Embedded With

RTEMS

www.rtems.org

RTEMS Classic API Guide

Release 6.1-rc2 (20th February 2024)
© 1988, 2024 RTEMS Project and contributors

CONTENTS

1 Preface 3
2 Overview 7
2.1 Introduction i e e e e e e e e e e e e e 8
2.2 Real-time Application Systems i 9
2.3 Real-time Executive e e e 10
2.4 RTEMS Application Architecture 11
2.5 RTEMS Internal Architecture 12
2.6 User Customization and Extensibility 14
2.7 Portability e e e e e e 15
2.8 Memory Requirements. i i e e e e e e e e e 16
2.9 Audience e e 17
2.10 Conventions ¢ v v v i i e e e e e e e e e e e e e e e e e e 18
2.11 Manual Organization o v v vttt 19

3 Key Concepts 23
3.1 Introduction e e e e e 24
3.2 Objects e e e e e e 25
3.2.1 ObjectNames oo v it 25

3.2.2 ObjectIds e e e 26

3.2.3 Localand Global Scope, 26

3.2.3.1 ObjectIDFormat it 27

3.2.4 Object ID DesCription v v v v v v i e e e e e e e 27

3.3 Communication and Synchronization 28
3.4 Locking Protocols 29
3.4.1 PriorityInversion 29

3.4.2 Immediate Ceiling Priority Protocol (ICPP) 29

3.4.3 Priority Inheritance Protocol oo, 30

3.4.4 Multiprocessor Resource Sharing Protocol (MrsP) 30

3.4.5 O(m) Independence-Preserving Protocol (OMIP) 30

3.5 Thread Queues 0 i i e e e e 31
3.6 Time e e e e 32
3.7 Timerand TiMeOUtS o v i v e i e e e e e e e e e e e e e e 33
3.8 Memory Managementot e e e e e e e e e e e 34

4 RTEMS Data Types 35
4.1 Introduction e e e e e e e e e e e 36
4.2 ListofData Types o v v v v vt e e e e e e e e e e e e 37

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

4.2.8

4.2.9

4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16
4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.2.25
4.2.26
4.2.27
4.2.28
4.2.29
4.2.30
4.2.31
4.2.32
4.2.33
4.2.34
4.2.35
4.2.36
4.2.37
4.2.38
4.2.39
4.2.40
4.2.41
4.2.42
4.2.43
4.2.44
4.2.45
4.2.46
4.2.47
4.2.48
4.2.49
4.2.50
4.2.51

BSP output_char function type, 37

BSP polling getchar function type 37
Timer Classes i 37
rtems_api_configuration table L. 37
TEEIMS ST .« ¢ v v e v e 39
FLEMS ST €NLIY . .+« v v v v v e v e e e e e e e e e e e e e e e e 39
rtems assert CONteXt v v v v v v v i e e e e 39
rtems_attribute 39
rtems_device driver 40
rtems _device driver entryol 40
rtems_device major number 40
rtems_device minor number, 40
rtems_driver address table 40
rtems event Set 41
rtems_exception frame 41
rtems_extensions table 41
rtems fatal code 42
rtems_fatal extension oo 42
rtems fatal source 42
rtems id e e e 42
rtems_initialization tasks table 43
rtems_interrupt_attributes 43
rtems_interrupt entryo e e e e e e e e 45
rtems_interrupt handler 45
rtems_interrupt level 45
rtems_interrupt lock 45
rtems_interrupt lock context 45
rtems_interrupt_per handler routine L., 46
rtems_interrupt _server actiont 46
rtems_interrupt server config L. 46
rtems_interrupt_server control 46
rtems_interrupt Server entry v v v v v e v v e e e 47
rtems_interrupt_server requesto e .. 47
rtems_interrupt signal variant, 48
rtems interval 48
TS ST . . o v v o o o e e e e e e e e e 48
ItemS ST eNtIY o e e e e e e e e e e e e e e 48
rtems_message_queue_config L. 48
rtems mode e 49
rtems_mp packet classes oL 49
ItemMS MPCL ENLTY« v v v v v e e e e e e e e e e e e e e e 49
rtems_mpci_get packet entry Lo 49
rtems _mpci_initialization entry L. 50
rtems_mpci_receive packet entry 50
rtems_mpci_return_packet entryo . 50
rtems _mpci_send _packet entry 50
rtems mpci table L. 50
rtems_multiprocessing table oL 50
FeMS NAIME . .« & v v v v e v e v e e e e e e e e e e e e e e e e 50
rtems_object_api class_information 50
rtems Option i e e e e e e 51

ii

4.2.52 rtems packet prefix 51

4.2.53 rtems_rate_monotonic_period states, 51
4.2.54 rtems_rate_monotonic_period statistics 52
4.2.55 rtems_rate_monotonic_period status, 52
4.2.56 rtems regulator attributes L. 53
4.2.57 rtems regulator deliverer 53
4.2.58 rtems_regulator statistics 54
4.2.59 rtems signal set 54
4.2.60 rtems_stack allocate hook 54
4.2.61 rtems stack allocate init hook 54
4.2.62 rtems stack free hook L 55
4.2.63 rtems status code 55
4.2.64 rtems task L 57
4.2.65 rtems task argumento 57
4.2.66 rtems task begin extension, 57
4.2.67 rtems task config 57
4.2.68 rtems task create extension 59
4.2.69 rtems_task delete extension 59
4.2.70 rtems task entry 59
4.2.71 rtems_task exitted extension 59
4.2.72 rtems task priorityo 60
4.2.73 rtems_task restart extension 60
4.2.74 rtems task start extension. 60
4.2.75 rtems_task switch_extension, 60
4.2.76 rtems_task terminate extension 61
4.2.77 rtems task visitor.o 61
4.2.78 rtems tcb 61
4279 rtems time of day 61
4.2.80 rtems_timer information 62
4.2.81 rtems_timer Service routine 62
4.2.82 rtems_timer service routine entry 63
4.2.83 rtems vector number 63

5 Scheduling Concepts 65
5.1 Introduction e 66
5.2 Background. e e e 67
5.2.1 Scheduling Algorithms 67
5.2.2 Priority Scheduling 67
5.2.3 Scheduling Modification Mechanisms 68
5.2.3.1 Task Priority and Scheduling 68

5.2.3.2 Preemption e 68

5.2.3.3 Timeslicing 69

5.2.3.4 Manual Round-Robin 69

5.2.4 Dispatching Tasks e 69
5.2.5 TaskState Transitions. o ittt it 70

5.3 Uniprocessor Schedulers 73
5.3.1 Deterministic Priority Scheduler, 73
5.3.2 Simple Priority Scheduler 73
5.3.3 Earliest Deadline First Scheduler 73
5.3.4 Constant Bandwidth Server Scheduling (CBS) 74

5.4 SMP Schedulers 75

iii

5.4.1 Earliest Deadline First SMP Scheduler. 75

5.4.2 Deterministic Priority SMP Scheduler 75

5.4.3 Simple Priority SMP Scheduler 75

5.4.4 Arbitrary Processor Affinity Priority SMP Scheduler 75

5.5 DIrectives L e e e e 76
5.5.1 rtems scheduler ident() 77

5.5.2 rtems _scheduler ident by processor() 78

5.5.3 rtems scheduler ident by processor set() 79

5.5.4 rtems scheduler get maximum priority() 81

5.5.5 rtems scheduler map_ priority to posix() 82

5.5.6 rtems_scheduler map priority from posix() 83

5.5.7 rtems scheduler get processor() 84

5.5.8 rtems scheduler get processor maximum() 85

5.5.9 rtems scheduler get processor set() 86
5.5.10 rtems scheduler add processor() 87
5.5.11 rtems _scheduler remove processor() 89

6 Initialization Manager 91
6.1 Introduction 92
6.2 Background. e e e e e 93
6.2.1 Initialization Tasks L 93

6.2.2 TheldleTask 93

6.2.3 Initialization Manager Failure 93

6.3 OPperations v v i i e e e e e e e e e e e e e e e e e e 94
6.3.1 Initializing RTEMS i et 94

6.3.2 Global Construction. 98

6.4 DIrectives i e e e 100
6.4.1 rtems initialize executive() 101

7 Task Manager 103
7.1 Introduction e 104
7.2 Background. 105
7.2.1 TaskDefinition 105

7.2.2 TaskControlBlock 105

7.2.3 TaskMemory e 105

724 TaskName e 106

7.2.5 TaskStates. e e e e e e e 106

7.2.6 TaskPriority e 106

7.2.7 TaskMode e e e 107

7.2.8 TaskLifeStates 108

7.2.9 Accessing Task Argumentso i e ettt e e 108
7.2.10 Floating Point Considerations 109
7.2.11 Building a Task Attribute Set 110
7.2.12 BuildingaModeandMask L 110

7.3 OPerations e e e e e e e e 112
7.3.1 Creating Tasks e e e 112

7.3.2 Obtaining TaskIDs 112

7.3.3 Starting and Restarting Tasks 112

7.3.4 Suspending and Resuming Tasks 112

7.3.5 Delaying the Currently Executing Task 113

7.3.6 Changing Task Priority 113

7.3.7 Changing TaskMode 113

iv

7.3.8 TaskDeletion @ . i i i i e 113

7.3.9 Setting Affinity to a Single Processor 114
7.3.10 Transition Advice for Removed Notepads 114
7.3.11 Transition Advice for Removed Task Variables 114
7.4 Directives oo e e e e e e e e e e e 115
7.4.1 rtems task create()o e e e e 116
7.4.2 rtems task construct()o 121
7.4.3 rtems task ident() 124
7.4.4 rtems task selfQ) L 126
7.4.5 rtems task start()o 127
7.4.6 rtems task restart() 129
7.4.7 rtems task delete() 131
7.4.8 rtems task exit() oo o oL 133
7.4.9 rtems task suspend()l 134
7.4.10 rtems task resume()o 136
7.4.11 rtems task is suspended() oo 137
7.4.12 rtems_task set priority() 138
7.4.13 rtems_task get priority() 140
7.4.14 rtems task mode() 142
7.4.15 rtems task wake after() 145
7.4.16 rtems_task wake when() L. 146
7.4.17 rtems task get scheduler(), 147
7.4.18 rtems task set scheduler() 148
7.4.19 rtems_task get affinity() Lo L 150
7.4.20 rtems_task set affinity() 152
7.4.21 rtems task iterate() 154
7.4.22 RTEMS_TASK STORAGE SIZEQ) oo vieei .. 155
7.5 Deprecated Directives e 156
7.5.1 [ITERATE OVER _ALL THREADS - Iterate Over Tasks. 157
7.6 Removed Directives i i i e e e e 158
7.6.1 TASK GET NOTE - Get task notepadentry 159
7.6.2 TASK SET NOTE - Set task notepad entry 160
7.6.3 TASK VARIABLE ADD - Associate per task variable 161
7.6.4 TASK VARIABLE GET - Obtain value of a per task variable 162
7.6.5 TASK VARIABLE DELETE - Remove per task variable 163
Interrupt Manager 165
8.1 Introduction e e e 166
8.2 Background. e 169
8.2.1 Processing anInterruptt e e e e 169
8.2.2 RTEMS InterruptLevels 170
8.2.3 Disabling of Interrupts by RTEMS 170
8.3 Operations e e e e e e 171
8.3.1 EstablishinganISR 171
8.3.2 Directives Allowed fromanISR 171
8.4 DIrectives i e e e e e e e e e 174
8.4.1 rtems interrupt catch() 175
8.4.2 rtems_interrupt disable() oo, 177
8.4.3 rtems_interrupt enable() L e 179
8.4.4 rtems interrupt flashQ) L 180
8.4.5 rtems_interrupt local disable(), 181

8.4.6

8.4.7

8.4.8

8.4.9

8.4.10
8.4.11
8.4.12
8.4.13
8.4.14
8.4.15
8.4.16
8.4.17
8.4.18
8.4.19
8.4.20
8.4.21
8.4.22
8.4.23
8.4.24
8.4.25
8.4.26
8.4.27
8.4.28
8.4.29
8.4.30
8.4.31
8.4.32
8.4.33
8.4.34
8.4.35
8.4.36
8.4.37
8.4.38
8.4.39
8.4.40
8.4.41
8.4.42
8.4.43
8.4.44
8.4.45
8.4.46
8.4.47
8.4.48
8.4.49
8.4.50
8.4.51
8.4.52
8.4.53
8.4.54
8.4.55

rtems_interrupt local enable() 183

rtems_interrupt is in _progress() 184
rtems_interrupt_lock initialize() 185
rtems_interrupt_lock destroy() 186
rtems_interrupt lock acquire() 187
rtems_interrupt lock release() 189
rtems_interrupt_lock acquire isr() 190
rtems_interrupt lock release isr() 192
rtems_interrupt_lock interrupt disable() 193
RTEMS_INTERRUPT LOCK DECLARE(Q) 194
RTEMS_INTERRUPT LOCK DEFINEQ) oo e 195
RTEMS_INTERRUPT LOCK INITIALIZERQ 196
RTEMS INTERRUPT LOCK MEMBER() 197
RTEMS_INTERRUPT LOCK REFERENCE(Q) 198
RTEMS INTERRUPT ENTRY INITIALIZERQ) 199
rtems_interrupt_entry initialize() oL 200
rtems_interrupt entry install), 201
rtems_interrupt _entry remove()o e e e 203
rtems_interrupt_handler installQ) 205
rtems_interrupt_handler remove() 207
rtems_interrupt vector is enabled() L. 209
rtems_interrupt vector enable(), 211
rtems_interrupt_vector disable() 212
rtems_interrupt_is_pending() 213
rtems_interrupt raise() Lo e 215
rtems_interrupt raise on()o 216
rtems_interrupt clear() 218
rtems_interrupt_get affinity() 219
rtems_interrupt_set_affinity(Q) 0oL, 220
rtems_interrupt_get attributes() L. 222
rtems_interrupt_handler iterate() L. 223
rtems_interrupt_server initialize() 225
rtems_interrupt _server create()o 227
rtems_interrupt_server handler install) 228
rtems_interrupt_server_handler remove() 230
rtems_interrupt_server set affinity() 232
rtems_interrupt_server delete() L. 234
rtems_interrupt_server suspend() oL 235
rtems_interrupt_server resume()o oo .. 236
rtems_interrupt_server move() 237
rtems_interrupt server handler iterate() 238
rtems_interrupt_server entry initialize() L. 240
rtems_interrupt _server action_prepend() 241
rtems_interrupt_server_entry_destroy() L. 243
rtems_interrupt_server entry submit() L. 244
rtems_interrupt_server entry move() 246
rtems_interrupt_server request initialize() 248
rtems_interrupt_server request set vector() 250
rtems_interrupt_server request destroy() 252
rtems_interrupt_server request submit() 253

vi

9 Clock Manager
9.1 Introduction e e e
9.2 Background. e

9.2.1
9.2.2
9.2.3
9.2.4
9.2.5

Required Support
Time and Date Data Structureso
Clock Tick and Timeslicing
Delays e e e e e e e e e e
Timeouts e e e e e e

9.3 OPEerations . . . v v v v v e

9.3.1
9.3.2
9.3.3
9.3.4

Announcinga Tick
Settingthe Time
Obtainingthe Time it e
Transition Advice for the Removed rtems_clock get()

0.4 DIrecCtiVes o o i e e e e e e e e e e e e e

9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13
9.4.14
9.4.15
9.4.16
9.4.17
9.4.18
9.4.19
9.4.20
9.4.21
9.4.22
9.4.23
9.4.24
9.4.25
9.4.26
9.4.27
9.4.28
9.4.29

rtems clock set()
rtems clock get tod()
rtems_clock get tod timeval(),
rtems_clock get realtime(),
rtems_clock get realtime bintime()
rtems_clock_get realtime timeval()
rtems_clock get realtime coarse()
rtems_clock_get realtime coarse bintime()
rtems_clock get realtime coarse timeval)
rtems_clock_get monotonic()
rtems_clock _get monotonic bintime()
rtems_clock _get monotonic sbintime()
rtems_clock _get monotonic timeval()
rtems_clock _get monotonic_coarse()
rtems_clock _get monotonic_coarse bintime()
rtems_clock _get monotonic_coarse timeval()
rtems_clock_get boot time()
rtems_clock get boot time bintime()
rtems_clock_get boot time timeval(Q)
rtems_clock get seconds since epoch()
rtems_clock_get ticks per second()
rtems_clock get ticks since boot(),
rtems_clock get uptime()
rtems_clock get uptime timeval()
rtems_clock get uptime seconds(),
rtems_clock get uptime nanoseconds()
rtems_clock tick later()
rtems_clock tick later usec()
rtems_clock tick before() L.

9.5 Removed Directives vt i e e e e e e e e e e e

9.5.1

CLOCK _GET - Get date and time information

10 Timer Manager
10.1 Introduction e e e e e e e
10.2 Background e e e e e e

10.2.1
10.2.2

Required Support
TIMers o o e

255
256
258
258
258
259
259
259
260
260
260
260
261
262
263
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

295
296
297
297
297

vii

10.2.3 TimMer SEIVer v v v e e e e e e e e e e e e 297

10.2.4 Timer Service Routines 297

10.3 Operations v v vt it e e e e e e e e e e e e e 299
10.3.1 CreatingaTimer i uueineen.. 299
10.3.2 Obtaining TimerIDst i it i e 299
10.3.3 Initiating an Interval Timer 299
10.3.4 Initiatinga Time of Day Timer 299
10.3.5 CancelingaTimer. i i ittt it e e 299
10.3.6 ResettingaTimer i v i it e e 299
10.3.7 Initiating the Timer Server 300
10.3.8 DeletingaTimer i i v i ittt et 300

10.4 DIreCtives v v v vt i e e e e e e e e e e e e e e e e 301
10.4.1 rtems timer create()o 302
10.4.2 rtems timer ident() 304
10.4.3 rtems timer cancel() Lo 306
10.4.4 rtems timer delete() 307
10.4.5 rtems_timer fire after) L. 308
10.4.6 rtems_timer fire when() 310
10.4.7 rtems_timer initiate server() 312
10.4.8 rtems_timer server fire after(), 314
10.4.9 rtems_timer server fire when(Q 316
10.4.10rtems_timer reset()o e e e e 318
10.4.11rtems_timer_get information() 320

11 Rate Monotonic Manager 321
11.1 Introduction i e e e e e e e e 322
11.2 Background e e e e e e e 323
11.2.1 Rate Monotonic Manager Required Support 323
11.2.2 Period Statistics e e e 323
11.2.3 Periodicity Definitions, 324
11.2.4 Rate Monotonic Scheduling Algorithm 325
11.2.5 Schedulability Analysis 326
11.2.5.1 ASSUMPLIONS . « . ¢ v v v v v e e e e e e e e e e e e e e e 326

11.2.5.2 Processor UtilizationRule 326

11.2.5.3 Processor Utilization Rule Example 327

11.2.5.4 First DeadlineRule 327

11.2.5.5 First Deadline Rule Example 327

11.2.5.6 Relaxation of Assumptions 328

11.3 Operations v v v i e e e e e e e e e e 329
11.3.1 Creating a Rate Monotonic Period 329
11.3.2 Manipulatinga Period 329
11.3.3 Obtaining the Statusof aPeriod 329
11.3.4 CancelingaPeriod, 330
11.3.5 Deleting a Rate Monotonic Period 330
11.3.6 Examples e e e 330
11.3.7 Simple Periodic Task 330
11.3.8 Task with Multiple Periods 331

11.4 DIireCtives« v v v o e 333
11.4.1 rtems rate monotonic_create() 334
11.4.2 rtems_rate monotonic ident() L. 336
11.4.3 rtems_rate monotonic cancel() 338

viii

11.4.4 rtems_rate_monotonic delete(),
11.4.5 rtems_rate_monotonic_period() oL
11.4.6 rtems rate monotonic_get status()o ..
11.4.7 rtems_rate_monotonic_get statistics()
11.4.8 rtems_rate_monotonic_reset statistics()
11.4.9 rtems_rate_monotonic reset all statisticsQ)
11.4.10rtems_rate_monotonic report statistics()o
11.4.11 rtems_rate_monotonic_report_statistics_with_pluginQ)

12 Semaphore Manager

12.1 Introduction
12.2 Background.

12.2.1 Nested Resource ACCESS . . v v v v v v v i e e e e e e
12.2.2 Priority Inheritance

12.2.3 Priority Ceiling

12.2.4 Multiprocessor Resource Sharing Protocol
12.2.5 Building a Semaphore Attribute Seto L.
12.2.6 Building a SEMAPHORE OBTAIN OptionSet.

12.3 Operations

12.3.1 Creatinga Semaphore,
12.3.2 Obtaining SemaphoreIDs
12.3.3 Acquiring a Semaphore e
12.3.4 Releasing a Semaphore
12.3.5 Deleting a Semaphore

12.4 Directives

12.4.1 rtems _semaphore create()o
12.4.2 rtems_semaphore ident()
12.4.3 rtems_semaphore delete()
12.4.4 rtems_semaphore obtain()o
12.4.5 rtems_semaphore release()
12.4.6 rtems_semaphore flush()
12.4.7 rtems_semaphore set priority()o

13 Barrier Manager

13.1 Introduction
13.2 Background.

13.2.1 Automatic Versus Manual Barrierso .o
13.2.2 Building a Barrier Attribute Set

13.3 Directives

13.3.1 rtems barrier create()
13.3.2 rtems_barrier ident() oo oo
13.3.3 rtems_barrier delete()
13.3.4 rtems_barrier wait() Lo
13.3.5 rtems barrier release()

14 Message Manager

14.1 Introduction
14.2 Background.
14.2.1 Messages

14.2.2 Message Queues

14.2.3 Building a Message Queue Attribute Set
14.2.4 Building a MESSAGE_QUEUE_RECEIVE Option Set

351
352
353
353
354
354
354
354
355
356
356
356
356
357
357
358
359
363
365
367
370
372
374

379
380
381
381
381
382
383
385
387
388
390

391
392
393
393
393
393
394

ix

14.3 Operations ¢ v v v v v i it e e e e e e e e e e e e e

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6

Creating a Message Queue v ...
Obtaining Message Queue IDs oo
Receivinga Message o i i i it e e
Sending a Message v v it e e e e e e e e
Broadcasting a Message v v ittt e e e e
Deleting a Message QUEUE v v v v ittt e

14.4 Directives v v e

14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.4.6
14.4.7
14.4.8
14.4.9

rtems_message queue create()o . i e e e e
rtems_message queue _construct()
rtems_message queue ident()
rtems_message queue delete() oL
rtems_message queue send() oL
rtems_message queue urgent()
rtems_message queue_broadcast()
rtems_message queue receive() L. oo
rtems_message queue_get number pending()

14.4.10rtems_message queue flush()
14.4.11 RTEMS_MESSAGE _QUEUE BUFFER()

15 Event Manager

15.1 Introduction i i i e e e e e e e e e e
15.2 Background e e e e

15.2.1
15.2.2
15.2.3

EventSets L e
Building an Event Set or Condition
Building an EVENT RECEIVE Option Set

15.3 Operations v v v v i e e e e e e e e e e e e e e e e e e

15.3.1
15.3.2
15.3.3
15.3.4

SendinganEvent Setl
Receivingan Event Set e
Determining the Pending EventSet
Receiving all Pending Events

15.4 Directives o v i e

15.4.1
15.4.2

rtems event send()
rtems_event receive() e e

16 Signal Manager

16.1 IntroduCtion v v v v e e e e e e e e e e e e e e e e e e
16.2 Background e e e e e e e

16.2.1

Signal Manager Definitions

16.2.2 A Comparisonof ASRsandISRs

16.2.3
16.2.4

Buildinga Signal Set
Buildingan ASRMode

16.3 Operations ¢ v v v v vttt e e e e e e e e e e e e e

16.3.1
16.3.2
16.3.3

Establishingan ASR.,
Sending a Signal Set
Processingan ASR

16.4 DIreCtiVES . . v v v v v e

16.4.1
16.4.2

rtems_signal catch()
rtems_signal send() L.

17 Partition Manager

17.1 IntroduCtion v v v ot e e e e e e e e e e e e e

17.2 Background

17.2.1
17.2.2

Partition Manager Definitions
Building a Partition Attribute Set 0. ..

17.3 Operations v v v v it e e e e e e e e e e e

17.3.1
17.3.2
17.3.3
17.3.4
17.3.5

Creating a Partition e
Obtaining Partition IDs
AcquiringaBuffer
ReleasingaBuffer.
Deleting a Partition

17.4 Directives v v e e e e e e e e e e e e e e e e e e e

17.4.1
17.4.2
17.4.3
17.4.4
17.4.5

rtems_partition create()ol
rtems_partition ident()
rtems_partition_delete()
rtems_partition_get buffer() Lo oL
rtems_partition return buffer() oo

18 Region Manager
18.1 IntroducCtion o i v i i e e e e e e e e e e e e
18.2 Background

18.2.1
18.2.2
18.2.3

Region Manager Definitions
Building an Attribute Set
Buildingan Option Set,

18.3 Operations o i it e e e e e e e e e e

18.3.1
18.3.2
18.3.3
18.3.4
18.3.5
18.3.6
18.3.7
18.3.8

CreatingaRegion
Obtaining RegionIDs it
Adding MemorytoaRegion,
Acquiring a Segment e e e e e e e
Releasinga Segment
Obtaining the SizeofaSegment
Changing the Size ofa Segment
DeletingaRegion e

18.4 Directives v v e

18.4.1
18.4.2
18.4.3
18.4.4
18.4.5
18.4.6
18.4.7
18.4.8
18.4.9

rtems region create()o e e e
rtems_region ident()
rtems_region delete()
rtems_region extend()o
rtems_region get segment()l e e .
rtems_region return segment()
rtems_region resize segment()
rtems_region_get information() L.
rtems_region get free information()

18.4.10rtems_region get segment size()o

19 Dual-Ported Memory Manager
19.1 IntroducCtion o i v i e e e e e e e e e e e e
19.2 Background L e e e e
19.3 Operations v v v v v i e e e e e e e e e e e e e e

19.3.1
19.3.2
19.3.3
19.3.4

CreatingaPort e
Obtaining Port IDS o i e e e e
Converting an Address
Deleting a DPMA POt o v i ittt et e e e

19.4 Directives v v e

xi

20 I/0 Manager

19.4.1
19.4.2
19.4.3
19.4.4
19.4.5

rtems port create() e e e e e e e e
rtems port ident()
rtems_port delete()
rtems_port_external to internal() L. L.
rtems_port_internal to external()

20.1 Introduction i i i e e e e e e e e
20.2 Background e e e e e

20.2.1
20.2.2
20.2.3
20.2.4
20.2.5
20.2.6
20.2.7

Device Driver Tableo
Major and Minor Device Numbers
Device Names o i it e e e e e e e e e e
Device Driver Environment v v v i
Runtime Driver Registration
Device Driver Interface e
Device Driver Initialization

20.3 OpEerations ¢ v v it e e e e e e e e e e e e

20.3.1
20.3.2

Register and LookupName
Accessing an Device Driver oo

20.4 DIrectives o o e e e e e e e e e e e

204.1
20.4.2
20.4.3
20.4.4
20.4.5
20.4.6
20.4.7
20.4.8
20.4.9

rtems_io register driver()
rtems_io_unregister driver()
rtems_io_initialize()
rtems_io_register name()
rtems io open() e e
rtems io close()
rtems io read()
rtems_io write() e
rtems _io control()

21 Kernel Character I/0 Support
21.1 Introduction v v i i e e e e e e e e e e e e e
21.2 DIrectives o o o e e e e e e e e e e e e e e

21.2.1
21.2.2
21.2.3
21.2.4
21.2.5
21.2.6
21.2.7

rtems putc() e e e e e e e e e e
rtems put char()
putkQ) . . . e e e e
printk() e e e e e
vprintk() e
rtems_printk printer()
getchark() e e

22 Cache Manager
22.1 IntroducCtion vt i e e e e e e e e e e e e e
22.2 DIrectives o o e e e e e e e e e e e e

22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7
22.2.8

rtems_cache flush multiple data linesQ
rtems_cache_invalidate multiple data linesQ)
rtems_cache_invalidate multiple instruction lines()
rtems_cache_instruction_sync_after code change()
rtems_cache get maximal line size()
rtems_cache get data line size()
rtems_cache get instruction line size()
rtems_cache get data cache size(),

517
518
519
520
521
522
523
524
525
526

Xii

22.2.9 rtems _cache get instruction cache size()
22.2.10rtems_cache flush entire dataQ)
22.2.11rtems_cache_invalidate entire data()
22.2.12rtems_cache_invalidate entire_instruction()
22.2.13rtems_cache enable data(),
22.2.14rtems _cache disable data(), .
22.2.15rtems_cache enable instruction()
22.2.16rtems_cache _disable instruction()
22.2.17rtems_cache aligned malloc()

23 Fatal Error Manager
23.1 Introduction .
23.2 Background . .

23.2.1 OVEIVIEW o o o et e e e e e e e e e e e e e e e
23.2.2 Fatal Sources i e e e e e e e
23.2.3 Internal Error Codes v v i i i e e e e e e

23.3 Operations . .

23.3.1 AnnouncingaFatalError,

23.4 Directives . . .

23.4.1 rtems fatal)
23.4.2 rtems panic()o e e e e e
23.4.3 rtems_shutdown executive(),
23.4.4 rtems_exception frame print()
23.4.5 rtems fatal source text()
23.4.6 rtems internal error text()
23.4.7 rtems fatal error occurred()

24 Board Support Packages

24.1 Introduction .

24.2 Reset and Initialization
24.2.1 Interrupt Stack Requirements
24.2.2 Processors with a Separate Interrupt Stack
24.2.3 Processors Without a Separate Interrupt Stack

24.3 Device Drivers

24.3.1 Clock Tick Device Driver v v v v v e e e e e e e e e

24.4 User Extensions

24.5 Multiprocessor Communications Interface (MPCI)
24.5.1 Tightly-Coupled Systems
24.5.2 Loosely-Coupled Systems
24.5.3 Systems with Mixed Coupling
24.5.4 Heterogeneous SYStEIMS« v v v vt vt it e

25 User Extensions Manager

25.1 Introduction .
25.2 Background . .

25.2.1 Extension Sets. i e e e e e e e e e e
25.2.2 TCBEXtension Areat v i i i e it e it e e e e
25.2.3 OrderofInvocation i i i i e
25.2.4 Thread Create Extension v i i i i v v ..
25.2.5 Thread Start Extension e
25.2.6 Thread Restart EXtension v v v v v v v vt et e e e
25.2.7 Thread Switch Extension

573
574
575
575
576
576
577
577
578
578

xiii

25.2.8 Thread Begin Extension 579

25.2.9 Thread Exitted Extensiont 579
25.2.10 Thread Termination Extension 579
25.2.11 Thread Delete Extension v i i v i v i v .. 580
25.2.12Fatal Error EXtension i 580

25.3 Directives o e e e e e e e e e e e e e e e e e e e 581
25.3.1 rtems_extension create()t e e e e 582
25.3.2 rtems extension delete() 584
25.3.3 rtems_extension ident() oo 585

26 Configuring a System 587
26.1 Introduction e e e e e e e 588
26.2 Default Value Selection Philosophy 591
26.3 Sizing the RTEMS Workspace i, 592
26.4 Potential Issues with RTEMS Workspace Size Estimation 593
26.5 Configuration Example 594
26.6 Unlimited Objects i it 596
26.6.1 Unlimited Objectsby Class 597
26.6.2 Unlimited Objects by Default. 597

26.7 General System Configuration, 598
26.7.1 CONFIGURE DIRTY MEMORY 599
26.7.2 CONFIGURE DISABLE BSP SETTINGS 600
26.7.3 CONFIGURE DISABLE NEWLIB REENTRANCY 601
26.7.4 CONFIGURE EXECUTIVE RAM SIZE oo .. 602
26.7.5 CONFIGURE EXTRA TASK STACKS 603
26.7.6 CONFIGURE INIT ittt 604
26.7.7 CONFIGURE INITIAL EXTENSIONS 605
26.7.8 CONFIGURE INTERRUPT STACK SIZE 606
26.7.9 CONFIGURE MALLOC DIRTY . . . « v v ovtee e e 607
26.7.10 CONFIGURE_MAXIMUM FILE DESCRIPTORS 608
26.7.11 CONFIGURE MAXIMUM PROCESSORS 609
26.7.12 CONFIGURE_MAXIMUM THREAD LOCAL STORAGE SIZE 610
26.7.13 CONFIGURE MAXIMUM THREAD NAME SIZE. 611
26.7.14 CONFIGURE MEMORY OVERHEAD 612
26.7.15 CONFIGURE MESSAGE BUFFER MEMORY 613
26.7.16 CONFIGURE MICROSECONDS PER TICK 615
26.7.17 CONFIGURE_MINIMUM TASK STACK SIZE 616
26.7.18 CONFIGURE STACK CHECKER ENABLED 617
26.7.19 CONFIGURE_TICKS PER TIMESLICE 618
26.7.20 CONFIGURE_UNIFIED WORK AREAS oo .. 619
26.7.21 CONFIGURE_UNLIMITED ALLOCATION SIZE. 620
26.7.22 CONFIGURE UNLIMITED OBJECTS 621
26.7.23 CONFIGURE_VERBOSE SYSTEM INITIALIZATION 622
26.7.24 CONFIGURE ZERO WORKSPACE AUTOMATICALLY 623

26.8 Device Driver Configuration ittt 624
26.8.1 CONFIGURE_APPLICATION DOES NOT NEED CLOCK DRIVER 625
26.8.2 CONFIGURE APPLICATION EXTRA DRIVERS 626
26.8.3 CONFIGURE_APPLICATION NEEDS ATA DRIVER. 627
26.8.4 CONFIGURE APPLICATION NEEDS CLOCK DRIVER 628
26.8.5 CONFIGURE_APPLICATION NEEDS CONSOLE DRIVER 629
26.8.6 CONFIGURE APPLICATION NEEDS FRAME BUFFER DRIVER 630

Xiv

26.8.7 CONFIGURE_APPLICATION NEEDS IDE DRIVER
26.8.8 CONFIGURE_APPLICATION NEEDS NULL DRIVER.
26.8.9 CONFIGURE_APPLICATION NEEDS RTC DRIVER
26.8.10 CONFIGURE_APPLICATION NEEDS_SIMPLE CONSOLE _DRIVER 634
26.8.11 CONFIGURE_APPLICATION NEEDS_SIMPLE_TASK_CONSOLE_DRIVER 635
26.8.12 CONFIGURE_APPLICATION NEEDS STUB DRIVER.
26.8.13 CONFIGURE_APPLICATION NEEDS TIMER DRIVER
26.8.14 CONFIGURE_APPLICATION NEEDS WATCHDOG DRIVER
26.8.15 CONFIGURE_APPLICATION NEEDS ZERO DRIVER
26.8.16 CONFIGURE_APPLICATION PREREQUISITE DRIVERS
26.8.17 CONFIGURE_ATA DRIVER TASK PRIORITY
26.8.18 CONFIGURE_EXCEPTION TO SIGNAL MAPPING.
26.8.19 CONFIGURE MAXIMUM DRIVERS o ooii i

26.9 Classic API Configuration

26.9.1 CONFIGURE MAXIMUM BARRIERS
26.9.2 CONFIGURE MAXIMUM MESSAGE QUEUES
26.9.3 CONFIGURE MAXIMUM PARTITIONS
26.9.4 CONFIGURE MAXIMUM PERIODS
26.9.5 CONFIGURE MAXIMUM PORTS
26.9.6 CONFIGURE MAXIMUM REGIONS
26.9.7 CONFIGURE MAXIMUM SEMAPHORES
26.9.8 CONFIGURE MAXIMUM TASKS
26.9.9 CONFIGURE MAXIMUM TIMERS
26.9.10 CONFIGURE MAXIMUM USER EXTENSIONS
26.9.11 CONFIGURE_MINIMUM_TASKS WITH_USER_PROVIDED STORAGE . . 657
26.10Classic API Initialization Task Configuration
26.10.1 CONFIGURE_INIT TASK ARGUMENTS
26.10.2 CONFIGURE_INIT TASK ATTRIBUTES
26.10.3 CONFIGURE_INIT TASK CONSTRUCT STORAGE SIZE
26.10.4 CONFIGURE _INIT TASK ENTRY POINT
26.10.5 CONFIGURE_INIT TASK INITIAL MODES
26.10.6 CONFIGURE INIT TASK NAME
26.10.7 CONFIGURE_INIT TASK PRIORITY
26.10.8 CONFIGURE_INIT TASK STACK SIZE
26.10.9 CONFIGURE_RTEMS_INIT TASKS TABLE

26.11POSIX API Configuration

26.11.1 CONFIGURE MAXIMUM POSIX KEYS
26.11.2 CONFIGURE_MAXIMUM _POSIX KEY VALUE PAIRS
26.11.3 CONFIGURE_MAXIMUM POSIX MESSAGE QUEUES.
26.11.4 CONFIGURE MAXIMUM POSIX QUEUED SIGNALS
26.11.5 CONFIGURE_MAXIMUM POSIX SEMAPHORES
26.11.6 CONFIGURE MAXIMUM POSIX SHMS
26.11.7 CONFIGURE_MAXIMUM POSIX THREADS
26.11.8 CONFIGURE MAXIMUM POSIX TIMERS
26.11.9 CONFIGURE MINIMUM POSIX THREAD STACK SIZE
26.12POSIX Initialization Thread Configuration
26.12.1 CONFIGURE POSIX INIT THREAD ENTRY POINT
26.12.2 CONFIGURE POSIX INIT THREAD STACK SIZE
26.12.3 CONFIGURE_POSIX_INIT THREAD TABLE
26.13Event Recording Configuration
26.13.1 CONFIGURE RECORD EXTENSIONS ENABLED

636

XV

26.13.2 CONFIGURE_RECORD FATAL DUMP BASE64. 685

26.13.3 CONFIGURE_RECORD FATAL DUMP BASE64 ZLIB 686
26.13.4 CONFIGURE RECORD INTERRUPTS ENABLED 687
26.13.5 CONFIGURE _RECORD PER PROCESSOR ITEMS 688
26.14Filesystem Configuration it 689
26.14.1 CONFIGURE_APPLICATION DISABLE FILESYSTEM 690
26.14.2CONFIGURE FILESYSTEM ALL 691
26.14.3 CONFIGURE_FILESYSTEM DOSFES 692
26.14.4 CONFIGURE FILESYSTEM FTPFS 693
26.14.5 CONFIGURE_FILESYSTEM IMFS 694
26.14.6 CONFIGURE FILESYSTEM JFFS2 695
26.14.7 CONFIGURE FILESYSTEM NFS 696
26.14.8 CONFIGURE FILESYSTEM RFS 697
26.14.9 CONFIGURE FILESYSTEM TFTPES 698
26.14.1@CONFIGURE_IMFS DISABLE CHMOD 699
26.14.1CONFIGURE IMFS DISABLE CHOWN 700
26.14.1ZONFIGURE_IMFS DISABLE LINK 701
26.14.1TONFIGURE IMFS DISABLE MKNOD 702
26.14.1€0ONFIGURE_IMFS DISABLE MKNOD DEVICE 703
26.14.1XONFIGURE IMFS DISABLE MKNOD FILE 704
26.14.1€ONFIGURE_IMFS DISABLE MOUNT 705
26.14.1CTONFIGURE IMFS DISABLE READDIR 706
26.14.1€£ONFIGURE IMFS DISABLE READLINK 707
26.14.1CONFIGURE_IMFS DISABLE RENAME 708
26.14.2@ONFIGURE_IMFS DISABLE RMNOD 709
26.14.2CONFIGURE_IMFS DISABLE SYMLINK 710
26.14.2Z0NFIGURE IMFS DISABLE UNMOUNT 711
26.14.28ONFIGURE_IMFS DISABLE UTIME 712
26.14.2€0NFIGURE IMFS ENABLE MKFIFO 713
26.14.2%8ONFIGURE_IMFS MEMFILE BYTES PER BLOCK 714
26.14.26€0NFIGURE_JFFS2_DELAYED WRITE TASK PRIORITY 716
26.14.2CONFIGURE_USE DEVFS AS BASE FILESYSTEM 717
26.14.2&0NFIGURE_USE_MINIIMFS_AS BASE FILESYSTEM 718
26.15Block Device Cache Configuration 719
26.15.1 CONFIGURE_APPLICATION NEEDS LIBBLOCK 720
26.15.2 CONFIGURE BDBUF BUFFER MAX SIZE 721
26.15.3 CONFIGURE BDBUF BUFFER MIN SIZE 722
26.15.4 CONFIGURE_BDBUF_CACHE MEMORY SIZE 723
26.15.5 CONFIGURE BDBUF _MAX READ AHEAD BLOCKS 724
26.15.6 CONFIGURE BDBUF MAX WRITE BLOCKS 725
26.15.7 CONFIGURE BDBUF READ AHEAD TASK PRIORITY 726
26.15.8 CONFIGURE_BDBUF TASK STACK SIZEo oo oo .. 727
26.15.9 CONFIGURE_SWAPOUT BLOCK HOLD 728
26.15.1@CONFIGURE_SWAPOUT SWAP PERIOD 729
26.15.1CONFIGURE_SWAPOUT TASK PRIORITY 730
26.15.1ZONFIGURE_SWAPOUT WORKER TASKS 731
26.15.1TONFIGURE_SWAPOUT WORKER TASK PRIORITY 732
26.16Task Stack Allocator Configuration 733
26.16.1 CONFIGURE TASK STACK ALLOCATOR 734
26.16.2 CONFIGURE_TASK STACK ALLOCATOR_AVOIDS WORK SPACE 735

26.16.3 CONFIGURE TASK STACK ALLOCATOR FOR IDLE 736

XVi

26.16.4 CONFIGURE_TASK STACK ALLOCATOR INIT 737

26.16.5 CONFIGURE TASK STACK DEALLOCATOR 738
26.16.6 CONFIGURE_TASK_STACK FROM ALLOCATOR 739
26.171dle Task Configurationttt 740
26.17.1CONFIGURE IDLE TASK BODY 741
26.17.2 CONFIGURE_IDLE TASK INITIALIZES APPLICATION 742
26.17.3 CONFIGURE IDLE TASK STACK SIZE 743
26.17.4 CONFIGURE_IDLE TASK STORAGE SIZE 744
26.18General Scheduler Configuration 746
26.18.1 CONFIGURE_CBS MAXIMUM SERVERS 747
26.18.2 CONFIGURE MAXIMUM PRIORITY 748
26.18.3 CONFIGURE SCHEDULER ASSIGNMENTS 750
26.18.4CONFIGURE SCHEDULER CBS 751
26.18.5CONFIGURE SCHEDULER EDF 752
26.18.6 CONFIGURE SCHEDULER EDF SMP. 753
26.18.7 CONFIGURE SCHEDULER NAME 754
26.18.8 CONFIGURE_SCHEDULER PRIORITY 755
26.18.9 CONFIGURE SCHEDULER PRIORITY AFFINITY SMP 756
26.18.1@ONFIGURE_SCHEDULER PRIORITY SMP 757
26.18.1CONFIGURE SCHEDULER SIMPLE 758
26.18.1ZONFIGURE_SCHEDULER SIMPLE SMP. 759
26.18.1TONFIGURE_SCHEDULER STRONG APA 760
26.18.1€0ONFIGURE SCHEDULER TABLE ENTRIES 761
26.18.1XONFIGURE _SCHEDULER USER 763
26.19Clustered Scheduler Configuration 764
26.19.1 Configuration Step 1 - Scheduler Algorithms 764
26.19.2 Configuration Step 2 - Schedulers 765
26.19.3 Configuration Step 3 - Scheduler Table 765
26.19.4 Configuration Step 4 - Processor to Scheduler Assignment 765
26.19.5 Configuration Example 766
26.19.6 Configuration Errors 767
26.20FACE Technical Standard Related Configuration. 768
26.20.1 CONFIGURE POSIX TIMERS FACE BEHAVIOR 769
26.21 Multiprocessing Configuration 770
26.21.1 CONFIGURE EXTRA MPCI RECEIVE SERVER STACK 771
26.21.2CONFIGURE MP APPLICATION i it 772
26.21.3 CONFIGURE_MP MAXIMUM GLOBAL OBJECTS 773
26.21.4 CONFIGURE MP MAXIMUM NODES 774
26.21.5CONFIGURE _MP MAXIMUM PROXIES 775
26.21.6 CONFIGURE MP MPCI TABLE POINTER 776
26.21.7 CONFIGURE_MP NODE NUMBER 777
26.22PCI Library Configuration vt i v ittt 778
26.23Ada Configuration e e e e 779
26.24DITeCtiVES L e e e e e e e 780
26.24.1rtems_get build label) L. 781
26.24.2rtems_get copyright notice() 782
26.24.3rtems_get target hash() 783
26.24.4rtems_get version string()o 784
26.24.5rtems_configuration_get do_zero_of workspace() 785
26.24.6 rtems_configuration get idle task stack size() 786
26.24.7 rtems_configuration _get idle task(Q) 787

xvii

26.24.8 rtems_configuration_get interrupt_stack size() 788

26.24.9rtems_configuration get maximum barriers() 789
26.24.1@tems_configuration_get maximum_extensions() 790
26.24.1ttems_configuration get maximum message queues() 791
26.24.12tems_configuration_get maximum_partitions() 792
26.24.13tems_configuration get maximum periods() 793
26.24.14tems_configuration_get maximum ports() 794
26.24.15tems_configuration _get maximum_processors() 795
26.24.16tems_configuration_get maximum_regions() 796
26.24.17tems_configuration get maximum semaphoresQ) 797
26.24.18tems_configuration_get maximum tasks() 798
26.24.19tems_configuration_get maximum_timers() 799
26.24.2@tems_configuration_get microseconds per tick(Q) 800
26.24.21tems_configuration_get milliseconds _per tick() 801
26.24.22tems_configuration get nanoseconds per tick(Q) 802
26.24.23tems_configuration_get number of initial extensions() 803
26.24.24tems_configuration get stack allocate for idle hook() 804
26.24.25tems_configuration _get stack allocate hook() 805
26.24.26tems_configuration_get stack allocate init hook() 806
26.24.27tems_configuration_get stack allocator avoids work space() 807
26.24.28tems_configuration_get stack free hook() 808
26.24.29tems_configuration_get stack space size() 809
26.24.3@tems_configuration_get ticks per timeslice() 810
26.24.3ttems_configuration_get unified work area() 811
26.24.32tems_configuration_get user_extension table() 812
26.24.33tems_configuration get user multiprocessing table() 813
26.24.34tems_configuration_get work space size() 814
26.24.3%tems_configuration_get rtems_api_configuration() 815
26.24.36tems_resource is unlimited() 816
26.24.37tems_resource_maximum_per allocation() 817
26.24.38tems_resource unlimited() 818
26.250bsolete Configuration Options.ot tv i ittt 819
26.25.1 CONFIGURE BDBUF BUFFER COUNT 819
26.25.2 CONFIGURE BDBUF BUFFER SIZE 819
26.25.3 CONFIGURE_DISABLE_CLASSIC_API NOTEPADS 819
26.25.4CONFIGURE ENABLE GO ittt 819
26.25.5CONFIGURE GNAT RTEMS 819
26.25.6 CONFIGURE_HAS_OWN_CONFIGURATION TABLE 819
26.25.7 CONFIGURE HAS OWN BDBUF TABLE 819
26.25.8 CONFIGURE_HAS OWN _DEVICE DRIVER TABLE 819
26.25.9 CONFIGURE _HAS OWN INIT TASK TABLE 819
26.25.1@CONFIGURE HAS OWN MOUNT TABLE 820
26.25.1CONFIGURE_HAS OWN_MULTIPROCESSING TABLE 820
26.25.1Z0ONFIGURE_LIBIO MAXIMUM FILE DESCRIPTORS 820
26.25.1TONFIGURE MAXIMUM ADA TASKS 820
26.25.1€0NFIGURE MAXIMUM DEVICES 820
26.25.15XONFIGURE MAXIMUM FAKE ADA TASKS 820
26.25.1€ONFIGURE MAXIMUM GO CHANNELS 820
26.25.1CTONFIGURE MAXIMUM GOROUTINES 820
26.25.1€ONFIGURE_MAXIMUM_ MRSP SEMAPHORES 820
26.25.1CONFIGURE_NUMBER_OF TERMIOS PORTS 821

Xviii

26.25.2CONFIGURE_MAXIMUM POSIX BARRIERS
26.25.2CONFIGURE_MAXIMUM_POSIX_CONDITION VARIABLES
26.25.2Z0NFIGURE_MAXIMUM _POSIX_MESSAGE_QUEUE_DESCRIPTORS

26.25.2C0NFIGURE_MAXIMUM POSIX MUTEXES
26.25.24ONFIGURE_MAXIMUM POSIX RWLOCKS
26.25.2E0NFIGURE_MAXIMUM _POSIX_SPINLOCKS
26.25.2€0NFIGURE_POSIX_HAS_OWN _INIT THREAD TABLE.
26.25.2TCONFIGURE_SMP APPLICATION o oo
26.25.2&0NFIGURE_SMP_MAXIMUM PROCESSORS
26.25.2CONFIGURE_TERMIOS DISABLED

27 Self-Contained Objects
27.1 Introduction e e e e
27.2 RTEMS Thread API e e e et e e e
27.3 Mutual Exclusion. e e e
27.3.1 Static mutex initializationo
27.3.2 Run-time mutex initialization
27.3.3 Lockthemutex
27.3.4 Trytolockthemutex,
27.3.5 Unlockthemutex
27.3.6 SetmMUEX NATNE« . & v v v v e e e e e e e e e e e e e e e e
27.3.7 GetmUteX NAMEttt ot e e e e e e e e e e e e e e
27.3.8 Mutexdestruction. e
27.4 Condition Variables
27.4.1 Static condition variable initialization
27.4.2 Run-time condition variable initialization
27.4.3 Wait for conditionsignal
27.4.4 Signalsaconditionchange L.,
27.4.5 Broadcastsaconditionchange
27.4.6 Set condition variablename
27.4.7 Get condition variablename L.
27.4.8 Condition variable destruction
27.5 Counting Semaphores i i e e e e e e
27.5.1 Static counting semaphore initialization
27.5.2 Run-time counting semaphore initialization
27.5.3 Wait for a counting semaphore,
27.5.4 Post a counting semaphore L.
27.5.5 Set counting semaphorename
27.5.6 Get counting semaphorename,
27.5.7 Counting semaphore destruction
27.6 Binary Semaphorest e e e e e
27.6.1 Static binary semaphore initialization
27.6.2 Run-time binary semaphore initialization
27.6.3 Wait for a binary semaphore
27.6.4 Wait for a binary semaphore with timeoutin ticks
27.6.5 Tries to wait for a binary semaphore
27.6.6 Post a binary semaphore
27.6.7 Set binary semaphorename,
27.6.8 Get binary semaphorename
27.6.9 Binary semaphore destruction
27.7 Threads e e e

Xix

28 Regulator Manager

28.1
28.2

28.3

28.4

Introduction e
Background e e
28.2.1 Regulator Buffering
28.2.2 Message DeliveryRate
OPErations« v v v v v it e e e e e e e e e e e e e
28.3.1 Application SourcingData,
28.3.2 Delivery Function
Directives e e e e e
28.4.1 rtems regulator create()
28.4.2 rtems_regulator delete() oo
28.4.3 rtems regulator obtain buffer().
28.4.4 rtems regulator release buffer()
28.4.5 rtems regulator send()
28.4.6 rtems regulator get statistics()

29 Multiprocessing Manager

29.1
29.2

29.3

29.4

29.5

Introduction
Background e e e e
20.2.1 Nodeso o i e e e
29.2.2 GlobalObjects o o
29.2.3 Global ObjectTable
29.2.4 Remote Operations v vt it
29.2.5 Proxieso e e e
29.2.6 Multiprocessor Configuration Table
Multiprocessor Communications Interface Layer
29.3.1 INITIALIZATION o e e e e e e e e e e e e e
29.3.2 GET PACKET e e e e e
29.3.3 RETURN PACKET o e e
29.3.4 RECEIVE PACKET i ittt
29.3.5 SEND PACKET e
29.3.6 Supporting Heterogeneous Environments
Operations v v it e e e e e e e e e e e e e e
29.4.1 AnnouncingaPacket
DITeCtives o o o i e e e e e e e e e e e e e
29.5.1 rtems multiprocessing announce()a L.

30 Symmetric Multiprocessing (SMP)

30.1
30.2

Introduction e e e e e e
Background e e
30.2.1 Application Configuration
30.2.2 Examples e e e e e e
30.2.3 Uniprocessor versus SMP Parallelism
30.2.4 Task Affinity e
30.2.5 Task Migration i i v v i it e
30.2.6 Clustered Scheduling
30.2.7 OpenMP L e
30.2.8 Atomic Operations« . v v v vttt e e e e e e e

30.3 Application ISSUES o i i e e e e e e e e e e e e e

30.3.1 Taskvariables
30.3.2 Highest Priority Thread Never Walks Alone
30.3.3 Disabling of Thread Preemption

30.4

30.3.4 Disabling of Interrupts
30.3.5 Interrupt Service Routines Execute in Parallel With Threads
30.3.6 Timers Do Not Stop Immediately
30.3.7 False Sharing of Cache Lines Due to Objects Table
Implementation Details
30.4.1 Low-Level Synchronization.
30.4.2 Internal Locking
30.4.3 Profiling
30.4.4 Scheduler Helping Protocol
30.4.5 Thread Dispatch Details
30.4.6 Per-ProcessorData
30.4.7 Thread Pinning o

31 PCI Library

31.1
31.2

Introduction e e e e e e e e e
Background e
31.2.1 Software COMpPONeNnts o oo v v v v v it e
31.2.2 PCIConfiguration v v v it e et e e e e e e
31.2.2.1 RTEMS Configuration selection
31.2.2.2 Auto Configuration
31.2.2.3 Read Configuration
31.2.2.4 Static Configuration
31.2.2.5 Peripheral Configuration
31.2.3 PCLACCESS o i e e e e e
31.2.3.1 Configuration space v v v v v v i i e
31.23.2I/0space
31.2.3.3 Registers over MEMOIy SPACe . . . « v v v v v v v v v e e e e e o
31.2.3.4 Accessfunctions
31.2.3.5 PCI address translation
31.2.4 PCIInterrupt ittt
31.2.5 PCIShellcommand

32 Stack Bounds Checker

32.1
32.2

32.3

32.4

Introduction
Background
32,21 TaskStack
32.2.2 EXECULION v v it it et e e e e e e e e e e e e e e e
Operations v v i i e e e e e e e e e e e e e e e
32.3.1 Initializing the Stack Bounds Checker
32.3.2 Checking for Blown Task Stack
32.3.3 Reporting Task Stack Usage
32.3.4 When a Task Overflows the Stack
Routines o e e
32.4.1 STACK CHECKER IS BLOWN - Has Current Task Blown Its Stack
32.4.2 STACK CHECKER REPORT USAGE - Report Task Stack Usage

33 CPU Usage Statistics

33.1
33.2
33.3

Introduction e e e e e e e e e e
Background e
OPerations« v v v v v it e e e e e e e e e e e e e
33.3.1 Report CPU Usage Statistics v v v
33.3.2 Reset CPU Usage Statistics v v v v v v v i vt v oo

xxi

33.4 DIrectives v i e e e e e e e e e e e e e 932
33.4.1 cpu_usage report - Report CPU Usage Statistics 933
33.4.2 cpu_usage reset - Reset CPU Usage Statistics 934

34 Object Services 935

34.1 Introduction i i i e e e e e e e e e 936

34.2 Background e e e e e e 937
34.2.1 APIs e e e e e e 937
34.2.2 Object Classes o v v i i i e e e e e e e e e e e e 937
34.2.3 ObjectNames oo v ittt 937

34.3 Operations v v v v v i e 938
34.3.1 Decomposing and Recomposing an ObjectId 938
34.3.2 Printingan ObjectId 939

34.4 DITeCIVES v v v i i it e e e e e e e e 940
34.4.1 rtems build idQ L 941
34.4.2 rtems build name() e 942
34.4.3 rtems object _get classic name() 943
34.4.4 rtems object get name()o e 944
34.4.5 rtems object set name() 946
34.4.6 rtems object id get api() o 948
34.4.7 rtems object id get classQo L 949
34.4.8 rtems object id get node()o 950
34.4.9 rtems object id get index() 951
34.4.10rtems_object id api minimum() L. 952
34.4.11rtems_object id api maximum() 953
34.4.12rtems_object_api minimum class() L. 954
34.4.13rtems_object_api maximum classQ) L. 955
34.4.14rtems_object_get api name() 956
34.4.15rtems_object get api class name() 957
34.4.16rtems_object_get class_information() L. 958
34.4.17 rtems_object get local node() 959
34.4.18 RTEMS OBJECT ID INITIALQ« 960

35 Chains 961

35.1 Introduction e e e 962

35.2 Background e e e e 963
35.2.1 Nodes i i e e e e e 963
35.22 Controls 963

35.3 Operations v i i e e e e e e e e e 964
35.3.1 Multi-threading 964
35.3.2 CreatingaChain 964
35.3.3 TteratingaChain, 964

35.4 DIreCtiVES v v v v e e e e e e e e e e e 966
35.4.1 Initialize Chain WithNodes 967
35.4.2 Inmitialize Empty 968
3543 IsNullNode? e 969
3544 Head i i e e e e 970
35.4.5 Tail e 971
35.4.6 AreTwoNodesEqual?, 972
3547 IstheChain Empty 973
35.4.8 Is this the First Nodeonthe Chain?. 974
35.4.9 Isthis the Last NodeontheChain? 975

xXXii

35.4.10Does this Chain have only One Node ?
35.4.11 Returns the node count of the chain (unprotected)
35.4.121Is this Node the ChainHead ?
35.4.13Is this Node the Chain Tail ?
35.4.14ExtractaNode e e e
35.4.15 Extract a Node (unprotected)
35.4.16GettheFirst Node i it
35.4.17 Get the First Node (unprotected)
35.4.18InsertaNode e e e
35.4.191Insert a Node (unprotected)
35.4.20AppendaNode e
35.4.21 Append a Node (unprotected)
35.4.22Prepend aNode e e
35.4.23 Prepend a Node (unprotected)

36 Red-Black Trees

36.1
36.2

36.3
36.4

Introduction e e
Background e e
36.2.1 Nodes v i i i e e e e e e
36.2.2 Controls e e e e e e e
OPErations v v v v v i et e e e e e e e e e e e e e
Directives o i e
36.4.1 Documentation for the Red-Black Tree Directives

37 Timespec Helpers

37.1
37.2

37.3

37.4

Introduction e
Background e
37.2.1 Time Storage CONVeNtions ¢« . v v v v v v v v v v e v v v v
Operations v v i i e e e e e e e e e e e e e e e e e e
37.3.1 Set and Obtain TimespecValue
37.3.2 TimespecMath
37.3.3 Comparing struct timespec Instances
37.3.4 Conversions and ValidityCheck
DITECHIVES v v v i e e e e e e e e e e e e
37.4.1 TIMESPEC SET - Set struct timespec Instance
37.4.2 TIMESPEC_ZERO - Zero struct timespec Instance
37.4.3 TIMESPEC_IS VALID - Check validity of a struct timespec instance
37.4.4 TIMESPEC ADD TO - Add Two struct timespec Instances
37.4.5 TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances
37.4.6 TIMESPEC DIVIDE - Divide Two struct timespec Instances
37.4.7 TIMESPEC DIVIDE BY INTEGER - Divide a struct timespec Instance by
anlnteger e e
37.4.8 TIMESPEC _LESS THAN - Less than operator
37.4.9 TIMESPEC GREATER THAN - Greater than operator
37.4.10 TIMESPEC_EQUAL_TO - Check equality of timespecs
37.4.11 TIMESPEC_GET SECONDS - Get Seconds Portion of struct timespec In-
STATICE . . .t i e e e e e e e e e e e e
37.4.12 TIMESPEC_GET NANOSECONDS - Get Nanoseconds Portion of the
struct timespec Instance Lo
37.4.13 TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks
37.4.14 TIMESPEC_FROM TICKS - Convert Ticks to struct timespec Representa-

38 Constant Bandwidth Server Scheduler API 1017

38.1 Introduction e e e e 1018
38.2 Background e e e e 1019
38.2.1 Constant Bandwidth Server Definitions 1019
38.2.2 Handling PeriodicTasks 1019
38.2.3 Registering a Callback Function 1019
38.2.4 LimitationsS o v it e e e e e 1020
38.3 Operationst i e e e e e e e e e 1021
38.3.1 Setting UP @ SEIVET . . . v v v v v v v e e e e e e e e e e e e e e e e 1021
38.3.2 Attaching Tasktoa Server 1021
38.3.3 Detaching Task fromaServer 1021
38.3.4 Examples 1021
38.4 DIrectives v i i e e e e e e e e e e 1023
38.4.1 CBS_INITIALIZE - Initialize the CBS library 1024
38.4.2 CBS_CLEANUP - Cleanup the CBS library 1025
38.4.3 CBS_CREATE_SERVER - Create a new bandwidth server 1026
38.4.4 CBS_ATTACH THREAD - Attach a thread toserver 1027
38.4.5 CBS DETACH THREAD - Detach a thread from server 1028
38.4.6 CBS_DESTROY SERVER - Destroy a bandwidth server 1029
38.4.7 CBS_GET SERVER ID-GetanIDofaserver 1030
38.4.8 CBS_GET PARAMETERS - Get scheduling parameters of a server 1031
38.4.9 CBS_SET PARAMETERS - Set scheduling parameters 1032
38.4.10CBS_GET EXECUTION_TIME - Get elapsed execution time 1033
38.4.11 CBS_GET_REMAINING_BUDGET - Get remaining execution time 1034
38.4.12CBS_GET _APPROVED_BUDGET - Get scheduler approved execution time 1035
39 Ada Support 1037
39.1 Introduction i i i e e e e e e e e e 1038
39.2 Ada Programming Language Supportt 1039
39.3 Classic API Ada Bindings 1040
40 Linker Sets 1041
40.1 Introduction 1042
40.2 Background 1044
40.3 DITeCLiVES o v v i e it e e e e e e e e e e e e e e e e e 1045

40.3.1 RTEMS_LINKER SET BEGIN - Designator of the linker set begin marker 1046
40.3.2 RTEMS_LINKER SET END - Designator of the linker set end marker . . 1047

40.3.3 RTEMS_LINKER SET SIZE - The linker set size in characters 1048
40.3.4 RTEMS_LINKER SET ITEM_COUNT - The linker set item count 1049
40.3.5 RTEMS LINKER SET IS EMPTY - Is the linker set empty? 1050
40.3.6 RTEMS_LINKER SET FOREACH - Iterate through the linker set items . . 1051
40.3.7 RTEMS LINKER ROSET DECLARE - Declares a read-only linker set . . . 1052
40.3.8 RTEMS_LINKER ROSET - Defines a read-only linkerset 1053
40.3.9 RTEMS LINKER ROSET ITEM DECLARE - Declares a read-only linker

SELItEIML . . v v v v it e e e e e e e e e e 1054
40.3.10 RTEMS_LINKER ROSET ITEM ORDERED DECLARE - Declares an or-

dered read-only linker setitem 1055
40.3.11 RTEMS_LINKER ROSET ITEM_REFERENCE - References a read-only

linker setitem 1056
40.3.12RTEMS_LINKER ROSET ITEM - Defines a read-only linker set item . . . 1057
40.3.13RTEMS_LINKER ROSET ITEM_ORDERED - Defines an ordered read-

only linker setitem 1058

XXiv

40.3.14RTEMS_LINKER ROSET CONTENT - Marks a declaration as a read-only
linker setcontent e

40.3.15RTEMS_LINKER RWSET DECLARE - Declares a read-write linker set . .

40.3.16 RTEMS_LINKER RWSET - Defines a read-write linker set
40.3.17RTEMS_LINKER RWSET ITEM DECLARE - Declares a read-write linker
SELIEIM o L i e e e e e e e e e e e e e e e e e
40.3.18 RTEMS_LINKER RWSET ITEM_ORDERED DECLARE - Declares an or-
dered read-write linker setitem
40.3.19 RTEMS_LINKER RWSET ITEM REFERENCE - References a read-write
linker setitem
40.3.20RTEMS_LINKER RWSET ITEM - Defines a read-write linker set item
40.3.21 RTEMS_LINKER RWSET ITEM ORDERED - Defines an ordered read-
write linker setitem o
40.3.22RTEMS_LINKER RWSET CONTENT - Marks a declaration as a read-
write linker setcontento

41 Directive Status Codes
41.1 IntroduCtion v v v e e e e e e e e e e e e e e e
41.2 DIrectives o v e e e e e e e e e e e e e e e

41.2.1 STATUS_TEXT - Returns the enumeration name for a status code

42 Example Application

43 Glossary

Bibliography

Index

XXV

XXVi

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

Copyrights and License

© 2017 Chris Johns

© 2017 Kuan-Hsun Chen

© 2015, 2020 embedded brains GmbH & Co. KG

© 2015, 2020 Sebastian Huber

© 2011 Petr Benes

© 2010 Gedare Bloom

© 1988, 2018 On-Line Applications Research Corporation (OAR)

This document is available under the

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at . Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home
Documentation
Mailing Lists
Bug Reporting
Git Repositories
Developers

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://devel.rtems.org/wiki/Developer/Bug_Reporting
https://git.rtems.org
https://devel.rtems.org

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

2 CONTENTS

CHAPTER

ONE

PREFACE

In recent years, the cost required to develop a software product has increased significantly while
the target hardware costs have decreased. Now a larger portion of money is expended in de-
veloping, using, and maintaining software. The trend in computing costs is the complete dom-
inance of software over hardware costs. Because of this, it is necessary that formal disciplines
be established to increase the probability that software is characterized by a high degree of cor-
rectness, maintainability, and portability. In addition, these disciplines must promote practices
that aid in the consistent and orderly development of a software system within schedule and
budgetary constraints. To be effective, these disciplines must adopt standards which channel
individual software efforts toward a common goal.

The push for standards in the software development field has been met with various degrees of
success. The Microprocessor Operating Systems Interfaces (MOSI) effort has experienced only
limited success. As popular as the UNIX operating system has grown, the attempt to develop a
standard interface definition to allow portable application development has only recently begun
to produce the results needed in this area. Unfortunately, very little effort has been expended
to provide standards addressing the needs of the real-time community. Several organizations
have addressed this need during recent years.

The Real Time Executive Interface Definition (RTEID) was developed by Motorola with tech-
nical input from Software Components Group [Mot88]. RTEID was adopted by the VMEbus
International Trade Association (VITA) as a baseline draft for their proposed standard multi-
processor, real-time executive interface, Open Real-Time Kernel Interface Definition (ORKID)
[VIT90]. These two groups worked together with the IEEE P1003.4 committee to ensure that
the functionality of their proposed standards is adopted as the real-time extensions to POSIX.

This proposed standard defines an interface for the development of real-time software to ease
the writing of real-time application programs that are directly portable across multiple real-time
executive implementations. This interface includes both the source code interfaces and run-
time behavior as seen by a real-time application. It does not include the details of how a kernel
implements these functions. The standard’s goal is to serve as a complete definition of external
interfaces so that application code that conforms to these interfaces will execute properly in
all real-time executive environments. With the use of a standards compliant executive, routines
that acquire memory blocks, create and manage message queues, establish and use semaphores,
and send and receive signals need not be redeveloped for a different real-time environment
as long as the new environment is compliant with the standard. Software developers need
only concentrate on the hardware dependencies of the real-time system. Furthermore, most
hardware dependencies for real-time applications can be localized to the device drivers.

A compliant executive provides simple and flexible real-time multiprocessing. It easily lends it-
self to both tightly-coupled and loosely-coupled configurations (depending on the system hard-

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 1 Section 1.0

ware configuration). Objects such as tasks, queues, events, signals, semaphores, and memory
blocks can be designated as global objects and accessed by any task regardless of which proces-
sor the object and the accessing task reside.

The acceptance of a standard for real-time executives will produce the same advantages en-
joyed from the push for UNIX standardization by AT&T’s System V Interface Definition and
IEEE’s POSIX efforts. A compliant multiprocessing executive will allow close coupling between
UNIX systems and real-time executives to provide the many benefits of the UNIX development
environment to be applied to real-time software development. Together they provide the nec-
essary laboratory environment to implement real-time, distributed, embedded systems using a
wide variety of computer architectures.

A study was completed in 1988, within the Research, Development, and Engineering Center,
U.S. Army Missile Command, which compared the various aspects of the Ada programming
language as they related to the application of Ada code in distributed and/or multiple processing
systems. Several critical conclusions were derived from the study. These conclusions have a
major impact on the way the Army develops application software for embedded applications.
These impacts apply to both in-house software development and contractor developed software.

A conclusion of the analysis, which has been previously recognized by other agencies attempting
to utilize Ada in a distributed or multiprocessing environment, is that the Ada programming
language does not adequately support multiprocessing. Ada does provide a mechanism for
multi-tasking, however, this capability exists only for a single processor system. The language
also does not have inherent capabilities to access global named variables, flags or program code.
These critical features are essential in order for data to be shared between processors. However,
these drawbacks do have workarounds which are sometimes awkward and defeat the intent of
software maintainability and portability goals.

Another conclusion drawn from the analysis, was that the run time executives being delivered
with the Ada compilers were too slow and inefficient to be used in modern missile systems. A
run time executive is the core part of the run time system code, or operating system code, that
controls task scheduling, input/output management and memory management. Traditionally,
whenever efficient executive (also known as kernel) code was required by the application, the
user developed in-house software. This software was usually written in assembly language for
optimization.

Because of this shortcoming in the Ada programming language, software developers in research
and development and contractors for project managed systems, are mandated by technology to
purchase and utilize off-the-shelf third party kernel code. The contractor, and eventually the
Government, must pay a licensing fee for every copy of the kernel code used in an embedded
system.

The main drawback to this development environment is that the Government does not own,
nor has the right to modify code contained within the kernel. V&V techniques in this situation
are more difficult than if the complete source code were available. Responsibility for system
failures due to faulty software is yet another area to be resolved under this environment.

The Guidance and Control Directorate began a software development effort to address these
problems. A project to develop an experimental run time kernel was begun that will eliminate
the major drawbacks of the Ada programming language mentioned above. The Real Time
Executive for Multiprocessor Systems (RTEMS) provides full capabilities for management of
tasks, interrupts, time, and multiple processors in addition to those features typical of generic
operating systems. The code is Government owned, so no licensing fees are necessary. RTEMS
has been implemented in both the Ada and C programming languages. It has been ported to
the following processor families:

4 Chapter 1. Preface

Chapter 1 Section 1.0 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

* Adapteva Epiphany

* Altera NIOS II

* Analog Devices Blackfin

* Atmel AVR

e ARM

* Freescale (formerly Motorola) MC68xxx
* Freescale (formerly Motorola) MC683xx
* Freescale (formerly Motorola) ColdFire
* Intel i386 and above

* Lattice Semiconductor LM32

* NEC V850

e MIPS

* Moxie Processor

* OpenRISC

* PowerPC

* Renesas (formerly Hitachi) SuperH

* Renesas (formerly Hitachi) H8/300

* Renesas M32C

e SPARC v7, v8, and V9

Since almost all of RTEMS is written in a high level language, ports to additional processor
families require minimal effort.

RTEMS multiprocessor support is capable of handling either homogeneous or heterogeneous
systems. The kernel automatically compensates for architectural differences (byte swapping,
etc.) between processors. This allows a much easier transition from one processor family to
another without a major system redesign.

Since the proposed standards are still in draft form, RTEMS cannot and does not claim com-
pliance. However, the status of the standard is being carefully monitored to guarantee that
RTEMS provides the functionality specified in the standard. Once approved, RTEMS will be
made compliant.

This document is a detailed users guide for a functionally compliant real-time multiprocessor
executive. It describes the user interface and run-time behavior of Release 4.10.99.0 of the C
interface to RTEMS.

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 1 Section 1.0

6 Chapter 1. Preface

CHAPTER

TWO

OVERVIEW

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.1

2.1

Introduction

RTEMS, Real-Time Executive for Multiprocessor Systems, is a real-time executive (kernel) which
provides a high performance environment for embedded military applications including the
following features:

multitasking capabilities

homogeneous and heterogeneous multiprocessor systems
event-driven, priority-based, preemptive scheduling
optional rate monotonic scheduling

intertask communication and synchronization

priority inheritance

responsive interrupt management

dynamic memory allocation

high level of user configurability

This manual describes the usage of RTEMS for applications written in the C programming lan-
guage. Those implementation details that are processor dependent are provided in the Appli-
cations Supplement documents. A supplement document which addresses specific architectural
issues that affect RTEMS is provided for each processor type that is supported.

Chapter 2. Overview

Chapter 2 Section 2.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

2.2 Real-time Application Systems

Real-time application systems are a special class of computer applications. They have a complex
set of characteristics that distinguish them from other software problems. Generally, they must
adhere to more rigorous requirements. The correctness of the system depends not only on the
results of computations, but also on the time at which the results are produced. The most
important and complex characteristic of real-time application systems is that they must receive
and respond to a set of external stimuli within rigid and critical time constraints referred to as
deadlines. Systems can be buried by an avalanche of interdependent, asynchronous or cyclical
event streams.

Deadlines can be further characterized as either hard or soft based upon the value of the results
when produced after the deadline has passed. A deadline is hard if the results have no value
or if their use will result in a catastrophic event. In contrast, results which are produced after a
soft deadline may have some value.

Another distinguishing requirement of real-time application systems is the ability to coordinate
or manage a large number of concurrent activities. Since software is a synchronous entity,
this presents special problems. One instruction follows another in a repeating synchronous
cycle. Even though mechanisms have been developed to allow for the processing of external
asynchronous events, the software design efforts required to process and manage these events
and tasks are growing more complicated.

The design process is complicated further by spreading this activity over a set of processors
instead of a single processor. The challenges associated with designing and building real-time
application systems become very complex when multiple processors are involved. New require-
ments such as interprocessor communication channels and global resources that must be shared
between competing processors are introduced. The ramifications of multiple processors compli-
cate each and every characteristic of a real-time system.

2.2. Real-time Application Systems 9

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.3

2.3 Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a cornerstone on which
to build the application system. A real-time multitasking executive allows an application to
be cast into a set of logical, autonomous processes or tasks which become quite manageable.
Each task is internally synchronous, but different tasks execute independently, resulting in an
asynchronous processing stream. Tasks can be dynamically paused for many reasons resulting
in a different task being allowed to execute for a period of time. The executive also provides
an interface to other system components such as interrupt handlers and device drivers. System
components may request the executive to allocate and coordinate resources, and to wait for
and trigger synchronizing conditions. The executive system calls effectively extend the CPU
instruction set to support efficient multitasking. By causing tasks to travel through well-defined
state transitions, system calls permit an application to demand-switch between tasks in response
to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now asynchronously
switch between independent streams of execution, directly responding to external stimuli as
they occur. This allows the system design to meet critical performance specifications which are
typically measured by guaranteed response time and transaction throughput. The multipro-
cessor extensions of RTEMS provide the features necessary to manage the extra requirements
introduced by a system distributed across several processors. It removes the physical barriers
of processor boundaries from the world of the system designer, enabling more critical aspects
of the system to receive the required attention. Such a system, based on an efficient real-time,
multiprocessor executive, is a more realistic model of the outside world or environment for
which it is designed. As a result, the system will always be more logical, efficient, and reliable.

By using the directives provided by RTEMS, the real-time applications developer is freed from
the problem of controlling and synchronizing multiple tasks and processors. In addition, one
need not develop, test, debug, and document routines to manage memory, pass messages, or
provide mutual exclusion. The developer is then able to concentrate solely on the application.
By using standard software components, the time and cost required to develop sophisticated
real-time applications is significantly reduced.

10 Chapter 2. Overview

Chapter 2 Section 2.4 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

2.4 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two critical layers of
typical real-time systems. As shown in the following figure, RTEMS serves as a buffer between
the project dependent application code and the target hardware. Most hardware dependencies
for real-time applications can be localized to the low level device drivers.

Application Dependent Softwvware

Standard Application Components

- - RTEMS
Dewvice Drivers Exxaecutive

Target Hardware

The RTEMS 1/0 interface manager provides an efficient tool for incorporating these hardware
dependencies into the system while simultaneously providing a general mechanism to the appli-
cation code that accesses them. A well designed real-time system can benefit from this architec-
ture by building a rich library of standard application components which can be used repeatedly
in other real-time projects.

2.4. RTEMS Application Architecture 11

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.5

2.5 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered components that work in harmony to provide a set of
services to a real-time application system. The executive interface presented to the application is
formed by grouping directives into logical sets called resource managers. Functions utilized by
multiple managers such as scheduling, dispatching, and object management are provided in the
executive core. The executive core depends on a small set of CPU dependent routines. Together
these components provide a powerful run time environment that promotes the development of
efficient real-time application systems. The following figure illustrates this organization:

Task

Initialization !

Fatal Error

Timer

Interrupt

Message

Semaphore Dual Ported Memory

" signal

T Partition

Region

Rate
Monotonic

Subsequent chapters present a detailed description of the capabilities provided by each of the
following RTEMS managers:

* initialization

* task

* interrupt

* clock

* timer

* semaphore

* message

* event

* signal

* partition

* region

* dual ported memory
* I/O

* fatal error

* rate monotonic

* user extensions

12 Chapter 2. Overview

Chapter 2 Section 2.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

* multiprocessing

2.5. RTEMS Internal Architecture 13

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.6

2.6 User Customization and Extensibility

As thirty-two bit microprocessors have decreased in cost, they have become increasingly com-
mon in a variety of embedded systems. A wide range of custom and general-purpose processor
boards are based on various thirty-two bit processors. RTEMS was designed to make no as-
sumptions concerning the characteristics of individual microprocessor families or of specific
support hardware. In addition, RTEMS allows the system developer a high degree of freedom
in customizing and extending its features.

RTEMS assumes the existence of a supported microprocessor and sufficient memory for both
RTEMS and the real-time application. Board dependent components such as clocks, interrupt
controllers, or I/0 devices can be easily integrated with RTEMS. The customization and exten-
sibility features allow RTEMS to efficiently support as many environments as possible.

14 Chapter 2. Overview

Chapter 2 Section 2.7 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

2.7 Portability

The issue of portability was the major factor in the creation of RTEMS. Since RTEMS is designed
to isolate the hardware dependencies in the specific board support packages, the real-time appli-
cation should be easily ported to any other processor. The use of RTEMS allows the development
of real-time applications which can be completely independent of a particular microprocessor
architecture.

2.7. Portability 15

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.8

2.8 Memory Requirements

Since memory is a critical resource in many real-time embedded systems, RTEMS was specif-
ically designed to automatically leave out all services that are not required from the run-time
environment. Features such as networking, various fileystems, and many other features are
completely optional. This allows the application designer the flexibility to tailor RTEMS to
most efficiently meet system requirements while still satisfying even the most stringent memory
constraints. As a result, the size of the RTEMS executive is application dependent.

RTEMS requires RAM to manage each instance of an RTEMS object that is created. Thus the
more RTEMS objects an application needs, the more memory that must be reserved. See Con-
figuring a System (page 587).

RTEMS utilizes memory for both code and data space. Although RTEMS’ data space must be in
RAM, its code space can be located in either ROM or RAM.

16 Chapter 2. Overview

Chapter 2 Section 2.9 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

2.9 Audience

This manual was written for experienced real-time software developers. Although some back-
ground is provided, it is assumed that the reader is familiar with the concepts of task manage-
ment as well as intertask communication and synchronization. Since directives, user related
data structures, and examples are presented in C, a basic understanding of the C programming
language is required to fully understand the material presented. However, because of the simi-
larity of the Ada and C RTEMS implementations, users will find that the use and behavior of the
two implementations is very similar. A working knowledge of the target processor is helpful in
understanding some of RTEMS’ features. A thorough understanding of the executive cannot be
obtained without studying the entire manual because many of RTEMS’ concepts and features
are interrelated. Experienced RTEMS users will find that the manual organization facilitates its
use as a reference document.

2.9. Audience 17

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.10

2.10 Conventions

The following conventions are used in this manual:
* Significant words or phrases as well as all directive names are printed in bold type.

* Ttems in bold capital letters are constants defined by RTEMS. Each language interface
provided by RTEMS includes a file containing the standard set of constants, data types,
and structure definitions which can be incorporated into the user application.

* A number of type definitions are provided by RTEMS and can be found in rtems.h.

* The characters “Ox” preceding a number indicates that the number is in hexadecimal
format. Any other numbers are assumed to be in decimal format.

18 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

2.11 Manual Organization

This first chapter has presented the introductory and background material for the RTEMS exec-
utive. The remaining chapters of this manual present a detailed description of RTEMS and the
environment, including run time behavior, it creates for the user.

A chapter is dedicated to each manager and provides a detailed discussion of each RTEMS man-
ager and the directives which it provides. The presentation format for each directive includes
the following sections:

* Calling sequence
* Directive status codes
* Description
* Notes
The following provides an overview of the remainder of this manual:

Chapter 3:
Key Concepts: presents an introduction to the ideas which are common across multiple
RTEMS managers.

Chapter 4:
RTEMS Data Types: describes the fundamental data types shared by the services in the RTEMS
Classic API.

Chapter 5:
Scheduling Concepts: details the various RTEMS scheduling algorithms and task state transi-
tions.

Chapter 6:
Initialization Manager: describes the functionality and directives provided by the Initializa-
tion Manager.

Chapter 7:
Task Manager: describes the functionality and directives provided by the Task Manager.

Chapter 8:
Interrupt Manager: describes the functionality and directives provided by the Interrupt Man-
ager.

Chapter 9:
Clock Manager: describes the functionality and directives provided by the Clock Manager.

Chapter 10:
Timer Manager: describes the functionality and directives provided by the Timer Manager.

Chapter 11:
Rate Monotonic Manager: describes the functionality and directives provided by the Rate
Monotonic Manager.

Chapter 12:
Semaphore Manager: describes the functionality and directives provided by the Semaphore
Manager.

Chapter 13:
Barrier Manager: describes the functionality and directives provided by the Barrier Manager.

2.11. Manual Organization 19

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.11

Chapter 14:
Message Manager: describes the functionality and directives provided by the Message Man-
ager.

Chapter 15:
Event Manager: describes the functionality and directives provided by the Event Manager.

Chapter 16:
Signal Manager: describes the functionality and directives provided by the Signal Manager.

Chapter 17:
Partition Manager: describes the functionality and directives provided by the Partition Man-
ager.

Chapter 18:
Region Manager: describes the functionality and directives provided by the Region Manager.

Chapter 19:
Dual-Ported Memory Manager: describes the functionality and directives provided by the
Dual-Ported Memory Manager.

Chapter 20:
I/0 Manager: describes the functionality and directives provided by the I/0 Manager.

Chapter 21:
Fatal Error Manager: describes the functionality and directives provided by the Fatal Error
Manager.

Chapter 22:
Board Support Packages: defines the functionality required of user-supplied board support
packages.

Chapter 23:
User Extensions: shows the user how to extend RTEMS to incorporate custom features.

Chapter 24:
Configuring a System: details the process by which one tailors RTEMS for a particular single-
processor or multiprocessor application.

Chapter 25:
Self-Contained Objects: contains information about objects like threads, mutexes and
semaphores.

Chapter 26:
Multiprocessing Manager: presents a conceptual overview of the multiprocessing capabilities
provided by RTEMS as well as describing the Multiprocessing Communications Interface Layer
and Multiprocessing Manager directives.

Chapter 27:
Symmetric Multiprocessing (SMP): information regarding the SMP features.

Chapter 28:
PCI Library: information about using the PCI bus in RTEMS.

Chapter 29:
Stack Bounds Checker: presents the capabilities of the RTEMS task stack checker which can
report stack usage as well as detect bounds violations.

20 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

Chapter 30:
CPU Usage Statistics: presents the capabilities of the CPU Usage statistics gathered on a per
task basis along with the mechanisms for reporting and resetting the statistics.

Chapter 31:
Object Services: presents a collection of helper services useful when manipulating RTEMS
objects. These include methods to assist in obtaining an object’s name in printable form.
Additional services are provided to decompose an object Id and determine which API and
object class it belongs to.

Chapter 32:
Chains: presents the methods provided to build, iterate and manipulate doubly-linked chains.
This manager makes the chain implementation used internally by RTEMS to user space appli-
cations.

Chapter 33:
Red-Black Trees: information about how to use the Red-Black Tree API.

Chapter 34:
Timespec Helpers: presents a set of helper services useful when manipulating POSIX struct
timespec instances.

Chapter 35:
Constant Bandwidth Server Scheduler API.

Chapter 36:
Ada Support: information about Ada programming language support.

Chapter 37:
Directive Status Codes: provides a definition of each of the directive status codes referenced
in this manual.

Chapter 38:
Linker Sets: information about linker set features.

Chapter 39:
Example Application: provides a template for simple RTEMS applications.

Chapter 40:
Glossary: defines terms used throughout this manual.

Chapter 41:
References: References.

Chapter 42:
Index: Index.

2.11. Manual Organization 21

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 2 Section 2.11

22 Chapter 2. Overview

CHAPTER

THREE

KEY CONCEPTS

23

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 3 Section 3.1

3.1 Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful concepts. These
concepts must be understood before the application developer can efficiently utilize RTEMS.
The purpose of this chapter is to familiarize one with these concepts.

24 Chapter 3. Key Concepts

Chapter 3 Section 3.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

3.2 Objects

RTEMS provides directives which can be used to dynamically create, delete, and manipulate a
set of predefined object types. These types include tasks, message queues, semaphores, memory
regions, memory partitions, timers, ports, and rate monotonic periods. The object-oriented
nature of RTEMS encourages the creation of modular applications built upon re-usable “building
block” routines.

All objects are created on the local node as required by the application and have an RTEMS
assigned ID. All objects have a user-assigned name. Although a relationship exists between an
object’s name and its RTEMS assigned ID, the name and ID are not identical. Object names are
completely arbitrary and selected by the user as a meaningful “tag” which may commonly reflect
the object’s use in the application. Conversely, object IDs are designed to facilitate efficient
object manipulation by the executive.

3.2.1 Object Names

An object name is an unsigned thirty-two bit entity associated with the object by the user. The
data type rtems_name is used to store object names.

Although not required by RTEMS, object names are often composed of four ASCII characters
which help identify that object. For example, a task which causes a light to blink might be
called “LITE”. The rtems_build_name routine is provided to build an object name from four
ASCII characters. The following example illustrates this:

rtems_name my_name;

my_name = rtems_build_name(‘L', 'I', 'T', 'E');

However, it is not required that the application use ASCII characters to build object names. For
example, if an application requires one-hundred tasks, it would be difficult to assign meaningful
ASCII names to each task. A more convenient approach would be to name them the binary
values one through one-hundred, respectively.

RTEMS provides a helper routine, rtems_object_get_name, which can be used to obtain the
name of any RTEMS object using just its ID. This routine attempts to convert the name into a
printable string.

The following example illustrates the use of this method to print an object name:

#include <rtems.h>
#include <rtems/bspIlo.h>
void print_name(rtems_id id)
{
char buffer[10]; /* name assumed to be 10 characters or less */
char *result;
result = rtems_object_get_name(id, sizeof(buffer), buffer);
printk("ID=0x%08x name=%s\n", id, ((result) ? result : "no name"”));

3.2. Objects 25

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 3 Section 3.2

3.2.2 Object Ids

an object id is a unique 32-bit unsigned integer value which uniquely identifies an object in-
stance. object ids are passed as arguments to many directives in rtems and rtems translates
the id to an internal object pointer. the efficient manipulation of object ids is critical to the
performance of some rtems services.

There are multiple directives with names of the form rtems_@CLASS@_ident that take a name as
argument and return the associated id if the name is found. The following is the set of name to
id services: which can look up an object

* rtems_extension_ident()

* rtems_barrier_ident()

* rtems_port_ident()

* rtems_message_queue_ident()
* rtems_partition_ident()

* rtems_region_ident()

* rtems_semaphore_ident()

* rtems_task_ident()

* rtems_timer_ident()

3.2.3 Local and Global Scope

RTEMS supports uniprocessing, distributed multiprocessing, and Symmetric Multiprocessing
(SMP) configurations. A uniprocessor system includes only a single processor in a single node.
Distributed multiprocessor systems include multiple nodes, each of which is a single processor
and is usually referred to as just multiprocessor mode for historical reasons. SMP systems
consist of multiple processors cores in a single node.

In distributed multiprocessing configurations, there are multiple nodes in the system and object
instances may be visible on just the creating node or to all nodes. If visible only to the creating
node, this is referred to as local scope and corresponds to the RTEMS LOCAL attribute setting
which is the default. If RTEMS GLOBAL is specified as part of the object attributes, then the
object instance has global scope and the object id can be used anywhere in the system to
identify that object instance.

In uniprocessing and SMP configurations, there is only one node in the system and object in-
stances are locally scoped to that node. Any attempt to create with the RTEMS GLOBAL at-
tribute is an error.

26 Chapter 3. Key Concepts

—

Chapter 3 Section 3.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

3.2.3.1 Object ID Format

The thirty-two bit format for an object ID is composed of four parts: API, object class, node, and
index. The data type rtems_id is used to store object IDs.

31 27 26 24 23 16 15 (4]
o +-————— Fom o +
I I I I I
| Class | API | Node | Index |
I I I I I
tom Fom— Fom e e ittt T L P e +

The most significant five bits are the object class. The next three bits indicate the API to which
the object class belongs. The next eight bits (16-23) are the number of the node on which this
object was created. The node number is always one (1) in a single processor system. The least
significant sixteen bits form an identifier within a particular object type. This identifier, called
the object index, ranges in value from 1 to the maximum number of objects configured for this
object type.

None of the fields in an object id may be zero except for the special case of RTEMS_SELF to
indicate the currently running thread.

3.2.4 Object ID Description

The components of an object ID make it possible to quickly locate any object in even the most
complicated multiprocessor system. Object ID’s are associated with an object by RTEMS when
the object is created and the corresponding ID is returned by the appropriate object create
directive. The object ID is required as input to all directives involving objects, except those
which create an object or obtain the ID of an object.

The object identification directives can be used to dynamically obtain a particular object’s ID
given its name. This mapping is accomplished by searching the name table associated with
this object type. If the name is non-unique, then the ID associated with the first occurrence of
the name will be returned to the application. Since object IDs are returned when the object
is created, the object identification directives are not necessary in a properly designed single
processor application.

In addition, services are provided to portably examine the subcomponents of an RTEMS ID.
These services are described in detail later in this manual but are prototyped as follows:

Objects_APIs rtems_object_id_get_api(rtems_id);
uint32_t rtems_object_id_get_class(rtems_id);
uint32_t rtems_object_id_get_node(rtems_id);
uint16_t rtems_object_id_get_index(rtems_id);

An object control block is a data structure defined by RTEMS which contains the information
necessary to manage a particular object type. For efficiency reasons, the format of each object
type’s control block is different. However, many of the fields are similar in function. The number
of each type of control block is application dependent and determined by the values specified
in the user’s Configuration Table. An object control block is allocated at object create time and
freed when the object is deleted. With the exception of user extension routines, object control
blocks are not directly manipulated by user applications.

3.2. Objects 27

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 3 Section 3.3

3.3 Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution threads to commu-
nicate and synchronize with each other is imperative. A real-time executive should provide an
application with the following capabilities:

* Data transfer between cooperating tasks
* Data transfer between tasks and ISRs

* Synchronization of cooperating tasks

* Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication and/or synchro-
nization. However, managers dedicated specifically to communication and synchronization pro-
vide well established mechanisms which directly map to the application’s varying needs. This
level of flexibility allows the application designer to match the features of a particular manager
with the complexity of communication and synchronization required. The following managers
were specifically designed for communication and synchronization:

* Semaphore

* Message Queue
e Event

* Signal

The semaphore manager supports mutual exclusion involving the synchronization of access
to one or more shared user resources. Binary semaphores may utilize the optional priority
inheritance algorithm to avoid the problem of priority inversion. The message manager sup-
ports both communication and synchronization, while the event manager primarily provides a
high performance synchronization mechanism. The signal manager supports only asynchronous
communication and is typically used for exception handling.

28 Chapter 3. Key Concepts

Chapter 3 Section 3.4 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

3.4 Locking Protocols

RTEMS supports the four locking protocols
* Immediate Ceiling Priority Protocol (ICPP) (page 29),
* Priority Inheritance Protocol (page 30),
* Multiprocessor Resource Sharing Protocol (MrsP) (page 30), and
* O(m) Independence-Preserving Protocol (OMIP) (page 30)

for synchronization objects providing mutual-exclusion (mutex). The OMIP is only available in
SMP configurations and replaces the priority inheritance protocol in this case. One aim of the
locking protocols is to avoid priority inversion.

Since RTEMS 5.1, priority updates due to the locking protocols take place immediately and are
propagated recursively. The mutex owner and wait for mutex relationships define a directed
acyclic graph (DAG). The run-time of the mutex obtain, release and timeout operations depend
on the complexity of this resource dependency graph.

3.4.1 Priority Inversion

Priority inversion is a form of indefinite postponement which is common in multitasking, pre-
emptive executives with shared resources. Priority inversion occurs when a high priority tasks
requests access to shared resource which is currently allocated to a low priority task. The high
priority task must block until the low priority task releases the resource. This problem is exacer-
bated when the low priority task is prevented from executing by one or more medium priority
tasks. Because the low priority task is not executing, it cannot complete its interaction with
the resource and release that resource. The high priority task is effectively prevented from
executing by lower priority tasks.

3.4.2 Immediate Ceiling Priority Protocol (ICPP)

Each mutex using the Immediate Ceiling Priority Protocol (ICPP) has a ceiling priority. The
priority of the mutex owner is immediately raised to the ceiling priority of the mutex. In case
the thread owning the mutex releases the mutex, then the normal priority of the thread is
restored. This locking protocol is beneficial for schedulability analysis, see also [BWO01].

This protocol avoids the possibility of changing the priority of the mutex owner multiple times
since the ceiling priority must be set to the one of highest priority thread which will ever attempt
to acquire that mutex. This requires an overall knowledge of the application as a whole. The
need to identify the highest priority thread which will attempt to obtain a particular mutex
can be a difficult task in a large, complicated system. Although the priority ceiling protocol is
more efficient than the priority inheritance protocol with respect to the maximum number of
thread priority changes which may occur while a thread owns a particular mutex, the priority
inheritance protocol is more forgiving in that it does not require this apriori information.

3.4. Locking Protocols 29

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 3 Section 3.4

3.4.3 Priority Inheritance Protocol

The priority of the mutex owner is raised to the highest priority of all threads that currently wait
for ownership of this mutex [SRL90]. Since RTEMS 5.1, priority updates due to the priority
inheritance protocol take place immediately and are propagated recursively. This means the
priority inheritance is transitive since RTEMS 5.1. If a task A owning a priority inheritance
mutex blocks on another priority inheritance mutex, then the owner of this mutex inherits the
priority of the task A.

3.4.4 Multiprocessor Resource Sharing Protocol (MrsP)

The Multiprocessor Resource Sharing Protocol (MrsP) is a generalization of the priority ceiling
protocol to clustered scheduling [BW13]. One of the design goals of MrsP is to enable an
effective schedulability analysis using the sporadic task model. Each mutex using the MrsP has
a ceiling priority for each scheduler instance. The priority of the mutex owner is immediately
raised to the ceiling priority of the mutex defined for its home scheduler instance. In case the
thread owning the mutex releases the mutex, then the normal priority of the thread is restored.
Threads that wait for mutex ownership are not blocked with respect to the scheduler and instead
perform a busy wait. The MrsP uses temporary thread migrations to foreign scheduler instances
in case of a preemption of the mutex owner. This locking protocol is available since RTEMS
4.11. It was re-implemented in RTEMS 5.1 to overcome some shortcomings of the original
implementation [CBHM15].

3.4.5 O(m) Independence-Preserving Protocol (OMIP)

The O(m) Independence-Preserving Protocol (OMIP) is a generalization of the priority inheri-
tance protocol to clustered scheduling which avoids the non-preemptive sections present with
priority boosting [Bral3]. The m denotes the number of processors in the system. Similar to the
uniprocessor priority inheritance protocol, the OMIP mutexes do not need any external config-
uration data, e.g. a ceiling priority. This makes them a good choice for general purpose libraries
that need internal locking. The complex part of the implementation is contained in the thread
queues and shared with the MrsP support. This locking protocol is available since RTEMS 5.1.

30 Chapter 3. Key Concepts

Chapter 3 Section 3.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

3.5 Thread Queues

In case more than one thread may wait on a synchronization object, e.g. a semaphore or a
message queue, then the waiting threads are added to a data structure called the thread queue.
Thread queues are named task wait queues in the Classic API. There are two thread queuing
disciplines available which define the order of the threads on a particular thread queue. Threads
can wait in FIFO or priority order.

In uniprocessor configurations, the priority queuing discipline just orders the threads according
to their current priority and in FIFO order in case of equal priorities. However, in SMP configu-
rations, the situation is a bit more difficult due to the support for clustered scheduling. It makes
no sense to compare the priority values of two different scheduler instances. Thus, it is impossi-
ble to simply use one plain priority queue for threads of different clusters. Two levels of queues
can be used as one way to solve the problem. The top-level queue provides FIFO ordering
and contains priority queues. Each priority queue is associated with a scheduler instance and
contains only threads of this scheduler instance. Threads are enqueued in the priority queues
corresponding to their scheduler instances. To dequeue a thread, the highest priority thread of
the first priority queue is selected. Once this is done, the first priority queue is appended to the
top-level FIFO queue. This guarantees fairness with respect to the scheduler instances.

Such a two-level queue needs a considerable amount of memory if fast enqueue and dequeue
operations are desired. Providing this storage per thread queue would waste a lot of memory
in typical applications. Instead, each thread has a queue attached which resides in a dedicated
memory space independent of other memory used for the thread (this approach was borrowed
from FreeBSD). In case a thread needs to block, there are two options

* the object already has a queue, then the thread enqueues itself to this already present
queue and the queue of the thread is added to a list of free queues for this object, or

* otherwise, the queue of the thread is given to the object and the thread enqueues itself to
this queue.

In case the thread is dequeued, there are two options

* the thread is the last thread in the queue, then it removes this queue from the object and
reclaims it for its own purpose, or

» otherwise, the thread removes one queue from the free list of the object and reclaims it
for its own purpose.

Since there are usually more objects than threads, this actually reduces the memory demands.
In addition the objects only contain a pointer to the queue structure. This helps to hide imple-
mentation details. Inter-cluster priority queues are available since RTEMS 5.1.

A doubly-linked list (chain) is used to implement the FIFO queues yielding a O(1) worst-case
time complexity for enqueue and dequeue operations.

A red-black tree is used to implement the priority queues yielding a O(log(n)) worst-case time
complexity for enqueue and dequeue operations with n being the count of threads already on
the queue.

3.5. Thread Queues 31

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 3 Section 3.6

3.6 Time

The development of responsive real-time applications requires an understanding of how RTEMS
maintains and supports time-related operations. The basic unit of time in RTEMS is known as
a clock tick or simply tick. The tick interval is defined by the application configuration option
CONFIGURE_MICROSECONDS PER_TICK (page 615). The tick interval defines the basic reso-
lution of all interval and calendar time operations. Obviously, the directives which use intervals
or wall time cannot operate without some external mechanism which provides a periodic clock
tick. This clock tick is provided by the clock driver. The tick precision and stability depends on
the clock driver and interrupt latency. Most clock drivers provide a timecounter to measure the
time with a higher resolution than the tick.

By tracking time in units of ticks, RTEMS is capable of supporting interval timing functions such
as task delays, timeouts, timeslicing, the delayed execution of timer service routines, and the
rate monotonic scheduling of tasks. An interval is defined as a number of ticks relative to the
current time. For example, when a task delays for an interval of ten ticks, it is implied that the
task will not execute until ten clock ticks have occurred. All intervals are specified using data
type rtems_interval.

A characteristic of interval timing is that the actual interval period may be a fraction of a tick
less than the interval requested. This occurs because the time at which the delay timer is set up
occurs at some time between two clock ticks. Therefore, the first countdown tick occurs in less
than the complete time interval for a tick. This can be a problem if the tick resolution is large.

The rate monotonic scheduling algorithm is a hard real-time scheduling methodology. This
methodology provides rules which allows one to guarantee that a set of independent peri-
odic tasks will always meet their deadlines even under transient overload conditions. The rate
monotonic manager provides directives built upon the Clock Manager’s interval timer support
routines.

Interval timing is not sufficient for the many applications which require that time be kept in
wall time or true calendar form. Consequently, RTEMS maintains the current date and time.
This allows selected time operations to be scheduled at an actual calendar date and time. For
example, a task could request to delay until midnight on New Year’s Eve before lowering the ball
at Times Square. The data type rtems_time_of_day is used to specify calendar time in RTEMS
services. See Time and Date Data Structures (page 258).

32 Chapter 3. Key Concepts

Chapter 3 Section 3.7 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

3.7 Timer and Timeouts

Timer and timeout services are a standard component of an operating system. The use cases
fall roughly into two categories:

* Timeouts — used to detect if some operations need more time than expected. Since the
unexpected happens hopefully rarely, timeout timers are usually removed before they
expire. The critical operations are insert and removal. For example, they are important
for the performance of a network stack.

* Timers — used to carry out some work in the future. They usually expire and need a high
resolution. An example use case is a time driven scheduler, e.g. rate-monotonic or EDF.

In RTEMS versions prior to 5.1 the timer and timeout support was implemented by means of
delta chains. This implementation was unfit for SMP systems due to several reasons. The new
implementation present since RTEMS 5.1 uses a red-black tree with the expiration time as the
key. This leads to O(log(n)) worst-case insert and removal operations for n active timer or
timeouts. Each processor provides its own timer and timeout service point so that it scales well
with the processor count of the system. For each operation it is sufficient to acquire and release
a dedicated SMP lock only once. The drawback is that a 64-bit integer type is required internally
for the intervals to avoid a potential overflow of the key values.

An alternative to the red-black tree based implementation would be the use of a timer wheel
based algorithm [VL87] which is used in Linux and FreeBSD [VC95] for example. A timer wheel
based algorithm offers O(1) worst-case time complexity for insert and removal operations. The
drawback is that the run-time of the clock tick procedure is unpredictable due to the use of a
hash table or cascading.

The red-black tree approach was selected for RTEMS, since it offers a more predictable run-time
behaviour. However, this sacrifices the constant insert and removal operations offered by the
timer wheel algorithms. See also [GN06]. The implementation can re-use the red-black tree
support already used in other areas, e.g. for the thread priority queues. Less code is a good
thing for size, testing and verification.

3.7. Timer and Timeouts 33

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 3 Section 3.8

3.8 Memory Management

RTEMS memory management facilities can be grouped into two classes: dynamic memory allo-
cation and address translation. Dynamic memory allocation is required by applications whose
memory requirements vary through the application’s course of execution. Address translation is
needed by applications which share memory with another CPU or an intelligent Input/Output
processor. The following RTEMS managers provide facilities to manage memory:

* Region
* Partition
* Dual Ported Memory

RTEMS memory management features allow an application to create simple memory pools of
fixed size buffers and/or more complex memory pools of variable size segments. The partition
manager provides directives to manage and maintain pools of fixed size entities such as resource
control blocks. Alternatively, the region manager provides a more general purpose memory
allocation scheme that supports variable size blocks of memory which are dynamically obtained
and freed by the application. The dual-ported memory manager provides executive support for
address translation between internal and external dual-ported RAM address space.

34 Chapter 3. Key Concepts

CHAPTER

FOUR

RTEMS DATA TYPES

35

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.1

4.1 Introduction

This chapter contains a complete list of the RTEMS primitive data types in alphabetical order.
This is intended to be an overview and the user is encouraged to look at the appropriate chapters
in the manual for more information about the usage of the various data types.

36 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

4.2 List of Data Types

The following is a complete list of the RTEMS primitive data types in alphabetical order:

4.2.1 BSP output_char function_type

Polled character output functions shall have this type.

4.2.2 BSP polling getchar function_type

Polled character input functions shall have this type.

4.2.3 Timer Classes

The timer class indicates how the timer was most recently fired.

ENUMERATORS:

TIMER_DORMANT
This timer class indicates that the timer was never in use.

TIMER_INTERVAL
This timer class indicates that the timer is currently in use as an interval timer which will fire
in the context of the clock tick ISR.

TIMER_INTERVAL_ON_TASK
This timer class indicates that the timer is currently in use as an interval timer which will fire
in the context of the Timer Server task.

TIMER_TIME_OF DAY
This timer class indicates that the timer is currently in use as an time of day timer which will
fire in the context of the clock tick ISR.

TIMER_TIME_OF DAY ON_TASK
This timer class indicates that the timer is currently in use as an time of day timer which will
fire in the context of the Timer Server task.

4.2.4 rtems_api_configuration_table

This structure contains a summary of the Classic API configuration.

4.2. List of Data Types 37

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

MEMBERS:

maximum_tasks
This member contains the maximum number of Classic API Tasks configured for this applica-
tion. See CONFIGURE _MAXIMUM _TASKS (page 653).

notepads_enabled
This member is true, if the Classic API Notepads are enabled, otherwise it is false.

maximum_timers
This member contains the maximum number of Classic API Timers configured for this appli-
cation. See CONFIGURE_MAXIMUM _TIMERS (page 655).

maximum_semaphores
This member contains the maximum number of Classic API Semaphores configured for this
application. See CONFIGURE_MAXIMUM _SEMAPHORES (page 652).

maximum_message_queues
This member contains the maximum number of Classic API Message Queues configured for
this application. See CONFIGURE_MAXIMUM _MESSAGE_QUEUES (page 647).

maximum_partitions
This member contains the maximum number of Classic API Partitions configured for this
application. See CONFIGURE MAXIMUM PARTITIONS (page 648).

maximum_regions
This member contains the maximum number of Classic API Regions configured for this appli-
cation. See CONFIGURE_MAXIMUM _REGIONS (page 651).

maximum_ports
This member contains the maximum number of Classic API Dual-Ported Memories configured
for this application. See CONFIGURE_MAXIMUM _PORTS (page 650).

maximum_periods
This member contains the maximum number of Classic API Rate Monotonic Periods config-
ured for this application. See CONFIGURE_MAXIMUM _PERIODS (page 649).

maximum_barriers
This member contains the maximum number of Classic API Barriers configured for this appli-
cation. See CONFIGURE_MAXIMUM BARRIERS (page 646).

number_of_initialization_tasks
This member contains the number of Classic API Initialization Tasks configured for this appli-
cation. See CONFIGURE_RTEMS _INIT TASKS_TABLE (page 668).

User _initialization_tasks_table
This member contains the pointer to Classic API Initialization Tasks Table of this application.
See CONFIGURE_RTEMS _INIT TASKS TABLE (page 668).

38 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

DESCRIPTION:

Use rtems_configuration_get rtems_api_configuration() (page 815) to get the configuration ta-
ble.

4.2.5 rtems_asr

This type defines the return type of routines which are used to process asynchronous signals.

NOTES:

This type can be used to document asynchronous signal routines in the source code.

4.2.6 rtems_asr_entry

This type defines the prototype of routines which are used to process asynchronous signals.

4.2.7 rtems_assert context

This structure provides the context in which an assertion failed.

MEMBERS:

file
This member provides the file name of the source code file containing the failed assertion
statement.

line
This member provides the line number in the source code file containing the failed assertion
statement.

function
This member provides the function name containing the failed assertion statement.

failed_expression
This member provides the expression of the failed assertion statement.

4.2.8 rtems_attribute

This type represents Classic API attributes.

4.2. List of Data Types 39

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

NOTES:

Attributes are primarily used when creating objects.

4.2.9 rtems_device driver

This type shall be used in device driver entry declarations and definitions.

NOTES:

Device driver entries return an rtems_status_code status code. This type definition helps to
document device driver entries in the source code.

4.2.10 rtems_device driver entry

Device driver entries shall have this type.

4.2.11 rtems device_major number

This integer type represents the major number of devices.

NOTES:

The major number of a device is determined by rtems_io_register driver() (page 506) and the
application configuration (see CONFIGURE _MAXIMUM DRIVERS (page 643)) .

4.2.12 rtems _device minor number

This integer type represents the minor number of devices.

NOTES:

The minor number of devices is managed by the device driver.

4.2.13 rtems driver_address_table

This structure contains the device driver entries.

40 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

MEMBERS:

initialization_entry

This member is the device driver initialization entry. This entry is called by

rtems_io_initialize() (page 509).

open_entry
This member is the device driver open entry.
(page 511).

close_entry
This member is the device driver close entry.
(page 512).

read_entry
This member is the device driver read entry.
(page 513).

write_entry
This member is the device driver write entry.
(page 514).

control_entry

This

This

This

This

entry is called by rtems io _open()

entry is called by rtems_io_close()

entry is called by rtems io read()

entry is called by rtems_io write()

This member is the device driver control entry. This entry is called by rtems io_control()

(page 515).

DESCRIPTION:

This structure is used to register a device driver via rtems_io_register_driver() (page 506).

4.2.14 rtems_event_ set

This integer type represents a bit field which can hold exactly 32 individual events.

4.2.15 rtems_exception_frame

This structure represents an architecture-dependent exception frame.

4.2.16 rtems_extensions_table

The extensions table contains a set of extensions which may be registered in the system
through the CONFIGURE_INITIAL EXTENSIONS (page 605) application configuration option or

the rtems_extension_create() (page 582) directive.

4.2. List of Data Types

41

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

4.2.17 rtems fatal code

This integer type represents system termination codes.

DESCRIPTION:

This integer type is large enough to store a 32-bit integer or a pointer.

NOTES:

The interpretation of a system termination code depends on the system termination source, see
rtems_fatal source (page 42).

4.2.18 rtems_fatal extension

Fatal extensions are invoked when the system should terminate.

NOTES:

The fatal extensions are invoked in extension forward order.

The fatal extension should be extremely careful with respect to the RTEMS directives it calls.
Depending on the system termination source, the system may be in an undefined and corrupt
state.

It is recommended to register fatal extensions through initial extension sets, see CONFIG-
URE_INITIAL EXTENSIONS (page 605).

4.2.19 rtems_fatal source

This enumeration represents system termination sources.

NOTES:

The system termination code may provide additional information depending on the system
termination source, see rtems_fatal code (page 42).

4.2.20 rtems id

This type represents RTEMS object identifiers.

42 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

4.2.21 rtems initialization tasks table

This structure defines the properties of the Classic API user initialization task.

MEMBERS:

name
This member defines the task name.

stack_size

This member defines the task stack size in bytes.
initial_priority

This member defines the initial task priority.

attribute_set
This member defines the attribute set of the task.

entry point
This member defines the entry point of the task.

mode_set
This member defines the initial modes of the task.

argument
This member defines the entry point argument of the task.

4.2.22 rtems_interrupt_attributes

This structure provides the attributes of an interrupt vector.

MEMBERS:

is_maskable
This member is true, if the interrupt vector is maskable by rtems_interrupt local disable()
(page 181), otherwise it is false. Interrupt vectors which are not maskable by
rtems_interrupt_local_disable() (page 181) should be used with care since they cannot use
most operating system services.

can_enable
This member is true, if the interrupt vector can be enabled by rtems_interrupt vector_enable()
(page 211), otherwise it is false. When an interrupt vector can be enabled, this means that
the enabled state can always be changed from disabled to enabled. For an interrupt vector
which can be enabled it follows that it may be enabled.

maybe_enable
This member is true, if the interrupt vector may be enabled by rtems_interrupt_vector _enable()
(page 211), otherwise it is false. When an interrupt vector may be enabled, this means that
the enabled state may be changed from disabled to enabled. The requested enabled state
change should be checked by rtems_interrupt vector is_enabled() (page 209). Some interrupt
vectors may be optionally available and cannot be enabled on a particular target.

4.2. List of Data Types 43

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

can_disable
This member is true, if the interrupt vector can be disabled by rtems_interrupt _vector disable()
(page 212), otherwise it is false. When an interrupt vector can be disabled, this means that
the enabled state can be changed from enabled to disabled. For an interrupt vector which can
be disabled it follows that it may be disabled.

maybe_disable
This member is true, if the interrupt vector may be disabled by
rtems_interrupt_vector_disable() (page 212), otherwise it is false. When an interrupt vector
may be disabled, this means that the enabled state may be changed from enabled to disabled.
The requested enabled state change should be checked by rtems_interrupt vector_is_enabled()
(page 209). Some interrupt vectors may be always enabled and cannot be disabled on a
particular target.

can_raise
This member is true, if the interrupt vector can be raised by rtems interrupt raise()
(page 215), otherwise it is false.

can_raise_on
This member is true, if the interrupt vector can be raised on a processor by
rtems_interrupt_raise_on() (page 216), otherwise it is false.

can_clear
This member is true, if the interrupt vector can be cleared by rtems_interrupt clear()
(page 218), otherwise it is false.

cleared_by_acknowledge
This member is true, if the pending status of the interrupt associated with the interrupt vector
is cleared by an interrupt acknowledge from the processor, otherwise it is false.

can_get_affinity
This member is true, if the affinity set of the interrupt vector can be obtained by
rtems_interrupt_get affinity() (page 219), otherwise it is false.

can_set_affinity
This member is true, if the affinity set of the interrupt vector can be set by
rtems_interrupt_set_affinity() (page 220), otherwise it is false.

can_be_triggered by message
This member is true, if the interrupt associated with the interrupt vector can be triggered by
a message. Interrupts may be also triggered by signals, rtems_interrupt _raise() (page 215),
or rtems_interrupt_raise_on() (page 216). Examples for message triggered interrupts are the
PClIe MSI/MSI-X and the ARM GICv3 Locality-specific Peripheral Interrupts (LPI).

trigger_signal
This member describes the trigger signal of the interrupt associated with the interrupt vector.
Interrupts are normally triggered by signals which indicate an interrupt request from a pe-
ripheral. Interrupts may be also triggered by messages, rtems_interrupt_raise() (page 215),
or rtems_interrupt_raise_on() (page 216).

44 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

DESCRIPTION:

The rtems_interrupt_get attributes() (page 222) directive may be used to obtain the attributes
of an interrupt vector.

4.2.23 rtems_interrupt_entry

This structure represents an interrupt entry.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of
view. Members shall not be accessed directly. An entry may be initialized by
RTEMS INTERRUPT ENTRY INITIALIZER() (page 199) or rtems_interrupt entry initialize()
(page 200). It may be installed for an interrupt vector with rtems_interrupt entry install()

(page 201) and removed from an interrupt vector by rtems interrupt entry remove()
(page 203).

4.2.24 rtems interrupt_handler

Interrupt handler routines shall have this type.

4.2.25 rtems_interrupt level

This integer type represents interrupt levels.

4.2.26 rtems_interrupt_lock

This structure represents an ISR lock.

4.2.27 rtems_interrupt_lock context

This structure provides an ISR lock context for acquire and release pairs.

4.2. List of Data Types 45

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

4.2.28 rtems_interrupt per handler routine

Visitor routines invoked by rtems_interrupt_handler iterate() (page 223) shall have this type.

4.2.29 rtems_interrupt_server_action

This structure represents an interrupt server action.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of view. Members
shall not be accessed directly.

4.2.30 rtems_interrupt_server config

This structure defines an interrupt server configuration.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

See also rtems_interrupt_server create() (page 227).

4.2.31 rtems_interrupt_server_control

This structure represents an interrupt server.

MEMBERS:

Members of the type shall not be accessed directly by the application.

46 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

NOTES:
This structure shall be treated as an opaque data type from the API point of view. Members

shall not be accessed directly. The structure is initialized by rtems_interrupt server create()
(page 227) and maintained by the interrupt server support.

4.2.32 rtems_interrupt_server_entry

This structure represents an interrupt server entry.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of view. Members
shall not be accessed directly. An entry is initialized by rtems_interrupt_server entry initialize()
(page 240) and destroyed by rtems_interrupt server entry destroy() (page 243). Interrupt
server actions can be prepended to the entry by rtems interrupt server action prepend()
(page 241). The entry is submitted to be serviced by rtems_interrupt server entry submit()
(page 244).

4.2.33 rtems_interrupt_server request

This structure represents an interrupt server request.

MEMBERS:

Members of the type shall not be accessed directly by the application.

NOTES:

This structure shall be treated as an opaque data type from the API point of view. Members shall
not be accessed directly. A request is initialized by rtems_interrupt_server request_initialize()
(page 248) and destroyed by rtems_interrupt server request_destroy() (page 252). The inter-
rupt vector of the request can be set by rtems_interrupt_server request _set vector() (page 250).
The request is submitted to be serviced by rtems_interrupt_server_request_submit() (page 253).

4.2. List of Data Types 47

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

4.2.34 rtems_interrupt signal variant

This enumeration provides interrupt trigger signal variants.

ENUMERATORS:

RTEMS_INTERRUPT_UNSPECIFIED SIGNAL
This interrupt signal variant indicates that the interrupt trigger signal is unspecified.

RTEMS_INTERRUPT_NO_SIGNAL
This interrupt signal variant indicates that the interrupt cannot be triggered by a signal.

RTEMS_INTERRUPT_SIGNAL_LEVEL_LOW
This interrupt signal variant indicates that the interrupt is triggered by a low level signal.

RTEMS_INTERRUPT_SIGNAL_LEVEL HIGH
This interrupt signal variant indicates that the interrupt is triggered by a high level signal.

RTEMS_INTERRUPT_SIGNAL EDGE_FALLING
This interrupt signal variant indicates that the interrupt is triggered by a falling edge signal.

RTEMS_INTERRUPT_SIGNAL_EDGE_RAISING
This interrupt signal variant indicates that the interrupt is triggered by a raising edge signal.

4.2.35 rtems_interval

This type represents clock tick intervals.

4.2.36 rtems_isr

This type defines the return type of interrupt service routines.

DESCRIPTION:

This type can be used to document interrupt service routines in the source code.

4.2.37 rtems_isr_entry

Interrupt service routines installed by rtems_interrupt _catch() (page 175) shall have this type.

4.2.38 rtems_message _queue_config

This structure defines the configuration of a message queue constructed by
rtems_message_queue_construct() (page 401).

48 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

MEMBERS:
name
This member defines the name of the message queue.

maximum_pending messages
This member defines the maximum number of pending messages supported by the message
queue.

maximum_message_size
This member defines the maximum message size supported by the message queue.

storage area
This member shall point to the message buffer storage area begin. The message
buffer storage area for the message queue shall be an array of the type defined by
RTEMS MESSAGE_QUEUE_BUFFER() (page 418) with a maximum message size equal to the
maximum message size of this configuration.

storage_size
This member defines size of the message buffer storage area in bytes.

storage_free
This member defines the optional handler to free the message buffer storage area. It is called
when the message queue is deleted. It is called from task context under protection of the
object allocator lock. It is allowed to call free() in this handler. If handler is , then no
action will be performed.

attributes
This member defines the attributes of the message queue.

4.2.39 rtems _mode

This type represents a Classic API task mode set.

4.2.40 rtems mp packet classes

This enumeration defines the MPCI packet classes.

4.2.41 rtems mpci_entry

MPCI handler routines shall have this return type.

4.2.42 rtems mpci_get packet entry

MPCI get packet routines shall have this type.

4.2. List of Data Types 49

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

Chapter 4 Section 4.2

4.2.43 rtems mpci_initialization_entry

MPCI initialization routines shall have this type.

4.2.44 rtems mpci_receive packet entry

MPCI receive packet routines shall have this type.

4.2.45 rtems mpci_return_packet entry

MPCI return packet routines shall have this type.

4.2.46 rtems mpci_send packet entry

MPCI send packet routines shall have this type.

4.2.47 rtems mpci_table

This type represents the user-provided MPCI control.

4.2.48 rtems multiprocessing table

This type represents the user-provided MPCI configuration.

4.2.49 rtems_name

This type represents Classic API object names.

DESCRIPTION:

It is an unsigned 32-bit integer which can be treated as a numeric value or initialized using

rtems_build name() (page 942) to encode four ASCII character
special meaning in some directives.

4.2.50 rtems_object api class_information

s. A value of zero may have a

This structure is used to return information to the application about the objects configured for

a specific API/Class combination.

50

Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

MEMBERS:
minimum_id
This member contains the minimum valid object identifier for this class.

maximum_id
This member contains the maximum valid object identifier for this class.

maximum
This member contains the maximum number of active objects configured for this class.

auto_extend
This member is true, if this class is configured for automatic object extension, otherwise it is
false.

unallocated
This member contains the number of currently inactive objects of this class.

4.2.51 rtems_option

This type represents a Classic API directive option set.

4.2.52 rtems_packet prefix

This type represents the prefix found at the beginning of each MPCI packet sent between nodes.

4.2.53 rtems rate_monotonic_period_states

This enumeration defines the states in which a period may be.

ENUMERATORS:

RATE_MONOTONIC_INACTIVE
This status indicates the period is off the watchdog chain, and has never been initialized.

RATE_MONOTONIC_ACTIVE
This status indicates the period is on the watchdog chain, and running. The owner may be
executing or blocked waiting on another object.

RATE_MONOTONIC_EXPIRED
This status indicates the period is off the watchdog chain, and has expired. The owner may
still execute and has taken too much time to complete this iteration of the period.

4.2. List of Data Types 51

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

4.2.54 rtems rate_monotonic_period_statistics

This structure provides the statistics of a period.

MEMBERS:

count
This member contains the number of periods executed.

missed_count
This member contains the number of periods missed.

min_cpu_time
This member contains the least amount of processor time used in a period.

max_cpu_time
This member contains the highest amount of processor time used in a period.

total cpu_time
This member contains the total amount of processor time used in a period.

min_wall time
This member contains the least amount of CLOCK_MONOTONIC time used in a period.

max_wall_time
This member contains the highest amount of CLOCK_MONOTONIC time used in a period.

total_wall time
This member contains the total amount of CLOCK_MONOTONIC time used in a period.

4.2.55 rtems_rate_monotonic_period status

This structure provides the detailed status of a period.

MEMBERS:

owner
This member contains the identifier of the owner task of the period.

state
This member contains the state of the period.

since_last_period
This member contains the time elapsed since the last successful invocation
rtems_rate_monotonic_period() (page 340) using CLOCK_MONOTONIC. If the period is
expired or has not been initiated, then this value has no meaning.

executed_since_last_period
This member contains the processor time consumed by the owner task since the last successful
invocation rtems_rate_monotonic_period() (page 340). If the period is expired or has not been
initiated, then this value has no meaning.

postponed_jobs_count
This member contains the count of jobs which are not released yet.

52 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

4.2.56 rtems regulator attributes

This structure defines the configuration of a regulator created by rtems regulator create()
(page 868).

MEMBERS:

deliverer
This member contains a pointer to an application function invoked by the Delivery thread to
output a message to the destination.

deliverer_context
This member contains a pointer to an application defined context which is passed to delivery
function.

maximum_message size
This member contains the maximum size message to process.

maximum_messages
This member contains the maximum number of messages to be able to buffer.

output_thread_priority
This member contains the priority of output thread.

output_thread_stack_size
This member contains the Stack size of output thread.

output_thread_period
This member contains the period (in ticks) of output thread.

maximum_to_dequeue_per_period
This member contains the maximum number of messages the output thread should dequeue
and deliver per period.

NOTES:

This type is passed as an argument to rtems_regulator create() (page 868).

4.2.57 rtems_regulator_deliverer

This type represents the function signature used to specify a delivery function for the RTEMS
Regulator.

4.2. List of Data Types 53

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

NOTES:

This type is used in the rtems_regulator attributes (page 53) structure which is passed as an
argument to rtems_regulator create() (page 868).

4.2.58 rtems regulator_statistics

This structure defines the statistics maintained by each Regulator instance.

MEMBERS:

obtained
This member contains the number of successfully obtained buffers.

released
This member contains the number of successfully released buffers.

delivered
This member contains the number of successfully delivered buffers.

period_statistics
This member contains the Rate Monotonic Period statistics for the Delivery Thread. It is an
instance of the rtems_rate_monotonic_period_statistics (page 52) structure.

NOTES:

This type is passed as an argument to rtems_regulator _get statistics() (page 878).

4.2.59 rtems signal set

This integer type represents a bit field which can hold exactly 32 individual signals.

4.2.60 rtems stack allocate hook

A thread stack allocator allocate handler shall have this type.

4.2.61 rtems stack allocate init hook

A task stack allocator initialization handler shall have this type.

54 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

4.2.62 rtems_stack free hook

A task stack allocator free handler shall have this type.

4.2.63 rtems_status_code

This enumeration provides status codes for directives of the Classic API.

ENUMERATORS:

RTEMS_SUCCESSFUL
This status code indicates successful completion of a requested operation.

RTEMS_TASK_EXITTED
This status code indicates that a thread exitted.

RTEMS_MP_NOT_CONFIGURED
This status code indicates that multiprocessing was not configured.

RTEMS_INVALID NAME
This status code indicates that an object name was invalid.

RTEMS_INVALID_ID
This status code indicates that an object identifier was invalid.

RTEMS_TOO_MANY
This status code indicates you have attempted to create too many instances of a particular
object class.

RTEMS_TIMEOUT
This status code indicates that a blocking directive timed out.

RTEMS_OBJECT_WAS_DELETED
This status code indicates the object was deleted while the thread was blocked waiting.

RTEMS_INVALID SIZE
This status code indicates that a specified size was invalid.

RTEMS_INVALID ADDRESS
This status code indicates that a specified address was invalid.

RTEMS_INVALID NUMBER
This status code indicates that a specified number was invalid.

RTEMS_NOT_DEFINED
This status code indicates that the item has not been initialized.

RTEMS_RESOURCE_IN_USE
This status code indicates that the object still had resources in use.

RTEMS_UNSATISFIED
This status code indicates that the request was not satisfied.

RTEMS_INCORRECT_STATE
This status code indicates that an object was in wrong state for the requested operation.

4.2. List of Data Types 55

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

RTEMS_ALREADY SUSPENDED
This status code indicates that the thread was already suspended.

RTEMS_ILLEGAL_ON_SELF
This status code indicates that the operation was illegal on the calling thread.

RTEMS_ILLEGAL_ON_REMOTE_OBJECT
This status code indicates that the operation was illegal on a remote object.

RTEMS_CALLED FROM_ ISR
This status code indicates that the operation should not be called from this execution envi-
ronment.

RTEMS _INVALID PRIORITY
This status code indicates that an invalid thread priority was provided.

RTEMS_INVALID CLOCK
This status code indicates that a specified date or time was invalid.

RTEMS_INVALID NODE
This status code indicates that a specified node identifier was invalid.

RTEMS_NOT_CONFIGURED
This status code indicates that the directive was not configured.

RTEMS_NOT_OWNER_OF_RESOURCE
This status code indicates that the caller was not the owner of the resource.

RTEMS_NOT_IMPLEMENTED
This status code indicates the directive or requested portion of the directive is not imple-
mented. This is a hint that you have stumbled across an opportunity to submit code to the
RTEMS Project.

RTEMS_INTERNAL_ERROR
This status code indicates that an internal RTEMS inconsistency was detected.

RTEMS_NO_MEMORY
This status code indicates that the directive attempted to allocate memory but was unable to
do so.

RTEMS_IO_ERROR
This status code indicates a device driver IO error.

RTEMS_INTERRUPTED
This status code is used internally by the implementation to indicate a blocking device driver
call has been interrupted and should be reflected to the caller as interrupted.

RTEMS_PROXY_BLOCKING
This status code is used internally by the implementation when performing operations on
behalf of remote tasks. This is referred to as proxying operations and this status indicates that
the operation could not be completed immediately and the proxy is blocking.

56 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

4.2.64 rtems_task

This type defines the return type of task entry points.

DESCRIPTION:

This type can be used to document task entry points in the source code.

4.2.65 rtems_task argument

This integer type represents task argument values.

NOTES:

The type is an architecture-specific unsigned integer type which is large enough to represent
pointer values and 32-bit unsigned integers.

4.2.66 rtems task begin extension

Task begin extensions are invoked when a task begins execution.

NOTES:

The task begin extensions are invoked in extension forward order.

Task begin extensions are invoked with thread dispatching enabled. This allows the use of
dynamic memory allocation, creation of POSIX keys, and use of C++ thread-local storage.
Blocking synchronization primitives are allowed also.

The task begin extensions are invoked before the global construction.

The task begin extensions may be called as a result of a task restart through rtems_task_restart()
(page 129).

4.2.67 rtems_task config

This structure defines the configuration of a task constructed by rtems_task construct()
(page 121).

MEMBERS:
name
This member defines the name of the task.
initial_priority
This member defines the initial priority of the task.

4.2. List of Data Types 57

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

storage_area
This member shall point to the task storage area begin. The task storage area will contain
the task stack, the thread-local storage, and the floating-point context on architectures with a
separate floating-point context.

The task storage area begin address and size should be aligned by
RTEMS_TASK_STORAGE_ALIGNMENT. To avoid memory waste, use RTEMS_ALIGNED() and
RTEMS_TASK_STORAGE_ALIGNMENT to enforce the recommended alignment of a statically
allocated task storage area.

storage_size
This member defines size of the task storage area in bytes. Use the
RTEMS TASK STORAGE SIZE() (page 155) macro to determine the recommended task
storage area size.

maximum_thread_local_storage_size
This member defines the maximum thread-local storage size supported by the task storage
area. Use RTEMS_ALIGN_UP() and RTEMS_TASK_STORAGE_ALIGNMENT to adjust the size to meet
the minimum alignment requirement of a thread-local storage area used to construct a task.

If the value is less than the actual thread-local storage size, then the task construction by
rtems_task_construct() (page 121) fails.

If the is less than the task storage area size, then the task construction by
rtems_task_construct() (page 121) fails.

The actual thread-local storage size is determined when the application executable is linked.
The rtems-exeinfo command line tool included in the RTEMS Tools can be used to obtain
the thread-local storage size and alignment of an application executable.

The application may configure the maximum thread-local storage size for all threads explicitly
through the CONFIGURE MAXIMUM _THREAD LOCAL _STORAGE_SIZE (page 610) configura-
tion option.

storage free
This member defines the optional handler to free the task storage area. It is called on exactly
two mutually exclusive occasions. Firstly, when the task construction aborts due to a failed
task create extension, or secondly, when the task is deleted. It is called from task context
under protection of the object allocator lock. It is allowed to call free() in this handler. If
handler is , then no action will be performed.

initial_modes
This member defines the initial modes of the task.

attributes
This member defines the attributes of the task.

58 Chapter 4. RTEMS Data Types

https://en.cppreference.com/w/c/types/NULL

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

4.2.68 rtems task create extension

Task create extensions are invoked when a task is created.

NOTES:

The task create extensions are invoked in extension forward order.

The task create extensions are invoked after a new task has been completely initialized, but
before it is started.

While normal tasks are created, the executing thread is the owner of the object allocator mutex.
The object allocator mutex allows nesting, so the normal memory allocation routines can be
used allocate memory for the created thread.

If the task create extension returns false, then the task create operation stops immediately and
the entire task create operation will fail. In this case, all task delete extensions are invoked, see
rtems_task_delete_extension (page 59).

4.2.69 rtems task delete extension

Task delete extensions are invoked when a task is deleted.

NOTES:

The task delete extensions are invoked in extension reverse order.

The task delete extensions are invoked by task create directives before an attempt to allocate a
TCB is made.

If a task create extension failed, then a task delete extension may be invoked without a previous
invocation of the corresponding task create extension of the extension set.

4.2.70 rtems_task entry

This type defines the task entry point of an RTEMS task.

4.2.71 rtems task exitted_extension

Task exitted extensions are invoked when a task entry returns.

4.2. List of Data Types 59

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

NOTES:

The task exitted extensions are invoked in extension forward order.

4.2.72 rtems_task priority

This integer type represents task priorities of the Classic API.

4.2.73 rtems_task restart extension

Task restart extensions are invoked when a task restarts.

NOTES:

The task restart extensions are invoked in extension forward order.

The task restart extensions are invoked in the context of the restarted thread right before the
execution context is reloaded. The thread stack reflects the previous execution context.

Thread restart and delete requests issued by restart extensions lead to recursion.

4.2.74 rtems task start extension

Task start extensions are invoked when a task was made ready for the first time.

NOTES:

The task start extensions are invoked in extension forward order.

In SMP configurations, the thread may already run on another processor before the task start
extensions are actually invoked. Task switch and task begin extensions may run before or in
parallel with the thread start extension in SMP configurations, see rtems_task_switch_extension
(page 60) and rtems_task_begin_extension (page 57).

4.2.75 rtems_task switch_extension

Task switch extensions are invoked when a thread switch from an executing thread to a heir
thread takes place.

NOTES:

The task switch extensions are invoked in extension forward order.

The invocation conditions of the task switch extensions depend on whether RTEMS was built
with SMP support enabled or disabled. A user must pay attention to the differences to correctly
implement a task switch extension.

Where the system was built with SMP support disabled, the task switch extensions are invoked
before the context switch from the currently executing thread to the heir thread. The executing

60 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

is a pointer to the TCB of the currently executing thread. The heir is a pointer to the TCB of the
heir thread. The context switch initiated through the multitasking start is not covered by the
task switch extensions.

Where the system was built with SMP support enabled, the task switch extensions are invoked
after the context switch to the heir thread. The executing is a pointer to the TCB of the previ-
ously executing thread. Despite the name, this is not the currently executing thread. The heir
is a pointer to the TCB of the newly executing thread. This is the currently executing thread.
The context switches initiated through the multitasking start are covered by the task switch
extensions. The reason for the differences to uniprocessor configurations is that the context
switch may update the heir thread of the processor. The task switch extensions are invoked
with maskable interrupts disabled and with ownership of a processor-specific SMP lock. Task
switch extensions may run in parallel on multiple processors. It is recommended to use thread-
local or processor-specific data structures for task switch extensions. A global SMP lock should
be avoided for performance reasons, see rtems_interrupt_lock_initialize() (page 185).

4.2.76 rtems_task terminate extension

Task terminate extensions are invoked when a task terminates.

NOTES:

The task terminate extensions are invoked in extension reverse order.

The task terminate extensions are invoked in the context of the terminating thread right before
the thread dispatch to the heir thread should take place. The thread stack reflects the previous
execution context. The POSIX cleanup and key destructors execute in this context.

Thread restart and delete requests issued by terminate extensions lead to recursion.

4.2.77 rtems_task visitor

Visitor routines invoked by rtems_task_iterate() (page 154) shall have this type.

4.2.78 rtems_tcb

This structure represents the TCB.

4.2.79 rtems_time of day

This type represents Classic API calendar times.

4.2. List of Data Types 61

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

MEMBERS:

year
This member contains the year A.D.

month
This member contains the month of the year with values from 1 to 12.

day
This member contains the day of the month with values from 1 to 31.

hour
This member contains the hour of the day with values from 0 to 23.

minute
This member contains the minute of the hour with values from 0 to 59.

second
This member contains the second of the minute with values from O to 59.

ticks
This member contains the clock tick of the second with wvalues from 0 to
rtems_clock_get ticks per second() (page 284) minus one.

4.2.80 rtems_timer_ information

The structure contains information about a timer.

MEMBERS:

the_class

The timer class member indicates how the timer was most recently fired.
initial

This member indicates the initial requested interval.
start_time

This member indicates the time the timer was initially scheduled. The time is in clock ticks
since the clock driver initialization or the last clock tick counter overflow.

stop_time
This member indicates the time the timer was scheduled to fire. The time is in clock ticks
since the clock driver initialization or the last clock tick counter overflow.

4.2.81 rtems_timer service routine

This type defines the return type of routines which can be fired by directives of the Timer
Manager.

62 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

DESCRIPTION:

This type can be used to document timer service routines in the source code.

4.2.82 rtems_timer service routine entry

This type defines the prototype of routines which can be fired by directives of the Timer Man-
ager.

4.2.83 rtems vector number

This integer type represents interrupt vector numbers.

4.2. List of Data Types 63

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 4 Section 4.2

64 Chapter 4. RTEMS Data Types

CHAPTER

FIVE

SCHEDULING CONCEPTS

65

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.1

5.1 Introduction

The scheduling concepts relate to the allocation of processing time for tasks.

The concept of scheduling in real-time systems dictates the ability to provide an immediate
response to specific external events, particularly the necessity of scheduling tasks to run within
a specified time limit after the occurrence of an event. For example, software embedded in
life-support systems used to monitor hospital patients must take instant action if a change in
the patient’s status is detected.

The component of RTEMS responsible for providing this capability is appropriately called the
scheduler. The scheduler’s sole purpose is to allocate the all important resource of processor
time to the various tasks competing for attention. The directives provided by the Scheduler
Manager are:

» rtems_scheduler_ident() (page 77) - Identifies a scheduler by the object name.

» rtems_scheduler ident by processor() (page 78) - Identifies a scheduler by the processor
index.

* rtems_scheduler_ident by processor_set() (page 79) - Identifies a scheduler by the proces-
sor set.

» rtems_scheduler get maximum_priority() (page 81) - Gets the maximum task priority of
the scheduler.

* rtems_scheduler map_priority to_posix() (page 82) - Maps a Classic API task priority to
the corresponding POSIX thread priority.

* rtems_scheduler map_priority from_posix() (page 83) - Maps a POSIX thread priority to
the corresponding Classic API task priority.

* rtems_scheduler_get processor() (page 84) - Returns the index of the current processor.

* rtems_scheduler get processor maximum() (page 85) - Returns the processor maximum
supported by the system.

* rtems_scheduler get processor _set() (page 86) - Gets the set of processors owned by the
scheduler.

» rtems_scheduler_add processor() (page 87) - Adds the processor to the set of processors
owned by the scheduler.

» rtems_scheduler_remove_processor() (page 89) - Removes the processor from the set of
processors owned by the scheduler.

66 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.2 Background

5.2.1 Scheduling Algorithms

RTEMS provides a plugin framework that allows it to support multiple scheduling algorithms.
RTEMS includes multiple scheduling algorithms, and the user can select which of these they
wish to use in their application at link-time. In addition, the user can implement their own
scheduling algorithm and configure RTEMS to use it.

Supporting multiple scheduling algorithms gives the end user the option to select the algorithm
which is most appropriate to their use case. Most real-time operating systems schedule tasks us-
ing a priority based algorithm, possibly with preemption control. The classic RTEMS scheduling
algorithm which was the only algorithm available in RTEMS 4.10 and earlier, is a fixed-priority
scheduling algorithm. This scheduling algorithm is suitable for uniprocessor (e.g., non-SMP)
systems and is known as the Deterministic Priority Scheduler. Unless the user configures another
scheduling algorithm, RTEMS will use this on uniprocessor systems.

5.2.2 Priority Scheduling

When using priority based scheduling, RTEMS allocates the processor using a priority-based,
preemptive algorithm augmented to provide round-robin characteristics within individual pri-
ority groups. The goal of this algorithm is to guarantee that the task which is executing on the
processor at any point in time is the one with the highest priority among all tasks in the ready
state.

When a task is added to the ready chain, it is placed behind all other tasks of the same priority.
This rule provides a round-robin within a priority group scheduling characteristic. This means
that in a group of equal priority tasks, tasks will execute in the order they become ready or FIFO
order. Even though there are ways to manipulate and adjust task priorities, the most important
rule to remember is:

Note: Priority based scheduling algorithms will always select the highest priority task that is
ready to run when allocating the processor to a task.

Priority scheduling is the most commonly used scheduling algorithm. It should be used by
applications in which multiple tasks contend for CPU time or other resources, and there is a
need to ensure certain tasks are given priority over other tasks.

There are a few common methods of accomplishing the mechanics of this algorithm. These
ways involve a list or chain of tasks in the ready state.

* The least efficient method is to randomly place tasks in the ready chain forcing the sched-
uler to scan the entire chain to determine which task receives the processor.

* A more efficient method is to schedule the task by placing it in the proper place on the
ready chain based on the designated scheduling criteria at the time it enters the ready
state. Thus, when the processor is free, the first task on the ready chain is allocated the
processor.

* Another mechanism is to maintain a list of FIFOs per priority. When a task is readied, it
is placed on the rear of the FIFO for its priority. This method is often used with a bitmap

5.2. Background 67

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.2

to assist in locating which FIFOs have ready tasks on them. This data structure has O(1)
insert, extract and find highest ready run-time complexities.

* A red-black tree may be used for the ready queue with the priority as the key. This data
structure has O(log(n)) insert, extract and find highest ready run-time complexities while
n is the count of tasks in the ready queue.

RTEMS currently includes multiple priority based scheduling algorithms as well as other algo-
rithms that incorporate deadline. Each algorithm is discussed in the following sections.

5.2.3 Scheduling Modification Mechanisms

RTEMS provides four mechanisms which allow the user to alter the task scheduling decisions:
* user-selectable task priority level
* task preemption control
* task timeslicing control
* manual round-robin selection

Each of these methods provides a powerful capability to customize sets of tasks to satisfy the
unique and particular requirements encountered in custom real-time applications. Although
each mechanism operates independently, there is a precedence relationship which governs the
effects of scheduling modifications. The evaluation order for scheduling characteristics is always
priority, preemption mode, and timeslicing. When reading the descriptions of timeslicing and
manual round-robin it is important to keep in mind that preemption (if enabled) of a task
by higher priority tasks will occur as required, overriding the other factors presented in the
description.

5.2.3.1 Task Priority and Scheduling

The most significant task scheduling modification mechanism is the ability for the user to assign
a priority level to each individual task when it is created and to alter a task’s priority at run-time,
see Task Priority (page 106).

5.2.3.2 Preemption

Another way the user can alter the basic scheduling algorithm is by manipulating the preemp-
tion mode flag (RTEMS_PREEMPT_MASK) of individual tasks. If preemption is disabled for a task
(RTEMS_NO_PREEMPT), then the task will not relinquish control of the processor until it termi-
nates, blocks, or re-enables preemption. Even tasks which become ready to run and possess
higher priority levels will not be allowed to execute. Note that the preemption setting has no
effect on the manner in which a task is scheduled. It only applies once a task has control of the
processor.

68 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.2.3.3 Timeslicing

Timeslicing or round-robin scheduling is an additional method which can be used to alter the
basic scheduling algorithm. Like preemption, timeslicing is specified on a task by task basis
using the timeslicing mode flag (RTEMS_TIMESLICE_MASK). If timeslicing is enabled for a task
(RTEMS_TIMESLICE), then RTEMS will limit the amount of time the task can execute before the
processor is allocated to another task. Each tick of the real-time clock reduces the currently
running task’s timeslice. When the execution time equals the timeslice, RTEMS will dispatch
another task of the same priority to execute. If there are no other tasks of the same priority
ready to execute, then the current task is allocated an additional timeslice and continues to run.
Remember that a higher priority task will preempt the task (unless preemption is disabled) as
soon as it is ready to run, even if the task has not used up its entire timeslice.

5.2.3.4 Manual Round-Robin

The final mechanism for altering the RTEMS scheduling algorithm is called manual round-
robin. Manual round-robin is invoked by using the rtems_task_wake_after directive with a
ticks parameter of RTEMS_YIELD_PROCESSOR. This allows a task to give up the processor and be
immediately returned to the ready chain at the end of its priority group. If no other tasks of the
same priority are ready to run, then the task does not lose control of the processor.

5.2.4 Dispatching Tasks

The dispatcher is the RTEMS component responsible for allocating the processor to a ready task.
In order to allocate the processor to one task, it must be deallocated or retrieved from the task
currently using it. This involves a concept called a context switch. To perform a context switch,
the dispatcher saves the context of the current task and restores the context of the task which
has been allocated to the processor. Saving and restoring a task’s context is the storing/loading
of all the essential information about a task to enable it to continue execution without any
effects of the interruption. For example, the contents of a task’s register set must be the same
when it is given the processor as they were when it was taken away. All of the information
that must be saved or restored for a context switch is located either in the TCB or on the task’s
stacks.

Tasks that utilize a numeric coprocessor and are created with the RTEMS_FLOATING_POINT at-
tribute require additional operations during a context switch. These additional operations are
necessary to save and restore the floating point context of RTEMS_FLOATING_POINT tasks. To
avoid unnecessary save and restore operations, the state of the numeric coprocessor is only
saved when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last task to
utilize the coprocessor.

5.2. Background 69

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.2

5.2.5 Task State Transitions

Tasks in an RTEMS system must always be in one of the five allowable task states. These states
are: executing, ready, blocked, dormant, and non-existent.

A task occupies the non-existent state before a rtems_task_create has been issued on its behalf.
A task enters the non-existent state from any other state in the system when it is deleted with
the rtems_task_delete directive. While a task occupies this state it does not have a TCB or a
task ID assigned to it; therefore, no other tasks in the system may reference this task.

When a task is created via the rtems_task_create directive, it enters the dormant state. This
state is not entered through any other means. Although the task exists in the system, it cannot
actively compete for system resources. It will remain in the dormant state until it is started
via the rtems_task_start directive, at which time it enters the ready state. The task is now
permitted to be scheduled for the processor and to compete for other system resources.

Non-existent

Creefing

Blocking

Dispatching Readying

Blocking Blocked
ocke

Non-existent

A task occupies the blocked state whenever it is unable to be scheduled to run. A running
task may block itself or be blocked by other tasks in the system. The running task blocks itself
through voluntary operations that cause the task to wait. The only way a task can block a task
other than itself is with the rtems_task_suspend directive. A task enters the blocked state due
to any of the following conditions:

* A task issues a rtems_task_suspend directive which blocks either itself or another task in
the system.

* The running task issues a rtems_barrier_wait directive.

* The running task issues a rtems_message_queue_receive directive with the wait option,
and the message queue is empty.

70 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

The running task issues a rtems_event_receive directive with the wait option, and the
currently pending events do not satisfy the request.

The running task issues a rtems_semaphore_obtain directive with the wait option and the
requested semaphore is unavailable.

The running task issues a rtems_task_wake_after directive which blocks the task for the
given count of ticks. If the count of ticks specified is zero, the task yields the processor
and remains in the ready state.

The running task issues a rtems_task_wake_when directive which blocks the task until the
requested date and time arrives.

The running task issues a rtems_rate_monotonic_period directive and must wait for the
specified rate monotonic period to conclude.

The running task issues a rtems_region_get_segment directive with the wait option and
there is not an available segment large enough to satisfy the task’s request.

A blocked task may also be suspended. Therefore, both the suspension and the blocking condi-
tion must be removed before the task becomes ready to run again.

A task occupies the ready state when it is able to be scheduled to run, but currently does not
have control of the processor. Tasks of the same or higher priority will yield the processor by
either becoming blocked, completing their timeslice, or being deleted. All tasks with the same
priority will execute in FIFO order. A task enters the ready state due to any of the following
conditions:

* A running task issues a rtems_task_resume directive for a task that is suspended and the

task is not blocked waiting on any resource.

A running task issues a rtems_message_queue_send, rtems_message_queue_broadcast, or
a rtems_message_queue_urgent directive which posts a message to the queue on which
the blocked task is waiting.

A running task issues an rtems_event_send directive which sends an event condition to a
task that is blocked waiting on that event condition.

A running task issues a rtems_semaphore_release directive which releases the semaphore
on which the blocked task is waiting.

The requested count of ticks has elapsed for a task which was blocked by a call to the
rtems_task_wake_after directive.

A timeout period expires for a task which blocked by a call to the rtems_task_wake_when
directive.

A running task issues a rtems_region_return_segment directive which releases a segment
to the region on which the blocked task is waiting and a resulting segment is large enough
to satisfy the task’s request.

A rate monotonic period expires for a task which blocked by a call to the
rtems_rate_monotonic_period directive.

A timeout interval expires for a task which was blocked waiting on a message, event,
semaphore, or segment with a timeout specified.

A running task issues a directive which deletes a message queue, a semaphore, or a region
on which the blocked task is waiting.

5.2,

Background 71

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.2

A running task issues a rtems_task_restart directive for the blocked task.

The running task, with its preemption mode enabled, may be made ready by issuing any
of the directives that may unblock a task with a higher priority. This directive may be
issued from the running task itself or from an ISR. A ready task occupies the executing
state when it has control of the CPU. A task enters the executing state due to any of the
following conditions:

The task is the highest priority ready task in the system.

The running task blocks and the task is next in the scheduling queue. The task may be of
equal priority as in round-robin scheduling or the task may possess the highest priority of
the remaining ready tasks.

The running task may reenable its preemption mode and a task exists in the ready queue
that has a higher priority than the running task.

The running task lowers its own priority and another task is of higher priority as a result.

The running task raises the priority of a task above its own and the running task is in
preemption mode.

72

Chapter 5. Scheduling Concepts

Chapter 5 Section 5.3 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.3 Uniprocessor Schedulers

All uniprocessor schedulers included in RTEMS are priority based. The processor is allocated to
the highest priority task allowed to run.

5.3.1 Deterministic Priority Scheduler

This is the scheduler implementation which has always been in RTEMS. After the 4.10 release
series, it was factored into a pluggable scheduler selection. It schedules tasks using a priority
based algorithm which takes into account preemption. It is implemented using an array of
FIFOs with a FIFO per priority. It maintains a bitmap which is used to track which priorities
have ready tasks.

This algorithm is deterministic (e.g., predictable and fixed) in execution time. This comes at
the cost of using slightly over three (3) kilobytes of RAM on a system configured to support 256
priority levels.

This scheduler is only aware of a single core.

5.3.2 Simple Priority Scheduler

This scheduler implementation has the same behaviour as the Deterministic Priority Scheduler
but uses only one linked list to manage all ready tasks. When a task is readied, a linear search
of that linked list is performed to determine where to insert the newly readied task.

This algorithm uses much less RAM than the Deterministic Priority Scheduler but is O(n) where
n is the number of ready tasks. In a small system with a small number of tasks, this will not
be a performance issue. Reducing RAM consumption is often critical in small systems that are
incapable of supporting a large number of tasks.

This scheduler is only aware of a single core.

5.3.3 Earliest Deadline First Scheduler

This is an alternative scheduler in RTEMS for single-core applications. The primary EDF ad-
vantage is high total CPU utilization (theoretically up to 100%). It assumes that tasks have
priorities equal to deadlines.

This EDF is initially preemptive, however, individual tasks may be declared not-preemptive.
Deadlines are declared using only Rate Monotonic manager whose goal is to handle periodic
behavior. Period is always equal to the deadline. All ready tasks reside in a single ready queue
implemented using a red-black tree.

This implementation of EDF schedules two different types of task priority types while each
task may switch between the two types within its execution. If a task does have a deadline
declared using the Rate Monotonic manager, the task is deadline-driven and its priority is equal
to deadline. On the contrary, if a task does not have any deadline or the deadline is cancelled
using the Rate Monotonic manager, the task is considered a background task with priority
equal to that assigned upon initialization in the same manner as for priority scheduler. Each
background task is of lower importance than each deadline-driven one and is scheduled when
no deadline-driven task and no higher priority background task is ready to run.

5.3. Uniprocessor Schedulers 73

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.3

Every deadline-driven scheduling algorithm requires means for tasks to claim a deadline. The
Rate Monotonic Manager is responsible for handling periodic execution. In RTEMS periods are
equal to deadlines, thus if a task announces a period, it has to be finished until the end of this
period. The call of rtems_rate_monotonic_period passes the scheduler the length of an oncom-
ing deadline. Moreover, the rtems_rate_monotonic_cancel and rtems_rate_monotonic_delete
calls clear the deadlines assigned to the task.

5.3.4 Constant Bandwidth Server Scheduling (CBS)

This is an alternative scheduler in RTEMS for single-core applications. The CBS is a budget
aware extension of EDF scheduler. The main goal of this scheduler is to ensure temporal
isolation of tasks meaning that a task’s execution in terms of meeting deadlines must not be
influenced by other tasks as if they were run on multiple independent processors.

Each task can be assigned a server (current implementation supports only one task per server).
The server is characterized by period (deadline) and computation time (budget). The ratio
budget/period yields bandwidth, which is the fraction of CPU to be reserved by the scheduler
for each subsequent period.

The CBS is equipped with a set of rules applied to tasks attached to servers ensuring that
deadline miss because of another task cannot occur. In case a task breaks one of the rules, its
priority is pulled to background until the end of its period and then restored again. The rules
are:

» Task cannot exceed its registered budget,

* Task cannot be unblocked when a ratio between remaining budget and remaining dead-
line is higher than declared bandwidth.

The CBS provides an extensive API. Unlike EDF, the rtems_rate_monotonic_period does not
declare a deadline because it is carried out using CBS API. This call only announces next period.

74 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.4 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.4 SMP Schedulers

All SMP schedulers included in RTEMS are priority based. The processors managed by a sched-
uler instance are allocated to the highest priority tasks allowed to run.

5.4.1 Earliest Deadline First SMP Scheduler

This is a job-level fixed-priority scheduler using the Earliest Deadline First (EDF) method. By
convention, the maximum priority level is min(INT M AX, 252 —1) for background tasks. Tasks
without an active deadline are background tasks. In case deadlines are not used, then the EDF
scheduler behaves exactly like a fixed-priority scheduler. The tasks with an active deadline have
a higher priority than the background tasks. This scheduler supports task processor affinities
of one-to-one and one-to-all, e.g., a task can execute on exactly one processor or all processors
managed by the scheduler instance. The processor affinity set of a task must contain all online
processors to select the one-to-all affinity. This is to avoid pathological cases if processors are
added/removed to/from the scheduler instance at run-time. In case the processor affinity set
contains not all online processors, then a one-to-one affinity will be used selecting the processor
with the largest index within the set of processors currently owned by the scheduler instance.
This scheduler algorithm supports thread pinning (page 909). The ready queues use a red-black
tree with the task priority as the key.

This scheduler algorithm is the default scheduler in SMP configurations if more than one pro-
cessor is configured (CONFIGURE_MAXIMUM_PROCESSORS (page 609)).

5.4.2 Deterministic Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for the
ready tasks. The maximum priority level is configurable. By default, the maximum priority level
is 255 (256 priority levels), see CONFIGURE MAXIMUM _PRIORITY (page 748).

5.4.3 Simple Priority SMP Scheduler

A fixed-priority scheduler which uses a sorted chain for the ready tasks. By convention, the
maximum priority level is 255. The implementation limit is actually 263 — 1.

5.4.4 Arbitrary Processor Affinity Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for
the ready tasks. The maximum priority level is configurable. By default, the maximum prior-
ity level is 255 (256 priority levels), see CONFIGURE _MAXIMUM PRIORITY (page 748). This
scheduler supports arbitrary task processor affinities. The worst-case run-time complexity of
some scheduler operations exceeds O(n) while n is the count of ready tasks.

5.4. SMP Schedulers 75

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

5.5 Directives

This section details the directives of the Scheduler Manager. A subsection is dedicated to each of
this manager’s directives and lists the calling sequence, parameters, description, return values,
and notes of the directive.

76 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.5.1 rtems_scheduler ident()

Identifies a scheduler by the object name.

CALLING SEQUENCE:

1[rtems_status_code rtems_scheduler_ident(rtems_name name, rtems_id *id);

PARAMETERS:
name
This parameter is the scheduler name to look up.
id
This parameter is the pointer to an rtems id (page 42) object. When the directive call is
successful, the identifier of the scheduler will be stored in this object.

DESCRIPTION:

This directive obtains a scheduler identifier associated with the scheduler name specified in
name.

RETURN VALUES:
RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_NAME
There was no scheduler associated with the name.

RTEMS_INVALID_ADDRESS
The id parameter was

NOTES:

The scheduler name is determined by the scheduler configuration.

The scheduler identifier is used with other scheduler related directives to access the scheduler.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

5.5. Directives 77

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

5.5.2 rtems_scheduler ident by processor()

Identifies a scheduler by the processor index.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_ident_by_processor(
2| uint32_t cpu_index,
3| rtems_id *id

4);

PARAMETERS:
cpu_index
This parameter is the processor index to identify the scheduler.
id
This parameter is the pointer to an rtems_id (page 42) object. When the directive call is
successful, the identifier of the scheduler will be stored in this object.

RETURN VALUES:
RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was

RTEMS_INVALID_NAME
The processor index was invalid.

RTEMS_INCORRECT_STATE
The processor index was valid, however, the corresponding processor was not owned by a
scheduler.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

78 Chapter 5. Scheduling Concepts

https://en.cppreference.com/w/c/types/NULL

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.5.3 rtems scheduler ident by processor set()

Identifies a scheduler by the processor set.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_ident_by_processor_set(

2| size_t cpusetsize,
3 const cpu_set_t *cpuset,

4 rtems_id *id

5105

PARAMETERS:

cpusetsize

This parameter is the size of the processor set referenced by cpuset in bytes. The size shall
be positive.

cpuset
This parameter is the pointer to a cpu_set_t. The referenced processor set will be used to
identify the scheduler.

id
This parameter is the pointer to an rtems_id (page 42) object. When the directive call is
successful, the identifier of the scheduler will be stored in this object.

DESCRIPTION:

The scheduler is selected according to the highest numbered online processor in the specified
processor set.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The id parameter was

RTEMS_INVALID_ADDRESS
The cpuset parameter was

RTEMS_INVALID_SIZE
The processor set size was invalid.

RTEMS_INVALID_NAME
The processor set contained no online processor.

RTEMS_INCORRECT_STATE
The processor set was valid, however, the highest numbered online processor in the processor
set was not owned by a scheduler.

5.5. Directives 79

https://en.cppreference.com/w/c/types/NULL
https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

80 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.5.4 rtems scheduler get maximum _priority()

Gets the maximum task priority of the scheduler.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_get_maximum_priority(

2| rtems_id scheduler_id,
3| rtems_task_priority #*priority
4);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

priority
This parameter is the pointer to an rtems_task_priority (page 60) object. When the directive
the maximum priority of the scheduler will be stored in this object.

RETURN VALUES:
RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_ADDRESS
The priority parameter was

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

5.5. Directives 81

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

5.5.5 rtems_scheduler map priority to posix()

Maps a Classic API task priority to the corresponding POSIX thread priority.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_map_priority_to_posix(

2| rtems_id scheduler_id,
3| rtems_task_priority priority,
4 int *posix_priority
51);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

priority
This parameter is the Classic API task priority to map.

posix_priority
This parameter is the pointer to an int object. When the directive call is successful, the
POSIX thread priority value corresponding to the specified Classic API task priority value will
be stored in this object.

RETURN VALUES:
RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The posix_priority parameter was

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_PRIORITY
The Classic API task priority was invalid.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

82 Chapter 5. Scheduling Concepts

https://en.cppreference.com/w/c/types/NULL

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.5.6 rtems_scheduler map priority from_ posix()

Maps a POSIX thread priority to the corresponding Classic API task priority.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_map_priority_from_posix(

2| rtems_id scheduler_id,
3 int posix_priority,
4| rtems_task_priority *priority
51);
PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

posix_priority
This parameter is the POSIX thread priority to map.

priority
This parameter is the pointer to an rtems_task_priority (page 60) object. When the directive
call is successful, the Classic API task priority value corresponding to the specified POSIX
thread priority value will be stored in this object.

RETURN VALUES:
RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The priority parameter was

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_PRIORITY
The POSIX thread priority was invalid.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

5.5. Directives 83

https://en.cppreference.com/w/c/types/NULL

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

5.5.7 rtems scheduler get processor()

Returns the index of the current processor.

CALLING SEQUENCE:

1[uint32_t rtems_scheduler_get_processor(void);

DESCRIPTION:

Where the system was built with SMP support disabled, this directive evaluates to a compile
time constant of zero.

Where the system was built with SMP support enabled, this directive returns the index of the
current processor. The set of processor indices is the range of integers starting with zero up to
rtems_scheduler get processor_maximum() (page 85) minus one.

RETURN VALUES:

Returns the index of the current processor.

NOTES:

Outside of sections with disabled thread dispatching the current processor index may change
after every instruction since the thread may migrate from one processor to another. Sections
with disabled interrupts are sections with thread dispatching disabled.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

84 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.5.8 rtems_scheduler get processor maximum/()

Returns the processor maximum supported by the system.

CALLING SEQUENCE:

1[uint32_t rtems_scheduler_get_processor_maximum(void);

DESCRIPTION:
Where the system was built with SMP support disabled, this directive evaluates to a compile
time constant of one.

Where the system was built with SMP support enabled, this directive returns the minimum
of the processors (physically or virtually) available at the target and the configured processor
maximum (see CONFIGURE _MAXIMUM _PROCESSORS (page 609)). Not all processors in the
range from processor index zero to the last processor index (which is the processor maximum
minus one) may be configured to be used by a scheduler or may be online (online processors
have a scheduler assigned).

RETURN VALUES:

Returns the processor maximum supported by the system.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

5.5. Directives 85

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

5.5.9 rtems scheduler get processor set()

Gets the set of processors owned by the scheduler.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_get_processor_set(
2| rtems_id scheduler_id,

3| size_t cpusetsize,

4| cpu_set_t *cpuset

51);

PARAMETERS:
scheduler_id
This parameter is the scheduler identifier.

cpusetsize
This parameter is the size of the processor set referenced by cpuset in bytes.

cpuset
This parameter is the pointer to a cpu_set_t object. When the directive call is successful, the
processor set of the scheduler will be stored in this object. A set bit in the processor set means
that the corresponding processor is owned by the scheduler, otherwise the bit is cleared.

RETURN VALUES:
RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ADDRESS
The cpuset parameter was

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_SIZE
The provided processor set was too small for the set of processors owned by the scheduler.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within any runtime context.

* The directive will not cause the calling task to be preempted.

86 Chapter 5. Scheduling Concepts

https://en.cppreference.com/w/c/types/NULL

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.5.10 rtems_scheduler add processor()

Adds the processor to the set of processors owned by the scheduler.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_add_processor(
2| rtems_id scheduler_id,
3| uint32_t cpu_index

4);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

cpu_index
This parameter is the index of the processor to add.

DESCRIPTION:

This directive adds the processor specified by the cpu_index to the scheduler specified by
scheduler_id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_NOT_CONFIGURED
The processor was not configured to be used by the application.

RTEMS_INCORRECT_STATE
The processor was configured to be used by the application, however, it was not online.

RTEMS_RESOURCE_IN_USE
The processor was already assigned to a scheduler.

5.5. Directives 87

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within device driver initialization context.
* The directive may be called from within task context.

* The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

88 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

5.5.11 rtems_scheduler remove processor()

Removes the processor from the set of processors owned by the scheduler.

CALLING SEQUENCE:

1| rtems_status_code rtems_scheduler_remove_processor(
2| rtems_id scheduler_id,
3| uint32_t cpu_index

4);

PARAMETERS:

scheduler_id
This parameter is the scheduler identifier.

cpu_index
This parameter is the index of the processor to remove.

DESCRIPTION:

This directive removes the processor specified by the cpu_index from the scheduler specified by
scheduler_id.

RETURN VALUES:

RTEMS_SUCCESSFUL
The requested operation was successful.

RTEMS_INVALID_ID
There was no scheduler associated with the identifier specified by scheduler_id.

RTEMS_INVALID_NUMBER
The processor was not owned by the scheduler.

RTEMS_RESOURCE_IN_USE
The processor was required by at least one non-idle task that used the scheduler as its home
scheduler.

RTEMS_RESOURCE_IN_USE
The processor was the last processor owned by the scheduler and there was at least one task
that used the scheduler as a helping scheduler.

5.5. Directives 89

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 5 Section 5.5

NOTES:

Removing a processor from a scheduler is a complex operation that involves all tasks of the
system.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive may be called from within device driver initialization context.
* The directive may be called from within task context.

* The directive may obtain and release the object allocator mutex. This may cause the
calling task to be preempted.

90 Chapter 5. Scheduling Concepts

CHAPTER

SIX

INITIALIZATION MANAGER

91

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 6 Section 6.1

6.1 Introduction

The Initialization Manager is responsible for initializing the system.

The system initialization includes the initialization of the Board Support Package, RTEMS, de-
vice drivers, the root filesystem, and the application. The Fatal Error Manager (page 547) is
responsible for the system shutdown. The directives provided by the Initialization Manager are:

* rtems_initialize_executive() (page 101) - Initializes the system and starts multitasking.

92 Chapter 6. Initialization Manager

Chapter 6 Section 6.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

6.2 Background

6.2.1 Initialization Tasks

Initialization task(s) are the mechanism by which RTEMS transfers initial control to the user’s
application. Initialization tasks differ from other application tasks in that they are defined in
the User Initialization Tasks Table and automatically created and started by RTEMS as part of
its initialization sequence. Since the initialization tasks are scheduled using the same algorithm
as all other RTEMS tasks, they must be configured at a priority and mode which will ensure that
they will complete execution before other application tasks execute. Although there is no upper
limit on the number of initialization tasks, an application is required to define at least one.

A typical initialization task will create and start the static set of application tasks. It may also
create any other objects used by the application. Initialization tasks which only perform ini-
tialization should delete themselves upon completion to free resources for other tasks. Initial-
ization tasks may transform themselves into a “normal” application task. This transformation
typically involves changing priority and execution mode. RTEMS does not automatically delete
the initialization tasks.

6.2.2 The Idle Task

The Idle Task is the lowest priority task in a system and executes only when no other task is
ready to execute. The default implementation of this task consists of an infinite loop. RTEMS
allows the Idle Task body to be replaced by a CPU specific implementation, a BSP specific
implementation or an application specific implementation.

The Idle Task is preemptible and WILL be preempted when any other task is made ready to
execute. This characteristic is critical to the overall behavior of any application.

6.2.3 Initialization Manager Failure

System initialization errors are fatal. See Internal Error Codes (page 550).

6.2. Background 93

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 6 Section 6.3

6.3 Operations

6.3.1 Initializing RTEMS

The Initialization Manager rtems_initialize_executive() directives is called by the
boot_card() routine which is invoked by the Board Support Package once a basic C run-time
environment is set up. This consists of

* a valid and accessible text section, read-only data, read-write data and zero-initialized
data,

* an initialization stack large enough to initialize the rest of the Board Support Package,
RTEMS and the device drivers,

* all registers and components mandated by Application Binary Interface, and
* disabled interrupts.

The rtems_initialize_executive() directive uses a system initialization linker set (page 1041)
to initialize only those parts of the overall RTEMS feature set that is necessary for a particular
application. Each RTEMS feature used the application may optionally register an initialization
handler. The system initialization API is available via #included <rtems/sysinit.h>.

A list of all initialization steps follows. Some steps are optional depending on the requested
feature set of the application. The initialization steps are execute in the order presented here.

RTEMS_SYSINIT _RECORD
Initialization of the event recording is the first initialization step. This allows to record
the further system initialization. This step is optional and depends on the CONFIG-
URE_RECORD _PER PROCESSOR_ITEMS (page 688) configuration option.

RTEMS_SYSINIT _BSP_EARLY
The Board Support Package may perform an early platform initialization in this step. This
step is optional.

RTEMS_SYSINIT _MEMORY
The Board Support Package should initialize everything so that calls to _Memory_Get () can be
made after this step. This step is optional.

RTEMS_SYSINIT DIRTY MEMORY
The free memory is dirtied in this step. This step is optional and depends on the
BSP_DIRTY_MEMORY BSP option.

RTEMS_SYSINIT_ISR_STACK
The stack checker initializes the ISR stacks in this step. This step is optional and depends on
the CONFIGURE_STACK CHECKER_ENABLED (page 617) configuration option.

RTEMS_SYSINIT PER_CPU_DATA
The per-CPU data is initialized in this step. This step is mandatory:.

RTEMS_SYSINIT_SBRK
The Board Support Package may initialize the sbrk() support in this step. This step is op-
tional.

RTEMS_SYSINIT WORKSPACE
The workspace is initialized in this step. This step is optional and depends on the application
configuration.

94 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

RTEMS_SYSINIT _MALLOC
The C program heap is initialized in this step. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_BSP_START
The Board Support Package should perform a general platform initialization in this step (e.g.
interrupt controller initialization). This step is mandatory.

RTEMS_SYSINIT_CPU_COUNTER
Initialization of the CPU counter hardware and support functions. The CPU counter is initial-
ized early to allow its use in the tracing and profiling of the system initialization sequence.
This step is optional and depends on the application configuration.

RTEMS_SYSINIT_INITIAL _EXTENSIONS
Registers the initial extensions. This step is optional and depends on the application configu-
ration.

RTEMS_SYSINIT MP EARLY
In MPCI configurations, an early MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT DATA STRUCTURES
This directive is called when the Board Support Package has completed its basic initialization
and allows RTEMS to initialize the application environment based upon the information in
the Configuration Table, User Initialization Tasks Table, Device Driver Table, User Extension

Table, Multiprocessor Configuration Table, and the Multiprocessor Communications Interface
(MPCI) Table.

RTEMS_SYSINIT _MP
In MPCI configurations, a general MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT USER_EXTENSIONS
Initialization of the User Extensions object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT CLASSIC_TASKS
Initialization of the Classic Tasks object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT CLASSIC_TASKS_MP
In MPCI configurations, the Classic Tasks MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT CLASSIC_TIMER
Initialization of the Classic Timer object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_SIGNAL
Initialization of the Classic Signal support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT _CLASSIC_SIGNAL_MP
In MPCI configurations, the Classic Signal MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_EVENT
Initialization of the Classic Event support. This step is optional and depends on the application

6.3. Operations 95

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 6 Section 6.3

configuration. This step is only used on MPCI configurations.

RTEMS_SYSINIT _CLASSIC_EVENT MP
In MPCI configurations, the Classic Event MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_MESSAGE_QUEUE
Initialization of the Classic Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT CLASSIC_SEMAPHORE
Initialization of the Classic Semaphore object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT CLASSIC_SEMAPHORE_MP
In MPCI configurations, the Classic Semaphore MPCI support is initialized in this step. This
step is optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION
Initialization of the Classic Partition object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION_MP
In MPCI configurations, the Classic Partition MPCI support is initialized in this step. This step
is optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_REGION
Initialization of the Classic Region object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT CLASSIC_DUAL_PORTED MEMORY
Initialization of the Classic Dual-Ported Memory object class. This step is optional and de-
pends on the application configuration.

RTEMS_SYSINIT _CLASSIC_RATE_MONOTONIC
Initialization of the Classic Rate-Monotonic object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT CLASSIC BARRIER
Initialization of the Classic Barrier object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_SIGNALS
Initialization of the POSIX Signals support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT_POSIX_THREADS
Initialization of the POSIX Threads object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT POSIX MESSAGE_QUEUE
Initialization of the POSIX Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT _POSIX_SEMAPHORE
Initialization of the POSIX Semaphore object class. This step is optional and depends on the
application configuration.

96 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

RTEMS_SYSINIT POSIX TIMER
Initialization of the POSIX Timer object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT _POSIX_SHM
Initialization of the POSIX Shared Memory object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_POSIX_KEYS
Initialization of the POSIX Keys object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT POSIX CLEANUP
Initialization of the POSIX Cleanup support. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_IDLE_THREADS
Initialization of idle threads. This step is mandatory.

RTEMS_SYSINIT_LIBIO
Initialization of IO library. This step is optional and depends on the application configuration.

RTEMS_SYSINIT ROOT_FILESYSTEM
Initialization of the root filesystem. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT_DRVMGR
Driver manager initialization. This step is optional and depends on the application configura-
tion. Only available if the driver manager is enabled.

RTEMS_SYSINIT MP_SERVER
In MPCI configurations, the MPCI server is initialized in this step. This step is mandatory in
MPCI configurations.

RTEMS_SYSINIT BSP_PRE_DRIVERS
Initialization step performed right before device drivers are initialized. This step is mandatory.

RTEMS_SYSINIT DRVMGR_LEVEL _1
Driver manager level 1 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT DEVICE_DRIVERS
This step initializes all statically configured device drivers and performs all RTEMS initializa-
tion which requires device drivers to be initialized. This step is mandatory. In a multiprocessor
configuration, this service will initialize the Multiprocessor Communications Interface (MPCI)
and synchronize with the other nodes in the system.

RTEMS_SYSINIT DRVMGR_LEVEL _2
Driver manager level 2 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT DRVMGR_LEVEL 3
Driver manager level 3 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT DRVMGR_LEVEL 4
Driver manager level 4 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

6.3. Operations 97

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 6 Section 6.3

RTEMS_SYSINIT MP_FINALIZE
Finalize MPCI initialization. This step is mandatory on MPCI configurations.

RTEMS_SYSINIT_CLASSIC_USER_TASKS
Creates and starts the Classic initialization tasks. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT _POSIX USER_THREADS
Creates POSIX initialization threads. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT_STD_FILE_DESCRIPTORS
Open the standard input, output and error file descriptors. This step is optional and depends
on the application configuration.

The final action of the rtems_initialize_executive() directive is to start multitasking and
switch to the highest priority ready thread. RTEMS does not return to the initialization context
and the initialization stack may be re-used for interrupt processing.

Many of RTEMS actions during initialization are based upon the contents of the Configuration
Table. For more information regarding the format and contents of this table, please refer to the
chapter Configuring a System (page 587).

6.3.2 Global Construction

The global construction is carried out by the Classic API initialization task. If no Clas-
sic API initialization task exists, then it is carried out by the POSIX API initialization
thread. If no initialization task or thread exists, then no global construction is per-
formed. The Classic API task or POSIX API thread which carries out global construction is
called the main thread. For configuration options related to initialization tasks, see CON-
FIGURE_RTEMS_INIT TASKS TABLE (page 668), CONFIGURE POSIX INIT THREAD TABLE
(page 682), and CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION (page 742).

Global construction runs before the task entry of the main thread. The configuration of the
main thread must take the global construction into account. In particular, the main thread stack
size, priority, attributes and initial modes must be set accordingly. Thread-local objects and
POSIX key values created during global construction are accessible by the main thread. If other
initialization tasks are configured, and one of them has a higher priority than the main thread
and the main thread is preemptible, this task executes before the global construction. In case the
main thread blocks during global construction, then other tasks may run. In SMP configurations,
other initialization tasks may run in parallel with global construction. Tasks created during
global construction may preempt the main thread or run in parallel in SMP configurations. All
RTEMS services allowed in task context are allowed during global construction.

Global constructors are C++ global object constructors or functions with the constructor at-
tribute. For example, the following test program

1|#include <stdio.h>

#include <assert.h>

class A {
public:
AQ)
{

(continues on next page)

98 Chapter 6. Initialization Manager

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

w

Chapter 6 Section 6.3

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

puts("A:AQ");
3
It
static A a;

static thread_local int i;

static thread_local int j;

static __attribute__((__constructor__)) void b(void)

(continued from previous page)

static __attribute__((__constructor__(1000))) void c(void)

{
i=1;
puts("b()");

}

{
puts("cQ"”);

3

int main(void)

{
assert(i ==1);
assert(j == 0);
return 0;

}

should output:

cQ
b
A:AQ)

6.3. Operations

99

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 6 Section 6.4

6.4 Directives

This section details the directives of the Initialization Manager. A subsection is dedicated to
each of this manager’s directives and lists the calling sequence, parameters, description, return
values, and notes of the directive.

100 Chapter 6. Initialization Manager

Chapter 6 Section 6.4 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

6.4.1 rtems initialize executive()

Initializes the system and starts multitasking.

CALLING SEQUENCE:

1[void rtems_initialize_executive(void);

DESCRIPTION:

Iterates through the system initialization linker set and invokes the registered handlers. The
final step is to start multitasking.

NOTES:

Errors in the initialization sequence are usually fatal and lead to a system termination.

CONSTRAINTS:

The following constraints apply to this directive:
* The directive should be called by boot_card() only.

e The directive will not return to the caller.

6.4. Directives 101

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 6 Section 6.4

102 Chapter 6. Initialization Manager

CHAPTER

SEVEN

TASK MANAGER

103

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 7 Section 7.1

7.1

Introduction

The Task Manager provides a comprehensive set of directives to create, delete, and administer
tasks. The directives provided by the Task Manager are:

rtems_task_create() (page 116) - Creates a task.

rtems_task_construct() (page 121) - Constructs a task from the specified task configura-
tion.

rtems_task_ident() (page 124) - Identifies a task by the object name.
rtems_task_self() (page 126) - Gets the task identifier of the calling task.
rtems_task_start() (page 127) - Starts the task.

rtems_task_restart() (page 129) - Restarts the task.

rtems_task_delete() (page 131) - Deletes the task.

rtems_task_exit() (page 133) - Deletes the calling task.
rtems_task_suspend() (page 134) - Suspends the task.
rtems_task_resume() (page 136) - Resumes the task.
rtems_task_is_suspended() (page 137) - Checks if the task is suspended.

rtems_task_set_priority() (page 138) - Sets the real priority or gets the current priority of
the task.

rtems_task_get priority() (page 140) - Gets the current priority of the task with respect to
the scheduler.

rtems_task_mode() (page 142) - Gets and optionally sets the mode of the calling task.

rtems_task_wake_after() (page 145) - Wakes up after a count of clock ticks have occurred
or yields the processor.

rtems_task_wake_when() (page 146) - Wakes up when specified.
rtems_task_get scheduler() (page 147) - Gets the home scheduler of the task.
rtems_task_set_scheduler() (page 148) - Sets the home scheduler for the task.
rtems_task_get_affinity() (page 150) - Gets the processor affinity of the task.
rtems_task_set_affinity() (page 152) - Sets the processor affinity of the task.

rtems_task_iterate() (page 154) - Iterates over all tasks and invokes the visitor routine for
each task.

RTEMS TASK STORAGE SIZE() (page 155) - Gets the recommended task storage area
size for the size and task attributes.

104

Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024)

7.2 Background

7.2.1 Task Definition

Many definitions of a task have been proposed in computer literature. Unfortunately, none of
these definitions encompasses all facets of the concept in a manner which is operating system
independent. Several of the more common definitions are provided to enable each user to select
a definition which best matches their own experience and understanding of the task concept:

* a “dispatchable” unit.

* an entity to which the processor is allocated.

* an atomic unit of a real-time, multiprocessor system.

* single threads of execution which concurrently compete for resources.

* a sequence of closely related computations which can execute concurrently with other
computational sequences.

From RTEMS’ perspective, a task is the smallest thread of execution which can compete on its
own for system resources. A task is manifested by the existence of a task control block (TCB).

7.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS defined data structure which contains all the infor-
mation that is pertinent to the execution of a task. During system initialization, RTEMS reserves
a TCB for each task configured. A TCB is allocated upon creation of the task and is returned to
the TCB free list upon deletion of the task.

The TCB’s elements are modified as a result of system calls made by the application in response
to external and internal stimuli. TCBs are the only RTEMS internal data structure that can
be accessed by an application via user extension routines. The TCB contains a task’s name,
ID, current priority, current and starting states, execution mode, TCB user extension pointer,
scheduling control structures, as well as data required by a blocked task.

A task’s context is stored in the TCB when a task switch occurs. When the task regains control
of the processor, its context is restored from the TCB. When a task is restarted, the initial state
of the task is restored from the starting context area in the task’s TCB.

7.2.3 Task Memory

The system uses two separate memory areas to manage a task. One memory area is the Task
Control Block (page 105). The other memory area is allocated from the stack space or provided
by the user and contains

* the task stack,
* the thread-local storage (TLS), and
* an optional architecture-specific floating-point context.

The size of the thread-local storage is determined at link time. A user-provided task stack must
take the size of the thread-local storage into account.

7.2. Background 105

RTEMS Classic API Guide, Release 6.1-rc2 (20th February 2024) Chapter 7 Section 7.2

On architectures with a dedicated floating-point context, the application configuration assumes
that every task is a floating-point task, but whether or not a task is actually floating-point
is determined at runtime during task creation (see Floating Point Considerations (page 109)).
In highly memory constrained systems this potential overestimate of the task stack space can
be mitigated through the CONFIGURE _MINIMUM _TASK _STACK SIZE (page 616) configuration
option and aligned task stack sizes for the tasks. A user-provided task stack must take the
potential floating-point context into account.

7.2.4 Task Name

By default, the task name is defined by the task object name given to rtems_task create(). The
task name can be obtained with the function. Optionally, a new task
name may be set with the function. The maximum size of a task name is
defined by the application configuration option CONFIGURE_MAXIMUM _THREAD NAME_SIZE
(page 611).

7.2.5 Task States

A task may exist in one of the following five states:
* executing - Currently scheduled to the CPU
* ready - May be scheduled to the CPU

blocked - Unable to be scheduled to the CPU

e dormant - Created task that is not started
* non-existent - Uncreated or deleted task

An active task may occupy the executing, ready, blocked or dormant state, otherwise the task
is considered non-existent. One or more tasks may be active in the system simultaneously.
Multiple tasks communicate, synchronize, and compete for system resources with each other
via system calls. The multiple tasks appear to execute in parallel, but actually each is dispatched
to the CPU for periods of time determined by the RTEMS scheduling algorithm. The scheduling
of a task is based on its current state and priority.

7.2.6 Task Priority

A tasK’s priority determines its importance in relation to the other tasks executing on the pro-
cessor set owned by a scheduler. Normally, RTEMS supports 256 levels of priority ranging from
0 to 255. The priority level O represents a special priority reserved for the operating system.
The data type rtems_task_priority is used to store task priorities. The maximum priority
level depends on the configured scheduler, see CONFIGURE_MAXIMUM _PRIORITY (page 748),
Clustered Scheduler Configuration (page 764), and Scheduling Concepts (page 65).

Tasks of numerically smaller priority values are more important tasks than tasks of num