
RTEMS POSIX API Guide
Release 6.2 (19th December 2025)
© 1988-2025 RTEMS Project and contributors

CONTENTS

1 Preface 3
1.1 Acknowledgements . 4

2 Process Creation and Execution Manager 5
2.1 Introduction . 6
2.2 Background . 7
2.3 Operations . 8
2.4 Directives . 9

2.4.1 fork - Create a Process . 9
2.4.2 execl - Execute a File . 9
2.4.3 execv - Execute a File . 9
2.4.4 execle - Execute a File . 10
2.4.5 execve - Execute a File . 10
2.4.6 execlp - Execute a File . 11
2.4.7 execvp - Execute a File . 11
2.4.8 pthread_atfork - Register Fork Handlers 12
2.4.9 wait - Wait for Process Termination . 12
2.4.10 waitpid - Wait for Process Termination 13
2.4.11 _exit - Terminate a Process . 13

3 Signal Manager 15
3.1 Introduction . 16
3.2 Background . 17

3.2.1 Signals . 17
3.2.2 Signal Delivery . 17

3.3 Operations . 18
3.3.1 Signal Set Management . 18
3.3.2 Blocking Until Signal Generation . 18
3.3.3 Sending a Signal . 18

3.4 Directives . 19
3.4.1 sigaddset - Add a Signal to a Signal Set 19
3.4.2 sigdelset - Delete a Signal from a Signal Set 19
3.4.3 sigfillset - Fill a Signal Set . 20
3.4.4 sigismember - Is Signal a Member of a Signal Set 20
3.4.5 sigemptyset - Empty a Signal Set . 20
3.4.6 sigaction - Examine and Change Signal Action 21
3.4.7 pthread_kill - Send a Signal to a Thread 22
3.4.8 sigprocmask - Examine and Change Process Blocked Signals 23

i

3.4.9 pthread_sigmask - Examine and Change Thread Blocked Signals 23
3.4.10 kill - Send a Signal to a Process . 24
3.4.11 sigpending - Examine Pending Signals 25
3.4.12 sigsuspend - Wait for a Signal . 25
3.4.13 pause - Suspend Process Execution . 25
3.4.14 sigwait - Synchronously Accept a Signal 26
3.4.15 sigwaitinfo - Synchronously Accept a Signal 26
3.4.16 sigtimedwait - Synchronously Accept a Signal with Timeout 27
3.4.17 sigqueue - Queue a Signal to a Process 28
3.4.18 alarm - Schedule Alarm . 28
3.4.19 ualarm - Schedule Alarm in Microseconds 29

4 Process Environment Manager 31
4.1 Introduction . 32
4.2 Background . 33

4.2.1 Users and Groups . 33
4.2.2 User and Group Names . 33
4.2.3 Environment Variables . 33

4.3 Operations . 34
4.3.1 Accessing User and Group Ids . 34
4.3.2 Accessing Environment Variables . 34

4.4 Directives . 35
4.4.1 getpid - Get Process ID . 35
4.4.2 getppid - Get Parent Process ID . 35
4.4.3 getuid - Get User ID . 35
4.4.4 geteuid - Get Effective User ID . 36
4.4.5 getgid - Get Real Group ID . 36
4.4.6 getegid - Get Effective Group ID . 36
4.4.7 setuid - Set User ID . 36
4.4.8 setgid - Set Group ID . 37
4.4.9 getgroups - Get Supplementary Group IDs 37
4.4.10 getlogin - Get User Name . 37
4.4.11 getlogin_r - Reentrant Get User Name . 38
4.4.12 getpgrp - Get Process Group ID . 38
4.4.13 getrusage - Get Resource Utilization . 38
4.4.14 setsid - Create Session and Set Process Group ID 39
4.4.15 setpgid - Set Process Group ID for Job Control 40
4.4.16 uname - Get System Name . 40
4.4.17 times - Get process times . 40
4.4.18 getenv - Get Environment Variables . 41
4.4.19 setenv - Set Environment Variables . 41
4.4.20 ctermid - Generate Terminal Pathname 42
4.4.21 ttyname - Determine Terminal Device Name 42
4.4.22 ttyname_r - Reentrant Determine Terminal Device Name 42
4.4.23 isatty - Determine if File Descriptor is Terminal 43
4.4.24 sysconf - Get Configurable System Variables 43

5 Files and Directories Manager 45
5.1 Introduction . 46
5.2 Background . 48

5.2.1 Path Name Evaluation . 48
5.3 Operations . 49

ii

5.4 Directives . 50
5.4.1 opendir - Open a Directory . 50
5.4.2 readdir - Reads a directory . 50
5.4.3 rewinddir - Resets the readdir() pointer 51
5.4.4 scandir - Scan a directory for matching entries 51
5.4.5 telldir - Return current location in directory stream 52
5.4.6 closedir - Ends directory read operation 52
5.4.7 chdir - Changes the current working directory 53
5.4.8 fchdir - Changes the current working directory 53
5.4.9 getcwd - Gets current working directory 54
5.4.10 open - Opens a file . 54
5.4.11 creat - Create a new file or rewrite an existing one 56
5.4.12 umask - Sets a file creation mask. 56
5.4.13 link - Creates a link to a file . 57
5.4.14 symlink - Creates a symbolic link to a file 58
5.4.15 readlink - Obtain the name of a symbolic link destination 58
5.4.16 mkdir - Makes a directory . 59
5.4.17 mkfifo - Makes a FIFO special file . 60
5.4.18 unlink - Removes a directory entry . 60
5.4.19 rmdir - Delete a directory . 61
5.4.20 rename - Renames a file . 61
5.4.21 stat - Gets information about a file . 62
5.4.22 fstat - Gets file status . 63
5.4.23 lstat - Gets file status . 63
5.4.24 access - Check permissions for a file . 64
5.4.25 chmod - Changes file mode. 64
5.4.26 fchmod - Changes permissions of a file 65
5.4.27 getdents - Get directory entries . 66
5.4.28 chown - Changes the owner and/or group of a file. 66
5.4.29 utime - Change access and/or modification times of an inode 67
5.4.30 ftruncate - truncate a file to a specified length 68
5.4.31 truncate - truncate a file to a specified length 68
5.4.32 pathconf - Gets configuration values for files 69
5.4.33 fpathconf - Gets configuration values for files 70
5.4.34 mknod - create a directory . 71

6 Input and Output Primitives Manager 73
6.1 Introduction . 74
6.2 Background . 75
6.3 Operations . 76
6.4 Directives . 77

6.4.1 pipe - Create an Inter-Process Channel 77
6.4.2 dup - Duplicates an open file descriptor 77
6.4.3 dup2 - Duplicates an open file descriptor 78
6.4.4 close - Closes a file . 78
6.4.5 read - Reads from a file . 79
6.4.6 write - Writes to a file . 80
6.4.7 fcntl - Manipulates an open file descriptor 80
6.4.8 lseek - Reposition read/write file offset 82
6.4.9 fsync - Synchronize file complete in-core state with that on disk 82
6.4.10 fdatasync - Synchronize file in-core data with that on disk 83

iii

6.4.11 sync - Schedule file system updates . 84
6.4.12 mount - Mount a file system . 84
6.4.13 unmount - Unmount file systems . 85
6.4.14 readv - Vectored read from a file . 85
6.4.15 writev - Vectored write to a file . 86
6.4.16 aio_read - Asynchronous Read . 86
6.4.17 aio_write - Asynchronous Write . 87
6.4.18 lio_listio - List Directed I/O . 88
6.4.19 aio_error - Retrieve Error Status of Asynchronous I/O Operation 89
6.4.20 aio_return - Retrieve Return Status of Asynchronous I/O Operation . . . 89
6.4.21 aio_cancel - Cancel Asynchronous I/O Request 90
6.4.22 aio_suspend - Wait for Asynchronous I/O Request 90
6.4.23 aio_fsync - Asynchronous File Synchronization 91

7 Device- and Class- Specific Functions Manager 93
7.1 Introduction . 94
7.2 Background . 95
7.3 Operations . 96
7.4 Directives . 97

7.4.1 cfgetispeed - Reads terminal input baud rate 97
7.4.2 cfgetospeed - Reads terminal output baud rate 97
7.4.3 cfsetispeed - Sets terminal input baud rate 98
7.4.4 cfsetospeed - Sets terminal output baud rate 98
7.4.5 tcgetattr - Gets terminal attributes . 99
7.4.6 tcsetattr - Set terminal attributes . 99
7.4.7 tcsendbreak - Sends a break to a terminal 99
7.4.8 tcdrain - Waits for all output to be transmitted to the terminal. 100
7.4.9 tcflush - Discards terminal data . 100
7.4.10 tcflow - Suspends/restarts terminal output. 101
7.4.11 tcgetpgrp - Gets foreground process group ID 101
7.4.12 tcsetpgrp - Sets foreground process group ID 101

8 Language-Specific Services for the C Programming Language Manager 103
8.1 Introduction . 104
8.2 Background . 105
8.3 Operations . 106
8.4 Directives . 107

8.4.1 setlocale - Set the Current Locale . 107
8.4.2 fileno - Obtain File Descriptor Number for this File 107
8.4.3 fdopen - Associate Stream with File Descriptor 107
8.4.4 flockfile - Acquire Ownership of File Stream 108
8.4.5 ftrylockfile - Poll to Acquire Ownership of File Stream 108
8.4.6 funlockfile - Release Ownership of File Stream 108
8.4.7 getc_unlocked - Get Character without Locking 108
8.4.8 getchar_unlocked - Get Character from stdin without Locking 109
8.4.9 putc_unlocked - Put Character without Locking 109
8.4.10 putchar_unlocked - Put Character to stdin without Locking 109
8.4.11 setjmp - Save Context for Non-Local Goto 110
8.4.12 longjmp - Non-Local Jump to a Saved Context 110
8.4.13 sigsetjmp - Save Context with Signal Status for Non-Local Goto 110
8.4.14 siglongjmp - Non-Local Jump with Signal Status to a Saved Context . . . 110
8.4.15 tzset - Initialize Time Conversion Information 111

iv

8.4.16 strtok_r - Reentrant Extract Token from String 111
8.4.17 asctime_r - Reentrant struct tm to ASCII Time Conversion 111
8.4.18 ctime_r - Reentrant time_t to ASCII Time Conversion 112
8.4.19 gmtime_r - Reentrant UTC Time Conversion 112
8.4.20 localtime_r - Reentrant Local Time Conversion 112
8.4.21 rand_r - Reentrant Random Number Generation 113

9 System Databases Manager 115
9.1 Introduction . 116
9.2 Background . 117
9.3 Operations . 118
9.4 Directives . 119

9.4.1 getgrgid - Get Group File Entry for ID . 119
9.4.2 getgrgid_r - Reentrant Get Group File Entry 119
9.4.3 getgrnam - Get Group File Entry for Name 119
9.4.4 getgrnam_r - Reentrant Get Group File Entry for Name 120
9.4.5 getpwuid - Get Password File Entry for UID 120
9.4.6 getpwuid_r - Reentrant Get Password File Entry for UID 120
9.4.7 getpwnam - Password File Entry for Name 121
9.4.8 getpwnam_r - Reentrant Get Password File Entry for Name 121

10 Semaphore Manager 123
10.1 Introduction . 124
10.2 Background . 125

10.2.1 Theory . 125
10.2.2 “sem_t” Structure . 125
10.2.3 Building a Semaphore Attribute Set . 125

10.3 Operations . 126
10.3.1 Using as a Binary Semaphore . 126

10.4 Directives . 127
10.4.1 sem_init - Initialize an unnamed semaphore 127
10.4.2 sem_destroy - Destroy an unnamed semaphore 127
10.4.3 sem_open - Open a named semaphore 128
10.4.4 sem_close - Close a named semaphore 129
10.4.5 sem_unlink - Unlink a semaphore . 129
10.4.6 sem_wait - Wait on a Semaphore . 130
10.4.7 sem_trywait - Non-blocking Wait on a Semaphore 130
10.4.8 sem_timedwait - Wait on a Semaphore for a Specified Time 131
10.4.9 sem_post - Unlock a Semaphore . 131
10.4.10 sem_getvalue - Get the value of a semaphore 132

11 Mutex Manager 133
11.1 Introduction . 134
11.2 Background . 135

11.2.1 Mutex Attributes . 135
11.2.2 PTHREAD_MUTEX_INITIALIZER . 135

11.3 Operations . 136
11.4 Services . 137

11.4.1 pthread_mutexattr_init - Initialize a Mutex Attribute Set 137
11.4.2 pthread_mutexattr_destroy - Destroy a Mutex Attribute Set 137
11.4.3 pthread_mutexattr_setprotocol - Set the Blocking Protocol 138
11.4.4 pthread_mutexattr_getprotocol - Get the Blocking Protocol 138

v

11.4.5 pthread_mutexattr_setprioceiling - Set the Priority Ceiling 139
11.4.6 pthread_mutexattr_getprioceiling - Get the Priority Ceiling 139
11.4.7 pthread_mutexattr_setpshared - Set the Visibility 140
11.4.8 pthread_mutexattr_getpshared - Get the Visibility 140
11.4.9 pthread_mutex_init - Initialize a Mutex 140
11.4.10 pthread_mutex_destroy - Destroy a Mutex 141
11.4.11 pthread_mutex_lock - Lock a Mutex . 141
11.4.12 pthread_mutex_trylock - Poll to Lock a Mutex 142
11.4.13 pthread_mutex_timedlock - Lock a Mutex with Timeout 142
11.4.14 pthread_mutex_unlock - Unlock a Mutex 143
11.4.15 pthread_mutex_setprioceiling - Dynamically Set the Priority Ceiling . . . 143
11.4.16 pthread_mutex_getprioceiling - Get the Current Priority Ceiling 143

12 Condition Variable Manager 145
12.1 Introduction . 146
12.2 Background . 147
12.3 Operations . 148
12.4 Directives . 149

12.4.1 pthread_condattr_init - Initialize a Condition Variable Attribute Set . . . 149
12.4.2 pthread_condattr_destroy - Destroy a Condition Variable Attribute Set . . 149
12.4.3 pthread_condattr_setpshared - Set Process Shared Attribute 149
12.4.4 pthread_condattr_getpshared - Get Process Shared Attribute 150
12.4.5 pthread_cond_init - Initialize a Condition Variable 150
12.4.6 pthread_cond_destroy - Destroy a Condition Variable 150
12.4.7 pthread_cond_signal - Signal a Condition Variable 151
12.4.8 pthread_cond_broadcast - Broadcast a Condition Variable 151
12.4.9 pthread_cond_wait - Wait on a Condition Variable 152
12.4.10 pthread_cond_timedwait - Wait with Timeout a Condition Variable . . . 152

13 Memory Management Manager 153
13.1 Introduction . 154
13.2 Background . 155
13.3 Operations . 156
13.4 Directives . 157

13.4.1 mlockall - Lock the Address Space of a Process 157
13.4.2 munlockall - Unlock the Address Space of a Process 157
13.4.3 mlock - Lock a Range of the Process Address Space 157
13.4.4 munlock - Unlock a Range of the Process Address Space 158
13.4.5 mmap - Map Process Addresses to a Memory Object 158
13.4.6 munmap - Unmap Previously Mapped Addresses 159
13.4.7 mprotect - Change Memory Protection 160
13.4.8 msync - Memory Object Synchronization 160
13.4.9 shm_open - Open a Shared Memory Object 161
13.4.10 shm_unlink - Remove a Shared Memory Object 162

14 Scheduler Manager 163
14.1 Introduction . 164
14.2 Background . 165

14.2.1 Priority . 165
14.2.2 Scheduling Policies . 165

14.3 Operations . 166
14.4 Directives . 167

vi

14.4.1 sched_get_priority_min - Get Minimum Priority Value 167
14.4.2 sched_get_priority_max - Get Maximum Priority Value 167
14.4.3 sched_rr_get_interval - Get Timeslicing Quantum 168
14.4.4 sched_yield - Yield the Processor . 168

15 Clock Manager 169
15.1 Introduction . 170
15.2 Background . 171
15.3 Operations . 172
15.4 Directives . 173

15.4.1 clock_gettime - Obtain Time of Day . 173
15.4.2 clock_settime - Set Time of Day . 173
15.4.3 clock_getres - Get Clock Resolution . 174
15.4.4 sleep - Delay Process Execution . 174
15.4.5 usleep - Delay Process Execution in Microseconds 174
15.4.6 nanosleep - Delay with High Resolution 175
15.4.7 gettimeofday - Get the Time of Day . 175
15.4.8 time - Get time in seconds . 176

16 Timer Manager 177
16.1 Introduction . 178
16.2 Background . 179
16.3 Operations . 180
16.4 System Calls . 181

16.4.1 timer_create - Create a Per-Process Timer 181
16.4.2 timer_delete - Delete a Per-Process Timer 181
16.4.3 timer_settime - Set Next Timer Expiration 181
16.4.4 timer_gettime - Get Time Remaining on Timer 182
16.4.5 timer_getoverrun - Get Timer Overrun Count 182

17 Message Passing Manager 183
17.1 Introduction . 184
17.2 Background . 185

17.2.1 Theory . 185
17.2.2 Messages . 185
17.2.3 Message Queues . 185
17.2.4 Building a Message Queue Attribute Set 185
17.2.5 Notification of a Message on the Queue 186
17.2.6 POSIX Interpretation Issues . 186

17.3 Operations . 187
17.3.1 Opening or Creating a Message Queue 187
17.3.2 Closing a Message Queue . 187
17.3.3 Removing a Message Queue . 187
17.3.4 Sending a Message to a Message Queue 187
17.3.5 Receiving a Message from a Message Queue 187
17.3.6 Notification of Receipt of a Message on an Empty Queue 188
17.3.7 Setting the Attributes of a Message Queue 188
17.3.8 Getting the Attributes of a Message Queue 188

17.4 Directives . 189
17.4.1 mq_open - Open a Message Queue . 189
17.4.2 mq_close - Close a Message Queue . 190
17.4.3 mq_unlink - Remove a Message Queue 191

vii

17.4.4 mq_send - Send a Message to a Message Queue 191
17.4.5 mq_receive - Receive a Message from a Message Queue 192
17.4.6 mq_notify - Notify Process that a Message is Available 193
17.4.7 mq_setattr - Set Message Queue Attributes 194
17.4.8 mq_getattr - Get Message Queue Attributes 194

18 Thread Manager 197
18.1 Introduction . 198
18.2 Background . 200

18.2.1 Thread Attributes . 200
18.3 Operations . 201
18.4 Services . 202

18.4.1 pthread_attr_init - Initialize a Thread Attribute Set 202
18.4.2 pthread_attr_destroy - Destroy a Thread Attribute Set 202
18.4.3 pthread_attr_setdetachstate - Set Detach State 203
18.4.4 pthread_attr_getdetachstate - Get Detach State 203
18.4.5 pthread_attr_setstacksize - Set Thread Stack Size 204
18.4.6 pthread_attr_getstacksize - Get Thread Stack Size 204
18.4.7 pthread_attr_setstackaddr - Set Thread Stack Address 205
18.4.8 pthread_attr_getstackaddr - Get Thread Stack Address 205
18.4.9 pthread_attr_setscope - Set Thread Scheduling Scope 206
18.4.10 pthread_attr_getscope - Get Thread Scheduling Scope 206
18.4.11 pthread_attr_setinheritsched - Set Inherit Scheduler Flag 207
18.4.12 pthread_attr_getinheritsched - Get Inherit Scheduler Flag 207
18.4.13 pthread_attr_setschedpolicy - Set Scheduling Policy 208
18.4.14 pthread_attr_getschedpolicy - Get Scheduling Policy 209
18.4.15 pthread_attr_setschedparam - Set Scheduling Parameters 209
18.4.16 pthread_attr_getschedparam - Get Scheduling Parameters 210
18.4.17 pthread_attr_getaffinity_np - Get Thread Affinity Attribute 210
18.4.18 pthread_attr_setaffinity_np - Set Thread Affinity Attribute 211
18.4.19 pthread_create - Create a Thread . 211
18.4.20 pthread_exit - Terminate the Current Thread 212
18.4.21 pthread_detach - Detach a Thread . 213
18.4.22 pthread_getconcurrency - Obtain Thread Concurrency 213
18.4.23 pthread_setconcurrency - Set Thread Concurrency 214
18.4.24 pthread_getattr_np - Get Thread Attributes 214
18.4.25 pthread_join - Wait for Thread Termination 215
18.4.26 pthread_self - Get Thread ID . 215
18.4.27 pthread_equal - Compare Thread IDs . 215
18.4.28 pthread_once - Dynamic Package Initialization 216
18.4.29 pthread_setschedparam - Set Thread Scheduling Parameters 216
18.4.30 pthread_getschedparam - Get Thread Scheduling Parameters 217
18.4.31 pthread_getaffinity_np - Get Thread Affinity 218
18.4.32 pthread_setaffinity_np - Set Thread Affinity 218

19 Key Manager 221
19.1 Introduction . 222
19.2 Background . 223
19.3 Operations . 224
19.4 Directives . 225

19.4.1 pthread_key_create - Create Thread Specific Data Key 225
19.4.2 pthread_key_delete - Delete Thread Specific Data Key 225

viii

19.4.3 pthread_setspecific - Set Thread Specific Key Value 226
19.4.4 pthread_getspecific - Get Thread Specific Key Value 226

20 Thread Cancellation Manager 229
20.1 Introduction . 230
20.2 Background . 231
20.3 Operations . 232
20.4 Directives . 233

20.4.1 pthread_cancel - Cancel Execution of a Thread 233
20.4.2 pthread_setcancelstate - Set Cancelability State 233
20.4.3 pthread_setcanceltype - Set Cancelability Type 233
20.4.4 pthread_testcancel - Create Cancellation Point 234
20.4.5 pthread_cleanup_push - Establish Cancellation Handler 234
20.4.6 pthread_cleanup_pop - Remove Cancellation Handler 234

21 Services Provided by C Library (libc) 237
21.1 Introduction . 238
21.2 Standard Utility Functions (stdlib.h) . 239
21.3 Character Type Macros and Functions (ctype.h) 240
21.4 Input and Output (stdio.h) . 241
21.5 Strings and Memory (string.h) . 243
21.6 Signal Handling (signal.h) . 244
21.7 Time Functions (time.h) . 245
21.8 Locale (locale.h) . 246
21.9 Reentrant Versions of Functions . 247
21.10Miscellaneous Macros and Functions . 250
21.11Variable Argument Lists . 251
21.12Reentrant System Calls . 252

22 Services Provided by the Math Library (libm) 253
22.1 Introduction . 254
22.2 Standard Math Functions (math.h) . 255

23 Device Control 257
23.1 Introduction . 258
23.2 Background . 259
23.3 Operations . 260
23.4 System Calls . 261

23.4.1 posix_devctl - Control a Device . 261

24 Status of Implementation 263

25 Command and Variable Index 265

Index 267

ix

x

RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

Copyrights and License

© 2018 Marçal Comajoan Cara
© 2017 Gedare Bloom
© 1988, 2018 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://gitlab.rtems.org
Git Repositories https://gitlab.rtems.org
Developers https://gitlab.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org
https://gitlab.rtems.org

RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

2 CONTENTS

CHAPTER

ONE

PREFACE

This is the User’s Guide for the POSIX API support provided in RTEMS.

The functionality described in this document is based on the following standards:

• POSIX 1003.1b-1993.

• POSIX 1003.1h/D3.

• Open Group Single UNIX Specification.

Much of the POSIX API standard is actually implemented in the Cygnus Newlib ANSI C Library.
Please refer to documentation on Newlib for more information on the functionality it supplies.

This manual is still under construction and improvements are welcomed from users.

3

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 1 Section 1.1

1.1 Acknowledgements

The RTEMS Project has been granted permission from The Open Group IEEE to excerpt and
use portions of the POSIX standards documents in the RTEMS POSIX API User’s Guide and
RTEMS Shell User’s Guide. We have to include a specific acknowledgement paragraph in these
documents (e.g. preface or copyright page) and another slightly different paragraph for each
manual page that excerpts and uses text from the standards.

This file should help ensure that the paragraphs are consistent and not duplicated

The Institute of Electrical and Electronics Engineers, Inc and The Open Group,
have given us permission to reprint portions of their documentation. Portions of
this text are reprinted and reproduced in electronic form from IEEE Std 1003.1,
2004 Edition, Standard for Information Technology Operating System Interface
(POSIX), The Open Group Base Specifications Issue 6, Copyright (c) 2001-2004
by the Institute of Electrical and Electronics Engineers, Inc and The Open Group.
In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is
the referee document. The original Standard can be obtained online at http:
//www.opengroup.org/unix/online.html. This notice shall appear on any product
containing this material.

4 Chapter 1. Preface

http://www.opengroup.org/unix/online.html
http://www.opengroup.org/unix/online.html

CHAPTER

TWO

PROCESS CREATION AND EXECUTION
MANAGER

5

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.1

2.1 Introduction

The process creation and execution manager provides the functionality associated with the
creation and termination of processes.

The directives provided by the process creation and execution manager are:

• fork (page 9) - Create a Process

• execl (page 9) - Execute a File

• execv (page 9) - Execute a File

• execle (page 10) - Execute a File

• execve (page 10) - Execute a File

• execlp (page 11) - Execute a File

• execvp (page 11) - Execute a File

• pthread_atfork (page 12) - Register Fork Handlers

• wait (page 12) - Wait for Process Termination

• waitpid (page 13) - Wait for Process Termination

• _exit (page 13) - Terminate a Process

6 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

2.2 Background

POSIX process functionality can not be completely supported by RTEMS. This is because RTEMS
provides no memory protection and implements a single process, multi-threaded execution model.
In this light, RTEMS provides none of the routines that are associated with the creation of new
processes. However, since the entire RTEMS application (e.g. executable) is logically a single
POSIX process, RTEMS is able to provide implementations of many operations on processes.
The rule of thumb is that those routines provide a meaningful result. For example, getpid()
returns the node number.

2.2. Background 7

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.3

2.3 Operations

The only functionality method defined by this manager which is supported by RTEMS is the
_exit service. The implementation of _exit shuts the application down and is equivalent to
invoking either exit or rtems_shutdown_executive.

8 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

2.4 Directives

This section details the process creation and execution manager’s directives. A subsection is
dedicated to each of this manager’s directives and describes the calling sequence, related con-
stants, usage, and status codes.

2.4.1 fork - Create a Process

CALLING SEQUENCE:

1 #include <sys/types.h>
2 int fork(void);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.2 execl - Execute a File

CALLING SEQUENCE:

1 int execl(
2 const char *path,
3 const char *arg,
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.3 execv - Execute a File

CALLING SEQUENCE:

1 int execv(
2 const char *path,

(continues on next page)

2.4. Directives 9

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.4

(continued from previous page)

3 char const *argv[],
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.4 execle - Execute a File

CALLING SEQUENCE:

1 int execle(
2 const char *path,
3 const char *arg,
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.5 execve - Execute a File

CALLING SEQUENCE:

1 int execve(
2 const char *path,
3 char *const argv[],
4 char *const envp[]
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

10 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.6 execlp - Execute a File

CALLING SEQUENCE:

1 int execlp(
2 const char *file,
3 const char *arg,
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.7 execvp - Execute a File

CALLING SEQUENCE:

1 int execvp(
2 const char *file,
3 char *const argv[],
4 ...
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4. Directives 11

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.4

2.4.8 pthread_atfork - Register Fork Handlers

CALLING SEQUENCE:

1 #include <sys/types.h>
2 int pthread_atfork(
3 void (*prepare)(void),
4 void (*parent)(void),
5 void (*child)(void)
6);

STATUS CODES:

0 This routine is a non-functional stub.

DESCRIPTION:

This routine is non-functional stub.

NOTES:

The POSIX specification for pthread_atfork() does not address the behavior when in a sin-
gle process environment. Originally, the RTEMS implementation returned -1 and set errno to
ENOSYS. This was an arbitrary decision part with no basis from the wider POSIX community.
The FACE Technical Standard includes profiles without multiple process support and defined
the behavior in a single process environment to return 0. Logically, the application can register
atfork handlers but they will never be invoked.

2.4.9 wait - Wait for Process Termination

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/wait.h>
3 int wait(
4 int *stat_loc
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

12 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

2.4.10 waitpid - Wait for Process Termination

CALLING SEQUENCE:

1 int wait(
2 pid_t pid,
3 int *stat_loc,
4 int options
5);

STATUS CODES:

ENOSYS This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.

NOTES:

NONE

2.4.11 _exit - Terminate a Process

CALLING SEQUENCE:

1 void _exit(
2 int status
3);

STATUS CODES:

NONE

DESCRIPTION:

The _exit() function terminates the calling process.

NOTES:

In RTEMS, a process is equivalent to the entire application on a single processor. Invoking this
service terminates the application.

2.4. Directives 13

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 2 Section 2.4

14 Chapter 2. Process Creation and Execution Manager

CHAPTER

THREE

SIGNAL MANAGER

15

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.1

3.1 Introduction

The signal manager provides the functionality associated with the generation, delivery, and
management of process-oriented signals.

The directives provided by the signal manager are:

• sigaddset (page 19) - Add a Signal to a Signal Set

• sigdelset (page 19) - Delete a Signal from a Signal Set

• sigfillset (page 20) - Fill a Signal Set

• sigismember (page 20) - Is Signal a Member of a Signal Set

• sigemptyset (page 20) - Empty a Signal Set

• sigaction (page 21) - Examine and Change Signal Action

• pthread_kill (page 22) - Send a Signal to a Thread

• sigprocmask (page 23) - Examine and Change Process Blocked Signals

• pthread_sigmask (page 23) - Examine and Change Thread Blocked Signals

• kill (page 24) - Send a Signal to a Process

• sigpending (page 25) - Examine Pending Signals

• sigsuspend (page 25) - Wait for a Signal

• pause (page 25) - Suspend Process Execution

• sigwait (page 26) - Synchronously Accept a Signal

• sigwaitinfo (page 26) - Synchronously Accept a Signal

• sigtimedwait (page 27) - Synchronously Accept a Signal with Timeout

• sigqueue (page 28) - Queue a Signal to a Process

• alarm (page 28) - Schedule Alarm

• ualarm (page 29) - Schedule Alarm in Microseconds

16 Chapter 3. Signal Manager

Chapter 3 Section 3.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

3.2 Background

3.2.1 Signals

POSIX signals are an asynchronous event mechanism. Each process and thread has a set of
signals associated with it. Individual signals may be enabled (e.g. unmasked) or blocked (e.g.
ignored) on both a per-thread and process level. Signals which are enabled have a signal
handler associated with them. When the signal is generated and conditions are met, then the
signal handler is invoked in the proper process or thread context asynchronous relative to the
logical thread of execution.

If a signal has been blocked when it is generated, then it is queued and kept pending until
the thread or process unblocks the signal or explicitly checks for it. Traditional, non-real-time
POSIX signals do not queue. Thus if a process or thread has blocked a particular signal, then
multiple occurrences of that signal are recorded as a single occurrence of that signal.

One can check for the set of outstanding signals that have been blocked. Services are provided
to check for outstanding process or thread directed signals.

3.2.2 Signal Delivery

Signals which are directed at a thread are delivered to the specified thread.

Signals which are directed at a process are delivered to a thread which is selected based on the
following algorithm:

1. If the action for this signal is currently SIG_IGN, then the signal is simply ignored.

2. If the currently executing thread has the signal unblocked, then the signal is delivered to
it.

3. If any threads are currently blocked waiting for this signal (sigwait()), then the signal is
delivered to the highest priority thread waiting for this signal.

4. If any other threads are willing to accept delivery of the signal, then the signal is delivered
to the highest priority thread of this set. In the event, multiple threads of the same
priority are willing to accept this signal, then priority is given first to ready threads, then
to threads blocked on calls which may be interrupted, and finally to threads blocked on
non-interruptible calls.

5. In the event the signal still can not be delivered, then it is left pending. The first thread to
unblock the signal (sigprocmask() or pthread_sigprocmask()) or to wait for this signal
(sigwait()) will be the recipient of the signal.

3.2. Background 17

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.3

3.3 Operations

3.3.1 Signal Set Management

Each process and each thread within that process has a set of individual signals and handlers
associated with it. Services are provided to construct signal sets for the purposes of building
signal sets - type sigset_t - that are used to provide arguments to the services that mask,
unmask, and check on pending signals.

3.3.2 Blocking Until Signal Generation

A thread may block until receipt of a signal. The “sigwait” and “pause” families of functions
block until the requested signal is received or if using sigtimedwait() until the specified timeout
period has elapsed.

3.3.3 Sending a Signal

This is accomplished via one of a number of services that sends a signal to either a process or
thread. Signals may be directed at a process by the service kill() or at a thread by the service
pthread_kill()

18 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

3.4 Directives

This section details the signal manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

3.4.1 sigaddset - Add a Signal to a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigaddset(
3 sigset_t *set,
4 int signo
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function adds the signal signo to the specified signal set.

NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4.2 sigdelset - Delete a Signal from a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigdelset(
3 sigset_t *set,
4 int signo
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function deletes the signal specified by signo from the specified signal set.

NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4. Directives 19

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.4

3.4.3 sigfillset - Fill a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigfillset(
3 sigset_t *set
4);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function fills the specified signal set such that all signals are set.

3.4.4 sigismember - Is Signal a Member of a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigismember(
3 const sigset_t *set,
4 int signo
5);

STATUS CODES:

The function returns either 1 or 0 if completed successfully, otherwise it returns -1 and sets
errno to indicate the error. errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function returns returns 1 if signo is a member of set and 0 otherwise.

NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4.5 sigemptyset - Empty a Signal Set

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigemptyset(
3 sigset_t *set
4);

20 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function initializes an empty signal set pointed to by set.

3.4.6 sigaction - Examine and Change Signal Action

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigaction(
3 int sig,
4 const struct sigaction *act,
5 struct sigaction *oact
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.
ENOTSUP Realtime Signals Extension option not supported.

DESCRIPTION:

If the argument act is not a null pointer, it points to a structure specifying the action to be asso-
ciated with the specified signal. If the argument oact is not a null pointer, the action previously
associated with the signal is stored in the location pointed to by the argument oact. If the ar-
gument act is a null pointer, signal handling is unchanged; thus, the call can be used to enquire
about the current handling of a given signal.

The structure sigaction has the following members:

void(*)(int) sa_handler Pointer to a signal-catching function or one of the
macros SIG_IGN or SIG_DFL.

sigset_t sa_mask Additional set of signals to be blocked during execution
of signal-catching function.

int sa_flags Special flags to affect behavior of signal.
void(*)(int, siginfo_t*,
void*) sa_sigaction

Alternative pointer to a signal-catching function.

sa_handler and sa_sigaction should never be used at the same time as their storage may
overlap.

3.4. Directives 21

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.4

If the SA_SIGINFO flag (see below) is set in sa_flags, the sa_sigaction field specifies a signal-
catching function, otherwise``sa_handler`` specifies the action to be associated with the signal,
which may be a signal-catching function or one of the macros SIG_IGN or SIG_DFN.

The following flags can be set in the sa_flags field:

SA_
SIGINFO

If not set, the signal-catching function should be declared as void func(int signo)
and the address of the function should be set in``sa_handler``. If set, the signal-
catching function should be declared as void func(int signo, siginfo_t* info,
void* context) and the address of the function should be set in sa_sigaction.

The prototype of the siginfo_t structure is the following:

1 typedef struct
2 {
3 int si_signo; /* Signal number */
4 int si_code; /* Cause of the signal */
5 union sigval
6 {
7 int sival_int; /* Integer signal value */
8 void* sival_ptr; /* Pointer signal value */
9 } si_value; /* Signal value */

10 } siginfo_t;

NOTES:

The signal number cannot be SIGKILL.

3.4.7 pthread_kill - Send a Signal to a Thread

CALLING SEQUENCE:

1 #include <signal.h>
2 int pthread_kill(
3 pthread_t thread,
4 int sig
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

ESRCH The thread indicated by the parameter thread is invalid.
EINVAL Invalid argument passed.

DESCRIPTION:

This functions sends the specified signal sig to a thread referenced to by thread.

If the signal code is 0, arguments are validated and no signal is sent.

22 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

3.4.8 sigprocmask - Examine and Change Process Blocked Signals

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigprocmask(
3 int how,
4 const sigset_t *set,
5 sigset_t *oset
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.

DESCRIPTION:

This function is used to alter the set of currently blocked signals on a process wide basis. A
blocked signal will not be received by the process. The behavior of this function is dependent
on the value of how which may be one of the following:

SIG_BLOCK The set of blocked signals is set to the union of set and those signals currently
blocked.

SIG_
UNBLOCK

The signals specific in set are removed from the currently blocked set.

SIG_
SETMASK

The set of currently blocked signals is set to set.

If oset is not NULL, then the set of blocked signals prior to this call is returned in oset. If set is
NULL, no change is done, allowing to examine the set of currently blocked signals.

NOTES:

It is not an error to unblock a signal which is not blocked.

In the current implementation of RTEMS POSIX API sigprocmask() is technically mapped to
pthread_sigmask().

3.4.9 pthread_sigmask - Examine and Change Thread Blocked Signals

CALLING SEQUENCE:

1 #include <signal.h>
2 int pthread_sigmask(
3 int how,
4 const sigset_t *set,
5 sigset_t *oset
6);

STATUS CODES:

3.4. Directives 23

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.4

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL
Invalid argument passed.

DESCRIPTION:

This function is used to alter the set of currently blocked signals for the calling thread. A blocked
signal will not be received by the process. The behavior of this function is dependent on the
value of how which may be one of the following:

SIG_BLOCK The set of blocked signals is set to the union of set and those signals currently
blocked.

SIG_
UNBLOCK

The signals specific in set are removed from the currently blocked set.

SIG_
SETMASK

The set of currently blocked signals is set to set.

If oset is not NULL, then the set of blocked signals prior to this call is returned in oset. If set is
NULL, no change is done, allowing to examine the set of currently blocked signals.

NOTES:

It is not an error to unblock a signal which is not blocked.

3.4.10 kill - Send a Signal to a Process

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <signal.h>
3 int kill(
4 pid_t pid,
5 int sig
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.
EPERM Process does not have permission to send the signal to any receiving process.
ESRCH The process indicated by the parameter pid is invalid.

DESCRIPTION:

This function sends the signal sig to the process pid.

NOTES:

Since RTEMS is a single-process system, a signal can only be sent to the calling process (i.e. the
current node).

24 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

3.4.11 sigpending - Examine Pending Signals

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigpending(
3 const sigset_t *set
4);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EFAULT Invalid address for set.

DESCRIPTION:

This function allows the caller to examine the set of currently pending signals. A pending signal
is one which has been raised but is currently blocked. The set of pending signals is returned in
set.

3.4.12 sigsuspend - Wait for a Signal

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigsuspend(
3 const sigset_t *sigmask
4);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINTR Signal interrupted this function.

DESCRIPTION:

This function temporarily replaces the signal mask for the process with that specified by sigmask
and blocks the calling thread until a signal is raised.

3.4.13 pause - Suspend Process Execution

CALLING SEQUENCE:

1 #include <signal.h>
2 int pause(void);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

3.4. Directives 25

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.4

EINTR Signal interrupted this function.

DESCRIPTION:

This function causes the calling thread to be blocked until an unblocked signal is received.

3.4.14 sigwait - Synchronously Accept a Signal

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigwait(
3 const sigset_t *set,
4 int *sig
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL Invalid argument passed.
EINTR Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns the signal number for that signal in sig.

3.4.15 sigwaitinfo - Synchronously Accept a Signal

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigwaitinfo(
3 const sigset_t *set,
4 siginfo_t *info
5);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINTR
Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns information about that signal in info.

The prototype of the siginfo_t structure is the following:

26 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

1 typedef struct
2 {
3 int si_signo; /* Signal number */
4 int si_code; /* Cause of the signal */
5 union sigval
6 {
7 int sival_int; /* Integer signal value */
8 void* sival_ptr; /* Pointer signal value */
9 } si_value; /* Signal value */

10 } siginfo_t;

3.4.16 sigtimedwait - Synchronously Accept a Signal with Timeout

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigtimedwait(
3 const sigset_t *set,
4 siginfo_t *info,
5 const struct timespec *timeout
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EAGAIN Timed out while waiting for the specified signal set.
EINVAL Nanoseconds field of the timeout argument is invalid.
EINTR Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns information about that signal in info. The calling thread
will block up to timeout waiting for the signal to arrive.

The timespec structure is defined as follows:

1 struct timespec
2 {
3 time_t tv_sec; /* Seconds */
4 long tv_nsec; /* Nanoseconds */
5 };

NOTES:

If timeout is NULL, then the calling thread will wait forever for the specified signal set.

3.4. Directives 27

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.4

3.4.17 sigqueue - Queue a Signal to a Process

CALLING SEQUENCE:

1 #include <signal.h>
2 int sigqueue(
3 pid_t pid,
4 int signo,
5 const union sigval value
6);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EAGAINNo resources available to queue the signal. The process has already queued SIGQUEUE_
MAX signals that are still pending at the receiver or the systemwide resource limit has
been exceeded.

EINVALThe value of the signo argument is an invalid or unsupported signal number.
EPERMThe process does not have the appropriate privilege to send the signal to the receiving

process.
ESRCHThe process pid does not exist.

DESCRIPTION:

This function sends the signal specified by signo to the process pid

The sigval union is specified as:

1 union sigval
2 {
3 int sival_int; /* Integer signal value */
4 void* sival_ptr; /* Pointer signal value */
5 };

NOTES:

Since RTEMS is a single-process system, a signal can only be sent to the calling process (i.e. the
current node).

3.4.18 alarm - Schedule Alarm

CALLING SEQUENCE:

1 #include <unistd.h>
2 unsigned int alarm(
3 unsigned int seconds
4);

STATUS CODES:

This call always succeeds.

28 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

If there was a previous alarm() request with time remaining, then this routine returns the num-
ber of seconds until that outstanding alarm would have fired. If no previous alarm() request
was outstanding, then zero is returned.

DESCRIPTION:

The alarm() service causes the SIGALRM signal to be generated after the number of seconds
specified by seconds has elapsed.

NOTES:

Alarm requests do not queue. If alarm is called while a previous request is outstanding, the call
will result in rescheduling the time at which the SIGALRM signal will be generated.

If the notification signal, SIGALRM, is not caught or ignored, the calling process is terminated.

3.4.19 ualarm - Schedule Alarm in Microseconds

CALLING SEQUENCE:

1 #include <unistd.h>
2 useconds_t ualarm(
3 useconds_t useconds,
4 useconds_t interval
5);

STATUS CODES:

This call always succeeds.

If there was a previous ualarm() request with time remaining, then this routine returns the
number of seconds until that outstanding alarm would have fired. If no previous alarm() re-
quest was outstanding, then zero is returned.

DESCRIPTION:

The ualarm() service causes the SIGALRM signal to be generated after the number of microsec-
onds specified by useconds has elapsed.

When interval is non-zero, repeated timeout notification occurs with a period in microseconds
specified by interval.

NOTES:

Alarm requests do not queue. If alarm is called while a previous request is outstanding, the call
will result in rescheduling the time at which the SIGALRM signal will be generated.

If the notification signal, SIGALRM, is not caught or ignored, the calling process is terminated.

3.4. Directives 29

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 3 Section 3.4

30 Chapter 3. Signal Manager

CHAPTER

FOUR

PROCESS ENVIRONMENT MANAGER

31

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.1

4.1 Introduction

The process environment manager is responsible for providing the functions related to user and
group Id management.

The directives provided by the process environment manager are:

• getpid (page 35) - Get Process ID

• getppid (page 35) - Get Parent Process ID

• getuid (page 35) - Get User ID

• geteuid (page 36) - Get Effective User ID

• getgid (page 36) - Get Real Group ID

• getegid (page 36) - Get Effective Group ID

• setuid (page 36) - Set User ID

• setgid (page 37) - Set Group ID

• getgroups (page 37) - Get Supplementary Group IDs

• getlogin (page 37) - Get User Name

• getlogin_r (page 38) - Reentrant Get User Name

• getpgrp (page 38) - Get Process Group ID

• getrusage (page 38) - Get Resource Utilization

• setsid (page 39) - Create Session and Set Process Group ID

• setpgid (page 40) - Set Process Group ID for Job Control

• uname (page 40) - Get System Name

• times (page 40) - Get Process Times

• getenv (page 41) - Get Environment Variables

• setenv (page 41) - Set Environment Variables

• ctermid (page 42) - Generate Terminal Pathname

• ttyname (page 42) - Determine Terminal Device Name

• ttyname_r (page 42) - Reentrant Determine Terminal Device Name

• isatty (page 43) - Determine if File Descriptor is Terminal

• sysconf (page 43) - Get Configurable System Variables

32 Chapter 4. Process Environment Manager

Chapter 4 Section 4.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

4.2 Background

4.2.1 Users and Groups

RTEMS provides a single process, multi-threaded execution environment. In this light, the no-
tion of user and group is somewhat without meaning. But RTEMS does provide services to
provide a synthetic version of user and group. By default, a single user and group is associ-
ated with the application. Thus unless special actions are taken, every thread in the application
shares the same user and group Id. The initial rationale for providing user and group Id func-
tionality in RTEMS was for the filesystem infrastructure to implement file permission checks.
The effective user/group Id capability has since been used to implement permissions checking
by the ftpd server.

In addition to the “real” user and group Ids, a process may have an effective user/group Id. This
allows a process to function using a more limited permission set for certain operations.

4.2.2 User and Group Names

POSIX considers user and group Ids to be a unique integer that may be associated with a name.
This is usually accomplished via a file named /etc/passwd for user Id mapping and /etc/groups
for group Id mapping. Again, although RTEMS is effectively a single process and thus single
user system, it provides limited support for user and group names. When configured with an
appropriate filesystem, RTEMS will access the appropriate files to map user and group Ids to
names.

If these files do not exist, then RTEMS will synthesize a minimal version so this family of services
return without error. It is important to remember that a design goal of the RTEMS POSIX
services is to provide useable and meaningful results even though a full process model is not
available.

4.2.3 Environment Variables

POSIX allows for variables in the run-time environment. These are name/value pairs that make
be dynamically set and obtained by programs. In a full POSIX environment with command line
shell and multiple processes, environment variables may be set in one process - such as the shell
- and inherited by child processes. In RTEMS, there is only one process and thus only one set of
environment variables across all processes.

4.2. Background 33

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.3

4.3 Operations

4.3.1 Accessing User and Group Ids

The user Id associated with the current thread may be obtain using the getuid() service. Simi-
larly, the group Id may be obtained using the getgid() service.

4.3.2 Accessing Environment Variables

The value associated with an environment variable may be obtained using the getenv() service
and set using the putenv() service.

34 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

4.4 Directives

This section details the process environment manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

4.4.1 getpid - Get Process ID

CALLING SEQUENCE:

1 int getpid(void);

STATUS CODES:

The process Id is returned.

DESCRIPTION:

This service returns the process Id.

NOTES:

NONE

4.4.2 getppid - Get Parent Process ID

CALLING SEQUENCE:

1 int getppid(void);

STATUS CODES:

The parent process Id is returned.

DESCRIPTION:

This service returns the parent process Id.

NOTES:

NONE

4.4.3 getuid - Get User ID

CALLING SEQUENCE:

1 int getuid(void);

STATUS CODES:

The effective user Id is returned.

DESCRIPTION:

This service returns the effective user Id.

NOTES:

NONE

4.4. Directives 35

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.4

4.4.4 geteuid - Get Effective User ID

CALLING SEQUENCE:

1 int geteuid(void);

STATUS CODES:

The effective group Id is returned.

DESCRIPTION:

This service returns the effective group Id.

NOTES:

NONE

4.4.5 getgid - Get Real Group ID

CALLING SEQUENCE:

1 int getgid(void);

STATUS CODES:

The group Id is returned.

DESCRIPTION:

This service returns the group Id.

NOTES:

NONE

4.4.6 getegid - Get Effective Group ID

CALLING SEQUENCE:

1 int getegid(void);

STATUS CODES:

The effective group Id is returned.

DESCRIPTION:

This service returns the effective group Id.

NOTES:

NONE

4.4.7 setuid - Set User ID

CALLING SEQUENCE:

1 int setuid(
2 uid_t uid
3);

36 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

This service returns 0.

DESCRIPTION:

This service sets the user Id to uid.

NOTES:

NONE

4.4.8 setgid - Set Group ID

CALLING SEQUENCE:

1 int setgid(
2 gid_t gid
3);

STATUS CODES:

This service returns 0.

DESCRIPTION:

This service sets the group Id to gid.

NOTES:

NONE

4.4.9 getgroups - Get Supplementary Group IDs

CALLING SEQUENCE:

1 int getgroups(
2 int gidsetsize,
3 gid_t grouplist[]
4);

STATUS CODES:

NA

DESCRIPTION:

This service is not implemented as RTEMS has no notion of supplemental groups.

NOTES:

If supported, this routine would only be allowed for the super-user.

4.4.10 getlogin - Get User Name

CALLING SEQUENCE:

1 char *getlogin(void);

4.4. Directives 37

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.4

STATUS CODES:

Returns a pointer to a string containing the name of the current user.

DESCRIPTION:

This routine returns the name of the current user.

NOTES:

This routine is not reentrant and subsequent calls to getlogin() will overwrite the same buffer.

4.4.11 getlogin_r - Reentrant Get User Name

CALLING SEQUENCE:

1 int getlogin_r(
2 char *name,
3 size_t namesize
4);

STATUS CODES:

EINVAL The arguments were invalid.

DESCRIPTION:

This is a reentrant version of the getlogin() service. The caller specified their own buffer, name,
as well as the length of this buffer, namesize.

NOTES:

NONE

4.4.12 getpgrp - Get Process Group ID

CALLING SEQUENCE:

1 pid_t getpgrp(void);

STATUS CODES:

The procress group Id is returned.

DESCRIPTION:

This service returns the current progress group Id.

NOTES:

This routine is implemented in a somewhat meaningful way for RTEMS but is truly not func-
tional.

4.4.13 getrusage - Get Resource Utilization

CALLING SEQUENCE:

38 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

1 int getrusage(int who, struct rusage *rusage);

STATUS CODES:

Returns the value 0 if successful; otherwise the value -1 is returned and the global variable
errno is set to indicate the error.

DESCRIPTION:

This function provides a measures of the resources being used by RTEMS. RTEMS is a single
process environment so child process requests result in an error being returned.

A who value of RUSAGE_SELF results in the struct rusage field ru_utime returning the total
active time of all threads that exist when the call is made and the field ru_stime returning the
total idle time.

A who value of RUSAGE_THREAD results in the struct rusage field ru_utime returning the total
active time of the current thread and the field ru_stime is set to 0.

NOTES:

The time returned can be more than the system up time if there is more than one CPU.

This routine is implemented using the internal thread iterator and accounts for time spent by
the currently active threads. RTEMS does not account for the execution time of threads that are
no longer running.

The idle time is the total time spent in IDLE since RTEMS started. The time for each CPU is
summed.

The ratio of the difference between samples made by getrusage of the user and system idle
time can be used to compute the current load.

4.4.14 setsid - Create Session and Set Process Group ID

CALLING SEQUENCE:

1 pid_t setsid(void);

STATUS CODES:

EPERM The application does not have permission to create a process group.

DESCRIPTION:

This routine always returns EPERM as RTEMS has no way to create new processes and thus no
way to create a new process group.

NOTES:

NONE

4.4. Directives 39

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.4

4.4.15 setpgid - Set Process Group ID for Job Control

CALLING SEQUENCE:

1 int setpgid(
2 pid_t pid,
3 pid_t pgid
4);

STATUS CODES:

ENOSYS The routine is not implemented.

DESCRIPTION:

This service is not implemented for RTEMS as process groups are not supported.

NOTES:

NONE

4.4.16 uname - Get System Name

CALLING SEQUENCE:

1 int uname(
2 struct utsname *name
3);

STATUS CODES:

EPERM The provided structure pointer is invalid.

DESCRIPTION:

This service returns system information to the caller. It does this by filling in the struct utsname
format structure for the caller.

NOTES:

The information provided includes the operating system (RTEMS in all configurations), the
node number, the release as the RTEMS version, and the CPU family and model. The CPU
model name will indicate the multilib executive variant being used.

4.4.17 times - Get process times

CALLING SEQUENCE:

1 #include <sys/time.h>
2 clock_t times(
3 struct tms *ptms
4);

40 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

This routine returns the number of clock ticks that have elapsed since the system was initialized
(e.g. the application was started).

DESCRIPTION:

times stores the current process times in ptms. The format of struct tms is as defined in <sys/
times.h>. RTEMS fills in the field tms_utime with the number of ticks that the calling thread
has executed and the field tms_stime with the number of clock ticks since system boot (also
returned). All other fields in the ptms are left zero.

NOTES:

RTEMS has no way to distinguish between user and system time so this routine returns the most
meaningful information possible.

4.4.18 getenv - Get Environment Variables

CALLING SEQUENCE:

1 char *getenv(
2 const char *name
3);

STATUS CODES:

NULL when no match
pointer to value when successful

DESCRIPTION:

This service searches the set of environment variables for a string that matches the specified
name. If found, it returns the associated value.

NOTES:

The environment list consists of name value pairs that are of the form name = value.

4.4.19 setenv - Set Environment Variables

CALLING SEQUENCE:

1 int setenv(
2 const char *name,
3 const char *value,
4 int overwrite
5);

STATUS CODES:

Returns 0 if successful and -1 otherwise.

DESCRIPTION:

This service adds the variable name to the environment with value. If name is not already exist,
then it is created. If name exists and overwrite is zero, then the previous value is not overwritten.

4.4. Directives 41

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.4

NOTES:

NONE

4.4.20 ctermid - Generate Terminal Pathname

CALLING SEQUENCE:

1 char *ctermid(
2 char *s
3);

STATUS CODES:

Returns a pointer to a string indicating the pathname for the controlling terminal.

DESCRIPTION:

This service returns the name of the terminal device associated with this process. If s is NULL,
then a pointer to a static buffer is returned. Otherwise, s is assumed to have a buffer of sufficient
size to contain the name of the controlling terminal.

NOTES:

By default on RTEMS systems, the controlling terminal is /dev/console. Again this implemen-
tation is of limited meaning, but it provides true and useful results which should be sufficient
to ease porting applications from a full POSIX implementation to the reduced profile supported
by RTEMS.

4.4.21 ttyname - Determine Terminal Device Name

CALLING SEQUENCE:

1 char *ttyname(
2 int fd
3);

STATUS CODES:

Pointer to a string containing the terminal device name or NULL is returned on any error.

DESCRIPTION:

This service returns a pointer to the pathname of the terminal device that is open on the file
descriptor fd. If fd is not a valid descriptor for a terminal device, then NULL is returned.

NOTES:

This routine uses a static buffer.

4.4.22 ttyname_r - Reentrant Determine Terminal Device Name

CALLING SEQUENCE:

1 int ttyname_r(
2 int fd,
3 char *name,

(continues on next page)

42 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

(continued from previous page)

4 int namesize
5);

STATUS CODES:

This routine returns -1 and sets errno as follows:

EBADF If not a valid descriptor for a terminal device.
EINVAL If name is NULL or namesize are insufficient.

DESCRIPTION:

This service the pathname of the terminal device that is open on the file descriptor fd.

NOTES:

NONE

4.4.23 isatty - Determine if File Descriptor is Terminal

CALLING SEQUENCE:

1 int isatty(
2 int fd
3);

STATUS CODES:

Returns 1 if fd is a terminal device and 0 otherwise.

DESCRIPTION:

This service returns 1 if fd is an open file descriptor connected to a terminal and 0 otherwise.

NOTES:

4.4.24 sysconf - Get Configurable System Variables

CALLING SEQUENCE:

1 long sysconf(
2 int name
3);

STATUS CODES:

The value returned is the actual value of the system resource. If the requested configuration
name is a feature flag, then 1 is returned if the available and 0 if it is not. On any other error
condition, -1 is returned.

DESCRIPTION:

This service is the mechanism by which an application determines values for system limits or
options at runtime.

NOTES:

4.4. Directives 43

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 4 Section 4.4

Much of the information that may be obtained via sysconf has equivalent macros in unistd.h.
However, those macros reflect conservative limits which may have been altered by application
configuration.

44 Chapter 4. Process Environment Manager

CHAPTER

FIVE

FILES AND DIRECTORIES MANAGER

45

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.1

5.1 Introduction

The files and directories manager is . . .

The directives provided by the files and directories manager are:

• opendir (page 50) - Open a Directory

• readdir (page 50) - Reads a directory

• rewinddir (page 51) - Resets the readdir() pointer

• scandir (page 51) - Scan a directory for matching entries

• telldir (page 52) - Return current location in directory stream

• closedir (page 52) - Ends directory read operation

• getdents (page 66) - Get directory entries

• chdir (page 53) - Changes the current working directory

• fchdir (page 53) - Changes the current working directory

• getcwd (page 54) - Gets current working directory

• open (page 54) - Opens a file

• creat (page 56) - Create a new file or rewrite an existing one

• umask (page 56) - Sets a file creation mask

• link (page 57) - Creates a link to a file

• symlink (page 58) - Creates a symbolic link to a file

• readlink (page 58) - Obtain the name of the link destination

• mkdir (page 59) - Makes a directory

• mkfifo (page 60) - Makes a FIFO special file

• unlink (page 60) - Removes a directory entry

• rmdir (page 61) - Delete a directory

• rename (page 61) - Renames a file

• stat (page 62) - Gets information about a file.

• fstat (page 63) - Gets file status

• lstat (page 63) - Gets file status

• access (page 64) - Check permissions for a file.

• chmod (page 64) - Changes file mode

• fchmod (page 65) - Changes permissions of a file

• chown (page 66) - Changes the owner and/ or group of a file

• utime (page 67) - Change access and/or modification times of an inode

• ftruncate (page 68) - Truncate a file to a specified length

• truncate (page 68) - Truncate a file to a specified length

46 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.1 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

• pathconf (page 69) - Gets configuration values for files

• fpathconf (page 70) - Get configuration values for files

• mknod (page 71) - Create a directory

5.1. Introduction 47

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.2

5.2 Background

5.2.1 Path Name Evaluation

A pathname is a string that consists of no more than PATH_MAX bytes, including the terminating
null character. A pathname has an optional beginning slash, followed by zero or more filenames
separated by slashes. If the pathname refers to a directory, it may also have one or more trailing
slashes. Multiple successive slahes are considered to be the same as one slash.

POSIX allows a pathname that begins with precisely two successive slashes to be interpreted
in an implementation-defined manner. RTEMS does not currently recognize this as a special
condition. Any number of successive slashes is treated the same as a single slash. POSIX
requires that an implementation treat more than two leading slashes as a single slash.

48 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.3 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

5.3 Operations

There is currently no text in this section.

5.3. Operations 49

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

5.4 Directives

This section details the files and directories manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

5.4.1 opendir - Open a Directory

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 int opendir(
4 const char *dirname
5);

STATUS CODES:

EACCES Search permission was denied on a component of the path prefix of dirname, or read
permission is denied

EMFILE Too many file descriptors in use by process
ENFILE Too many files are currently open in the system.
ENOENT Directory does not exist, or name is an empty string.
ENOMEM Insufficient memory to complete the operation.
ENOTDIR name is not a directory.

DESCRIPTION:

This routine opens a directory stream corresponding to the directory specified by the dirname
argument. The directory stream is positioned at the first entry.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.2 readdir - Reads a directory

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 int readdir(
4 DIR *dirp
5);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The readdir() function returns a pointer to a structure dirent representing the next directory
entry from the directory stream pointed to by dirp. On end-of-file, NULL is returned.

50 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

The readdir() function may (or may not) return entries for . or .. Your program should tolerate
reading dot and dot-dot but not require them.

The data pointed to be readdir() may be overwritten by another call to readdir() for the same
directory stream. It will not be overwritten by a call for another directory.

NOTES:

If ptr is not a pointer returned by malloc(), calloc(), or realloc() or has been deallocated
with free() or realloc(), the results are not portable and are probably disastrous.

The routine is implemented in Cygnus newlib.

5.4.3 rewinddir - Resets the readdir() pointer

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 void rewinddir(
4 DIR *dirp
5);

STATUS CODES:

No value is returned.

DESCRIPTION:

The rewinddir() function resets the position associated with the directory stream pointed to by
dirp. It also causes the directory stream to refer to the current state of the directory.

NOTES:

NONE

If dirp is not a pointer by opendir(), the results are undefined.

The routine is implemented in Cygnus newlib.

5.4.4 scandir - Scan a directory for matching entries

CALLING SEQUENCE:

1 #include <dirent.h>
2 int scandir(
3 const char *dir,
4 struct dirent ***namelist,
5 int (*select)(const struct dirent *),
6 int (*compar)(const struct dirent **, const struct dirent **)
7);

STATUS CODES:

ENOMEM Insufficient memory to complete the operation.

DESCRIPTION:

5.4. Directives 51

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

The scandir() function scans the directory dir, calling select() on each directory entry. En-
tries for which select() returns non-zero are stored in strings allocated via malloc(), sorted
using qsort() with the comparison function compar(), and collected in array namelist which
is allocated via malloc(). If select is NULL, all entries are selected.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.5 telldir - Return current location in directory stream

CALLING SEQUENCE:

1 #include <dirent.h>
2 off_t telldir(
3 DIR *dir
4);

STATUS CODES:

EBADF Invalid directory stream descriptor dir.

DESCRIPTION:

The telldir() function returns the current location associated with the directory stream dir.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.6 closedir - Ends directory read operation

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <dirent.h>
3 int closedir(
4 DIR *dirp
5);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The directory stream associated with dirp is closed. The value in dirp may not be usable after
a call to closedir().

NOTES:

NONE

The argument to closedir() must be a pointer returned by opendir(). If it is not, the results
are not portable and most likely unpleasant.

52 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

The routine is implemented in Cygnus newlib.

5.4.7 chdir - Changes the current working directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int chdir(
3 const char *path
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EACCES Search permission is denied for a directory in a file’s path prefix.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when directory

was expected.

DESCRIPTION:

The chdir() function causes the directory named by path to become the current working direc-
tory; that is, the starting point for searches of pathnames not beginning with a slash.

If chdir() detects an error, the current working directory is not changed.

NOTES:

NONE

5.4.8 fchdir - Changes the current working directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int fchdir(
3 int fd
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EACCES Search permission is denied for a directory in a file’s path prefix.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when directory

was expected.

DESCRIPTION:

5.4. Directives 53

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

The fchdir() function causes the directory named by fd to become the current working direc-
tory; that is, the starting point for searches of pathnames not beginning with a slash.

If fchdir() detects an error, the current working directory is not changed.

NOTES:

NONE

5.4.9 getcwd - Gets current working directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int getcwd(void);

STATUS CODES:

EINVAL Invalid argument
ERANGE Result is too large
EACCES Search permission is denied for a directory in a file’s path prefix.

DESCRIPTION:

The getcwd() function copies the absolute pathname of the current working directory to the
character array pointed to by buf. The size argument is the number of bytes available in buf

NOTES:

There is no way to determine the maximum string length that fetcwd() may need to return.
Applications should tolerate getting ERANGE and allocate a larger buffer.

It is possible for getcwd() to return EACCES if, say, login puts the process into a directory
without read access.

The 1988 standard uses int instead of size_t for the second parameter.

5.4.10 open - Opens a file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 int open(
5 const char *path,
6 int oflag,
7 mode_t mode
8);

STATUS CODES:

54 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

EACCES Search permission is denied for a directory in a file’s path prefix.
EEXIST The named file already exists.
EINTR Function was interrupted by a signal.
EISDIR Attempt to open a directory for writing or to rename a file to be a directory.
EMFILE Too many file descriptors are in use by this process.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENFILE Too many files are currently open in the system.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
ENXIO No such device. This error may also occur when a device is not ready, for exam-

ple, a tape drive is off-line.
EROFS Read-only file system.

DESCRIPTION:

The open function establishes a connection between a file and a file descriptor. The file descrip-
tor is a small integer that is used by I/O functions to reference the file. The path argument
points to the pathname for the file.

The oflag argument is the bitwise inclusive OR of the values of symbolic constants. The pro-
grammer must specify exactly one of the following three symbols:

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Any combination of the following symbols may also be used.

O_
APPEND

Set the file offset to the end-of-file prior to each write.

O_
CREAT

If the file does not exist, allow it to be created. This flag indicates that the mode argu-
ment is present in the call to open.

O_
EXCL

This flag may be used only if O_CREAT is also set. It causes the call to open to fail if the
file already exists.

O_
NOCTTY

Do not assign controlling terminal.

O_
NONBLOCK

Do no wait for the device or file to be ready or available. After the file is open, the
read and write calls return immediately. If the process would be delayed in the read
or write opermation, -1 is returned and``errno`` is set to EAGAIN instead of blocking
the caller.

O_
TRUNC

This flag should be used only on ordinary files opened for writing. It causes the file to
be tuncated to zero length..

Upon successful completion, open returns a non-negative file descriptor.

NOTES:

NONE

5.4. Directives 55

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

5.4.11 creat - Create a new file or rewrite an existing one

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 #include <fcntl.h>
4 int creat(
5 const char *path,
6 mode_t mode
7);

STATUS CODES:

EEXIST path already exists and O_CREAT and O_EXCL were used.
EISDIR path refers to a directory and the access requested involved writing
ETXTBSY path refers to an executable image which is currently being executed and write

access was requested
EFAULT path points outside your accessible address space
EACCES The requested access to the file is not allowed, or one of the directories in path

did not allow search (execute) permission.
ENAMETOOLONGpath was too long.
ENOENT A directory component in path does not exist or is a dangling symbolic link.
ENOTDIR A component used as a directory in path is not, in fact, a directory.
EMFILE The process alreadyh has the maximum number of files open.
ENFILE The limit on the total number of files open on the system has been reached.
ENOMEM Insufficient kernel memory was available.
EROFS path refers to a file on a read-only filesystem and write access was requested

DESCRIPTION:

creat attempts to create a file and return a file descriptor for use in read, write, etc.

NOTES:

NONE

The routine is implemented in Cygnus newlib.

5.4.12 umask - Sets a file creation mask.

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 mode_t umask(
4 mode_t cmask
5);

STATUS CODES:

DESCRIPTION:

The umask() function sets the process file creation mask to cmask. The file creation mask is
used during open(), creat(), mkdir(), mkfifo() calls to turn off permission bits in the mode

56 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

argument. Bit positions that are set in cmask are cleared in the mode of the created file.

NOTES:

NONE

The cmask argument should have only permission bits set. All other bits should be zero.

In a system which supports multiple processes, the file creation mask is inherited across fork()
and exec() calls. This makes it possible to alter the default permission bits of created files.
RTEMS does not support multiple processes so this behavior is not possible.

5.4.13 link - Creates a link to a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int link(
3 const char *existing,
4 const char *new
5);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The named file already exists.
EMLINK The number of links would exceed LINK_MAX.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory was

expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.
EXDEV Attempt to link a file to another file system.

DESCRIPTION:

The link() function atomically creates a new link for an existing file and increments the link
count for the file.

If the link() function fails, no directories are modified.

The existing argument should not be a directory.

The caller may (or may not) need permission to access the existing file.

NOTES:

NONE

5.4. Directives 57

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

5.4.14 symlink - Creates a symbolic link to a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int symlink(
3 const char *topath,
4 const char *frompath
5);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The named file already exists.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory was

expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

DESCRIPTION:

The symlink() function creates a symbolic link from the frombath to the topath. The symbolic
link will be interpreted at run-time.

If the symlink() function fails, no directories are modified.

The caller may (or may not) need permission to access the existing file.

NOTES:

NONE

5.4.15 readlink - Obtain the name of a symbolic link destination

CALLING SEQUENCE:

1 #include <unistd.h>
2 int readlink(
3 const char *path,
4 char *buf,
5 size_t bufsize
6);

STATUS CODES:

58 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

EACCES Search permission is denied for a directory in a file’s path prefix
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the prefix pathname was not a directory when a directory was

expected.
ELOOP Too many symbolic links were encountered in the pathname.
EINVAL The pathname does not refer to a symbolic link
EFAULT An invalid pointer was passed into the readlink() routine.

DESCRIPTION:

The readlink() function places the symbolic link destination into buf argument and returns
the number of characters copied.

If the symbolic link destination is longer than bufsize characters the name will be truncated.

NOTES:

NONE

5.4.16 mkdir - Makes a directory

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int mkdir(
4 const char *path,
5 mode_t mode
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The name file already exist.
EMLINK The number of links would exceed LINK_MAX
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EROFS Read-only file system.

DESCRIPTION:

The mkdir() function creates a new diectory named path. The permission bits (modified by the
file creation mask) are set from mode. The owner and group IDs for the directory are set from
the effective user ID and group ID.

The new directory may (or may not) contain entries for . and .. but is otherwise empty.

NOTES:

NONE

5.4. Directives 59

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

5.4.17 mkfifo - Makes a FIFO special file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int mkfifo(
4 const char *path,
5 mode_t mode
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EEXIST The named file already exists.
ENOENT A file or directory does not exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified path was not a directory when a directory was ex-

pected.
EROFS Read-only file system.

DESCRIPTION:

The mkfifo() function creates a new FIFO special file named path. The permission bits (modi-
fied by the file creation mask) are set from mode. The owner and group IDs for the FIFO are set
from the efective user ID and group ID.

NOTES:

NONE

5.4.18 unlink - Removes a directory entry

CALLING SEQUENCE:

1 #include <unistd.h>
2 int unlink(
3 const char path
4);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
EBUSY The directory is in use.
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified path was not a directory when a directory was ex-

pected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

DESCRIPTION:

60 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

The unlink function removes the link named by path and decrements the link count of the file
referenced by the link. When the link count goes to zero and no process has the file open, the
space occupied by the file is freed and the file is no longer accessible.

NOTES:

NONE

5.4.19 rmdir - Delete a directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 int rmdir(
3 const char *pathname
4);

STATUS CODES:

EPERM The filesystem containing pathname does not support the removal of directories.
EFAULT pathname points ouside your accessible address space.
EACCES Write access to the directory containing pathname was not allowed for the process’s

effective uid, or one of the directories in``pathname`` did not allow search (exe-
cute) permission.

EPERM The directory containing pathname has the stickybit (S_ISVTX) set and the process’s
effective uid is neither the uid of the file to be delected nor that of the director
containing it.

ENAMETOOLONGpathname was too long.
ENOENT A dirctory component in pathname does not exist or is a dangling symbolic link.
ENOTDIR pathname, or a component used as a directory in pathname, is not, in fact, a directory.
ENOTEMPTYpathname contains entries other than . and .. .
EBUSY pathname is the current working directory or root directory of some process
EBUSY pathname is the current directory or root directory of some process.
ENOMEM Insufficient kernel memory was available
EROGS pathname refers to a file on a read-only filesystem.
ELOOP pathname contains a reference to a circular symbolic link

DESCRIPTION:

rmdir deletes a directory, which must be empty

NOTES:

NONE

5.4.20 rename - Renames a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int rename(
3 const char *old,
4 const char *new
5);

5.4. Directives 61

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix.
EBUSY The directory is in use.
EEXIST The named file already exists.
EINVAL Invalid argument.
EISDIR Attempt to open a directory for writing or to rename a file to be a directory.
EMLINK The number of links would exceed LINK_MAX.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does no exist.
ENOSPC No space left on disk.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
ENOTEMPTY Attempt to delete or rename a non-empty directory.
EROFS Read-only file system
EXDEV Attempt to link a file to another file system.

DESCRIPTION:

The rename() function causes the file known bo old to now be known as new.

Ordinary files may be renamed to ordinary files, and directories may be renamed to directories;
however, files cannot be converted using rename(). The new pathname may not contain a path
prefix of old.

NOTES:

If a file already exists by the name new, it is removed. The rename() function is atomic. If the
rename() detects an error, no files are removed. This guarantees that the rename("x", "x")
does not remove x.

You may not rename dot or dot-dot.

The routine is implemented in Cygnus newlib using link() and unlink().

5.4.21 stat - Gets information about a file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int stat(
4 const char *path,
5 struct stat *buf
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix.
EBADF Invalid file descriptor.
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.

62 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

DESCRIPTION:

The path argument points to a pathname for a file. Read, write, or execute permission for the
file is not required, but all directories listed in path must be searchable. The stat() function
obtains information about the named file and writes it to the area pointed to by buf.

NOTES:

NONE

5.4.22 fstat - Gets file status

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int fstat(
4 int fildes,
5 struct stat *buf
6);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

The fstat() function obtains information about the file associated with fildes and writes it to
the area pointed to by the buf argument.

NOTES:

If the filesystem object referred to by fildes is a link, then the information returned in buf
refers to the destination of that link. This is in contrast to lstat() which does not follow the
link.

5.4.23 lstat - Gets file status

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int lstat(
4 int fildes,
5 struct stat *buf
6);

STATUS CODES:

EBADF Invalid file descriptor

DESCRIPTION:

5.4. Directives 63

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

The lstat() function obtains information about the file associated with fildes and writes it to
the area pointed to by the buf argument.

NOTES:

If the filesystem object referred to by fildes is a link, then the information returned in buf
refers to the link itself. This is in contrast to fstat() which follows the link.

The lstat() routine is defined by BSD 4.3 and SVR4 and not included in POSIX 1003.1b-1996.

5.4.24 access - Check permissions for a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int access(
3 const char *pathname,
4 int mode
5);

STATUS CODES:

EACCES The requested access would be denied, either to the file itself or one of the direc-
tories in pathname.

EFAULT pathname points outside your accessible address space.
EINVAL Mode was incorrectly specified.
ENAMETOOLONGpathname is too long.
ENOENT A directory component in pathname would have been accessible but does not exist

or was a dangling symbolic link.
ENOTDIR A component used as a directory in pathname is not, in fact, a directory.
ENOMEM Insufficient kernel memory was available.

DESCRIPTION:

Access checks whether the process would be allowed to read, write or test for existence of
the file (or other file system object) whose name is pathname. If pathname is a symbolic link
permissions of the file referred by this symbolic link are tested.

Mode is a mask consisting of one or more of R_OK, W_OK, X_OK and F_OK.

NOTES:

NONE

5.4.25 chmod - Changes file mode.

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int chmod(
4 const char *path,
5 mode_t mode
6);

64 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when a directory was

expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

DESCRIPTION:

Set the file permission bits, the set user ID bit, and the set group ID bit for the file named by
path to mode. If the effective user ID does not match the owner of the file and the calling process
does not have the appropriate privileges, chmod() returns -1 and sets errno to EPERM.

NOTES:

NONE

5.4.26 fchmod - Changes permissions of a file

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <sys/stat.h>
3 int fchmod(
4 int fildes,
5 mode_t mode
6);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix.
EBADF The descriptor is not valid.
EFAULT path points outside your accessible address space.
EIO A low-level I/o error occurred while modifying the inode.
ELOOP path contains a circular reference
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does no exist.
ENOMEM Insufficient kernel memory was avaliable.
ENOTDIR A component of the specified pathname was not a directory when a directory

was expected.
EPERM The effective UID does not match the owner of the file, and is not zero
EROFS Read-only file system

DESCRIPTION:

The mode of the file given by path or referenced by filedes is changed.

NOTES:

5.4. Directives 65

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

NONE

5.4.27 getdents - Get directory entries

CALLING SEQUENCE:

1 #include <unistd.h>
2 #include <linux/dirent.h>
3 #include <linux/unistd.h>
4 long getdents(
5 int dd_fd,
6 char *dd_buf,
7 int dd_len
8);

STATUS CODES:

A successful call to getdents returns th the number of bytes read. On end of directory, 0 is
returned. When an error occurs, -1 is returned, and errno is set appropriately.

EBADF Invalid file descriptor fd.
EFAULT Argument points outside the calling process’s address space.
EINVAL Result buffer is too small.
ENOENT No such directory.
ENOTDIR File descriptor does not refer to a directory.

DESCRIPTION:

getdents reads several dirent structures from the directory pointed by fd into the memory area
pointed to by dirp. The parameter count is the size of the memory area.

NOTES:

NONE

5.4.28 chown - Changes the owner and/or group of a file.

CALLING SEQUENCE:

1 #include <sys/types.h>
2 #include <unistd.h>
3 int chown(
4 const char *path,
5 uid_t owner,
6 gid_t group
7);

STATUS CODES:

66 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

EACCES Search permission is denied for a directory in a file’s path prefix
EINVAL Invalid argument
ENAMETOOLONGLength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when a directory was

expected.
EPERM Operation is not permitted. Process does not have the appropriate priviledges or

permissions to perform the requested operations.
EROFS Read-only file system.

DESCRIPTION:

The user ID and group ID of the file named by path are set to owner and path, respectively.

For regular files, the set group ID (S_ISGID) and set user ID (S_ISUID) bits are cleared.

Some systems consider it a security violation to allow the owner of a file to be changed, If users
are billed for disk space usage, loaning a file to another user could result in incorrect billing.
The chown() function may be restricted to privileged users for some or all files. The group ID
can still be changed to one of the supplementary group IDs.

NOTES:

This function may be restricted for some file. The pathconf function can be used to test the
_PC_CHOWN_RESTRICTED flag.

5.4.29 utime - Change access and/or modification times of an inode

CALLING SEQUENCE:

1 #include <sys/types.h>
2 int utime(
3 const char *filename,
4 struct utimbuf *buf
5);

STATUS CODES:

EACCES Permission to write the file is denied
ENOENT Filename does not exist

DESCRIPTION:

Utime changes the access and modification times of the inode specified by filename to the
actime and modtime fields of buf respectively. If buf is NULL, then the access and modification
times of the file are set to the current time.

NOTES:

NONE

5.4. Directives 67

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

5.4.30 ftruncate - truncate a file to a specified length

CALLING SEQUENCE:

1 #include <unistd.h>
2 int ftrunctate(
3 int fd,
4 size_t length
5);

STATUS CODES:

ENOTDIR A component of the path prefix is not a directory.
EINVAL The pathname contains a character with the high-order bit set.
ENAMETOOLONGThe length of the specified pathname exceeds PATH_MAX bytes, or the length of a

component of the pathname exceeds NAME_MAX bytes.
ENOENT The named file does not exist.
EACCES The named file is not writable by the user.
EACCES Search permission is denied for a component of the path prefix.
ELOOP Too many symbolic links were encountered in translating the pathname
EISDIR The named file is a directory.
EROFS The named file resides on a read-only file system
ETXTBSY The file is a pure procedure (shared text) file that is being executed
EIO An I/O error occurred updating the inode.
EFAULT Path points outside the process’s allocated address space.
EBADF The fd is not a valid descriptor.

DESCRIPTION:

truncate() causes the file named by path or referenced by fd to be truncated to at most
length bytes in size. If the file previously was larger than this size, the extra data is lost.
With ftruncate(), the file must be open for writing.

NOTES:

NONE

5.4.31 truncate - truncate a file to a specified length

CALLING SEQUENCE:

1 #include <unistd.h>
2 int trunctate(
3 const char *path,
4 size_t length
5);

STATUS CODES:

68 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

ENOTDIR A component of the path prefix is not a directory.
EINVAL The pathname contains a character with the high-order bit set.
ENAMETOOLONGThe length of the specified pathname exceeds PATH_MAX bytes, or the length of a

component of the pathname exceeds NAME_MAX bytes.
ENOENT The named file does not exist.
EACCES The named file is not writable by the user.
EACCES Search permission is denied for a component of the path prefix.
ELOOP Too many symbolic links were encountered in translating the pathname
EISDIR The named file is a directory.
EROFS The named file resides on a read-only file system
ETXTBSY The file is a pure procedure (shared text) file that is being executed
EIO An I/O error occurred updating the inode.
EFAULT Path points outside the process’s allocated address space.
EBADF The fd is not a valid descriptor.

DESCRIPTION:

truncate() causes the file named by path or referenced by``fd`` to be truncated to at most
length bytes in size. If the file previously was larger than this size, the extra data is lost. With
ftruncate(), the file must be open for writing.

NOTES:

NONE

5.4.32 pathconf - Gets configuration values for files

CALLING SEQUENCE:

1 #include <unistd.h>
2 int pathconf(
3 const char *path,
4 int name
5);

STATUS CODES:

EINVAL Invalid argument
EACCES Permission to write the file is denied
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist
ENOTDIR A component of the specified path was not a directory whan a directory was

expected.

DESCRIPTION:

pathconf() gets a value for the configuration option name for the open file descriptor filedes.

The possible values for name are:

5.4. Directives 69

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

PC
LINK_
MAX

Returns the maximum number of links to the file. If filedes or``path`` refer to a
directory, then the value applies to the whole directory. The corresponding macro
is _POSIX_LINK_MAX.

PC
MAX_
CANON

Returns the maximum length of a formatted input line, where filedes or path
must refer to a terminal. The corresponding macro is _POSIX_MAX_CANON.

PC
MAX_
INPUT

Returns the maximum length of an input line, where filedes or path must refer
to a terminal. The corresponding macro is``_POSIX_MAX_INPUT``.

PC
NAME_
MAX

Returns the maximum length of a filename in the directory path or filedes. The
process is allowed to create. The corresponding macro is _POSIX_NAME_MAX.

PC
PATH_
MAX

returns the maximum length of a relative pathname when path or``filedes`` is
the current working directory. The corresponding macro is _POSIX_PATH_MAX.

PC
PIPE_
BUF

returns the size of the pipe buffer, where filedes must refer to a pipe or FIFO
and path must refer to a FIFO. The corresponding macro is _POSIX_PIPE_BUF.

PC
CHOWN_
RESTRICTED

Returns nonzero if the chown(2) call may not be used on this file. If``filedes``
or path refer to a directory, then this applies to all files in that directory. The
corresponding macro is _POSIX_CHOWN_RESTRICTED.

NOTES:

Files with name lengths longer than the value returned for name equal _PC_NAME_MAX may exist
in the given directory.

5.4.33 fpathconf - Gets configuration values for files

CALLING SEQUENCE:

1 #include <unistd.h>
2 int fpathconf(
3 int filedes,
4 int name
5);

STATUS CODES:

EINVAL Invalid argument
EACCES Permission to write the file is denied
ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.
ENOENT A file or directory does not exist
ENOTDIR A component of the specified path was not a directory whan a directory was

expected.

DESCRIPTION:

pathconf() gets a value for the configuration option name for the open file descriptor filedes.

The possible values for name are:

70 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

PC
LINK_
MAX

Returns the maximum number of links to the file. If filedes or path refer to a
directory, then the value applies to the whole directory. The corresponding macro
is _POSIX_LINK_MAX.

PC
MAX_
CANON

returns the maximum length of a formatted input line, where filedes or path
must refer to a terminal. The corresponding macro is _POSIX_MAX_CANON.

PC
MAX_
INPUT

Returns the maximum length of an input line, where filedes or path must refer
to a terminal. The corresponding macro is _POSIX_MAX_INPUT.

PC
NAME_
MAX

Returns the maximum length of a filename in the directory path or filedes. The
process is allowed to create. The corresponding macro is _POSIX_NAME_MAX.

PC
PATH_
MAX

Returns the maximum length of a relative pathname when path or filedes is the
current working directory. The corresponding macro is _POSIX_PATH_MAX.

PC
PIPE_
BUF

Returns the size of the pipe buffer, where filedes must refer to a pipe or FIFO
and path must refer to a FIFO. The corresponding macro is _POSIX_PIPE_BUF.

PC
CHOWN_
RESTRICTED

Returns nonzero if the chown() call may not be used on this file. If filedes
or path refer to a directory, then this applies to all files in that directory. The
corresponding macro is _POSIX_CHOWN_RESTRICTED.

NOTES:

NONE

5.4.34 mknod - create a directory

CALLING SEQUENCE:

1 #include <unistd.h>
2 #include <fcntl.h>
3 #include <sys/types.h>
4 #include <sys/stat.h>
5 long mknod(
6 const char *pathname,
7 mode_t mode,
8 dev_t dev
9);

STATUS CODES:

mknod returns zero on success, or -1 if an error occurred (in which case, errno is set appropri-
ately).

5.4. Directives 71

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 5 Section 5.4

ENAMETOOLONGpathname was too long.
ENOENT A directory component in pathname does not exist or is a dangling symbolic link.
ENOTDIR A component used in the directory pathname is not, in fact, a directory.
ENOMEM Insufficient kernel memory was available
EROFS pathname refers to a file on a read-only filesystem.
ELOOP pathname contains a reference to a circular symbolic link, ie a symbolic link whose

expansion contains a reference to itself.
ENOSPC The device containing pathname has no room for the new node.

DESCRIPTION:

mknod attempts to create a filesystem node (file, device special file or named pipe) named
pathname, specified by mode and dev.

mode specifies both the permissions to use and the type of node to be created.

It should be a combination (using bitwise OR) of one of the file types listed below and the
permissions for the new node.

The permissions are modified by the process’s umask in the usual way: the permissions of the
created node are (mode & ~umask).

The file type should be one of S_IFREG, S_IFCHR, S_IFBLK and S_IFIFO to specify a normal file
(which will be created empty), character special file, block special file or FIFO (named pipe),
respectively, or zero, which will create a normal file.

If the file type is S_IFCHR or S_IFBLK then dev specifies the major and minor numbers of the
newly created device special file; otherwise it is ignored.

The newly created node will be owned by the effective uid of the process. If the directory
containing the node has the set group id bit set, or if the filesystem is mounted with BSD group
semantics, the new node will inherit the group ownership from its parent directory; otherwise
it will be owned by the effective gid of the process.

NOTES:

NONE

72 Chapter 5. Files and Directories Manager

CHAPTER

SIX

INPUT AND OUTPUT PRIMITIVES
MANAGER

73

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.1

6.1 Introduction

The input and output primitives manager is . . .

The directives provided by the input and output primitives manager are:

• pipe (page 77) - Create an Inter-Process Channel

• dup (page 77) - Duplicates an open file descriptor

• dup2 (page 78) - Duplicates an open file descriptor

• close (page 78) - Closes a file

• read (page 79) - Reads from a file

• write (page 80) - Writes to a file

• fcntl (page 80) - Manipulates an open file descriptor

• lseek (page 82) - Reposition read/write file offset

• fsync (page 82) - Synchronize file complete in-core state with that on disk

• fdatasync (page 83) - Synchronize file in-core data with that on disk

• sync (page 84) - Schedule file system updates

• mount (page 84) - Mount a file system

• unmount (page 85) - Unmount file systems

• readv (page 85) - Vectored read from a file

• writev (page 86) - Vectored write to a file

• aio_read (page 86) - Asynchronous Read

• aio_write (page 87) - Asynchronous Write

• lio_listio (page 88) - List Directed I/O

• aio_error (page 89) - Retrieve Error Status of Asynchronous I/O Operation

• aio_return_ - Retrieve Return Status Asynchronous I/O Operation

• aio_cancel (page 90) - Cancel Asynchronous I/O Request

• aio_suspend (page 90) - Wait for Asynchronous I/O Request

• aio_fsync (page 91) - Asynchronous File Synchronization

74 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

6.2 Background

There is currently no text in this section.

6.2. Background 75

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.3

6.3 Operations

There is currently no text in this section.

76 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

6.4 Directives

This section details the input and output primitives manager’s directives. A subsection is dedi-
cated to each of this manager’s directives and describes the calling sequence, related constants,
usage, and status codes.

6.4.1 pipe - Create an Inter-Process Channel

CALLING SEQUENCE:

1 #include <unistd.h>
2 int pipe(
3 int fildes[2]
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.2 dup - Duplicates an open file descriptor

CALLING SEQUENCE:

1 #include <unistd.h>
2 int dup(
3 int fildes
4);

STATUS CODES:

EBADF Invalid file descriptor.
EINTR Function was interrupted by a signal.
EMFILE The process already has the maximum number of file descriptors open and tried to

open a new one.

DESCRIPTION:

The dup function returns the lowest numbered available file descriptor. This new desciptor
refers to the same open file as the original descriptor and shares any locks.

NOTES:

NONE

6.4. Directives 77

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

6.4.3 dup2 - Duplicates an open file descriptor

CALLING SEQUENCE:

1 #include <unistd.h>
2 int dup2(
3 int fildes,
4 int fildes2
5);

STATUS CODES:

EBADF Invalid file descriptor.
EINTR Function was interrupted by a signal.
EMFILE The process already has the maximum number of file descriptors open and tried to

open a new one.

DESCRIPTION:

dup2 creates a copy of the file descriptor oldfd.

The old and new descriptors may be used interchangeably. They share locks, file position point-
ers and flags; for example, if the file position is modified by using lseek on one of the descrip-
tors, the position is also changed for the other.

NOTES:

NONE

6.4.4 close - Closes a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 int close(
3 int fildes
4);

STATUS CODES:

EBADF Invalid file descriptor
EINTR Function was interrupted by a signal.

DESCRIPTION:

The close() function deallocates the file descriptor named by fildes and makes it available for
reuse. All outstanding record locks owned by this process for the file are unlocked.

NOTES:

A signal can interrupt the close() function. In that case, close() returns -1 with errno set to
EINTR. The file may or may not be closed.

78 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

6.4.5 read - Reads from a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 ssize_t read(
3 int fildes,
4 void *buf,
5 size_t nbyte
6);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EAGAIN The O_NONBLOCK flag is set for a file descriptor and the process would be delayed
in the I/O operation.

EBADF Invalid file descriptor
EINTR Function was interrupted by a signal.
EIO Input or output error
EINVAL Bad buffer pointer

DESCRIPTION:

The read() function reads nbyte bytes from the file associated with fildes into the buffer
pointed to by buf.

The read() function returns the number of bytes actually read and placed in the buffer. This
will be less than nbyte if:

• The number of bytes left in the file is less than nbyte.

• The read() request was interrupted by a signal.

• The file is a pipe or FIFO or special file with less than nbytes immediately available for
reading.

When attempting to read from any empty pipe or FIFO:

• If no process has the pipe open for writing, zero is returned to indicate end-of-file.

• If some process has the pipe open for writing and O_NONBLOCK is set, -1 is returned and
errno is set to EAGAIN.

• If some process has the pipe open for writing and O_NONBLOCK is clear, read() waits for
some data to be written or the pipe to be closed.

When attempting to read from a file other than a pipe or FIFO and no data is available.

• If O_NONBLOCK is set, -1 is returned and errno is set to EAGAIN.

• If O_NONBLOCK is clear, read() waits for some data to become available.

• The O_NONBLOCK flag is ignored if data is available.

NOTES:

NONE

6.4. Directives 79

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

6.4.6 write - Writes to a file

CALLING SEQUENCE:

1 #include <unistd.h>
2 ssize_t write(
3 int fildes,
4 const void *buf,
5 size_t nbyte
6);

STATUS CODES:

EAGAIN The O_NONBLOCK flag is set for a file descriptor and the process would be delayed
in the I/O operation.

EBADF Invalid file descriptor
EFBIG An attempt was made to write to a file that exceeds the maximum file size
EINTR The function was interrupted by a signal.
EIO Input or output error.
ENOSPC No space left on disk.
EPIPE Attempt to write to a pope or FIFO with no reader.
EINVAL Bad buffer pointer

DESCRIPTION:

The write() function writes nbyte from the array pointed to by buf into the file associated with
fildes.

If nybte is zero and the file is a regular file, the write() function returns zero and has no other
effect. If nbyte is zero and the file is a special file, te results are not portable.

The write() function returns the number of bytes written. This number will be less than nbytes
if there is an error. It will never be greater than nbytes.

NOTES:

NONE

6.4.7 fcntl - Manipulates an open file descriptor

CALLING SEQUENCE:

1 #include <fcntl.h>
2 int fcntl(
3 int fildes,
4 int cmd,
5 ...
6);

STATUS CODES:

80 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

EACCESS Search permission is denied for a direcotry in a file’s path prefix.
EAGAIN The O_NONBLOCK flag is set for a file descriptor and the process would be delayed

in the I/O operation.
EBADF Invalid file descriptor
EDEADLK An fcntl with function F_SETLKW would cause a deadlock.
EINTR The functioin was interrupted by a signal.
EINVAL Invalid argument
EMFILE Too many file descriptor or in use by the process.
ENOLCK No locks available

DESCRIPTION:

fcntl() performs one of various miscellaneous operations on``fd``. The operation in question
is determined by cmd:

F_
DUPFD

Makes arg be a copy of fd, closing fd first if necessary. The same functionality can
be more easily achieved by using dup2(). The old and new descriptors may be used
interchangeably. They share locks, file position pointers and flags; for example, if the
file position is modified by using lseek() on one of the descriptors, the position is
also changed for the other. The two descriptors do not share the close-on-exec flag,
however. The close-on-exec flag of the copy is off, meaning that it will be closed on
exec. On success, the new descriptor is returned.

F_
GETFD

Read the close-on-exec flag. If the low-order bit is 0, the file will remain open across
exec, otherwise it will be closed.

F_
SETFD

Set the close-on-exec flag to the value specified by arg (only the least significant bit is
used).

F_
GETFL

Read the descriptor’s flags (all flags (as set by open()) are returned).

F_
SETFL

Set the descriptor’s flags to the value specified by arg. Only``O_APPEND`` and O_
NONBLOCK may be set. The flags are shared between copies (made with dup() etc.) of
the same file descriptor. The flags and their semantics are described in open().

F_
GETLK,
F_
SETLK
and
F_
SETLKW

Manage discretionary file locks. The third argument arg is a pointer to a struct flock
(that may be overwritten by this call).

F_
GETLK

Return the flock structure that prevents us from obtaining the lock, or set the``l_
type`` field of the lock to F_UNLCK if there is no obstruction.

F_
SETLK

The lock is set (when l_type is F_RDLCK or F_WRLCK) or cleared (when it is F_UNLCK. If
lock is held by someone else, this call returns -1 and sets errno to EACCES or EAGAIN.

F_
SETLKW

Like F_SETLK, but instead of returning an error we wait for the lock to be released.

F_
GETOWN

Get the process ID (or process group) of the owner of a socket. Process groups are
returned as negative values.

F_
SETOWN

Set the process or process group that owns a socket. For these commands, ownership
means receiving SIGIO or SIGURG signals. Process groups are specified using negative
values.

6.4. Directives 81

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

NOTES:

The errors returned by dup2 are different from those returned by F_DUPFD.

6.4.8 lseek - Reposition read/write file offset

CALLING SEQUENCE:

1 #include <unistd.h>
2 off_t lseek(
3 int fildes,
4 off_t offset,
5 int whence
6);

STATUS CODES:

EBADF fildes is not an open file descriptor.
ESPIPE fildes is associated with a pipe, socket or FIFO.
EINVAL whence is not a proper value.

DESCRIPTION:

The lseek function repositions the offset of the file descriptor fildes to the argument offset
according to the directive whence. The argument fildes must be an open file descriptor. Lseek
repositions the file pointer fildes as follows:

• If whence is SEEK_SET, the offset is set to offset bytes.

• If whence is SEEK_CUR, the offset is set to its current location plus offset bytes.

• If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

The lseek function allows the file offset to be set beyond the end of the existing end-of-file of
the file. If data is later written at this point, subsequent reads of the data in the gap return bytes
of zeros (until data is actually written into the gap).

Some devices are incapable of seeking. The value of the pointer associated with such a device
is undefined.

NOTES:

NONE

6.4.9 fsync - Synchronize file complete in-core state with that on disk

CALLING SEQUENCE:

1 #include <unistd.h>
2 int fsync(
3 int fildes
4);

STATUS CODES:

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

82 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

EBADF fd is not a valid descriptor open for writing
EINVAL

fd is bound to a special file which does
not support support

synchronization

EROFS
fd is bound to a special file which does
not support support

synchronization

EIO An error occurred during synchronization

DESCRIPTION:

fsync copies all in-core parts of a file to disk.

NOTES:

NONE

6.4.10 fdatasync - Synchronize file in-core data with that on disk

CALLING SEQUENCE:

1 #include <unistd.h>
2 int fdatasync(
3 int fildes
4);

STATUS CODES:

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

EBADF fd is not a valid file descriptor open for writing.
EINVAL fd is bound to a special file which does not support synchronization.
EIO An error occurred during synchronization.
EROFS fd is bound to a special file which dows not support synchronization.

DESCRIPTION:

fdatasync flushes all data buffers of a file to disk (before the system call returns). It resembles
fsync but is not required to update the metadata such as access time.

Applications that access databases or log files often write a tiny data fragment (e.g., one line in
a log file) and then call fsync immediately in order to ensure that the written data is physically
stored on the harddisk. Unfortunately, fsync will always initiate two write operations: one for
the newly written data and another one in order to update the modification time stored in the
inode. If the modification time is not a part of the transaction concept fdatasync can be used
to avoid unnecessary inode disk write operations.

NOTES:

NONE

6.4. Directives 83

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

6.4.11 sync - Schedule file system updates

CALLING SEQUENCE:

1 #include <unistd.h>
2 void sync(
3 void
4);

STATUS CODES:

NONE

DESCRIPTION:

The sync service causes all information in memory that updates file systems to be scheduled for
writing out to all file systems.

NOTES:

The writing of data to the file systems is only guaranteed to be scheduled upon return. It is not
necessarily complete upon return from sync.

6.4.12 mount - Mount a file system

CALLING SEQUENCE:

1 #include <libio.h>
2 int mount(
3 rtems_filesystem_mount_table_entry_t **mt_entry,
4 rtems_filesystem_operations_table *fs_ops,
5 rtems_filesystem_options_t fsoptions,
6 char *device,
7 char *mount_point
8);

STATUS CODES:

• – ENOMEM

– Unable to allocate memory needed.

• – EINVAL

– The filesystem does not support being mounted.

• – EINVAL

– Attempt to mount a read-only filesystem as writeable.

DESCRIPTION:

The mount routines mounts the filesystem class which uses the filesystem operations specified by
fs_ops and fsoptions. The filesystem is mounted at the directory mount_point and the mode
of the mounted filesystem is specified by fsoptions. If this filesystem class requires a device,
then the name of the device must be specified by device.

If this operation succeeds, the mount table entry for the mounted filesystem is returned in
mt_entry.

84 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

NOTES:

This method is not defined in the POSIX standard.

6.4.13 unmount - Unmount file systems

CALLING SEQUENCE:

1 #include <libio.h>
2 int unmount(
3 const char *mount_path
4);

STATUS CODES:

• – EBUSY

– Filesystem is in use or the root filesystem.

• – EACCESS

– Unable to allocate memory needed.

DESCRIPTION:

The unmount routine removes the attachment of the filesystem specified by mount_path.

NOTES:

This method is not defined in the POSIX standard.

6.4.14 readv - Vectored read from a file

CALLING SEQUENCE:

1 #include <sys/uio.h>
2 ssize_t readv(
3 int fildes,
4 const struct iovec *iov,
5 int iovcnt
6);

STATUS CODES:

In addition to the errors detected by Input and Output Primitives Manager read - Reads from a
file, read(), this routine may return -1 and sets errno based upon the following errors:

EINVAL The sum of the iov_len values in the iov array overflowed an ssize_t.
EINVAL The iovcnt argument was less than or equal to 0, or greater than IOV_MAX.

DESCRIPTION:

The readv() function is equivalent to read() except as described here. The readv() function
shall place the input data into the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1].

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv() function always fills an area completely before proceeding to the next.

6.4. Directives 85

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

NOTES:

NONE

6.4.15 writev - Vectored write to a file

CALLING SEQUENCE:

1 #include <sys/uio.h>
2 ssize_t writev(
3 int fildes,
4 const struct iovec *iov,
5 int iovcnt
6);

STATUS CODES:

In addition to the errors detected by Input and Output Primitives Manager write - Write to a file,
write(), this routine may return -1 and sets errno based upon the following errors:

EINVAL The sum of the iov_len values in the iov array overflowed an ssize_t.
EINVAL The iovcnt argument was less than or equal to 0, or greater than IOV_MAX.

DESCRIPTION:

The writev() function is equivalent to write(), except as noted here. The writev() function
gathers output data from the iovcnt buffers specified by the members of the iov array: iov[0],
iov[1], ..., iov[iovcnt-1]. The iovcnt argument is valid if greater than 0 and less than or
equal to IOV_MAX.

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function always writes a complete area before proceeding to
the next.

If fd refers to a regular file and all of the iov_len members in the array pointed to by iov are
0, writev() returns 0 and has no other effect. For other file types, the behavior is unspecified
by POSIX.

NOTES:

NONE

6.4.16 aio_read - Asynchronous Read

CALLING SEQUENCE:

1 #include <aio.h>
2 int aio_read(
3 struct aiocb *aiocbp
4);

STATUS CODES:

If the request is successfully enqueued, zero is returned. On error, this routine returns -1 and
sets errno to one of the following:

86 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

EBADF The file descriptor is not open for reading.
EINVAL Invalid aio_reqprio, aio_offset, or aio_nbytes.
EAGAIN Not enough memory to queue the request.
EAGAIN the addition of a new request to the queue would violate the RTEMS_AIO_MAX limit.
EINVAL The starting position is past the maximum offset for the file.
EINVAL aiocbp->aio_sigevent does not point to a valid sigevent struct.
EINVAL aiocbp is a NULL pointer.

DESCRIPTION:

The aio_read() function is the asynchronous equivalent of read(). This function returns im-
mediately, the request is serviced by thread(s) running in the background.

The parameters for the read are specified in the aiocbp structure.

NOTES:

NONE

6.4.17 aio_write - Asynchronous Write

CALLING SEQUENCE:

1 #include <aio.h>
2 int aio_write(
3 struct aiocb *aiocbp
4);

STATUS CODES:

If the request is successfully enqueued, zero is returned. On error, this routine returns -1 and
sets errno to one of the following:

EBADF The file descriptor is not open for writing.
EINVAL Invalid aio_reqprio, aio_offset, or aio_nbytes.
EAGAIN Not enough memory to queue the request.
EAGAIN the addition of a new request to the queue would violate the RTEMS_AIO_MAX limit.
EINVAL aiocbp->aio_sigevent does not point to a valid sigevent struct.
EINVAL aiocbp is a NULL pointer.

DESCRIPTION:

The aio_write() function is the asynchronous equivalent of write(). This function returns
immediately, the request is serviced by thread(s) running in the background.

The parameters for the write are specified in the aiocbp structure.

NOTES:

NONE

6.4. Directives 87

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

6.4.18 lio_listio - List Directed I/O

CALLING SEQUENCE:

1 #include <aio.h>
2 int lio_listio(
3 int mode,
4 struct aiocb *restrict const list[restrict],
5 int nent,
6 struct sigevent *restrict sig
7);

STATUS CODES:

If the call to lio_listio is successful, zero is returned. On error, this routine returns -1 and sets
errno to one of the following:

ENOSYS The project has been build with RTEMS_POSIX_API not defined.
EAGAIN The call failed due to resources limitations.
EAGAIN The number of entries indicated by nent value would cause the RTEMS_AIO_MAX limit

to be excedeed.
EINVAL list is a NULL pointer.
EINVAL mode is not a valid value.
EINVAL the value of nent is not valid or higher than AIO_LISTIO_MAX.
EINVAL the sigevent struct pointed by sig is not valid.
EINTR The wait for list completion during a LIO_WAIT operation was interrupted by an ex-

ternal event.
EIO One or more of the individual I/O operations failed.

DESCRIPTION:

The lio_listio() function allows for the simultaneous initiation of multiple asynchronous I/O
operations.

Each operation is described by an aiocb structure in the array list.

The mode parameter determines when the function will return. If mode is LIO_WAIT the function
returns when the I/O operation have completed, if mode is LIO_NOWAIT the function returns after
enqueueing the operations.

If mode is LIO_NOWAIT, the sigevent struct pointed by sig is used to notify list completion.

NOTES:

When the mode is LIO_NOWAIT and the sigev_notify field of sig is set to SIGEV_SIGNAL, a signal
is sent to the process to notify the completion of the list. Since each RTEMS application is
logically a single POSIX process, if the user wants to wait for the signal (using, for example,
sigwait()), it is necessary to ensure that the signal is blocked by every thread.

This function is only available when RTEMS_POSIX_API is defined. To do so, it’s necessary to add
RTEMS_POSIX_API = True to the config.ini file.

88 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

6.4.19 aio_error - Retrieve Error Status of Asynchronous I/O Operation

CALLING SEQUENCE:

1 #include <aio.h>
2 int aio_error(
3 const struct aiocb *aiocbp
4);

STATUS CODES:

The function return the error status of the request, if 0 is returned the operation completed
without errors.

If the request is still in progress, the function returns EINPROGRESS.

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The return status for the request has already been retrieved.
EINVAL aiocbp is a NULL pointer.

DESCRIPTION:

The aio_error() function retrieves the error status of the request.

aiocbp is a pointer to the request control block.

NOTES:

NONE .. _aio_return:

6.4.20 aio_return - Retrieve Return Status of Asynchronous I/O Operation

CALLING SEQUENCE:

1 #include <aio.h>
2 ssize_t aio_return(
3 struct aiocb *aiocbp
4);

STATUS CODES:

If the result can be returned, it is returned as defined by the various operations.

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The return status for the request has already been retrieved.
EINVAL aiocbp is a NULL pointer.

DESCRIPTION:

The aio_return() function retrieves the return status of the asynchronous I/O operation.
aiocbp is a pointer to the request control block.

NOTES:

NONE

6.4. Directives 89

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

6.4.21 aio_cancel - Cancel Asynchronous I/O Request

CALLING SEQUENCE:

1 #include <aio.h>
2 int aio_cancel(
3 int fildes,
4 struct aiocb *aiocbp
5);

STATUS CODES:

If the function terminated without errors, the return value has one of the following values:

AIO_CANCELED The requested operation(s) were canceled.
AIO_
NOTCANCELED

Some operations could not be canceled because they are in progress.

AIO_ALLDONE None of the operations could be canceled because they are already com-
plete.

If the file descriptor is invalid, -1 is returned and errno is set to EBADF

DESCRIPTION:

The aio_cancel() function attempts to cancel asynchronous I/O operations.

filedes is the file descriptor associated with the operations to be canceled. aiocbp is a pointer
to an asynchronous I/O control block.

If aiocbp is NULL, the function will attempt to eliminate all the operations enqueued for the
specified filedes.

If aiocbp points to a control block, then only the referenced operation shall be eliminated. The
aio_filedef value of aiocbp must be equal to filedes, otherwise the function will return with
an error.

NOTES:

NONE

6.4.22 aio_suspend - Wait for Asynchronous I/O Request

CALLING SEQUENCE:

1 #include <aio.h>
2 int aio_suspend(
3 const struct aiocb *const list[],
4 int nent,
5 const struct timespec *timeout
6);

STATUS CODES:

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

E The

90 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

DESCRIPTION:

The aio_suspend() function suspends the calling process until one or more operations have
completed or until the specified timeout has expired. list contains the requests that must
complete.

NOTES:

This routine is not currently supported by RTEMS.

6.4.23 aio_fsync - Asynchronous File Synchronization

CALLING SEQUENCE:

1 #include <aio.h>
2 int aio_fsync(
3 int op,
4 struct aiocb *aiocbp
5);

STATUS CODES:

If the requests are succesfully enqueued, zero is returned. On error, this routine returns -1 and
sets errno to one of the following:

EAGAIN The operation could not be queued due to temporary resource limitations.
EAGAIN the addition of a new request to the queue would violate the RTEMS_AIO_MAX limit.
EBADF The aio_fildes member of aiocbp is not a valid file descriptor.
EINVAL A value of op other than O_SYNC or O_DSYNC was specified.
EINVAL aiocbp->aio_sigevent does not point to a valid sigevent struct.
EINVAL aiocbp is a NULL pointer.

DESCRIPTION:

The aio_fsync() function initiates an asynchronous file sync operation. op specifies what kind
of synchronization should be performed. If op is O_SYNC, all currently queued I/O operations
shall be synchronized as if by a call to fsync(). If op is O_DSYNC, all currently queued I/O
operations shall be synchronized as if by a call to fdatasync().

NOTES:

Currently, O_DSYNC and O_SYNC are mapped to the same value. As a result, every file will be
synced as if by a call to fsync().

6.4. Directives 91

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 6 Section 6.4

92 Chapter 6. Input and Output Primitives Manager

CHAPTER

SEVEN

DEVICE- AND CLASS- SPECIFIC
FUNCTIONS MANAGER

93

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.1

7.1 Introduction

The device- and class- specific functions manager is . . .

The directives provided by the device- and class- specific functions manager are:

• cfgetispeed (page 97) - Reads terminal input baud rate

• cfgetospeed (page 97) - Reads terminal output baud rate

• cfsetispeed (page 98) - Sets terminal input baud rate

• cfsetospeed (page 98) - Set terminal output baud rate

• tcgetattr (page 99) - Gets terminal attributes

• tcsetattr (page 99) - Set terminal attributes

• tcsendbreak (page 99) - Sends a break to a terminal

• tcdrain (page 100) - Waits for all output to be transmitted to the terminal

• tcflush (page 100) - Discards terminal data

• tcflow (page 101) - Suspends/restarts terminal output

• tcgetpgrp (page 101) - Gets foreground process group ID

• tcsetpgrp (page 101) - Sets foreground process group ID

94 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

7.2 Background

There is currently no text in this section.

7.2. Background 95

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.3

7.3 Operations

There is currently no text in this section.

96 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

7.4 Directives

This section details the device- and class- specific functions manager’s directives. A subsection
is dedicated to each of this manager’s directives and describes the calling sequence, related
constants, usage, and status codes.

7.4.1 cfgetispeed - Reads terminal input baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 speed_t cfgetispeed(
3 const struct termios *termios_p
4);

STATUS CODES:

The cfgetispeed() function returns a code for baud rate.

DESCRIPTION:

The cfsetispeed() function stores a code for the terminal speed stored in a struct termios. The
codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300, B600,
B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfsetispeed() function does not do anything to the hardware. It merely stores a value for
use by tcsetattr().

NOTES:

Baud rates are defined by symbols, such as B110, B1200, B2400. The actual number returned for
any given speed may change from system to system.

7.4.2 cfgetospeed - Reads terminal output baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 speed_t cfgetospeed(
3 const struct termios *termios_p
4);

STATUS CODES:

The cfgetospeed() function returns the termios code for the baud rate.

DESCRIPTION:

The cfgetospeed() function returns a code for the terminal speed stored in a struct termios.
The codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300,
B600, B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfgetospeed() function does not do anything to the hardware. It merely returns the value
stored by a previous call to tcgetattr().

NOTES:

Baud rates are defined by symbols, such as B110, B1200, B2400. The actual number returned for
any given speed may change from system to system.

7.4. Directives 97

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

7.4.3 cfsetispeed - Sets terminal input baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 int cfsetispeed(
3 struct termios *termios_p,
4 speed_t speed
5);

STATUS CODES:

The cfsetispeed() function returns a zero when successful and returns -1 when an error occurs.

DESCRIPTION:

The cfsetispeed() function stores a code for the terminal speed stored in a struct termios. The
codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300, B600,
B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

NOTES:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

7.4.4 cfsetospeed - Sets terminal output baud rate

CALLING SEQUENCE:

1 #include <termios.h>
2 int cfsetospeed(
3 struct termios *termios_p,
4 speed_t speed
5);

STATUS CODES:

The cfsetospeed() function returns a zero when successful and returns -1 when an error occurs.

DESCRIPTION:

The cfsetospeed() function stores a code for the terminal speed stored in a struct termios.
The codes are defiined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300,
B600, B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfsetospeed() function does not do anything to the hardware. It merely stores a value for
use by tcsetattr().

NOTES:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

98 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

7.4.5 tcgetattr - Gets terminal attributes

CALLING SEQUENCE:

1 #include <termios.h>
2 int tcgetattr(
3 int fildes,
4 struct termios *termios_p
5);

STATUS CODES:

EBADF Invalid file descriptor
ENOOTY Terminal control function attempted for a file that is not a terminal.

DESCRIPTION:

The tcgetattr() gets the parameters associated with the terminal referred to by fildes and
stores them into the termios() structure pointed to by termios_p.

NOTES:

NONE

7.4.6 tcsetattr - Set terminal attributes

CALLING SEQUENCE:

1 #include <termios.h>
2 int tcsetattr(
3 int fildes,
4 int optional_actions,
5 const struct termios *termios_p
6);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

7.4.7 tcsendbreak - Sends a break to a terminal

CALLING SEQUENCE:

1 #include <termios.h>
2 int tcsendbreak(
3 int fildes,
4 int duration
5);

7.4. Directives 99

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.8 tcdrain - Waits for all output to be transmitted to the terminal.

CALLING SEQUENCE:

1 #include <termios.h>
2 int tcdrain(
3 int fildes
4);

STATUS CODES:

EBADF Invalid file descriptor
EINTR Function was interrupted by a signal
ENOTTY Terminal control function attempted for a file that is not a terminal.

DESCRIPTION:

The tcdrain() function waits until all output written to fildes has been transmitted.

NOTES:

NONE

7.4.9 tcflush - Discards terminal data

CALLING SEQUENCE:

1 #include <termios.h>
2 int tcflush(
3 int fildes,
4 int queue_selector
5);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

100 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

7.4.10 tcflow - Suspends/restarts terminal output.

CALLING SEQUENCE:

1 #include <termios.h>
2 int tcflow(
3 int fildes,
4 int action
5);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.11 tcgetpgrp - Gets foreground process group ID

CALLING SEQUENCE:

1 #include <unistd.h>
2 pid_t tcgetpgrp(
3 int fildes
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.12 tcsetpgrp - Sets foreground process group ID

CALLING SEQUENCE:

1 #include <unistd.h>
2 int tcsetpgrp(
3 int fildes,
4 pid_t pgid_id
5);

STATUS CODES:

E The

7.4. Directives 101

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 7 Section 7.4

DESCRIPTION:

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

102 Chapter 7. Device- and Class- Specific Functions Manager

CHAPTER

EIGHT

LANGUAGE-SPECIFIC SERVICES FOR
THE C PROGRAMMING LANGUAGE

MANAGER

103

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.1

8.1 Introduction

The language-specific services for the C programming language manager is . . .

The directives provided by the language-specific services for the C programming language man-
ager are:

• setlocale (page 107) - Set the Current Locale

• fileno (page 107) - Obtain File Descriptor Number for this File

• fdopen (page 107) - Associate Stream with File Descriptor

• flockfile (page 108) - Acquire Ownership of File Stream

• ftrylockfile (page 108) - Poll to Acquire Ownership of File Stream

• funlockfile (page 108) - Release Ownership of File Stream

• getc_unlocked (page 108) - Get Character without Locking

• getchar_unlocked (page 109) - Get Character from stdin without Locking

• putc_unlocked (page 109) - Put Character without Locking

• putchar_unlocked (page 109) - Put Character to stdin without Locking

• setjmp (page 110) - Save Context for Non-Local Goto

• longjmp (page 110) - Non-Local Jump to a Saved Context

• sigsetjmp (page 110) - Save Context with Signal Status for Non-Local Goto

• siglongjmp (page 110) - Non-Local Jump with Signal Status to a Saved Context

• tzset (page 111) - Initialize Time Conversion Information

• strtok_r (page 111) - Reentrant Extract Token from String

• asctime_r (page 111) - Reentrant struct tm to ASCII Time Conversion

• ctime_r (page 112) - Reentrant time_t to ASCII Time Conversion

• gmtime_r (page 112) - Reentrant UTC Time Conversion

• localtime_r (page 112) - Reentrant Local Time Conversion

• rand_r (page 113) - Reentrant Random Number Generation

104 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

8.2 Background

There is currently no text in this section.

8.2. Background 105

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.3

8.3 Operations

There is currently no text in this section.

106 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

8.4 Directives

This section details the language-specific services for the C programming language manager’s
directives. A subsection is dedicated to each of this manager’s directives and describes the
calling sequence, related constants, usage, and status codes.

8.4.1 setlocale - Set the Current Locale

CALLING SEQUENCE:

1 #include <locale.h>
2 char *setlocale(int category, const char *locale);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.2 fileno - Obtain File Descriptor Number for this File

CALLING SEQUENCE:

1 #include <stdio.h>
2 int fileno(FILE *stream);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.3 fdopen - Associate Stream with File Descriptor

CALLING SEQUENCE:

1 #include <stdio.h>
2 FILE *fdopen(int fildes, const char *mode);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4. Directives 107

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.4

8.4.4 flockfile - Acquire Ownership of File Stream

CALLING SEQUENCE:

1 #include <stdio.h>
2 void flockfile(FILE *file);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.5 ftrylockfile - Poll to Acquire Ownership of File Stream

CALLING SEQUENCE:

1 #include <stdio.h>
2 int ftrylockfile(FILE *file);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.6 funlockfile - Release Ownership of File Stream

CALLING SEQUENCE:

1 #include <stdio.h>
2 void funlockfile(FILE *file);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.7 getc_unlocked - Get Character without Locking

CALLING SEQUENCE:

1 #include <stdio.h>
2 int getc_unlocked(FILE *stream);

108 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.8 getchar_unlocked - Get Character from stdin without Locking

CALLING SEQUENCE:

1 #include <stdio.h>
2 int getchar_unlocked(void);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.9 putc_unlocked - Put Character without Locking

CALLING SEQUENCE:

1 #include <stdio.h>
2 int putc_unlocked(int c, FILE *stream);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.10 putchar_unlocked - Put Character to stdin without Locking

CALLING SEQUENCE:

1 #include <stdio.h>
2 int putchar_unlocked(int c);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4. Directives 109

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.4

8.4.11 setjmp - Save Context for Non-Local Goto

CALLING SEQUENCE:

1 #include <setjmp.h>
2 int setjmp(jmp_buf env);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.12 longjmp - Non-Local Jump to a Saved Context

CALLING SEQUENCE:

1 #include <setjmp.h>
2 void longjmp(jmp_buf env, int val);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.13 sigsetjmp - Save Context with Signal Status for Non-Local Goto

CALLING SEQUENCE:

1 #include <setjmp.h>
2 int sigsetjmp(sigjmp_buf env, int savemask);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.14 siglongjmp - Non-Local Jump with Signal Status to a Saved Context

CALLING SEQUENCE:

1 #include <setjmp.h>
2 void siglongjmp(sigjmp_buf env, int val);

110 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.15 tzset - Initialize Time Conversion Information

CALLING SEQUENCE:

1 #include <time.h>
2 extern int daylight;
3 extern long timezone;
4 extern char *tzname[2];
5 void tzset(void);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.16 strtok_r - Reentrant Extract Token from String

CALLING SEQUENCE:

1 #include <string.h>
2 char *strtok_r(char *restrict s, const char *restrict sep,
3 char **restrict state);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.17 asctime_r - Reentrant struct tm to ASCII Time Conversion

CALLING SEQUENCE:

1 #include <time.h>
2 char *asctime_r(const struct tm *restrict tm, char *restrict buf);

STATUS CODES:

8.4. Directives 111

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.4

E The

DESCRIPTION:

NOTES:

8.4.18 ctime_r - Reentrant time_t to ASCII Time Conversion

CALLING SEQUENCE:

1 #include <time.h>
2 char *ctime_r(const time_t *clock, char *buf);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.19 gmtime_r - Reentrant UTC Time Conversion

CALLING SEQUENCE:

1 #include <time.h>
2 struct tm *gmtime_r(const time_t *restrict timer,
3 struct tm *restrict result);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4.20 localtime_r - Reentrant Local Time Conversion

CALLING SEQUENCE:

1 #include <time.h>
2 struct tm *localtime_r(const time_t *restrict timer,
3 struct tm *restrict result);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

112 Chapter 8. Language-Specific Services for the C Programming Language Manager

Chapter 8 Section 8.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

8.4.21 rand_r - Reentrant Random Number Generation

CALLING SEQUENCE:

1 #include <stdlib.h>
2 int rand_r(unsigned *seed);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

8.4. Directives 113

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 8 Section 8.4

114 Chapter 8. Language-Specific Services for the C Programming Language Manager

CHAPTER

NINE

SYSTEM DATABASES MANAGER

115

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.1

9.1 Introduction

The system databases manager is . . .

The directives provided by the system databases manager are:

• getgrgid (page 119) - Get Group File Entry for ID

• getgrgid_r (page 119) - Reentrant Get Group File Entry

• getgrnam (page 119) - Get Group File Entry for Name

• getgrnam_r (page 120) - Reentrant Get Group File Entry for Name

• getpwuid (page 120) - Get Password File Entry for UID

• getpwuid_r (page 120) - Reentrant Get Password File Entry for UID

• getpwnam (page 121) - Get Password File Entry for Name

• getpwnam_r (page 121) - Reentrant Get Password File Entry for Name

116 Chapter 9. System Databases Manager

Chapter 9 Section 9.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

9.2 Background

There is currently no text in this section.

9.2. Background 117

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.3

9.3 Operations

There is currently no text in this section.

118 Chapter 9. System Databases Manager

Chapter 9 Section 9.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

9.4 Directives

This section details the system databases manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

9.4.1 getgrgid - Get Group File Entry for ID

CALLING SEQUENCE:

1 #include <grp.h>
2 struct group *getgrgid(
3 gid_t gid
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.2 getgrgid_r - Reentrant Get Group File Entry

CALLING SEQUENCE:

1 #include <grp.h>
2 int getgrgid_r(
3 gid_t gid,
4 struct group *grp,
5 char *buffer,
6 size_t bufsize,
7 struct group **result
8);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.3 getgrnam - Get Group File Entry for Name

CALLING SEQUENCE:

1 #include <grp.h>
2 struct group *getgrnam(
3 const char *name
4);

9.4. Directives 119

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.4

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.4 getgrnam_r - Reentrant Get Group File Entry for Name

CALLING SEQUENCE:

1 #include <grp.h>
2 int getgrnam_r(
3 const char *name,
4 struct group *grp,
5 char *buffer,
6 size_t bufsize,
7 struct group **result
8);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.5 getpwuid - Get Password File Entry for UID

CALLING SEQUENCE:

1 #include <pwd.h>
2 struct passwd *getpwuid(
3 uid_t uid
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.6 getpwuid_r - Reentrant Get Password File Entry for UID

CALLING SEQUENCE:

120 Chapter 9. System Databases Manager

Chapter 9 Section 9.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

1 #include <pwd.h>
2 int getpwuid_r(
3 uid_t uid,
4 struct passwd *pwd,
5 char *buffer,
6 size_t bufsize,
7 struct passwd **result
8);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.7 getpwnam - Password File Entry for Name

CALLING SEQUENCE:

1 #include <pwd.h>
2 struct passwd *getpwnam(
3 const char *name
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

9.4.8 getpwnam_r - Reentrant Get Password File Entry for Name

CALLING SEQUENCE:

1 #include <pwd.h>
2 int getpwnam_r(
3 const char *name,
4 struct passwd *pwd,
5 char *buffer,
6 size_t bufsize,
7 struct passwd **result
8);

STATUS CODES:

E The

9.4. Directives 121

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 9 Section 9.4

DESCRIPTION:

NOTES:

122 Chapter 9. System Databases Manager

CHAPTER

TEN

SEMAPHORE MANAGER

123

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.1

10.1 Introduction

The semaphore manager provides functions to allocate, delete, and control semaphores. This
manager is based on the POSIX 1003.1 standard.

The directives provided by the semaphore manager are:

• sem_init (page 127) - Initialize an unnamed semaphore

• sem_destroy (page 127) - Destroy an unnamed semaphore

• sem_open (page 128) - Open a named semaphore

• sem_close (page 129) - Close a named semaphore

• sem_unlink (page 129) - Remove a named semaphore

• sem_wait (page 130) - Lock a semaphore

• sem_trywait (page 130) - Lock a semaphore

• sem_timedwait (page 131) - Wait on a Semaphore for a Specified Time

• sem_post (page 131) - Unlock a semaphore

• sem_getvalue (page 132) - Get the value of a semeaphore

124 Chapter 10. Semaphore Manager

Chapter 10 Section 10.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

10.2 Background

10.2.1 Theory

Semaphores are used for synchronization and mutual exclusion by indicating the availability
and number of resources. The task (the task which is returning resources) notifying other
tasks of an event increases the number of resources held by the semaphore by one. The task
(the task which will obtain resources) waiting for the event decreases the number of resources
held by the semaphore by one. If the number of resources held by a semaphore is insufficient
(namely 0), the task requiring resources will wait until the next time resources are returned to
the semaphore. If there is more than one task waiting for a semaphore, the tasks will be placed
in the queue.

10.2.2 “sem_t” Structure

The sem_t structure is used to represent semaphores. It is passed as an argument to the
semaphore directives and is defined as follows:

1 typedef int sem_t;

10.2.3 Building a Semaphore Attribute Set

10.2. Background 125

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.3

10.3 Operations

10.3.1 Using as a Binary Semaphore

Although POSIX supports mutexes, they are only visible between threads. To work between
processes, a binary semaphore must be used.

Creating a semaphore with a limit on the count of 1 effectively restricts the semaphore to being
a binary semaphore. When the binary semaphore is available, the count is 1. When the binary
semaphore is unavailable, the count is 0.

Since this does not result in a true binary semaphore, advanced binary features like the Priority
Inheritance and Priority Ceiling Protocols are not available.

There is currently no text in this section.

126 Chapter 10. Semaphore Manager

Chapter 10 Section 10.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

10.4 Directives

This section details the semaphore manager’s directives. A subsection is dedicated to each of
this manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

10.4.1 sem_init - Initialize an unnamed semaphore

CALLING SEQUENCE:

1 int sem_init(
2 sem_t *sem,
3 int pshared,
4 unsigned int value
5);

STATUS CODES:

EINVALThe value argument exceeds SEM_VALUE_MAX
ENOSPCA resource required to initialize the semaphore has been exhausted The limit on

semaphores (SEM_VALUE_MAX) has been reached
ENOSYSThe function sem_init is not supported by this implementation
EPERM The process lacks appropriate privileges to initialize the semaphore

DESCRIPTION:

The sem_init function is used to initialize the unnamed semaphore referred to by sem. The
value of the initialized semaphore is the parameter value. The semaphore remains valid until
it is destroyed.

NOTES:

If the functions completes successfully, it shall return a value of zero. otherwise, it shall return
a value of -1 and set errno to specify the error that occurred.

Multiprocessing is currently not supported in this implementation.

10.4.2 sem_destroy - Destroy an unnamed semaphore

CALLING SEQUENCE:

1 int sem_destroy(
2 sem_t *sem
3);

STATUS CODES:

EINVAL The value argument exceeds SEM_VALUE_MAX
ENOSYS The function sem_init is not supported by this implementation
EBUSY There are currently processes blocked on the semaphore

DESCRIPTION:

10.4. Directives 127

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.4

The sem_destroy function is used to destroy an unnamed semaphore refered to by sem.
sem_destroy can only be used on a semaphore that was created using sem_init.

NOTES:

If the functions completes successfully, it shall return a value of zero. Otherwise, it shall return
a value of -1 and set errno to specify the error that occurred.

Multiprocessing is currently not supported in this implementation.

10.4.3 sem_open - Open a named semaphore

CALLING SEQUENCE:

1 int sem_open(
2 const char *name,
3 int oflag
4);

ARGUMENTS:

The following flag bit may be set in oflag:

O_
CREAT

Creates the semaphore if it does not already exist. If O_CREAT is set and the semaphore
already exists then O_CREAT has no effect. Otherwise, sem_open() creates a semaphore.
The O_CREAT flag requires the third and fourth argument: mode and value of type mode_
t and unsigned int, respectively.

O_
EXCL

If O_EXCL and O_CREAT are set, all call to sem_open() shall fail if the semaphore name
exists

STATUS CODES:

EACCES Valid name specified but oflag permissions are denied, or the semaphore name
specified does not exist and permission to create the named semaphore is denied.

EEXIST O_CREAT and O_EXCL are set and the named semaphore already exists.
EINTR The sem_open() operation was interrupted by a signal.
EINVAL The sem_open() operation is not supported for the given name.
EMFILE Too many semaphore descriptors or file descriptors in use by this process.
ENAMETOOLONGThe length of the name exceed PATH_MAX or name component is longer than NAME_

MAX while POSIX_NO_TRUNC is in effect.
ENOENT O_CREAT is not set and the named semaphore does not exist.
ENOSPC There is insufficient space for the creation of a new named semaphore.
ENOSYS The function sem_open() is not supported by this implementation.

DESCRIPTION:

The sem_open() function establishes a connection between a specified semaphore and a process.
After a call to sem_open with a specified semaphore name, a process can reference to semaphore
by the associated name using the address returned by the call. The oflag arguments listed above
control the state of the semaphore by determining if the semaphore is created or accessed by a
call to sem_open().

NOTES:

128 Chapter 10. Semaphore Manager

Chapter 10 Section 10.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

10.4.4 sem_close - Close a named semaphore

CALLING SEQUENCE:

1 int sem_close(
2 sem_t *sem_close
3);

STATUS CODES:

EACCES The semaphore argument is not a valid semaphore descriptor.
ENOSYS The function sem_close is not supported by this implementation.

DESCRIPTION:

The sem_close() function is used to indicate that the calling process is finished using the named
semaphore indicated by sem. The function sem_close deallocates any system resources that
were previously allocated by a sem_open system call. If sem_close() completes successfully it
returns a 1, otherwise a value of -1 is return and errno is set.

NOTES:

10.4.5 sem_unlink - Unlink a semaphore

CALLING SEQUENCE:

1 int sem_unlink(
2 const char *name
3);

STATUS CODES:

EACCESS Permission is denied to unlink a semaphore.
ENAMETOOLONG The length of the strong name exceed NAME_MAX while POSIX_NO_TRUNC is in

effect.
ENOENT The name of the semaphore does not exist.
ENOSPC There is insufficient space for the creation of a new named semaphore.
ENOSYS The function sem_unlink is not supported by this implementation.

DESCRIPTION:

The sem_unlink() function shall remove the semaphore name by the string name. If a process is
currently accessing the name semaphore, the sem_unlink command has no effect. If one or more
processes have the semaphore open when the sem_unlink function is called, the destruction
of semaphores shall be postponed until all reference to semaphore are destroyed by calls to
sem_close, _exit(), or exec. After all references have been destroyed, it returns immediately.

If the termination is successful, the function shall return 0. Otherwise, a -1 is returned and the
errno is set.

NOTES:

10.4. Directives 129

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.4

10.4.6 sem_wait - Wait on a Semaphore

CALLING SEQUENCE:

1 int sem_wait(
2 sem_t *sem
3);

STATUS CODES:

EINVAL The sem argument does not refer to a valid semaphore

DESCRIPTION:

This function attempts to lock a semaphore specified by sem. If the semaphore is available,
then the semaphore is locked (i.e., the semaphore value is decremented). If the semaphore is
unavailable (i.e., the semaphore value is zero), then the function will block until the semaphore
becomes available. It will then successfully lock the semaphore. The semaphore remains locked
until released by a sem_post() call.

If the call is unsuccessful, then the function returns -1 and sets errno to the appropriate error
code.

NOTES:

Multiprocessing is not supported in this implementation.

10.4.7 sem_trywait - Non-blocking Wait on a Semaphore

CALLING SEQUENCE:

1 int sem_trywait(
2 sem_t *sem
3);

STATUS CODES:

EAGAIN The semaphore is not available (i.e., the semaphore value is zero), so the semaphore
could not be locked.

EINVAL The sem argument does not refewr to a valid semaphore

DESCRIPTION:

This function attempts to lock a semaphore specified by sem. If the semaphore is available, then
the semaphore is locked (i.e., the semaphore value is decremented) and the function returns a
value of 0. The semaphore remains locked until released by a sem_post() call. If the semaphore
is unavailable (i.e., the semaphore value is zero), then the function will return a value of -1
immediately and set errno to EAGAIN.

If the call is unsuccessful, then the function returns -1 and sets errno to the appropriate error
code.

NOTES:

Multiprocessing is not supported in this implementation.

130 Chapter 10. Semaphore Manager

Chapter 10 Section 10.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

10.4.8 sem_timedwait - Wait on a Semaphore for a Specified Time

CALLING SEQUENCE:

1 int sem_timedwait(
2 sem_t *sem,
3 const struct timespec *abstime
4);

STATUS CODES:

EINVAL The sem argument does not refewr to a valid semaphore
EINVAL The nanoseconds field of timeout is invalid.
ETIMEDOUT The calling thread was unable to get the semaphore within the specified timeout

period.

DESCRIPTION:

This function attemtps to lock a semaphore specified by sem, and will wait for the semaphore
until the absolute time specified by abstime. If the semaphore is available, then the semaphore
is locked (i.e., the semaphore value is decremented) and the function returns a value of 0. The
semaphore remains locked until released by a sem_post() call. If the semaphore is unavailable,
then the function will wait for the semaphore to become available for the amount of time
specified by timeout.

If the semaphore does not become available within the interval specified by timeout, then the
function returns -1 and sets errno to EAGAIN. If any other error occurs, the function returns -1
and sets errno to the appropriate error code.

NOTES:

Multiprocessing is not supported in this implementation.

10.4.9 sem_post - Unlock a Semaphore

CALLING SEQUENCE:

1 int sem_post(
2 sem_t *sem
3);

STATUS CODES:

EINVAL The sem argument does not refer to a valid semaphore

DESCRIPTION:

This function attempts to release the semaphore specified by sem. If other tasks are wait-
ing on the semaphore, then one of those tasks (which one depends on the scheduler being
used) is allowed to lock the semaphore and return from its sem_wait(), sem_trywait(), or
sem_timedwait() call. If there are no other tasks waiting on the semaphore, then the semaphore
value is simply incremented. sem_post() returns 0 upon successful completion.

If an error occurs, the function returns -1 and sets errno to the appropriate error code.

10.4. Directives 131

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 10 Section 10.4

NOTES:

Multiprocessing is not supported in this implementation.

10.4.10 sem_getvalue - Get the value of a semaphore

CALLING SEQUENCE:

1 int sem_getvalue(
2 sem_t *sem,
3 int *sval
4);

STATUS CODES:

EINVAL The sem argument does not refer to a valid semaphore
ENOSYS The function sem_getvalue is not supported by this implementation

DESCRIPTION:

The sem_getvalue functions sets the location referenced by the sval argument to the value of
the semaphore without affecting the state of the semaphore. The updated value represents a
semaphore value that occurred at some point during the call, but is not necessarily the actual
value of the semaphore when it returns to the calling process.

If sem is locked, the value returned by sem_getvalue will be zero or a negative number whose
absolute value is the number of processes waiting for the semaphore at some point during the
call.

NOTES:

If the functions completes successfully, it shall return a value of zero. Otherwise, it shall return
a value of -1 and set errno to specify the error that occurred.

132 Chapter 10. Semaphore Manager

CHAPTER

ELEVEN

MUTEX MANAGER

133

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 11 Section 11.1

11.1 Introduction

The mutex manager implements the functionality required of the mutex manager as defined
by POSIX 1003.1b-1996. This standard requires that a compliant operating system provide the
facilties to ensure that threads can operate with mutual exclusion from one another and defines
the API that must be provided.

The services provided by the mutex manager are:

• pthread_mutexattr_init (page 137) - Initialize a Mutex Attribute Set

• pthread_mutexattr_destroy (page 137) - Destroy a Mutex Attribute Set

• pthread_mutexattr_setprotocol (page 138) - Set the Blocking Protocol

• pthread_mutexattr_getprotocol (page 138) - Get the Blocking Protocol

• pthread_mutexattr_setprioceiling (page 139) - Set the Priority Ceiling

• pthread_mutexattr_getprioceiling (page 139) - Get the Priority Ceiling

• pthread_mutexattr_setpshared (page 140) - Set the Visibility

• pthread_mutexattr_getpshared (page 140) - Get the Visibility

• pthread_mutex_init (page 140) - Initialize a Mutex

• pthread_mutex_destroy (page 141) - Destroy a Mutex

• pthread_mutex_lock (page 141) - Lock a Mutex

• pthread_mutex_trylock (page 142) - Poll to Lock a Mutex

• pthread_mutex_timedlock (page 142) - Lock a Mutex with Timeout

• pthread_mutex_unlock (page 143) - Unlock a Mutex

• pthread_mutex_setprioceiling (page 143) - Dynamically Set the Priority Ceiling

• pthread_mutex_getprioceiling (page 143) - Dynamically Get the Priority Ceiling

134 Chapter 11. Mutex Manager

Chapter 11 Section 11.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

11.2 Background

11.2.1 Mutex Attributes

Mutex attributes are utilized only at mutex creation time. A mutex attribute structure may be
initialized and passed as an argument to the mutex_init routine. Note that the priority ceiling
of a mutex may be set at run-time.

blocking protcol is the XXX
priority ceiling is the XXX
pshared is the XXX

11.2.2 PTHREAD_MUTEX_INITIALIZER

This is a special value that a variable of type pthread_mutex_t may be statically initialized to as
shown below:

1 pthread_mutex_t my_mutex = PTHREAD_MUTEX_INITIALIZER;

This indicates that my_mutex will be automatically initialized by an implicit call to
pthread_mutex_init the first time the mutex is used.

Note that the mutex will be initialized with default attributes.

11.2. Background 135

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 11 Section 11.3

11.3 Operations

There is currently no text in this section.

136 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

11.4 Services

This section details the mutex manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

11.4.1 pthread_mutexattr_init - Initialize a Mutex Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_init(
3 pthread_mutexattr_t *attr
4);

STATUS CODES:

EINVAL
The attribute pointer argument is invalid.

DESCRIPTION:

The pthread_mutexattr_init routine initializes the mutex attributes object specified by attr
with the default value for all of the individual attributes.

NOTES:

XXX insert list of default attributes here.

11.4.2 pthread_mutexattr_destroy - Destroy a Mutex Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_destroy(
3 pthread_mutexattr_t *attr
4);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

DESCRIPTION:

The pthread_mutex_attr_destroy routine is used to destroy a mutex attributes object. The
behavior of using an attributes object after it is destroyed is implementation dependent.

NOTES:

NONE

11.4. Services 137

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 11 Section 11.4

11.4.3 pthread_mutexattr_setprotocol - Set the Blocking Protocol

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_setprotocol(
3 pthread_mutexattr_t *attr,
4 int protocol
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The protocol argument is invalid.

DESCRIPTION:

The pthread_mutexattr_setprotocol routine is used to set value of the protocol attribute. This
attribute controls the order in which threads waiting on this mutex will receive it.

The protocol can be one of the following:

PTHREAD_PRIO_
NONE

in which case blocking order is FIFO.

PTHREAD_PRIO_
INHERIT

in which case blocking order is priority with the priority inheritance
protocol in effect.

PTHREAD_PRIO_
PROTECT

in which case blocking order is priority with the priority ceiling protocol
in effect.

NOTES:

There is currently no way to get simple priority blocking ordering with POSIX mutexes even
though this could easily by supported by RTEMS.

11.4.4 pthread_mutexattr_getprotocol - Get the Blocking Protocol

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_getprotocol(
3 pthread_mutexattr_t *attr,
4 int *protocol
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The protocol pointer argument is invalid.

DESCRIPTION:

138 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

The pthread_mutexattr_getprotocol routine is used to obtain the value of the protocol at-
tribute. This attribute controls the order in which threads waiting on this mutex will receive
it.

NOTES:

NONE

11.4.5 pthread_mutexattr_setprioceiling - Set the Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_setprioceiling(
3 pthread_mutexattr_t *attr,
4 int prioceiling
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The prioceiling argument is invalid.

DESCRIPTION:

The pthread_mutexattr_setprioceiling routine is used to set value of the prioceiling at-
tribute. This attribute specifies the priority that is the ceiling for threads obtaining this mutex.
Any task obtaining this mutex may not be of greater priority that the ceiling. If it is of lower
priority, then its priority will be elevated to prioceiling.

NOTES:

NONE

11.4.6 pthread_mutexattr_getprioceiling - Get the Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_getprioceiling(
3 const pthread_mutexattr_t *attr,
4 int *prioceiling
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The prioceiling pointer argument is invalid.

DESCRIPTION:

11.4. Services 139

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 11 Section 11.4

The pthread_mutexattr_getprioceiling routine is used to obtain the value of the prioceiling
attribute. This attribute specifies the priority ceiling for this mutex.

NOTES:

NONE

11.4.7 pthread_mutexattr_setpshared - Set the Visibility

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_setpshared(
3 pthread_mutexattr_t *attr,
4 int pshared
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The pshared argument is invalid.

DESCRIPTION:

NOTES:

11.4.8 pthread_mutexattr_getpshared - Get the Visibility

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutexattr_getpshared(
3 const pthread_mutexattr_t *attr,
4 int *pshared
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The pshared pointer argument is invalid.

DESCRIPTION:

NOTES:

11.4.9 pthread_mutex_init - Initialize a Mutex

CALLING SEQUENCE:

140 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

1 #include <pthread.h>
2 int pthread_mutex_init(
3 pthread_mutex_t *mutex,
4 const pthread_mutexattr_t *attr
5);

STATUS CODES:

EINVAL The attribute set is not initialized.
EINVAL The specified protocol is invalid.
EAGAIN The system lacked the necessary resources to initialize another mutex.
ENOMEM Insufficient memory exists to initialize the mutex.
EBUSY Attempted to reinialize the object reference by mutex, a previously initialized, but

not yet destroyed.

DESCRIPTION:

NOTES:

11.4.10 pthread_mutex_destroy - Destroy a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_destroy(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

EINVAL The specified mutex is invalid.
EBUSY Attempted to destroy the object reference by mutex, while it is locked or referenced

by another thread.

DESCRIPTION:

NOTES:

11.4.11 pthread_mutex_lock - Lock a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_lock(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

11.4. Services 141

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 11 Section 11.4

EINVAL The specified mutex is invalid.
EINVAL The mutex has the protocol attribute of PTHREAD_PRIO_PROTECT and the priority of the

calling thread is higher than the current priority ceiling.
EDEADLKThe current thread already owns the mutex.

DESCRIPTION:

NOTES:

11.4.12 pthread_mutex_trylock - Poll to Lock a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_trylock(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

EINVALThe specified mutex is invalid.
EINVALThe mutex has the protocol attribute of PTHREAD_PRIO_PROTECT and the priority of the

calling thread is higher than the current priority ceiling.
EBUSY The mutex is already locked.

DESCRIPTION:

NOTES:

11.4.13 pthread_mutex_timedlock - Lock a Mutex with Timeout

CALLING SEQUENCE:

1 #include <pthread.h>
2 #include <time.h>
3 int pthread_mutex_timedlock(
4 pthread_mutex_t *mutex,
5 const struct timespec *timeout
6);

STATUS CODES:

EINVAL The specified mutex is invalid.
EINVAL The nanoseconds field of timeout is invalid.
EINVAL The mutex has the protocol attribute of PTHREAD_PRIO_PROTECT and the priority of

the calling thread is higher than the current priority ceiling.
EDEADLK The current thread already owns the mutex.
ETIMEDOUTThe calling thread was unable to obtain the mutex within the specified timeout pe-

riod.

DESCRIPTION:

142 Chapter 11. Mutex Manager

Chapter 11 Section 11.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

NOTES:

11.4.14 pthread_mutex_unlock - Unlock a Mutex

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_unlock(
3 pthread_mutex_t *mutex
4);

STATUS CODES:

EINVAL The specified mutex is invalid.

DESCRIPTION:

NOTES:

11.4.15 pthread_mutex_setprioceiling - Dynamically Set the Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_setprioceiling(
3 pthread_mutex_t *mutex,
4 int prioceiling,
5 int *oldceiling
6);

STATUS CODES:

EINVAL The oldceiling pointer parameter is invalid.
EINVAL The prioceiling parameter is an invalid priority.
EINVAL The specified mutex is invalid.

DESCRIPTION:

NOTES:

11.4.16 pthread_mutex_getprioceiling - Get the Current Priority Ceiling

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_mutex_getprioceiling(
3 pthread_mutex_t *mutex,
4 int *prioceiling
5);

STATUS CODES:

11.4. Services 143

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 11 Section 11.4

EINVAL The prioceiling pointer parameter is invalid.
EINVAL The specified mutex is invalid.

DESCRIPTION:

NOTES:

144 Chapter 11. Mutex Manager

CHAPTER

TWELVE

CONDITION VARIABLE MANAGER

145

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 12 Section 12.1

12.1 Introduction

The condition variable manager . . .

The directives provided by the condition variable manager are:

• pthread_condattr_init (page 149) - Initialize a Condition Variable Attribute Set

• pthread_condattr_destroy (page 149) - Destroy a Condition Variable Attribute Set

• pthread_condattr_setpshared (page 149) - Set Process Shared Attribute

• pthread_condattr_getpshared (page 150) - Get Process Shared Attribute

• pthread_cond_init (page 150) - Initialize a Condition Variable

• pthread_cond_destroy (page 150) - Destroy a Condition Variable

• pthread_cond_signal (page 151) - Signal a Condition Variable

• pthread_cond_broadcast (page 151) - Broadcast a Condition Variable

• pthread_cond_wait (page 152) - Wait on a Condition Variable

• pthread_cond_timedwait (page 152) - With with Timeout a Condition Variable

146 Chapter 12. Condition Variable Manager

Chapter 12 Section 12.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

12.2 Background

There is currently no text in this section.

12.2. Background 147

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 12 Section 12.3

12.3 Operations

There is currently no text in this section.

148 Chapter 12. Condition Variable Manager

Chapter 12 Section 12.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

12.4 Directives

This section details the condition variable manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

12.4.1 pthread_condattr_init - Initialize a Condition Variable Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_init(
3 pthread_condattr_t *attr
4);

STATUS CODES:

• – ENOMEM

– Insufficient memory is available to initialize the condition variable attributes object.

DESCRIPTION:

NOTES:

12.4.2 pthread_condattr_destroy - Destroy a Condition Variable Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_destroy(
3 pthread_condattr_t *attr
4);

STATUS CODES:

EINVAL The attribute object specified is invalid.

DESCRIPTION:

NOTES:

12.4.3 pthread_condattr_setpshared - Set Process Shared Attribute

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_setpshared(
3 pthread_condattr_t *attr,
4 int pshared
5);

STATUS CODES:

12.4. Directives 149

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 12 Section 12.4

EINVAL Invalid argument passed.

DESCRIPTION:

NOTES:

12.4.4 pthread_condattr_getpshared - Get Process Shared Attribute

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_condattr_getpshared(
3 const pthread_condattr_t *attr,
4 int *pshared
5);

STATUS CODES:

EINVAL Invalid argument passed.

DESCRIPTION:

NOTES:

12.4.5 pthread_cond_init - Initialize a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_init(
3 pthread_cond_t *cond,
4 const pthread_condattr_t *attr
5);

STATUS CODES:

EAGAIN The system lacked a resource other than memory necessary to create the initialize the
condition variable object.

ENOMEM Insufficient memory is available to initialize the condition variable object.
EBUSY The specified condition variable has already been initialized.
EINVAL The specified attribute value is invalid.

DESCRIPTION:

NOTES:

12.4.6 pthread_cond_destroy - Destroy a Condition Variable

CALLING SEQUENCE:

150 Chapter 12. Condition Variable Manager

Chapter 12 Section 12.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

1 #include <pthread.h>
2 int pthread_cond_destroy(
3 pthread_cond_t *cond
4);

STATUS CODES:

EINVAL The specified condition variable is invalid.
EBUSY The specified condition variable is currently in use.

DESCRIPTION:

NOTES:

12.4.7 pthread_cond_signal - Signal a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_signal(
3 pthread_cond_t *cond
4);

STATUS CODES:

EINVAL The specified condition variable is not valid.

DESCRIPTION:

NOTES:

This routine should not be invoked from a handler from an asynchronous signal handler or an
interrupt service routine.

12.4.8 pthread_cond_broadcast - Broadcast a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_broadcast(
3 pthread_cond_t *cond
4);

STATUS CODES:

EINVAL The specified condition variable is not valid.

DESCRIPTION:

NOTES:

12.4. Directives 151

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 12 Section 12.4

This routine should not be invoked from a handler from an asynchronous signal handler or an
interrupt service routine.

12.4.9 pthread_cond_wait - Wait on a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_wait(
3 pthread_cond_t *cond,
4 pthread_mutex_t *mutex
5);

STATUS CODES:

EINVALThe specified condition variable or mutex is not initialized OR different mutexes were
specified for concurrent pthread_cond_wait() and pthread_cond_timedwait() oper-
ations on the same condition variable OR the mutex was not owned by the current
thread at the time of the call.

DESCRIPTION:

NOTES:

12.4.10 pthread_cond_timedwait - Wait with Timeout a Condition Variable

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cond_timedwait(
3 pthread_cond_t *cond,
4 pthread_mutex_t *mutex,
5 const struct timespec *abstime
6);

STATUS CODES:

EINVALThe nanoseconds field of timeout is invalid.
EINVALThe specified condition variable or mutex is not initialized OR different mutexes were

specified for concurrent pthread_cond_wait() and pthread_cond_timedwait() oper-
ations on the same condition variable OR the mutex was not owned by the current
thread at the time of the call.

ETIMEDOUTThe specified time has elapsed without the condition variable being satisfied.

DESCRIPTION:

NOTES:

152 Chapter 12. Condition Variable Manager

CHAPTER

THIRTEEN

MEMORY MANAGEMENT MANAGER

153

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 13 Section 13.1

13.1 Introduction

The memory management manager is . . .

The directives provided by the memory management manager are:

• mlockall (page 157) - Lock the Address Space of a Process

• munlockall (page 157) - Unlock the Address Space of a Process

• mlock (page 157) - Lock a Range of the Process Address Space

• munlock (page 158) - Unlock a Range of the Process Address Space

• mmap (page 158) - Map Process Addresses to a Memory Object

• munmap (page 159) - Unmap Previously Mapped Addresses

• mprotect (page 160) - Change Memory Protection

• msync (page 160) - Memory Object Synchronization

• shm_open (page 161) - Open a Shared Memory Object

• shm_unlink (page 162) - Remove a Shared Memory Object

154 Chapter 13. Memory Management Manager

Chapter 13 Section 13.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

13.2 Background

There is currently no text in this section.

13.2. Background 155

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 13 Section 13.3

13.3 Operations

There is currently no text in this section.

156 Chapter 13. Memory Management Manager

Chapter 13 Section 13.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

13.4 Directives

This section details the memory management manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

13.4.1 mlockall - Lock the Address Space of a Process

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int mlockall(
3 int flags
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.2 munlockall - Unlock the Address Space of a Process

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int munlockall(
3 void
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.3 mlock - Lock a Range of the Process Address Space

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int mlock(
3 const void *addr,
4 size_t len
5);

STATUS CODES:

13.4. Directives 157

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 13 Section 13.4

E The

DESCRIPTION:

NOTES:

13.4.4 munlock - Unlock a Range of the Process Address Space

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int munlock(
3 const void *addr,
4 size_t len
5);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.5 mmap - Map Process Addresses to a Memory Object

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 void *mmap(
3 void *addr,
4 size_t len,
5 int prot,
6 int flags,
7 int fildes,
8 off_t off
9);

STATUS CODES:

158 Chapter 13. Memory Management Manager

Chapter 13 Section 13.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

EBADF The fildes argument is not a valid open file descriptor.
EINVALThe value of len is zero.
EINVALThe value of flags is invalid (neither MAP_PRIVATE nor MAP_SHARED is set).
EINVALThe addr argument (if MAP_FIXED was specified) or off is not a multiple of the page

size as returned by sysconf(), or is considered invalid by the implementation.
ENODEVThe fildes argument refers to a file whose type is not supported by mmap.
ENOMEMMAP_FIXED was specified, and the range [addr,addr+len) exceeds that allowed for the

address space of a process; or, if MAP_FIXED was not specified and there is insufficient
room in the address space to effect the mapping.

ENOTSUPMAP_FIXED or MAP_PRIVATE was specified in the flags argument and the implemen-
tation does not support this functionality.

ENOTSUPThe implementation does not support the combination of accesses requested in the
prot argument.

ENXIO Addresses in the range [off,off+len) are invalid for the object specified by fildes.
ENXIO MAP_FIXED was specified in flags and the combination of addr, len, and off is invalid

for the object specified by fildes.
EOVERFLOWThe file is a regular file and the value of off plus len exceeds the offset maximum

established in the open file description associated with fildes.

DESCRIPTION:

mmap establishes a mapping between an address pa for len bytes to the memory object rep-
resented by the file descriptor fildes at offset off for len bytes. The value of pa is an
implementation-defined function of the parameter addr and the values of flags. A success-
ful mmap() call shall return pa as its result. An unsuccessful call returns MAP_FAILED and sets
errno accordingly.

NOTES:

RTEMS is a single address space operating system without privilege separation between the
kernel and user space. Therefore, the implementation of mmap has a number of implementation-
specific issues to be aware of:

• Read, write and execute permissions are allowed because the memory in RTEMS does
not normally have protections but we cannot hide access to memory. Thus, the use of
PROT_NONE for the prot argument is not supported. Similarly, there is no restriction of
write access, so PROT_WRITE must be in the prot argument.

• Anonymous mappings must have fildes set to -1 and off set to 0. Shared mappings are
not supported with Anonymous mappings.

• MAP_FIXED is not supported for shared memory objects with MAP_SHARED.

• Support for shared mappings is dependent on the underlying object’s filesystem imple-
mentation of an mmap_h file operation handler.

13.4.6 munmap - Unmap Previously Mapped Addresses

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int munmap(
3 void *addr,

(continues on next page)

13.4. Directives 159

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 13 Section 13.4

(continued from previous page)

4 size_t len
5);

STATUS CODES:

EINVAL Addresses in the range [addr,addr+len) are outside the valid range for the address
space.

EINVAL The len argument is 0.

DESCRIPTION:

The munmap() function shall remove any mappings for those entire pages containing any part of
the address space of the process starting at addr and continuing for len bytes. If there are no
mappings in the specified address range, then munmap() has no effect.

Upon successful completion, munmap() shall return 0; otherwise, it shall return -1 and set errno
to indicate the error.

NOTES:

13.4.7 mprotect - Change Memory Protection

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int mprotect(
3 void *addr,
4 size_t len,
5 int prot
6);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.8 msync - Memory Object Synchronization

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int msync(
3 void *addr,
4 size_t len,
5 int flags
6);

160 Chapter 13. Memory Management Manager

Chapter 13 Section 13.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

E The

DESCRIPTION:

NOTES:

13.4.9 shm_open - Open a Shared Memory Object

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int shm_open(
3 const char *name,
4 int oflag,
5 mode_t mode
6);

STATUS CODES:

EACCESThe shared memory object exists and the permissions specified by oflag are denied, or
the shared memory object does not exist and permission to create the shared memory
object is denied, or O_TRUNC is specified and write permission is denied.

EEXISTO_CREAT and O_EXCL are set and the named shared memory object already exists.
EINVALThe shm_open() operation is not supported for the given name.
EMFILEAll file descriptors available to the process are currently open.
ENFILEToo many shared memory objects are currently open in the system.
ENOENTO_CREAT is not set and the named shared memory object does not exist.
ENOSPCThere is insufficient space for the creation of the new shared memory object.
ENAMETOOLONGThe length of the name argument exceeds _POSIX_PATH_MAX.

DESCRIPTION:

The shm_open() function shall establish a connection between a shared memory object and a
file descriptor. It shall create an open file description that refers to the shared memory object
and a file descriptor that refers to that open file description. The name argument points to a
string naming a shared memory object.

If successful, shm_open() shall return a file descriptor for the shared memory object. Upon
successful completion, the shm_open() function shall return a non-negative integer representing
the file descriptor. Otherwise, it shall return -1 and set errno to indicate the error.

NOTES:

An application can set the _POSIX_Shm_Object_operations to control the behavior of shared
memory objects when accessed via the file descriptor.

The name must be valid for an RTEMS SuperCore Object.

13.4. Directives 161

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 13 Section 13.4

13.4.10 shm_unlink - Remove a Shared Memory Object

CALLING SEQUENCE:

1 #include <sys/mman.h>
2 int shm_unlink(
3 const char *name
4);

STATUS CODES:

ENOENT The named shared memory object does not exist.
ENAMETOOLONG The length of the name argument exceeds _POSIX_PATH_MAX.

DESCRIPTION:

The shm_unlink() function shall remove the name of the shared memory object named by the
string pointed to by name.

If one or more references to the shared memory object exist when the object is unlinked, the
name shall be removed before shm_unlink() returns, but the removal of the memory object
contents shall be postponed until all open and map references to the shared memory object
have been removed.

Even if the object continues to exist after the last shm_unlink(), reuse of the name shall subse-
quently cause shm_open() to behave as if no shared memory object of this name exists.

Upon successful completion, a value of zero shall be returned. Otherwise, a value of -1 shall be
returned and errno set to indicate the error. If -1 is returned, the named shared memory object
shall not be changed by this function call.

NOTES:

162 Chapter 13. Memory Management Manager

CHAPTER

FOURTEEN

SCHEDULER MANAGER

163

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 14 Section 14.1

14.1 Introduction

The scheduler manager . . .

The directives provided by the scheduler manager are:

• sched_get_priority_min (page 167) - Get Minimum Priority Value

• sched_get_priority_max (page 167) - Get Maximum Priority Value

• sched_rr_get_interval (page 168) - Get Timeslicing Quantum

• sched_yield (page 168) - Yield the Processor

164 Chapter 14. Scheduler Manager

Chapter 14 Section 14.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

14.2 Background

14.2.1 Priority

In the RTEMS implementation of the POSIX API, the priorities range from the low priority of
sched_get_priority_min() to the highest priority of sched_get_priority_max(). Numerically
higher values represent higher priorities.

14.2.2 Scheduling Policies

The following scheduling policies are available:

SCHED_FIFO
Priority-based, preemptive scheduling with no timeslicing. This is equivalent to what is called
“manual round-robin” scheduling.

SCHED_RR
Priority-based, preemptive scheduling with timeslicing. Time quantums are maintained on a
per-thread basis and are not reset at each context switch. Thus, a thread which is preempted
and subsequently resumes execution will attempt to complete the unused portion of its time
quantum.

SCHED_OTHER
Priority-based, preemptive scheduling with timeslicing. Time quantums are maintained on a
per-thread basis and are reset at each context switch.

SCHED_SPORADIC
Priority-based, preemptive scheduling utilizing three additional parameters: budget, replen-
ishment period, and low priority. Under this policy, the thread is allowed to execute for
“budget” amount of time before its priority is lowered to “low priority”. At the end of each
replenishment period, the thread resumes its initial priority and has its budget replenished.

14.2. Background 165

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 14 Section 14.3

14.3 Operations

There is currently no text in this section.

166 Chapter 14. Scheduler Manager

Chapter 14 Section 14.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

14.4 Directives

This section details the scheduler manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

14.4.1 sched_get_priority_min - Get Minimum Priority Value

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_get_priority_min(
3 int policy
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The indicated policy is invalid.

DESCRIPTION:

This routine return the minimum (numerically and logically lowest) priority for the specified
policy.

NOTES:

NONE

14.4.2 sched_get_priority_max - Get Maximum Priority Value

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_get_priority_max(
3 int policy
4);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The indicated policy is invalid.

DESCRIPTION:

This routine return the maximum (numerically and logically highest) priority for the specified
policy.

NOTES:

NONE

14.4. Directives 167

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 14 Section 14.4

14.4.3 sched_rr_get_interval - Get Timeslicing Quantum

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_rr_get_interval(
3 pid_t pid,
4 struct timespec *interval
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

ESRCH The indicated process id is invalid.
EINVAL The specified interval pointer parameter is invalid.

DESCRIPTION:

This routine returns the length of the timeslice quantum in the interval parameter for the
specified pid.

NOTES:

The pid argument should be 0 to indicate the calling process.

14.4.4 sched_yield - Yield the Processor

CALLING SEQUENCE:

1 #include <sched.h>
2 int sched_yield(void);

STATUS CODES:

This routine always returns zero to indicate success.

DESCRIPTION:

This call forces the calling thread to yield the processor to another thread. Normally this is used
to implement voluntary round-robin task scheduling.

NOTES:

NONE

168 Chapter 14. Scheduler Manager

CHAPTER

FIFTEEN

CLOCK MANAGER

169

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 15 Section 15.1

15.1 Introduction

The clock manager provides services two primary classes of services. The first focuses on ob-
taining and setting the current date and time. The other category of services focus on allowing
a thread to delay for a specific length of time.

The directives provided by the clock manager are:

• clock_gettime (page 173) - Obtain Time of Day

• clock_settime (page 173) - Set Time of Day

• clock_getres (page 174) - Get Clock Resolution

• sleep (page 174) - Delay Process Execution

• usleep (page 174) - Delay Process Execution in Microseconds

• nanosleep (page 175) - Delay with High Resolution

• gettimeofday (page 175) - Get the Time of Day

• time (page 176) - Get time in seconds

170 Chapter 15. Clock Manager

Chapter 15 Section 15.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

15.2 Background

There is currently no text in this section.

15.2. Background 171

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 15 Section 15.3

15.3 Operations

There is currently no text in this section.

172 Chapter 15. Clock Manager

Chapter 15 Section 15.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

15.4 Directives

This section details the clock manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

15.4.1 clock_gettime - Obtain Time of Day

CALLING SEQUENCE:

1 #include <time.h>
2 int clock_gettime(
3 clockid_t clock_id,
4 struct timespec *tp
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The tp pointer parameter is invalid.
EINVAL The clock_id specified is invalid.

DESCRIPTION:

NOTES:

NONE

15.4.2 clock_settime - Set Time of Day

CALLING SEQUENCE:

1 #include <time.h>
2 int clock_settime(
3 clockid_t clock_id,
4 const struct timespec *tp
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The tp pointer parameter is invalid.
EINVAL The clock_id specified is invalid.
EINVAL The contents of the tp structure are invalid.

DESCRIPTION:

NOTES:

NONE

15.4. Directives 173

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 15 Section 15.4

15.4.3 clock_getres - Get Clock Resolution

CALLING SEQUENCE:

1 #include <time.h>
2 int clock_getres(
3 clockid_t clock_id,
4 struct timespec *res
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINVAL The res pointer parameter is invalid.
EINVAL The clock_id specified is invalid.

DESCRIPTION:

NOTES:

If res is NULL, then the resolution is not returned.

15.4.4 sleep - Delay Process Execution

CALLING SEQUENCE:

1 #include <unistd.h>
2 unsigned int sleep(
3 unsigned int seconds
4);

STATUS CODES:

This routine returns the number of unslept seconds.

DESCRIPTION:

The sleep() function delays the calling thread by the specified number of seconds.

NOTES:

This call is interruptible by a signal.

15.4.5 usleep - Delay Process Execution in Microseconds

CALLING SEQUENCE:

1 #include <time.h>
2 useconds_t usleep(
3 useconds_t useconds
4);

STATUS CODES:

This routine returns the number of unslept seconds.

174 Chapter 15. Clock Manager

Chapter 15 Section 15.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

DESCRIPTION:

The sleep() function delays the calling thread by the specified number of seconds.

The usleep() function suspends the calling thread from execution until either the number of
microseconds specified by the useconds argument has elapsed or a signal is delivered to the
calling thread and its action is to invoke a signal-catching function or to terminate the process.

Because of other activity, or because of the time spent in processing the call, the actual length
of time the thread is blocked may be longer than the amount of time specified.

NOTES:

This call is interruptible by a signal.

The Single UNIX Specification allows this service to be implemented using the same timer as
that used by the alarm() service. This is NOT the case for RTEMS and this call has no interaction
with the SIGALRM signal.

15.4.6 nanosleep - Delay with High Resolution

CALLING SEQUENCE:

1 #include <time.h>
2 int nanosleep(
3 const struct timespec *rqtp,
4 struct timespec *rmtp
5);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EINTR The routine was interrupted by a signal.
EAGAIN The requested sleep period specified negative seconds or nanoseconds.
EINVAL The requested sleep period specified an invalid number for the nanoseconds field.

DESCRIPTION:

NOTES:

This call is interruptible by a signal.

15.4.7 gettimeofday - Get the Time of Day

CALLING SEQUENCE:

1 #include <sys/time.h>
2 #include <unistd.h>
3 int gettimeofday(
4 struct timeval *tp,
5 struct timezone *tzp
6);

STATUS CODES:

On error, this routine returns -1 and sets errno as appropriate.

15.4. Directives 175

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 15 Section 15.4

EPERM settimeofdat is called by someone other than the superuser.
EINVAL Timezone (or something else) is invalid.
EFAULT One of tv or tz pointed outside your accessible address space

DESCRIPTION:

This routine returns the current time of day in the tp structure.

NOTES:

Currently, the timezone information is not supported. The tzp argument is ignored.

15.4.8 time - Get time in seconds

CALLING SEQUENCE:

1 #include <time.h>
2 int time(
3 time_t *tloc
4);

STATUS CODES:

This routine returns the number of seconds since the Epoch.

DESCRIPTION:

time returns the time since 00:00:00 GMT, January 1, 1970, measured in seconds

If tloc in non null, the return value is also stored in the memory pointed to by t.

NOTES:

NONE

176 Chapter 15. Clock Manager

CHAPTER

SIXTEEN

TIMER MANAGER

177

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 16 Section 16.1

16.1 Introduction

The timer manager is . . .

The services provided by the timer manager are:

• timer_create (page 181) - Create a Per-Process Timer

• timer_delete (page 181) - Delete a Per-Process Timer

• timer_settime (page 181) - Set Next Timer Expiration

• timer_gettime (page 182) - Get Time Remaining on Timer

• timer_getoverrun (page 182) - Get Timer Overrun Count

178 Chapter 16. Timer Manager

Chapter 16 Section 16.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

16.2 Background

16.2. Background 179

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 16 Section 16.3

16.3 Operations

180 Chapter 16. Timer Manager

Chapter 16 Section 16.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

16.4 System Calls

This section details the timer manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

16.4.1 timer_create - Create a Per-Process Timer

CALLING SEQUENCE:

1 #include <time.h>
2 #include <signal.h>
3 int timer_create(
4 clockid_t clock_id,
5 struct sigevent *evp,
6 timer_t *timerid
7);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.2 timer_delete - Delete a Per-Process Timer

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_delete(
3 timer_t timerid
4);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.3 timer_settime - Set Next Timer Expiration

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_settime(
3 timer_t timerid,
4 int flags,
5 const struct itimerspec *value,
6 struct itimerspec *ovalue
7);

16.4. System Calls 181

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 16 Section 16.4

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.4 timer_gettime - Get Time Remaining on Timer

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_gettime(
3 timer_t timerid,
4 struct itimerspec *value
5);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

16.4.5 timer_getoverrun - Get Timer Overrun Count

CALLING SEQUENCE:

1 #include <time.h>
2 int timer_getoverrun(
3 timer_t timerid
4);

STATUS CODES:

EXXX -

DESCRIPTION:

NOTES:

182 Chapter 16. Timer Manager

CHAPTER

SEVENTEEN

MESSAGE PASSING MANAGER

183

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 17 Section 17.1

17.1 Introduction

The message passing manager is the means to provide communication and synchronization
capabilities using POSIX message queues.

The directives provided by the message passing manager are:

• mq_open (page 189) - Open a Message Queue

• mq_close (page 190) - Close a Message Queue

• mq_unlink (page 191) - Remove a Message Queue

• mq_send (page 191) - Send a Message to a Message Queue

• mq_receive (page 192) - Receive a Message from a Message Queue

• mq_notify (page 193) - Notify Process that a Message is Available

• mq_setattr (page 194) - Set Message Queue Attributes

• mq_getattr (page 194) - Get Message Queue Attributes

184 Chapter 17. Message Passing Manager

Chapter 17 Section 17.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

17.2 Background

17.2.1 Theory

Message queues are named objects that operate with readers and writers. In addition, a message
queue is a priority queue of discrete messages. POSIX message queues offer a certain, basic
amount of application access to, and control over, the message queue geometry that can be
changed.

17.2.2 Messages

A message is a variable length buffer where information can be stored to support communica-
tion. The length of the message and the information stored in that message are user-defined and
can be actual data, pointer(s), or empty. There is a maximum acceptable length for a message
that is associated with each message queue.

17.2.3 Message Queues

Message queues are named objects similar to the pipes of POSIX. They are a means of com-
municating data between multiple processes and for passing messages among tasks and ISRs.
Message queues can contain a variable number of messages from 0 to an upper limit that is
user defined. The maximum length of the message can be set on a per message queue basis.
Normally messages are sent and received from the message queue in FIFO order. However,
messages can also be prioritized and a priority queue established for the passing of messages.
Synchronization is needed when a task waits for a message to arrive at a queue. Also, a task
may poll a queue for the arrival of a message.

The message queue descriptor mqd_t represents the message queue. It is passed as an argument
to all of the message queue functions.

17.2.4 Building a Message Queue Attribute Set

The mq_attr structure is used to define the characteristics of the message queue.

1 struct mq_attr{
2 long mq_flags;
3 long mq_maxmsg;
4 long mq_msgsize;
5 long mq_curmsgs;
6 };

All of these attributes are set when the message queue is created using mq_open. The mq_flags
field is not used in the creation of a message queue, it is only used by mq_setattr and
mq_getattr. The structure mq_attr is passed as an argument to mq_setattr and mq_getattr.

The mq_flags contain information affecting the behavior of the message queue. The O_NONBLOCK
mq_flag is the only flag that is defined. In mq_setattr, the mq_flag can be set to dynamically
change the blocking and non-blocking behavior of the message queue. If the non-block flag is
set then the message queue is non-blocking, and requests to send and receive messages do not
block waiting for resources. For a blocking message queue, a request to send might have to
wait for an empty message queue, and a request to receive might have to wait for a message
to arrive on the queue. Both mq_maxmsg and mq_msgsize affect the sizing of the message queue.
mq_maxmsg specifies how many messages the queue can hold at any one time. mq_msgsize

17.2. Background 185

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 17 Section 17.2

specifies the size of any one message on the queue. If either of these limits is exceeded, an error
message results.

Upon return from mq_getattr, the mq_curmsgs is set according to the current state of the mes-
sage queue. This specifies the number of messages currently on the queue.

17.2.5 Notification of a Message on the Queue

Every message queue has the ability to notify one (and only one) process whenever the queue’s
state changes from empty (0 messages) to nonempty. This means that the process does not
have to block or constantly poll while it waits for a message. By calling mq_notify, you can
attach a notification request to a message queue. When a message is received by an empty
queue, if there are no processes blocked and waiting for the message, then the queue notifies
the requesting process of a message arrival. There is only one signal sent by the message queue,
after that the notification request is de-registered and another process can attach its notification
request. After receipt of a notification, a process must re-register if it wishes to be notified again.

If there is a process blocked and waiting for the message, that process gets the message, and
notification is not sent. It is also possible for another process to receive the message after the
notification is sent but before the notified process has sent its receive request.

Only one process can have a notification request attached to a message queue at any one time.
If another process attempts to register a notification request, it fails. You can de-register for a
message queue by passing a NULL to mq_notify, this removes any notification request attached
to the queue. Whenever the message queue is closed, all notification attachments are removed.

17.2.6 POSIX Interpretation Issues

There is one significant point of interpretation related to the RTEMS implementation of POSIX
message queues:

What happens to threads already blocked on a message queue when the mode
of that same message queue is changed from blocking to non-blocking?

The RTEMS POSIX implementation decided to unblock all waiting tasks with an EAGAIN status
just as if a non-blocking version of the same operation had returned unsatisfied. This case is
not discussed in the POSIX standard and other implementations may have chosen alternative
behaviors.

186 Chapter 17. Message Passing Manager

Chapter 17 Section 17.3 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

17.3 Operations

17.3.1 Opening or Creating a Message Queue

If the message queue already exists, mq_open() opens it, if the message queue does not exist,
mq_open() creates it. When a message queue is created, the geometry of the message queue is
contained in the attribute structure that is passed in as an argument. This includes mq_msgsize
that dictates the maximum size of a single message, and the mq_maxmsg that dictates the
maximum number of messages the queue can hold at one time. The blocking or non-blocking
behavior of the queue can also specified.

17.3.2 Closing a Message Queue

The mq_close() function is used to close the connection made to a message queue that was
made during mq_open. The message queue itself and the messages on the queue are persistent
and remain after the queue is closed.

17.3.3 Removing a Message Queue

The mq_unlink() function removes the named message queue. If the message queue is not open
when mq_unlink is called, then the queue is immediately eliminated. Any messages that were
on the queue are lost, and the queue can not be opened again. If processes have the queue
open when mq_unlink is called, the removal of the queue is delayed until the last process using
the queue has finished. However, the name of the message queue is removed so that no other
process can open it.

17.3.4 Sending a Message to a Message Queue

The mq_send() function adds the message in priority order to the message queue. Each message
has an assigned a priority. The highest priority message is be at the front of the queue.

The maximum number of messages that a message queue may accept is specified at creation by
the mq_maxmsg field of the attribute structure. If this amount is exceeded, the behavior of the
process is determined according to what oflag was used when the message queue was opened.
If the queue was opened with O_NONBLOCK flag set, the process does not block, and an error is
returned. If the O_NONBLOCK flag was not set, the process does block and wait for space on the
queue.

17.3.5 Receiving a Message from a Message Queue

The mq_receive() function is used to receive the oldest of the highest priority message(s) from
the message queue specified by mqdes. The messages are received in FIFO order within the
priorities. The received message’s priority is stored in the location referenced by the msg_prio.
If the msg_prio is a NULL, the priority is discarded. The message is removed and stored in an
area pointed to by msg_ptr whose length is of msg_len. The msg_len must be at least equal to
the mq_msgsize attribute of the message queue.

The blocking behavior of the message queue is set by O_NONBLOCK at mq_open or by setting
O_NONBLOCK in mq_flags in a call to mq_setattr. If this is a blocking queue, the process does
block and wait on an empty queue. If this a non-blocking queue, the process does not block.
Upon successful completion, mq_receive returns the length of the selected message in bytes and
the message is removed from the queue.

17.3. Operations 187

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 17 Section 17.3

17.3.6 Notification of Receipt of a Message on an Empty Queue

The mq_notify() function registers the calling process to be notified of message arrival at an
empty message queue. Every message queue has the ability to notify one (and only one) process
whenever the queue’s state changes from empty (0 messages) to nonempty. This means that
the process does not have to block or constantly poll while it waits for a message. By calling
mq_notify, a notification request is attached to a message queue. When a message is received
by an empty queue, if there are no processes blocked and waiting for the message, then the
queue notifies the requesting process of a message arrival. There is only one signal sent by
the message queue, after that the notification request is de-registered and another process can
attach its notification request. After receipt of a notification, a process must re-register if it
wishes to be notified again.

If there is a process blocked and waiting for the message, that process gets the message, and
notification is not sent. Only one process can have a notification request attached to a message
queue at any one time. If another process attempts to register a notification request, it fails.
You can de-register for a message queue by passing a NULL to mq_notify, this removes any no-
tification request attached to the queue. Whenever the message queue is closed, all notification
attachments are removed.

17.3.7 Setting the Attributes of a Message Queue

The mq_setattr() function is used to set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes. The *omqstat
represents the old or previous attributes. If omqstat is non-NULL, the function mq_setattr()
stores, in the location referenced by omqstat, the previous message queue attributes and the
current queue status. These values are the same as would be returned by a call to mq_getattr()
at that point.

There is only one mq_attr.mq_flag that can be altered by this call. This is the flag that deals
with the blocking and non-blocking behavior of the message queue. If the flag is set then the
message queue is non-blocking, and requests to send or receive do not block while waiting for
resources. If the flag is not set, then message send and receive may involve waiting for an empty
queue or waiting for a message to arrive.

17.3.8 Getting the Attributes of a Message Queue

The mq_getattr() function is used to get status information and attributes of the message queue
associated with the message queue descriptor. The results are returned in the mq_attr structure
referenced by the mqstat argument. All of these attributes are set at create time, except the
blocking/non-blocking behavior of the message queue which can be dynamically set by using
mq_setattr. The attribute mq_curmsg is set to reflect the number of messages on the queue at
the time that mq_getattr was called.

188 Chapter 17. Message Passing Manager

Chapter 17 Section 17.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

17.4 Directives

This section details the message passing manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

17.4.1 mq_open - Open a Message Queue

CALLING SEQUENCE:

1 #include <mqueue.h>
2 mqd_t mq_open(
3 const char *name,
4 int oflag,
5 mode_t mode,
6 struct mq_attr *attr
7);

STATUS CODES:

EACCES Either the message queue exists and the permissions requested in oflags were
denied, or the message does not exist and permission to create one is denied.

EEXIST You tried to create a message queue that already exists.
EINVAL An inappropriate name was given for the message queue, or the values of mq-maxmsg

or mq_msgsize were less than 0.
ENOENT The message queue does not exist, and you did not specify to create it.
EINTR The call to mq_open was interrupted by a signal.
EMFILE The process has too many files or message queues open. This is a process limit

error.
ENFILE The system has run out of resources to support more open message queues. This is

a system error.
ENAMETOOLONGmq_name is too long.

DESCRIPTION:

The mq_open() function establishes the connection between a process and a message queue with
a message queue descriptor. If the message queue already exists, mq_open opens it, if the mes-
sage queue does not exist, mq_open creates it. Message queues can have multiple senders and
receivers. If mq_open is successful, the function returns a message queue descriptor. Otherwise,
the function returns a -1 and sets errno to indicate the error.

The name of the message queue is used as an argument. For the best of portability, the name of
the message queue should begin with a “/” and no other “/” should be in the name. Different
systems interpret the name in different ways.

The oflags contain information on how the message is opened if the queue already exists. This
may be O_RDONLY for read only, O_WRONLY for write only, of O_RDWR, for read and write.

In addition, the oflags contain information needed in the creation of a message queue.

17.4. Directives 189

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 17 Section 17.4

O_
NONBLOCK

If the non-block flag is set then the message queue is non-blocking, and requests to
send and receive messages do not block waiting for resources. If the flag is not set then
the message queue is blocking, and a request to send might have to wait for an empty
message queue. Similarly, a request to receive might have to wait for a message to
arrive on the queue.

O_
CREAT

This call specifies that the call the mq_open is to create a new message queue. In this
case the mode and attribute arguments of the function call are utilized. The message
queue is created with a mode similar to the creation of a file, read and write permission
creator, group, and others. The geometry of the message queue is contained in the
attribute structure. This includes mq_msgsize that dictates the maximum size of a
single message, and the mq_maxmsg that dictates the maximum number of messages
the queue can hold at one time. If a NULL is used in the mq_attr argument, then the
message queue is created with implementation defined defaults.

O_
EXCL

is always set if O_CREAT flag is set. If the message queue already exists, O_EXCL causes
an error message to be returned, otherwise, the new message queue fails and appends
to the existing one.

NOTES:

The mq_open() function does not add or remove messages from the queue. When a new message
queue is being created, the mq_flag field of the attribute structure is not used.

17.4.2 mq_close - Close a Message Queue

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_close(
3 mqd_t mqdes
4);

STATUS CODES:

EINVAL The descriptor does not represent a valid open message queue

DESCRIPTION:

The mq_close function removes the association between the message queue descriptor, mqdes,
and its message queue. If mq_close() is successfully completed, the function returns a value of
zero; otherwise, the function returns a value of -1 and sets errno to indicate the error.

NOTES:

If the process had successfully attached a notification request to the message queue via
mq_notify, this attachment is removed, and the message queue is available for another pro-
cess to attach for notification. mq_close has no effect on the contents of the message queue, all
the messages that were in the queue remain in the queue.

190 Chapter 17. Message Passing Manager

Chapter 17 Section 17.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

17.4.3 mq_unlink - Remove a Message Queue

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_unlink(
3 const char *name
4);

STATUS CODES:

EINVAL The descriptor does not represent a valid message queue

DESCRIPTION:

The mq_unlink() function removes the named message queue. If the message queue is not
open when mq_unlink is called, then the queue is immediately eliminated. Any messages that
were on the queue are lost, and the queue can not be opened again. If processes have the
queue open when mq_unlink is called, the removal of the queue is delayed until the last process
using the queue has finished. However, the name of the message queue is removed so that no
other process can open it. Upon successful completion, the function returns a value of zero.
Otherwise, the named message queue is not changed by this function call, and the function
returns a value of -1 and sets errno to indicate the error.

NOTES:

Calls to mq_open() to re-create the message queue may fail until the message queue is actually
removed. However, the mq_unlink() call need not block until all references have been closed;
it may return immediately.

17.4.4 mq_send - Send a Message to a Message Queue

CALLING SEQUENCE:

1 #include<mqueue.h>
2 int mq_send(
3 mqd_t mqdes,
4 const char *msg_ptr,
5 size_t msg_len,
6 unsigned int msg_prio
7);

STATUS CODES:

EBADF The descriptor does not represent a valid message queue, or the queue was opened
for read only O_RDONLY

EINVAL The value of msg_prio was greater than the MQ_PRIO_MAX.
EMSGSIZEThe msg_len is greater than the mq_msgsize attribute of the message queue
EAGAIN The message queue is non-blocking, and there is no room on the queue for another

message as specified by the mq_maxmsg.
EINTR The message queue is blocking. While the process was waiting for free space on the

queue, a signal arrived that interrupted the wait.

17.4. Directives 191

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 17 Section 17.4

DESCRIPTION:

The mq_send() function adds the message pointed to by the argument msg_ptr to the mes-
sage queue specified by mqdes. Each message is assigned a priority , from 0 to MQ_PRIO_MAX.
MQ_PRIO_MAX is defined in <limits.h> and must be at least 32. Messages are added to the queue
in order of their priority. The highest priority message is at the front of the queue.

The maximum number of messages that a message queue may accept is specified at creation by
the mq_maxmsg field of the attribute structure. If this amount is exceeded, the behavior of the
process is determined according to what oflag was used when the message queue was opened.
If the queue was opened with O_NONBLOCK flag set, then the EAGAIN error is returned. If the
O_NONBLOCK flag was not set, the process blocks and waits for space on the queue, unless it is
interrupted by a signal.

Upon successful completion, the mq_send() function returns a value of zero. Otherwise, no
message is enqueued, the function returns -1, and errno is set to indicate the error.

NOTES:

If the specified message queue is not full, mq_send inserts the message at the position indicated
by the msg_prio argument.

17.4.5 mq_receive - Receive a Message from a Message Queue

CALLING SEQUENCE:

1 #include <mqueue.h>
2 size_t mq_receive(
3 mqd_t mqdes,
4 char *msg_ptr,
5 size_t msg_len,
6 unsigned int *msg_prio
7);

STATUS CODES:

EBADF The descriptor does not represent a valid message queue, or the queue was opened
for write only O_WRONLY

EMSGSIZEThe msg_len is less than the mq_msgsize attribute of the message queue
EAGAIN The message queue is non-blocking, and the queue is empty
EAGAIN The operation would block but has been called from an ISR
EINTR The message queue is blocking. While the process was waiting for a message to arrive

on the queue, a signal arrived that interrupted the wait.

DESCRIPTION:

The mq_receive function is used to receive the oldest of the highest priority message(s) from
the message queue specified by mqdes. The messages are received in FIFO order within the
priorities. The received message’s priority is stored in the location referenced by the msg_prio.
If the msg_prio is a NULL, the priority is discarded. The message is removed and stored in an
area pointed to by msg_ptr whose length is of msg_len. The msg_len must be at least equal to
the mq_msgsize attribute of the message queue.

The blocking behavior of the message queue is set by O_NONBLOCK at mq_open or by setting

192 Chapter 17. Message Passing Manager

Chapter 17 Section 17.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

O_NONBLOCK in mq_flags in a call to mq_setattr. If this is a blocking queue, the process blocks
and waits on an empty queue. If this a non-blocking queue, the process does not block.

Upon successful completion, mq_receive returns the length of the selected message in bytes and
the message is removed from the queue. Otherwise, no message is removed from the queue,
the function returns a value of -1, and sets errno to indicate the error.

NOTES:

If the size of the buffer in bytes, specified by the msg_len argument, is less than the mq_msgsize
attribute of the message queue, the function fails and returns an error

17.4.6 mq_notify - Notify Process that a Message is Available

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_notify(
3 mqd_t mqdes,
4 const struct sigevent *notification
5);

STATUS CODES:

EBADF The descriptor does not refer to a valid message queue
EBUSY A notification request is already attached to the queue

DESCRIPTION:

If the argument notification is not NULL, this function registers the calling process to be notified
of message arrival at an empty message queue associated with the specified message queue
descriptor, mqdes.

Every message queue has the ability to notify one (and only one) process whenever the queue’s
state changes from empty (0 messages) to nonempty. This means that the process does not
have to block or constantly poll while it waits for a message. By calling mq_notify, a notification
request is attached to a message queue. When a message is received by an empty queue, if there
are no processes blocked and waiting for the message, then the queue notifies the requesting
process of a message arrival. There is only one signal sent by the message queue, after that
the notification request is de-registered and another process can attach its notification request.
After receipt of a notification, a process must re-register if it wishes to be notified again.

If there is a process blocked and waiting for the message, that process gets the message, and
notification is not be sent. Only one process can have a notification request attached to a
message queue at any one time. If another process attempts to register a notification request,
it fails. You can de-register for a message queue by passing a NULL to mq_notify; this removes
any notification request attached to the queue. Whenever the message queue is closed, all
notification attachments are removed.

Upon successful completion, mq_notify returns a value of zero; otherwise, the function returns
a value of -1 and sets errno to indicate the error.

NOTES:

It is possible for another process to receive the message after the notification is sent but before
the notified process has sent its receive request.

17.4. Directives 193

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 17 Section 17.4

17.4.7 mq_setattr - Set Message Queue Attributes

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_setattr(
3 mqd_t mqdes,
4 const struct mq_attr *mqstat,
5 struct mq_attr *omqstat
6);

STATUS CODES:

EBADF The message queue descriptor does not refer to a valid, open queue.
EINVAL The mq_flag value is invalid.

DESCRIPTION:

The mq_setattr function is used to set attributes associated with the open message queue de-
scription referenced by the message queue descriptor specified by mqdes. The *omqstat repre-
sents the old or previous attributes. If omqstat is non-NULL, the function mq_setattr() stores,
in the location referenced by omqstat, the previous message queue attributes and the current
queue status. These values are the same as would be returned by a call to mq_getattr() at that
point.

There is only one mq_attr.mq_flag which can be altered by this call. This is the flag that deals
with the blocking and non-blocking behavior of the message queue. If the flag is set then the
message queue is non-blocking, and requests to send or receive do not block while waiting for
resources. If the flag is not set, then message send and receive may involve waiting for an empty
queue or waiting for a message to arrive.

Upon successful completion, the function returns a value of zero and the attributes of the mes-
sage queue have been changed as specified. Otherwise, the message queue attributes is un-
changed, and the function returns a value of -1 and sets errno to indicate the error.

NOTES:

All other fields in the mq_attr are ignored by this call.

17.4.8 mq_getattr - Get Message Queue Attributes

CALLING SEQUENCE:

1 #include <mqueue.h>
2 int mq_getattr(
3 mqd_t mqdes,
4 struct mq_attr *mqstat
5);

STATUS CODES:

EBADF The message queue descriptor does not refer to a valid, open message queue.

DESCRIPTION:

194 Chapter 17. Message Passing Manager

Chapter 17 Section 17.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

The mqdes argument specifies a message queue descriptor. The mq_getattr function is used to
get status information and attributes of the message queue associated with the message queue
descriptor. The results are returned in the mq_attr structure referenced by the mqstat argument.
All of these attributes are set at create time, except the blocking/non-blocking behavior of the
message queue which can be dynamically set by using mq_setattr. The attribute mq_curmsg is
set to reflect the number of messages on the queue at the time that mq_getattr was called.

Upon successful completion, the mq_getattr function returns zero. Otherwise, the function
returns -1 and sets errno to indicate the error.

NOTES:

17.4. Directives 195

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 17 Section 17.4

196 Chapter 17. Message Passing Manager

CHAPTER

EIGHTEEN

THREAD MANAGER

197

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.1

18.1 Introduction

The thread manager implements the functionality required of the thread manager as defined by
POSIX 1003.1b. This standard requires that a compliant operating system provide the facilties
to manage multiple threads of control and defines the API that must be provided.

The services provided by the thread manager are:

• pthread_attr_init (page 202) - Initialize a Thread Attribute Set

• pthread_attr_destroy (page 202) - Destroy a Thread Attribute Set

• pthread_attr_setdetachstate (page 203) - Set Detach State

• pthread_attr_getdetachstate (page 203) - Get Detach State

• pthread_attr_setstacksize (page 204) - Set Thread Stack Size

• pthread_attr_getstacksize (page 204) - Get Thread Stack Size

• pthread_attr_setstackaddr (page 205) - Set Thread Stack Address

• pthread_attr_getstackaddr (page 205) - Get Thread Stack Address

• pthread_attr_setscope (page 206) - Set Thread Scheduling Scope

• pthread_attr_getscope (page 206) - Get Thread Scheduling Scope

• pthread_attr_setinheritsched (page 207) - Set Inherit Scheduler Flag

• pthread_attr_getinheritsched (page 207) - Get Inherit Scheduler Flag

• pthread_attr_setschedpolicy (page 208) - Set Scheduling Policy

• pthread_attr_getschedpolicy (page 209) - Get Scheduling Policy

• pthread_attr_setschedparam (page 209) - Set Scheduling Parameters

• pthread_attr_getschedparam (page 210) - Get Scheduling Parameters

• pthread_attr_getaffinity_np (page 210) - Get Thread Affinity Attribute

• pthread_attr_setaffinity_np (page 211) - Set Thread Affinity Attribute

• pthread_create (page 211) - Create a Thread

• pthread_exit (page 212) - Terminate the Current Thread

• pthread_detach (page 213) - Detach a Thread

• pthread_getconcurrency (page 213) - Get Thread Level of Concurrency

• pthread_setconcurrency (page 214) - Set Thread Level of Concurrency

• pthread_getattr_np (page 214) - Get Thread Attributes

• pthread_join (page 215) - Wait for Thread Termination

• pthread_self (page 215) - Get Thread ID

• pthread_equal (page 215) - Compare Thread IDs

• pthread_once (page 216) - Dynamic Package Initialization

• pthread_setschedparam (page 216) - Set Thread Scheduling Parameters

• pthread_getschedparam (page 217) - Get Thread Scheduling Parameters

198 Chapter 18. Thread Manager

Chapter 18 Section 18.1 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

• pthread_getaffinity_np (page 218) - Get Thread Affinity

• pthread_setaffinity_np (page 218) - Set Thread Affinity

18.1. Introduction 199

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.2

18.2 Background

18.2.1 Thread Attributes

Thread attributes are utilized only at thread creation time. A thread attribute structure may be
initialized and passed as an argument to the pthread_create routine.

stack address
is the address of the optionally user specified stack area for this thread. If this value is NULL,
then RTEMS allocates the memory for the thread stack from the RTEMS Workspace Area.
Otherwise, this is the user specified address for the memory to be used for the thread’s stack.
Each thread must have a distinct stack area. Each processor family has different alignment
rules which should be followed.

stack size
is the minimum desired size for this thread’s stack area. If the size of this area as specified by
the stack size attribute is smaller than the minimum for this processor family and the stack
is not user specified, then RTEMS will automatically allocate a stack of the minimum size for
this processor family.

contention scope
specifies the scheduling contention scope. RTEMS only supports the
PTHREAD_SCOPE_PROCESS scheduling contention scope.

scheduling inheritance
specifies whether a user specified or the scheduling policy and parameters of the currently ex-
ecuting thread are to be used. When this is PTHREAD_INHERIT_SCHED, then the scheduling
policy and parameters of the currently executing thread are inherited by the newly created
thread.

scheduling policy and parameters
specify the manner in which the thread will contend for the processor. The scheduling pa-
rameters are interpreted based on the specified policy. All policies utilize the thread priority
parameter.

200 Chapter 18. Thread Manager

Chapter 18 Section 18.3 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

18.3 Operations

There is currently no text in this section.

18.3. Operations 201

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

18.4 Services

This section details the thread manager’s services. A subsection is dedicated to each of this
manager’s services and describes the calling sequence, related constants, usage, and status
codes.

18.4.1 pthread_attr_init - Initialize a Thread Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_init(
3 pthread_attr_t *attr
4);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.

DESCRIPTION:

The pthread_attr_init routine initializes the thread attributes object specified by attr with
the default value for all of the individual attributes.

NOTES:

The settings in the default attributes are implementation defined. For RTEMS, the default at-
tributes are as follows:

stackadr is not set to indicate that RTEMS is to allocate the stack memory.
stacksize is set to PTHREAD_MINIMUM_STACK_SIZE.
con-
tention-
scope

is set to PTHREAD_SCOPE_PROCESS.

inher-
itsched

is set to PTHREAD_INHERIT_SCHED to indicate that the created thread inherits its
scheduling attributes from its parent.

detach-
state

is set to PTHREAD_CREATE_JOINABLE.

18.4.2 pthread_attr_destroy - Destroy a Thread Attribute Set

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_destroy(
3 pthread_attr_t *attr
4);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

202 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

DESCRIPTION:

The pthread_attr_destroy routine is used to destroy a thread attributes object. The behavior
of using an attributes object after it is destroyed is implementation dependent.

NOTES:

NONE

18.4.3 pthread_attr_setdetachstate - Set Detach State

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setdetachstate(
3 pthread_attr_t *attr,
4 int detachstate
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The detachstate argument is invalid.

DESCRIPTION:

The pthread_attr_setdetachstate routine is used to value of the detachstate attribute. This
attribute controls whether the thread is created in a detached state.

The detachstate can be either PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE. The
default value for all threads is PTHREAD_CREATE_JOINABLE.

NOTES:

If a thread is in a detached state, then the use of the ID with the pthread_detach or
pthread_join routines is an error.

18.4.4 pthread_attr_getdetachstate - Get Detach State

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getdetachstate(
3 const pthread_attr_t *attr,
4 int *detachstate
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The detatchstate pointer argument is invalid.

18.4. Services 203

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

DESCRIPTION:

The pthread_attr_getdetachstate routine is used to obtain the current value of the
detachstate attribute as specified by the attr thread attribute object.

NOTES:

NONE

18.4.5 pthread_attr_setstacksize - Set Thread Stack Size

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setstacksize(
3 pthread_attr_t *attr,
4 size_t stacksize
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

DESCRIPTION:

The pthread_attr_setstacksize routine is used to set the stacksize attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKSIZE to
indicate that this routine is supported.

If the specified stacksize is below the minimum required for this CPU (PTHREAD_STACK_MIN, then
the stacksize will be set to the minimum for this CPU.

18.4.6 pthread_attr_getstacksize - Get Thread Stack Size

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getstacksize(
3 const pthread_attr_t *attr,
4 size_t *stacksize
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The stacksize pointer argument is invalid.

DESCRIPTION:

204 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

The pthread_attr_getstacksize routine is used to obtain the stacksize attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKSIZE to
indicate that this routine is supported.

18.4.7 pthread_attr_setstackaddr - Set Thread Stack Address

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setstackaddr(
3 pthread_attr_t *attr,
4 void *stackaddr
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.

DESCRIPTION:

The pthread_attr_setstackaddr routine is used to set the stackaddr attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKADDR to
indicate that this routine is supported.

It is imperative to the proper operation of the system that each thread have sufficient stack
space.

18.4.8 pthread_attr_getstackaddr - Get Thread Stack Address

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getstackaddr(
3 const pthread_attr_t *attr,
4 void **stackaddr
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The stackaddr pointer argument is invalid.

DESCRIPTION:

18.4. Services 205

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

The pthread_attr_getstackaddr routine is used to obtain the stackaddr attribute in the attr
thread attribute object.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_ATTR_STACKADDR to
indicate that this routine is supported.

18.4.9 pthread_attr_setscope - Set Thread Scheduling Scope

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setscope(
3 pthread_attr_t *attr,
4 int contentionscope
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The contention scope specified is not valid.
ENOTSUP The contention scope specified (PTHREAD_SCOPE_SYSTEM) is not supported.

DESCRIPTION:

The pthread_attr_setscope routine is used to set the contention scope field in the thread
attribute object attr to the value specified by contentionscope.

The contentionscope must be either PTHREAD_SCOPE_SYSTEM to indicate that the thread is to be
within system scheduling contention or PTHREAD_SCOPE_PROCESS indicating that the thread is to
be within the process scheduling contention scope.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.10 pthread_attr_getscope - Get Thread Scheduling Scope

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getscope(
3 const pthread_attr_t *attr,
4 int *contentionscope
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The contentionscope pointer argument is invalid.

206 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

DESCRIPTION:

The pthread_attr_getscope routine is used to obtain the value of the contention scope field in
the thread attributes object attr. The current value is returned in contentionscope.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.11 pthread_attr_setinheritsched - Set Inherit Scheduler Flag

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setinheritsched(
3 pthread_attr_t *attr,
4 int inheritsched
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler inheritance argument is invalid.

DESCRIPTION:

The pthread_attr_setinheritsched routine is used to set the inherit scheduler field in the
thread attribute object attr to the value specified by inheritsched.

The contentionscope must be either PTHREAD_INHERIT_SCHED to indicate that the
thread is to inherit the scheduling policy and parameters fromthe creating thread, or
PTHREAD_EXPLICIT_SCHED to indicate that the scheduling policy and parameters for this thread
are to be set from the corresponding values in the attributes object. If contentionscope is
PTHREAD_INHERIT_SCHED, then the scheduling attributes in the attr structure will be ignored at
thread creation time.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.12 pthread_attr_getinheritsched - Get Inherit Scheduler Flag

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getinheritsched(
3 const pthread_attr_t *attr,
4 int *inheritsched
5);

STATUS CODES:

18.4. Services 207

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The inheritsched pointer argument is invalid.

DESCRIPTION:

The pthread_attr_getinheritsched routine is used to object the current value of the inherit
scheduler field in the thread attribute object attr.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.13 pthread_attr_setschedpolicy - Set Scheduling Policy

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setschedpolicy(
3 pthread_attr_t *attr,
4 int policy
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
ENOTSUP The specified scheduler policy argument is invalid.

DESCRIPTION:

The pthread_attr_setschedpolicy routine is used to set the scheduler policy field in the thread
attribute object attr to the value specified by policy.

Scheduling policies may be one of the following:

• SCHED_DEFAULT

• SCHED_FIFO

• SCHED_RR

• SCHED_SPORADIC

• SCHED_OTHER

The precise meaning of each of these is discussed elsewhere in this manual.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

208 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

18.4.14 pthread_attr_getschedpolicy - Get Scheduling Policy

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getschedpolicy(
3 const pthread_attr_t *attr,
4 int *policy
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler policy argument pointer is invalid.

DESCRIPTION:

The pthread_attr_getschedpolicy routine is used to obtain the scheduler policy field from the
thread attribute object attr. The value of this field is returned in policy.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.15 pthread_attr_setschedparam - Set Scheduling Parameters

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_setschedparam(
3 pthread_attr_t *attr,
4 const struct sched_param param
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler parameter argument is invalid.

DESCRIPTION:

The pthread_attr_setschedparam routine is used to set the scheduler parameters field in the
thread attribute object attr to the value specified by param.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4. Services 209

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

18.4.16 pthread_attr_getschedparam - Get Scheduling Parameters

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_attr_getschedparam(
3 const pthread_attr_t *attr,
4 struct sched_param *param
5);

STATUS CODES:

EINVAL The attribute pointer argument is invalid.
EINVAL The attribute set is not initialized.
EINVAL The specified scheduler parameter argument pointer is invalid.

DESCRIPTION:

The pthread_attr_getschedparam routine is used to obtain the scheduler parameters field from
the thread attribute object attr. The value of this field is returned in param.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.17 pthread_attr_getaffinity_np - Get Thread Affinity Attribute

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_attr_getaffinity_np(
4 const pthread_attr_t *attr,
5 size_t cpusetsize,
6 cpu_set_t *cpuset
7);

STATUS CODES:

EFAULT The attribute pointer argument is invalid.
EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.

DESCRIPTION:

The pthread_attr_getaffinity_np routine is used to obtain the affinityset field from the
thread attribute object attr. The value of this field is returned in cpuset.

NOTES:

NONE

210 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

18.4.18 pthread_attr_setaffinity_np - Set Thread Affinity Attribute

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_attr_setaffinity_np(
4 pthread_attr_t *attr,
5 size_t cpusetsize,
6 const cpu_set_t *cpuset
7);

STATUS CODES:

EFAULT The attribute pointer argument is invalid.
EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.
EINVAL The cpuset did not select a valid cpu.
EINVAL The cpuset selected a cpu that was invalid.

DESCRIPTION:

The pthread_attr_setaffinity_np routine is used to set the affinityset field in the thread
attribute object attr. The value of this field is returned in cpuset.

NOTES:

NONE

18.4.19 pthread_create - Create a Thread

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_create(
3 pthread_t *thread,
4 const pthread_attr_t *attr,
5 void (*start_routine)(void *),
6 void *arg
7);

STATUS CODES:

18.4. Services 211

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

EINVALThe attribute set is not initialized.
EINVALThe user specified a stack address and the size of the area was not large enough to

meet this processor’s minimum stack requirements.
EINVALThe specified scheduler inheritance policy was invalid.
ENOTSUPThe specified contention scope was PTHREAD_SCOPE_PROCESS.
EINVALThe specified thread priority was invalid.
EINVALThe specified scheduling policy was invalid.
EINVALThe scheduling policy was SCHED_SPORADIC and the specified replenishment period is

less than the initial budget.
EINVALThe scheduling policy was SCHED_SPORADIC and the specified low priority is invalid.
EAGAINThe system lacked the necessary resources to create another thread, or the self im-

posed limit on the total number of threads in a process PTHREAD_THREAD_MAX would be
exceeded.

EINVALInvalid argument passed.

DESCRIPTION:

The pthread_create routine is used to create a new thread with the attributes specified by
attr. If the attr argument is NULL, then the default attribute set will be used. Modification of
the contents of attr after this thread is created does not have an impact on this thread.

The thread begins execution at the address specified by start_routine with arg as its only
argument. If start_routine returns, then it is functionally equivalent to the thread executing
the pthread_exit service.

Upon successful completion, the ID of the created thread is returned in the thread argument.

NOTES:

There is no concept of a single main thread in RTEMS as there is in a tradition UNIX system.
POSIX requires that the implicit return of the main thread results in the same effects as if there
were a call to exit. This does not occur in RTEMS.

The signal mask of the newly created thread is inherited from its creator and the set of pending
signals for this thread is empty.

18.4.20 pthread_exit - Terminate the Current Thread

CALLING SEQUENCE:

1 #include <pthread.h>
2 void pthread_exit(
3 void *status
4);

STATUS CODES:

NONE

DESCRIPTION:

The pthread_exit routine is used to terminate the calling thread. The status is made available
to any successful join with the terminating thread.

When a thread returns from its start routine, it results in an implicit call to the pthread_exit
routine with the return value of the function serving as the argument to pthread_exit.

212 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

NOTES:

Any cancellation cleanup handlers that hace been pushed and not yet popped shall be popped
in reverse of the order that they were pushed. After all cancellation cleanup handlers have been
executed, if the thread has any thread-specific data, destructors for that data will be invoked.

Thread termination does not release or free any application visible resources including byt not
limited to mutexes, file descriptors, allocated memory, etc.. Similarly, exitting a thread does not
result in any process-oriented cleanup activity.

There is no concept of a single main thread in RTEMS as there is in a tradition UNIX system.
POSIX requires that the implicit return of the main thread results in the same effects as if there
were a call to exit. This does not occur in RTEMS.

All access to any automatic variables allocated by the threads is lost when the thread exits. Thus
references (i.e. pointers) to local variables of a thread should not be used in a global manner
without care. As a specific example, a pointer to a local variable should NOT be used as the
return value.

18.4.21 pthread_detach - Detach a Thread

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_detach(
3 pthread_t thread
4);

STATUS CODES:

ESRCH The thread specified is invalid.
EINVAL The thread specified is not a joinable thread.

DESCRIPTION:

The pthread_detach routine is used to to indicate that storage for thread can be reclaimed
when the thread terminates without another thread joinging with it.

NOTES:

If any threads have previously joined with the specified thread, then they will remain joined
with that thread. Any subsequent calls to pthread_join on the specified thread will fail.

18.4.22 pthread_getconcurrency - Obtain Thread Concurrency

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_getconcurrency(void);

STATUS CODES:

This method returns the current concurrency mapping value.

DESCRIPTION:

18.4. Services 213

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

The pthread_getconcurrency method returns the number of user threads mapped onto kernel
threads. For RTEMS, user and kernel threads are mapped 1:1 and per the POSIX standard this
method returns 1 initially and the value last set by pthread_setconcurrency otherwise.

NOTES:

NONE

18.4.23 pthread_setconcurrency - Set Thread Concurrency

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_setconcurrency(void);

STATUS CODES:

This method returns 0 on success.

DESCRIPTION:

The pthread_setconcurrency method requests the number of user threads mapped onto kernel
threads. Per the POSIX standard, this is considered a request and may have no impact.

For RTEMS, user and kernel threads are always mapped 1:1 and thus this method has no change
on the mapping. However, pthread_getconcurrency will return the value set.

NOTES:

NONE

18.4.24 pthread_getattr_np - Get Thread Attributes

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_getattr_np(
4 pthread_t thread,
5 pthread_attr_t *attr
6);

STATUS CODES:

ESRCH The thread specified is invalid.
EINVAL The attribute pointer argument is invalid.

DESCRIPTION:

The pthread_getattr_np routine is used to obtain the attributes associated with thread.

NOTES:

Modification of the execution modes and priority through the Classic API may result in a com-
bination that is not representable in the POSIX API.

214 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

18.4.25 pthread_join - Wait for Thread Termination

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_join(
3 pthread_t thread,
4 void **value_ptr
5);

STATUS CODES:

ESRCH The thread specified is invalid.
EINVAL The thread specified is not a joinable thread.
EDEADLK A deadlock was detected or thread is the calling thread.

DESCRIPTION:

The pthread_join routine suspends execution of the calling thread until thread terminates. If
thread has already terminated, then this routine returns immediately. The value returned by
thread (i.e. passed to pthread_exit is returned in value_ptr.

When this routine returns, then thread has been terminated.

NOTES:

The results of multiple simultaneous joins on the same thread is undefined.

If any threads have previously joined with the specified thread, then they will remain joined
with that thread. Any subsequent calls to pthread_join on the specified thread will fail.

If value_ptr is NULL, then no value is returned.

18.4.26 pthread_self - Get Thread ID

CALLING SEQUENCE:

1 #include <pthread.h>
2 pthread_t pthread_self(void);

STATUS CODES:

The value returned is the ID of the calling thread.

DESCRIPTION:

This routine returns the ID of the calling thread.

NOTES:

NONE

18.4.27 pthread_equal - Compare Thread IDs

CALLING SEQUENCE:

18.4. Services 215

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

1 #include <pthread.h>
2 int pthread_equal(
3 pthread_t t1,
4 pthread_t t2
5);

STATUS CODES:

zero The thread ids are not equal.
non-zero The thread ids are equal.

DESCRIPTION:

The pthread_equal routine is used to compare two thread IDs and determine if they are equal.

NOTES:

The behavior is undefined if the thread IDs are not valid.

18.4.28 pthread_once - Dynamic Package Initialization

CALLING SEQUENCE:

1 #include <pthread.h>
2 pthread_once_t once_control = PTHREAD_ONCE_INIT;
3 int pthread_once(
4 pthread_once_t *once_control,
5 void (*init_routine)(void)
6);

STATUS CODES:

NONE

DESCRIPTION:

The pthread_once routine is used to provide controlled initialization of variables. The first call
to pthread_once by any thread with the same once_control will result in the init_routine be-
ing invoked with no arguments. Subsequent calls to pthread_once with the same once_control
will have no effect.

The init_routine is guaranteed to have run to completion when this routine returns to the
caller.

NOTES:

The behavior of pthread_once is undefined if once_control is automatic storage (i.e. on a task
stack) or is not initialized using PTHREAD_ONCE_INIT.

18.4.29 pthread_setschedparam - Set Thread Scheduling Parameters

CALLING SEQUENCE:

216 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

1 #include <pthread.h>
2 int pthread_setschedparam(
3 pthread_t thread,
4 int policy,
5 struct sched_param *param
6);

STATUS CODES:

EINVAL The scheduling parameters indicated by the parameter param is invalid.
EINVAL The value specified by policy is invalid.
EINVAL The scheduling policy was SCHED_SPORADIC and the specified replenishment period is

less than the initial budget.
EINVAL The scheduling policy was SCHED_SPORADIC and the specified low priority is invalid.
ESRCH The thread indicated was invalid.

DESCRIPTION:

The pthread_setschedparam routine is used to set the scheduler parameters currently associated
with the thread specified by thread to the policy specified by policy. The contents of param are
interpreted based upon the policy argument.

NOTES:

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.30 pthread_getschedparam - Get Thread Scheduling Parameters

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_getschedparam(
3 pthread_t thread,
4 int *policy,
5 struct sched_param *param
6);

STATUS CODES:

EINVAL The policy pointer argument is invalid.
EINVAL The scheduling parameters pointer argument is invalid.
ESRCH The thread indicated by the parameter thread is invalid.

DESCRIPTION:

The pthread_getschedparam routine is used to obtain the scheduler policy and parameters asso-
ciated with thread. The current policy and associated parameters values returned in``policy``
and param, respectively.

NOTES:

18.4. Services 217

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

As required by POSIX, RTEMS defines the feature symbol _POSIX_THREAD_PRIORITY_SCHEDULING
to indicate that the family of routines to which this routine belongs is supported.

18.4.31 pthread_getaffinity_np - Get Thread Affinity

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_getaffinity_np(
4 const pthread_t id,
5 size_t cpusetsize,
6 cpu_set_t *cpuset
7);

STATUS CODES:

EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.

DESCRIPTION:

The pthread_getaffinity_np routine is used to obtain the affinity.set field from the thread
control object associated with the id. The value of this field is returned in cpuset.

NOTES:

NONE

18.4.32 pthread_setaffinity_np - Set Thread Affinity

CALLING SEQUENCE:

1 #define _GNU_SOURCE
2 #include <pthread.h>
3 int pthread_setaffinity_np(
4 pthread_t id,
5 size_t cpusetsize,
6 const cpu_set_t *cpuset
7);

STATUS CODES:

EFAULT The cpuset pointer argument is invalid.
EINVAL The cpusetsize does not match the value of affinitysetsize field in the thread

attribute object.
EINVAL The cpuset did not select a valid cpu.
EINVAL The cpuset selected a cpu that was invalid.

DESCRIPTION:

218 Chapter 18. Thread Manager

Chapter 18 Section 18.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

The pthread_setaffinity_np routine is used to set the affinityset field of the thread object
id. The value of this field is returned in cpuset

NOTES:

NONE

18.4. Services 219

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 18 Section 18.4

220 Chapter 18. Thread Manager

CHAPTER

NINETEEN

KEY MANAGER

221

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 19 Section 19.1

19.1 Introduction

The key manager allows for the creation and deletion of Data keys specific to threads.

The directives provided by the key manager are:

• pthread_key_create (page 225) - Create Thread Specific Data Key

• pthread_key_delete (page 225) - Delete Thread Specific Data Key

• pthread_setspecific (page 226) - Set Thread Specific Key Value

• pthread_getspecific (page 226) - Get Thread Specific Key Value

222 Chapter 19. Key Manager

Chapter 19 Section 19.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

19.2 Background

There is currently no text in this section.

19.2. Background 223

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 19 Section 19.3

19.3 Operations

There is currently no text in this section.

224 Chapter 19. Key Manager

Chapter 19 Section 19.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

19.4 Directives

This section details the key manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

19.4.1 pthread_key_create - Create Thread Specific Data Key

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_key_create(
3 pthread_key_t *key,
4 void (*destructor)(void)
5);

STATUS CODES:

EAGAIN There were not enough resources available to create another key.
ENOMEM Insufficient memory exists to create the key.

DESCRIPTION

The pthread_key_create() function shall create a thread-specific data key visible to all threads
in the process. Key values provided by pthread_key_create() are opaque objects used to locate
thread-specific data. Although the same key value may be used by different threads, the values
bound to the key by pthread_setspecific() are maintained on a per-thread basis and persist
for the life of the calling thread.

Upon key creation, the value NULL shall be associated with the new key in all active threads.
Upon thread creation, the value NULL shall be associated with all defined keys in the new thread.

NOTES

An optional destructor function may be associated with each key value. At thread exit, if a key
value has a non-NULL destructor pointer, and the thread has a non-NULL value associated with
that key, the value of the key is set to NULL, and then the function pointed to is called with the
previously associated value as its sole argument. The order of destructor calls is unspecified if
more than one destructor exists for a thread when it exits.

19.4.2 pthread_key_delete - Delete Thread Specific Data Key

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_key_delete(
3 pthread_key_t key
4);

STATUS CODES:

EINVAL The key was invalid

19.4. Directives 225

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 19 Section 19.4

DESCRIPTION:

The pthread_key_delete() function shall delete a thread-specific data key previously returned
by pthread_key_create(). The thread-specific data values associated with key need not be
NULL at the time pthread_key_delete() is called. It is the responsibility of the application to
free any application storage or perform any cleanup actions for data structures related to the
deleted key or associated thread-specific data in any threads; this cleanup can be done either
before or after pthread_key_delete() is called. Any attempt to use key following the call to
pthread_key_delete() results in undefined behavior.

NOTES:

The pthread_key_delete() function shall be callable from within destructor functions. No
destructor functions shall be invoked by pthread_key_delete(). Any destructor function that
may have been associated with key shall no longer be called upon thread exit.

19.4.3 pthread_setspecific - Set Thread Specific Key Value

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_setspecific(
3 pthread_key_t key,
4 const void *value
5);

STATUS CODES:

EINVAL The specified key is invalid.

DESCRIPTION:

The pthread_setspecific() function shall associate a thread-specific value with a key obtained
via a previous call to pthread_key_create(). Different threads may bind different values to the
same key. These values are typically pointers to blocks of dynamically allocated memory that
have been reserved for use by the calling thread.

NOTES:

The effect of calling pthread_setspecific() with a key value not obtained from
pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

pthread_setspecific() may be called from a thread-specific data destructor function. Calling
pthread_setspecific() from a thread-specific data destructor routine may result either in lost
storage (after at least PTHREAD_DESTRUCTOR_ITERATIONS attempts at destruction) or in an infinite
loop.

19.4.4 pthread_getspecific - Get Thread Specific Key Value

CALLING SEQUENCE:

1 #include <pthread.h>
2 void *pthread_getspecific(
3 pthread_key_t key
4);

226 Chapter 19. Key Manager

Chapter 19 Section 19.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

NULL There is no thread-specific data associated with the specified key.
non-NULL The data associated with the specified key.

DESCRIPTION:

The pthread_getspecific() function shall return the value currently bound to the specified key
on behalf of the calling thread.

NOTES:

The effect of calling pthread_getspecific() with a key value not obtained from
pthread_key_create() or after key has been deleted with pthread_key_delete() is undefined.

pthread_getspecific() may be called from a thread-specific data destructor function. A
call to pthread_getspecific() for the thread-specific data key being destroyed shall re-
turn the value NULL, unless the value is changed (after the destructor starts) by a call to
pthread_setspecific().

19.4. Directives 227

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 19 Section 19.4

228 Chapter 19. Key Manager

CHAPTER

TWENTY

THREAD CANCELLATION MANAGER

229

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 20 Section 20.1

20.1 Introduction

The thread cancellation manager is . . .

The directives provided by the thread cancellation manager are:

• pthread_cancel (page 233) - Cancel Execution of a Thread

• pthread_setcancelstate (page 233) - Set Cancelability State

• pthread_setcanceltype (page 233) - Set Cancelability Type

• pthread_testcancel (page 234) - Create Cancellation Point

• pthread_cleanup_push (page 234) - Establish Cancellation Handler

• pthread_cleanup_pop (page 234) - Remove Cancellation Handler

230 Chapter 20. Thread Cancellation Manager

Chapter 20 Section 20.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

20.2 Background

There is currently no text in this section.

20.2. Background 231

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 20 Section 20.3

20.3 Operations

There is currently no text in this section.

232 Chapter 20. Thread Cancellation Manager

Chapter 20 Section 20.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

20.4 Directives

This section details the thread cancellation manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

20.4.1 pthread_cancel - Cancel Execution of a Thread

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_cancel(
3 pthread_t thread
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.2 pthread_setcancelstate - Set Cancelability State

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_setcancelstate(
3 int state,
4 int *oldstate
5);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.3 pthread_setcanceltype - Set Cancelability Type

CALLING SEQUENCE:

1 #include <pthread.h>
2 int pthread_setcanceltype(
3 int type,
4 int *oldtype
5);

20.4. Directives 233

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 20 Section 20.4

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.4 pthread_testcancel - Create Cancellation Point

CALLING SEQUENCE:

1 #include <pthread.h>
2 void pthread_testcancel(
3 void
4);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.5 pthread_cleanup_push - Establish Cancellation Handler

CALLING SEQUENCE:

1 #include <pthread.h>
2 void pthread_cleanup_push(
3 void (*routine)(void*),
4 void *arg
5);

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4.6 pthread_cleanup_pop - Remove Cancellation Handler

CALLING SEQUENCE:

1 #include <pthread.h>
2 void pthread_cleanup_pop(
3 int execute
4);

234 Chapter 20. Thread Cancellation Manager

Chapter 20 Section 20.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

STATUS CODES:

E The

DESCRIPTION:

NOTES:

20.4. Directives 235

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 20 Section 20.4

236 Chapter 20. Thread Cancellation Manager

CHAPTER

TWENTYONE

SERVICES PROVIDED BY C LIBRARY
(LIBC)

237

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.1

21.1 Introduction

This section lists the routines that provided by the Newlib C Library.

238 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

21.2 Standard Utility Functions (stdlib.h)

• abort - Abnormal termination of a program

• abs - Integer absolute value (magnitude)

• assert - Macro for Debugging Diagnostics

• atexit - Request execution of functions at program exit

• atof - String to double or float

• atoi - String to integer

• bsearch - Binary search

• calloc - Allocate space for arrays

• div - Divide two integers

• ecvtbuf - Double or float to string of digits

• ecvt - Double or float to string of digits (malloc result)

• __env_lock - Lock environment list for getenv and setenv

• gvcvt - Format double or float as string

• exit - End program execution

• getenv - Look up environment variable

• labs - Long integer absolute value (magnitude)

• ldiv - Divide two long integers

• malloc - Allocate memory

• realloc - Reallocate memory

• free - Free previously allocated memory

• mallinfo - Get information about allocated memory

• __malloc_lock - Lock memory pool for malloc and free

• mbstowcs - Minimal multibyte string to wide string converter

• mblen - Minimal multibyte length

• mbtowc - Minimal multibyte to wide character converter

• qsort - Sort an array

• rand - Pseudo-random numbers

• strtod - String to double or float

• strtol - String to long

• strtoul - String to unsigned long

• system - Execute command string

• wcstombs - Minimal wide string to multibyte string converter

• wctomb - Minimal wide character to multibyte converter

21.2. Standard Utility Functions (stdlib.h) 239

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.3

21.3 Character Type Macros and Functions (ctype.h)

• isalnum - Alphanumeric character predicate

• isalpha - Alphabetic character predicate

• isascii - ASCII character predicate

• iscntrl - Control character predicate

• isdigit - Decimal digit predicate

• islower - Lower-case character predicate

• isprint - Printable character predicates (isprint, isgraph)

• ispunct - Punctuation character predicate

• isspace - Whitespace character predicate

• isupper - Uppercase character predicate

• isxdigit - Hexadecimal digit predicate

• toascii - Force integers to ASCII range

• tolower - Translate characters to lower case

• toupper - Translate characters to upper case

240 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

21.4 Input and Output (stdio.h)

• clearerr - Clear file or stream error indicator

• fclose - Close a file

• feof - Test for end of file

• ferror - Test whether read/write error has occurred

• fflush - Flush buffered file output

• fgetc - Get a character from a file or stream

• fgetpos - Record position in a stream or file

• fgets - Get character string from a file or stream

• fiprintf - Write formatted output to file (integer only)

• fopen - Open a file

• fdopen - Turn an open file into a stream

• fputc - Write a character on a stream or file

• fputs - Write a character string in a file or stream

• fread - Read array elements from a file

• freopen - Open a file using an existing file descriptor

• fseek - Set file position

• fsetpos - Restore position of a stream or file

• ftell - Return position in a stream or file

• fwrite - Write array elements from memory to a file or stream

• getc - Get a character from a file or stream (macro)

• getchar - Get a character from standard input (macro)

• gets - Get character string from standard input (obsolete)

• iprintf - Write formatted output (integer only)

• mktemp - Generate unused file name

• perror - Print an error message on standard error

• putc - Write a character on a stream or file (macro)

• putchar - Write a character on standard output (macro)

• puts - Write a character string on standard output

• remove - Delete a file’s name

• rename - Rename a file

• rewind - Reinitialize a file or stream

• setbuf - Specify full buffering for a file or stream

• setvbuf - Specify buffering for a file or stream

21.4. Input and Output (stdio.h) 241

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.4

• siprintf - Write formatted output (integer only)

• printf - Write formatted output

• scanf - Scan and format input

• tmpfile - Create a temporary file

• tmpnam - Generate name for a temporary file

• vprintf - Format variable argument list

242 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.5 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

21.5 Strings and Memory (string.h)

• bcmp - Compare two memory areas

• bcopy - Copy memory regions

• bzero - Initialize memory to zero

• index - Search for character in string

• memchr - Find character in memory

• memcmp - Compare two memory areas

• memcpy - Copy memory regions

• memmove - Move possibly overlapping memory

• memset - Set an area of memory

• rindex - Reverse search for character in string

• strcasecmp - Compare strings ignoring case

• strcat - Concatenate strings

• strchr - Search for character in string

• strcmp - Character string compare

• strcoll - Locale specific character string compare

• strcpy - Copy string

• strcspn - Count chars not in string

• strerror - Convert error number to string

• strlen - Character string length

• strlwr - Convert string to lower case

• strncasecmp - Compare strings ignoring case

• strncat - Concatenate strings

• strncmp - Character string compare

• strncpy - Counted copy string

• strpbrk - Find chars in string

• strrchr - Reverse search for character in string

• strspn - Find initial match

• strstr - Find string segment

• strtok - Get next token from a string

• strupr - Convert string to upper case

• strxfrm - Transform string

21.5. Strings and Memory (string.h) 243

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.6

21.6 Signal Handling (signal.h)

• raise - Send a signal

• signal - Specify handler subroutine for a signal

244 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.7 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

21.7 Time Functions (time.h)

• asctime - Format time as string

• clock - Cumulative processor time

• ctime - Convert time to local and format as string

• difftime - Subtract two times

• gmtime - Convert time to UTC (GMT) traditional representation

• localtime - Convert time to local representation

• mktime - Convert time to arithmetic representation

• strftime - Flexible calendar time formatter

• time - Get current calendar time (as single number)

21.7. Time Functions (time.h) 245

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.8

21.8 Locale (locale.h)

• setlocale - Select or query locale

246 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.9 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

21.9 Reentrant Versions of Functions

• Equivalent for errno variable: - errno_r - XXX

• Locale functions:

– localeconv_r - XXX

– setlocale_r - XXX

• Equivalents for stdio variables:

– stdin_r - XXX

– stdout_r - XXX

– stderr_r - XXX

• Stdio functions:

– fdopen_r - XXX

– perror_r - XXX

– tempnam_r - XXX

– fopen_r - XXX

– putchar_r - XXX

– tmpnam_r - XXX

– getchar_r - XXX

– puts_r - XXX

– tmpfile_r - XXX

– gets_r - XXX

– remove_r - XXX

– vfprintf_r - XXX

– iprintf_r - XXX

– rename_r - XXX

– vsnprintf_r - XXX

– mkstemp_r - XXX

– snprintf_r - XXX

– vsprintf_r - XXX

– mktemp_t - XXX

– sprintf_r - XXX

• Signal functions:

– init_signal_r - XXX

– signal_r - XXX

– kill_r - XXX

21.9. Reentrant Versions of Functions 247

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.9

– _sigtramp_r - XXX

– raise_r - XXX

• Stdlib functions:

– calloc_r - XXX

– mblen_r - XXX

– srand_r - XXX

– dtoa_r - XXX

– mbstowcs_r - XXX

– strtod_r - XXX

– free_r - XXX

– mbtowc_r - XXX

– strtol_r - XXX

– getenv_r - XXX

– memalign_r - XXX

– strtoul_r - XXX

– mallinfo_r - XXX

– mstats_r - XXX

– system_r - XXX

– malloc_r - XXX

– rand_r - XXX

– wcstombs_r - XXX

– malloc_r - XXX

– realloc_r - XXX

– wctomb_r - XXX

– malloc_stats_r - XXX

– setenv_r - XXX

• String functions:

– strtok_r - XXX

• System functions:

– close_r - XXX

– link_r - XXX

– unlink_r - XXX

– execve_r - XXX

– lseek_r - XXX

248 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.9 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

– wait_r - XXX

– fcntl_r - XXX

– open_r - XXX

– write_r - XXX

– fork_r - XXX

– read_r - XXX

– fstat_r - XXX

– sbrk_r - XXX

– gettimeofday_r - XXX

– stat_r - XXX

– getpid_r - XXX

– times_r - XXX

• Time function:

– asctime_r - XXX

21.9. Reentrant Versions of Functions 249

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.10

21.10 Miscellaneous Macros and Functions

• unctrl - Return printable representation of a character

250 Chapter 21. Services Provided by C Library (libc)

Chapter 21 Section 21.11 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

21.11 Variable Argument Lists

• Stdarg (stdarg.h):

– va_start - XXX

– va_arg - XXX

– va_end - XXX

• Vararg (varargs.h):

– va_alist - XXX

– va_start-trad - XXX

– va_arg-trad - XXX

– va_end-trad - XXX

21.11. Variable Argument Lists 251

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 21 Section 21.12

21.12 Reentrant System Calls

• open_r - XXX

• close_r - XXX

• lseek_r - XXX

• read_r - XXX

• write_r - XXX

• fork_r - XXX

• wait_r - XXX

• stat_r - XXX

• fstat_r - XXX

• link_r - XXX

• unlink_r - XXX

• sbrk_r - XXX

252 Chapter 21. Services Provided by C Library (libc)

CHAPTER

TWENTYTWO

SERVICES PROVIDED BY THE MATH
LIBRARY (LIBM)

253

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 22 Section 22.1

22.1 Introduction

This section lists the routines that provided by the Newlib Math Library (libm).

254 Chapter 22. Services Provided by the Math Library (libm)

Chapter 22 Section 22.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

22.2 Standard Math Functions (math.h)

• acos - Arccosine

• acosh - Inverse hyperbolic cosine

• asin - Arcsine

• asinh - Inverse hyperbolic sine

• atan - Arctangent

• atan2 - Arctangent of y/x

• atanh - Inverse hyperbolic tangent

• jN - Bessel functions (jN and yN)

• cbrt - Cube root

• copysign - Sign of Y and magnitude of X

• cosh - Hyperbolic cosine

• erf - Error function (erf and erfc)

• exp - Exponential

• expm1 - Exponential of x and - 1

• fabs - Absolute value (magnitude)

• floor - Floor and ceiling (floor and ceil)

• fmod - Floating-point remainder (modulo)

• frexp - Split floating-point number

• gamma - Logarithmic gamma function

• hypot - Distance from origin

• ilogb - Get exponent

• infinity - Floating infinity

• isnan - Check type of number

• ldexp - Load exponent

• log - Natural logarithms

• log10 - Base 10 logarithms

• log1p - Log of 1 + X

• matherr - Modifiable math error handler

• modf - Split fractional and integer parts

• nan - Floating Not a Number

• nextafter - Get next representable number

• pow - X to the power Y

• remainder - remainder of X divided by Y

22.2. Standard Math Functions (math.h) 255

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 22 Section 22.2

• scalbn - scalbn

• sin - Sine or cosine (sin and cos)

• sinh - Hyperbolic sine

• sqrt - Positive square root

• tan - Tangent

• tanh - Hyperbolic tangent

256 Chapter 22. Services Provided by the Math Library (libm)

CHAPTER

TWENTYTHREE

DEVICE CONTROL

257

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 23 Section 23.1

23.1 Introduction

The POSIX Device Control API is defined by POSIX 1003.26 and attempts to provides a
portable alternative to the ioctl() service which is not standardized across POSIX implemen-
tations. Support for this standard is required by the Open Group’s FACE Technical Standard
:cits:”FACE:2012:FTS”. Unfortunately, this part of the POSIX standard is not widely imple-
mented.

The services provided by the timer manager are:

• posix_devctl_ - Control a Device

258 Chapter 23. Device Control

Chapter 23 Section 23.2 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

23.2 Background

23.2. Background 259

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 23 Section 23.3

23.3 Operations

260 Chapter 23. Device Control

Chapter 23 Section 23.4 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

23.4 System Calls

This section details the POSIX device control’s services. A subsection is dedicated to each of
this manager’s services and describes the calling sequence, related constants, usage, and status
codes.

23.4.1 posix_devctl - Control a Device

CALLING SEQUENCE:

1 #include <devctl.h>
2 int posix_devctl(
3 int fd,
4 int dcmd,
5 void *restrict dev_data_ptr,
6 size_t nbyte,
7 int *restrict dev_info_ptr
8);

STATUS CODES:

The status codes returned reflect those returned by the ioctl() service and the underlying
device drivers.

DESCRIPTION:

This method is intended to be a portable alternative to the ioctl() method. The RTEMS imple-
mentation follows what is referred to as a library implementation which is a simple wrapper for
the ioctl() method. The fd, fcmd, dev_data_ptr, and nbyte parameters are passed unmodified
to the ioctl() method.

If the dev_info_ptr parameter is not NULL, then the location pointed to by dev_info_ptr is set to
0.

NOTES:

NONE

23.4. System Calls 261

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 23 Section 23.4

262 Chapter 23. Device Control

CHAPTER

TWENTYFOUR

STATUS OF IMPLEMENTATION

This chapter provides an overview of the status of the implementation of the POSIX API for
RTEMS. The POSIX 1003.1b Compliance Guide provides more detailed information regarding
the implementation of each of the numerous functions, constants, and macros specified by the
POSIX 1003.1b standard.

RTEMS supports many of the process and user/group oriented services in a “single user/single
process” manner. This means that although these services may be of limited usefulness or
functionality, they are provided and do work in a coherent manner. This is significant when
porting existing code from UNIX to RTEMS.

• Implementation

– The current implementation of dup() is insufficient.

– FIFOs mkfifo() are not currently implemented.

– Asynchronous IO is not implemented.

– The flockfile() family is not implemented

– getc/putc unlocked family is not implemented

– Mapped Memory is partially implemented

– NOTES:

* For Shared Memory and Mapped Memory services, it is unclear what level of
support is appropriate and possible for RTEMS.

• Functional Testing

– Tests for unimplemented services

• Performance Testing

– There are no POSIX Performance Tests.

• Documentation

– Many of the service description pages are not complete in this manual. These need
to be completed and information added to the background and operations sections.

– Example programs (not just tests) would be very nice.

263

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 24 Section 24.0

264 Chapter 24. Status of Implementation

CHAPTER

TWENTYFIVE

COMMAND AND VARIABLE INDEX

265

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 25 Section 25.0

266 Chapter 25. Command and Variable Index

INDEX

Symbols
_exit, 13

A
access, 64
acquire ownership of file stream, 108
add a signal to a signal set, 19
aio_cancel, 90
aio_error, 89
aio_fsync, 91
aio_read, 86
aio_return, 89
aio_suspend, 90
aio_write, 87
alarm, 28, 29
asctime_r, 111
associate stream with file descriptor, 107
asynchronous file synchronization, 91
asynchronous read, 86
asynchronous write, 87

B
broadcast a condition variable, 151

C
cancel asynchronous i/o request, 90
cancel execution of a thread, 233
cfgetispeed, 97
cfgetospeed, 97
cfsetispeed, 98
cfsetospeed, 98
change access and/or modification times

of an inode, 67
change memory protection, 160
changes file mode., 64
changes permissions of a file, 65
changes the current working directory, 53
changes the owner and/or group of a file.,

66
chdir, 53
check permissions for a file, 64

chmod, 64
chown, 66
clock_getres, 174
clock_gettime, 173
clock_settime, 173
close, 78
close a message queue, 190
close a named semaphore, 129
closedir, 52
closes a file., 78
compare thread ids, 215
creat, 56
create a directory, 71
create a new file or rewrite an existing

one, 56
create a process, 9
create a thread, 211
create an inter, 77
create cancellation point, 234
create session and set process group id,

39
creates a link to a file, 57
creates a symbolic link to a file, 58
ctermid, 42
ctime_r, 112

D
delay process execution, 174
delay with high resolution, 175
delete a directory, 61
delete a signal from a signal set, 19
destroy a condition variable, 150
destroy a condition variable attribute

set, 149
destroy a mutex, 141
destroy a mutex attribute set, 137
destroy a thread attribute set, 202
destroy an unnamed semaphore, 127
detach a thread, 213
determine if file descriptor is terminal,

43

267

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 25 Section 25.0

determine terminal device name, 42
discards terminal data, 100
dup, 77
dup2, 78
duplicates an open file descriptor, 77, 78
dynamic package initialization, 216
dynamically set the priority ceiling, 143

E
empty a signal set, 20
ends directory read operation, 52
establish cancellation handler, 234
examine and change process blocked

signals, 23
examine and change signal action, 21
examine and change thread blocked signals,

23
examine pending signals, 25
execl, 9
execle, 10
execlp, 11
execute a file, 9–11
execv, 9
execve, 10
execvp, 11

F
fchdir, 53
fchmod, 65
fcntl, 80
fdatasync, 83
fdopen, 107
fileno, 107
fill a signal set, 20
flockfile, 108
fork, 9
fpathconf, 70
fstat, 63
fsync, 82
ftruncate, 68
ftrylockfile, 108
funlockfile, 108

G
generate terminal pathname, 42
get character from stdin without locking,

109
get character without locking, 108
get clock resolution, 174
get configurable system variables, 43
get detach state, 203
get directory entries, 66

get effective group id, 36
get effective user id, 36
get environment variables, 41
get group file entry for id, 119
get group file entry for name, 119
get inherit scheduler flag, 207
get maximum priority value, 167
get message queue attributes, 194
get minimum priority value, 167
get parent process id, 35
get password file entry for uid, 120
get process group id, 38
get process id, 35
get process shared attribute, 150
get process times, 40
get real group id, 36
get resource utilization, 38
get scheduling parameters, 210
get scheduling policy, 209
get supplementary group ids, 37
get system name, 40
get the blocking protocol, 138
get the current priority ceiling, 143
get the priority ceiling, 139
get the time of day, 175
get the value of a semaphore, 132
get the visibility, 140
get thread attributes, 214
get thread id, 215
get thread scheduling parameters, 217
get thread scheduling scope, 206
get thread stack address, 205
get thread stack size, 204
get time in seconds, 176
get timeslicing quantum, 168
get user id, 35
get user name, 37, 38
getc_unlocked, 108
getchar_unlocked, 109
getcwd, 54
getdents, 66
getegid, 36
getenv, 41
geteuid, 36
getgid, 36
getgrgid, 119
getgrgid_r, 119
getgrnam, 119
getgrnam_r, 120
getgroups, 37
getlogin, 37

268 Index

Chapter 25 Section 25.0 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

getlogin_r, 38
getpgrp, 38
getpid, 35
getppid, 35
getpwnam, 121
getpwnam_r, 121
getpwuid, 120
getpwuid_r, 120
getrusage, 38
gets configuration values for files, 69,

70
gets current working directory, 54
gets file status, 63
gets foreground process group id, 101
gets information about a file, 62
gets terminal attributes, 99
gettimeofday, 175
getuid, 35
gmtime_r, 112

I
initialize a condition variable, 150
initialize a condition variable attribute

set, 149
initialize a mutex, 140
initialize a mutex attribute set, 137
initialize a thread attribute set, 202
initialize an unnamed semaphore, 127
initialize time conversion information,

111
is signal a member of a signal set, 20
isatty, 43

K
kill, 24

L
link, 57
lio_listio, 88
list directed i/o, 88
localtime_r, 112
lock a mutex, 141
lock a mutex with timeout, 142
lock a range of the process address space,

157
lock the address space of a process, 157
longjmp, 110
lseek, 82
lstat, 63

M
makes a directory, 59

makes a fifo special file, 60
manipulates an open file descriptor, 80
map process addresses to a memory object,

158
memory object synchronization, 160
microsecond delay process execution, 174
microseonds alarm, 29
mkdir, 59
mkfifo, 60
mknod, 71
mlock, 157
mlockall, 157
mmap, 158
mount, 84
mount a file system, 84
mprotect, 160
mq_attr, 185
mq_close, 190
mq_getattr, 194
mq_notify, 193
mq_open, 189
mq_receive, 192
mq_send, 191
mq_setattr, 194
mq_unlink, 191
mqd_t, 185
msync, 160
munlock, 158
munlockall, 157
munmap, 159

N
nanosleep, 175
non, 110, 130
notify process that a message is

available, 193

O
obtain file descriptor number for this

file, 107
obtain the name of a symbolic link

destination, 58
obtain thread concurrency, 213, 214
obtain time of day, 173
open, 54
open a directory, 50
open a message queue, 189
open a named semaphore, 128
open a shared memory object, 161
opendir, 50
opens a file, 54

Index 269

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 25 Section 25.0

P
password file entry for name, 121
pathconf, 69
pause, 25
pipe, 77
poll to acquire ownership of file stream,

108
poll to lock a mutex, 142
pthread_atfork, 12
pthread_attr_destroy, 202
pthread_attr_getdetachstate, 203
pthread_attr_getinheritsched, 207
pthread_attr_getschedparam, 210
pthread_attr_getschedpolicy, 209
pthread_attr_getscope, 206
pthread_attr_getstackaddr, 205
pthread_attr_getstacksize, 204
pthread_attr_init, 202
pthread_attr_setdetachstate, 203
pthread_attr_setinheritsched, 207
pthread_attr_setschedparam, 209
pthread_attr_setschedpolicy, 208
pthread_attr_setscope, 206
pthread_attr_setstackaddr, 205
pthread_attr_setstacksize, 204
pthread_cancel, 233
pthread_cleanup_pop, 234
pthread_cleanup_push, 234
pthread_cond_broadcast, 151
pthread_cond_destroy, 150
pthread_cond_init, 150
pthread_cond_signal, 151
pthread_cond_timedwait, 152
pthread_cond_wait, 152
pthread_condattr_destroy, 149
pthread_condattr_getpshared, 150
pthread_condattr_init, 149
pthread_condattr_setpshared, 149
pthread_create, 211
pthread_detach, 213
pthread_equal, 215
pthread_exit, 212
pthread_getattr_np, 214
pthread_getconcurrency, 213
pthread_getschedparam, 217
pthread_join, 215
pthread_kill, 22
pthread_mutex_destroy, 141
pthread_mutex_getprioceiling, 143
pthread_mutex_init, 140
pthread_mutex_lock, 141

pthread_mutex_setprioceiling, 143
pthread_mutex_timedlock, 142
pthread_mutex_trylock, 142
pthread_mutex_unlock, 143
pthread_mutexattr_destroy, 137
pthread_mutexattr_getprioceiling, 139
pthread_mutexattr_getprotocol, 138
pthread_mutexattr_getpshared, 140
pthread_mutexattr_init, 137
pthread_mutexattr_setprioceiling, 139
pthread_mutexattr_setprotocol, 138
pthread_mutexattr_setpshared, 140
pthread_once, 216
pthread_self, 215
pthread_setcancelstate, 233
pthread_setcanceltype, 233
pthread_setconcurrency, 214
pthread_setschedparam, 216
pthread_sigmask, 23
pthread_testcancel, 234
put character to stdin without locking,

109
put character without locking, 109
putc_unlocked, 109
putchar_unlocked, 109

Q
queue a signal to a process, 28

R
rand_r, 113
read, 79
readdir, 50
readlink, 58
reads a directory, 50
reads from a file, 79
reads terminal input baud rate, 97
reads terminal output baud rate, 97
readv, 85
receive a message from a message queue,

192
reentrant, 38
reentrant determine terminal device name,

42
reentrant extract token from string, 111
reentrant get group file entry, 119
reentrant get group file entry for name,

120
reentrant get password file entry for

name, 121
reentrant get password file entry for uid,

120

270 Index

Chapter 25 Section 25.0 RTEMS POSIX API Guide, Release 6.2 (19th December 2025)

reentrant get user name, 38
reentrant local time conversion, 112
reentrant random number generation, 113
reentrant struct tm to ascii time

conversion, 111
reentrant time_t to ascii time conversion,

112
reentrant utc time conversion, 112
register fork handlers, 12
release ownership of file stream, 108
remove a message queue, 191
remove a shared memory object, 162
remove cancellation handler, 234
removes a directory entry, 60
rename, 61
renames a file, 61
reposition read/write file offset, 82
resets the readdir() pointer, 51
retrieve error status of asynchronous i/o

operation, 89
retrieve return status asynchronous i/o

operation, 89
return current location in directory

stream, 52
rewinddir, 51
rmdir, 61

S
save context for non, 110
save context with signal status for non,

110
scan a directory for matching entries, 51
scandir, 51
sched_get_priority_max, 167
sched_get_priority_min, 167
sched_rr_get_interval, 168
sched_yield, 168
schedule alarm, 28
schedule alarm in microseonds, 29
sem_close, 129
sem_destroy, 127
sem_getvalue, 132
sem_init, 127
sem_open, 128
sem_post, 131
sem_t, 125
sem_timedwait, 131
sem_trywait, 130
sem_unlink, 129
sem_wait, 130
send a message to a message queue, 191

send a signal to a process, 24
send a signal to a thread, 22
sends a break to a terminal, 99
set cancelability state, 233
set cancelability type, 233
set detach state, 203
set environment variables, 41
set group id, 37
set inherit scheduler flag, 207
set message queue attributes, 194
set process group id for job control, 40
set process shared attribute, 149
set scheduling parameters, 209
set scheduling policy, 208
set terminal attributes, 99
set the blocking protocol, 138
set the current locale, 107
set the priority ceiling, 139
set the visibility, 140
set thread scheduling parameters, 216
set thread scheduling scope, 206
set thread stack address, 205
set thread stack size, 204
set time of day, 173
set user id, 36
setenv, 41
setgid, 37
setjmp, 110
setlocale, 107
setpgid, 40
sets a file creation mask., 56
sets foreground process group id, 101
sets terminal input baud rate, 98
sets terminal output baud rate, 98
setsid, 39
setuid, 36
shm_open, 161
shm_unlink, 162
sigaction, 21
sigaddset, 19
sigdelset, 19
sigemptyset, 20
sigfillset, 20
sigismember, 20
siglongjmp, 110
signal a condition variable, 151
sigpending, 25
sigprocmask, 23
sigqueue, 28
sigsetjmp, 110
sigsuspend, 25

Index 271

RTEMS POSIX API Guide, Release 6.2 (19th December 2025) Chapter 25 Section 25.0

sigtimedwait, 27
sigwait, 26
sigwaitinfo, 26
sleep, 174
stat, 62
strtok_r, 111
suspend process execution, 25
suspends/restarts terminal output., 101
symlink, 58
sync, 84
synchronize file complete in, 82
synchronize file in, 83
synchronize file systems, 84
synchronously accept a signal, 26
synchronously accept a signal with

timeout, 27
sysconf, 43

T
tcdrain, 100
tcflow, 101
tcflush, 100
tcgetattr, 99
tcgetpgrp, 101
tcsendbreak, 99
tcsetattr, 99
tcsetpgrp, 101
telldir, 52
terminate a process, 13
terminate the current thread, 212
time, 176
times, 40
truncate, 68
truncate a file to a specified length, 68
ttyname, 42
ttyname_r, 42
tzset, 111

U
umask, 56
uname, 40
unlink, 60
unlink a semaphore, 129
unlock a mutex, 143
unlock a range of the process address

space, 158
unlock a semaphore, 131
unlock the address space of a process, 157
unmap previously mapped addresses, 159
unmount, 85
unmount file systems, 85
usecs alarm, 29

usecs delay process execution, 174
usleep, 174
utime, 67

V
vectored read from a file, 85
vectored write to a file, 86

W
wait, 12
wait for a signal, 25
wait for asynchronous i/o request, 90
wait for process termination, 12, 13
wait for thread termination, 215
wait on a condition variable, 152
wait on a semaphore, 130
wait on a semaphore for a specified time,

131
wait with timeout a condition variable,

152
waitpid, 13
waits for all output to be transmitted to

the terminal., 100
write, 80
writes to a file, 80
writev, 86

Y
yield the processor, 168

272 Index

	Preface
	Acknowledgements

	Process Creation and Execution Manager
	Introduction
	Background
	Operations
	Directives
	fork - Create a Process
	execl - Execute a File
	execv - Execute a File
	execle - Execute a File
	execve - Execute a File
	execlp - Execute a File
	execvp - Execute a File
	pthread_atfork - Register Fork Handlers
	wait - Wait for Process Termination
	waitpid - Wait for Process Termination
	_exit - Terminate a Process

	Signal Manager
	Introduction
	Background
	Signals
	Signal Delivery

	Operations
	Signal Set Management
	Blocking Until Signal Generation
	Sending a Signal

	Directives
	sigaddset - Add a Signal to a Signal Set
	sigdelset - Delete a Signal from a Signal Set
	sigfillset - Fill a Signal Set
	sigismember - Is Signal a Member of a Signal Set
	sigemptyset - Empty a Signal Set
	sigaction - Examine and Change Signal Action
	pthread_kill - Send a Signal to a Thread
	sigprocmask - Examine and Change Process Blocked Signals
	pthread_sigmask - Examine and Change Thread Blocked Signals
	kill - Send a Signal to a Process
	sigpending - Examine Pending Signals
	sigsuspend - Wait for a Signal
	pause - Suspend Process Execution
	sigwait - Synchronously Accept a Signal
	sigwaitinfo - Synchronously Accept a Signal
	sigtimedwait - Synchronously Accept a Signal with Timeout
	sigqueue - Queue a Signal to a Process
	alarm - Schedule Alarm
	ualarm - Schedule Alarm in Microseconds

	Process Environment Manager
	Introduction
	Background
	Users and Groups
	User and Group Names
	Environment Variables

	Operations
	Accessing User and Group Ids
	Accessing Environment Variables

	Directives
	getpid - Get Process ID
	getppid - Get Parent Process ID
	getuid - Get User ID
	geteuid - Get Effective User ID
	getgid - Get Real Group ID
	getegid - Get Effective Group ID
	setuid - Set User ID
	setgid - Set Group ID
	getgroups - Get Supplementary Group IDs
	getlogin - Get User Name
	getlogin_r - Reentrant Get User Name
	getpgrp - Get Process Group ID
	getrusage - Get Resource Utilization
	setsid - Create Session and Set Process Group ID
	setpgid - Set Process Group ID for Job Control
	uname - Get System Name
	times - Get process times
	getenv - Get Environment Variables
	setenv - Set Environment Variables
	ctermid - Generate Terminal Pathname
	ttyname - Determine Terminal Device Name
	ttyname_r - Reentrant Determine Terminal Device Name
	isatty - Determine if File Descriptor is Terminal
	sysconf - Get Configurable System Variables

	Files and Directories Manager
	Introduction
	Background
	Path Name Evaluation

	Operations
	Directives
	opendir - Open a Directory
	readdir - Reads a directory
	rewinddir - Resets the readdir() pointer
	scandir - Scan a directory for matching entries
	telldir - Return current location in directory stream
	closedir - Ends directory read operation
	chdir - Changes the current working directory
	fchdir - Changes the current working directory
	getcwd - Gets current working directory
	open - Opens a file
	creat - Create a new file or rewrite an existing one
	umask - Sets a file creation mask.
	link - Creates a link to a file
	symlink - Creates a symbolic link to a file
	readlink - Obtain the name of a symbolic link destination
	mkdir - Makes a directory
	mkfifo - Makes a FIFO special file
	unlink - Removes a directory entry
	rmdir - Delete a directory
	rename - Renames a file
	stat - Gets information about a file
	fstat - Gets file status
	lstat - Gets file status
	access - Check permissions for a file
	chmod - Changes file mode.
	fchmod - Changes permissions of a file
	getdents - Get directory entries
	chown - Changes the owner and/or group of a file.
	utime - Change access and/or modification times of an inode
	ftruncate - truncate a file to a specified length
	truncate - truncate a file to a specified length
	pathconf - Gets configuration values for files
	fpathconf - Gets configuration values for files
	mknod - create a directory

	Input and Output Primitives Manager
	Introduction
	Background
	Operations
	Directives
	pipe - Create an Inter-Process Channel
	dup - Duplicates an open file descriptor
	dup2 - Duplicates an open file descriptor
	close - Closes a file
	read - Reads from a file
	write - Writes to a file
	fcntl - Manipulates an open file descriptor
	lseek - Reposition read/write file offset
	fsync - Synchronize file complete in-core state with that on disk
	fdatasync - Synchronize file in-core data with that on disk
	sync - Schedule file system updates
	mount - Mount a file system
	unmount - Unmount file systems
	readv - Vectored read from a file
	writev - Vectored write to a file
	aio_read - Asynchronous Read
	aio_write - Asynchronous Write
	lio_listio - List Directed I/O
	aio_error - Retrieve Error Status of Asynchronous I/O Operation
	aio_return - Retrieve Return Status of Asynchronous I/O Operation
	aio_cancel - Cancel Asynchronous I/O Request
	aio_suspend - Wait for Asynchronous I/O Request
	aio_fsync - Asynchronous File Synchronization

	Device- and Class- Specific Functions Manager
	Introduction
	Background
	Operations
	Directives
	cfgetispeed - Reads terminal input baud rate
	cfgetospeed - Reads terminal output baud rate
	cfsetispeed - Sets terminal input baud rate
	cfsetospeed - Sets terminal output baud rate
	tcgetattr - Gets terminal attributes
	tcsetattr - Set terminal attributes
	tcsendbreak - Sends a break to a terminal
	tcdrain - Waits for all output to be transmitted to the terminal.
	tcflush - Discards terminal data
	tcflow - Suspends/restarts terminal output.
	tcgetpgrp - Gets foreground process group ID
	tcsetpgrp - Sets foreground process group ID

	Language-Specific Services for the C Programming Language Manager
	Introduction
	Background
	Operations
	Directives
	setlocale - Set the Current Locale
	fileno - Obtain File Descriptor Number for this File
	fdopen - Associate Stream with File Descriptor
	flockfile - Acquire Ownership of File Stream
	ftrylockfile - Poll to Acquire Ownership of File Stream
	funlockfile - Release Ownership of File Stream
	getc_unlocked - Get Character without Locking
	getchar_unlocked - Get Character from stdin without Locking
	putc_unlocked - Put Character without Locking
	putchar_unlocked - Put Character to stdin without Locking
	setjmp - Save Context for Non-Local Goto
	longjmp - Non-Local Jump to a Saved Context
	sigsetjmp - Save Context with Signal Status for Non-Local Goto
	siglongjmp - Non-Local Jump with Signal Status to a Saved Context
	tzset - Initialize Time Conversion Information
	strtok_r - Reentrant Extract Token from String
	asctime_r - Reentrant struct tm to ASCII Time Conversion
	ctime_r - Reentrant time_t to ASCII Time Conversion
	gmtime_r - Reentrant UTC Time Conversion
	localtime_r - Reentrant Local Time Conversion
	rand_r - Reentrant Random Number Generation

	System Databases Manager
	Introduction
	Background
	Operations
	Directives
	getgrgid - Get Group File Entry for ID
	getgrgid_r - Reentrant Get Group File Entry
	getgrnam - Get Group File Entry for Name
	getgrnam_r - Reentrant Get Group File Entry for Name
	getpwuid - Get Password File Entry for UID
	getpwuid_r - Reentrant Get Password File Entry for UID
	getpwnam - Password File Entry for Name
	getpwnam_r - Reentrant Get Password File Entry for Name

	Semaphore Manager
	Introduction
	Background
	Theory
	“sem_t” Structure
	Building a Semaphore Attribute Set

	Operations
	Using as a Binary Semaphore

	Directives
	sem_init - Initialize an unnamed semaphore
	sem_destroy - Destroy an unnamed semaphore
	sem_open - Open a named semaphore
	sem_close - Close a named semaphore
	sem_unlink - Unlink a semaphore
	sem_wait - Wait on a Semaphore
	sem_trywait - Non-blocking Wait on a Semaphore
	sem_timedwait - Wait on a Semaphore for a Specified Time
	sem_post - Unlock a Semaphore
	sem_getvalue - Get the value of a semaphore

	Mutex Manager
	Introduction
	Background
	Mutex Attributes
	PTHREAD_MUTEX_INITIALIZER

	Operations
	Services
	pthread_mutexattr_init - Initialize a Mutex Attribute Set
	pthread_mutexattr_destroy - Destroy a Mutex Attribute Set
	pthread_mutexattr_setprotocol - Set the Blocking Protocol
	pthread_mutexattr_getprotocol - Get the Blocking Protocol
	pthread_mutexattr_setprioceiling - Set the Priority Ceiling
	pthread_mutexattr_getprioceiling - Get the Priority Ceiling
	pthread_mutexattr_setpshared - Set the Visibility
	pthread_mutexattr_getpshared - Get the Visibility
	pthread_mutex_init - Initialize a Mutex
	pthread_mutex_destroy - Destroy a Mutex
	pthread_mutex_lock - Lock a Mutex
	pthread_mutex_trylock - Poll to Lock a Mutex
	pthread_mutex_timedlock - Lock a Mutex with Timeout
	pthread_mutex_unlock - Unlock a Mutex
	pthread_mutex_setprioceiling - Dynamically Set the Priority Ceiling
	pthread_mutex_getprioceiling - Get the Current Priority Ceiling

	Condition Variable Manager
	Introduction
	Background
	Operations
	Directives
	pthread_condattr_init - Initialize a Condition Variable Attribute Set
	pthread_condattr_destroy - Destroy a Condition Variable Attribute Set
	pthread_condattr_setpshared - Set Process Shared Attribute
	pthread_condattr_getpshared - Get Process Shared Attribute
	pthread_cond_init - Initialize a Condition Variable
	pthread_cond_destroy - Destroy a Condition Variable
	pthread_cond_signal - Signal a Condition Variable
	pthread_cond_broadcast - Broadcast a Condition Variable
	pthread_cond_wait - Wait on a Condition Variable
	pthread_cond_timedwait - Wait with Timeout a Condition Variable

	Memory Management Manager
	Introduction
	Background
	Operations
	Directives
	mlockall - Lock the Address Space of a Process
	munlockall - Unlock the Address Space of a Process
	mlock - Lock a Range of the Process Address Space
	munlock - Unlock a Range of the Process Address Space
	mmap - Map Process Addresses to a Memory Object
	munmap - Unmap Previously Mapped Addresses
	mprotect - Change Memory Protection
	msync - Memory Object Synchronization
	shm_open - Open a Shared Memory Object
	shm_unlink - Remove a Shared Memory Object

	Scheduler Manager
	Introduction
	Background
	Priority
	Scheduling Policies

	Operations
	Directives
	sched_get_priority_min - Get Minimum Priority Value
	sched_get_priority_max - Get Maximum Priority Value
	sched_rr_get_interval - Get Timeslicing Quantum
	sched_yield - Yield the Processor

	Clock Manager
	Introduction
	Background
	Operations
	Directives
	clock_gettime - Obtain Time of Day
	clock_settime - Set Time of Day
	clock_getres - Get Clock Resolution
	sleep - Delay Process Execution
	usleep - Delay Process Execution in Microseconds
	nanosleep - Delay with High Resolution
	gettimeofday - Get the Time of Day
	time - Get time in seconds

	Timer Manager
	Introduction
	Background
	Operations
	System Calls
	timer_create - Create a Per-Process Timer
	timer_delete - Delete a Per-Process Timer
	timer_settime - Set Next Timer Expiration
	timer_gettime - Get Time Remaining on Timer
	timer_getoverrun - Get Timer Overrun Count

	Message Passing Manager
	Introduction
	Background
	Theory
	Messages
	Message Queues
	Building a Message Queue Attribute Set
	Notification of a Message on the Queue
	POSIX Interpretation Issues

	Operations
	Opening or Creating a Message Queue
	Closing a Message Queue
	Removing a Message Queue
	Sending a Message to a Message Queue
	Receiving a Message from a Message Queue
	Notification of Receipt of a Message on an Empty Queue
	Setting the Attributes of a Message Queue
	Getting the Attributes of a Message Queue

	Directives
	mq_open - Open a Message Queue
	mq_close - Close a Message Queue
	mq_unlink - Remove a Message Queue
	mq_send - Send a Message to a Message Queue
	mq_receive - Receive a Message from a Message Queue
	mq_notify - Notify Process that a Message is Available
	mq_setattr - Set Message Queue Attributes
	mq_getattr - Get Message Queue Attributes

	Thread Manager
	Introduction
	Background
	Thread Attributes

	Operations
	Services
	pthread_attr_init - Initialize a Thread Attribute Set
	pthread_attr_destroy - Destroy a Thread Attribute Set
	pthread_attr_setdetachstate - Set Detach State
	pthread_attr_getdetachstate - Get Detach State
	pthread_attr_setstacksize - Set Thread Stack Size
	pthread_attr_getstacksize - Get Thread Stack Size
	pthread_attr_setstackaddr - Set Thread Stack Address
	pthread_attr_getstackaddr - Get Thread Stack Address
	pthread_attr_setscope - Set Thread Scheduling Scope
	pthread_attr_getscope - Get Thread Scheduling Scope
	pthread_attr_setinheritsched - Set Inherit Scheduler Flag
	pthread_attr_getinheritsched - Get Inherit Scheduler Flag
	pthread_attr_setschedpolicy - Set Scheduling Policy
	pthread_attr_getschedpolicy - Get Scheduling Policy
	pthread_attr_setschedparam - Set Scheduling Parameters
	pthread_attr_getschedparam - Get Scheduling Parameters
	pthread_attr_getaffinity_np - Get Thread Affinity Attribute
	pthread_attr_setaffinity_np - Set Thread Affinity Attribute
	pthread_create - Create a Thread
	pthread_exit - Terminate the Current Thread
	pthread_detach - Detach a Thread
	pthread_getconcurrency - Obtain Thread Concurrency
	pthread_setconcurrency - Set Thread Concurrency
	pthread_getattr_np - Get Thread Attributes
	pthread_join - Wait for Thread Termination
	pthread_self - Get Thread ID
	pthread_equal - Compare Thread IDs
	pthread_once - Dynamic Package Initialization
	pthread_setschedparam - Set Thread Scheduling Parameters
	pthread_getschedparam - Get Thread Scheduling Parameters
	pthread_getaffinity_np - Get Thread Affinity
	pthread_setaffinity_np - Set Thread Affinity

	Key Manager
	Introduction
	Background
	Operations
	Directives
	pthread_key_create - Create Thread Specific Data Key
	pthread_key_delete - Delete Thread Specific Data Key
	pthread_setspecific - Set Thread Specific Key Value
	pthread_getspecific - Get Thread Specific Key Value

	Thread Cancellation Manager
	Introduction
	Background
	Operations
	Directives
	pthread_cancel - Cancel Execution of a Thread
	pthread_setcancelstate - Set Cancelability State
	pthread_setcanceltype - Set Cancelability Type
	pthread_testcancel - Create Cancellation Point
	pthread_cleanup_push - Establish Cancellation Handler
	pthread_cleanup_pop - Remove Cancellation Handler

	Services Provided by C Library (libc)
	Introduction
	Standard Utility Functions (stdlib.h)
	Character Type Macros and Functions (ctype.h)
	Input and Output (stdio.h)
	Strings and Memory (string.h)
	Signal Handling (signal.h)
	Time Functions (time.h)
	Locale (locale.h)
	Reentrant Versions of Functions
	Miscellaneous Macros and Functions
	Variable Argument Lists
	Reentrant System Calls

	Services Provided by the Math Library (libm)
	Introduction
	Standard Math Functions (math.h)

	Device Control
	Introduction
	Background
	Operations
	System Calls
	posix_devctl - Control a Device

	Status of Implementation
	Command and Variable Index
	Index

