
Getting Started With
Microwindows & Nano-X

Gary James
Sr Software Engineer

Critical Link, LLC (http://www.criticallink.com), Personel Homepage
(http://home.twcny.rr.com/embedded)

gary.james@criticallink.com
gjames@twcny.rr.com

Getting Started With Microwindows & Nano-X
by Gary James

Copyright © 2000,2001 by Gary James

Table of Contents
Release Information...6

1. Getting Started With Microwindows ...7

1.1. Installing Microwindows..7
1.1.1. Download The Latest Sources...7
1.1.2. Configure The Build Scripts..7
1.1.3. Build The Library And Demos..8

1.1.3.1. Run the WIN32 demos..8
1.1.3.2. Run the NANO-X demos..9

1.1.4. Install The Libraries...10
1.2. Hello World Example...10

1.2.1. hello.c...11
1.2.2. Include Files...12
1.2.3. Library Initialization..13
1.2.4. Create a Graphics Context...13
1.2.5. Create a Window..14
1.2.6. Select Events..14
1.2.7. Show The Window...14
1.2.8. Handle Events..14

1.2.8.1.GR_EVENT_TYPE_EXPOSURE...15
1.2.8.2.GR_EVENT_TYPE_CLOSE_REQ...15

1.2.9. Drum Roll Please...16
1.2.10. Summary..16

2. Working With Images..17

2.1. Embeddeding Images in an Application...17
2.1.1. Convert a Bitmap Image to C Source..17
2.1.2. Nano-X Client Fixup..18
2.1.3. Example Drawing Tux I...18

2.2. Drawing Images Fom Files...20
2.2.1. Example Drawing Tux II...21

2.3. Loading Images Fom Files..23
2.3.1. Example Drawing Tux III..24

3

3. Working With Fonts ..27

3.1. Using TrueType Fonts in Your Application..27
3.2. Installing The FreeType Library...27

3.2.1. Download The FreeType Library...27
3.2.2. Extract The Sources...27
3.2.3. Build & Install The Library...28
3.2.4. Modify The Microwindows Configuration File...................................28
3.2.5. Rebuild Microwindows With FreeType Support.................................29
3.2.6. Get Some TrueType Fonts...29

3.3. Font Example..30
3.3.1. Example Using Fonts...30

4

List of Figures
1-1. Hello World Example...16
2-1. Tux I Example..20
3-1. TrueType Font Example...32

List of Examples
1-1. hello.c...11
2-1. image_01.c..19
2-2. image_02.c..22
2-3. image_03.c..25
3-1. fonts.c...30

5

Release Information
Release Date.June 21, 2001

Nano-X Revision. 0.89-pre7

6

Chapter 1. Getting Started With
Microwindows

1.1. Installing Microwindows
This document will guide you through installation of Microwindows onto a Linux host.
At the end of this tutorial you will be able to execute the Microwindows demo
applications in an X window that simulates the screen of your embedded device. You
will also be able to create and execute a simple hello world application using the
nano-X API.

In the following chapters you will also learn how to work with images and TrueType
fonts.

1.1.1. Download The Latest Sources
Download the latest source code from the Microwindows ftp site
(ftp://microwindows.org/pub/microwindows/). In the following example I’ll be building
revision 0.89pre7. The sources come in a tarball named
microwindows-0.89pre7.tar.gz . Copy this file into a convenient spot. I copied
the file into my home directory/home/gary .

Extract the sources. The tarball is a compressed tar file. You must first uncompress the
file using gunzip, then extract the sources from the tar file using tar. This creates a new
directory namedmicrowin that contains the Microwindows source tree. Type the
following commands.

$ tar -xzf microwindows-0.89pre7.tar.gz

7

Chapter 1. Getting Started With Microwindows

1.1.2. Configure The Build Scripts
Change directories to the new Microwindows source directory.

$ cd microwin/src

You should take the time to read the filemicrowin/src/INSTALL and then look
through the filemicrowin/src/config . There are many different options that you
can compile into Microwindows. For now the only difference that you want from the
default is to build for X11 display. When your application goes into your embedded
system you will most likely want to use FRAMBUFFER drivers. But for now we will
be prototyping our system on a desktop machine running X windows. This will let us
see our output in a window on the same desktop as our compiler and debugger.

To build for X windows you need to first set the configuration file for the proper X11
settings. Luckily there are preset configurations in themicrowin/src/Configs

directory. Copy the fileconfig.x11 over the fileconfig .

$ cp Configs/config.x11 config

1.1.3. Build The Library And Demos
After making modifications to the configuration file you can build the Microwindows
library and demo applications. Build the libraries and demos by typing:

$ make clean; make

You should add the microwindows binary directory to your path. We will be running
applications in that directly quite a bit, especially when we start using nano-X. Run the
following command, you may also want to add the command to your~/.bashrc file.

$ export PATH=~/microwin/src/bin:$PATH

8

Chapter 1. Getting Started With Microwindows

1.1.3.1. Run the WIN32 demos

Test the build by running a few of the Microwindows demo applications. Press the
Pausekey to exit each of these applications.

$ mine
$ mtest
$ mdemo
$ malpha

Currently the WIN32 layer of Microwindows can only support one application running
on the desktop at a time. If you are interested in running multiple applications
simultaneously you will need to use the nano-X layer of microwindows rather than the
WIN32 layer.

1.1.3.2. Run the NANO-X demos

Also run a few of the nano-X demo applications. To run the nano-X applications you
must first run the nano-X server, then the application. The following three commands
will start a nano-X server, then start the nxclock application, then the nxscribble
application. You will see a black screen with two windows, one for each application.
Press theBreak key to exit each of these applications.

$ nano-X & sleep 1
$ nxclock &
$ nxscribble &

An alternative command line to accomplish the same thing is shown below. The sleep
command is required to give the nano-X server a bit of time to initialize before starting
the client applications.

$ nano-X& sleep 1; nxclock& nxscribble&

You can’t move the windows around within the nano-X screen, without the aid of a
window manager. Luckily a window manager is included in the demo directory. Kill

9

Chapter 1. Getting Started With Microwindows

the previous demo by pressing theBreak key. This time run the nanowm window
manager before running the nxclock or nxscribble applications.

$ nano-X& sleep 1; nanowm& sleep 1; nxclock& nxscribble&

Now you will see a cyan screen with two decorated windows, one for each application.
The significant difference is not that we have a cyan background. The significant
difference is that we have title bars on the two applications. Now you can move the
windows around the screen by dragging their title bars. You can also exit an individual
application. Try this by clicking the X button on the top of the nxclock window. The
nxclock application will quit, while the nxscribble application continues to run. You
can restart the nxclock application back at the command line, and a new clock window
will appear.

1.1.4. Install The Libraries
If everything went as planned and the demo applications ran then you should install the
libraries now. Switch toroot user id and type:

make install

This will copy the appropiate files to/usr/include/microwin and/usr/lib . You
don’t need to install the libraries to run the demo applications, but you will need them
to build your own applications. The libraries that will be installed are:

usr/lib/libmwdrivers.a

usr/lib/libmwengine.a

usr/lib/libmwfonts.a

usr/lib/libmwimages.a

usr/lib/libmwin.a

usr/lib/libmwinlib.a

usr/lib/libmwobjects.a

usr/lib/libnano-X.a

usr/lib/libnwidget.a

10

Chapter 1. Getting Started With Microwindows

usr/lib/libvncauth.a

1.2. Hello World Example
In this section I present a simple nano-X application. This application is the classic
"hello world" in nano-X style. When you run the application you will see a single white
window with the text "Hello World". If you run the application with nanowm the
application’s window will have a title bar, and a resizable border.

1.2.1. hello.c
Copy the source shown below into a file named "hello.c ". Compile the application
with the following command.

$ gcc hello.c -o hello -lnano-X

Example 1-1. hello.c

#include <stdio.h>
#define MWINCLUDECOLORS
#include "microwin/nano-X.h"

GR_WINDOW_ID wid;
GR_GC_ID gc;

void event_handler (GR_EVENT *event);

int main (void)
{

if (GrOpen() < 0)
{

fprintf (stderr, "GrOpen failed");

11

Chapter 1. Getting Started With Microwindows

exit (1);
}

gc = GrNewGC();
GrSetGCUseBackground (gc, GR_FALSE);
GrSetGCForeground (gc, RED);

wid = GrNewWindowEx (GR_WM_PROPS_APPFRAME |
GR_WM_PROPS_CAPTION |
GR_WM_PROPS_CLOSEBOX,
"Hello Window",
GR_ROOT_WINDOW_ID,
50, 50, 200, 100, WHITE);

GrSelectEvents (wid, GR_EVENT_MASK_EXPOSURE |
GR_EVENT_MASK_CLOSE_REQ);

GrMapWindow (wid);
GrMainLoop (event_handler);

}

void event_handler (GR_EVENT *event)
{

switch (event->type)
{
case GR_EVENT_TYPE_EXPOSURE:

GrText (wid, gc, 50, 50,
"Hello World", -1, GR_TFASCII);

break;

case GR_EVENT_TYPE_CLOSE_REQ:
GrClose();
exit (0);

}
}

12

Chapter 1. Getting Started With Microwindows

1.2.2. Include Files
The header file "microwin/nano-X " defines the Microwindows and nano-X data
structures, variables and functions. This file will be included in all source files that
make nano-X API calls.

If we start at the top with the include files you will first notice the define for
MWINCLUDECOLORS. This definition enables the definition of common system colors.
The following color names can be used ifMWINCLUDECOLORSis defined before the
nano-X header files.

BLACK BLUE GREEN CYAN RED

MAGENTA BROWN LTGRAY LTBLUE LTGREEN

LTCYAN LTRED LTMAGENTA YELLOW WHITE

DKGRAY

1.2.3. Library Initialization
A single function call,GrOpen() , will open and initialize the nano-X library. The
function sets up the screen, keyboard and mouse device interfaces. This must be the
first nano-X function that your application calls.

1.2.4. Create a Graphics Context
Nano-X uses objects called graphics contexts to describe drawing attributes. Among
other things a graphics context (GC) will describe the colors to use when drawing
graphical objects using nano-X.

Your application may allocate as many graphics contexts as you wish. Each drawing
function call takes a GC as a parameter. For example if you wanted to draw red and
blue text on a white background you might create one GC. You could set the

13

Chapter 1. Getting Started With Microwindows

foreground color to red and draw the red text. Then set the foreground color to blue and
draw the blue text. Another approach is to create two GCs, one with a red foreground
and the other with a blue foreground. With two GCs you would use the first GC for
drawing red text and the second GC for drawing blue text.

In the "hello world" example I create one GC using theGrNewGC() function. Then I
configure the GC so that it does not use a background color and I set the foreground
color to red. I save the ID of the GC for use later when I start drawing onto the
application window.

1.2.5. Create a Window
Now you’re going to need a window to draw onto. The next section of the example
creates a main window for the application. TheGrNewWindowEx() function creates
our "hello world" application’s main window.GrNewWindowEx() is the preferred
method to create windows. Another functionGrNewWindow() has been depreciated
since it can not specify window decoration options to a window manager.

In this example we have a single main window with a title bar. The title bar caption
reads "Hello Window".

1.2.6. Select Events
In nano-X you must select the types of events that you want a window to receive. After
you create the window, you must make a call to theGrSelectEvents() function to
choose the events that the window will receive. In our example we choose to receive
exposure events and close request events.

By selecting exposure events you will know when the window needs to be redrawn. By
selecting close request events, you will know when the window is closed.

14

Chapter 1. Getting Started With Microwindows

1.2.7. Show The Window
To make the window visible your application must "map" the window. You will call the
functionGrMapWindow() to make the window visible.

1.2.8. Handle Events
After creating the main window, selecting events and mapping the window, the
application can enter it’s main event dispatch loop. The nano-X library provides several
ways to implement the application’s event dispatch loop. The easiest of these methods
is the GrMainLoop() function. This function takes as a parameter, a pointer to your
application’s event handler. The event handler function will be invoked each time that
the nano-X event queue receives a selected event.

In the example the functionevent_handler() serves as the event handler. Within
this function is a switch on the event type. The two events that we select in the example
are the exposure event and the close request event.

1.2.8.1. GR_EVENT_TYPE_EXPOSURE

Exposure events are nano-X’s means of asking the application to redraw the contents of
a window. Your application must redraw the window contents each time it gets an
exposure event. You can not draw the window once and then forget about what’s in
there.

You will receive an exposure event after the window is mapped for the first time. You
will also receive exposure events when the window is re-exposed. For example, let’s
imagine another window within your application or another application covers your
window. When that window is moved exposing a portion, or all of, your window,
nano-X will send your application an exposure event.

In our example we handle the exposure event by drawing the text "hello world" onto
the window. Notice that when we call the functionGrText() we specify a window ID
and a graphics context ID. These are the IDs that we received earlier when we created
the window and the GC.

15

Chapter 1. Getting Started With Microwindows

1.2.8.2. GR_EVENT_TYPE_CLOSE_REQ

When you close the application window nano-X sends a close request event. The hello
world application callsGrClose() to close the connection to the nano-X server. Then
we exit the application.

1.2.9. Drum Roll Please...
Run the "hello world" application with the following command. You will see a window
appear as shown below.

$ nano-X& sleep 1; nanowm& sleep 1; ./hello&

Figure 1-1. Hello World Example

1.2.10. Summary
This simple example program shows the structure of most, even much more
complicated, nano-X applications. You will almost always connect to server, create
windows and GCs, select events, map the windows and then process events.

16

Chapter 2. Working With Images

2.1. Embeddeding Images in an Application
Microwindows comes with a utility program called convbmp. This utility is used to
convert Windows™ style bitmap files into C source code. This allows an your
application to have a small number of images embedded within its program memory.
This method is very useful for small embedded systems with no file system to store
images.

This first image example will show you how to embed an image wthin your application.
After the first example more examples will be given to show you how to read the same
image from a file at run time.

2.1.1. Convert a Bitmap Image to C Source
Create a directory in which to build this example. Then copy the bitmap image of
Tux from the Microwindows sources to this directory. Lastly use convbmp to
convert the bitmap file to a C source file that we can compile into our application.

Note: In this example assume that Microwindows is installed to ~/microwin and
the examples are built in ~/mymw/ex_image_01 . If you have different locations
then you will have to modify the paths used in the example accordingly.

$ cd ~/mymw/ex_image_01
$ cp ~/microwin/src/mwin/bmp/penguin.bmp penguin.bmp
$ convbmp penguin.bmp

Examine the contents of the filepenguin.c that you just created. The file contains
three structures. The first static structure is a color palette of up to 256 unique colors
that convbmp found within the image. The second static structure is an array of the bits

17

Chapter 2. Working With Images

from the image. The last structure is the public MWIMAGEHDR structure that your
application will reference. This structure is named image_penguin in this example.
convbmp will always use the naming convention "image_" followed by the base
filename. In this example we started withpenguin.bmp , therefore our image structure
name "image_penguin".

2.1.2. Nano-X Client Fixup
The current version of nano-X (0.89pre7) has an arbitrary limit of 10,000 bytes per
message that may be sent through the socket from the client to the server. Some
functions, such asGrArea() will break up messages that exceed this size into smaller
chunks. Unfortunately the functionGrDrawImageBits() does not break up large
messages into smaller chunks. The penguin bitmap is larger than 10,000 bytes so this
example is not going to work as is. You could run the example with a smaller image, or
increase the maximum message length. To increase the maximum image length you
need to edit the nano-X source file~/microwin/src/nanox/nxproto.h . Change
the line:

#define MAXREQUESTSZ 10000 /* max request size (65532)*/

to:

#define MAXREQUESTSZ 30000 /* max request size (65532)*/

Then rebuild and reinstall the Microwindows package.

2.1.3. Example Drawing Tux I
Copy the source shown below into a file named "image_01.c ". Compile the
application with the following command.

Note: If you did not install Microwindows you will need to change the path
/usr/include/microwin so that it points to the include directory where you

18

Chapter 2. Working With Images

extracted the Microwindows source.

$ gcc image_01.c penguin.c \
> -I/usr/include/microwin \
> -o image_01 -lnano-X

Example 2-1. image_01.c

#include <stdio.h>
#define MWINCLUDECOLORS
#include "microwin/nano-X.h"

GR_WINDOW_ID wid;
GR_GC_ID gc;

extern GR_IMAGE_HDR image_penguin;

void event_handler (GR_EVENT *event);

int main (void)
{

if (GrOpen() < 0)
{

fprintf (stderr, "GrOpen failed");
exit (1);

}

gc = GrNewGC();

wid = GrNewWindowEx (GR_WM_PROPS_APPFRAME |
GR_WM_PROPS_CAPTION |
GR_WM_PROPS_CLOSEBOX,
"Tux Window I",
GR_ROOT_WINDOW_ID, 50, 50,
image_penguin.width,

19

Chapter 2. Working With Images

image_penguin.height,
WHITE);

GrSelectEvents (wid, GR_EVENT_MASK_EXPOSURE |
GR_EVENT_MASK_CLOSE_REQ);

GrMapWindow (wid);
GrMainLoop (event_handler);
return 0;

}

void event_handler (GR_EVENT *event)
{

switch (event->type)
{
case GR_EVENT_TYPE_EXPOSURE:

GrDrawImageBits (wid , gc , 0 , 0, &image_penguin);
break;

case GR_EVENT_TYPE_CLOSE_REQ:
GrClose();
exit (0);

}
}

Run the example application with the following command. You will see a window
appear as shown below.

$ nano-X& sleep 1; nanowm& sleep 1; ./image_01&

Figure 2-1. Tux I Example

20

Chapter 2. Working With Images

2.2. Drawing Images Fom Files
The nano-X API contains a function,GrDrawImageFromFile() , which will read
images from a file and draw the image onto a window or pixmap. Multiple image
formats (GIF, JPEG, BMP, PNG, XPM, PBM, PGM and PPM) are supported by
GrDrawImageFromFile() . The image type is automatically determined when the file
is read.

The image file must reside within the nano-X server’s file system. The client
application just passes the filename to the server then the server reads the file. This is
no problem as long as the the client and server are on the same machine. Another thing
to be aware of is that since the server is opening the file, all relative paths in the image
file name are relative to the nano-X server’s current directory rather than the client’s
current working directory.

The following example shows how to display Tux as an image loaded from file at run
time. The file is read each time an exposure event is received. This approach is rather
slow, in the next example we will look at a method to read the file once into memory
and draw from memory during the exposure event.

2.2.1. Example Drawing Tux II
Create a directory in which to build this example. Then copy the bitmap image of
Tux from the Microwindows sources to this directory. Also copy the example
source shown below into a file named "image_02.c ".

Note: In this example assume that Microwindows is installed to ~/microwin and
the examples are built in ~/mymw/ex_image_02 . If you have different locations
then you will have to modify the paths used in the example accordingly.

$ cd ~/mymw/ex_image_02
$ cp ~/microwin/src/mwin/bmp/penguin.bmp penguin.bmp

Compile the application with the following command.

21

Chapter 2. Working With Images

Note: If you did not install Microwindows you will need to change the path
/usr/include/microwin so that it points to the include directory where you
extracted the Microwindows source.

$ gcc image_02.c \
> -I/usr/include/microwin \
> -o image_02 -lnano-X

Example 2-2. image_02.c

#include <stdio.h>
#define MWINCLUDECOLORS
#include "microwin/nano-X.h"

GR_WINDOW_ID wid;
GR_GC_ID gc;

void event_handler (GR_EVENT *event);

int main (void)
{

if (GrOpen() < 0)
{

fprintf (stderr, "GrOpen failed");
exit (1);

}

gc = GrNewGC();

wid = GrNewWindowEx (GR_WM_PROPS_APPFRAME |
GR_WM_PROPS_CAPTION |
GR_WM_PROPS_CLOSEBOX,
"Tux Window II",
GR_ROOT_WINDOW_ID, 50, 50,
100, 200,

22

Chapter 2. Working With Images

WHITE);

GrSelectEvents (wid, GR_EVENT_MASK_EXPOSURE |
GR_EVENT_MASK_CLOSE_REQ);

GrMapWindow (wid);
GrMainLoop (event_handler);
return 0;

}

void event_handler (GR_EVENT *event)
{

switch (event->type)
{
case GR_EVENT_TYPE_EXPOSURE:
{

GR_WINDOW_INFO info;

GrGetWindowInfo (wid, &info);
GrDrawImageFromFile (wid, gc, 0, 0,

info.width, info.height,
"penguin.bmp", 0);

break;
}
case GR_EVENT_TYPE_CLOSE_REQ:

GrClose();
exit (0);

}
}

Run the example application with the following command.

$ nano-X& sleep 1; nanowm& sleep 1; ./image_02&

23

Chapter 2. Working With Images

2.3. Loading Images Fom Files
The nano-X API contains a function,GrLoadImageFromFile() , which will read an
image from a file into the nano-X server’s memory and return a GR_IMAGE_ID ID.
With this ID the image can be drawn to a window at a later time using the
GrDrawImageToFit() function. Multiple image formats (GIF, JPEG, BMP, PNG,
XPM, PBM, PGM and PPM) are supported byGrLoadImageFromFile() . The image
type is automatically determined when the file is read.

Just as with theGrDrawImageFromFile() function the image file must reside within
the nano-X server’s file system. The client application just passes the filename to the
server then the server reads the file. This is no problem as long as the the client and
server are on the same machine. Another thing to be aware of is that since the server is
opening the file, all relative paths in the image file name are relative to the nano-X
server’s current directory rather than the client’s current working directory.

The following example shows how to display Tux as an image loaded from file at run
time. This approach is a little quicker than the previous example since the program does
not go out to disk during each exposure event.

2.3.1. Example Drawing Tux III
Create a directory in which to build this example. Then copy the bitmap image of
Tux from the Microwindows sources to this directory. Also copy the example
source shown below into a file named "image_03.c ".

Note: In this example assume that Microwindows is installed to ~/microwin and
the examples are built in ~/mymw/ex_image_03 . If you have different locations
then you will have to modify the paths used in the example accordingly.

$ cd ~/mymw/ex_image_03
$ cp ~/microwin/src/mwin/bmp/penguin.bmp penguin.bmp

Compile the application with the following command.

24

Chapter 2. Working With Images

Note: If you did not install Microwindows you will need to change the path
/usr/include/microwin so that it points to the include directory where you
extracted the Microwindows source.

$ gcc image_03.c \
> -I/usr/include/microwin \
> -o image_03 -lnano-X

Example 2-3. image_03.c

#include <stdio.h>
#define MWINCLUDECOLORS
#include "microwin/nano-X.h"

GR_WINDOW_ID wid;
GR_GC_ID gc;
GR_IMAGE_ID image;

void event_handler (GR_EVENT *event);

int main (void)
{

if (GrOpen() < 0)
{

fprintf (stderr, "GrOpen failed");
exit (1);

}

image = GrLoadImageFromFile ("penguin.bmp", 0);

gc = GrNewGC();

wid = GrNewWindowEx (GR_WM_PROPS_APPFRAME |
GR_WM_PROPS_CAPTION |
GR_WM_PROPS_CLOSEBOX,

25

Chapter 2. Working With Images

"Tux Window III",
GR_ROOT_WINDOW_ID, 50, 50,
100, 200,
WHITE);

GrSelectEvents (wid, GR_EVENT_MASK_EXPOSURE |
GR_EVENT_MASK_CLOSE_REQ);

GrMapWindow (wid);
GrMainLoop (event_handler);
return 0;

}

void event_handler (GR_EVENT *event)
{

switch (event->type)
{
case GR_EVENT_TYPE_EXPOSURE:
{

GR_WINDOW_INFO info;

GrGetWindowInfo (wid, &info);
GrDrawImageToFit (wid, gc, 0, 0,

info.width, info.height,
image);

break;
}
case GR_EVENT_TYPE_CLOSE_REQ:

GrClose();
exit (0);

}
}

Run the example application with the following command.

$ nano-X& sleep 1; nanowm& sleep 1; ./image_03&

26

Chapter 3. Working With Fonts

3.1. Using TrueType Fonts in Your Application
Microwindows comes with two built in raster fonts. A rather frequent question to the
mail list goes something like"I can only set two font sizes...". To gain additional font
styles and sizes you could compile additional raster fonts into Microwindows. There
are some tools in the.../microwin/src/fonts/ directory that can be used to
create additional raster fonts for Microwindows.

This section will not cover these raster font tools. Instead I will describe how to install
and use TrueType fonts within Microwindows.

3.2. Installing The FreeType Library

3.2.1. Download The FreeType Library
Microwindows uses the open source FreeType (http://www.freetype.org) library to
render TrueType fonts. Microwindows works with version 1.3.1 of the FreeType
library. At the time of this article the FreeType library is at version 2.0.3. I do not know
if this version works with Microwindows. FreeType version 1.3.1 is known to work and
can be downloaded from the Microwindows ftp site
(ftp://microwindows.org/pub/microwindows/). The sources come in a tarball named
freetype-1.3.1.tar.gz . Copy this file into a convenient spot. I copied the file into
my home directory/home/gary .

3.2.2. Extract The Sources
The tarball is a compressed tar file. You must first uncompress the file using gunzip,

27

Chapter 3. Working With Fonts

then extract the sources from the tar file using tar. This creates a new directory named
freetype-1.3.1 that contains the FreeType source tree. Type the following
commands.

$ tar -xzf freetype-1.3.1.tar.gz

3.2.3. Build & Install The Library
Change directories to the new FreeType source directory.

$ cd freetype-1.3.1

Build the FreeType library by typing:

$./configure
$ make

If everything went as planned and the library built without errors then you should
install the libraries now. Switch toroot user id and type:

make install

3.2.4. Modify The Microwindows Configuration File
Modify the Microwindows config file.../microwin/src/config . Change
HAVE_FREETYPE_SUPPORTto Y. Modify INCFTLIB andLIBFTLIB to point to the
directories that contain the FreeType libraries that you just built. On my system it’s as
shwon below:

##
TrueType font support thru FreeType
##
HAVE_FREETYPE_SUPPORT = Y
INCFTLIB = /usr/local/include

28

Chapter 3. Working With Fonts

LIBFTLIB = /usr/local/lib/libttf.so
FREETYPE_FONT_DIR = "/usr/local/microwin/fonts"

Symbol DescriptionPurpose

HAVE_FREETYPE_SUPPORT

This symbol controls the conditional compilation of the
FreeType code within Microwindows. If set to "Y" then FreeType
support will be included. If set to "N" the FreeType support is not
compiled in.

INCFTLIB This symbol defines the path to the FreeType include files (on
the development system). This path will be added to the include
file search path during compilation of Microwindows.

LIBFTLIB This symbol defines the path to the FreeType library files (on th
development system). This path will be added to the include file
search path during linking of Microwindows.

FREETYPE_FONT_DIR

This symbol defines the path to the TrueType fonts on the target
system. When you setup your target system you will use this
directory on the target system to hold the TrueType fonts.

3.2.5. Rebuild Microwindows With FreeType Support
After you modify the config file, re-build and re-install Microwindows.

3.2.6. Get Some TrueType Fonts
Create a directory "/usr/local/microwin/fonts/" on your target machine to hold your
TrueType fonts. When you get some TrueType fonts, you will put the*.ttf files in
this directory.

Note: This directory must match the directory that you specified with the symbol
FREETYPE_FONT_DIRin your Microwindows configuration file.

29

Chapter 3. Working With Fonts

You need to pay attention to the license on the TrueType fonts that you plan to use. For
quick evaluation purposes you can grab some TrueType fonts from the nearest
Windows machine. But you should not use these font on a production system unless
you get the proper permissions from the copyright holders. You can get some TrueType
fonts from the following sites. If you do a quick seach on the web, dozens of additional
sites offering free TrueType fonts will show up.

ftp://microwindows.censoft.com/pub/microwindows/microwindows-fonts-truetype-0.89pre2.tar.gz

http://www.microsoft.com/typography/fontpack/default.htm

3.3. Font Example
In this section I present a simple nano-X TrueType font application.

3.3.1. Example Using Fonts
Copy the source shown below into a file named "fonts.c ". Compile the application
with the following command.

$ gcc fonts.c -I/usr/include/microwin \
> -o fonts -lnano-X

Example 3-1. fonts.c

#include <stdio.h>
#define MWINCLUDECOLORS
#include "microwin/nano-X.h"

GR_WINDOW_ID wid;
GR_GC_ID gc;

30

Chapter 3. Working With Fonts

GR_FONT_ID font_a, font_b, font_c, font_d;

void event_handler (GR_EVENT *event);

int main (void)
{

if (GrOpen() < 0)
{

fprintf (stderr, "GrOpen failed");
exit (1);

}

gc = GrNewGC();
GrSetGCUseBackground (gc, GR_FALSE);
GrSetGCForeground (gc, RED);

wid = GrNewWindowEx (GR_WM_PROPS_APPFRAME |
GR_WM_PROPS_CAPTION |
GR_WM_PROPS_CLOSEBOX,
"Font Test Window",
GR_ROOT_WINDOW_ID, 50, 50,
200, 130, WHITE);

GrSelectEvents (wid, GR_EVENT_MASK_EXPOSURE |
GR_EVENT_MASK_CLOSE_REQ);

font_a = GrCreateFont ("arial", 12, NULL);
font_b = GrCreateFont ("comic", 16, NULL);
font_c = GrCreateFont ("comic", 24, NULL);
font_d = GrCreateFont ("arial", 36, NULL);

GrMapWindow (wid);
GrMainLoop (event_handler);
return 0;

}

void event_handler (GR_EVENT *event)

31

Chapter 3. Working With Fonts

{
switch (event->type)
{
case GR_EVENT_TYPE_EXPOSURE:

GrSetGCFont (gc, font_a);
GrText (wid, gc, 20, 20, "Arial 12", -1, GR_TFASCII);
GrSetGCFont (gc, font_b);
GrText (wid, gc, 20, 40, "Comic 16", -1, GR_TFASCII);
GrSetGCFont (gc, font_c);
GrText (wid, gc, 20, 70, "Comic 24", -1, GR_TFASCII);
GrSetGCFont (gc, font_d);
GrText (wid, gc, 20, 110, "Arial 36", -1, GR_TFASCII);
break;

case GR_EVENT_TYPE_CLOSE_REQ:
GrClose();
exit (0);

}
}

Run the example application with the following command. You will see a window
appear as shown below.

$ nano-X& sleep 1; nanowm& sleep 1; ./fonts&

Figure 3-1. TrueType Font Example

32

