RTEMS 6.1-rc1
fsl_hcalls.h
1/*
2 * Freescale hypervisor call interface
3 *
4 * Copyright 2008-2010 Freescale Semiconductor, Inc.
5 *
6 * Author: Timur Tabi <timur@freescale.com>
7 *
8 * This file is provided under a dual BSD/GPL license. When using or
9 * redistributing this file, you may do so under either license.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions are met:
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * * Neither the name of Freescale Semiconductor nor the
19 * names of its contributors may be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 *
23 * ALTERNATIVELY, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") as published by the Free Software
25 * Foundation, either version 2 of that License or (at your option) any
26 * later version.
27 *
28 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
29 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
30 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
31 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
33 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
37 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40#ifndef _FSL_HCALLS_H
41#define _FSL_HCALLS_H
42
43#include <stdint.h>
44#include <asm/epapr_hcalls.h>
45
46#define FH_API_VERSION 1
47
48#define FH_ERR_GET_INFO 1
49#define FH_PARTITION_GET_DTPROP 2
50#define FH_PARTITION_SET_DTPROP 3
51#define FH_PARTITION_RESTART 4
52#define FH_PARTITION_GET_STATUS 5
53#define FH_PARTITION_START 6
54#define FH_PARTITION_STOP 7
55#define FH_PARTITION_MEMCPY 8
56#define FH_DMA_ENABLE 9
57#define FH_DMA_DISABLE 10
58#define FH_SEND_NMI 11
59#define FH_VMPIC_GET_MSIR 12
60#define FH_SYSTEM_RESET 13
61#define FH_GET_CORE_STATE 14
62#define FH_ENTER_NAP 15
63#define FH_EXIT_NAP 16
64#define FH_CLAIM_DEVICE 17
65#define FH_PARTITION_STOP_DMA 18
66
67/* vendor ID: Freescale Semiconductor */
68#define FH_HCALL_TOKEN(num) _EV_HCALL_TOKEN(EV_FSL_VENDOR_ID, num)
69
70/*
71 * We use "uintptr_t" to define a register because it's guaranteed to be a
72 * 32-bit integer on a 32-bit platform, and a 64-bit integer on a 64-bit
73 * platform.
74 *
75 * All registers are either input/output or output only. Registers that are
76 * initialized before making the hypercall are input/output. All
77 * input/output registers are represented with "+r". Output-only registers
78 * are represented with "=r". Do not specify any unused registers. The
79 * clobber list will tell the compiler that the hypercall modifies those
80 * registers, which is good enough.
81 */
82
89static inline unsigned int fh_send_nmi(unsigned int vcpu_mask)
90{
91 register uintptr_t r11 __asm__("r11");
92 register uintptr_t r3 __asm__("r3");
93
94 r11 = FH_HCALL_TOKEN(FH_SEND_NMI);
95 r3 = vcpu_mask;
96
97 asm volatile("bl epapr_hypercall_start"
98 : "+r" (r11), "+r" (r3)
99 : : EV_HCALL_CLOBBERS1
100 );
101
102 return r3;
103}
104
105/* Arbitrary limits to avoid excessive memory allocation in hypervisor */
106#define FH_DTPROP_MAX_PATHLEN 4096
107#define FH_DTPROP_MAX_PROPLEN 32768
108
119static inline unsigned int fh_partition_get_dtprop(int handle,
120 uint64_t dtpath_addr,
121 uint64_t propname_addr,
122 uint64_t propvalue_addr,
123 uint32_t *propvalue_len)
124{
125 register uintptr_t r11 __asm__("r11");
126 register uintptr_t r3 __asm__("r3");
127 register uintptr_t r4 __asm__("r4");
128 register uintptr_t r5 __asm__("r5");
129 register uintptr_t r6 __asm__("r6");
130 register uintptr_t r7 __asm__("r7");
131 register uintptr_t r8 __asm__("r8");
132 register uintptr_t r9 __asm__("r9");
133 register uintptr_t r10 __asm__("r10");
134
135 r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_DTPROP);
136 r3 = handle;
137
138#ifdef CONFIG_PHYS_64BIT
139 r4 = dtpath_addr >> 32;
140 r6 = propname_addr >> 32;
141 r8 = propvalue_addr >> 32;
142#else
143 r4 = 0;
144 r6 = 0;
145 r8 = 0;
146#endif
147 r5 = (uint32_t)dtpath_addr;
148 r7 = (uint32_t)propname_addr;
149 r9 = (uint32_t)propvalue_addr;
150 r10 = *propvalue_len;
151
152 asm volatile("bl epapr_hypercall_start"
153 : "+r" (r11),
154 "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7),
155 "+r" (r8), "+r" (r9), "+r" (r10)
156 : : EV_HCALL_CLOBBERS8
157 );
158
159 *propvalue_len = r4;
160 return r3;
161}
162
173static inline unsigned int fh_partition_set_dtprop(int handle,
174 uint64_t dtpath_addr,
175 uint64_t propname_addr,
176 uint64_t propvalue_addr,
177 uint32_t propvalue_len)
178{
179 register uintptr_t r11 __asm__("r11");
180 register uintptr_t r3 __asm__("r3");
181 register uintptr_t r4 __asm__("r4");
182 register uintptr_t r6 __asm__("r6");
183 register uintptr_t r8 __asm__("r8");
184 register uintptr_t r5 __asm__("r5");
185 register uintptr_t r7 __asm__("r7");
186 register uintptr_t r9 __asm__("r9");
187 register uintptr_t r10 __asm__("r10");
188
189 r11 = FH_HCALL_TOKEN(FH_PARTITION_SET_DTPROP);
190 r3 = handle;
191
192#ifdef CONFIG_PHYS_64BIT
193 r4 = dtpath_addr >> 32;
194 r6 = propname_addr >> 32;
195 r8 = propvalue_addr >> 32;
196#else
197 r4 = 0;
198 r6 = 0;
199 r8 = 0;
200#endif
201 r5 = (uint32_t)dtpath_addr;
202 r7 = (uint32_t)propname_addr;
203 r9 = (uint32_t)propvalue_addr;
204 r10 = propvalue_len;
205
206 asm volatile("bl epapr_hypercall_start"
207 : "+r" (r11),
208 "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7),
209 "+r" (r8), "+r" (r9), "+r" (r10)
210 : : EV_HCALL_CLOBBERS8
211 );
212
213 return r3;
214}
215
222static inline unsigned int fh_partition_restart(unsigned int partition)
223{
224 register uintptr_t r11 __asm__("r11");
225 register uintptr_t r3 __asm__("r3");
226
227 r11 = FH_HCALL_TOKEN(FH_PARTITION_RESTART);
228 r3 = partition;
229
230 asm volatile("bl epapr_hypercall_start"
231 : "+r" (r11), "+r" (r3)
232 : : EV_HCALL_CLOBBERS1
233 );
234
235 return r3;
236}
237
238#define FH_PARTITION_STOPPED 0
239#define FH_PARTITION_RUNNING 1
240#define FH_PARTITION_STARTING 2
241#define FH_PARTITION_STOPPING 3
242#define FH_PARTITION_PAUSING 4
243#define FH_PARTITION_PAUSED 5
244#define FH_PARTITION_RESUMING 6
245
253static inline unsigned int fh_partition_get_status(unsigned int partition,
254 unsigned int *status)
255{
256 register uintptr_t r11 __asm__("r11");
257 register uintptr_t r3 __asm__("r3");
258 register uintptr_t r4 __asm__("r4");
259
260 r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_STATUS);
261 r3 = partition;
262
263 asm volatile("bl epapr_hypercall_start"
264 : "+r" (r11), "+r" (r3), "=r" (r4)
265 : : EV_HCALL_CLOBBERS2
266 );
267
268 *status = r4;
269
270 return r3;
271}
272
283static inline unsigned int fh_partition_start(unsigned int partition,
284 uint32_t entry_point, int load)
285{
286 register uintptr_t r11 __asm__("r11");
287 register uintptr_t r3 __asm__("r3");
288 register uintptr_t r4 __asm__("r4");
289 register uintptr_t r5 __asm__("r5");
290
291 r11 = FH_HCALL_TOKEN(FH_PARTITION_START);
292 r3 = partition;
293 r4 = entry_point;
294 r5 = load;
295
296 asm volatile("bl epapr_hypercall_start"
297 : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5)
298 : : EV_HCALL_CLOBBERS3
299 );
300
301 return r3;
302}
303
310static inline unsigned int fh_partition_stop(unsigned int partition)
311{
312 register uintptr_t r11 __asm__("r11");
313 register uintptr_t r3 __asm__("r3");
314
315 r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP);
316 r3 = partition;
317
318 asm volatile("bl epapr_hypercall_start"
319 : "+r" (r11), "+r" (r3)
320 : : EV_HCALL_CLOBBERS1
321 );
322
323 return r3;
324}
325
340 uint64_t source;
341 uint64_t target;
342 uint64_t size;
343 uint64_t reserved;
344} __attribute__ ((aligned(32)));
345
355static inline unsigned int fh_partition_memcpy(unsigned int source,
356 unsigned int target, uint64_t sg_list, unsigned int count)
357{
358 register uintptr_t r11 __asm__("r11");
359 register uintptr_t r3 __asm__("r3");
360 register uintptr_t r4 __asm__("r4");
361 register uintptr_t r5 __asm__("r5");
362 register uintptr_t r6 __asm__("r6");
363 register uintptr_t r7 __asm__("r7");
364
365 r11 = FH_HCALL_TOKEN(FH_PARTITION_MEMCPY);
366 r3 = source;
367 r4 = target;
368 r5 = (uint32_t) sg_list;
369
370#ifdef CONFIG_PHYS_64BIT
371 r6 = sg_list >> 32;
372#else
373 r6 = 0;
374#endif
375 r7 = count;
376
377 asm volatile("bl epapr_hypercall_start"
378 : "+r" (r11),
379 "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7)
380 : : EV_HCALL_CLOBBERS5
381 );
382
383 return r3;
384}
385
392static inline unsigned int fh_dma_enable(unsigned int liodn)
393{
394 register uintptr_t r11 __asm__("r11");
395 register uintptr_t r3 __asm__("r3");
396
397 r11 = FH_HCALL_TOKEN(FH_DMA_ENABLE);
398 r3 = liodn;
399
400 asm volatile("bl epapr_hypercall_start"
401 : "+r" (r11), "+r" (r3)
402 : : EV_HCALL_CLOBBERS1
403 );
404
405 return r3;
406}
407
414static inline unsigned int fh_dma_disable(unsigned int liodn)
415{
416 register uintptr_t r11 __asm__("r11");
417 register uintptr_t r3 __asm__("r3");
418
419 r11 = FH_HCALL_TOKEN(FH_DMA_DISABLE);
420 r3 = liodn;
421
422 asm volatile("bl epapr_hypercall_start"
423 : "+r" (r11), "+r" (r3)
424 : : EV_HCALL_CLOBBERS1
425 );
426
427 return r3;
428}
429
430
438static inline unsigned int fh_vmpic_get_msir(unsigned int interrupt,
439 unsigned int *msir_val)
440{
441 register uintptr_t r11 __asm__("r11");
442 register uintptr_t r3 __asm__("r3");
443 register uintptr_t r4 __asm__("r4");
444
445 r11 = FH_HCALL_TOKEN(FH_VMPIC_GET_MSIR);
446 r3 = interrupt;
447
448 asm volatile("bl epapr_hypercall_start"
449 : "+r" (r11), "+r" (r3), "=r" (r4)
450 : : EV_HCALL_CLOBBERS2
451 );
452
453 *msir_val = r4;
454
455 return r3;
456}
457
463static inline unsigned int fh_system_reset(void)
464{
465 register uintptr_t r11 __asm__("r11");
466 register uintptr_t r3 __asm__("r3");
467
468 r11 = FH_HCALL_TOKEN(FH_SYSTEM_RESET);
469
470 asm volatile("bl epapr_hypercall_start"
471 : "+r" (r11), "=r" (r3)
472 : : EV_HCALL_CLOBBERS1
473 );
474
475 return r3;
476}
477
478
490static inline unsigned int fh_err_get_info(int queue, uint32_t *bufsize,
491 uint32_t addr_hi, uint32_t addr_lo, int peek)
492{
493 register uintptr_t r11 __asm__("r11");
494 register uintptr_t r3 __asm__("r3");
495 register uintptr_t r4 __asm__("r4");
496 register uintptr_t r5 __asm__("r5");
497 register uintptr_t r6 __asm__("r6");
498 register uintptr_t r7 __asm__("r7");
499
500 r11 = FH_HCALL_TOKEN(FH_ERR_GET_INFO);
501 r3 = queue;
502 r4 = *bufsize;
503 r5 = addr_hi;
504 r6 = addr_lo;
505 r7 = peek;
506
507 asm volatile("bl epapr_hypercall_start"
508 : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6),
509 "+r" (r7)
510 : : EV_HCALL_CLOBBERS5
511 );
512
513 *bufsize = r4;
514
515 return r3;
516}
517
518
519#define FH_VCPU_RUN 0
520#define FH_VCPU_IDLE 1
521#define FH_VCPU_NAP 2
522
532static inline unsigned int fh_get_core_state(unsigned int handle,
533 unsigned int vcpu, unsigned int *state)
534{
535 register uintptr_t r11 __asm__("r11");
536 register uintptr_t r3 __asm__("r3");
537 register uintptr_t r4 __asm__("r4");
538
539 r11 = FH_HCALL_TOKEN(FH_GET_CORE_STATE);
540 r3 = handle;
541 r4 = vcpu;
542
543 asm volatile("bl epapr_hypercall_start"
544 : "+r" (r11), "+r" (r3), "+r" (r4)
545 : : EV_HCALL_CLOBBERS2
546 );
547
548 *state = r4;
549 return r3;
550}
551
563static inline unsigned int fh_enter_nap(unsigned int handle, unsigned int vcpu)
564{
565 register uintptr_t r11 __asm__("r11");
566 register uintptr_t r3 __asm__("r3");
567 register uintptr_t r4 __asm__("r4");
568
569 r11 = FH_HCALL_TOKEN(FH_ENTER_NAP);
570 r3 = handle;
571 r4 = vcpu;
572
573 asm volatile("bl epapr_hypercall_start"
574 : "+r" (r11), "+r" (r3), "+r" (r4)
575 : : EV_HCALL_CLOBBERS2
576 );
577
578 return r3;
579}
580
588static inline unsigned int fh_exit_nap(unsigned int handle, unsigned int vcpu)
589{
590 register uintptr_t r11 __asm__("r11");
591 register uintptr_t r3 __asm__("r3");
592 register uintptr_t r4 __asm__("r4");
593
594 r11 = FH_HCALL_TOKEN(FH_EXIT_NAP);
595 r3 = handle;
596 r4 = vcpu;
597
598 asm volatile("bl epapr_hypercall_start"
599 : "+r" (r11), "+r" (r3), "+r" (r4)
600 : : EV_HCALL_CLOBBERS2
601 );
602
603 return r3;
604}
611static inline unsigned int fh_claim_device(unsigned int handle)
612{
613 register uintptr_t r11 __asm__("r11");
614 register uintptr_t r3 __asm__("r3");
615
616 r11 = FH_HCALL_TOKEN(FH_CLAIM_DEVICE);
617 r3 = handle;
618
619 asm volatile("bl epapr_hypercall_start"
620 : "+r" (r11), "+r" (r3)
621 : : EV_HCALL_CLOBBERS1
622 );
623
624 return r3;
625}
626
638static inline unsigned int fh_partition_stop_dma(unsigned int handle)
639{
640 register uintptr_t r11 __asm__("r11");
641 register uintptr_t r3 __asm__("r3");
642
643 r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP_DMA);
644 r3 = handle;
645
646 asm volatile("bl epapr_hypercall_start"
647 : "+r" (r11), "+r" (r3)
648 : : EV_HCALL_CLOBBERS1
649 );
650
651 return r3;
652}
653#endif
unsigned short int uint16 __attribute__((__may_alias__))
Perform a 32-bit endian conversion.
Definition: mcf5282.h:37
register struct Per_CPU_Control *_SPARC_Per_CPU_current __asm__("g6")
The pointer to the current per-CPU control is available via register g6.
Definition: fsl_hcalls.h:339
uint64_t source
Definition: fsl_hcalls.h:340
uint64_t size
Definition: fsl_hcalls.h:342
uint64_t reserved
Definition: fsl_hcalls.h:343
uint64_t target
Definition: fsl_hcalls.h:341
Definition: media.c:56