheduler, 1044
scheduler instance, 1044
scheduling, 60
scheduling algorithms, 63
scheduling mechanisms, 64
segment, 433
segments, 1045

Index 1069

RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024) Chapter 43 Section 43.0

semantics, 1045
semaphore, 1045
Semaphore Control Block, 1045
semaphores, 326
send buffer to regulator for delivery, 838
send message to a queue, 381
send signal set, 412
separate work areas, 587
set priority by scheduler for a semaphore,

350
set scheduling parameters, 990
set struct timespec instance, 960
set task mode, 132
set task notepad entry, 149
set task preemption mode, 132
set task priority, 128
shared memory, 1045
shutdown RTEMS, 528
signal, 1045
signal set, 405, 1045
signals, 402
SIS, 1045
SMCB, 1045
SMP, 854, 1045
SMP barriers, 1045
SMP locks, 1045
soft real-time system, 1045
software component, 1045
software item, 1046
software product, 1046
software unit, 1046
source code, 1046
SPARC, 1046
special device services, 483
sporadic task, 302, 1046
stack, 879, 1046
Stack Bounds Checker, 879
start current period, 317
start multitasking, 95
starting a task, 118
status code, 1046
Status Codes, 1024
Strong APA, 1046
struct bintime, 238
struct timespec, 238
struct timeval, 238
suspend, 1047
suspending a task, 125
Symmetric Multiprocessing, 854
symmetric multiprocessing (SMP), 26
synchronous, 1047

system call, 1047
system-on-chip, 1047

T
target, 1047
target architecture, 1047
TAS, 1047
task, 99–101, 1047
task affinity, 858
task arguments, 102
task attributes, 103
Task Control Block, 1047
task entry, 1047
task life states, 101
task memory, 99
task migration, 858, 1047
task mode, 100, 104
task name, 100
task priority, 64, 100, 1048
task private data, 150, 152
task private variable, 150, 152
task processor affinity, 1048
task prototype, 102
task scheduling, 60
task stack allocator, 699, 704
task stack allocator for IDLE tasks, 701
task stack deallocator, 703
task state transitions, 65
task states, 100
task switch, 1048
tasks, 95
TCB, 1048
TCB extension area, 543
thread, 1048
thread affinity, 858
thread dispatch, 1048
thread migration, 858
thread queues, 30
tick, 1048
tick quantum, 583
ticks per timeslice, 586
tightly-coupled, 1048
time, 31
timeout, 1048
timeouts, 239
timer, 1048
Timer Control Block, 1048
Timer_Classes, 37
timers, 274
timeslice, 1048
timeslicing, 64, 101, 238, 1048

1070 Index

Chapter 43 Section 43.0 RTEMS Classic API Guide, Release 6.1-rc5 (16th December 2024)

TImespec Helpers, 953
TLS, 1048
TMCB, 1048
transient overload, 1049
TTAS, 1049

U
unblock all tasks waiting on a semaphore,

348
unified work areas, 587
uniprocesor, 26
Unix epoch, 1049
unlock a semaphore, 346
unregister a device driver, 476
user extension set, 543
User Extension Table, 1049
user extensions, 540, 1049
User Initialization Tasks Table, 1049
user-provided, 1049
user-supplied, 1049

V
vector, 1049
vprintk(), 492

W
wait at a barrier, 363
wait queue, 1049
wake up after a count of clock ticks, 134
wake up at a wall time, 135
Weak APA, 1049
write to a device, 482

Y
YAML, 1049
yield, 1049

Z
zero C Program Heap, 591
zero RTEMS Workspace, 591

Index 1071

	Preface
	Overview
	Introduction
	Real-time Application Systems
	Real-time Executive
	RTEMS Application Architecture
	RTEMS Internal Architecture
	User Customization and Extensibility
	Portability
	Memory Requirements
	Audience
	Conventions
	Manual Organization

	Key Concepts
	Introduction
	Objects
	Object Names
	Object Ids
	Local and Global Scope
	Object ID Format

	Object ID Description

	Communication and Synchronization
	Locking Protocols
	Priority Inversion
	Immediate Ceiling Priority Protocol (ICPP)
	Priority Inheritance Protocol
	Multiprocessor Resource Sharing Protocol (MrsP)
	O(m) Independence-Preserving Protocol (OMIP)

	Thread Queues
	Time
	Timer and Timeouts
	Memory Management

	RTEMS Data Types
	Introduction
	List of Data Types
	BSP_output_char_function_type
	BSP_polling_getchar_function_type
	Timer_Classes
	rtems_api_configuration_table
	rtems_asr
	rtems_asr_entry
	rtems_assert_context
	rtems_attribute
	rtems_device_driver
	rtems_device_driver_entry
	rtems_device_major_number
	rtems_device_minor_number
	rtems_driver_address_table
	rtems_event_set
	rtems_exception_frame
	rtems_extensions_table
	rtems_fatal_code
	rtems_fatal_extension
	rtems_fatal_source
	rtems_id
	rtems_initialization_tasks_table
	rtems_interrupt_attributes
	rtems_interrupt_entry
	rtems_interrupt_handler
	rtems_interrupt_level
	rtems_interrupt_lock
	rtems_interrupt_lock_context
	rtems_interrupt_per_handler_routine
	rtems_interrupt_server_action
	rtems_interrupt_server_config
	rtems_interrupt_server_control
	rtems_interrupt_server_entry
	rtems_interrupt_server_request
	rtems_interrupt_signal_variant
	rtems_interval
	rtems_isr
	rtems_isr_entry
	rtems_message_queue_config
	rtems_mode
	rtems_mp_packet_classes
	rtems_mpci_entry
	rtems_mpci_get_packet_entry
	rtems_mpci_initialization_entry
	rtems_mpci_receive_packet_entry
	rtems_mpci_return_packet_entry
	rtems_mpci_send_packet_entry
	rtems_mpci_table
	rtems_multiprocessing_table
	rtems_name
	rtems_object_api_class_information
	rtems_option
	rtems_packet_prefix
	rtems_rate_monotonic_period_states
	rtems_rate_monotonic_period_statistics
	rtems_rate_monotonic_period_status
	rtems_regulator_attributes
	rtems_regulator_deliverer
	rtems_regulator_statistics
	rtems_signal_set
	rtems_stack_allocate_hook
	rtems_stack_allocate_init_hook
	rtems_stack_free_hook
	rtems_status_code
	rtems_task
	rtems_task_argument
	rtems_task_begin_extension
	rtems_task_config
	rtems_task_create_extension
	rtems_task_delete_extension
	rtems_task_entry
	rtems_task_exitted_extension
	rtems_task_priority
	rtems_task_restart_extension
	rtems_task_start_extension
	rtems_task_switch_extension
	rtems_task_terminate_extension
	rtems_task_visitor
	rtems_tcb
	rtems_time_of_day
	rtems_timer_information
	rtems_timer_service_routine
	rtems_timer_service_routine_entry
	rtems_vector_number

	Scheduling Concepts
	Introduction
	Background
	Scheduling Algorithms
	Priority Scheduling
	Scheduling Modification Mechanisms
	Task Priority and Scheduling
	Preemption
	Timeslicing
	Manual Round-Robin

	Dispatching Tasks
	Task State Transitions

	Uniprocessor Schedulers
	Deterministic Priority Scheduler
	Simple Priority Scheduler
	Earliest Deadline First Scheduler
	Constant Bandwidth Server Scheduling (CBS)

	SMP Schedulers
	Earliest Deadline First SMP Scheduler
	Deterministic Priority SMP Scheduler
	Simple Priority SMP Scheduler
	Arbitrary Processor Affinity Priority SMP Scheduler

	Directives
	rtems_scheduler_ident()
	rtems_scheduler_ident_by_processor()
	rtems_scheduler_ident_by_processor_set()
	rtems_scheduler_get_maximum_priority()
	rtems_scheduler_map_priority_to_posix()
	rtems_scheduler_map_priority_from_posix()
	rtems_scheduler_get_processor()
	rtems_scheduler_get_processor_maximum()
	rtems_scheduler_get_processor_set()
	rtems_scheduler_add_processor()
	rtems_scheduler_remove_processor()

	Initialization Manager
	Introduction
	Background
	Initialization Tasks
	The Idle Task
	Initialization Manager Failure

	Operations
	Initializing RTEMS
	Global Construction

	Directives
	rtems_initialize_executive()

	Task Manager
	Introduction
	Background
	Task Definition
	Task Control Block
	Task Memory
	Task Name
	Task States
	Task Priority
	Task Mode
	Task Life States
	Accessing Task Arguments
	Floating Point Considerations
	Building a Task Attribute Set
	Building a Mode and Mask

	Operations
	Creating Tasks
	Obtaining Task IDs
	Starting and Restarting Tasks
	Suspending and Resuming Tasks
	Delaying the Currently Executing Task
	Changing Task Priority
	Changing Task Mode
	Task Deletion
	Setting Affinity to a Single Processor
	Transition Advice for Removed Notepads
	Transition Advice for Removed Task Variables

	Directives
	rtems_task_create()
	rtems_task_construct()
	rtems_task_ident()
	rtems_task_self()
	rtems_task_start()
	rtems_task_restart()
	rtems_task_delete()
	rtems_task_exit()
	rtems_task_suspend()
	rtems_task_resume()
	rtems_task_is_suspended()
	rtems_task_set_priority()
	rtems_task_get_priority()
	rtems_task_mode()
	rtems_task_wake_after()
	rtems_task_wake_when()
	rtems_task_get_scheduler()
	rtems_task_set_scheduler()
	rtems_task_get_affinity()
	rtems_task_set_affinity()
	rtems_task_iterate()
	RTEMS_TASK_STORAGE_SIZE()

	Deprecated Directives
	ITERATE_OVER_ALL_THREADS - Iterate Over Tasks

	Removed Directives
	TASK_GET_NOTE - Get task notepad entry
	TASK_SET_NOTE - Set task notepad entry
	TASK_VARIABLE_ADD - Associate per task variable
	TASK_VARIABLE_GET - Obtain value of a per task variable
	TASK_VARIABLE_DELETE - Remove per task variable

	Interrupt Manager
	Introduction
	Background
	Processing an Interrupt
	RTEMS Interrupt Levels
	Disabling of Interrupts by RTEMS

	Operations
	Establishing an ISR
	Directives Allowed from an ISR

	Directives
	rtems_interrupt_catch()
	rtems_interrupt_disable()
	rtems_interrupt_enable()
	rtems_interrupt_flash()
	rtems_interrupt_local_disable()
	rtems_interrupt_local_enable()
	rtems_interrupt_is_in_progress()
	rtems_interrupt_lock_initialize()
	rtems_interrupt_lock_destroy()
	rtems_interrupt_lock_acquire()
	rtems_interrupt_lock_release()
	rtems_interrupt_lock_acquire_isr()
	rtems_interrupt_lock_release_isr()
	rtems_interrupt_lock_interrupt_disable()
	RTEMS_INTERRUPT_LOCK_DECLARE()
	RTEMS_INTERRUPT_LOCK_DEFINE()
	RTEMS_INTERRUPT_LOCK_INITIALIZER()
	RTEMS_INTERRUPT_LOCK_MEMBER()
	RTEMS_INTERRUPT_LOCK_REFERENCE()
	RTEMS_INTERRUPT_ENTRY_INITIALIZER()
	rtems_interrupt_entry_initialize()
	rtems_interrupt_entry_install()
	rtems_interrupt_entry_remove()
	rtems_interrupt_handler_install()
	rtems_interrupt_handler_remove()
	rtems_interrupt_vector_is_enabled()
	rtems_interrupt_vector_enable()
	rtems_interrupt_vector_disable()
	rtems_interrupt_is_pending()
	rtems_interrupt_raise()
	rtems_interrupt_raise_on()
	rtems_interrupt_clear()
	rtems_interrupt_get_priority()
	rtems_interrupt_set_priority()
	rtems_interrupt_get_affinity()
	rtems_interrupt_set_affinity()
	rtems_interrupt_get_attributes()
	rtems_interrupt_handler_iterate()
	rtems_interrupt_server_initialize()
	rtems_interrupt_server_create()
	rtems_interrupt_server_handler_install()
	rtems_interrupt_server_handler_remove()
	rtems_interrupt_server_set_affinity()
	rtems_interrupt_server_delete()
	rtems_interrupt_server_suspend()
	rtems_interrupt_server_resume()
	rtems_interrupt_server_move()
	rtems_interrupt_server_handler_iterate()
	rtems_interrupt_server_entry_initialize()
	rtems_interrupt_server_action_prepend()
	rtems_interrupt_server_entry_destroy()
	rtems_interrupt_server_entry_submit()
	rtems_interrupt_server_entry_move()
	rtems_interrupt_server_request_initialize()
	rtems_interrupt_server_request_set_vector()
	rtems_interrupt_server_request_destroy()
	rtems_interrupt_server_request_submit()

	Clock Manager
	Introduction
	Background
	Required Support
	Time and Date Data Structures
	Clock Tick and Timeslicing
	Delays
	Timeouts

	Operations
	Announcing a Tick
	Setting the Time
	Obtaining the Time
	Transition Advice for the Removed rtems_clock_get()

	Directives
	rtems_clock_set()
	rtems_clock_get_tod()
	rtems_clock_get_tod_timeval()
	rtems_clock_get_realtime()
	rtems_clock_get_realtime_bintime()
	rtems_clock_get_realtime_timeval()
	rtems_clock_get_realtime_coarse()
	rtems_clock_get_realtime_coarse_bintime()
	rtems_clock_get_realtime_coarse_timeval()
	rtems_clock_get_monotonic()
	rtems_clock_get_monotonic_bintime()
	rtems_clock_get_monotonic_sbintime()
	rtems_clock_get_monotonic_timeval()
	rtems_clock_get_monotonic_coarse()
	rtems_clock_get_monotonic_coarse_bintime()
	rtems_clock_get_monotonic_coarse_timeval()
	rtems_clock_get_boot_time()
	rtems_clock_get_boot_time_bintime()
	rtems_clock_get_boot_time_timeval()
	rtems_clock_get_seconds_since_epoch()
	rtems_clock_get_ticks_per_second()
	rtems_clock_get_ticks_since_boot()
	rtems_clock_get_uptime()
	rtems_clock_get_uptime_timeval()
	rtems_clock_get_uptime_seconds()
	rtems_clock_get_uptime_nanoseconds()
	rtems_clock_tick_later()
	rtems_clock_tick_later_usec()
	rtems_clock_tick_before()

	Removed Directives
	CLOCK_GET - Get date and time information

	Timer Manager
	Introduction
	Background
	Required Support
	Timers
	Timer Server
	Timer Service Routines

	Operations
	Creating a Timer
	Obtaining Timer IDs
	Initiating an Interval Timer
	Initiating a Time of Day Timer
	Canceling a Timer
	Resetting a Timer
	Initiating the Timer Server
	Deleting a Timer

	Directives
	rtems_timer_create()
	rtems_timer_ident()
	rtems_timer_cancel()
	rtems_timer_delete()
	rtems_timer_fire_after()
	rtems_timer_fire_when()
	rtems_timer_initiate_server()
	rtems_timer_server_fire_after()
	rtems_timer_server_fire_when()
	rtems_timer_reset()
	rtems_timer_get_information()

	Rate Monotonic Manager
	Introduction
	Background
	Rate Monotonic Manager Required Support
	Period Statistics
	Periodicity Definitions
	Rate Monotonic Scheduling Algorithm
	Schedulability Analysis
	Assumptions
	Processor Utilization Rule
	Processor Utilization Rule Example
	First Deadline Rule
	First Deadline Rule Example
	Relaxation of Assumptions

	Operations
	Creating a Rate Monotonic Period
	Manipulating a Period
	Obtaining the Status of a Period
	Canceling a Period
	Deleting a Rate Monotonic Period
	Examples
	Simple Periodic Task
	Task with Multiple Periods

	Directives
	rtems_rate_monotonic_create()
	rtems_rate_monotonic_ident()
	rtems_rate_monotonic_cancel()
	rtems_rate_monotonic_delete()
	rtems_rate_monotonic_period()
	rtems_rate_monotonic_get_status()
	rtems_rate_monotonic_get_statistics()
	rtems_rate_monotonic_reset_statistics()
	rtems_rate_monotonic_reset_all_statistics()
	rtems_rate_monotonic_report_statistics()
	rtems_rate_monotonic_report_statistics_with_plugin()

	Semaphore Manager
	Introduction
	Background
	Nested Resource Access
	Priority Inheritance
	Priority Ceiling
	Multiprocessor Resource Sharing Protocol
	Building a Semaphore Attribute Set
	Building a SEMAPHORE_OBTAIN Option Set

	Operations
	Creating a Semaphore
	Obtaining Semaphore IDs
	Acquiring a Semaphore
	Releasing a Semaphore
	Deleting a Semaphore

	Directives
	rtems_semaphore_create()
	rtems_semaphore_ident()
	rtems_semaphore_delete()
	rtems_semaphore_obtain()
	rtems_semaphore_release()
	rtems_semaphore_flush()
	rtems_semaphore_set_priority()

	Barrier Manager
	Introduction
	Background
	Automatic Versus Manual Barriers
	Building a Barrier Attribute Set

	Directives
	rtems_barrier_create()
	rtems_barrier_ident()
	rtems_barrier_delete()
	rtems_barrier_wait()
	rtems_barrier_release()

	Message Manager
	Introduction
	Background
	Messages
	Message Queues
	Building a Message Queue Attribute Set
	Building a MESSAGE_QUEUE_RECEIVE Option Set

	Operations
	Creating a Message Queue
	Obtaining Message Queue IDs
	Receiving a Message
	Sending a Message
	Broadcasting a Message
	Deleting a Message Queue

	Directives
	rtems_message_queue_create()
	rtems_message_queue_construct()
	rtems_message_queue_ident()
	rtems_message_queue_delete()
	rtems_message_queue_send()
	rtems_message_queue_urgent()
	rtems_message_queue_broadcast()
	rtems_message_queue_receive()
	rtems_message_queue_get_number_pending()
	rtems_message_queue_flush()
	RTEMS_MESSAGE_QUEUE_BUFFER()

	Event Manager
	Introduction
	Background
	Event Sets
	Building an Event Set or Condition
	Building an EVENT_RECEIVE Option Set

	Operations
	Sending an Event Set
	Receiving an Event Set
	Determining the Pending Event Set
	Receiving all Pending Events

	Directives
	rtems_event_send()
	rtems_event_receive()

	Signal Manager
	Introduction
	Background
	Signal Manager Definitions
	A Comparison of ASRs and ISRs
	Building a Signal Set
	Building an ASR Mode

	Operations
	Establishing an ASR
	Sending a Signal Set
	Processing an ASR

	Directives
	rtems_signal_catch()
	rtems_signal_send()

	Partition Manager
	Introduction
	Background
	Partition Manager Definitions
	Building a Partition Attribute Set

	Operations
	Creating a Partition
	Obtaining Partition IDs
	Acquiring a Buffer
	Releasing a Buffer
	Deleting a Partition

	Directives
	rtems_partition_create()
	rtems_partition_ident()
	rtems_partition_delete()
	rtems_partition_get_buffer()
	rtems_partition_return_buffer()

	Region Manager
	Introduction
	Background
	Region Manager Definitions
	Building an Attribute Set
	Building an Option Set

	Operations
	Creating a Region
	Obtaining Region IDs
	Adding Memory to a Region
	Acquiring a Segment
	Releasing a Segment
	Obtaining the Size of a Segment
	Changing the Size of a Segment
	Deleting a Region

	Directives
	rtems_region_create()
	rtems_region_ident()
	rtems_region_delete()
	rtems_region_extend()
	rtems_region_get_segment()
	rtems_region_return_segment()
	rtems_region_resize_segment()
	rtems_region_get_information()
	rtems_region_get_free_information()
	rtems_region_get_segment_size()

	Dual-Ported Memory Manager
	Introduction
	Background
	Operations
	Creating a Port
	Obtaining Port IDs
	Converting an Address
	Deleting a DPMA Port

	Directives
	rtems_port_create()
	rtems_port_ident()
	rtems_port_delete()
	rtems_port_external_to_internal()
	rtems_port_internal_to_external()

	I/O Manager
	Introduction
	Background
	Device Driver Table
	Major and Minor Device Numbers
	Device Names
	Device Driver Environment
	Runtime Driver Registration
	Device Driver Interface
	Device Driver Initialization

	Operations
	Register and Lookup Name
	Accessing an Device Driver

	Directives
	rtems_io_register_driver()
	rtems_io_unregister_driver()
	rtems_io_initialize()
	rtems_io_register_name()
	rtems_io_open()
	rtems_io_close()
	rtems_io_read()
	rtems_io_write()
	rtems_io_control()

	Kernel Character I/O Support
	Introduction
	Directives
	rtems_putc()
	rtems_put_char()
	putk()
	printk()
	vprintk()
	rtems_printk_printer()
	getchark()

	Cache Manager
	Introduction
	Directives
	rtems_cache_flush_multiple_data_lines()
	rtems_cache_invalidate_multiple_data_lines()
	rtems_cache_invalidate_multiple_instruction_lines()
	rtems_cache_instruction_sync_after_code_change()
	rtems_cache_get_maximal_line_size()
	rtems_cache_get_data_line_size()
	rtems_cache_get_instruction_line_size()
	rtems_cache_get_data_cache_size()
	rtems_cache_get_instruction_cache_size()
	rtems_cache_flush_entire_data()
	rtems_cache_invalidate_entire_data()
	rtems_cache_invalidate_entire_instruction()
	rtems_cache_enable_data()
	rtems_cache_disable_data()
	rtems_cache_enable_instruction()
	rtems_cache_disable_instruction()
	rtems_cache_aligned_malloc()

	Fatal Error Manager
	Introduction
	Background
	Overview
	System Termination Procedure
	Fatal Sources
	Internal Error Codes

	Operations
	Announcing a Fatal Error

	Directives
	rtems_fatal()
	rtems_panic()
	rtems_shutdown_executive()
	rtems_exception_frame_print()
	rtems_fatal_source_text()
	rtems_internal_error_text()
	rtems_fatal_error_occurred()

	Board Support Packages
	Introduction
	Reset and Initialization
	Interrupt Stack Requirements
	Processors with a Separate Interrupt Stack
	Processors Without a Separate Interrupt Stack

	Device Drivers
	Clock Tick Device Driver

	User Extensions
	Multiprocessor Communications Interface (MPCI)
	Tightly-Coupled Systems
	Loosely-Coupled Systems
	Systems with Mixed Coupling
	Heterogeneous Systems

	User Extensions Manager
	Introduction
	Background
	Extension Sets
	TCB Extension Area
	Order of Invocation
	Thread Create Extension
	Thread Start Extension
	Thread Restart Extension
	Thread Switch Extension
	Thread Begin Extension
	Thread Exitted Extension
	Thread Termination Extension
	Thread Delete Extension
	Fatal Error Extension

	Directives
	rtems_extension_create()
	rtems_extension_delete()
	rtems_extension_ident()

	Configuring a System
	Introduction
	Default Value Selection Philosophy
	Sizing the RTEMS Workspace
	Potential Issues with RTEMS Workspace Size Estimation
	Configuration Example
	Unlimited Objects
	Unlimited Objects by Class
	Unlimited Objects by Default

	General System Configuration
	CONFIGURE_DIRTY_MEMORY
	CONFIGURE_DISABLE_BSP_SETTINGS
	CONFIGURE_DISABLE_NEWLIB_REENTRANCY
	CONFIGURE_EXECUTIVE_RAM_SIZE
	CONFIGURE_EXTRA_TASK_STACKS
	CONFIGURE_INIT
	CONFIGURE_INITIAL_EXTENSIONS
	CONFIGURE_INTERRUPT_STACK_SIZE
	CONFIGURE_MALLOC_DIRTY
	CONFIGURE_MAXIMUM_FILE_DESCRIPTORS
	CONFIGURE_MAXIMUM_PROCESSORS
	CONFIGURE_MAXIMUM_THREAD_LOCAL_STORAGE_SIZE
	CONFIGURE_MAXIMUM_THREAD_NAME_SIZE
	CONFIGURE_MEMORY_OVERHEAD
	CONFIGURE_MESSAGE_BUFFER_MEMORY
	CONFIGURE_MICROSECONDS_PER_TICK
	CONFIGURE_MINIMUM_TASK_STACK_SIZE
	CONFIGURE_STACK_CHECKER_ENABLED
	CONFIGURE_TICKS_PER_TIMESLICE
	CONFIGURE_UNIFIED_WORK_AREAS
	CONFIGURE_UNLIMITED_ALLOCATION_SIZE
	CONFIGURE_UNLIMITED_OBJECTS
	CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION
	CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

	Device Driver Configuration
	CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER
	CONFIGURE_APPLICATION_EXTRA_DRIVERS
	CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER
	CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
	CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER
	CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER
	CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER
	CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER
	CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER
	CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER
	CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER
	CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS
	CONFIGURE_ATA_DRIVER_TASK_PRIORITY
	CONFIGURE_EXCEPTION_TO_SIGNAL_MAPPING
	CONFIGURE_MAXIMUM_DRIVERS

	Classic API Configuration
	CONFIGURE_MAXIMUM_BARRIERS
	CONFIGURE_MAXIMUM_MESSAGE_QUEUES
	CONFIGURE_MAXIMUM_PARTITIONS
	CONFIGURE_MAXIMUM_PERIODS
	CONFIGURE_MAXIMUM_PORTS
	CONFIGURE_MAXIMUM_REGIONS
	CONFIGURE_MAXIMUM_SEMAPHORES
	CONFIGURE_MAXIMUM_TASKS
	CONFIGURE_MAXIMUM_TIMERS
	CONFIGURE_MAXIMUM_USER_EXTENSIONS
	CONFIGURE_MINIMUM_TASKS_WITH_USER_PROVIDED_STORAGE

	Classic API Initialization Task Configuration
	CONFIGURE_INIT_TASK_ARGUMENTS
	CONFIGURE_INIT_TASK_ATTRIBUTES
	CONFIGURE_INIT_TASK_CONSTRUCT_STORAGE_SIZE
	CONFIGURE_INIT_TASK_ENTRY_POINT
	CONFIGURE_INIT_TASK_INITIAL_MODES
	CONFIGURE_INIT_TASK_NAME
	CONFIGURE_INIT_TASK_PRIORITY
	CONFIGURE_INIT_TASK_STACK_SIZE
	CONFIGURE_RTEMS_INIT_TASKS_TABLE

	POSIX API Configuration
	CONFIGURE_MAXIMUM_POSIX_KEYS
	CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS
	CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES
	CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS
	CONFIGURE_MAXIMUM_POSIX_SEMAPHORES
	CONFIGURE_MAXIMUM_POSIX_SHMS
	CONFIGURE_MAXIMUM_POSIX_THREADS
	CONFIGURE_MAXIMUM_POSIX_TIMERS
	CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE

	POSIX Initialization Thread Configuration
	CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT
	CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE
	CONFIGURE_POSIX_INIT_THREAD_TABLE

	Event Recording Configuration
	CONFIGURE_RECORD_EXTENSIONS_ENABLED
	CONFIGURE_RECORD_FATAL_DUMP_BASE64
	CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB
	CONFIGURE_RECORD_INTERRUPTS_ENABLED
	CONFIGURE_RECORD_PER_PROCESSOR_ITEMS

	Filesystem Configuration
	CONFIGURE_APPLICATION_DISABLE_FILESYSTEM
	CONFIGURE_FILESYSTEM_ALL
	CONFIGURE_FILESYSTEM_DOSFS
	CONFIGURE_FILESYSTEM_FTPFS
	CONFIGURE_FILESYSTEM_IMFS
	CONFIGURE_FILESYSTEM_JFFS2
	CONFIGURE_FILESYSTEM_NFS
	CONFIGURE_FILESYSTEM_RFS
	CONFIGURE_FILESYSTEM_TFTPFS
	CONFIGURE_IMFS_DISABLE_CHMOD
	CONFIGURE_IMFS_DISABLE_CHOWN
	CONFIGURE_IMFS_DISABLE_LINK
	CONFIGURE_IMFS_DISABLE_MKNOD
	CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE
	CONFIGURE_IMFS_DISABLE_MKNOD_FILE
	CONFIGURE_IMFS_DISABLE_MOUNT
	CONFIGURE_IMFS_DISABLE_READDIR
	CONFIGURE_IMFS_DISABLE_READLINK
	CONFIGURE_IMFS_DISABLE_RENAME
	CONFIGURE_IMFS_DISABLE_RMNOD
	CONFIGURE_IMFS_DISABLE_SYMLINK
	CONFIGURE_IMFS_DISABLE_UNMOUNT
	CONFIGURE_IMFS_DISABLE_UTIME
	CONFIGURE_IMFS_ENABLE_MKFIFO
	CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK
	CONFIGURE_JFFS2_DELAYED_WRITE_TASK_PRIORITY
	CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM
	CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

	Block Device Cache Configuration
	CONFIGURE_APPLICATION_NEEDS_LIBBLOCK
	CONFIGURE_BDBUF_BUFFER_MAX_SIZE
	CONFIGURE_BDBUF_BUFFER_MIN_SIZE
	CONFIGURE_BDBUF_CACHE_MEMORY_SIZE
	CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS
	CONFIGURE_BDBUF_MAX_WRITE_BLOCKS
	CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY
	CONFIGURE_BDBUF_TASK_STACK_SIZE
	CONFIGURE_SWAPOUT_BLOCK_HOLD
	CONFIGURE_SWAPOUT_SWAP_PERIOD
	CONFIGURE_SWAPOUT_TASK_PRIORITY
	CONFIGURE_SWAPOUT_WORKER_TASKS
	CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY

	Task Stack Allocator Configuration
	CONFIGURE_TASK_STACK_ALLOCATOR
	CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE
	CONFIGURE_TASK_STACK_ALLOCATOR_FOR_IDLE
	CONFIGURE_TASK_STACK_ALLOCATOR_INIT
	CONFIGURE_TASK_STACK_DEALLOCATOR
	CONFIGURE_TASK_STACK_FROM_ALLOCATOR

	Idle Task Configuration
	CONFIGURE_IDLE_TASK_BODY
	CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION
	CONFIGURE_IDLE_TASK_STACK_SIZE
	CONFIGURE_IDLE_TASK_STORAGE_SIZE

	General Scheduler Configuration
	CONFIGURE_CBS_MAXIMUM_SERVERS
	CONFIGURE_MAXIMUM_PRIORITY
	CONFIGURE_SCHEDULER_ASSIGNMENTS
	CONFIGURE_SCHEDULER_CBS
	CONFIGURE_SCHEDULER_EDF
	CONFIGURE_SCHEDULER_EDF_SMP
	CONFIGURE_SCHEDULER_NAME
	CONFIGURE_SCHEDULER_PRIORITY
	CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP
	CONFIGURE_SCHEDULER_PRIORITY_SMP
	CONFIGURE_SCHEDULER_SIMPLE
	CONFIGURE_SCHEDULER_SIMPLE_SMP
	CONFIGURE_SCHEDULER_STRONG_APA
	CONFIGURE_SCHEDULER_TABLE_ENTRIES
	CONFIGURE_SCHEDULER_USER

	Clustered Scheduler Configuration
	Configuration Step 1 - Scheduler Algorithms
	Configuration Step 2 - Schedulers
	Configuration Step 3 - Scheduler Table
	Configuration Step 4 - Processor to Scheduler Assignment
	Configuration Example
	Configuration Errors

	FACE Technical Standard Related Configuration
	CONFIGURE_POSIX_TIMERS_FACE_BEHAVIOR

	Multiprocessing Configuration
	CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK
	CONFIGURE_MP_APPLICATION
	CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS
	CONFIGURE_MP_MAXIMUM_NODES
	CONFIGURE_MP_MAXIMUM_PROXIES
	CONFIGURE_MP_MPCI_TABLE_POINTER
	CONFIGURE_MP_NODE_NUMBER

	PCI Library Configuration
	Ada Configuration
	Directives
	rtems_get_build_label()
	rtems_get_copyright_notice()
	rtems_get_target_hash()
	rtems_get_version_string()
	rtems_configuration_get_do_zero_of_workspace()
	rtems_configuration_get_idle_task_stack_size()
	rtems_configuration_get_idle_task()
	rtems_configuration_get_interrupt_stack_size()
	rtems_configuration_get_maximum_barriers()
	rtems_configuration_get_maximum_extensions()
	rtems_configuration_get_maximum_message_queues()
	rtems_configuration_get_maximum_partitions()
	rtems_configuration_get_maximum_periods()
	rtems_configuration_get_maximum_ports()
	rtems_configuration_get_maximum_processors()
	rtems_configuration_get_maximum_regions()
	rtems_configuration_get_maximum_semaphores()
	rtems_configuration_get_maximum_tasks()
	rtems_configuration_get_maximum_timers()
	rtems_configuration_get_microseconds_per_tick()
	rtems_configuration_get_milliseconds_per_tick()
	rtems_configuration_get_nanoseconds_per_tick()
	rtems_configuration_get_number_of_initial_extensions()
	rtems_configuration_get_stack_allocate_for_idle_hook()
	rtems_configuration_get_stack_allocate_hook()
	rtems_configuration_get_stack_allocate_init_hook()
	rtems_configuration_get_stack_allocator_avoids_work_space()
	rtems_configuration_get_stack_free_hook()
	rtems_configuration_get_stack_space_size()
	rtems_configuration_get_ticks_per_timeslice()
	rtems_configuration_get_unified_work_area()
	rtems_configuration_get_user_extension_table()
	rtems_configuration_get_user_multiprocessing_table()
	rtems_configuration_get_work_space_size()
	rtems_configuration_get_rtems_api_configuration()
	rtems_resource_is_unlimited()
	rtems_resource_maximum_per_allocation()
	rtems_resource_unlimited()

	Obsolete Configuration Options
	CONFIGURE_BDBUF_BUFFER_COUNT
	CONFIGURE_BDBUF_BUFFER_SIZE
	CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS
	CONFIGURE_ENABLE_GO
	CONFIGURE_GNAT_RTEMS
	CONFIGURE_HAS_OWN_CONFIGURATION_TABLE
	CONFIGURE_HAS_OWN_BDBUF_TABLE
	CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE
	CONFIGURE_HAS_OWN_INIT_TASK_TABLE
	CONFIGURE_HAS_OWN_MOUNT_TABLE
	CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE
	CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS
	CONFIGURE_MAXIMUM_ADA_TASKS
	CONFIGURE_MAXIMUM_DEVICES
	CONFIGURE_MAXIMUM_FAKE_ADA_TASKS
	CONFIGURE_MAXIMUM_GO_CHANNELS
	CONFIGURE_MAXIMUM_GOROUTINES
	CONFIGURE_MAXIMUM_MRSP_SEMAPHORES
	CONFIGURE_NUMBER_OF_TERMIOS_PORTS
	CONFIGURE_MAXIMUM_POSIX_BARRIERS
	CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES
	CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS
	CONFIGURE_MAXIMUM_POSIX_MUTEXES
	CONFIGURE_MAXIMUM_POSIX_RWLOCKS
	CONFIGURE_MAXIMUM_POSIX_SPINLOCKS
	CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE
	CONFIGURE_SMP_APPLICATION
	CONFIGURE_SMP_MAXIMUM_PROCESSORS
	CONFIGURE_TERMIOS_DISABLED

	Self-Contained Objects
	Introduction
	RTEMS Thread API
	Mutual Exclusion
	Static mutex initialization
	Run-time mutex initialization
	Lock the mutex
	Try to lock the mutex
	Unlock the mutex
	Set mutex name
	Get mutex name
	Mutex destruction

	Condition Variables
	Static condition variable initialization
	Run-time condition variable initialization
	Wait for condition signal
	Signals a condition change
	Broadcasts a condition change
	Set condition variable name
	Get condition variable name
	Condition variable destruction

	Counting Semaphores
	Static counting semaphore initialization
	Run-time counting semaphore initialization
	Wait for a counting semaphore
	Wait for a counting semaphore with timeout in ticks
	Tries to wait for a counting semaphore
	Post a counting semaphore
	Set counting semaphore name
	Get counting semaphore name
	Counting semaphore destruction

	Binary Semaphores
	Static binary semaphore initialization
	Run-time binary semaphore initialization
	Wait for a binary semaphore
	Wait for a binary semaphore with timeout in ticks
	Tries to wait for a binary semaphore
	Post a binary semaphore
	Set binary semaphore name
	Get binary semaphore name
	Binary semaphore destruction

	Threads

	Regulator Manager
	Introduction
	Background
	Regulator Buffering
	Message Delivery Rate

	Operations
	Application Sourcing Data
	Delivery Function

	Directives
	rtems_regulator_create()
	rtems_regulator_delete()
	rtems_regulator_obtain_buffer()
	rtems_regulator_release_buffer()
	rtems_regulator_send()
	rtems_regulator_get_statistics()

	Multiprocessing Manager
	Introduction
	Background
	Nodes
	Global Objects
	Global Object Table
	Remote Operations
	Proxies
	Multiprocessor Configuration Table

	Multiprocessor Communications Interface Layer
	INITIALIZATION
	GET_PACKET
	RETURN_PACKET
	RECEIVE_PACKET
	SEND_PACKET
	Supporting Heterogeneous Environments

	Operations
	Announcing a Packet

	Directives
	rtems_multiprocessing_announce()

	Symmetric Multiprocessing (SMP)
	Introduction
	Background
	Application Configuration
	Examples
	Uniprocessor versus SMP Parallelism
	Task Affinity
	Task Migration
	Clustered Scheduling
	OpenMP
	Atomic Operations

	Application Issues
	Task variables
	Highest Priority Thread Never Walks Alone
	Disabling of Thread Preemption
	Disabling of Interrupts
	Interrupt Service Routines Execute in Parallel With Threads
	Timers Do Not Stop Immediately
	False Sharing of Cache Lines Due to Objects Table

	Implementation Details
	Low-Level Synchronization
	Internal Locking
	Profiling
	Scheduler Helping Protocol
	Thread Dispatch Details
	Per-Processor Data
	Thread Pinning

	PCI Library
	Introduction
	Background
	Software Components
	PCI Configuration
	RTEMS Configuration selection
	Auto Configuration
	Read Configuration
	Static Configuration
	Peripheral Configuration

	PCI Access
	Configuration space
	I/O space
	Registers over Memory space
	Access functions
	PCI address translation

	PCI Interrupt
	PCI Shell command

	Stack Bounds Checker
	Introduction
	Background
	Task Stack
	Execution

	Operations
	Initializing the Stack Bounds Checker
	Checking for Blown Task Stack
	Reporting Task Stack Usage
	When a Task Overflows the Stack

	Routines
	STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack
	STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage

	CPU Usage Statistics
	Introduction
	Background
	Operations
	Report CPU Usage Statistics
	Reset CPU Usage Statistics

	Directives
	cpu_usage_report - Report CPU Usage Statistics
	cpu_usage_reset - Reset CPU Usage Statistics

	Object Services
	Introduction
	Background
	APIs
	Object Classes
	Object Names

	Operations
	Decomposing and Recomposing an Object Id
	Printing an Object Id

	Directives
	rtems_build_id()
	rtems_build_name()
	rtems_object_get_classic_name()
	rtems_object_get_name()
	rtems_object_set_name()
	rtems_object_id_get_api()
	rtems_object_id_get_class()
	rtems_object_id_get_node()
	rtems_object_id_get_index()
	rtems_object_id_api_minimum()
	rtems_object_id_api_maximum()
	rtems_object_api_minimum_class()
	rtems_object_api_maximum_class()
	rtems_object_get_api_name()
	rtems_object_get_api_class_name()
	rtems_object_get_class_information()
	rtems_object_get_local_node()
	RTEMS_OBJECT_ID_INITIAL()

	Chains
	Introduction
	Background
	Nodes
	Controls

	Operations
	Multi-threading
	Creating a Chain
	Iterating a Chain

	Directives
	Initialize Chain With Nodes
	Initialize Empty
	Is Null Node ?
	Head
	Tail
	Are Two Nodes Equal ?
	Is the Chain Empty
	Is this the First Node on the Chain ?
	Is this the Last Node on the Chain ?
	Does this Chain have only One Node ?
	Returns the node count of the chain (unprotected)
	Is this Node the Chain Head ?
	Is this Node the Chain Tail ?
	Extract a Node
	Extract a Node (unprotected)
	Get the First Node
	Get the First Node (unprotected)
	Insert a Node
	Insert a Node (unprotected)
	Append a Node
	Append a Node (unprotected)
	Prepend a Node
	Prepend a Node (unprotected)

	Red-Black Trees
	Introduction
	Background
	Nodes
	Controls

	Operations
	Directives
	Documentation for the Red-Black Tree Directives

	Timespec Helpers
	Introduction
	Background
	Time Storage Conventions

	Operations
	Set and Obtain Timespec Value
	Timespec Math
	Comparing struct timespec Instances
	Conversions and Validity Check

	Directives
	TIMESPEC_SET - Set struct timespec Instance
	TIMESPEC_ZERO - Zero struct timespec Instance
	TIMESPEC_IS_VALID - Check validity of a struct timespec instance
	TIMESPEC_ADD_TO - Add Two struct timespec Instances
	TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances
	TIMESPEC_DIVIDE - Divide Two struct timespec Instances
	TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by an Integer
	TIMESPEC_LESS_THAN - Less than operator
	TIMESPEC_GREATER_THAN - Greater than operator
	TIMESPEC_EQUAL_TO - Check equality of timespecs
	TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec Instance
	TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the struct timespec Instance
	TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks
	TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representation

	Constant Bandwidth Server Scheduler API
	Introduction
	Background
	Constant Bandwidth Server Definitions
	Handling Periodic Tasks
	Registering a Callback Function
	Limitations

	Operations
	Setting up a server
	Attaching Task to a Server
	Detaching Task from a Server
	Examples

	Directives
	CBS_INITIALIZE - Initialize the CBS library
	CBS_CLEANUP - Cleanup the CBS library
	CBS_CREATE_SERVER - Create a new bandwidth server
	CBS_ATTACH_THREAD - Attach a thread to server
	CBS_DETACH_THREAD - Detach a thread from server
	CBS_DESTROY_SERVER - Destroy a bandwidth server
	CBS_GET_SERVER_ID - Get an ID of a server
	CBS_GET_PARAMETERS - Get scheduling parameters of a server
	CBS_SET_PARAMETERS - Set scheduling parameters
	CBS_GET_EXECUTION_TIME - Get elapsed execution time
	CBS_GET_REMAINING_BUDGET - Get remaining execution time
	CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time

	Ada Support
	Introduction
	Ada Programming Language Support
	Classic API Ada Bindings

	Linker Sets
	Introduction
	Background
	Directives
	RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker
	RTEMS_LINKER_SET_END - Designator of the linker set end marker
	RTEMS_LINKER_SET_SIZE - The linker set size in characters
	RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count
	RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty?
	RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items
	RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set
	RTEMS_LINKER_ROSET - Defines a read-only linker set
	RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE - Declares an ordered read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-only linker set item
	RTEMS_LINKER_ROSET_CONTENT - Marks a declaration as a read-only linker set content
	RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set
	RTEMS_LINKER_RWSET - Defines a read-write linker set
	RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE - Declares an ordered read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-write linker set item
	RTEMS_LINKER_RWSET_CONTENT - Marks a declaration as a read-write linker set content

	Directive Status Codes
	Introduction
	Directives
	STATUS_TEXT - Returns the enumeration name for a status code

	Example Application
	Glossary
	Bibliography
	Index

