
Microwindows Architecture

Greg Haerr
CEO

Century Software, Inc. (http://www.centurysoftware.com)

greg@censoft.com

Microwindows Architecture
by Greg Haerr

Copyright © 1999, 2000 by Greg Haerr

Table of Contents
1. Microwindows Architecture ..6

1.1. Architecture...6
1.1.1. Layered Design..6
1.1.2. Device Drivers...6

1.1.2.1. Screen Driver..6
1.1.2.2. Mouse Driver..8
1.1.2.3. Keyboard Driver..9

1.1.3. MicroGUI - Device Independent Graphics Engine................................9
1.1.4. Applications Programmer Interfaces...10

1.1.4.1. Microwindows API...11
1.1.4.2. Nano-X API..11

1.2. Device-Independent Engine Features...12
1.2.1. Graphics Engine Features and Implementation...................................12

1.2.1.1. Regions...12
1.2.1.2. Clipping..14
1.2.1.3. Line Drawing..15
1.2.1.4. Rectangles, Circles, Ellipses...15
1.2.1.5. Polygons..16
1.2.1.6. Area Fills...16
1.2.1.7. Fonts..16
1.2.1.8. Text Drawing...17
1.2.1.9. Color model and palettes..17
1.2.1.10. Image Drawing..18
1.2.1.11. Blitting..19

1.3. Microwindows API...19
1.3.1. Message-passing architecture..20
1.3.2. Window creation and destruction...21
1.3.3. Window showing, hiding and moving...22
1.3.4. Window painting..22

1.3.4.1. Client and screen coordinates...23
1.3.4.2. Device contexts...23

3

1.3.4.3. Graphics Drawing Functions..24
1.3.5. Utility functions...26

1.3.5.1. Setting window focus..27
1.3.5.2. Mouse capture...27
1.3.5.3. Rectangle and Region management..27

1.4. Nano-X API..29
1.4.1. Client/Server model...29
1.4.2. Events...30
1.4.3. Window creation and destruction...31
1.4.4. Window showing, hiding and moving...31
1.4.5. Drawing to a window...32

1.4.5.1. Graphics contexts..32
1.4.5.2. Graphics drawing API...33

1.4.6. Utility functions...34

4

List of Tables
1-1. Microwindows Core Modules..10
1-2. Region Routines...13
1-3. Microwindows Messaging Functions...20
1-4. Microwindows Window Registration, Creation & Destruction Functions.............21
1-5. Microwindows Graphics Drawing API..24
1-6. Microwindows Utility Functions..26
1-7. Microwindows Rectangle & Region Functions..27
1-8. Microwindows Region Creation & Manipulation Functions.................................28
1-9. Microwindows Clip Region Functions...29
1-10. Nano-X Graphics Drawing Functions..33
1-11. Nano-X Utility Functions...35

5

Chapter 1. Microwindows Architecture

1.1. Architecture
This is my first cut at getting the architecture and implementation spilled out. Please let
me know if there’s more detail needed in some areas, or whether you’re confused by my
explanations. This document is for educational and porting purposes, so please read on.

1.1.1. Layered Design
Microwindows is essentially a layered design that allows different layers to be used or
rewritten to suite the needs of the implementation. At the lowest level, screen,
mouse/touchpad and keyboard drivers provide access to the actual display and other
user-input hardware. At the mid level, a portable graphics engine is implemented,
providing support for line draws, area fills, polygons, clipping and color models. At the
upper level, various API’s are implemented providing access to the graphics
applications programmer. These APIs may or may not provide desktop and/or window
look and feel. Currently, Microwindows supports the ECMA APIW and Nano-X APIs.
These APIs provide close compatibility with the Win32 and X Window systems,
allowing programs to be ported from other systems easily.

1.1.2. Device Drivers
The device driver interfaces are defined indevice.h . A given implementation of
Microwindows will link at least one screen, mouse and keyboard driver into the system.
The mid level routines in the device-independent graphics engine core then call the
device driver directly to perform the hardware-specific operations. This setup allows
varying hardware devices to be added to the Microwindows system without affecting
the way the entire system works.

6

Chapter 1. Microwindows Architecture

1.1.2.1. Screen Driver

There are currently screen drivers written for Linux 2.2.x framebuffer systems, as well
as 16-bit ELKS and MSDOS drivers for real-mode VGA cards. The real mode drivers (
scr_bios.c , vgaplan4.c , mempl4.c , scr_her.c) can be configured to initialize
the VGA hardware directly, or utilize the PC BIOS to begin and end graphics mode.
The framebuffer drivers (scr_fb.c , fb.c , fblin?.c) have routines for 1, 2, 4 and
8bpp palletized displays, as well as 8, 15, 16, and 32 bpp truecolor displays. The
framebuffer system works in Linux by opening/dev/fd0 (or
getenv("FRAMEBUFFER")) and mmap()ing the display memory into a linear buffer in
memory. Some display modes, like the VGA 4 planes mode, require that OUT
instructions be issued by the screen driver, while packed pixel drivers typically can get
away with just reading and writing the framebuffer only. All the graphics mode
initialization and deinitialization is handled by the Linux kernel. Getting this set up can
be a real pain.

The screen driver is the most complex driver in the system, but was designed so that it
can be extremely easy to port new hardware to Microwindows. For this reason, there
are but a few entry points that must actually talk to the hardware, while other routines
are provided that allow just the small set of core routines to be used, if desired. For
example, a screen driver must implementReadPixel , DrawPixel , DrawHorzLine ,
andDrawVertLine . These routines read and write a pixel from display memory, as
well as draw a horizontal and vertical line. Clipping is handled at the
device-independent layer. Currently, all mouse movement, text drawing, and bitmap
drawing run on top of these low level functions. In the future, entry points will be
provided for fast text and bitmap drawing capabilities. If the display is palletized, a
SetPalette routine must be included, unless a static palette that matches the system
palette is linked into the system. The screen driver, on initialization, returns values
telling the system the x,y size of the screen, along with the color model supported.

Two font models are currently provided, to be linked in at your desire. The proportional
font model has in-core font tables built from.bdf and other font conversion utilities
provided. The rom-based font uses the PC BIOS to find the character generator table
address and has routines to draw that fixed-pitch font format.

The screen driver can choose to implement bitblitting, by ORing in PSF_HAVEBLIT

7

Chapter 1. Microwindows Architecture

into the returned flags field. When present, bit blitting allows Microwindows to perform
off-screen drawing. Microwindows allows any graphics operation that can be
performed on a physical screen to be performed off-screen, and then copied (bit-blitted)
to the physical screen. Implementing a blitting screen driver can be fairly complex. The
first consideration in implementing a blitting driver is whether the low-level display
hardware can be passed a hardware address for a framebuffer. If so, then the same
routines that draw to the physical screen can be used to draw to off-screen buffers. This
is the method used for the linear framebuffer drivers provided for Linux packed-pixel
displays. The system replaces the mmap()’d physical framebuffer address with a
malloc()’d memory address and calls the original screen driver entry point. In the case
where the system doesn’t use an actual physical memory address, like when running on
top of X or MS Windows, then two sets of routines must be written; one to write the the
underlying graphics system hardware, and another to write to memory addresses. In
addition, the blit entry point must then know how to copy both ways between the two
formats. In fact, all four operations, screen-to-memory, memory-to-screen,
memory-to-memory, and screen-to-screen are supported by Microwindows and may
need to be performed. And of course the bit blitting routine must be _fast_. See the files
fblin8.c andmempl4.c for examples of supporting both types of display hardware.

If writing your first screen driver, I would recommend you start with the PC BIOS real
mode driver,scr_bios.c , or take a look at the framebuffer driver,scr_fb.c , which
is essentially a wrapper around all thefblin?.c routines to read and write various
framebuffer formats. Don’t set the PSF_HAVEBLIT flag at first, and you won’t have to
write a bitblit routine from the start.

Note that currently, all SCREENDEVICE function pointers must be filled in to at least
a void function.For speed reasons, the system always assumes that the function
pointers are valid. Thus, even if not implementing bitblit, a do-nothing bit-blit
procedure must be provided.

1.1.2.2. Mouse Driver

There are three mouse drivers currently included in Microwindows. A GPM driver for
Linux, mou_gpm.c , as well as a serial port mouse driver for Linux and ELKS,

8

Chapter 1. Microwindows Architecture

mou_ser.c . For MSDOS, an int33 drivermou_dos.c is provided. The provided
mouse drivers decode MS, PC and Logitech mice formats. A mouse driver’s basic
function is to decode the mouse data and return either relative or absolute data for the
mouse position and buttons.

In addition, Brad LaRonde has written a touch panel drivermou_tp.c , which
masquerades as a mouse driver. It returns the value of x, y value of the pen on the
display surface, and can be used like a mouse.

Under Linux, the main loop of Microwindows is aselect() statement, with file
descriptors for the mouse and keyboard driver always passed in. If the system that
Microwindows is running on doesn’t supportselect() or doesn’t pass mouse data
through a file descriptor, aPoll() entry point is provided.

1.1.2.3. Keyboard Driver

There are two keyboard drivers provided. The first,kbd_tty.c , is used for Linux and
ELKS systems where the keyboard is opened and read as through a file descriptor. The
second,kbd_bios.c , read the PC BIOS for keystrokes and is used in MSDOS real
mode. The keyboard driver currently returns 8-bit data from the keyboard, but doesn’t
decode multi-character function key codes. This functionality will need to be added
soon, by reading termcap files or the like.

1.1.3. MicroGUI - Device Independent Graphics Engine
The core graphics functionality of Microwindows resides in the device independent
graphics engine, which calls the screen, mouse and keyboard drivers to interface with
the hardware. User applications programs never all the core graphics engine routines
directly, but rather through the programmer API’s, discussed in the next sections. The
core engine routines are separated from the applications API’s is for a variety of
reasons. The core routines will always reside on the server in a client/server
environment. Also, the core routines use internal text font and bitmap formats that are
designed for speed and may or may not be the same as the structures used in standard

9

Chapter 1. Microwindows Architecture

API’s. In addition, the core routines always use pointers, never ID’s, and can then be
used together to implement more complex functions without always converting
handles, etc.

In Microwindows, the core routines all begin asGdXXX() functions, and are
concerned with graphics output, not window management. In addition, all clipping and
color conversion is handled within this layer. The following files comprise the core
modules of Microwindows:

Table 1-1. Microwindows Core Modules

File Description

devdraw.c Core graphics routines for line, circle,
polygon draw and fill, text and bitmap
drawing, color conversion

devclip.c Core clipping routines. (devclip2.c is the
new y-x-banding algorithm, devclip1.c an
older method)

devrgn.c New dynamically allocated routines for
intersect/union/subtract/xor region creation.

devmouse.c Core routines for keeping the mouse
pointer updated or clipped from the screen.

devkbd.c Core keyboard handling routines.

devpalX.c Linked in static palettes for 1, 2, 4 and
8bpp palletized systems.

The MicroGUI graphics engine routines are discussed in detail in Section 1.2.

1.1.4. Applications Programmer Interfaces
Microwindows currently supports two different application programming interfaces.
This set of routines handles client/server activity, window manager activities like

10

Chapter 1. Microwindows Architecture

drawing title bars, close boxes, etc, as well as, of course, handling the programmer’s
requests for graphics output. Both the API’s run on top of the core graphics engine
routines and device drivers.

The basic model of any API on top of Microwindows is to hang in initialize the screen,
keyboard and mouse drivers, then hang in aselect() loop waiting for an event. When
an event occurs, if it’s a system event like keyboard or mouse activity, then this
information is passed to the user program converted to an expose event, paint message,
etc. If it’s a user requesting a graphics operation, then the parameters are decoded and
passed to the appropriateGdXXXengine routine.Notethat the concept of a window
versus raw graphics operations are handled at this API level. That is, the API defines
the concepts of what a window is, what the coordinate systems are, etc, and then the
coordinates are all converted to "screen coordinates" and passed to the core GdXXX
engine routines to do the real work. This level also defines graphics or display contexts
and passes that information, including clipping information, to the core engine routines.

Currently, the Microwindows API code is inmwin/win*.c , while the Nano-X API
code is innanox/srv*.c .

1.1.4.1. Microwindows API

The Microwindows API tries to be compliant with the Microsoft Win32 and WinCE
GDI standard. Currently, there is support for most of the graphics drawing and clipping
routines, as well as automatic window title bar drawing and dragging windows for
movement. The Microwindows API is message-based, and allows programs to be
written without regard to the eventual window management policies implemented by
the system. The Microwindows API is not currently client/server, and will be discussed
in more detail in Section 1.4.

1.1.4.2. Nano-X API

The Nano-X API is modeled after the mini-x server written initially by David Bell,
which was a reimplementation of X on the MINIX operating system. It loosely follows
the X Window System Xlib API, but the names all being withGrXXX() rather than

11

Chapter 1. Microwindows Architecture

X...() . Currently, the Nano-X API is client/server, but does not have any provisions
for automatic window dressings, title bars, or user window moves. There are several
groups writing widget sets currently, which will provide such things. Unfortunately, the
user programs must also then write only to a specific widget set API, rather than using
the Nano-X API directly, which means that only the functionality provided by the
widget set will be upwardly available to the applications programmer. (Although this
could be considerable, in the case that, say Gdk was ported.)

1.2. Device-Independent Engine Features
This section discusses in the capabilities and implementation of Microwindows’ core
graphics engine in detail. It’s purpose is both educational and to allow extending an
API by understanding how the engine works.

1.2.1. Graphics Engine Features and Implementation
These routines concern themselves with drawing operations to off-screen or screen
surfaces. Each routine starts with Gd... and is passed a pointer to the SCREENDEVICE
structure (PSD) as it’s first parameter. The PSD parameter specifies the low level
display details, like the x, y size of the device and the color model used by the
hardware, for example. In addition, the actual routines to perform drawing are function
pointers in this structure. All screen coordinates are of type COORD, and specified in
device coordinates, that is, offsets from the upper left corner of the screen.

Colors are always specified as an RGB COLORVAL value into the graphics engine.
They are then possibly converted to palette indices and sent to the display hardware as
PIXELVAL values. In the case of 32bpp truecolor displays, no conversion is required.
The color model will be discussed in detail below.

12

Chapter 1. Microwindows Architecture

1.2.1.1. Regions

Regions are used to describe arbitrary sets of pixels on the screen. A simple, square
region of pixels can be described by a single rectangle. More complex sets of pixels
require more complex data structures. In Microwindows, regions are described by an
array of non-overlapping rectangles. Currently, there are two different implementations
of regions in Microwindows, the original design for systems with limited memory, and
a new design with dynamically allocated sets of rectangles. The original design used a
single static array of MWCLIPRECTs to describe complex regions. Any point within
any rectangle in the array was considered to be in the region. The array wasn’t sorted in
any particular order, but was always guaranteed to contain non-overlapping rectangles.
Another global variable, clipcount, specified the number of rectangles in the array. This
original design had no engine entry points for region management, the entire array was
passed to the clipping functions, described below.

In the new design set with #define DYNAMICREGIONS 1, any number of regions can
be created, as the regions (MWCLIPREGION *) are stored as dynamically allocated
arrays of rectangles. In this implementation, the non-overlapping rectangles are always
kept in "y-x" sorted bands, such that each band’s y height is the same for all rectangles
in the band. This means that only the x position and width of the rectangles in each
band varied. Because of this, it is easier to create a set of functions for combining
regions, since effectively only a single dimension had to be compared for each region
operation. The new region handling routines allow for creating and destroying regions,
as well as combining rectangles and regions with regions using Intersection, Union,
Subtraction, and Exclusive Or. This model allows regions to be implemented apart from
the clipping routines, unlike the first version. Following are the new region routines:

Table 1-2. Region Routines

Function Description

GdAllocRegion Create a region.

GdAllocRectRegion Create a rectangular region from
left,top,right,bottom.

13

Chapter 1. Microwindows Architecture

Function Description

GdAllocRectRegionIndirect Create a rectanglular region from a
MWRECT.

GdSetRectRegion Set a region to a single rectangle.

GdDestroyRegion Destroy a region.

GdCopyRegion Copy a region.

GdUnionRectWithRegion Union a rectangle with a region.

GdIntersectRegion Create a region from the intersection of
two regions.

GdSubtractRegion Create a region from the difference of two
regions.

GdUnionRegion Create a region from the union of two
regions.

GdXorRegion Create a region from the XOR of two
regions.

1.2.1.2. Clipping

Clipping in Microwindows is closely tied to the region management code. At any point
in time, the graphics engine has a single clipping region, that is a set of rectangles,
defined for any graphics operation. A point is drawn if it is "inside" any of the current
set of clip rectangles. Two slightly modified versions of the clipping algorithm are
supplied,devclip1.c for the original, static rectangle array, anddevclip2.c for the
newer dynamically allocated array. A single entry point GdSetClipRects, takes the
passed region and specifies it’s use for all subsequent graphics operations. All the
drawing routines then use the two additional routines to determine whether or not to
draw.GdClipPoint takes an x,y point in screen coordinates and returns TRUE if the
point can be drawn, that is, the point is within one of the region rectangles.
GdClipArea takes an upper left and lower right point, and returns one of the
following: CLIP_VISIBLE, if the specified area is completely within the region,
CLIP_INVISIBLE, if the area is completely not in the region, which means that no

14

Chapter 1. Microwindows Architecture

drawing should be performed, or CLIP_PARTIAL, if a part but not the whole area is
within the region. A typical graphics primitive will call the screen driver with
unmodified passed inputs if CLIP_VISIBLE is returned, or return if
CLIP_INIVISIBLE is returned. In the CLIP_PARTIAL case, the primitive must break
up the original request into areas that are within the clip region before calling the
screen driver. This slows down the operation considerably.

Because the clipping code is called constantly before drawing operations,
Microwindows keeps a global cache rectangle of the last rectangle checked with
GdClipArea , for speed and also to allow the mid level to quickly calculate how partial
drawing lengths.

1.2.1.3. Line Drawing

Line drawing is the simplest of graphics operations. Microwindows supportsGdPoint

to draw a point, andGdLine to draw a horizontal, vertical or diagonal (using
Bresenham algorithm) line. Just before any call to the screen driver, a call to
GdCheckCursor assures that the software cursor is removed prior to drawing.
GdFixCursor restores the cursor if previously visible.

There is a tricky part to line drawing that had to be added during the support for
multiple API’s. This has to do with whether or not the last point in specified line
segment is drawn or not. There are two schools of thought on this, and to make it short,
Microwindows supports both of them. The last parameter to GdLine specifies whether
or not to draw the last point. The Microwindows API doesn’t draw the last point, but
the Nano-X API does.

Most drawing functions, including line drawing draw using the "current" foreground
color, specified usingGdSetForeground . In addition a drawing mode, currently either
MODE_SET or MODE_XOR can be specified usingGdSetMode.

1.2.1.4. Rectangles, Circles, Ellipses

Rectangles, circles and ellipses are drawn using theGdRect andGdEllipse routines.

15

Chapter 1. Microwindows Architecture

A circle is an ellipse with the same x and y radius. As with lines, rectangles and ellipses
are drawn using the current foreground color and mode.

1.2.1.5. Polygons

Microwindows supports polygon drawing by specifying an array of x,y points. The
points are then connected using theGdLine function. The current foreground color,
drawing mode, and clip region is used during output.

1.2.1.6. Area Fills

Microwindows supports filled rectangular areas using theGdFillRect function. The
rectangle’s outline and contents are filled using the current foreground color. Filled
circles and ellipses are performed withGdFillEllipse , and polygon fills with
GdFillPoly . Area filling is implemented through successive calls to the
DrawHorzLine in the screen driver, and are much faster if fully not clipped.

1.2.1.7. Fonts

Both fixed pitch and proportional fonts are supported in Microwindows. Because of
potentially large differences in display hardware, the actual font format is known only
to the screen driver, although a set of standard functions are supplied for dealing with
converted.bdf fonts and Microsoft Windows fonts, if you have a license. The engine
functionGdSetFont specifies a font number that is passed to the driver and used to
index a static array of linked in fonts. Screen driver entry points GetTextSize return the
font height and width for a passed string, andGetTextBits returns an individual
character bitmap. The engine layer uses these values to calculate a clipping region for
text drawing, as well as to draw the character as a monochrome bitmap.

The screen drivers currently supplied implement both fixed pitch PC ROM based fonts,
as well as a proportional font format that is linked into the screen driver. A few
conversion programs allow conversion of fonts from different formats to the driver
format.Bdftobogl converts X Window System.bdf files to Microwindows format.

16

Chapter 1. Microwindows Architecture

Convfnt32 converts raster and truetype Microsoft Windows fonts, if you have a
license, to Microwindows format. Convrom converts PC ROM bios fonts.

A number of free fonts are supplied with the system, a heavier proportional 14x16
system font, and a sans-serif 11x13 font for title bar and edit box displays. Any number
of fonts can be linked into the system, and it’s fairly easy to dynamically load fonts if
one writes the routines for it.

1.2.1.8. Text Drawing

Text output is performed by first selecting the desired font withGdSetFont , and then
calling theGdText function. Full text clipping is performed, although currently there is
no "fast" text output entry point in the screen driver, so each character bitmap is
grabbed using theGetTextBits entrypoint and then drawn usingDrawpixel . While
this will have to remain the same for partially clipped text, a screen driver entry point to
draw fast text will probably be required shortly.

Text is drawn using the current foreground color. The background is drawn if the
current "use background" mode set viaGdUseBackground is TRUE. In this case the
background is drawn using the current background color set viaGdSetBackground .
TheGdText function also takes a bottomAlign parameter that specifies whether the
text is to be bottom or top aligned, to help with differing API’s.

1.2.1.9. Color model and palettes

The Microwindows graphics engine requires all colors to be specified as either 24-bit
RGB color values, or in rare cases, as palette indices for speed. The palette index
method will only work on systems that have hardware palettes, so it’s not
recommended. All of the upper-level color parameters are specified to the engine
routines using a COLORVAL value, which is a long containing the desired RGB color,
created using theRGB() macro. The engine then converts the COLORVAL to a
PIXELVAL value, which is normally a long also, but on some smaller systems can be
compiled as an unsigned char. The PIXELVAL value is the actual value passed to any
screen driver entry point requiring a color. So the mid level routines all work with RGB

17

Chapter 1. Microwindows Architecture

COLORVALs, while the device driver routines all work with PIXELVALs. The
graphics engine converts these values using two routines,GdFindColor and
GdFindNearestColor , described below.

GdFindColor takes a hardware independent RGB value and converts it to a hardware
dependent PIXELVAL pixel value. In the case of 32bpp display drivers, no conversion
is required. Otherwise for truecolor systems, Microwindows converts the RGB value to
a 5/5/5 15-bit or 5/6/5 16 bit truecolor value. For 8bpp truecolor displays, the RGB
value is converted to 3/3/2. For palletized displays, theGdFindNearestColor

function is called to convert the RGB color to the nearest palette index in the current
system palette.GdFindNearestColor uses a weighted distance-cubed method to find
the palette value nearest to the requested color, and returns it. Standard palettes for 1, 2,
4 and 8bpp are included in the filesdevpal1.c , devpal2.c , devpal4.c and
devpal8.c . These palettes associate an RGB value with an index, but may be
overwritten.

TheGdSetPalette function determines whether there are any free entries in the
system palette (discussed shortly) and if so, adds entries to the system palette, and calls
the screen driverSetPalette entry point to set the hardware palette. There is a single
global variable, gr_firstuserpalentry, that contains the index of the next available system
palette entry. Initially, this is set to 24. Thus, systems with less than 24 total palette
entries will never have an available palette entry to remap. On systems that do, like 256
color systems, then images requiring more color entries keep callingGdSetPalette

until the system palette is full. To reset marker, the functionGdResetPalette is
called. This allows upper level API’s to distinguish between different images and force
the system palette to be rewritten.

1.2.1.10. Image Drawing

Microwindows supports two styles of images, monochrome and palettized.
Monochrome images are specified with an IMAGEBITS structure, which is an array of
words with 1 bits specifying the foreground color and 0 bits the background. The
IMAGEBITS bits are short-word padded to the width of the bitmap. TheGdBitmap

routine draws monochrome bitmaps, similar toGdText , by drawing all the 1 bits in the

18

Chapter 1. Microwindows Architecture

foreground color, and the 0 bits in the background color if the "use background" set by
GdUseBackground is TRUE.

Color bitmaps are specified using a 1, 4 or 8bpp image palette, and an array of indices
into this palette, all stuffed into an IMAGEHDR structure, and drawn via
GdDrawImage . First, the system creates a conversion palette by calling
GdMakePaletteConversionTable , which converts the images’ palette entries into
system indices. At the same time, the system attempts to increase the system palette if
necessary by calling theGdSetPalette function described above. At the end of this
operation, the image has a converted palette which necessarily corresponds to the
system palette. In the case of truecolor hardware, the image’s palette entries are
converted to hardware truecolor pixel values, and output directly.

After converting the image color entries theGdDrawImage determines whether the
image is clipped, and outputs the image, pixel by pixel. In the future, a blitting routine
could be used for faster image drawing.

1.2.1.11. Blitting

Blitting functionality is required in the screen driver for offscreen drawing capability,
discussed earlier in the screen drivers section. The engine functionGdBlit allows
upper level APIs to implement copy operations from offscreen memory to the display,
or vice versa. The blit format is driver specific, and generally only works for memory
images created by the screen driver during runtime. The upper level APIs implement
this by allocating a new SCREENDRIVER structure, copying an existing
SCREENDRIVER structure into it, replacing the address field with amalloc() ’d
value, and setting the PSF_MEMORY bit, which indicates to the display driver that this
is now an offscreen surface. Any subsequent calls to the engine routines then draw onto
this surface. When it is desired to copy the offscreen surface back to the physical
display, the GdBlit routine is called. Currently, only SRCCOPY operations are
performed, but future plans will add blitting opcodes.

The functionGdCalcMemGCAlloc calculates the byte size and line length (pitch) of an
offscreen memory area given the passed bpp and planes parameters. This is before
calling the screen driver to allocate an offscreen screen device.

19

Chapter 1. Microwindows Architecture

1.3. Microwindows API

1.3.1. Message-passing architecture
The fundamental communications mechanism in the Microwindows API is the
message. A message consists of a well-known message number, and two parameters,
known as wParam and lParam. Messages are stored in an application’s message-queue,
and retrieved via theGetMessage function. The application blocks while waiting for a
message. There are messages that correspond to hardware events, like WM_CHAR for
keyboard input or WM_LBUTTONDOWN for mouse button down. In addtiion, events
signaling window creation and destruction WM_CREATE and WM_DESTROY are
sent. In most cases, a message is associated with a window, identified as an HWND.
After retrieving the message, the application sends the message to the associated
window’s handling procedure usingDispatchMessage . When a window class is
created, it’s associated message handling procedure is specified, so the system knows
where to send the message.

The message-passing architecture allows the core API to manage many system
functions by sending messages on all sorts of events, like window creation, painting
needed, moving, etc. By default, the associated window handling function gets a "first
pass" at the message, and then calls theDefWindowProc function, which handles
default actions for all the messages. In this way, all windows can behave the same way
when dragged, etc, unless specifically overridden by the user. Major window
management policies can be redefined by merely re-implementingDefWindowProc ,
rather than making changes throughout the system.

The following functions deal with messages directly:

Table 1-3. Microwindows Messaging Functions

Function Description

SendMessage Send a message directly to a window.

20

Chapter 1. Microwindows Architecture

Function Description

PostMessage Queue a message on the application’s
message queue for later dispatch.

PostQuitMessage Queue a WM_QUIT message telling the
application to terminate when read.

GetMessage Block until a message is queued for this
application.

TranslateMessage Translate up/down keystrokes to
WM_CHAR messages.

DispatchMessage Send a messages to it’s associated window
procedure.

A Microwindows application’s entry point is the functionWinMain , rather than main.

1.3.2. Window creation and destruction
The basic unit of screen organization in Microwindows API is the window. Windows
describe an area of the screen to draw onto, as well as an associate "window procedure"
for handling messages destined for this window. Applications programmers can create
windows from pre-defined classes, like buttons, edit boxes, and the like, or define their
own window classes. In both cases, the method of creating and communicating with the
windows remains exactly the same. The following functions deal with window
registration, creation, and destruction:

Table 1-4. Microwindows Window Registration, Creation & Destruction Functions

Function Description

RegisterClass Define a new window class name and
associated window procedure.

UnRegisterClass Undefine a window class.

21

Chapter 1. Microwindows Architecture

Function Description

CreateWindowEx Create an instance of a window of a certain
class.

DestroyWindow Destroy a window instance.

GetWindowLong Return information about a window.

SetWindowLong Set information about a window.

GetWindowWord Return user information about a window.

SetWindowWord Set user information about a window.

GetClassLong Return information about a window class.

GetWindowText Get a window’s title or text.

SetWindowText Set a window’s title or text.

The WM_CREATE message is just after window creation, before returning from
CreateWindowEx . The WM_DESTROY message is sent just before destroying a
window with DestroyWindow .

When a window is registered, extra bytes can be allocated to the window structure
when created. TheGetWindowLong , GetWindowWord , SetWindowLong and
SetWindowWord manipulate these bytes. In addition, a fixed number of extra bytes per
window class can be allocated on registration and retrieved via theGetClassLong

function.

1.3.3. Window showing, hiding and moving
The ShowWindow function allows windows to be made visible or hidden. In addition,
this can be specified during the creation of the window, throughCreateWindowEx .
MoveWindow is called to change a window’s position or size. A WM_MOVE message
is sent if the window’s position changes, and WM_SIZE is sent on size changes.

22

Chapter 1. Microwindows Architecture

1.3.4. Window painting
The Microwindows system determines when a window needs to be initially painted or
repainted as the result of other window movement, and a WM_PAINT message is sent
to the associated window procedure. At this point, it’s up the the application to use the
graphics primitives available to paint the window, described below. Microwindows
keeps track of a windows’ "update" region, and sends WM_PAINT whenever the
region is non-empty. For speed reasons, the WM_PAINT message is only sent when
there are no other messages in the application’s queue. This allows the application to
repaint in one, rather than possibly many, steps. To force a repaint rather than waiting,
the UpdateWindow function can be called. TheInvalidateRect function specifies a
rectangle to add to the update region, causing a subsequent WM_PAINT.

The window title is automatically painted and is set with theSetWindowText

function, and retrieved with theGetWindowText function.

1.3.4.1. Client and screen coordinates

Every window is drawn on the screen using the device global screen coordinate system
for absolute reference to any pixel on the screen. The Microwindows API allows
applications programmers to be concerned with only the relative coordinates from the
upper left portion of their window, not including the title bar and 3d effects. This
coordinate system is called"client coordinates."As will be explained below, the
Microwindows programmer has the option of getting a device context in either screen
or client coordinates. If device coordinates are specified, then the coordinate system is
device-based and includes the title area and 3d areas of the window. Otherwise, the
drawable region is clipped to just that area that is reserved by the system for the
application’s drawing. TheGetClientRect andGetWindowRect functions return
client or screen coordinates for the passed window.ClientToScreen and
ScreenToClient can be called to translate between window coordinate systems.

1.3.4.2. Device contexts

An applications programmer must obtain a"device context"before calling any graphics

23

Chapter 1. Microwindows Architecture

drawing API functions. As explained above, this specifies to the system which window
and what coordinate system are desired, so that these don’t have to be passed to every
graphics function. In addition, various other attributes like foreground and background
color are also set in a device context, so that these parameters don’t have to be specified
for every graphics operation. The device context selects the appropriate clipping region
based on the window specified and the coordinate system. When a device context is
obtained, various graphics values are set to default values.

To obtain a client device context, callGetDC. To obtain a screen device context,
required when drawing onto title bars and the like, callGetWindowDC. In addition,
fancy clipping operations and child/sibling window clipping can be specified if
GetDCEx is called. When finished drawing, theReleaseDC function must be called to
deallocate the DC.

On receipt of the WM_PAINT message, two special calls,BeginPaint andEndPaint

are called, that serve as replacements to theGetDC/ReleaseDC functions. These
functions essentially allocate a DC but also validate the update region so that no
subsequent WM_PAINT messages are generated.BeginPaint also combines the
update region and the clipping region so that user output will only occur where
previously invalidated.

1.3.4.3. Graphics Drawing Functions

There are many graphics drawing API’s in the Microwindows API. Following is a list,
most of these match up to the engine GdXXX functions discussed in Section 1.2.

Table 1-5. Microwindows Graphics Drawing API

Function Description

SetTextColor Set the foreground text color in a DC.

SetBkColor Set the background color in a DC.

GetSysColor Get the system color defined for the
current look and feel scheme.

24

Chapter 1. Microwindows Architecture

Function Description

SetSysColor Set a system color.

SetBkMode Set the use background flag in a DC.

SetROP2 Set the drawing mode (XOR, SET, etc) for
drawing.

SetPixel Draw a pixel in the current fg color.

MoveToEx Prepare to draw a line.

LineTo Draw a line from the last location to this
one in the current fg color.

Rectangle Draw a rectangle in the current pen color.

FillRect Fill a rectangle with the current brush
color.

TextOut Draw text in the current fg/bg color.

ExtTextOut Draw text in the current fg/bg color.

DrawText Draw text or compute text height and
width sizes.

DrawDIB Draw a color bitmap.

SelectObject Select a pen, brush or font to use in a DC.

GetStockObject Get a predefined standard pen, brush or
font.

CreatePen Create a pen of a certain color.

CreateSolidBrush Create a brush of a certain color.

CreateCompatibleBitmap Create an offscreen area to draw onto.

DeleteObject Delete a pen, brush or bitmap.

CreateCompatibleDC Create an offscreen DC.

DeleteDC Delete an offscreen DC.

BitBlit Copy from one bitmap in a DC to another.

25

Chapter 1. Microwindows Architecture

Function Description

GetSystemPaletteEntries Get the currently in-use system palette
entries.

1.3.5. Utility functions
A number of routines are provided for various purposes, described below. In addition,
Microwindows currently exports some helper routines, named WndXXX, that are
useful but subject to change. These are detailed following:

Table 1-6. Microwindows Utility Functions

Function Description

WndSetDesktopWallpaper Set the desktop background image.

WndSetCursor Set the cursor for a window.

WndRaiseWindow Raise a window’s z-order.

WndLowerWindow Lower a window’s z-order.

WndGetTopWindow Return the topmost window’s handle.

WndRegisterFdInput Register to send a message when file
descriptor has read data available.

WndUnregisterFdInput Unregister file descriptor for read data
messages.

GetTickCount Return # milliseconds elapsed since
startup.

Sleep Delay processing for specified
milliseconds.

SetTimer Create a millisecond timer.

KillTimer Destroy a millsecond timer.

26

Chapter 1. Microwindows Architecture

Function Description

GetCursorPos Return mouse cursor coordinates.

1.3.5.1. Setting window focus

TheSetFocus routine is used to pass keyboard focus from one window to another.
Keystrokes are always sent to the window with focus. The WM_SETFOCUS and
WM_KILLFOCUS messages are sent to windows just receiving and losing focus. The
GetActiveWindow routines returns the first non-child ancestor of the focus window,
which is the window that is currently highlighted. TheGetDesktopWindow routine
returns the window handle of the desktop window.

1.3.5.2. Mouse capture

Normally, Microwindows sends WM_MOUSEMOVE messages to the window the
mouse is currently moving over. If desired, the applications programmer can "capture"
the mouse and receive all mouse move messages by callingSetCapture .
ReleaseCapture returns the processing to normal. In addition, theGetCapture

function will return the window with capture, if any.

1.3.5.3. Rectangle and Region management

There are a number of functions that are used for rectangles and regions. Following is
the group:

Table 1-7. Microwindows Rectangle & Region Functions

Function Description

SetRect Define a rectangle structure.

SetRectEmpty Define an empty rectangle.

CopyRect Copy a rectangle.

27

Chapter 1. Microwindows Architecture

Function Description

IsRectEmpty Return TRUE if empty rectangle.

InflateRect Enlarge a rectangle.

OffsetRect Move a rectangle.

PtInRect Determine if a point is in a rectangle.

PtInRect Determine if a point is in a rectangle.

IntersectRect Intersect two rectangles.

UnionRect Union two rectangles.

SubtractRect Difference two rectangles.

EqualRect Determine if two rectangles are the same.

The following functions are used for region creation and manipulation:

Table 1-8. Microwindows Region Creation & Manipulation Functions

Function Description

CreateRectRgn Create a rectangular region.

CreateRectRgnIndirect Create a rectangular region from a RECT.

SetRectRgn Set a region to a single rectangle.

CreateRoundRectRgn Create a round rectangular region.

CreateEllipticRgn Create an elliptical or circular region.

CreateEllipticRgnIndirect Create an elliptical or circular region from
a RECT.

OffsetRgn Offset a region by x, y values.

GetRgnBox Get a region’s bounding rect.

GetRegionData Get a region’s internal data structure.

PtInRgn Determine if a point is in a region.

RectInRegion Determine if a rectangle intersects a
region.

28

Chapter 1. Microwindows Architecture

Function Description

EqualRgn Determine if two regions are equal.

CombineRgn Copy/And/Or/Xor/Subtract a region from
another.

The following regions are used to set user specified clipping regions. These regions are
then intersected with the visible clipping region that Microwindows maintains prior to
drawing:

Table 1-9. Microwindows Clip Region Functions

Function Description

SelectClipRegion Assign a user specified clipping region.

ExtSelectClipRegion And/Or/Xor/Subtract user clipping region
with another region.

1.4. Nano-X API
The Nano-X API was originally designed by David Bell, with his mini-x package for
the MINIX operating system. Nano-X is now running on top of the core graphics
engine routines discussed in Section 1.2. Nano-X was designed for a client/server
environment, as no pointers to structures are passed to the API routines, instead a call is
made to the server to get an ID, which is passed to the API functions and is used to
reference the data on the server. In addition, Nano-X is not message-oriented, instead
modeled after the X protocol which was designed for speed on systems where the client
and server machines were different.

29

Chapter 1. Microwindows Architecture

1.4.1. Client/Server model
In Nano-X, there are two linking mechanisms that can be used for applications
programs. In the client/server model, the application program is linked with a client
library that forms a UNIX socket connection with the Nano-X server, a separate
process. Each application then communicates all parameters over the UNIX socket. For
speed and debugging, it is sometimes desirable to link the application directly with the
server. In this case, a stub library is provided that just passes the client routines
parameters to the server function.

The Nano-X naming convention uses GrXXX to designate client side callable routines,
with a marshalling layer implemented in the filesnanox/client.c ,
nanox/nxproto.c , and nanox/srvnet.c . The client/server network layer
currently uses a fast approach to marshalling the data from the Gr routine into a buffer,
and sent all at once to the receiving stubs innanox/srvnet.c , before calling the
server drawing routines innanox/srvfunc.c . In the linked application scenario, the
Nano-X client links directly with the functions innanox/srvfunc.c , and the
nanox/client.c and nanox/srvnet.c files are not required.

A Nano-X application must callGrOpen before calling any other Nano-X function, and
call GrClose before exiting. These functions establish a connection with the server
when running the client/server model, and return an error status if the server can’t be
found or isn’t currently running.

The main loop in a Nano-X application is to create some windows, define the events
you want withGrSelectEvents , and then wait for an event withGrGetNextEvent .
If it is desired to merely check for an event, but not wait if there isn’t one,
GrCheckNextEvent can be used.GrPeekEvent can be used to examine the next
event without removing it from the queue.

When running Nano-X programs in the client/server model, it’s currently necessary to
run the server first in a shell script, then wait a second, then run the application. Some
rewriting is needed to fire up the server when an application requires it, I believe.

30

Chapter 1. Microwindows Architecture

1.4.2. Events
Nano-X applications specify which events they would like to see on a per-window basis
usingGrSelectEvents . Then, in the main loop, the application calls
GrGetNextEvent and waits for one of the event types selected for in any of the
windows. Typically, a switch statement is used to determine what to do after receiving
the event. This is similar to the Microwindows’s APIGetMessage /DispatchMessage

loop, except that in Microwindows API,DispatchMessage is used to send the event
to the window’s handling procedure, typically located with the window object. In
Nano-X, all the event handling code for each of the windows must be placed together in
the main event loop, there is no automatic dispatching. Of course, widget sets serve to
provide object-orientation, but this is in addition to the Nano-X API.

Following are the event types that Nano-X programs can recieve:

GR_EVENT_TYPE_NONE, ERROR, EXPOSURE, BUTTON_DOWN,
BUTTON_UP, MOUSE_ENTER, MOUSE_EXIT, MOUSE_MOTION,
MOUSE_POSITION, KEY_UP, KEY_DOWN, FOCUS_IN, FOCUS_OUT,
FDINPUT, UPDATE, CHLD_UPDATE

Note that Nano-X API provides mouse enter and exit events whereas Microwindows
API does not. Also, the exposure events are calculated and sent immediately by the
server, and not combined and possibly delayed for better paint throughput as in the
Microwindows API.

1.4.3. Window creation and destruction
Windows are created in Nano-X with theGrNewWindow function. Windows can be
specified to be input-only, in which case theGrNewInputWindow function is used. The
window border and color is specified in these calls, but will have to be rewritten when
fancier window dressings are required. The return value from these functions is an ID
that can be used in later calls to get a graphics context or perform window
manipulation.

Pixmaps, which are offscreen windows, are created with GrNewPixmap. The ID

31

Chapter 1. Microwindows Architecture

returned can be used with any drawing function. Pixmaps are copied to windows using
the GrCopyArea function, and destroyed like windows with GrDestroyWindow.

1.4.4. Window showing, hiding and moving
Windows are shown by calling theGrMapWindow function, and hidden using
GrUnmapWindow. Mapping a window is required for all ancestors of a window in order
for it to be visible. The GrRaiseWindow call is used to raise the Z order of a window,
while GrLowerWindow is used to lower the Z order.GrMoveWindow is used to change
the position of a window, andGrResizeWindow is used to resize a window. A window
can be reparented withGrReparentWindow .

1.4.5. Drawing to a window
Nano-X requires both a window ID and a graphics context ID in order to draw to a
window. Nano-X sends expose events to the application when a window needs to be
redrawn. Unlike the Microwindows API, Nano-X clients are typically required to create
their drawing graphics contexts early on and keep them for the duration of the
application. Like Microwindows though, the graphics contexts record information like
the current background and foreground colors so they don’t have to be specified in
every graphics API call.

1.4.5.1. Graphics contexts

To allocate a graphics context for a window, callGrNewGC. On termination, call
GrDestroyGC . GrCopyGCcan be used to copy on GC to another.GrGetGCInfo is
used to retrieve the settings contained in a GC. After creating a graphics context, the
server returns a graphics context ID. This is then used as a parameter in all the graphics
drawing API functions. In Nano-X programs, the current clipping region and window
coordinate system aren’t stored with the GC, as they are in Microwindows’ DCs. This
is because, first, Nano-X doesn’t support dual coordinate systems for drawing to the
"window dressing" area versus the "user" area of the window (window and client

32

Chapter 1. Microwindows Architecture

coordinates in Microwindows). User programs can’t draw the border area of the
window, only a single color and width can be specified. Although resembling X, this
will have to change, so that widget sets can specify the look and feel of all aspects of
the windows they maintain. Since the clipping region isn’t maintained with the graphics
context, but instead with the window data structure, Nano-X applications must specify
both a window ID and a graphics context ID when calling any graphics API function.
Because of this, many Nano-X applications allocate all graphics contexts in the
beginning of the program, and hold them throughout execution, since the graphics
contexts hold only things like foreground color, etc, and no window information. This
cannot be done with Microwindows API because the DC’s contain window clipping
information and must be released before processing the next message.

1.4.5.2. Graphics drawing API

Following are the graphics drawing functions available with Nano-X. Like
Microwindows API, these all match up eventually to the graphics engineGdXXX

routines.

Table 1-10. Nano-X Graphics Drawing Functions

Function Description

GrGetGCTextSize Return text width and height information.

GrClearWindow Clear a window to it’s background color.

GrSetGCForeground Set the foreground color in a graphics
context.

GrSetGCBackground Set the background color in a graphics
context.

GrSetGCUseBackground Set the "use background color" in a
graphics context.

GrSetGCMode Set the drawing mode.

GrSetGCFont Set the font.

33

Chapter 1. Microwindows Architecture

Function Description

GrPoint Draw a point in the passed gc’s foreground
color.

GrLine Draw a line in the passed gc’s foreground
color.

GrRect Draw a rectangle in passed gc’s foreground
color.

GrFillRect Fill a rectangle with the passed gc’s
foreground color.

GrEllipse Draw a circle or ellipse with the passed
gc’s foreground color.

GrFillEllipse Fill a circle or ellipse with the passed gc’s
foreground color.

GrPoly Draw a polygon using the passed gc’s
foreground color.

GrFillPoly Fill a polygon using the passed gc’s
foreground color.

GrText Draw a text string using the foreground
and possibly background colors.

GrBitmap Draw an image using a passed
monocrhome bitmap, use fb/bg colors.

GrBMP Draw an image from a .bmp file.

GrJPEG Draw an image from a .jpg file.

GrArea Draw a rectangular area using the passed
device-dependent pixels.

GrReadArea Read the pixel values from the screen and
return them.

GrGetSystemPaletteEntries Get the currently in-use system palette
entries.

34

Chapter 1. Microwindows Architecture

Function Description

GrFindColor Translate an RGB color value to a
PIXELVAL pixel value.

1.4.6. Utility functions
Various functions serve as utility functions to manipulate windows and provide other
information. These include the following:

Table 1-11. Nano-X Utility Functions

Function Description

GrSetBorderColor Set the border color of a window. Not
suitable for 3d look and feel.

GrSetCursor Set the cursor bitmap for the window.

GrMoveCursor Move the cursor to absolute screen
coordinates.

GrSetFocus Set the keyboard input focus window.

GrRedrawScreen Redraw the entire screen.

GrGetScreenInfo Return information about the size of the
physical display.

GrGetWindowInfo Return information about the passed
window.

GrGetGCInfo Return information about the passed
graphics context.

GrGetFontInfo Return information about the passed font
number.

GrRegisterInput Register a file descriptor to return an event
when read data available.

35

Chapter 1. Microwindows Architecture

Function Description

GrPrepareSelect Prepare the fd_set and maxfd variables for
using Nano-X as a passive library.

GrServiceSelect Callback the passed GetNextEvent routine
when Nano-X has events requiring
processing.

GrMainLoop A convenience routine for a typical
Nano-X application main loop.

36

