
RTEMS Classic API Guide
Release 5.0.0-m2006-2 (17th June 2020)

© 1988, 2020 RTEMS Project and contributors

CONTENTS

1 Preface 3

2 Overview 7
2.1 Introduction . 8
2.2 Real-time Application Systems . 9
2.3 Real-time Executive . 10
2.4 RTEMS Application Architecture . 11
2.5 RTEMS Internal Architecture . 12
2.6 User Customization and Extensibility . 14
2.7 Portability . 15
2.8 Memory Requirements . 16
2.9 Audience . 17
2.10 Conventions . 18
2.11 Manual Organization . 19

3 Key Concepts 23
3.1 Introduction . 24
3.2 Objects . 25

3.2.1 Object Names . 25
3.2.2 Object IDs . 25

3.2.2.1 Object ID Format . 26
3.2.3 Object ID Description . 26

3.3 Communication and Synchronization . 27
3.4 Locking Protocols . 28

3.4.1 Priority Inversion . 28
3.4.2 Immediate Ceiling Priority Protocol (ICPP) 28
3.4.3 Priority Inheritance Protocol . 28
3.4.4 Multiprocessor Resource Sharing Protocol (MrsP) 29
3.4.5 O(m) Independence-Preserving Protocol (OMIP) 29

3.5 Thread Queues . 30
3.6 Time . 31
3.7 Timer and Timeouts . 32
3.8 Memory Management . 33

4 RTEMS Data Types 35
4.1 Introduction . 36
4.2 List of Data Types . 37

i

5 Scheduling Concepts 41
5.1 Introduction . 42

5.1.1 Scheduling Algorithms . 42
5.1.2 Priority Scheduling . 43

5.2 Uniprocessor Schedulers . 44
5.2.1 Deterministic Priority Scheduler . 44
5.2.2 Simple Priority Scheduler . 44
5.2.3 Earliest Deadline First Scheduler . 44
5.2.4 Constant Bandwidth Server Scheduling (CBS) 45

5.3 SMP Schedulers . 46
5.3.1 Earliest Deadline First SMP Scheduler . 46
5.3.2 Deterministic Priority SMP Scheduler . 46
5.3.3 Simple Priority SMP Scheduler . 46
5.3.4 Arbitrary Processor Affinity Priority SMP Scheduler 46

5.4 Scheduling Modification Mechanisms . 47
5.4.1 Task Priority and Scheduling . 47
5.4.2 Preemption . 47
5.4.3 Timeslicing . 47
5.4.4 Manual Round-Robin . 48

5.5 Dispatching Tasks . 49
5.6 Task State Transitions . 50
5.7 Directives . 53

5.7.1 SCHEDULER_IDENT - Get ID of a scheduler 54
5.7.2 SCHEDULER_IDENT_BY_PROCESSOR - Get ID of a scheduler by processor 55
5.7.3 SCHEDULER_IDENT_BY_PROCESSOR_SET - Get ID of a scheduler by

processor set . 56
5.7.4 SCHEDULER_GET_MAXIMUM_PRIORITY - Get maximum task priority

of a scheduler . 57
5.7.5 SCHEDULER_MAP_PRIORITY_TO_POSIX - Map task priority to POSIX

thread prority . 58
5.7.6 SCHEDULER_MAP_PRIORITY_FROM_POSIX - Map POSIX thread pror-

ity to task priority . 59
5.7.7 SCHEDULER_GET_PROCESSOR - Get current processor index 60
5.7.8 SCHEDULER_GET_PROCESSOR_MAXIMUM - Get processor maximum . 61
5.7.9 SCHEDULER_GET_PROCESSOR_SET - Get processor set of a scheduler . 62
5.7.10 SCHEDULER_ADD_PROCESSOR - Add processor to a scheduler 63
5.7.11 SCHEDULER_REMOVE_PROCESSOR - Remove processor from a sched-

uler . 64

6 Initialization Manager 65
6.1 Introduction . 66
6.2 Background . 67

6.2.1 Initialization Tasks . 67
6.2.2 The Idle Task . 67
6.2.3 Initialization Manager Failure . 67

6.3 Operations . 68
6.3.1 Initializing RTEMS . 68
6.3.2 Global Construction . 72

6.4 Directives . 74
6.4.1 INITIALIZE_EXECUTIVE - Initialize RTEMS 75

7 Task Manager 77

ii

7.1 Introduction . 78
7.2 Background . 79

7.2.1 Task Definition . 79
7.2.2 Task Control Block . 79
7.2.3 Task Memory . 79
7.2.4 Task Name . 80
7.2.5 Task States . 80
7.2.6 Task Priority . 80
7.2.7 Task Mode . 81
7.2.8 Accessing Task Arguments . 82
7.2.9 Floating Point Considerations . 82
7.2.10 Building a Task Attribute Set . 83
7.2.11 Building a Mode and Mask . 83

7.3 Operations . 85
7.3.1 Creating Tasks . 85
7.3.2 Obtaining Task IDs . 85
7.3.3 Starting and Restarting Tasks . 85
7.3.4 Suspending and Resuming Tasks . 85
7.3.5 Delaying the Currently Executing Task 86
7.3.6 Changing Task Priority . 86
7.3.7 Changing Task Mode . 86
7.3.8 Task Deletion . 86
7.3.9 Setting Affinity to a Single Processor . 87
7.3.10 Transition Advice for Removed Notepads 87
7.3.11 Transition Advice for Removed Task Variables 87

7.4 Directives . 88
7.4.1 TASK_CREATE - Create a task . 89
7.4.2 TASK_IDENT - Get ID of a task . 91
7.4.3 TASK_SELF - Obtain ID of caller . 92
7.4.4 TASK_START - Start a task . 93
7.4.5 TASK_RESTART - Restart a task . 94
7.4.6 TASK_DELETE - Delete a task . 95
7.4.7 TASK_EXIT - Delete the calling task . 96
7.4.8 TASK_SUSPEND - Suspend a task . 97
7.4.9 TASK_RESUME - Resume a task . 98
7.4.10 TASK_IS_SUSPENDED - Determine if a task is Suspended 99
7.4.11 TASK_SET_PRIORITY - Set task priority 100
7.4.12 TASK_GET_PRIORITY - Get task priority 101
7.4.13 TASK_MODE - Change the current task mode 102
7.4.14 TASK_WAKE_AFTER - Wake up after interval 103
7.4.15 TASK_WAKE_WHEN - Wake up when specified 104
7.4.16 TASK_GET_SCHEDULER - Get scheduler of a task 105
7.4.17 TASK_SET_SCHEDULER - Set scheduler of a task 106
7.4.18 TASK_GET_AFFINITY - Get task processor affinity 108
7.4.19 TASK_SET_AFFINITY - Set task processor affinity 109
7.4.20 TASK_ITERATE - Iterate Over Tasks . 110

7.5 Deprecated Directives . 111
7.5.1 ITERATE_OVER_ALL_THREADS - Iterate Over Tasks 112

7.6 Removed Directives . 113
7.6.1 TASK_GET_NOTE - Get task notepad entry 114
7.6.2 TASK_SET_NOTE - Set task notepad entry 115

iii

7.6.3 TASK_VARIABLE_ADD - Associate per task variable 116
7.6.4 TASK_VARIABLE_GET - Obtain value of a per task variable 117
7.6.5 TASK_VARIABLE_DELETE - Remove per task variable 118

8 Interrupt Manager 119
8.1 Introduction . 120
8.2 Background . 121

8.2.1 Processing an Interrupt . 121
8.2.2 RTEMS Interrupt Levels . 122
8.2.3 Disabling of Interrupts by RTEMS . 122

8.3 Operations . 123
8.3.1 Establishing an ISR . 123
8.3.2 Directives Allowed from an ISR . 123

8.4 Directives . 126
8.4.1 INTERRUPT_CATCH - Establish an ISR 127
8.4.2 INTERRUPT_DISABLE - Disable Interrupts 128
8.4.3 INTERRUPT_ENABLE - Restore Interrupt Level 129
8.4.4 INTERRUPT_FLASH - Flash Interrupts 130
8.4.5 INTERRUPT_LOCAL_DISABLE - Disable Interrupts on Current Processor 131
8.4.6 INTERRUPT_LOCAL_ENABLE - Restore Interrupt Level on Current Pro-

cessor . 133
8.4.7 INTERRUPT_LOCK_INITIALIZE - Initialize an ISR Lock 134
8.4.8 INTERRUPT_LOCK_ACQUIRE - Acquire an ISR Lock 135
8.4.9 INTERRUPT_LOCK_RELEASE - Release an ISR Lock 136
8.4.10 INTERRUPT_LOCK_ACQUIRE_ISR - Acquire an ISR Lock from ISR 137
8.4.11 INTERRUPT_LOCK_RELEASE_ISR - Release an ISR Lock from ISR 138
8.4.12 INTERRUPT_IS_IN_PROGRESS - Is an ISR in Progress 139

9 Clock Manager 141
9.1 Introduction . 142
9.2 Background . 143

9.2.1 Required Support . 143
9.2.2 Time and Date Data Structures . 143
9.2.3 Clock Tick and Timeslicing . 143
9.2.4 Delays . 144
9.2.5 Timeouts . 144

9.3 Operations . 145
9.3.1 Announcing a Tick . 145
9.3.2 Setting the Time . 145
9.3.3 Obtaining the Time . 145
9.3.4 Transition Advice for the Removed rtems_clock_get() 146

9.4 Directives . 147
9.4.1 CLOCK_SET - Set date and time . 148
9.4.2 CLOCK_GET_TOD - Get date and time in TOD format 149
9.4.3 CLOCK_GET_TOD_TIMEVAL - Get date and time in timeval format . . . 150
9.4.4 CLOCK_GET_SECONDS_SINCE_EPOCH - Get seconds since epoch 151
9.4.5 CLOCK_GET_TICKS_PER_SECOND - Get ticks per second 152
9.4.6 CLOCK_GET_TICKS_SINCE_BOOT - Get current ticks counter value . . . 153
9.4.7 CLOCK_TICK_LATER - Get tick value in the future 154
9.4.8 CLOCK_TICK_LATER_USEC - Get tick value in the future in microseconds 155
9.4.9 CLOCK_TICK_BEFORE - Is tick value is before a point in time 156
9.4.10 CLOCK_GET_UPTIME - Get the time since boot 157

iv

9.4.11 CLOCK_GET_UPTIME_TIMEVAL - Get the time since boot in timeval for-
mat . 158

9.4.12 CLOCK_GET_UPTIME_SECONDS - Get the seconds since boot 159
9.4.13 CLOCK_GET_UPTIME_NANOSECONDS - Get the nanoseconds since boot 160

9.5 Removed Directives . 161
9.5.1 CLOCK_GET - Get date and time information 162

10 Timer Manager 163
10.1 Introduction . 164
10.2 Background . 165

10.2.1 Required Support . 165
10.2.2 Timers . 165
10.2.3 Timer Server . 165
10.2.4 Timer Service Routines . 165

10.3 Operations . 167
10.3.1 Creating a Timer . 167
10.3.2 Obtaining Timer IDs . 167
10.3.3 Initiating an Interval Timer . 167
10.3.4 Initiating a Time of Day Timer . 167
10.3.5 Canceling a Timer . 167
10.3.6 Resetting a Timer . 167
10.3.7 Initiating the Timer Server . 168
10.3.8 Deleting a Timer . 168

10.4 Directives . 169
10.4.1 TIMER_CREATE - Create a timer . 170
10.4.2 TIMER_IDENT - Get ID of a timer . 171
10.4.3 TIMER_CANCEL - Cancel a timer . 172
10.4.4 TIMER_DELETE - Delete a timer . 173
10.4.5 TIMER_FIRE_AFTER - Fire timer after interval 174
10.4.6 TIMER_FIRE_WHEN - Fire timer when specified 175
10.4.7 TIMER_INITIATE_SERVER - Initiate server for task-based timers 176
10.4.8 TIMER_SERVER_FIRE_AFTER - Fire task-based timer after interval . . . 177
10.4.9 TIMER_SERVER_FIRE_WHEN - Fire task-based timer when specified . . 178
10.4.10 TIMER_RESET - Reset an interval timer 179

11 Rate Monotonic Manager 181
11.1 Introduction . 182
11.2 Background . 183

11.2.1 Rate Monotonic Manager Required Support 183
11.2.2 Period Statistics . 183
11.2.3 Periodicity Definitions . 184
11.2.4 Rate Monotonic Scheduling Algorithm 184
11.2.5 Schedulability Analysis . 185

11.2.5.1 Assumptions . 185
11.2.5.2 Processor Utilization Rule . 186
11.2.5.3 Processor Utilization Rule Example 186
11.2.5.4 First Deadline Rule . 187
11.2.5.5 First Deadline Rule Example . 187
11.2.5.6 Relaxation of Assumptions . 188

11.3 Operations . 189
11.3.1 Creating a Rate Monotonic Period . 189
11.3.2 Manipulating a Period . 189

v

11.3.3 Obtaining the Status of a Period . 189
11.3.4 Canceling a Period . 189
11.3.5 Deleting a Rate Monotonic Period . 190
11.3.6 Examples . 190
11.3.7 Simple Periodic Task . 190
11.3.8 Task with Multiple Periods . 191

11.4 Directives . 193
11.4.1 RATE_MONOTONIC_CREATE - Create a rate monotonic period 194
11.4.2 RATE_MONOTONIC_IDENT - Get ID of a period 195
11.4.3 RATE_MONOTONIC_CANCEL - Cancel a period 196
11.4.4 RATE_MONOTONIC_DELETE - Delete a rate monotonic period 197
11.4.5 RATE_MONOTONIC_PERIOD - Conclude current/Start next period . . . 198
11.4.6 RATE_MONOTONIC_GET_STATUS - Obtain status from a period 199
11.4.7 RATE_MONOTONIC_GET_STATISTICS - Obtain statistics from a period . 200
11.4.8 RATE_MONOTONIC_RESET_STATISTICS - Reset statistics for a period . 201
11.4.9 RATE_MONOTONIC_RESET_ALL_STATISTICS - Reset statistics for all

periods . 202
11.4.10 RATE_MONOTONIC_REPORT_STATISTICS - Print period statistics report 203

12 Semaphore Manager 205
12.1 Introduction . 206
12.2 Background . 207

12.2.1 Nested Resource Access . 207
12.2.2 Priority Inheritance . 207
12.2.3 Priority Ceiling . 208
12.2.4 Multiprocessor Resource Sharing Protocol 208
12.2.5 Building a Semaphore Attribute Set . 208
12.2.6 Building a SEMAPHORE_OBTAIN Option Set 209

12.3 Operations . 210
12.3.1 Creating a Semaphore . 210
12.3.2 Obtaining Semaphore IDs . 210
12.3.3 Acquiring a Semaphore . 210
12.3.4 Releasing a Semaphore . 211
12.3.5 Deleting a Semaphore . 211

12.4 Directives . 212
12.4.1 SEMAPHORE_CREATE - Create a semaphore 213
12.4.2 SEMAPHORE_IDENT - Get ID of a semaphore 215
12.4.3 SEMAPHORE_DELETE - Delete a semaphore 216
12.4.4 SEMAPHORE_OBTAIN - Acquire a semaphore 217
12.4.5 SEMAPHORE_RELEASE - Release a semaphore 219
12.4.6 SEMAPHORE_FLUSH - Unblock all tasks waiting on a semaphore 220
12.4.7 SEMAPHORE_SET_PRIORITY - Set priority by scheduler for a semaphore 222

13 Barrier Manager 225
13.1 Introduction . 226
13.2 Background . 227

13.2.1 Automatic Versus Manual Barriers . 227
13.2.2 Building a Barrier Attribute Set . 227

13.3 Operations . 228
13.3.1 Creating a Barrier . 228
13.3.2 Obtaining Barrier IDs . 228
13.3.3 Waiting at a Barrier . 228

vi

13.3.4 Releasing a Barrier . 228
13.3.5 Deleting a Barrier . 228

13.4 Directives . 229
13.4.1 BARRIER_CREATE - Create a barrier . 230
13.4.2 BARRIER_IDENT - Get ID of a barrier . 231
13.4.3 BARRIER_DELETE - Delete a barrier . 232
13.4.4 BARRIER_WAIT - Wait at a barrier . 233
13.4.5 BARRIER_RELEASE - Release a barrier 234

14 Message Manager 235
14.1 Introduction . 236
14.2 Background . 237

14.2.1 Messages . 237
14.2.2 Message Queues . 237
14.2.3 Building a Message Queue Attribute Set 237
14.2.4 Building a MESSAGE_QUEUE_RECEIVE Option Set 237

14.3 Operations . 239
14.3.1 Creating a Message Queue . 239
14.3.2 Obtaining Message Queue IDs . 239
14.3.3 Receiving a Message . 239
14.3.4 Sending a Message . 239
14.3.5 Broadcasting a Message . 240
14.3.6 Deleting a Message Queue . 240

14.4 Directives . 241
14.4.1 MESSAGE_QUEUE_CREATE - Create a queue 242
14.4.2 MESSAGE_QUEUE_IDENT - Get ID of a queue 244
14.4.3 MESSAGE_QUEUE_DELETE - Delete a queue 245
14.4.4 MESSAGE_QUEUE_SEND - Put message at rear of a queue 246
14.4.5 MESSAGE_QUEUE_URGENT - Put message at front of a queue 247
14.4.6 MESSAGE_QUEUE_BROADCAST - Broadcast N messages to a queue . . 248
14.4.7 MESSAGE_QUEUE_RECEIVE - Receive message from a queue 249
14.4.8 MESSAGE_QUEUE_GET_NUMBER_PENDING - Get number of messages

pending on a queue . 251
14.4.9 MESSAGE_QUEUE_FLUSH - Flush all messages on a queue 252

15 Event Manager 253
15.1 Introduction . 254
15.2 Background . 255

15.2.1 Event Sets . 255
15.2.2 Building an Event Set or Condition . 255
15.2.3 Building an EVENT_RECEIVE Option Set 255

15.3 Operations . 257
15.3.1 Sending an Event Set . 257
15.3.2 Receiving an Event Set . 257
15.3.3 Determining the Pending Event Set . 257
15.3.4 Receiving all Pending Events . 257

15.4 Directives . 258
15.4.1 EVENT_SEND - Send event set to a task 259
15.4.2 EVENT_RECEIVE - Receive event condition 260

16 Signal Manager 261
16.1 Introduction . 262

vii

16.2 Background . 263
16.2.1 Signal Manager Definitions . 263
16.2.2 A Comparison of ASRs and ISRs . 263
16.2.3 Building a Signal Set . 263
16.2.4 Building an ASR Mode . 263

16.3 Operations . 265
16.3.1 Establishing an ASR . 265
16.3.2 Sending a Signal Set . 265
16.3.3 Processing an ASR . 265

16.4 Directives . 267
16.4.1 SIGNAL_CATCH - Establish an ASR . 268
16.4.2 SIGNAL_SEND - Send signal set to a task 269

17 Partition Manager 271
17.1 Introduction . 272
17.2 Background . 273

17.2.1 Partition Manager Definitions . 273
17.2.2 Building a Partition Attribute Set . 273

17.3 Operations . 274
17.3.1 Creating a Partition . 274
17.3.2 Obtaining Partition IDs . 274
17.3.3 Acquiring a Buffer . 274
17.3.4 Releasing a Buffer . 274
17.3.5 Deleting a Partition . 274

17.4 Directives . 275
17.4.1 PARTITION_CREATE - Create a partition 276
17.4.2 PARTITION_IDENT - Get ID of a partition 278
17.4.3 PARTITION_DELETE - Delete a partition 279
17.4.4 PARTITION_GET_BUFFER - Get buffer from a partition 280
17.4.5 PARTITION_RETURN_BUFFER - Return buffer to a partition 281

18 Region Manager 283
18.1 Introduction . 284
18.2 Background . 285

18.2.1 Region Manager Definitions . 285
18.2.2 Building an Attribute Set . 285
18.2.3 Building an Option Set . 285

18.3 Operations . 287
18.3.1 Creating a Region . 287
18.3.2 Obtaining Region IDs . 287
18.3.3 Adding Memory to a Region . 287
18.3.4 Acquiring a Segment . 287
18.3.5 Releasing a Segment . 288
18.3.6 Obtaining the Size of a Segment . 288
18.3.7 Changing the Size of a Segment . 288
18.3.8 Deleting a Region . 288

18.4 Directives . 289
18.4.1 REGION_CREATE - Create a region . 290
18.4.2 REGION_IDENT - Get ID of a region . 292
18.4.3 REGION_DELETE - Delete a region . 293
18.4.4 REGION_EXTEND - Add memory to a region 294
18.4.5 REGION_GET_SEGMENT - Get segment from a region 295

viii

18.4.6 REGION_RETURN_SEGMENT - Return segment to a region 297
18.4.7 REGION_GET_SEGMENT_SIZE - Obtain size of a segment 298
18.4.8 REGION_RESIZE_SEGMENT - Change size of a segment 299
18.4.9 REGION_GET_INFORMATION - Get region information 300
18.4.10 REGION_GET_FREE_INFORMATION - Get region free information 301

19 Dual-Ported Memory Manager 303
19.1 Introduction . 304
19.2 Background . 305
19.3 Operations . 306

19.3.1 Creating a Port . 306
19.3.2 Obtaining Port IDs . 306
19.3.3 Converting an Address . 306
19.3.4 Deleting a DPMA Port . 306

19.4 Directives . 307
19.4.1 PORT_CREATE - Create a port . 308
19.4.2 PORT_IDENT - Get ID of a port . 309
19.4.3 PORT_DELETE - Delete a port . 310
19.4.4 PORT_EXTERNAL_TO_INTERNAL - Convert external to internal address 311
19.4.5 PORT_INTERNAL_TO_EXTERNAL - Convert internal to external address 312

20 I/O Manager 313
20.1 Introduction . 314
20.2 Background . 315

20.2.1 Device Driver Table . 315
20.2.2 Major and Minor Device Numbers . 315
20.2.3 Device Names . 315
20.2.4 Device Driver Environment . 315
20.2.5 Runtime Driver Registration . 316
20.2.6 Device Driver Interface . 316
20.2.7 Device Driver Initialization . 317

20.3 Operations . 318
20.3.1 Register and Lookup Name . 318
20.3.2 Accessing an Device Driver . 318

20.4 Directives . 319
20.4.1 IO_REGISTER_DRIVER - Register a device driver 320
20.4.2 IO_UNREGISTER_DRIVER - Unregister a device driver 321
20.4.3 IO_INITIALIZE - Initialize a device driver 322
20.4.4 IO_REGISTER_NAME - Register a device 323
20.4.5 IO_LOOKUP_NAME - Lookup a device 324
20.4.6 IO_OPEN - Open a device . 325
20.4.7 IO_CLOSE - Close a device . 326
20.4.8 IO_READ - Read from a device . 327
20.4.9 IO_WRITE - Write to a device . 328
20.4.10 IO_CONTROL - Special device services 329

21 Fatal Error Manager 331
21.1 Introduction . 332
21.2 Background . 333

21.2.1 Overview . 333
21.2.2 Fatal Sources . 333
21.2.3 Internal Error Codes . 334

ix

21.3 Operations . 339
21.3.1 Announcing a Fatal Error . 339

21.4 Directives . 340
21.4.1 FATAL - Invoke the fatal error handler . 341
21.4.2 PANIC - Print a message and invoke the fatal error handler 342
21.4.3 SHUTDOWN_EXECUTIVE - Shutdown RTEMS 343
21.4.4 EXCEPTION_FRAME_PRINT - Prints the exception frame 344
21.4.5 FATAL_SOURCE_TEXT - Returns a text for a fatal source 345
21.4.6 INTERNAL_ERROR_TEXT - Returns a text for an internal error code . . . 346
21.4.7 FATAL_ERROR_OCCURRED - Invoke the fatal error handler (deprecated) 347

22 Board Support Packages 349
22.1 Introduction . 350
22.2 Reset and Initialization . 351

22.2.1 Interrupt Stack Requirements . 351
22.2.2 Processors with a Separate Interrupt Stack 352
22.2.3 Processors Without a Separate Interrupt Stack 352

22.3 Device Drivers . 353
22.3.1 Clock Tick Device Driver . 353

22.4 User Extensions . 354
22.5 Multiprocessor Communications Interface (MPCI) 355

22.5.1 Tightly-Coupled Systems . 355
22.5.2 Loosely-Coupled Systems . 355
22.5.3 Systems with Mixed Coupling . 355
22.5.4 Heterogeneous Systems . 356

23 User Extensions Manager 357
23.1 Introduction . 358
23.2 Background . 359

23.2.1 Extension Sets . 359
23.2.2 TCB Extension Area . 359
23.2.3 Order of Invocation . 360
23.2.4 Thread Create Extension . 361
23.2.5 Thread Start Extension . 361
23.2.6 Thread Restart Extension . 361
23.2.7 Thread Switch Extension . 362
23.2.8 Thread Begin Extension . 362
23.2.9 Thread Exitted Extension . 363
23.2.10 Thread Termination Extension . 363
23.2.11 Thread Delete Extension . 363
23.2.12 Fatal Error Extension . 364

23.3 Directives . 365
23.3.1 EXTENSION_CREATE - Create a extension set 366
23.3.2 EXTENSION_IDENT - Get ID of a extension set 367
23.3.3 EXTENSION_DELETE - Delete a extension set 368

24 Configuring a System 369
24.1 Introduction . 370
24.2 Default Value Selection Philosophy . 371
24.3 Sizing the RTEMS Workspace . 372
24.4 Potential Issues with RTEMS Workspace Size Estimation 373
24.5 Configuration Example . 374

x

24.6 Unlimited Objects . 376
24.6.1 Unlimited Objects by Class . 377
24.6.2 Unlimited Objects by Default . 377

24.7 General System Configuration . 378
24.7.1 CONFIGURE_DIRTY_MEMORY . 378
24.7.2 CONFIGURE_DISABLE_NEWLIB_REENTRANCY 378
24.7.3 CONFIGURE_EXECUTIVE_RAM_SIZE . 378
24.7.4 CONFIGURE_EXTRA_TASK_STACKS . 379
24.7.5 CONFIGURE_INITIAL_EXTENSIONS . 379
24.7.6 CONFIGURE_INTERRUPT_STACK_SIZE 380
24.7.7 CONFIGURE_MALLOC_DIRTY . 381
24.7.8 CONFIGURE_MAXIMUM_FILE_DESCRIPTORS 381
24.7.9 CONFIGURE_MAXIMUM_PROCESSORS 381
24.7.10 CONFIGURE_MAXIMUM_THREAD_NAME_SIZE 382
24.7.11 CONFIGURE_MEMORY_OVERHEAD . 383
24.7.12 CONFIGURE_MESSAGE_BUFFER_MEMORY 383
24.7.13 CONFIGURE_MICROSECONDS_PER_TICK 384
24.7.14 CONFIGURE_MINIMUM_TASK_STACK_SIZE 385
24.7.15 CONFIGURE_STACK_CHECKER_ENABLED 386
24.7.16 CONFIGURE_TICKS_PER_TIMESLICE 386
24.7.17 CONFIGURE_UNIFIED_WORK_AREAS 386
24.7.18 CONFIGURE_UNLIMITED_ALLOCATION_SIZE 387
24.7.19 CONFIGURE_UNLIMITED_OBJECTS . 387
24.7.20 CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION 388
24.7.21 CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY 388

24.8 Device Driver Configuration . 389
24.8.1 CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER 389
24.8.2 CONFIGURE_APPLICATION_EXTRA_DRIVERS 389
24.8.3 CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER 390
24.8.4 CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER 390
24.8.5 CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER 391
24.8.6 CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER 391
24.8.7 CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER 392
24.8.8 CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER 392
24.8.9 CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER 392
24.8.10 CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER 393
24.8.11 CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER 393
24.8.12 CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER 394
24.8.13 CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER 394
24.8.14 CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER 395
24.8.15 CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER 395
24.8.16 CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS 396
24.8.17 CONFIGURE_ATA_DRIVER_TASK_PRIORITY 396
24.8.18 CONFIGURE_MAXIMUM_DRIVERS . 396

24.9 Classic API Configuration . 398
24.9.1 CONFIGURE_MAXIMUM_BARRIERS . 398
24.9.2 CONFIGURE_MAXIMUM_MESSAGE_QUEUES 398
24.9.3 CONFIGURE_MAXIMUM_PARTITIONS 399
24.9.4 CONFIGURE_MAXIMUM_PERIODS . 399
24.9.5 CONFIGURE_MAXIMUM_PORTS . 400
24.9.6 CONFIGURE_MAXIMUM_REGIONS . 401

xi

24.9.7 CONFIGURE_MAXIMUM_SEMAPHORES 401
24.9.8 CONFIGURE_MAXIMUM_TASKS . 402
24.9.9 CONFIGURE_MAXIMUM_TIMERS . 403
24.9.10 CONFIGURE_MAXIMUM_USER_EXTENSIONS 403

24.10Classic API Initialization Task Configuration . 405
24.10.1 CONFIGURE_INIT_TASK_ARGUMENTS 405
24.10.2 CONFIGURE_INIT_TASK_ATTRIBUTES 405
24.10.3 CONFIGURE_INIT_TASK_ENTRY_POINT 405
24.10.4 CONFIGURE_INIT_TASK_INITIAL_MODES 406
24.10.5 CONFIGURE_INIT_TASK_NAME . 406
24.10.6 CONFIGURE_INIT_TASK_PRIORITY . 407
24.10.7 CONFIGURE_INIT_TASK_STACK_SIZE 407
24.10.8 CONFIGURE_RTEMS_INIT_TASKS_TABLE 407

24.11POSIX API Configuration . 409
24.11.1 CONFIGURE_MAXIMUM_POSIX_KEYS 409
24.11.2 CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS 409
24.11.3 CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES 410
24.11.4 CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS 411
24.11.5 CONFIGURE_MAXIMUM_POSIX_SEMAPHORES 411
24.11.6 CONFIGURE_MAXIMUM_POSIX_SHMS 412
24.11.7 CONFIGURE_MAXIMUM_POSIX_THREADS 412
24.11.8 CONFIGURE_MAXIMUM_POSIX_TIMERS 413
24.11.9 CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE 414

24.12POSIX Initialization Thread Configuration . 415
24.12.1 CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT 415
24.12.2 CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE 415
24.12.3 CONFIGURE_POSIX_INIT_THREAD_TABLE 416

24.13Event Recording Configuration . 417
24.13.1 CONFIGURE_RECORD_EXTENSIONS_ENABLED 417
24.13.2 CONFIGURE_RECORD_FATAL_DUMP_BASE64 417
24.13.3 CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB 418
24.13.4 CONFIGURE_RECORD_PER_PROCESSOR_ITEMS 418

24.14Filesystem Configuration . 419
24.14.1 CONFIGURE_APPLICATION_DISABLE_FILESYSTEM 419
24.14.2 CONFIGURE_FILESYSTEM_ALL . 420
24.14.3 CONFIGURE_FILESYSTEM_DOSFS . 420
24.14.4 CONFIGURE_FILESYSTEM_FTPFS . 421
24.14.5 CONFIGURE_FILESYSTEM_IMFS . 421
24.14.6 CONFIGURE_FILESYSTEM_JFFS2 . 421
24.14.7 CONFIGURE_FILESYSTEM_NFS . 422
24.14.8 CONFIGURE_FILESYSTEM_RFS . 422
24.14.9 CONFIGURE_FILESYSTEM_TFTPFS . 422
24.14.10CONFIGURE_IMFS_DISABLE_CHMOD 423
24.14.11CONFIGURE_IMFS_DISABLE_CHOWN 423
24.14.12CONFIGURE_IMFS_DISABLE_LINK . 423
24.14.13CONFIGURE_IMFS_DISABLE_MKNOD 424
24.14.14CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE 424
24.14.15CONFIGURE_IMFS_DISABLE_MKNOD_FILE 424
24.14.16CONFIGURE_IMFS_DISABLE_MOUNT 425
24.14.17CONFIGURE_IMFS_DISABLE_READDIR 425
24.14.18CONFIGURE_IMFS_DISABLE_READLINK 425

xii

24.14.19CONFIGURE_IMFS_DISABLE_RENAME 426
24.14.20CONFIGURE_IMFS_DISABLE_RMNOD 426
24.14.21CONFIGURE_IMFS_DISABLE_SYMLINK 426
24.14.22CONFIGURE_IMFS_DISABLE_UNMOUNT 427
24.14.23CONFIGURE_IMFS_DISABLE_UTIME . 427
24.14.24CONFIGURE_IMFS_ENABLE_MKFIFO 427
24.14.25CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK 428
24.14.26CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM 428
24.14.27CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM 429

24.15Block Device Cache Configuration . 431
24.15.1 CONFIGURE_APPLICATION_NEEDS_LIBBLOCK 431
24.15.2 CONFIGURE_BDBUF_BUFFER_MAX_SIZE 431
24.15.3 CONFIGURE_BDBUF_BUFFER_MIN_SIZE 431
24.15.4 CONFIGURE_BDBUF_CACHE_MEMORY_SIZE 432
24.15.5 CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS 432
24.15.6 CONFIGURE_BDBUF_MAX_WRITE_BLOCKS 433
24.15.7 CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY 433
24.15.8 CONFIGURE_BDBUF_TASK_STACK_SIZE 433
24.15.9 CONFIGURE_SWAPOUT_BLOCK_HOLD 434
24.15.10CONFIGURE_SWAPOUT_SWAP_PERIOD 434
24.15.11CONFIGURE_SWAPOUT_TASK_PRIORITY 435
24.15.12CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY 435
24.15.13CONFIGURE_SWAPOUT_WORKER_TASKS 435

24.16Task Stack Allocator Configuration . 437
24.16.1 CONFIGURE_TASK_STACK_ALLOCATOR 437
24.16.2 CONFIGURE_TASK_STACK_ALLOCATOR_INIT 437
24.16.3 CONFIGURE_TASK_STACK_DEALLOCATOR 438
24.16.4 CONFIGURE_TASK_STACK_FROM_ALLOCATOR 438
24.16.5 CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE 439

24.17Idle Task Configuration . 440
24.17.1 CONFIGURE_IDLE_TASK_BODY . 440
24.17.2 CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION 440
24.17.3 CONFIGURE_IDLE_TASK_STACK_SIZE 441

24.18General Scheduler Configuration . 442
24.18.1 CONFIGURE_CBS_MAXIMUM_SERVERS 442
24.18.2 CONFIGURE_MAXIMUM_PRIORITY . 442
24.18.3 CONFIGURE_SCHEDULER_ASSIGNMENTS 443
24.18.4 CONFIGURE_SCHEDULER_CBS . 444
24.18.5 CONFIGURE_SCHEDULER_EDF . 444
24.18.6 CONFIGURE_SCHEDULER_EDF_SMP . 445
24.18.7 CONFIGURE_SCHEDULER_NAME . 445
24.18.8 CONFIGURE_SCHEDULER_PRIORITY 446
24.18.9 CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP 446
24.18.10CONFIGURE_SCHEDULER_PRIORITY_SMP 447
24.18.11CONFIGURE_SCHEDULER_SIMPLE . 447
24.18.12CONFIGURE_SCHEDULER_SIMPLE_SMP 448
24.18.13CONFIGURE_SCHEDULER_STRONG_APA 448
24.18.14CONFIGURE_SCHEDULER_USER . 448

24.19Clustered Scheduler Configuration . 450
24.19.1 Configuration Step 1 - Scheduler Algorithms 450
24.19.2 Configuration Step 2 - Schedulers . 450

xiii

24.19.3 Configuration Step 3 - Scheduler Table 451
24.19.4 Configuration Step 4 - Processor to Scheduler Assignment 451
24.19.5 Configuration Example . 452
24.19.6 Configuration Errors . 452

24.20BSP Related Configuration Options . 454
24.20.1 BSP_IDLE_TASK_BODY . 454
24.20.2 BSP_IDLE_TASK_STACK_SIZE . 454
24.20.3 BSP_INITIAL_EXTENSION . 455
24.20.4 BSP_INTERRUPT_STACK_SIZE . 455
24.20.5 CONFIGURE_BSP_PREREQUISITE_DRIVERS 456
24.20.6 CONFIGURE_DISABLE_BSP_SETTINGS 456
24.20.7 CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK 457

24.21Multiprocessing Configuration . 458
24.21.1 CONFIGURE_MP_APPLICATION . 458
24.21.2 CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK 458
24.21.3 CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS 459
24.21.4 CONFIGURE_MP_MAXIMUM_NODES 459
24.21.5 CONFIGURE_MP_MAXIMUM_PROXIES 459
24.21.6 CONFIGURE_MP_MPCI_TABLE_POINTER 460
24.21.7 CONFIGURE_MP_NODE_NUMBER . 460

24.22PCI Library Configuration . 462
24.23Ada Configuration . 463
24.24Obsolete Configuration Options . 464

24.24.1 CONFIGURE_BDBUF_BUFFER_COUNT 464
24.24.2 CONFIGURE_BDBUF_BUFFER_SIZE . 464
24.24.3 CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS 464
24.24.4 CONFIGURE_ENABLE_GO . 464
24.24.5 CONFIGURE_GNAT_RTEMS . 464
24.24.6 CONFIGURE_HAS_OWN_CONFIGURATION_TABLE 464
24.24.7 CONFIGURE_HAS_OWN_BDBUF_TABLE 464
24.24.8 CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE 464
24.24.9 CONFIGURE_HAS_OWN_INIT_TASK_TABLE 464
24.24.10CONFIGURE_HAS_OWN_MOUNT_TABLE 465
24.24.11CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE 465
24.24.12CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS 465
24.24.13CONFIGURE_MAXIMUM_ADA_TASKS 465
24.24.14CONFIGURE_MAXIMUM_DEVICES . 465
24.24.15CONFIGURE_MAXIMUM_FAKE_ADA_TASKS 465
24.24.16CONFIGURE_MAXIMUM_GO_CHANNELS 465
24.24.17CONFIGURE_MAXIMUM_GOROUTINES 465
24.24.18CONFIGURE_MAXIMUM_MRSP_SEMAPHORES 465
24.24.19CONFIGURE_NUMBER_OF_TERMIOS_PORTS 465
24.24.20CONFIGURE_MAXIMUM_POSIX_BARRIERS 466
24.24.21CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES 466
24.24.22CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS . . 466
24.24.23CONFIGURE_MAXIMUM_POSIX_MUTEXES 466
24.24.24CONFIGURE_MAXIMUM_POSIX_RWLOCKS 466
24.24.25CONFIGURE_MAXIMUM_POSIX_SPINLOCKS 466
24.24.26CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE 466
24.24.27CONFIGURE_SMP_APPLICATION . 466
24.24.28CONFIGURE_SMP_MAXIMUM_PROCESSORS 466

xiv

24.24.29CONFIGURE_TERMIOS_DISABLED . 466

25 Self-Contained Objects 467
25.1 Introduction . 468
25.2 RTEMS Thread API . 470
25.3 Mutual Exclusion . 471

25.3.1 Static mutex initialization . 472
25.3.2 Run-time mutex initialization . 473
25.3.3 Lock the mutex . 474
25.3.4 Unlock the mutex . 475
25.3.5 Set mutex name . 476
25.3.6 Get mutex name . 477
25.3.7 Mutex destruction . 477

25.4 Condition Variables . 478
25.4.1 Static condition variable initialization . 479
25.4.2 Run-time condition variable initialization 480
25.4.3 Wait for condition signal . 481
25.4.4 Signals a condition change . 482
25.4.5 Broadcasts a condition change . 483
25.4.6 Set condition variable name . 484
25.4.7 Get condition variable name . 485
25.4.8 Condition variable destruction . 485

25.5 Counting Semaphores . 486
25.5.1 Static counting semaphore initialization 487
25.5.2 Run-time counting semaphore initialization 488
25.5.3 Wait for a counting semaphore . 489
25.5.4 Post a counting semaphore . 490
25.5.5 Set counting semaphore name . 491
25.5.6 Get counting semaphore name . 492
25.5.7 Counting semaphore destruction . 492

25.6 Binary Semaphores . 493
25.6.1 Static binary semaphore initialization . 494
25.6.2 Run-time binary semaphore initialization 495
25.6.3 Wait for a binary semaphore . 496
25.6.4 Wait for a binary semaphore with timeout in ticks 497
25.6.5 Tries to wait for a binary semaphore . 498
25.6.6 Post a binary semaphore . 499
25.6.7 Set binary semaphore name . 500
25.6.8 Get binary semaphore name . 501
25.6.9 Binary semaphore destruction . 501

25.7 Threads . 502

26 Multiprocessing Manager 505
26.1 Introduction . 506
26.2 Background . 507

26.2.1 Nodes . 507
26.2.2 Global Objects . 507
26.2.3 Global Object Table . 507
26.2.4 Remote Operations . 508
26.2.5 Proxies . 509
26.2.6 Multiprocessor Configuration Table . 509

26.3 Multiprocessor Communications Interface Layer 510

xv

26.3.1 INITIALIZATION . 510
26.3.2 GET_PACKET . 511
26.3.3 RETURN_PACKET . 511
26.3.4 RECEIVE_PACKET . 511
26.3.5 SEND_PACKET . 512
26.3.6 Supporting Heterogeneous Environments 512

26.4 Operations . 514
26.4.1 Announcing a Packet . 514

26.5 Directives . 515
26.5.1 MULTIPROCESSING_ANNOUNCE - Announce the arrival of a packet . . 516

27 Symmetric Multiprocessing (SMP) 517
27.1 Introduction . 518
27.2 Background . 519

27.2.1 Application Configuration . 519
27.2.2 Examples . 519
27.2.3 Uniprocessor versus SMP Parallelism . 519
27.2.4 Task Affinity . 520
27.2.5 Task Migration . 520
27.2.6 Clustered Scheduling . 521
27.2.7 OpenMP . 521
27.2.8 Atomic Operations . 522

27.3 Application Issues . 523
27.3.1 Task variables . 523
27.3.2 Highest Priority Thread Never Walks Alone 523
27.3.3 Disabling of Thread Preemption . 523
27.3.4 Disabling of Interrupts . 524
27.3.5 Interrupt Service Routines Execute in Parallel With Threads 525
27.3.6 Timers Do Not Stop Immediately . 525
27.3.7 False Sharing of Cache Lines Due to Objects Table 525

27.4 Implementation Details . 526
27.4.1 Low-Level Synchronization . 526
27.4.2 Internal Locking . 527
27.4.3 Profiling . 528
27.4.4 Scheduler Helping Protocol . 528
27.4.5 Thread Dispatch Details . 529
27.4.6 Per-Processor Data . 530
27.4.7 Thread Pinning . 530

28 PCI Library 531
28.1 Introduction . 532
28.2 Background . 533

28.2.1 Software Components . 533
28.2.2 PCI Configuration . 534

28.2.2.1 RTEMS Configuration selection 534
28.2.2.2 Auto Configuration . 535
28.2.2.3 Read Configuration . 535
28.2.2.4 Static Configuration . 536
28.2.2.5 Peripheral Configuration . 536

28.2.3 PCI Access . 536
28.2.3.1 Configuration space . 536
28.2.3.2 I/O space . 537

xvi

28.2.3.3 Registers over Memory space . 537
28.2.3.4 Access functions . 538
28.2.3.5 PCI address translation . 538

28.2.4 PCI Interrupt . 538
28.2.5 PCI Shell command . 539

29 Stack Bounds Checker 541
29.1 Introduction . 542
29.2 Background . 543

29.2.1 Task Stack . 543
29.2.2 Execution . 543

29.3 Operations . 544
29.3.1 Initializing the Stack Bounds Checker . 544
29.3.2 Checking for Blown Task Stack . 544
29.3.3 Reporting Task Stack Usage . 544
29.3.4 When a Task Overflows the Stack . 544

29.4 Routines . 546
29.4.1 STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack 546
29.4.2 STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage 546

30 CPU Usage Statistics 547
30.1 Introduction . 548
30.2 Background . 549
30.3 Operations . 550

30.3.1 Report CPU Usage Statistics . 550
30.3.2 Reset CPU Usage Statistics . 550

30.4 Directives . 551
30.4.1 cpu_usage_report - Report CPU Usage Statistics 552
30.4.2 cpu_usage_reset - Reset CPU Usage Statistics 553

31 Object Services 555
31.1 Introduction . 556
31.2 Background . 557

31.2.1 APIs . 557
31.2.2 Object Classes . 557
31.2.3 Object Names . 557

31.3 Operations . 558
31.3.1 Decomposing and Recomposing an Object Id 558
31.3.2 Printing an Object Id . 558

31.4 Directives . 560
31.4.1 BUILD_NAME - Build object name from characters 561
31.4.2 OBJECT_GET_CLASSIC_NAME - Lookup name from id 562
31.4.3 OBJECT_GET_NAME - Obtain object name as string 563
31.4.4 OBJECT_SET_NAME - Set object name 564
31.4.5 OBJECT_ID_GET_API - Obtain API from Id 565
31.4.6 OBJECT_ID_GET_CLASS - Obtain Class from Id 566
31.4.7 OBJECT_ID_GET_NODE - Obtain Node from Id 567
31.4.8 OBJECT_ID_GET_INDEX - Obtain Index from Id 568
31.4.9 BUILD_ID - Build Object Id From Components 569
31.4.10 OBJECT_ID_API_MINIMUM - Obtain Minimum API Value 570
31.4.11 OBJECT_ID_API_MAXIMUM - Obtain Maximum API Value 571
31.4.12 OBJECT_API_MINIMUM_CLASS - Obtain Minimum Class Value 572

xvii

31.4.13 OBJECT_API_MAXIMUM_CLASS - Obtain Maximum Class Value 573
31.4.14 OBJECT_ID_API_MINIMUM_CLASS - Obtain Minimum Class Value for

an API . 574
31.4.15 OBJECT_ID_API_MAXIMUM_CLASS - Obtain Maximum Class Value for

an API . 575
31.4.16 OBJECT_GET_API_NAME - Obtain API Name 576
31.4.17 OBJECT_GET_API_CLASS_NAME - Obtain Class Name 577
31.4.18 OBJECT_GET_CLASS_INFORMATION - Obtain Class Information 578
31.4.19 OBJECT_GET_LOCAL_NODE - Obtain Local Node 579

32 Chains 581
32.1 Introduction . 582
32.2 Background . 583

32.2.1 Nodes . 583
32.2.2 Controls . 583

32.3 Operations . 584
32.3.1 Multi-threading . 584
32.3.2 Creating a Chain . 584
32.3.3 Iterating a Chain . 584

32.4 Directives . 586
32.4.1 Initialize Chain With Nodes . 587
32.4.2 Initialize Empty . 588
32.4.3 Is Null Node ? . 589
32.4.4 Head . 590
32.4.5 Tail . 591
32.4.6 Are Two Nodes Equal ? . 592
32.4.7 Is the Chain Empty . 593
32.4.8 Is this the First Node on the Chain ? . 594
32.4.9 Is this the Last Node on the Chain ? . 595
32.4.10 Does this Chain have only One Node ? 596
32.4.11 Returns the node count of the chain (unprotected) 597
32.4.12 Is this Node the Chain Head ? . 598
32.4.13 Is this Node the Chain Tail ? . 599
32.4.14 Extract a Node . 600
32.4.15 Extract a Node (unprotected) . 601
32.4.16 Get the First Node . 602
32.4.17 Get the First Node (unprotected) . 603
32.4.18 Insert a Node . 604
32.4.19 Insert a Node (unprotected) . 605
32.4.20 Append a Node . 606
32.4.21 Append a Node (unprotected) . 607
32.4.22 Prepend a Node . 608
32.4.23 Prepend a Node (unprotected) . 609

33 Red-Black Trees 611
33.1 Introduction . 612
33.2 Background . 613

33.2.1 Nodes . 613
33.2.2 Controls . 613

33.3 Operations . 614
33.4 Directives . 615

33.4.1 Documentation for the Red-Black Tree Directives 615

xviii

34 Timespec Helpers 617
34.1 Introduction . 618
34.2 Background . 619

34.2.1 Time Storage Conventions . 619
34.3 Operations . 620

34.3.1 Set and Obtain Timespec Value . 620
34.3.2 Timespec Math . 620
34.3.3 Comparing struct timespec Instances . 620
34.3.4 Conversions and Validity Check . 620

34.4 Directives . 621
34.4.1 TIMESPEC_SET - Set struct timespec Instance 622
34.4.2 TIMESPEC_ZERO - Zero struct timespec Instance 623
34.4.3 TIMESPEC_IS_VALID - Check validity of a struct timespec instance . . . 624
34.4.4 TIMESPEC_ADD_TO - Add Two struct timespec Instances 625
34.4.5 TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances 626
34.4.6 TIMESPEC_DIVIDE - Divide Two struct timespec Instances 627
34.4.7 TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by

an Integer . 628
34.4.8 TIMESPEC_LESS_THAN - Less than operator 629
34.4.9 TIMESPEC_GREATER_THAN - Greater than operator 630
34.4.10 TIMESPEC_EQUAL_TO - Check equality of timespecs 631
34.4.11 TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec In-

stance . 632
34.4.12 TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the

struct timespec Instance . 633
34.4.13 TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks 634
34.4.14 TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representa-

tion . 635

35 Constant Bandwidth Server Scheduler API 637
35.1 Introduction . 638
35.2 Background . 639

35.2.1 Constant Bandwidth Server Definitions 639
35.2.2 Handling Periodic Tasks . 639
35.2.3 Registering a Callback Function . 639
35.2.4 Limitations . 640

35.3 Operations . 641
35.3.1 Setting up a server . 641
35.3.2 Attaching Task to a Server . 641
35.3.3 Detaching Task from a Server . 641
35.3.4 Examples . 641

35.4 Directives . 643
35.4.1 CBS_INITIALIZE - Initialize the CBS library 644
35.4.2 CBS_CLEANUP - Cleanup the CBS library 645
35.4.3 CBS_CREATE_SERVER - Create a new bandwidth server 646
35.4.4 CBS_ATTACH_THREAD - Attach a thread to server 647
35.4.5 CBS_DETACH_THREAD - Detach a thread from server 648
35.4.6 CBS_DESTROY_SERVER - Destroy a bandwidth server 649
35.4.7 CBS_GET_SERVER_ID - Get an ID of a server 650
35.4.8 CBS_GET_PARAMETERS - Get scheduling parameters of a server 651
35.4.9 CBS_SET_PARAMETERS - Set scheduling parameters 652

xix

35.4.10 CBS_GET_EXECUTION_TIME - Get elapsed execution time 653
35.4.11 CBS_GET_REMAINING_BUDGET - Get remaining execution time 654
35.4.12 CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time 655

36 Ada Support 657
36.1 Introduction . 658
36.2 Ada Programming Language Support . 659
36.3 Classic API Ada Bindings . 660

37 Linker Sets 661
37.1 Introduction . 662
37.2 Background . 664
37.3 Directives . 665

37.3.1 RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker 666
37.3.2 RTEMS_LINKER_SET_END - Designator of the linker set end marker . . 667
37.3.3 RTEMS_LINKER_SET_SIZE - The linker set size in characters 668
37.3.4 RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count 669
37.3.5 RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty? 670
37.3.6 RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items . . 671
37.3.7 RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set . . . 672
37.3.8 RTEMS_LINKER_ROSET - Defines a read-only linker set 673
37.3.9 RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker

set item . 674
37.3.10 RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE - Declares an or-

dered read-only linker set item . 675
37.3.11 RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only

linker set item . 676
37.3.12 RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item . . . 677
37.3.13 RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-

only linker set item . 678
37.3.14 RTEMS_LINKER_ROSET_CONTENT - Marks a declaration as a read-only

linker set content . 679
37.3.15 RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set . . 680
37.3.16 RTEMS_LINKER_RWSET - Defines a read-write linker set 681
37.3.17 RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker

set item . 682
37.3.18 RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE - Declares an or-

dered read-write linker set item . 683
37.3.19 RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write

linker set item . 684
37.3.20 RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item . . 685
37.3.21 RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-

write linker set item . 686
37.3.22 RTEMS_LINKER_RWSET_CONTENT - Marks a declaration as a read-

write linker set content . 687

38 Directive Status Codes 689
38.1 Introduction . 690
38.2 Directives . 691

38.2.1 STATUS_TEXT - Returns the enumeration name for a status code 692

39 Example Application 693

xx

40 Glossary 695

Bibliography 709

Index 713

xxi

xxii

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

Copyrights and License

© 2017 Chris Johns
© 2017 Kuan-Hsun Chen
© 2015, 2020 embedded brains GmbH
© 2015, 2020 Sebastian Huber
© 2011 Petr Benes
© 2010 Gedare Bloom
© 1988, 2018 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://devel.rtems.org/wiki/Developer/Bug_Reporting
Git Repositories https://git.rtems.org
Developers https://devel.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://devel.rtems.org/wiki/Developer/Bug_Reporting
https://git.rtems.org
https://devel.rtems.org

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

2 CONTENTS

CHAPTER

ONE

PREFACE

In recent years, the cost required to develop a software product has increased significantly while
the target hardware costs have decreased. Now a larger portion of money is expended in de-
veloping, using, and maintaining software. The trend in computing costs is the complete dom-
inance of software over hardware costs. Because of this, it is necessary that formal disciplines
be established to increase the probability that software is characterized by a high degree of cor-
rectness, maintainability, and portability. In addition, these disciplines must promote practices
that aid in the consistent and orderly development of a software system within schedule and
budgetary constraints. To be effective, these disciplines must adopt standards which channel
individual software efforts toward a common goal.

The push for standards in the software development field has been met with various degrees of
success. The Microprocessor Operating Systems Interfaces (MOSI) effort has experienced only
limited success. As popular as the UNIX operating system has grown, the attempt to develop a
standard interface definition to allow portable application development has only recently begun
to produce the results needed in this area. Unfortunately, very little effort has been expended
to provide standards addressing the needs of the real-time community. Several organizations
have addressed this need during recent years.

The Real Time Executive Interface Definition (RTEID) was developed by Motorola with tech-
nical input from Software Components Group [Mot88]. RTEID was adopted by the VMEbus
International Trade Association (VITA) as a baseline draft for their proposed standard multi-
processor, real-time executive interface, Open Real-Time Kernel Interface Definition (ORKID)
[VIT90]. These two groups worked together with the IEEE P1003.4 committee to ensure that
the functionality of their proposed standards is adopted as the real-time extensions to POSIX.

This proposed standard defines an interface for the development of real-time software to ease
the writing of real-time application programs that are directly portable across multiple real-time
executive implementations. This interface includes both the source code interfaces and run-
time behavior as seen by a real-time application. It does not include the details of how a kernel
implements these functions. The standard’s goal is to serve as a complete definition of external
interfaces so that application code that conforms to these interfaces will execute properly in
all real-time executive environments. With the use of a standards compliant executive, routines
that acquire memory blocks, create and manage message queues, establish and use semaphores,
and send and receive signals need not be redeveloped for a different real-time environment
as long as the new environment is compliant with the standard. Software developers need
only concentrate on the hardware dependencies of the real-time system. Furthermore, most
hardware dependencies for real-time applications can be localized to the device drivers.

A compliant executive provides simple and flexible real-time multiprocessing. It easily lends it-
self to both tightly-coupled and loosely-coupled configurations (depending on the system hard-

3

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 1 Section 1.0

ware configuration). Objects such as tasks, queues, events, signals, semaphores, and memory
blocks can be designated as global objects and accessed by any task regardless of which proces-
sor the object and the accessing task reside.

The acceptance of a standard for real-time executives will produce the same advantages en-
joyed from the push for UNIX standardization by AT&T’s System V Interface Definition and
IEEE’s POSIX efforts. A compliant multiprocessing executive will allow close coupling between
UNIX systems and real-time executives to provide the many benefits of the UNIX development
environment to be applied to real-time software development. Together they provide the nec-
essary laboratory environment to implement real-time, distributed, embedded systems using a
wide variety of computer architectures.

A study was completed in 1988, within the Research, Development, and Engineering Center,
U.S. Army Missile Command, which compared the various aspects of the Ada programming
language as they related to the application of Ada code in distributed and/or multiple processing
systems. Several critical conclusions were derived from the study. These conclusions have a
major impact on the way the Army develops application software for embedded applications.
These impacts apply to both in-house software development and contractor developed software.

A conclusion of the analysis, which has been previously recognized by other agencies attempting
to utilize Ada in a distributed or multiprocessing environment, is that the Ada programming
language does not adequately support multiprocessing. Ada does provide a mechanism for
multi-tasking, however, this capability exists only for a single processor system. The language
also does not have inherent capabilities to access global named variables, flags or program code.
These critical features are essential in order for data to be shared between processors. However,
these drawbacks do have workarounds which are sometimes awkward and defeat the intent of
software maintainability and portability goals.

Another conclusion drawn from the analysis, was that the run time executives being delivered
with the Ada compilers were too slow and inefficient to be used in modern missile systems. A
run time executive is the core part of the run time system code, or operating system code, that
controls task scheduling, input/output management and memory management. Traditionally,
whenever efficient executive (also known as kernel) code was required by the application, the
user developed in-house software. This software was usually written in assembly language for
optimization.

Because of this shortcoming in the Ada programming language, software developers in research
and development and contractors for project managed systems, are mandated by technology to
purchase and utilize off-the-shelf third party kernel code. The contractor, and eventually the
Government, must pay a licensing fee for every copy of the kernel code used in an embedded
system.

The main drawback to this development environment is that the Government does not own,
nor has the right to modify code contained within the kernel. V&V techniques in this situation
are more difficult than if the complete source code were available. Responsibility for system
failures due to faulty software is yet another area to be resolved under this environment.

The Guidance and Control Directorate began a software development effort to address these
problems. A project to develop an experimental run time kernel was begun that will eliminate
the major drawbacks of the Ada programming language mentioned above. The Real Time
Executive for Multiprocessor Systems (RTEMS) provides full capabilities for management of
tasks, interrupts, time, and multiple processors in addition to those features typical of generic
operating systems. The code is Government owned, so no licensing fees are necessary. RTEMS
has been implemented in both the Ada and C programming languages. It has been ported to
the following processor families:

4 Chapter 1. Preface

Chapter 1 Section 1.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• Adapteva Epiphany

• Altera NIOS II

• Analog Devices Blackfin

• Atmel AVR

• ARM

• Freescale (formerly Motorola) MC68xxx

• Freescale (formerly Motorola) MC683xx

• Freescale (formerly Motorola) ColdFire

• Intel i386 and above

• Lattice Semiconductor LM32

• NEC V850

• MIPS

• Moxie Processor

• OpenRISC

• PowerPC

• Renesas (formerly Hitachi) SuperH

• Renesas (formerly Hitachi) H8/300

• Renesas M32C

• SPARC v7, v8, and V9

Since almost all of RTEMS is written in a high level language, ports to additional processor
families require minimal effort.

RTEMS multiprocessor support is capable of handling either homogeneous or heterogeneous
systems. The kernel automatically compensates for architectural differences (byte swapping,
etc.) between processors. This allows a much easier transition from one processor family to
another without a major system redesign.

Since the proposed standards are still in draft form, RTEMS cannot and does not claim com-
pliance. However, the status of the standard is being carefully monitored to guarantee that
RTEMS provides the functionality specified in the standard. Once approved, RTEMS will be
made compliant.

This document is a detailed users guide for a functionally compliant real-time multiprocessor
executive. It describes the user interface and run-time behavior of Release 4.10.99.0 of the C
interface to RTEMS.

5

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 1 Section 1.0

6 Chapter 1. Preface

CHAPTER

TWO

OVERVIEW

7

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.1

2.1 Introduction

RTEMS, Real-Time Executive for Multiprocessor Systems, is a real-time executive (kernel) which
provides a high performance environment for embedded military applications including the
following features:

• multitasking capabilities

• homogeneous and heterogeneous multiprocessor systems

• event-driven, priority-based, preemptive scheduling

• optional rate monotonic scheduling

• intertask communication and synchronization

• priority inheritance

• responsive interrupt management

• dynamic memory allocation

• high level of user configurability

This manual describes the usage of RTEMS for applications written in the C programming lan-
guage. Those implementation details that are processor dependent are provided in the Appli-
cations Supplement documents. A supplement document which addresses specific architectural
issues that affect RTEMS is provided for each processor type that is supported.

8 Chapter 2. Overview

Chapter 2 Section 2.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

2.2 Real-time Application Systems

Real-time application systems are a special class of computer applications. They have a complex
set of characteristics that distinguish them from other software problems. Generally, they must
adhere to more rigorous requirements. The correctness of the system depends not only on the
results of computations, but also on the time at which the results are produced. The most
important and complex characteristic of real-time application systems is that they must receive
and respond to a set of external stimuli within rigid and critical time constraints referred to as
deadlines. Systems can be buried by an avalanche of interdependent, asynchronous or cyclical
event streams.

Deadlines can be further characterized as either hard or soft based upon the value of the results
when produced after the deadline has passed. A deadline is hard if the results have no value
or if their use will result in a catastrophic event. In contrast, results which are produced after a
soft deadline may have some value.

Another distinguishing requirement of real-time application systems is the ability to coordinate
or manage a large number of concurrent activities. Since software is a synchronous entity,
this presents special problems. One instruction follows another in a repeating synchronous
cycle. Even though mechanisms have been developed to allow for the processing of external
asynchronous events, the software design efforts required to process and manage these events
and tasks are growing more complicated.

The design process is complicated further by spreading this activity over a set of processors
instead of a single processor. The challenges associated with designing and building real-time
application systems become very complex when multiple processors are involved. New require-
ments such as interprocessor communication channels and global resources that must be shared
between competing processors are introduced. The ramifications of multiple processors compli-
cate each and every characteristic of a real-time system.

2.2. Real-time Application Systems 9

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.3

2.3 Real-time Executive

Fortunately, real-time operating systems or real-time executives serve as a cornerstone on which
to build the application system. A real-time multitasking executive allows an application to
be cast into a set of logical, autonomous processes or tasks which become quite manageable.
Each task is internally synchronous, but different tasks execute independently, resulting in an
asynchronous processing stream. Tasks can be dynamically paused for many reasons resulting
in a different task being allowed to execute for a period of time. The executive also provides
an interface to other system components such as interrupt handlers and device drivers. System
components may request the executive to allocate and coordinate resources, and to wait for
and trigger synchronizing conditions. The executive system calls effectively extend the CPU
instruction set to support efficient multitasking. By causing tasks to travel through well-defined
state transitions, system calls permit an application to demand-switch between tasks in response
to real-time events.

By proper grouping of responses to stimuli into separate tasks, a system can now asynchronously
switch between independent streams of execution, directly responding to external stimuli as
they occur. This allows the system design to meet critical performance specifications which are
typically measured by guaranteed response time and transaction throughput. The multipro-
cessor extensions of RTEMS provide the features necessary to manage the extra requirements
introduced by a system distributed across several processors. It removes the physical barriers
of processor boundaries from the world of the system designer, enabling more critical aspects
of the system to receive the required attention. Such a system, based on an efficient real-time,
multiprocessor executive, is a more realistic model of the outside world or environment for
which it is designed. As a result, the system will always be more logical, efficient, and reliable.

By using the directives provided by RTEMS, the real-time applications developer is freed from
the problem of controlling and synchronizing multiple tasks and processors. In addition, one
need not develop, test, debug, and document routines to manage memory, pass messages, or
provide mutual exclusion. The developer is then able to concentrate solely on the application.
By using standard software components, the time and cost required to develop sophisticated
real-time applications is significantly reduced.

10 Chapter 2. Overview

Chapter 2 Section 2.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

2.4 RTEMS Application Architecture

One important design goal of RTEMS was to provide a bridge between two critical layers of
typical real-time systems. As shown in the following figure, RTEMS serves as a buffer between
the project dependent application code and the target hardware. Most hardware dependencies
for real-time applications can be localized to the low level device drivers.

The RTEMS I/O interface manager provides an efficient tool for incorporating these hardware
dependencies into the system while simultaneously providing a general mechanism to the appli-
cation code that accesses them. A well designed real-time system can benefit from this architec-
ture by building a rich library of standard application components which can be used repeatedly
in other real-time projects.

2.4. RTEMS Application Architecture 11

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.5

2.5 RTEMS Internal Architecture

RTEMS can be viewed as a set of layered components that work in harmony to provide a set of
services to a real-time application system. The executive interface presented to the application is
formed by grouping directives into logical sets called resource managers. Functions utilized by
multiple managers such as scheduling, dispatching, and object management are provided in the
executive core. The executive core depends on a small set of CPU dependent routines. Together
these components provide a powerful run time environment that promotes the development of
efficient real-time application systems. The following figure illustrates this organization:

Subsequent chapters present a detailed description of the capabilities provided by each of the
following RTEMS managers:

• initialization

• task

• interrupt

• clock

• timer

• semaphore

• message

• event

• signal

• partition

• region

• dual ported memory

• I/O

• fatal error

• rate monotonic

• user extensions

12 Chapter 2. Overview

Chapter 2 Section 2.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• multiprocessing

2.5. RTEMS Internal Architecture 13

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.6

2.6 User Customization and Extensibility

As thirty-two bit microprocessors have decreased in cost, they have become increasingly com-
mon in a variety of embedded systems. A wide range of custom and general-purpose processor
boards are based on various thirty-two bit processors. RTEMS was designed to make no as-
sumptions concerning the characteristics of individual microprocessor families or of specific
support hardware. In addition, RTEMS allows the system developer a high degree of freedom
in customizing and extending its features.

RTEMS assumes the existence of a supported microprocessor and sufficient memory for both
RTEMS and the real-time application. Board dependent components such as clocks, interrupt
controllers, or I/O devices can be easily integrated with RTEMS. The customization and exten-
sibility features allow RTEMS to efficiently support as many environments as possible.

14 Chapter 2. Overview

Chapter 2 Section 2.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

2.7 Portability

The issue of portability was the major factor in the creation of RTEMS. Since RTEMS is designed
to isolate the hardware dependencies in the specific board support packages, the real-time appli-
cation should be easily ported to any other processor. The use of RTEMS allows the development
of real-time applications which can be completely independent of a particular microprocessor
architecture.

2.7. Portability 15

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.8

2.8 Memory Requirements

Since memory is a critical resource in many real-time embedded systems, RTEMS was specif-
ically designed to automatically leave out all services that are not required from the run-time
environment. Features such as networking, various fileystems, and many other features are
completely optional. This allows the application designer the flexibility to tailor RTEMS to
most efficiently meet system requirements while still satisfying even the most stringent memory
constraints. As a result, the size of the RTEMS executive is application dependent.

RTEMS requires RAM to manage each instance of an RTEMS object that is created. Thus the
more RTEMS objects an application needs, the more memory that must be reserved. See Con-
figuring a System (page 369).

RTEMS utilizes memory for both code and data space. Although RTEMS’ data space must be in
RAM, its code space can be located in either ROM or RAM.

16 Chapter 2. Overview

Chapter 2 Section 2.9 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

2.9 Audience

This manual was written for experienced real-time software developers. Although some back-
ground is provided, it is assumed that the reader is familiar with the concepts of task manage-
ment as well as intertask communication and synchronization. Since directives, user related
data structures, and examples are presented in C, a basic understanding of the C programming
language is required to fully understand the material presented. However, because of the simi-
larity of the Ada and C RTEMS implementations, users will find that the use and behavior of the
two implementations is very similar. A working knowledge of the target processor is helpful in
understanding some of RTEMS’ features. A thorough understanding of the executive cannot be
obtained without studying the entire manual because many of RTEMS’ concepts and features
are interrelated. Experienced RTEMS users will find that the manual organization facilitates its
use as a reference document.

2.9. Audience 17

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.10

2.10 Conventions

The following conventions are used in this manual:

• Significant words or phrases as well as all directive names are printed in bold type.

• Items in bold capital letters are constants defined by RTEMS. Each language interface
provided by RTEMS includes a file containing the standard set of constants, data types,
and structure definitions which can be incorporated into the user application.

• A number of type definitions are provided by RTEMS and can be found in rtems.h.

• The characters “0x” preceding a number indicates that the number is in hexadecimal
format. Any other numbers are assumed to be in decimal format.

18 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

2.11 Manual Organization

This first chapter has presented the introductory and background material for the RTEMS exec-
utive. The remaining chapters of this manual present a detailed description of RTEMS and the
environment, including run time behavior, it creates for the user.

A chapter is dedicated to each manager and provides a detailed discussion of each RTEMS man-
ager and the directives which it provides. The presentation format for each directive includes
the following sections:

• Calling sequence

• Directive status codes

• Description

• Notes

The following provides an overview of the remainder of this manual:

Chapter 3:
Key Concepts: presents an introduction to the ideas which are common across multiple
RTEMS managers.

Chapter 4:
RTEMS Data Types: describes the fundamental data types shared by the services in the RTEMS
Classic API.

Chapter 5:
Scheduling Concepts: details the various RTEMS scheduling algorithms and task state transi-
tions.

Chapter 6:
Initialization Manager: describes the functionality and directives provided by the Initializa-
tion Manager.

Chapter 7:
Task Manager: describes the functionality and directives provided by the Task Manager.

Chapter 8:
Interrupt Manager: describes the functionality and directives provided by the Interrupt Man-
ager.

Chapter 9:
Clock Manager: describes the functionality and directives provided by the Clock Manager.

Chapter 10:
Timer Manager: describes the functionality and directives provided by the Timer Manager.

Chapter 11:
Rate Monotonic Manager: describes the functionality and directives provided by the Rate
Monotonic Manager.

Chapter 12:
Semaphore Manager: describes the functionality and directives provided by the Semaphore
Manager.

Chapter 13:
Barrier Manager: describes the functionality and directives provided by the Barrier Manager.

2.11. Manual Organization 19

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.11

Chapter 14:
Message Manager: describes the functionality and directives provided by the Message Man-
ager.

Chapter 15:
Event Manager: describes the functionality and directives provided by the Event Manager.

Chapter 16:
Signal Manager: describes the functionality and directives provided by the Signal Manager.

Chapter 17:
Partition Manager: describes the functionality and directives provided by the Partition Man-
ager.

Chapter 18:
Region Manager: describes the functionality and directives provided by the Region Manager.

Chapter 19:
Dual-Ported Memory Manager: describes the functionality and directives provided by the
Dual-Ported Memory Manager.

Chapter 20:
I/O Manager: describes the functionality and directives provided by the I/O Manager.

Chapter 21:
Fatal Error Manager: describes the functionality and directives provided by the Fatal Error
Manager.

Chapter 22:
Board Support Packages: defines the functionality required of user-supplied board support
packages.

Chapter 23:
User Extensions: shows the user how to extend RTEMS to incorporate custom features.

Chapter 24:
Configuring a System: details the process by which one tailors RTEMS for a particular single-
processor or multiprocessor application.

Chapter 25:
Self-Contained Objects: contains information about objects like threads, mutexes and
semaphores.

Chapter 26:
Multiprocessing Manager: presents a conceptual overview of the multiprocessing capabilities
provided by RTEMS as well as describing the Multiprocessing Communications Interface Layer
and Multiprocessing Manager directives.

Chapter 27:
Symmetric Multiprocessing (SMP): information regarding the SMP features.

Chapter 28:
PCI Library: information about using the PCI bus in RTEMS.

Chapter 29:
Stack Bounds Checker: presents the capabilities of the RTEMS task stack checker which can
report stack usage as well as detect bounds violations.

20 Chapter 2. Overview

Chapter 2 Section 2.11 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

Chapter 30:
CPU Usage Statistics: presents the capabilities of the CPU Usage statistics gathered on a per
task basis along with the mechanisms for reporting and resetting the statistics.

Chapter 31:
Object Services: presents a collection of helper services useful when manipulating RTEMS
objects. These include methods to assist in obtaining an object’s name in printable form.
Additional services are provided to decompose an object Id and determine which API and
object class it belongs to.

Chapter 32:
Chains: presents the methods provided to build, iterate and manipulate doubly-linked chains.
This manager makes the chain implementation used internally by RTEMS to user space appli-
cations.

Chapter 33:
Red-Black Trees: information about how to use the Red-Black Tree API.

Chapter 34:
Timespec Helpers: presents a set of helper services useful when manipulating POSIX struct
timespec instances.

Chapter 35:
Constant Bandwidth Server Scheduler API.

Chapter 36:
Ada Support: information about Ada programming language support.

Chapter 37:
Directive Status Codes: provides a definition of each of the directive status codes referenced
in this manual.

Chapter 38:
Linker Sets: information about linker set features.

Chapter 39:
Example Application: provides a template for simple RTEMS applications.

Chapter 40:
Glossary: defines terms used throughout this manual.

Chapter 41:
References: References.

Chapter 42:
Index: Index.

2.11. Manual Organization 21

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 2 Section 2.11

22 Chapter 2. Overview

CHAPTER

THREE

KEY CONCEPTS

23

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 3 Section 3.1

3.1 Introduction

The facilities provided by RTEMS are built upon a foundation of very powerful concepts. These
concepts must be understood before the application developer can efficiently utilize RTEMS.
The purpose of this chapter is to familiarize one with these concepts.

24 Chapter 3. Key Concepts

Chapter 3 Section 3.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

3.2 Objects

RTEMS provides directives which can be used to dynamically create, delete, and manipulate a
set of predefined object types. These types include tasks, message queues, semaphores, memory
regions, memory partitions, timers, ports, and rate monotonic periods. The object-oriented
nature of RTEMS encourages the creation of modular applications built upon re-usable “building
block” routines.

All objects are created on the local node as required by the application and have an RTEMS
assigned ID. All objects have a user-assigned name. Although a relationship exists between an
object’s name and its RTEMS assigned ID, the name and ID are not identical. Object names are
completely arbitrary and selected by the user as a meaningful “tag” which may commonly reflect
the object’s use in the application. Conversely, object IDs are designed to facilitate efficient
object manipulation by the executive.

3.2.1 Object Names

An object name is an unsigned thirty-two bit entity associated with the object by the user. The
data type rtems_name is used to store object names.

Although not required by RTEMS, object names are often composed of four ASCII characters
which help identify that object. For example, a task which causes a light to blink might be
called “LITE”. The rtems_build_name routine is provided to build an object name from four
ASCII characters. The following example illustrates this:

1 rtems_name my_name;
2 my_name = rtems_build_name('L', 'I', 'T', 'E');

However, it is not required that the application use ASCII characters to build object names. For
example, if an application requires one-hundred tasks, it would be difficult to assign meaningful
ASCII names to each task. A more convenient approach would be to name them the binary
values one through one-hundred, respectively.

RTEMS provides a helper routine, rtems_object_get_name, which can be used to obtain the
name of any RTEMS object using just its ID. This routine attempts to convert the name into a
printable string.

The following example illustrates the use of this method to print an object name:

1 #include <rtems.h>
2 #include <rtems/bspIo.h>
3 void print_name(rtems_id id)
4 {
5 char buffer[10]; /* name assumed to be 10 characters or less */
6 char *result;
7 result = rtems_object_get_name(id, sizeof(buffer), buffer);
8 printk("ID=0x%08x name=%s\n", id, ((result) ? result : "no name"));
9 }

3.2.2 Object IDs

An object ID is a unique 32-bit unsigned integer value which uniquely identifies an object in-
stance. Object IDs are passed as arguments to many directives in RTEMS and RTEMS translates

3.2. Objects 25

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 3 Section 3.2

the ID to an internal object pointer. The efficient manipulation of object IDs is critical to the
performance of some RTEMS services.

3.2.2.1 Object ID Format

The thirty-two bit format for an object ID is composed of four parts: API, object class, node, and
index. The data type rtems_id is used to store object IDs.

1 31 27 26 24 23 16 15 0
2 +---------+-------+--------------+-------------------------------+
3 | | | | |
4 | Class | API | Node | Index |
5 | | | | |
6 +---------+-------+--------------+-------------------------------+

The most significant five bits are the object class. The next three bits indicate the API to which
the object class belongs. The next eight bits (16-23) are the number of the node on which this
object was created. The node number is always one (1) in a single processor system. The least
significant sixteen bits form an identifier within a particular object type. This identifier, called
the object index, ranges in value from 1 to the maximum number of objects configured for this
object type.

3.2.3 Object ID Description

The components of an object ID make it possible to quickly locate any object in even the most
complicated multiprocessor system. Object ID’s are associated with an object by RTEMS when
the object is created and the corresponding ID is returned by the appropriate object create
directive. The object ID is required as input to all directives involving objects, except those
which create an object or obtain the ID of an object.

The object identification directives can be used to dynamically obtain a particular object’s ID
given its name. This mapping is accomplished by searching the name table associated with
this object type. If the name is non-unique, then the ID associated with the first occurrence of
the name will be returned to the application. Since object IDs are returned when the object
is created, the object identification directives are not necessary in a properly designed single
processor application.

In addition, services are provided to portably examine the subcomponents of an RTEMS ID.
These services are described in detail later in this manual but are prototyped as follows:

1 Objects_APIs rtems_object_id_get_api(rtems_id);
2 uint32_t rtems_object_id_get_class(rtems_id);
3 uint32_t rtems_object_id_get_node(rtems_id);
4 uint16_t rtems_object_id_get_index(rtems_id);

An object control block is a data structure defined by RTEMS which contains the information
necessary to manage a particular object type. For efficiency reasons, the format of each object
type’s control block is different. However, many of the fields are similar in function. The number
of each type of control block is application dependent and determined by the values specified
in the user’s Configuration Table. An object control block is allocated at object create time and
freed when the object is deleted. With the exception of user extension routines, object control
blocks are not directly manipulated by user applications.

26 Chapter 3. Key Concepts

Chapter 3 Section 3.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

3.3 Communication and Synchronization

In real-time multitasking applications, the ability for cooperating execution threads to commu-
nicate and synchronize with each other is imperative. A real-time executive should provide an
application with the following capabilities:

• Data transfer between cooperating tasks

• Data transfer between tasks and ISRs

• Synchronization of cooperating tasks

• Synchronization of tasks and ISRs

Most RTEMS managers can be used to provide some form of communication and/or synchro-
nization. However, managers dedicated specifically to communication and synchronization pro-
vide well established mechanisms which directly map to the application’s varying needs. This
level of flexibility allows the application designer to match the features of a particular manager
with the complexity of communication and synchronization required. The following managers
were specifically designed for communication and synchronization:

• Semaphore

• Message Queue

• Event

• Signal

The semaphore manager supports mutual exclusion involving the synchronization of access
to one or more shared user resources. Binary semaphores may utilize the optional priority
inheritance algorithm to avoid the problem of priority inversion. The message manager sup-
ports both communication and synchronization, while the event manager primarily provides a
high performance synchronization mechanism. The signal manager supports only asynchronous
communication and is typically used for exception handling.

3.3. Communication and Synchronization 27

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 3 Section 3.4

3.4 Locking Protocols

RTEMS supports the four locking protocols

• Immediate Ceiling Priority Protocol (ICPP) (page 28),

• Priority Inheritance Protocol (page 28),

• Multiprocessor Resource Sharing Protocol (MrsP) (page 29), and

• O(m) Independence-Preserving Protocol (OMIP) (page 29)

for synchronization objects providing mutual-exclusion (mutex). The OMIP is only available in
SMP configurations and replaces the priority inheritance protocol in this case. One aim of the
locking protocols is to avoid priority inversion.

Since RTEMS 5.1, priority updates due to the locking protocols take place immediately and are
propagated recursively. The mutex owner and wait for mutex relationships define a directed
acyclic graph (DAG). The run-time of the mutex obtain, release and timeout operations depend
on the complexity of this resource dependency graph.

3.4.1 Priority Inversion

Priority inversion is a form of indefinite postponement which is common in multitasking, pre-
emptive executives with shared resources. Priority inversion occurs when a high priority tasks
requests access to shared resource which is currently allocated to a low priority task. The high
priority task must block until the low priority task releases the resource. This problem is exacer-
bated when the low priority task is prevented from executing by one or more medium priority
tasks. Because the low priority task is not executing, it cannot complete its interaction with
the resource and release that resource. The high priority task is effectively prevented from
executing by lower priority tasks.

3.4.2 Immediate Ceiling Priority Protocol (ICPP)

Each mutex using the Immediate Ceiling Priority Protocol (ICPP) has a ceiling priority. The
priority of the mutex owner is immediately raised to the ceiling priority of the mutex. In case
the thread owning the mutex releases the mutex, then the normal priority of the thread is
restored. This locking protocol is beneficial for schedulability analysis, see also [BW01].

This protocol avoids the possibility of changing the priority of the mutex owner multiple times
since the ceiling priority must be set to the one of highest priority thread which will ever attempt
to acquire that mutex. This requires an overall knowledge of the application as a whole. The
need to identify the highest priority thread which will attempt to obtain a particular mutex
can be a difficult task in a large, complicated system. Although the priority ceiling protocol is
more efficient than the priority inheritance protocol with respect to the maximum number of
thread priority changes which may occur while a thread owns a particular mutex, the priority
inheritance protocol is more forgiving in that it does not require this apriori information.

3.4.3 Priority Inheritance Protocol

The priority of the mutex owner is raised to the highest priority of all threads that currently wait
for ownership of this mutex [SRL90]. Since RTEMS 5.1, priority updates due to the priority

28 Chapter 3. Key Concepts

Chapter 3 Section 3.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

inheritance protocol take place immediately and are propagated recursively. This means the
priority inheritance is transitive since RTEMS 5.1. If a task A owning a priority inheritance
mutex blocks on another priority inheritance mutex, then the owner of this mutex inherits the
priority of the task A.

3.4.4 Multiprocessor Resource Sharing Protocol (MrsP)

The Multiprocessor Resource Sharing Protocol (MrsP) is a generalization of the priority ceiling
protocol to clustered scheduling [BW13]. One of the design goals of MrsP is to enable an
effective schedulability analysis using the sporadic task model. Each mutex using the MrsP has
a ceiling priority for each scheduler instance. The priority of the mutex owner is immediately
raised to the ceiling priority of the mutex defined for its home scheduler instance. In case the
thread owning the mutex releases the mutex, then the normal priority of the thread is restored.
Threads that wait for mutex ownership are not blocked with respect to the scheduler and instead
perform a busy wait. The MrsP uses temporary thread migrations to foreign scheduler instances
in case of a preemption of the mutex owner. This locking protocol is available since RTEMS
4.11. It was re-implemented in RTEMS 5.1 to overcome some shortcomings of the original
implementation [CBHM15].

3.4.5 O(m) Independence-Preserving Protocol (OMIP)

The 𝑂(𝑚) Independence-Preserving Protocol (OMIP) is a generalization of the priority inheri-
tance protocol to clustered scheduling which avoids the non-preemptive sections present with
priority boosting [Bra13]. The 𝑚 denotes the number of processors in the system. Similar to the
uniprocessor priority inheritance protocol, the OMIP mutexes do not need any external config-
uration data, e.g. a ceiling priority. This makes them a good choice for general purpose libraries
that need internal locking. The complex part of the implementation is contained in the thread
queues and shared with the MrsP support. This locking protocol is available since RTEMS 5.1.

3.4. Locking Protocols 29

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 3 Section 3.5

3.5 Thread Queues

In case more than one thread may wait on a synchronization object, e.g. a semaphore or a
message queue, then the waiting threads are added to a data structure called the thread queue.
Thread queues are named task wait queues in the Classic API. There are two thread queuing
disciplines available which define the order of the threads on a particular thread queue. Threads
can wait in FIFO or priority order.

In uniprocessor configurations, the priority queuing discipline just orders the threads according
to their current priority and in FIFO order in case of equal priorities. However, in SMP configu-
rations, the situation is a bit more difficult due to the support for clustered scheduling. It makes
no sense to compare the priority values of two different scheduler instances. Thus, it is impossi-
ble to simply use one plain priority queue for threads of different clusters. Two levels of queues
can be used as one way to solve the problem. The top-level queue provides FIFO ordering
and contains priority queues. Each priority queue is associated with a scheduler instance and
contains only threads of this scheduler instance. Threads are enqueued in the priority queues
corresponding to their scheduler instances. To dequeue a thread, the highest priority thread of
the first priority queue is selected. Once this is done, the first priority queue is appended to the
top-level FIFO queue. This guarantees fairness with respect to the scheduler instances.

Such a two-level queue needs a considerable amount of memory if fast enqueue and dequeue
operations are desired. Providing this storage per thread queue would waste a lot of memory
in typical applications. Instead, each thread has a queue attached which resides in a dedicated
memory space independent of other memory used for the thread (this approach was borrowed
from FreeBSD). In case a thread needs to block, there are two options

• the object already has a queue, then the thread enqueues itself to this already present
queue and the queue of the thread is added to a list of free queues for this object, or

• otherwise, the queue of the thread is given to the object and the thread enqueues itself to
this queue.

In case the thread is dequeued, there are two options

• the thread is the last thread in the queue, then it removes this queue from the object and
reclaims it for its own purpose, or

• otherwise, the thread removes one queue from the free list of the object and reclaims it
for its own purpose.

Since there are usually more objects than threads, this actually reduces the memory demands.
In addition the objects only contain a pointer to the queue structure. This helps to hide imple-
mentation details. Inter-cluster priority queues are available since RTEMS 5.1.

A doubly-linked list (chain) is used to implement the FIFO queues yielding a 𝑂(1) worst-case
time complexity for enqueue and dequeue operations.

A red-black tree is used to implement the priority queues yielding a 𝑂(𝑙𝑜𝑔(𝑛)) worst-case time
complexity for enqueue and dequeue operations with 𝑛 being the count of threads already on
the queue.

30 Chapter 3. Key Concepts

Chapter 3 Section 3.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

3.6 Time

The development of responsive real-time applications requires an understanding of how RTEMS
maintains and supports time-related operations. The basic unit of time in RTEMS is known as
a clock tick or simply tick. The tick interval is defined by the application configuration option
CONFIGURE_MICROSECONDS_PER_TICK (page 384). The tick interval defines the basic reso-
lution of all interval and calendar time operations. Obviously, the directives which use intervals
or wall time cannot operate without some external mechanism which provides a periodic clock
tick. This clock tick is provided by the clock driver. The tick precision and stability depends on
the clock driver and interrupt latency. Most clock drivers provide a timecounter to measure the
time with a higher resolution than the tick.

By tracking time in units of ticks, RTEMS is capable of supporting interval timing functions such
as task delays, timeouts, timeslicing, the delayed execution of timer service routines, and the
rate monotonic scheduling of tasks. An interval is defined as a number of ticks relative to the
current time. For example, when a task delays for an interval of ten ticks, it is implied that the
task will not execute until ten clock ticks have occurred. All intervals are specified using data
type rtems_interval.

A characteristic of interval timing is that the actual interval period may be a fraction of a tick
less than the interval requested. This occurs because the time at which the delay timer is set up
occurs at some time between two clock ticks. Therefore, the first countdown tick occurs in less
than the complete time interval for a tick. This can be a problem if the tick resolution is large.

The rate monotonic scheduling algorithm is a hard real-time scheduling methodology. This
methodology provides rules which allows one to guarantee that a set of independent peri-
odic tasks will always meet their deadlines even under transient overload conditions. The rate
monotonic manager provides directives built upon the Clock Manager’s interval timer support
routines.

Interval timing is not sufficient for the many applications which require that time be kept in
wall time or true calendar form. Consequently, RTEMS maintains the current date and time.
This allows selected time operations to be scheduled at an actual calendar date and time. For
example, a task could request to delay until midnight on New Year’s Eve before lowering the ball
at Times Square. The data type rtems_time_of_day is used to specify calendar time in RTEMS
services. See Time and Date Data Structures (page 143).

3.6. Time 31

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 3 Section 3.7

3.7 Timer and Timeouts

Timer and timeout services are a standard component of an operating system. The use cases
fall roughly into two categories:

• Timeouts – used to detect if some operations need more time than expected. Since the
unexpected happens hopefully rarely, timeout timers are usually removed before they
expire. The critical operations are insert and removal. For example, they are important
for the performance of a network stack.

• Timers – used to carry out some work in the future. They usually expire and need a high
resolution. An example use case is a time driven scheduler, e.g. rate-monotonic or EDF.

In RTEMS versions prior to 5.1 the timer and timeout support was implemented by means of
delta chains. This implementation was unfit for SMP systems due to several reasons. The new
implementation present since RTEMS 5.1 uses a red-black tree with the expiration time as the
key. This leads to 𝑂(𝑙𝑜𝑔(𝑛)) worst-case insert and removal operations for 𝑛 active timer or
timeouts. Each processor provides its own timer and timeout service point so that it scales well
with the processor count of the system. For each operation it is sufficient to acquire and release
a dedicated SMP lock only once. The drawback is that a 64-bit integer type is required internally
for the intervals to avoid a potential overflow of the key values.

An alternative to the red-black tree based implementation would be the use of a timer wheel
based algorithm [VL87] which is used in Linux and FreeBSD [VC95] for example. A timer wheel
based algorithm offers 𝑂(1) worst-case time complexity for insert and removal operations. The
drawback is that the run-time of the clock tick procedure is unpredictable due to the use of a
hash table or cascading.

The red-black tree approach was selected for RTEMS, since it offers a more predictable run-time
behaviour. However, this sacrifices the constant insert and removal operations offered by the
timer wheel algorithms. See also [GN06]. The implementation can re-use the red-black tree
support already used in other areas, e.g. for the thread priority queues. Less code is a good
thing for size, testing and verification.

32 Chapter 3. Key Concepts

Chapter 3 Section 3.8 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

3.8 Memory Management

RTEMS memory management facilities can be grouped into two classes: dynamic memory allo-
cation and address translation. Dynamic memory allocation is required by applications whose
memory requirements vary through the application’s course of execution. Address translation is
needed by applications which share memory with another CPU or an intelligent Input/Output
processor. The following RTEMS managers provide facilities to manage memory:

• Region

• Partition

• Dual Ported Memory

RTEMS memory management features allow an application to create simple memory pools of
fixed size buffers and/or more complex memory pools of variable size segments. The partition
manager provides directives to manage and maintain pools of fixed size entities such as resource
control blocks. Alternatively, the region manager provides a more general purpose memory
allocation scheme that supports variable size blocks of memory which are dynamically obtained
and freed by the application. The dual-ported memory manager provides executive support for
address translation between internal and external dual-ported RAM address space.

3.8. Memory Management 33

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 3 Section 3.8

34 Chapter 3. Key Concepts

CHAPTER

FOUR

RTEMS DATA TYPES

35

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 4 Section 4.1

4.1 Introduction

This chapter contains a complete list of the RTEMS primitive data types in alphabetical order.
This is intended to be an overview and the user is encouraged to look at the appropriate chapters
in the manual for more information about the usage of the various data types.

36 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

4.2 List of Data Types

The following is a complete list of the RTEMS primitive data types in alphabetical order:

rtems_address
The data type used to manage addresses. It is equivalent to a void * pointer.

rtems_asr
The return type for an RTEMS ASR.

rtems_asr_entry
The address of the entry point to an RTEMS ASR.

rtems_attribute
The data type used to manage the attributes for RTEMS objects. It is primarily used as an
argument to object create routines to specify characteristics of the new object.

rtems_boolean
This type is deprecated will be removed in RTEMS 6.1. Use bool instead.

rtems_context
This type is deprecated will be removed in RTEMS 6.1.

rtems_context_fp
This type is deprecated will be removed in RTEMS 6.1.

rtems_device_driver
The return type for a RTEMS device driver routine.

rtems_device_driver_entry
The entry point to a RTEMS device driver routine.

rtems_device_major_number
The data type used to manage device major numbers.

rtems_device_minor_number
The data type used to manage device minor numbers.

rtems_double
This type is deprecated will be removed in RTEMS 6.1. Use double instead.

rtems_event_set
The data type used to manage and manipulate RTEMS event sets with the Event Manager.

rtems_extension
The return type for RTEMS user extension routines.

rtems_fatal_extension
The entry point for a fatal error user extension handler routine.

rtems_id
The data type used to manage and manipulate RTEMS object IDs.

rtems_interrupt_frame
The data structure that defines the format of the interrupt stack frame as it appears to a user
ISR. This data structure is only defined on architectures that pass the frame pointer to the ISR
handler.

rtems_interrupt_level
The data structure used with the rtems_interrupt_disable, rtems_interrupt_enable, and

4.2. List of Data Types 37

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 4 Section 4.2

rtems_interrupt_flash routines. This data type is CPU dependent and usually corresponds
to the contents of the processor register containing the interrupt mask level.

rtems_interval
The data type used to manage and manipulate time intervals. Intervals are non-negative
integers used to measure the length of time in clock ticks.

rtems_isr
The return type of a function implementing an RTEMS ISR.

rtems_isr_entry
The address of the entry point to an RTEMS ISR. It is equivalent to the entry point of the
function implementing the ISR.

rtems_mp_packet_classes
The enumerated type which specifies the categories of multiprocessing messages. For exam-
ple, one of the classes is for messages that must be processed by the Task Manager.

rtems_mode
The data type used to manage and dynamically manipulate the execution mode of an RTEMS
task.

rtems_mpci_entry
The return type of an RTEMS MPCI routine.

rtems_mpci_get_packet_entry
The address of the entry point to the get packet routine for an MPCI implementation.

rtems_mpci_initialization_entry
The address of the entry point to the initialization routine for an MPCI implementation.

rtems_mpci_receive_packet_entry
The address of the entry point to the receive packet routine for an MPCI implementation.

rtems_mpci_return_packet_entry
The address of the entry point to the return packet routine for an MPCI implementation.

rtems_mpci_send_packet_entry
The address of the entry point to the send packet routine for an MPCI implementation.

rtems_mpci_table
The data structure containing the configuration information for an MPCI.

rtems_name
The data type used to contain the name of a Classic API object. It is an unsigned thirty-two
bit integer which can be treated as a numeric value or initialized using rtems_build_name to
contain four ASCII characters.

rtems_option
The data type used to specify which behavioral options the caller desires. It is commonly used
with potentially blocking directives to specify whether the caller is willing to block or return
immediately with an error indicating that the resource was not available.

rtems_packet_prefix
The data structure that defines the first bytes in every packet sent between nodes in an RTEMS
multiprocessor system. It contains routing information that is expected to be used by the MPCI
layer.

38 Chapter 4. RTEMS Data Types

Chapter 4 Section 4.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

rtems_signal_set
The data type used to manage and manipulate RTEMS signal sets with the Signal Manager.

int8_t
The C99 data type that corresponds to signed eight bit integers. This data type is defined by
RTEMS in a manner that ensures it is portable across different target processors.

int16_t
The C99 data type that corresponds to signed sixteen bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

int32_t
The C99 data type that corresponds to signed thirty-two bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

int64_t
The C99 data type that corresponds to signed sixty-four bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

rtems_single
This type is deprecated will be removed in RTEMS 6.1. Use float instead.

rtems_status_code
The return type for most RTEMS services. This is an enumerated type of approximately
twenty-five values. In general, when a service returns a particular status code, it indicates
that a very specific error condition has occurred.

rtems_task
The return type for an RTEMS Task.

rtems_task_argument
The data type for the argument passed to each RTEMS task. In RTEMS 4.7 and older, this is
an unsigned thirty-two bit integer. In RTEMS 4.8 and newer, this is based upon the C99 type
uintptr_t which is guaranteed to be an integer large enough to hold a pointer on the target
architecture.

rtems_task_begin_extension
The entry point for a task beginning execution user extension handler routine.

rtems_task_create_extension
The entry point for a task creation execution user extension handler routine.

rtems_task_delete_extension
The entry point for a task deletion user extension handler routine.

rtems_task_entry
The address of the entry point to an RTEMS ASR. It is equivalent to the entry point of the
function implementing the ASR.

rtems_task_exitted_extension
The entry point for a task exitted user extension handler routine.

rtems_task_priority
The data type used to manage and manipulate task priorities.

rtems_task_restart_extension
The entry point for a task restart user extension handler routine.

4.2. List of Data Types 39

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 4 Section 4.2

rtems_task_start_extension
The entry point for a task start user extension handler routine.

rtems_task_switch_extension
The entry point for a task context switch user extension handler routine.

rtems_tcb
The data structure associated with each task in an RTEMS system.

rtems_time_of_day
The data structure used to manage and manipulate calendar time in RTEMS.

rtems_timer_service_routine
The return type for an RTEMS Timer Service Routine.

rtems_timer_service_routine_entry
The address of the entry point to an RTEMS TSR. It is equivalent to the entry point of the
function implementing the TSR.

rtems_vector_number
The data type used to manage and manipulate interrupt vector numbers.

uint8_t
The C99 data type that corresponds to unsigned eight bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

uint16_t
The C99 data type that corresponds to unsigned sixteen bit integers. This data type is defined
by RTEMS in a manner that ensures it is portable across different target processors.

uint32_t
The C99 data type that corresponds to unsigned thirty-two bit integers. This data type is
defined by RTEMS in a manner that ensures it is portable across different target processors.

uint64_t
The C99 data type that corresponds to unsigned sixty-four bit integers. This data type is
defined by RTEMS in a manner that ensures it is portable across different target processors.

uintptr_t
The C99 data type that corresponds to the unsigned integer type that is of sufficient size to
represent addresses as unsigned integers. This data type is defined by RTEMS in a manner
that ensures it is portable across different target processors.

40 Chapter 4. RTEMS Data Types

CHAPTER

FIVE

SCHEDULING CONCEPTS

41

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.1

5.1 Introduction

The concept of scheduling in real-time systems dictates the ability to provide an immediate
response to specific external events, particularly the necessity of scheduling tasks to run within
a specified time limit after the occurrence of an event. For example, software embedded in
life-support systems used to monitor hospital patients must take instant action if a change in
the patient’s status is detected.

The component of RTEMS responsible for providing this capability is appropriately called the
scheduler. The scheduler’s sole purpose is to allocate the all important resource of processor
time to the various tasks competing for attention.

The directives provided by the scheduler manager are:

• rtems_scheduler_ident (page 54) - Get ID of a scheduler

• rtems_scheduler_ident_by_processor (page 55) - Get ID of a scheduler by processor

• rtems_scheduler_ident_by_processor_set (page 56) - Get ID of a scheduler by processor set

• rtems_scheduler_get_maximum_priority (page 57) - Get maximum task priority of a sched-
uler

• rtems_scheduler_map_priority_to_posix (page 58) - Map task priority to POSIX thread pri-
ority

• rtems_scheduler_map_priority_from_posix (page 59) - Map POSIX thread priority to task
prority

• rtems_scheduler_get_processor (page 60) - Get current processor index

• rtems_scheduler_get_processor_maximum (page 61) - Get processor maximum

• rtems_scheduler_get_processor_set (page 62) - Get processor set of a scheduler

• rtems_scheduler_add_processor (page 63) - Add processor to a scheduler

• rtems_scheduler_remove_processor (page 64) - Remove processor from a scheduler

5.1.1 Scheduling Algorithms

RTEMS provides a plugin framework that allows it to support multiple scheduling algorithms.
RTEMS includes multiple scheduling algorithms, and the user can select which of these they
wish to use in their application at link-time. In addition, the user can implement their own
scheduling algorithm and configure RTEMS to use it.

Supporting multiple scheduling algorithms gives the end user the option to select the algorithm
which is most appropriate to their use case. Most real-time operating systems schedule tasks us-
ing a priority based algorithm, possibly with preemption control. The classic RTEMS scheduling
algorithm which was the only algorithm available in RTEMS 4.10 and earlier, is a fixed-priority
scheduling algorithm. This scheduling algorithm is suitable for uniprocessor (e.g., non-SMP)
systems and is known as the Deterministic Priority Scheduler. Unless the user configures another
scheduling algorithm, RTEMS will use this on uniprocessor systems.

42 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.1 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.1.2 Priority Scheduling

When using priority based scheduling, RTEMS allocates the processor using a priority-based,
preemptive algorithm augmented to provide round-robin characteristics within individual pri-
ority groups. The goal of this algorithm is to guarantee that the task which is executing on the
processor at any point in time is the one with the highest priority among all tasks in the ready
state.

When a task is added to the ready chain, it is placed behind all other tasks of the same priority.
This rule provides a round-robin within a priority group scheduling characteristic. This means
that in a group of equal priority tasks, tasks will execute in the order they become ready or FIFO
order. Even though there are ways to manipulate and adjust task priorities, the most important
rule to remember is:

Note: Priority based scheduling algorithms will always select the highest priority task that is
ready to run when allocating the processor to a task.

Priority scheduling is the most commonly used scheduling algorithm. It should be used by
applications in which multiple tasks contend for CPU time or other resources, and there is a
need to ensure certain tasks are given priority over other tasks.

There are a few common methods of accomplishing the mechanics of this algorithm. These
ways involve a list or chain of tasks in the ready state.

• The least efficient method is to randomly place tasks in the ready chain forcing the sched-
uler to scan the entire chain to determine which task receives the processor.

• A more efficient method is to schedule the task by placing it in the proper place on the
ready chain based on the designated scheduling criteria at the time it enters the ready
state. Thus, when the processor is free, the first task on the ready chain is allocated the
processor.

• Another mechanism is to maintain a list of FIFOs per priority. When a task is readied, it
is placed on the rear of the FIFO for its priority. This method is often used with a bitmap
to assist in locating which FIFOs have ready tasks on them. This data structure has 𝑂(1)
insert, extract and find highest ready run-time complexities.

• A red-black tree may be used for the ready queue with the priority as the key. This data
structure has 𝑂(𝑙𝑜𝑔(𝑛)) insert, extract and find highest ready run-time complexities while
𝑛 is the count of tasks in the ready queue.

RTEMS currently includes multiple priority based scheduling algorithms as well as other algo-
rithms that incorporate deadline. Each algorithm is discussed in the following sections.

5.1. Introduction 43

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.2

5.2 Uniprocessor Schedulers

All uniprocessor schedulers included in RTEMS are priority based. The processor is allocated to
the highest priority task allowed to run.

5.2.1 Deterministic Priority Scheduler

This is the scheduler implementation which has always been in RTEMS. After the 4.10 release
series, it was factored into a pluggable scheduler selection. It schedules tasks using a priority
based algorithm which takes into account preemption. It is implemented using an array of
FIFOs with a FIFO per priority. It maintains a bitmap which is used to track which priorities
have ready tasks.

This algorithm is deterministic (e.g., predictable and fixed) in execution time. This comes at
the cost of using slightly over three (3) kilobytes of RAM on a system configured to support 256
priority levels.

This scheduler is only aware of a single core.

5.2.2 Simple Priority Scheduler

This scheduler implementation has the same behaviour as the Deterministic Priority Scheduler
but uses only one linked list to manage all ready tasks. When a task is readied, a linear search
of that linked list is performed to determine where to insert the newly readied task.

This algorithm uses much less RAM than the Deterministic Priority Scheduler but is O(n) where
n is the number of ready tasks. In a small system with a small number of tasks, this will not
be a performance issue. Reducing RAM consumption is often critical in small systems that are
incapable of supporting a large number of tasks.

This scheduler is only aware of a single core.

5.2.3 Earliest Deadline First Scheduler

This is an alternative scheduler in RTEMS for single-core applications. The primary EDF ad-
vantage is high total CPU utilization (theoretically up to 100%). It assumes that tasks have
priorities equal to deadlines.

This EDF is initially preemptive, however, individual tasks may be declared not-preemptive.
Deadlines are declared using only Rate Monotonic manager whose goal is to handle periodic
behavior. Period is always equal to the deadline. All ready tasks reside in a single ready queue
implemented using a red-black tree.

This implementation of EDF schedules two different types of task priority types while each
task may switch between the two types within its execution. If a task does have a deadline
declared using the Rate Monotonic manager, the task is deadline-driven and its priority is equal
to deadline. On the contrary, if a task does not have any deadline or the deadline is cancelled
using the Rate Monotonic manager, the task is considered a background task with priority
equal to that assigned upon initialization in the same manner as for priority scheduler. Each
background task is of lower importance than each deadline-driven one and is scheduled when
no deadline-driven task and no higher priority background task is ready to run.

44 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

Every deadline-driven scheduling algorithm requires means for tasks to claim a deadline. The
Rate Monotonic Manager is responsible for handling periodic execution. In RTEMS periods are
equal to deadlines, thus if a task announces a period, it has to be finished until the end of this
period. The call of rtems_rate_monotonic_period passes the scheduler the length of an oncom-
ing deadline. Moreover, the rtems_rate_monotonic_cancel and rtems_rate_monotonic_delete
calls clear the deadlines assigned to the task.

5.2.4 Constant Bandwidth Server Scheduling (CBS)

This is an alternative scheduler in RTEMS for single-core applications. The CBS is a budget
aware extension of EDF scheduler. The main goal of this scheduler is to ensure temporal
isolation of tasks meaning that a task’s execution in terms of meeting deadlines must not be
influenced by other tasks as if they were run on multiple independent processors.

Each task can be assigned a server (current implementation supports only one task per server).
The server is characterized by period (deadline) and computation time (budget). The ratio
budget/period yields bandwidth, which is the fraction of CPU to be reserved by the scheduler
for each subsequent period.

The CBS is equipped with a set of rules applied to tasks attached to servers ensuring that
deadline miss because of another task cannot occur. In case a task breaks one of the rules, its
priority is pulled to background until the end of its period and then restored again. The rules
are:

• Task cannot exceed its registered budget,

• Task cannot be unblocked when a ratio between remaining budget and remaining dead-
line is higher than declared bandwidth.

The CBS provides an extensive API. Unlike EDF, the rtems_rate_monotonic_period does not
declare a deadline because it is carried out using CBS API. This call only announces next period.

5.2. Uniprocessor Schedulers 45

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.3

5.3 SMP Schedulers

All SMP schedulers included in RTEMS are priority based. The processors managed by a sched-
uler instance are allocated to the highest priority tasks allowed to run.

5.3.1 Earliest Deadline First SMP Scheduler

This is a job-level fixed-priority scheduler using the Earliest Deadline First (EDF) method. By
convention, the maximum priority level is 𝑚𝑖𝑛(𝐼𝑁𝑇_𝑀𝐴𝑋, 262−1) for background tasks. Tasks
without an active deadline are background tasks. In case deadlines are not used, then the EDF
scheduler behaves exactly like a fixed-priority scheduler. The tasks with an active deadline have
a higher priority than the background tasks. This scheduler supports task processor affinities
(page 109) of one-to-one and one-to-all, e.g., a task can execute on exactly one processor
or all processors managed by the scheduler instance. The processor affinity set of a task must
contain all online processors to select the one-to-all affinity. This is to avoid pathological cases if
processors are added/removed to/from the scheduler instance at run-time. In case the processor
affinity set contains not all online processors, then a one-to-one affinity will be used selecting the
processor with the largest index within the set of processors currently owned by the scheduler
instance. This scheduler algorithm supports thread pinning (page 530). The ready queues use
a red-black tree with the task priority as the key.

This scheduler algorithm is the default scheduler in SMP configurations if more than one pro-
cessor is configured (CONFIGURE_MAXIMUM_PROCESSORS (page 381)).

5.3.2 Deterministic Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for the
ready tasks. The maximum priority level is configurable. By default, the maximum priority level
is 255 (256 priority levels).

5.3.3 Simple Priority SMP Scheduler

A fixed-priority scheduler which uses a sorted chain for the ready tasks. By convention, the
maximum priority level is 255. The implementation limit is actually 263 − 1.

5.3.4 Arbitrary Processor Affinity Priority SMP Scheduler

A fixed-priority scheduler which uses a table of chains with one chain per priority level for the
ready tasks. The maximum priority level is configurable. By default, the maximum priority
level is 255 (256 priority levels). This scheduler supports arbitrary task processor affinities. The
worst-case run-time complexity of some scheduler operations exceeds 𝑂(𝑛) while 𝑛 is the count
of ready tasks.

46 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.4 Scheduling Modification Mechanisms

RTEMS provides four mechanisms which allow the user to alter the task scheduling decisions:

• user-selectable task priority level

• task preemption control

• task timeslicing control

• manual round-robin selection

Each of these methods provides a powerful capability to customize sets of tasks to satisfy the
unique and particular requirements encountered in custom real-time applications. Although
each mechanism operates independently, there is a precedence relationship which governs the
effects of scheduling modifications. The evaluation order for scheduling characteristics is always
priority, preemption mode, and timeslicing. When reading the descriptions of timeslicing and
manual round-robin it is important to keep in mind that preemption (if enabled) of a task
by higher priority tasks will occur as required, overriding the other factors presented in the
description.

5.4.1 Task Priority and Scheduling

The most significant task scheduling modification mechanism is the ability for the user to assign
a priority level to each individual task when it is created and to alter a task’s priority at run-time.
The maximum priority level depends on the configured scheduler. A lower priority level means
higher priority (higher importance). The maximum priority level of the default uniprocessor
scheduler is 255.

5.4.2 Preemption

Another way the user can alter the basic scheduling algorithm is by manipulating the preemp-
tion mode flag (RTEMS_PREEMPT_MASK) of individual tasks. If preemption is disabled for a task
(RTEMS_NO_PREEMPT), then the task will not relinquish control of the processor until it termi-
nates, blocks, or re-enables preemption. Even tasks which become ready to run and possess
higher priority levels will not be allowed to execute. Note that the preemption setting has no
effect on the manner in which a task is scheduled. It only applies once a task has control of the
processor.

5.4.3 Timeslicing

Timeslicing or round-robin scheduling is an additional method which can be used to alter the
basic scheduling algorithm. Like preemption, timeslicing is specified on a task by task basis
using the timeslicing mode flag (RTEMS_TIMESLICE_MASK). If timeslicing is enabled for a task
(RTEMS_TIMESLICE), then RTEMS will limit the amount of time the task can execute before the
processor is allocated to another task. Each tick of the real-time clock reduces the currently
running task’s timeslice. When the execution time equals the timeslice, RTEMS will dispatch
another task of the same priority to execute. If there are no other tasks of the same priority
ready to execute, then the current task is allocated an additional timeslice and continues to run.
Remember that a higher priority task will preempt the task (unless preemption is disabled) as
soon as it is ready to run, even if the task has not used up its entire timeslice.

5.4. Scheduling Modification Mechanisms 47

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.4

5.4.4 Manual Round-Robin

The final mechanism for altering the RTEMS scheduling algorithm is called manual round-
robin. Manual round-robin is invoked by using the rtems_task_wake_after directive with a
time interval of RTEMS_YIELD_PROCESSOR. This allows a task to give up the processor and be
immediately returned to the ready chain at the end of its priority group. If no other tasks of the
same priority are ready to run, then the task does not lose control of the processor.

48 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.5 Dispatching Tasks

The dispatcher is the RTEMS component responsible for allocating the processor to a ready task.
In order to allocate the processor to one task, it must be deallocated or retrieved from the task
currently using it. This involves a concept called a context switch. To perform a context switch,
the dispatcher saves the context of the current task and restores the context of the task which
has been allocated to the processor. Saving and restoring a task’s context is the storing/loading
of all the essential information about a task to enable it to continue execution without any
effects of the interruption. For example, the contents of a task’s register set must be the same
when it is given the processor as they were when it was taken away. All of the information
that must be saved or restored for a context switch is located either in the TCB or on the task’s
stacks.

Tasks that utilize a numeric coprocessor and are created with the RTEMS_FLOATING_POINT at-
tribute require additional operations during a context switch. These additional operations are
necessary to save and restore the floating point context of RTEMS_FLOATING_POINT tasks. To
avoid unnecessary save and restore operations, the state of the numeric coprocessor is only
saved when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last task to
utilize the coprocessor.

5.5. Dispatching Tasks 49

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.6

5.6 Task State Transitions

Tasks in an RTEMS system must always be in one of the five allowable task states. These states
are: executing, ready, blocked, dormant, and non-existent.

A task occupies the non-existent state before a rtems_task_create has been issued on its behalf.
A task enters the non-existent state from any other state in the system when it is deleted with
the rtems_task_delete directive. While a task occupies this state it does not have a TCB or a
task ID assigned to it; therefore, no other tasks in the system may reference this task.

When a task is created via the rtems_task_create directive, it enters the dormant state. This
state is not entered through any other means. Although the task exists in the system, it cannot
actively compete for system resources. It will remain in the dormant state until it is started
via the rtems_task_start directive, at which time it enters the ready state. The task is now
permitted to be scheduled for the processor and to compete for other system resources.

A task occupies the blocked state whenever it is unable to be scheduled to run. A running
task may block itself or be blocked by other tasks in the system. The running task blocks itself
through voluntary operations that cause the task to wait. The only way a task can block a task
other than itself is with the rtems_task_suspend directive. A task enters the blocked state due
to any of the following conditions:

• A task issues a rtems_task_suspend directive which blocks either itself or another task in
the system.

• The running task issues a rtems_barrier_wait directive.

• The running task issues a rtems_message_queue_receive directive with the wait option,
and the message queue is empty.

50 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• The running task issues a rtems_event_receive directive with the wait option, and the
currently pending events do not satisfy the request.

• The running task issues a rtems_semaphore_obtain directive with the wait option and the
requested semaphore is unavailable.

• The running task issues a rtems_task_wake_after directive which blocks the task for the
given time interval. If the time interval specified is zero, the task yields the processor and
remains in the ready state.

• The running task issues a rtems_task_wake_when directive which blocks the task until the
requested date and time arrives.

• The running task issues a rtems_rate_monotonic_period directive and must wait for the
specified rate monotonic period to conclude.

• The running task issues a rtems_region_get_segment directive with the wait option and
there is not an available segment large enough to satisfy the task’s request.

A blocked task may also be suspended. Therefore, both the suspension and the blocking condi-
tion must be removed before the task becomes ready to run again.

A task occupies the ready state when it is able to be scheduled to run, but currently does not
have control of the processor. Tasks of the same or higher priority will yield the processor by
either becoming blocked, completing their timeslice, or being deleted. All tasks with the same
priority will execute in FIFO order. A task enters the ready state due to any of the following
conditions:

• A running task issues a rtems_task_resume directive for a task that is suspended and the
task is not blocked waiting on any resource.

• A running task issues a rtems_message_queue_send, rtems_message_queue_broadcast, or
a rtems_message_queue_urgent directive which posts a message to the queue on which
the blocked task is waiting.

• A running task issues an rtems_event_send directive which sends an event condition to a
task that is blocked waiting on that event condition.

• A running task issues a rtems_semaphore_release directive which releases the semaphore
on which the blocked task is waiting.

• A timeout interval expires for a task which was blocked by a call to the
rtems_task_wake_after directive.

• A timeout period expires for a task which blocked by a call to the rtems_task_wake_when
directive.

• A running task issues a rtems_region_return_segment directive which releases a segment
to the region on which the blocked task is waiting and a resulting segment is large enough
to satisfy the task’s request.

• A rate monotonic period expires for a task which blocked by a call to the
rtems_rate_monotonic_period directive.

• A timeout interval expires for a task which was blocked waiting on a message, event,
semaphore, or segment with a timeout specified.

• A running task issues a directive which deletes a message queue, a semaphore, or a region
on which the blocked task is waiting.

5.6. Task State Transitions 51

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.6

• A running task issues a rtems_task_restart directive for the blocked task.

• The running task, with its preemption mode enabled, may be made ready by issuing any
of the directives that may unblock a task with a higher priority. This directive may be
issued from the running task itself or from an ISR. A ready task occupies the executing
state when it has control of the CPU. A task enters the executing state due to any of the
following conditions:

• The task is the highest priority ready task in the system.

• The running task blocks and the task is next in the scheduling queue. The task may be of
equal priority as in round-robin scheduling or the task may possess the highest priority of
the remaining ready tasks.

• The running task may reenable its preemption mode and a task exists in the ready queue
that has a higher priority than the running task.

• The running task lowers its own priority and another task is of higher priority as a result.

• The running task raises the priority of a task above its own and the running task is in
preemption mode.

52 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.7 Directives

This section details the scheduler manager. A subsection is dedicated to each of these services
and describes the calling sequence, related constants, usage, and status codes.

5.7. Directives 53

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.7

5.7.1 SCHEDULER_IDENT - Get ID of a scheduler

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ADDRESS The id parameter is NULL.
RTEMS_INVALID_NAME Invalid scheduler name.

DESCRIPTION:
Identifies a scheduler by its name. The scheduler name is determined by the sched-
uler configuration. See Configuration Step 3 - Scheduler Table (page 451) and CONFIG-
URE_SCHEDULER_NAME (page 445).

NOTES:
None.

54 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.7.2 SCHEDULER_IDENT_BY_PROCESSOR - Get ID of a scheduler by processor

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_ident_by_processor(
2 uint32_t cpu_index,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_
ADDRESS

The id parameter is NULL.

RTEMS_INVALID_
NAME

Invalid processor index.

RTEMS_INCORRECT_
STATE

The processor index is valid, however, this processor is not owned
by a scheduler.

DESCRIPTION:
Identifies a scheduler by a processor.

NOTES:
None.

5.7. Directives 55

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.7

5.7.3 SCHEDULER_IDENT_BY_PROCESSOR_SET - Get ID of a scheduler by processor
set

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_ident_by_processor_set(
2 size_t cpusetsize,
3 const cpu_set_t *cpuset,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:

RTEMS_
SUCCESSFUL

Successful operation.

RTEMS_
INVALID_
ADDRESS

The id parameter is NULL.

RTEMS_
INVALID_
SIZE

Invalid processor set size.

RTEMS_
INVALID_
NAME

The processor set contains no online processor.

RTEMS_
INCORRECT_
STATE

The processor set is valid, however, the highest numbered online processor
in the specified processor set is not owned by a scheduler.

DESCRIPTION:
Identifies a scheduler by a processor set. The scheduler is selected according to the highest
numbered online processor in the specified processor set.

NOTES:
None.

56 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.7.4 SCHEDULER_GET_MAXIMUM_PRIORITY - Get maximum task priority of a
scheduler

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_get_maximum_priority(
2 rtems_id scheduler_id,
3 rtems_task_priority *priority
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ID Invalid scheduler instance identifier.
RTEMS_INVALID_ADDRESS The priority parameter is NULL.

DESCRIPTION:
Returns the maximum task priority of the specified scheduler instance in priority.

NOTES:
None.

5.7. Directives 57

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.7

5.7.5 SCHEDULER_MAP_PRIORITY_TO_POSIX - Map task priority to POSIX thread
prority

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_map_priority_to_posix(
2 rtems_id scheduler_id,
3 rtems_task_priority priority,
4 int *posix_priority
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ADDRESS The posix_priority parameter is NULL.
RTEMS_INVALID_ID Invalid scheduler instance identifier.
RTEMS_INVALID_PRIORITY Invalid task priority.

DESCRIPTION:
Maps a task priority to the corresponding POSIX thread priority.

NOTES:
None.

58 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.7.6 SCHEDULER_MAP_PRIORITY_FROM_POSIX - Map POSIX thread prority to task
priority

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_map_priority_from_posix(
2 rtems_id scheduler_id,
3 int posix_priority,
4 rtems_task_priority *priority
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ADDRESS The priority parameter is NULL.
RTEMS_INVALID_ID Invalid scheduler instance identifier.
RTEMS_INVALID_PRIORITY Invalid POSIX thread priority.

DESCRIPTION:
Maps a POSIX thread priority to the corresponding task priority.

NOTES:
None.

5.7. Directives 59

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.7

5.7.7 SCHEDULER_GET_PROCESSOR - Get current processor index

CALLING SEQUENCE:

1 uint32_t rtems_scheduler_get_processor(void);

DIRECTIVE STATUS CODES:
This directive returns the index of the current processor.

DESCRIPTION:
In uniprocessor configurations, a value of zero will be returned.

In SMP configurations, an architecture specific method is used to obtain the index of the
current processor in the system. The set of processor indices is the range of integers starting
with zero up to the processor count minus one.

Outside of sections with disabled thread dispatching the current processor index may change
after every instruction since the thread may migrate from one processor to another. Sections
with disabled interrupts are sections with thread dispatching disabled.

NOTES:
None.

60 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.7.8 SCHEDULER_GET_PROCESSOR_MAXIMUM - Get processor maximum

CALLING SEQUENCE:

1 uint32_t rtems_scheduler_get_processor_maximum(void);

DIRECTIVE STATUS CODES:
This directive returns the processor maximum supported by the system.

DESCRIPTION:
In uniprocessor configurations, a value of one will be returned.

In SMP configurations, this directive returns the minimum of the processors (physically or vir-
tually) available by the platform and the configured processor maximum. Not all processors in
the range from processor index zero to the last processor index (which is the processor max-
imum minus one) may be configured to be used by a scheduler or online (online processors
have a scheduler assigned).

NOTES:
None.

5.7. Directives 61

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.7

5.7.9 SCHEDULER_GET_PROCESSOR_SET - Get processor set of a scheduler

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_get_processor_set(
2 rtems_id scheduler_id,
3 size_t cpusetsize,
4 cpu_set_t *cpuset
5);

DIRECTIVE STATUS CODES:

RTEMS_
SUCCESSFUL

Successful operation.

RTEMS_INVALID_
ID

Invalid scheduler instance identifier.

RTEMS_INVALID_
ADDRESS

The cpuset parameter is NULL.

RTEMS_INVALID_
NUMBER

The processor set buffer is too small for the set of processors owned
by the scheduler instance.

DESCRIPTION:
Returns the processor set owned by the scheduler instance in cpuset. A set bit in the processor
set means that this processor is owned by the scheduler instance and a cleared bit means the
opposite.

NOTES:
None.

62 Chapter 5. Scheduling Concepts

Chapter 5 Section 5.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

5.7.10 SCHEDULER_ADD_PROCESSOR - Add processor to a scheduler

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_add_processor(
2 rtems_id scheduler_id,
3 uint32_t cpu_index
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_INVALID_ID Invalid scheduler instance identifier.
RTEMS_NOT_
CONFIGURED

The processor is not configured to be used by the application.

RTEMS_INCORRECT_
STATE

The processor is configured to be used by the application, however,
it is not online.

RTEMS_RESOURCE_
IN_USE

The processor is already assigned to a scheduler instance.

DESCRIPTION:
Adds a processor to the set of processors owned by the specified scheduler instance.

NOTES:
Must be called from task context. This operation obtains and releases the objects allocator
lock.

5.7. Directives 63

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 5 Section 5.7

5.7.11 SCHEDULER_REMOVE_PROCESSOR - Remove processor from a scheduler

CALLING SEQUENCE:

1 rtems_status_code rtems_scheduler_remove_processor(
2 rtems_id scheduler_id,
3 uint32_t cpu_index
4);

DIRECTIVE STATUS CODES:

RTEMS_
SUCCESSFUL

Successful operation.

RTEMS_
INVALID_
ID

Invalid scheduler instance identifier.

RTEMS_
INVALID_
NUMBER

The processor is not owned by the specified scheduler instance.

RTEMS_
RESOURCE_
IN_USE

The set of processors owned by the specified scheduler instance would be empty
after the processor removal and there exists a non-idle task that uses this sched-
uler instance as its home scheduler instance.

RTEMS_
RESOURCE_
IN_USE

A task with a restricted processor affinity exists that uses this scheduler instance
as its home scheduler instance and it would be no longer possible to allocate a
processor for this task after the removal of this processor.

DESCRIPTION:
Removes a processor from set of processors owned by the specified scheduler instance.

NOTES:
Must be called from task context. This operation obtains and releases the objects allocator
lock. Removing a processor from a scheduler is a complex operation that involves all tasks of
the system.

64 Chapter 5. Scheduling Concepts

CHAPTER

SIX

INITIALIZATION MANAGER

65

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 6 Section 6.1

6.1 Introduction

The Initialization Manager is responsible for initializing the Board Support Package, RTEMS,
device drivers, the root filesystem and the application. The Fatal Error Manager (page 331) is
responsible for the system shutdown.

The Initialization Manager provides only one directive:

• rtems_initialize_executive (page 75) - Initialize RTEMS

66 Chapter 6. Initialization Manager

Chapter 6 Section 6.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

6.2 Background

6.2.1 Initialization Tasks

Initialization task(s) are the mechanism by which RTEMS transfers initial control to the user’s
application. Initialization tasks differ from other application tasks in that they are defined in
the User Initialization Tasks Table and automatically created and started by RTEMS as part of
its initialization sequence. Since the initialization tasks are scheduled using the same algorithm
as all other RTEMS tasks, they must be configured at a priority and mode which will ensure that
they will complete execution before other application tasks execute. Although there is no upper
limit on the number of initialization tasks, an application is required to define at least one.

A typical initialization task will create and start the static set of application tasks. It may also
create any other objects used by the application. Initialization tasks which only perform ini-
tialization should delete themselves upon completion to free resources for other tasks. Initial-
ization tasks may transform themselves into a “normal” application task. This transformation
typically involves changing priority and execution mode. RTEMS does not automatically delete
the initialization tasks.

6.2.2 The Idle Task

The Idle Task is the lowest priority task in a system and executes only when no other task is
ready to execute. The default implementation of this task consists of an infinite loop. RTEMS
allows the Idle Task body to be replaced by a CPU specific implementation, a BSP specific
implementation or an application specific implementation.

The Idle Task is preemptible and WILL be preempted when any other task is made ready to
execute. This characteristic is critical to the overall behavior of any application.

6.2.3 Initialization Manager Failure

System initialization errors are fatal. See Internal Error Codes (page 334).

6.2. Background 67

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 6 Section 6.3

6.3 Operations

6.3.1 Initializing RTEMS

The Initialization Manager rtems_initialize_executive() directives is called by the
boot_card() routine which is invoked by the Board Support Package once a basic C run-time
environment is set up. This consists of

• a valid and accessible text section, read-only data, read-write data and zero-initialized
data,

• an initialization stack large enough to initialize the rest of the Board Support Package,
RTEMS and the device drivers,

• all registers and components mandated by Application Binary Interface, and

• disabled interrupts.

The rtems_initialize_executive() directive uses a system initialization linker set (page 661)
to initialize only those parts of the overall RTEMS feature set that is necessary for a particular
application. Each RTEMS feature used the application may optionally register an initialization
handler. The system initialization API is available via #included <rtems/sysinit.h>.

A list of all initialization steps follows. Some steps are optional depending on the requested
feature set of the application. The initialization steps are execute in the order presented here.

RTEMS_SYSINIT_RECORD
Initialization of the event recording is the first initialization step. This allows to record
the further system initialization. This step is optional and depends on the CONFIG-
URE_RECORD_PER_PROCESSOR_ITEMS (page 418) configuration option.

RTEMS_SYSINIT_BSP_EARLY
The Board Support Package may perform an early platform initialization in this step. This
step is optional.

RTEMS_SYSINIT_MEMORY
The Board Support Package should initialize everything so that calls to _Memory_Get() can be
made after this step. This step is optional.

RTEMS_SYSINIT_DIRTY_MEMORY
The free memory is dirtied in this step. This step is optional and depends on the
BSP_DIRTY_MEMORY BSP option.

RTEMS_SYSINIT_ISR_STACK
The stack checker initializes the ISR stacks in this step. This step is optional and depends on
the CONFIGURE_STACK_CHECKER_ENABLED (page 386) configuration option.

RTEMS_SYSINIT_PER_CPU_DATA
The per-CPU data is initialized in this step. This step is mandatory.

RTEMS_SYSINIT_SBRK
The Board Support Package may initialize the sbrk() support in this step. This step is op-
tional.

RTEMS_SYSINIT_WORKSPACE
The workspace is initialized in this step. This step is optional and depends on the application
configuration.

68 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

RTEMS_SYSINIT_MALLOC
The C program heap is initialized in this step. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_BSP_START
The Board Support Package should perform a general platform initialization in this step (e.g.
interrupt controller initialization). This step is mandatory.

RTEMS_SYSINIT_CPU_COUNTER
Initialization of the CPU counter hardware and support functions. The CPU counter is initial-
ized early to allow its use in the tracing and profiling of the system initialization sequence.
This step is optional and depends on the application configuration.

RTEMS_SYSINIT_INITIAL_EXTENSIONS
Registers the initial extensions. This step is optional and depends on the application configu-
ration.

RTEMS_SYSINIT_MP_EARLY
In MPCI configurations, an early MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT_DATA_STRUCTURES
This directive is called when the Board Support Package has completed its basic initialization
and allows RTEMS to initialize the application environment based upon the information in
the Configuration Table, User Initialization Tasks Table, Device Driver Table, User Extension
Table, Multiprocessor Configuration Table, and the Multiprocessor Communications Interface
(MPCI) Table.

RTEMS_SYSINIT_MP
In MPCI configurations, a general MPCI initialization is performed in this step. This step is
mandatory in MPCI configurations.

RTEMS_SYSINIT_USER_EXTENSIONS
Initialization of the User Extensions object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_TASKS
Initialization of the Classic Tasks object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_CLASSIC_TASKS_MP
In MPCI configurations, the Classic Tasks MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_TIMER
Initialization of the Classic Timer object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_SIGNAL
Initialization of the Classic Signal support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT_CLASSIC_SIGNAL_MP
In MPCI configurations, the Classic Signal MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_EVENT
Initialization of the Classic Event support. This step is optional and depends on the application

6.3. Operations 69

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 6 Section 6.3

configuration. This step is only used on MPCI configurations.

RTEMS_SYSINIT_CLASSIC_EVENT_MP
In MPCI configurations, the Classic Event MPCI support is initialized in this step. This step is
optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_MESSAGE_QUEUE
Initialization of the Classic Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_CLASSIC_SEMAPHORE
Initialization of the Classic Semaphore object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_SEMAPHORE_MP
In MPCI configurations, the Classic Semaphore MPCI support is initialized in this step. This
step is optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION
Initialization of the Classic Partition object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_PARTITION_MP
In MPCI configurations, the Classic Partition MPCI support is initialized in this step. This step
is optional and depends on the application configuration.

RTEMS_SYSINIT_CLASSIC_REGION
Initialization of the Classic Region object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_CLASSIC_DUAL_PORTED_MEMORY
Initialization of the Classic Dual-Ported Memory object class. This step is optional and de-
pends on the application configuration.

RTEMS_SYSINIT_CLASSIC_RATE_MONOTONIC
Initialization of the Classic Rate-Monotonic object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_CLASSIC_BARRIER
Initialization of the Classic Barrier object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_SIGNALS
Initialization of the POSIX Signals support. This step is optional and depends on the applica-
tion configuration.

RTEMS_SYSINIT_POSIX_THREADS
Initialization of the POSIX Threads object class. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_MESSAGE_QUEUE
Initialization of the POSIX Message Queue object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_POSIX_SEMAPHORE
Initialization of the POSIX Semaphore object class. This step is optional and depends on the
application configuration.

70 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

RTEMS_SYSINIT_POSIX_TIMER
Initialization of the POSIX Timer object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_POSIX_SHM
Initialization of the POSIX Shared Memory object class. This step is optional and depends on
the application configuration.

RTEMS_SYSINIT_POSIX_KEYS
Initialization of the POSIX Keys object class. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_POSIX_CLEANUP
Initialization of the POSIX Cleanup support. This step is optional and depends on the appli-
cation configuration.

RTEMS_SYSINIT_IDLE_THREADS
Initialization of idle threads. This step is mandatory.

RTEMS_SYSINIT_LIBIO
Initialization of IO library. This step is optional and depends on the application configuration.

RTEMS_SYSINIT_ROOT_FILESYSTEM
Initialization of the root filesystem. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT_DRVMGR
Driver manager initialization. This step is optional and depends on the application configura-
tion. Only available if the driver manager is enabled.

RTEMS_SYSINIT_MP_SERVER
In MPCI configurations, the MPCI server is initialized in this step. This step is mandatory in
MPCI configurations.

RTEMS_SYSINIT_BSP_PRE_DRIVERS
Initialization step performed right before device drivers are initialized. This step is mandatory.

RTEMS_SYSINIT_DRVMGR_LEVEL_1
Driver manager level 1 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT_DEVICE_DRIVERS
This step initializes all statically configured device drivers and performs all RTEMS initializa-
tion which requires device drivers to be initialized. This step is mandatory. In a multiprocessor
configuration, this service will initialize the Multiprocessor Communications Interface (MPCI)
and synchronize with the other nodes in the system.

RTEMS_SYSINIT_DRVMGR_LEVEL_2
Driver manager level 2 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT_DRVMGR_LEVEL_3
Driver manager level 3 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

RTEMS_SYSINIT_DRVMGR_LEVEL_4
Driver manager level 4 initialization. This step is optional and depends on the application
configuration. Only available if the driver manager is enabled.

6.3. Operations 71

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 6 Section 6.3

RTEMS_SYSINIT_MP_FINALIZE
Finalize MPCI initialization. This step is mandatory on MPCI configurations.

RTEMS_SYSINIT_CLASSIC_USER_TASKS
Creates and starts the Classic initialization tasks. This step is optional and depends on the
application configuration.

RTEMS_SYSINIT_POSIX_USER_THREADS
Creates POSIX initialization threads. This step is optional and depends on the application
configuration.

RTEMS_SYSINIT_STD_FILE_DESCRIPTORS
Open the standard input, output and error file descriptors. This step is optional and depends
on the application configuration.

The final action of the rtems_initialize_executive() directive is to start multitasking and
switch to the highest priority ready thread. RTEMS does not return to the initialization context
and the initialization stack may be re-used for interrupt processing.

Many of RTEMS actions during initialization are based upon the contents of the Configuration
Table. For more information regarding the format and contents of this table, please refer to the
chapter Configuring a System (page 369).

6.3.2 Global Construction

The global construction is carried out by the first Classic API initialization task (first is defined
by index zero in the Classic API initialization task configuration table). If no Classic API ini-
tialization task exists, then it is carried out by the first POSIX API initialization thread. If no
initialization task or thread exists, then no global construction is performed, see for example
Specify Idle Task Performs Application Initialization. The Classic API task or POSIX API thread
which carries out global construction is called the main thread.

Global construction runs before the entry function of the main thread. The configuration of the
main thread must take the global construction into account. In particular, the main thread stack
size, priority, attributes and initial modes must be set accordingly. Thread-local objects and
POSIX key values created during global construction are accessible by the main thread. If other
initialization tasks are configured, and one of them has a higher priority than the main thread
and the main thread is preemptible, this task executes before the global construction. In case the
main thread blocks during global construction, then other tasks may run. In SMP configurations,
other initialization tasks may run in parallel with global construction. Tasks created during
global construction may preempt the main thread or run in parallel in SMP configurations. All
RTEMS services allowed in task context are allowed during global construction.

Global constructors are C++ global object constructors or functions with the constructor at-
tribute. For example, the following test program

1 #include <stdio.h>
2 #include <assert.h>
3

4 class A {
5 public:
6 A()
7 {
8 puts("A:A()");
9 }

(continues on next page)

72 Chapter 6. Initialization Manager

Chapter 6 Section 6.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

(continued from previous page)

10 };
11

12 static A a;
13

14 static thread_local int i;
15

16 static thread_local int j;
17

18 static __attribute__((__constructor__)) void b(void)
19 {
20 i = 1;
21 puts("b()");
22 }
23

24 static __attribute__((__constructor__(1000))) void c(void)
25 {
26 puts("c()");
27 }
28

29 int main(void)
30 {
31 assert(i == 1);
32 assert(j == 0);
33 return 0;
34 }

should output:

1 c()
2 b()
3 A:A()

6.3. Operations 73

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 6 Section 6.4

6.4 Directives

This section details the Initialization Manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

74 Chapter 6. Initialization Manager

Chapter 6 Section 6.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

6.4.1 INITIALIZE_EXECUTIVE - Initialize RTEMS

CALLING SEQUENCE:

1 void rtems_initialize_executive(void);

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
Iterates through the system initialization linker set and invokes the registered handlers. The
final step is to start multitasking.

NOTES:
This directive should be called by boot_card() only.

This directive does not return to the caller. Errors in the initialization sequence are usually
fatal and lead to a system termination.

6.4. Directives 75

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 6 Section 6.4

76 Chapter 6. Initialization Manager

CHAPTER

SEVEN

TASK MANAGER

77

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.1

7.1 Introduction

The task manager provides a comprehensive set of directives to create, delete, and administer
tasks. The directives provided by the task manager are:

• rtems_task_create (page 89) - Create a task

• rtems_task_ident (page 91) - Get ID of a task

• rtems_task_self (page 92) - Obtain ID of caller

• rtems_task_start (page 93) - Start a task

• rtems_task_restart (page 94) - Restart a task

• rtems_task_delete (page 95) - Delete a task

• rtems_task_exit (page 96) - Delete the calling task

• rtems_task_suspend (page 97) - Suspend a task

• rtems_task_resume (page 98) - Resume a task

• rtems_task_is_suspended (page 99) - Determine if a task is suspended

• rtems_task_set_priority (page 100) - Set task priority

• rtems_task_get_priority (page 101) - Get task priority

• rtems_task_mode (page 102) - Change current task’s mode

• rtems_task_wake_after (page 103) - Wake up after interval

• rtems_task_wake_when (page 104) - Wake up when specified

• rtems_task_get_scheduler (page 105) - Get scheduler of a task

• rtems_task_set_scheduler (page 106) - Set scheduler of a task

• rtems_task_get_affinity (page 108) - Get task processor affinity

• rtems_task_set_affinity (page 109) - Set task processor affinity

• rtems_task_iterate (page 110) - Iterate Over Tasks

78 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.2 Background

7.2.1 Task Definition

Many definitions of a task have been proposed in computer literature. Unfortunately, none of
these definitions encompasses all facets of the concept in a manner which is operating system
independent. Several of the more common definitions are provided to enable each user to select
a definition which best matches their own experience and understanding of the task concept:

• a “dispatchable” unit.

• an entity to which the processor is allocated.

• an atomic unit of a real-time, multiprocessor system.

• single threads of execution which concurrently compete for resources.

• a sequence of closely related computations which can execute concurrently with other
computational sequences.

From RTEMS’ perspective, a task is the smallest thread of execution which can compete on its
own for system resources. A task is manifested by the existence of a task control block (TCB).

7.2.2 Task Control Block

The Task Control Block (TCB) is an RTEMS defined data structure which contains all the infor-
mation that is pertinent to the execution of a task. During system initialization, RTEMS reserves
a TCB for each task configured. A TCB is allocated upon creation of the task and is returned to
the TCB free list upon deletion of the task.

The TCB’s elements are modified as a result of system calls made by the application in response
to external and internal stimuli. TCBs are the only RTEMS internal data structure that can
be accessed by an application via user extension routines. The TCB contains a task’s name,
ID, current priority, current and starting states, execution mode, TCB user extension pointer,
scheduling control structures, as well as data required by a blocked task.

A task’s context is stored in the TCB when a task switch occurs. When the task regains control
of the processor, its context is restored from the TCB. When a task is restarted, the initial state
of the task is restored from the starting context area in the task’s TCB.

7.2.3 Task Memory

The system uses two separate memory areas to manage a task. One memory area is the Task
Control Block (page 79). The other memory area is allocated from the stack space or provided
by the user and contains

• the task stack,

• the thread-local storage (TLS), and

• an optional architecture-specific floating-point context.

The size of the thread-local storage is determined at link time. A user-provided task stack must
take the size of the thread-local storage into account.

7.2. Background 79

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.2

On architectures with a dedicated floating-point context, the application configuration assumes
that every task is a floating-point task, but whether or not a task is actually floating-point
is determined at runtime during task creation (see Floating Point Considerations (page 82)).
In highly memory constrained systems this potential overestimate of the task stack space can
be mitigated through the CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 385) configuration
option and aligned task stack sizes for the tasks. A user-provided task stack must take the
potential floating-point context into account.

7.2.4 Task Name

By default, the task name is defined by the task object name given to rtems_task_create()
(page 89). The task name can be obtained with the pthread_getname_np() function. Op-
tionally, a new task name may be set with the pthread_setname_np() function. The max-
imum size of a task name is defined by the application configuration option CONFIG-
URE_MAXIMUM_THREAD_NAME_SIZE (page 382).

7.2.5 Task States

A task may exist in one of the following five states:

• executing - Currently scheduled to the CPU

• ready - May be scheduled to the CPU

• blocked - Unable to be scheduled to the CPU

• dormant - Created task that is not started

• non-existent - Uncreated or deleted task

An active task may occupy the executing, ready, blocked or dormant state, otherwise the task
is considered non-existent. One or more tasks may be active in the system simultaneously.
Multiple tasks communicate, synchronize, and compete for system resources with each other
via system calls. The multiple tasks appear to execute in parallel, but actually each is dispatched
to the CPU for periods of time determined by the RTEMS scheduling algorithm. The scheduling
of a task is based on its current state and priority.

7.2.6 Task Priority

A task’s priority determines its importance in relation to the other tasks executing on the
same processor. RTEMS supports 255 levels of priority ranging from 1 to 255. The data type
rtems_task_priority is used to store task priorities.

Tasks of numerically smaller priority values are more important tasks than tasks of numerically
larger priority values. For example, a task at priority level 5 is of higher privilege than a task at
priority level 10. There is no limit to the number of tasks assigned to the same priority.

Each task has a priority associated with it at all times. The initial value of this priority is assigned
at task creation time. The priority of a task may be changed at any subsequent time.

Priorities are used by the scheduler to determine which ready task will be allowed to execute.
In general, the higher the logical priority of a task, the more likely it is to receive processor
execution time.

80 Chapter 7. Task Manager

http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html
http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.2.7 Task Mode

A task’s execution mode is a combination of the following four components:

• preemption

• ASR processing

• timeslicing

• interrupt level

It is used to modify RTEMS’ scheduling process and to alter the execution environment of the
task. The data type rtems_task_mode is used to manage the task execution mode.

The preemption component allows a task to determine when control of the processor is re-
linquished. If preemption is disabled (RTEMS_NO_PREEMPT), the task will retain control of the
processor as long as it is in the executing state - even if a higher priority task is made ready.
If preemption is enabled (RTEMS_PREEMPT) and a higher priority task is made ready, then the
processor will be taken away from the current task immediately and given to the higher priority
task.

The timeslicing component is used by the RTEMS scheduler to determine how the processor is
allocated to tasks of equal priority. If timeslicing is enabled (RTEMS_TIMESLICE), then RTEMS
will limit the amount of time the task can execute before the processor is allocated to another
ready task of equal priority. The length of the timeslice is application dependent and specified in
the Configuration Table. If timeslicing is disabled (RTEMS_NO_TIMESLICE), then the task will be
allowed to execute until a task of higher priority is made ready. If RTEMS_NO_PREEMPT is selected,
then the timeslicing component is ignored by the scheduler.

The asynchronous signal processing component is used to determine when received signals
are to be processed by the task. If signal processing is enabled (RTEMS_ASR), then signals sent
to the task will be processed the next time the task executes. If signal processing is disabled
(RTEMS_NO_ASR), then all signals received by the task will remain posted until signal processing
is enabled. This component affects only tasks which have established a routine to process
asynchronous signals.

The interrupt level component is used to determine which interrupts will be enabled when the
task is executing. RTEMS_INTERRUPT_LEVEL(n) specifies that the task will execute at interrupt
level n.

RTEMS_PREEMPT enable preemption (default)
RTEMS_NO_PREEMPT disable preemption
RTEMS_NO_TIMESLICE disable timeslicing (default)
RTEMS_TIMESLICE enable timeslicing
RTEMS_ASR enable ASR processing (default)
RTEMS_NO_ASR disable ASR processing
RTEMS_INTERRUPT_LEVEL(0) enable all interrupts (default)
RTEMS_INTERRUPT_LEVEL(n) execute at interrupt level n

The set of default modes may be selected by specifying the RTEMS_DEFAULT_MODES constant.

7.2. Background 81

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.2

7.2.8 Accessing Task Arguments

All RTEMS tasks are invoked with a single argument which is specified when they are started
or restarted. The argument is commonly used to communicate startup information to the task.
The simplest manner in which to define a task which accesses it argument is:

1 rtems_task user_task(
2 rtems_task_argument argument
3);

Application tasks requiring more information may view this single argument as an index into
an array of parameter blocks.

7.2.9 Floating Point Considerations

Please consult the RTEMS CPU Architecture Supplement if this section is relevant on your ar-
chitecture. On some architectures the floating-point context is contained in the normal task
context and this section does not apply.

Creating a task with the RTEMS_FLOATING_POINT attribute flag results in additional memory being
allocated for the task to store the state of the numeric coprocessor during task switches. This ad-
ditional memory is not allocated for RTEMS_NO_FLOATING_POINT tasks. Saving and restoring the
context of a RTEMS_FLOATING_POINT task takes longer than that of a RTEMS_NO_FLOATING_POINT
task because of the relatively large amount of time required for the numeric coprocessor to save
or restore its computational state.

Since RTEMS was designed specifically for embedded military applications which are floating
point intensive, the executive is optimized to avoid unnecessarily saving and restoring the state
of the numeric coprocessor. In uniprocessor configurations, the state of the numeric coprocessor
is only saved when a RTEMS_FLOATING_POINT task is dispatched and that task was not the last
task to utilize the coprocessor. In a uniprocessor system with only one RTEMS_FLOATING_POINT
task, the state of the numeric coprocessor will never be saved or restored.

Although the overhead imposed by RTEMS_FLOATING_POINT tasks is minimal, some applications
may wish to completely avoid the overhead associated with RTEMS_FLOATING_POINT tasks and
still utilize a numeric coprocessor. By preventing a task from being preempted while performing
a sequence of floating point operations, a RTEMS_NO_FLOATING_POINT task can utilize the numeric
coprocessor without incurring the overhead of a RTEMS_FLOATING_POINT context switch. This
approach also avoids the allocation of a floating point context area. However, if this approach
is taken by the application designer, no tasks should be created as RTEMS_FLOATING_POINT tasks.
Otherwise, the floating point context will not be correctly maintained because RTEMS assumes
that the state of the numeric coprocessor will not be altered by RTEMS_NO_FLOATING_POINT tasks.
Some architectures with a dedicated floating-point context raise a processor exception if a task
with RTEMS_NO_FLOATING_POINT issues a floating-point instruction, so this approach may not
work at all.

If the supported processor type does not have hardware floating capabilities or a standard nu-
meric coprocessor, RTEMS will not provide built-in support for hardware floating point on that
processor. In this case, all tasks are considered RTEMS_NO_FLOATING_POINT whether created as
RTEMS_FLOATING_POINT or RTEMS_NO_FLOATING_POINT tasks. A floating point emulation software
library must be utilized for floating point operations.

On some processors, it is possible to disable the floating point unit dynamically. If this capability
is supported by the target processor, then RTEMS will utilize this capability to enable the float-

82 Chapter 7. Task Manager

Chapter 7 Section 7.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

ing point unit only for tasks which are created with the RTEMS_FLOATING_POINT attribute. The
consequence of a RTEMS_NO_FLOATING_POINT task attempting to access the floating point unit is
CPU dependent but will generally result in an exception condition.

7.2.10 Building a Task Attribute Set

In general, an attribute set is built by a bitwise OR of the desired components. The set of valid
task attribute components is listed below:

RTEMS_NO_FLOATING_POINT does not use coprocessor (default)
RTEMS_FLOATING_POINT uses numeric coprocessor
RTEMS_LOCAL local task (default)
RTEMS_GLOBAL global task

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the com-
ponent list. A component listed as a default is not required to appear in the component list,
although it is a good programming practice to specify default components. If all defaults are
desired, then RTEMS_DEFAULT_ATTRIBUTES should be used.

This example demonstrates the attribute_set parameter needed to create a local task which uti-
lizes the numeric coprocessor. The attribute_set parameter could be RTEMS_FLOATING_POINT
or RTEMS_LOCAL | RTEMS_FLOATING_POINT. The attribute_set parameter can be set to
RTEMS_FLOATING_POINT because RTEMS_LOCAL is the default for all created tasks. If the task
were global and used the numeric coprocessor, then the attribute_set parameter would be
RTEMS_GLOBAL | RTEMS_FLOATING_POINT.

7.2.11 Building a Mode and Mask

In general, a mode and its corresponding mask is built by a bitwise OR of the desired compo-
nents. The set of valid mode constants and each mode’s corresponding mask constant is listed
below:

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_
LEVEL(0)

is masked by RTEMS_INTERRUPT_MASK and enables all interrupts

RTEMS_INTERRUPT_
LEVEL(n)

is masked by RTEMS_INTERRUPT_MASK and sets interrupts level n

Mode values are specifically designed to be mutually exclusive, therefore bitwise OR and addi-
tion operations are equivalent as long as each mode appears exactly once in the component list.
A mode component listed as a default is not required to appear in the mode component list,
although it is a good programming practice to specify default components. If all defaults are
desired, the mode RTEMS_DEFAULT_MODES and the mask RTEMS_ALL_MODE_MASKS should be used.

7.2. Background 83

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.2

The following example demonstrates the mode and mask parameters used with the
rtems_task_mode directive to place a task at interrupt level 3 and make it non-preemptible.
The mode should be set to RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT to indicate the
desired preemption mode and interrupt level, while the mask parameter should be set to
RTEMS_INTERRUPT_MASK | RTEMS_NO_PREEMPT_MASK to indicate that the calling task’s interrupt
level and preemption mode are being altered.

84 Chapter 7. Task Manager

Chapter 7 Section 7.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.3 Operations

7.3.1 Creating Tasks

The rtems_task_create directive creates a task by allocating a task control block, assigning the
task a user-specified name, allocating it a stack and floating point context area, setting a user-
specified initial priority, setting a user-specified initial mode, and assigning it a task ID. Newly
created tasks are initially placed in the dormant state. All RTEMS tasks execute in the most
privileged mode of the processor.

7.3.2 Obtaining Task IDs

When a task is created, RTEMS generates a unique task ID and assigns it to the created task
until it is deleted. The task ID may be obtained by either of two methods. First, as the result
of an invocation of the rtems_task_create directive, the task ID is stored in a user provided
location. Second, the task ID may be obtained later using the rtems_task_ident directive. The
task ID is used by other directives to manipulate this task.

7.3.3 Starting and Restarting Tasks

The rtems_task_start directive is used to place a dormant task in the ready state. This enables
the task to compete, based on its current priority, for the processor and other system resources.
Any actions, such as suspension or change of priority, performed on a task prior to starting it
are nullified when the task is started.

With the rtems_task_start directive the user specifies the task’s starting address and argument.
The argument is used to communicate some startup information to the task. As part of this di-
rective, RTEMS initializes the task’s stack based upon the task’s initial execution mode and start
address. The starting argument is passed to the task in accordance with the target processor’s
calling convention.

The rtems_task_restart directive restarts a task at its initial starting address with its original
priority and execution mode, but with a possibly different argument. The new argument may be
used to distinguish between the original invocation of the task and subsequent invocations. The
task’s stack and control block are modified to reflect their original creation values. Although
references to resources that have been requested are cleared, resources allocated by the task
are NOT automatically returned to RTEMS. A task cannot be restarted unless it has previously
been started (i.e. dormant tasks cannot be restarted). All restarted tasks are placed in the ready
state.

7.3.4 Suspending and Resuming Tasks

The rtems_task_suspend directive is used to place either the caller or another task into a sus-
pended state. The task remains suspended until a rtems_task_resume directive is issued. This
implies that a task may be suspended as well as blocked waiting either to acquire a resource or
for the expiration of a timer.

The rtems_task_resume directive is used to remove another task from the suspended state. If
the task is not also blocked, resuming it will place it in the ready state, allowing it to once again

7.3. Operations 85

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.3

compete for the processor and resources. If the task was blocked as well as suspended, this
directive clears the suspension and leaves the task in the blocked state.

Suspending a task which is already suspended or resuming a task which is not suspended is con-
sidered an error. The rtems_task_is_suspended can be used to determine if a task is currently
suspended.

7.3.5 Delaying the Currently Executing Task

The rtems_task_wake_after directive creates a sleep timer which allows a task to go to sleep
for a specified interval. The task is blocked until the delay interval has elapsed, at which time
the task is unblocked. A task calling the rtems_task_wake_after directive with a delay interval
of RTEMS_YIELD_PROCESSOR ticks will yield the processor to any other ready task of equal or
greater priority and remain ready to execute.

The rtems_task_wake_when directive creates a sleep timer which allows a task to go to sleep
until a specified date and time. The calling task is blocked until the specified date and time has
occurred, at which time the task is unblocked.

7.3.6 Changing Task Priority

The rtems_task_set_priority directive is used to obtain or change the current priority of either
the calling task or another task. If the new priority requested is RTEMS_CURRENT_PRIORITY or the
task’s actual priority, then the current priority will be returned and the task’s priority will remain
unchanged. If the task’s priority is altered, then the task will be scheduled according to its new
priority.

The rtems_task_restart directive resets the priority of a task to its original value.

7.3.7 Changing Task Mode

The rtems_task_mode directive is used to obtain or change the current execution mode of the
calling task. A task’s execution mode is used to enable preemption, timeslicing, ASR processing,
and to set the task’s interrupt level.

The rtems_task_restart directive resets the mode of a task to its original value.

7.3.8 Task Deletion

RTEMS provides the rtems_task_delete directive to allow a task to delete itself or any other
task. This directive removes all RTEMS references to the task, frees the task’s control block,
removes it from resource wait queues, and deallocates its stack as well as the optional floating
point context. The task’s name and ID become inactive at this time, and any subsequent refer-
ences to either of them is invalid. In fact, RTEMS may reuse the task ID for another task which
is created later in the application. A specialization of rtems_task_delete is rtems_task_exit
which deletes the calling task.

Unexpired delay timers (i.e. those used by rtems_task_wake_after and rtems_task_wake_when)
and timeout timers associated with the task are automatically deleted, however, other resources
dynamically allocated by the task are NOT automatically returned to RTEMS. Therefore, before
a task is deleted, all of its dynamically allocated resources should be deallocated by the user.

86 Chapter 7. Task Manager

Chapter 7 Section 7.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

This may be accomplished by instructing the task to delete itself rather than directly deleting the
task. Other tasks may instruct a task to delete itself by sending a “delete self” message, event,
or signal, or by restarting the task with special arguments which instruct the task to delete itself.

7.3.9 Setting Affinity to a Single Processor

On some embedded applications targeting SMP systems, it may be beneficial to lock individual
tasks to specific processors. In this way, one can designate a processor for I/O tasks, another
for computation, etc.. The following illustrates the code sequence necessary to assign a task an
affinity for processor with index processor_index.

1 #include <rtems.h>
2 #include <assert.h>
3

4 void pin_to_processor(rtems_id task_id, int processor_index)
5 {
6 rtems_status_code sc;
7 cpu_set_t cpuset;
8 CPU_ZERO(&cpuset);
9 CPU_SET(processor_index, &cpuset);

10 sc = rtems_task_set_affinity(task_id, sizeof(cpuset), &cpuset);
11 assert(sc == RTEMS_SUCCESSFUL);
12 }

It is important to note that the cpuset is not validated until the rtems_task_set_affinity call
is made. At that point, it is validated against the current system configuration.

7.3.10 Transition Advice for Removed Notepads

Task notepads and the associated directives TASK_GET_NOTE - Get task notepad entry
(page 114) and TASK_SET_NOTE - Set task notepad entry (page 115) were removed in RTEMS
5.1. These were never thread-safe to access and subject to conflicting use of the notepad index
by libraries which were designed independently.

It is recommended that applications be modified to use services which are thread safe and
not subject to issues with multiple applications conflicting over the key (e.g. notepad index)
selection. For most applications, POSIX Keys should be used. These are available in all RTEMS
build configurations. It is also possible that thread-local storage (TLS) is an option for some use
cases.

7.3.11 Transition Advice for Removed Task Variables

Task notepads and the associated directives TASK_VARIABLE_ADD - Associate per task vari-
able (page 116), TASK_VARIABLE_GET - Obtain value of a per task variable (page 117) and
TASK_VARIABLE_DELETE - Remove per task variable (page 118) were removed in RTEMS 5.1.
Task variables must be replaced by POSIX Keys or thread-local storage (TLS). POSIX Keys are
available in all configurations and support value destructors. For the TLS support consult the
RTEMS CPU Architecture Supplement.

7.3. Operations 87

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4 Directives

This section details the task manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

88 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.1 TASK_CREATE - Create a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_create(
2 rtems_name name,
3 rtems_task_priority initial_priority,
4 size_t stack_size,
5 rtems_mode initial_modes,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task created successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME invalid task name
RTEMS_INVALID_PRIORITY invalid task priority
RTEMS_MP_NOT_CONFIGURED multiprocessing not configured
RTEMS_TOO_MANY too many tasks created
RTEMS_UNSATISFIED not enough memory for stack/FP context
RTEMS_UNSATISFIED non-preemption mode not supported on SMP system
RTEMS_UNSATISFIED interrupt level mode not supported on SMP system
RTEMS_TOO_MANY too many global objects

DESCRIPTION:
This directive creates a task which resides on the local node. It allocates and initializes a
TCB, a stack, and an optional floating point context area. The mode parameter contains
values which sets the task’s initial execution mode. The RTEMS_FLOATING_POINT attribute
should be specified if the created task is to use a numeric coprocessor. For performance
reasons, it is recommended that tasks not using the numeric coprocessor should specify the
RTEMS_NO_FLOATING_POINT attribute. If the RTEMS_GLOBAL attribute is specified, the task can
be accessed from remote nodes. The task id, returned in id, is used in other task related
directives to access the task. When created, a task is placed in the dormant state and can only
be made ready to execute using the directive rtems_task_start.

NOTES:
This directive may cause the calling task to be preempted.

The scheduler of the new task is the scheduler of the executing task at some point during the
task creation. The specified task priority must be valid for the selected scheduler.

The task processor affinity is initialized to the set of online processors.

If the requested stack size is less than the configured minimum stack size, then RTEMS will
use the configured minimum as the stack size for this task. In addition to being able to specify
the task stack size as a integer, there are two constants which may be specified:

RTEMS_MINIMUM_STACK_SIZE
The minimum stack size RECOMMENDED for use on this processor. This value is selected
by the RTEMS developers conservatively to minimize the risk of blown stacks for most user

7.4. Directives 89

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

applications. Using this constant when specifying the task stack size, indicates that the
stack size will be at least RTEMS_MINIMUM_STACK_SIZE bytes in size. If the user configured
minimum stack size is larger than the recommended minimum, then it will be used.

RTEMS_CONFIGURED_MINIMUM_STACK_SIZE
Indicates this task is to be created with a stack size of the minimum stack size that was con-
figured by the application. If not explicitly configured by the application, the default con-
figured minimum stack size is the processor dependent value RTEMS_MINIMUM_STACK_SIZE.
Since this uses the configured minimum stack size value, you may get a stack size that
is smaller or larger than the recommended minimum. This can be used to provide large
stacks for all tasks on complex applications or small stacks on applications that are trying
to conserve memory.

Application developers should consider the stack usage of the device drivers when calculating
the stack size required for tasks which utilize the driver.

The following task attribute constants are defined by RTEMS:

RTEMS_NO_FLOATING_POINT does not use coprocessor (default)
RTEMS_FLOATING_POINT uses numeric coprocessor
RTEMS_LOCAL local task (default)
RTEMS_GLOBAL global task

The following task mode constants are defined by RTEMS:

RTEMS_PREEMPT enable preemption (default)
RTEMS_NO_PREEMPT disable preemption
RTEMS_NO_TIMESLICE disable timeslicing (default)
RTEMS_TIMESLICE enable timeslicing
RTEMS_ASR enable ASR processing (default)
RTEMS_NO_ASR disable ASR processing
RTEMS_INTERRUPT_LEVEL(0) enable all interrupts (default)
RTEMS_INTERRUPT_LEVEL(n) execute at interrupt level n

The interrupt level portion of the task execution mode supports a maximum of 256 interrupt
levels. These levels are mapped onto the interrupt levels actually supported by the target
processor in a processor dependent fashion.

Tasks should not be made global unless remote tasks must interact with them. This avoids
the system overhead incurred by the creation of a global task. When a global task is created,
the task’s name and id must be transmitted to every node in the system for insertion in the
local copy of the global object table.

The total number of global objects, including tasks, is limited by the maximum_global_objects
field in the Configuration Table.

90 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.2 TASK_IDENT - Get ID of a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task identified successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME invalid task name
RTEMS_INVALID_NODE invalid node id

DESCRIPTION:
This directive obtains the task id associated with the task name specified in name. A task may
obtain its own id by specifying RTEMS_SELF or its own task name in name. If the task name is
not unique, then the task id returned will match one of the tasks with that name. However,
this task id is not guaranteed to correspond to the desired task. The task id, returned in id, is
used in other task related directives to access the task.

NOTES:
This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched
first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then only the tasks
exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of
the global object table.

7.4. Directives 91

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.3 TASK_SELF - Obtain ID of caller

CALLING SEQUENCE:

1 rtems_id rtems_task_self(void);

DIRECTIVE STATUS CODES:
Returns the object Id of the calling task.

DESCRIPTION:
This directive returns the Id of the calling task.

NOTES:
If called from an interrupt service routine, this directive will return the Id of the interrupted
task.

92 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.4 TASK_START - Start a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_start(
2 rtems_id id,
3 rtems_task_entry entry_point,
4 rtems_task_argument argument
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL ask started successfully
RTEMS_INVALID_ADDRESS invalid task entry point
RTEMS_INVALID_ID invalid task id
RTEMS_INCORRECT_STATE task not in the dormant state
RTEMS_ILLEGAL_ON_REMOTE_OBJECT cannot start remote task

DESCRIPTION:
This directive readies the task, specified by id, for execution based on the priority and exe-
cution mode specified when the task was created. The starting address of the task is given in
entry_point. The task’s starting argument is contained in argument. This argument can be a
single value or used as an index into an array of parameter blocks. The type of this numeric
argument is an unsigned integer type with the property that any valid pointer to void can be
converted to this type and then converted back to a pointer to void. The result will compare
equal to the original pointer.

NOTES:
The calling task will be preempted if its preemption mode is enabled and the task being
started has a higher priority.

Any actions performed on a dormant task such as suspension or change of priority are nullified
when the task is initiated via the rtems_task_start directive.

7.4. Directives 93

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.5 TASK_RESTART - Restart a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_restart(
2 rtems_id id,
3 rtems_task_argument argument
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task restarted successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INCORRECT_STATE task never started
RTEMS_ILLEGAL_ON_REMOTE_OBJECT cannot restart remote task

DESCRIPTION:
This directive resets the task specified by id to begin execution at its original starting address.
The task’s priority and execution mode are set to the original creation values. If the task is
currently blocked, RTEMS automatically makes the task ready. A task can be restarted from
any state, except the dormant state.

The task’s starting argument is contained in argument. This argument can be a single value or
an index into an array of parameter blocks. The type of this numeric argument is an unsigned
integer type with the property that any valid pointer to void can be converted to this type
and then converted back to a pointer to void. The result will compare equal to the original
pointer. This new argument may be used to distinguish between the initial rtems_task_start
of the task and any ensuing calls to rtems_task_restart of the task. This can be beneficial in
deleting a task. Instead of deleting a task using the rtems_task_delete directive, a task can
delete another task by restarting that task, and allowing that task to release resources back to
RTEMS and then delete itself.

NOTES:
If id is RTEMS_SELF, the calling task will be restarted and will not return from this directive.

The calling task will be preempted if its preemption mode is enabled and the task being
restarted has a higher priority.

The task must reside on the local node, even if the task was created with the RTEMS_GLOBAL
option.

94 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.6 TASK_DELETE - Delete a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task deleted successfully
RTEMS_INVALID_ID task id invalid
RTEMS_ILLEGAL_ON_REMOTE_OBJECT cannot restart remote task

DESCRIPTION:
This directive deletes a task, either the calling task or another task, as specified by id. RTEMS
stops the execution of the task and reclaims the stack memory, any allocated delay or time-
out timers, the TCB, and, if the task is RTEMS_FLOATING_POINT, its floating point context
area. RTEMS does not reclaim the following resources: region segments, partition buffers,
semaphores, timers, or rate monotonic periods.

NOTES:
A task is responsible for releasing its resources back to RTEMS before deletion. To insure
proper deallocation of resources, a task should not be deleted unless it is unable to execute
or does not hold any RTEMS resources. If a task holds RTEMS resources, the task should
be allowed to deallocate its resources before deletion. A task can be directed to release its
resources and delete itself by restarting it with a special argument or by sending it a message,
an event, or a signal.

Deletion of the current task (RTEMS_SELF) will force RTEMS to select another task to execute.

When a global task is deleted, the task id must be transmitted to every node in the system for
deletion from the local copy of the global object table.

The task must reside on the local node, even if the task was created with the RTEMS_GLOBAL
option.

7.4. Directives 95

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.7 TASK_EXIT - Delete the calling task

CALLING SEQUENCE:

1 void rtems_task_exit(void) RTEMS_NO_RETURN;

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
This directive deletes the calling task.

NOTES:
This directive must be called from a regular task context with enabled interrupts, otherwise
one of the fatal errors

• INTERNAL_ERROR_BAD_THREAD_DISPATCH_DISABLE_LEVEL (page 334), or

• INTERNAL_ERROR_BAD_THREAD_DISPATCH_ENVIRONMENT (page 334)

will occur.

The rtems_task_exit() call is equivalent to the following code sequence:

1 pthread_detach(pthread_self());
2 pthread_exit(NULL);

See also rtems_task_delete() (page 95).

96 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.8 TASK_SUSPEND - Suspend a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_suspend(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task suspended successfully
RTEMS_INVALID_ID task id invalid
RTEMS_ALREADY_SUSPENDED task already suspended

DESCRIPTION:
This directive suspends the task specified by id from further execution by placing it in the
suspended state. This state is additive to any other blocked state that the task may already be
in. The task will not execute again until another task issues the rtems_task_resume directive
for this task and any blocked state has been removed.

NOTES:
The requesting task can suspend itself by specifying RTEMS_SELF as id. In this case, the task
will be suspended and a successful return code will be returned when the task is resumed.

Suspending a global task which does not reside on the local node will generate a request to
the remote node to suspend the specified task.

If the task specified by id is already suspended, then the RTEMS_ALREADY_SUSPENDED status
code is returned.

7.4. Directives 97

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.9 TASK_RESUME - Resume a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_resume(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task resumed successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INCORRECT_STATE task not suspended

DESCRIPTION:
This directive removes the task specified by id from the suspended state. If the task is in the
ready state after the suspension is removed, then it will be scheduled to run. If the task is still
in a blocked state after the suspension is removed, then it will remain in that blocked state.

NOTES:
The running task may be preempted if its preemption mode is enabled and the local task
being resumed has a higher priority.

Resuming a global task which does not reside on the local node will generate a request to the
remote node to resume the specified task.

If the task specified by id is not suspended, then the RTEMS_INCORRECT_STATE status code is
returned.

98 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.10 TASK_IS_SUSPENDED - Determine if a task is Suspended

CALLING SEQUENCE:

1 rtems_status_code rtems_task_is_suspended(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task is NOT suspended
RTEMS_ALREADY_SUSPENDED task is currently suspended
RTEMS_INVALID_ID task id invalid
RTEMS_ILLEGAL_ON_REMOTE_OBJECT not supported on remote tasks

DESCRIPTION:
This directive returns a status code indicating whether or not the specified task is currently
suspended.

NOTES:
This operation is not currently supported on remote tasks.

7.4. Directives 99

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.11 TASK_SET_PRIORITY - Set task priority

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_priority(
2 rtems_id id,
3 rtems_task_priority new_priority,
4 rtems_task_priority *old_priority
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL task priority set successfully
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_ADDRESS invalid return argument pointer
RTEMS_INVALID_PRIORITY invalid task priority

DESCRIPTION:
This directive manipulates the priority of the task specified by id. An id of RTEMS_SELF is used
to indicate the calling task. When new_priority is not equal to RTEMS_CURRENT_PRIORITY,
the specified task’s previous priority is returned in old_priority. When new_priority is
RTEMS_CURRENT_PRIORITY, the specified task’s current priority is returned in old_priority. Valid
priorities range from a high of 1 to a low of 255.

NOTES:
The calling task may be preempted if its preemption mode is enabled and it lowers its own
priority or raises another task’s priority.

In case the new priority equals the current priority of the task, then nothing happens.

Setting the priority of a global task which does not reside on the local node will generate a
request to the remote node to change the priority of the specified task.

If the task specified by id is currently holding any binary semaphores which use the priority
inheritance algorithm, then the task’s priority cannot be lowered immediately. If the task’s
priority were lowered immediately, then priority inversion results. The requested lowering
of the task’s priority will occur when the task has released all priority inheritance binary
semaphores. The task’s priority can be increased regardless of the task’s use of priority inher-
itance binary semaphores.

100 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.12 TASK_GET_PRIORITY - Get task priority

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_priority(
2 rtems_id task_id,
3 rtems_id scheduler_id,
4 rtems_task_priority *priority
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Successful operation.
RTEMS_ILLEGAL_ON_
REMOTE_OBJECT

Directive is illegal on remote tasks.

RTEMS_INVALID_
ADDRESS

The priority parameter is NULL.

RTEMS_INVALID_ID Invalid task or scheduler identifier.
RTEMS_NOT_DEFINED The task has no priority within the specified scheduler instance.

This error is only possible in SMP configurations.

DESCRIPTION:
This directive returns the current priority of the task specified by task_id with respect to the
scheduler instance specified by scheduler_id. A task id of RTEMS_SELF is used to indicate the
calling task.

NOTES:
The current priority reflects temporary priority adjustments due to locking protocols, the rate-
monotonic period objects on some schedulers and other mechanisms.

7.4. Directives 101

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.13 TASK_MODE - Change the current task mode

CALLING SEQUENCE:

1 rtems_status_code rtems_task_mode(
2 rtems_mode mode_set,
3 rtems_mode mask,
4 rtems_mode *previous_mode_set
5);

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive manipulates the execution mode of the calling task. A task’s execution mode
enables and disables preemption, timeslicing, asynchronous signal processing, as well as spec-
ifying the current interrupt level. To modify an execution mode, the mode class(es) to be
changed must be specified in the mask parameter and the desired mode(s) must be specified
in the mode parameter.

NOTES:
The calling task will be preempted if it enables preemption and a higher priority task is ready
to run.

Enabling timeslicing has no effect if preemption is disabled. For a task to be timesliced, that
task must have both preemption and timeslicing enabled.

A task can obtain its current execution mode, without modifying it, by calling this directive
with a mask value of RTEMS_CURRENT_MODE.

To temporarily disable the processing of a valid ASR, a task should call this directive with the
RTEMS_NO_ASR indicator specified in mode.

The set of task mode constants and each mode’s corresponding mask constant is provided in
the following table:

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_
LEVEL(0)

is masked by RTEMS_INTERRUPT_MASK and enables all inter-
rupts

RTEMS_INTERRUPT_
LEVEL(n)

is masked by RTEMS_INTERRUPT_MASK and sets interrupts level
n

102 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.14 TASK_WAKE_AFTER - Wake up after interval

CALLING SEQUENCE:

1 rtems_status_code rtems_task_wake_after(
2 rtems_interval ticks
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL always successful

DESCRIPTION:
This directive blocks the calling task for the specified number of system clock ticks. When the
requested interval has elapsed, the task is made ready. The clock tick directives automatically
updates the delay period.

NOTES:
Setting the system date and time with the rtems_clock_set directive has no effect on a
rtems_task_wake_after blocked task.

A task may give up the processor and remain in the ready state by specifying a value of
RTEMS_YIELD_PROCESSOR in ticks.

The maximum timer interval that can be specified is the maximum value which can be repre-
sented by the uint32_t type.

A clock tick is required to support the functionality of this directive.

7.4. Directives 103

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.15 TASK_WAKE_WHEN - Wake up when specified

CALLING SEQUENCE:

1 rtems_status_code rtems_task_wake_when(
2 rtems_time_of_day *time_buffer
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL awakened at date/time successfully
RTEMS_INVALID_ADDRESS time_buffer is NULL
RTEMS_INVALID_TIME_OF_DAY invalid time buffer
RTEMS_NOT_DEFINED system date and time is not set

DESCRIPTION:
This directive blocks a task until the date and time specified in time_buffer. At the requested
date and time, the calling task will be unblocked and made ready to execute.

NOTES:
The ticks portion of time_buffer structure is ignored. The timing granularity of this directive
is a second.

A clock tick is required to support the functionality of this directive.

104 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.16 TASK_GET_SCHEDULER - Get scheduler of a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_scheduler(
2 rtems_id task_id,
3 rtems_id *scheduler_id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ADDRESS scheduler_id is NULL
RTEMS_INVALID_ID invalid task id

DESCRIPTION:
Returns the scheduler identifier of a task identified by task_id in scheduler_id.

NOTES:
None.

7.4. Directives 105

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.17 TASK_SET_SCHEDULER - Set scheduler of a task

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_scheduler(
2 rtems_id task_id,
3 rtems_id scheduler_id,
4 rtems_task_priority priority
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ID invalid task or scheduler id
RTEMS_INVALID_PRIORITY invalid task priority
RTEMS_RESOURCE_IN_USE the task is in the wrong state to perform a scheduler

change
RTEMS_UNSATISFIED the processor set of the scheduler is empty
RTEMS_ILLEGAL_ON_REMOTE_
OBJECT

not supported on remote tasks

DESCRIPTION:
Sets the scheduler of a task identified by task_id to the scheduler identified by scheduler_id.
The scheduler of a task is initialized to the scheduler of the task that created it. The priority
of the task is set to priority.

NOTES:
It is recommended to set the scheduler of a task before it is started or in case it is guaranteed
that the task owns no resources. Otherwise, sporadic RTEMS_RESOURCE_IN_USE errors may
occur.

EXAMPLE:

1 #include <rtems.h>
2 #include <assert.h>
3

4 rtems_task task(rtems_task_argument arg);
5

6 void example(void)
7 {
8 rtems_status_code sc;
9 rtems_id task_id;

10 rtems_id scheduler_id;
11 rtems_name scheduler_name;
12

13 scheduler_name = rtems_build_name('W', 'O', 'R', 'K');
14

15 sc = rtems_scheduler_ident(scheduler_name, &scheduler_id);
16 assert(sc == RTEMS_SUCCESSFUL);
17

18 sc = rtems_task_create(

(continues on next page)

106 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

(continued from previous page)

19 rtems_build_name('T', 'A', 'S', 'K'),
20 1,
21 RTEMS_MINIMUM_STACK_SIZE,
22 RTEMS_DEFAULT_MODES,
23 RTEMS_DEFAULT_ATTRIBUTES,
24 &task_id
25);
26 assert(sc == RTEMS_SUCCESSFUL);
27

28 sc = rtems_task_set_scheduler(task_id, scheduler_id, 2);
29 assert(sc == RTEMS_SUCCESSFUL);
30

31 sc = rtems_task_start(task_id, task, 0);
32 assert(sc == RTEMS_SUCCESSFUL);
33 }

7.4. Directives 107

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.18 TASK_GET_AFFINITY - Get task processor affinity

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_affinity(
2 rtems_id id,
3 size_t cpusetsize,
4 cpu_set_t *cpuset
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_
ADDRESS

cpuset is NULL

RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_
NUMBER

the affinity set buffer is too small for the current processor affinity
set of the task

DESCRIPTION:
Returns the current processor affinity set of the task in cpuset. A set bit in the affinity set
means that the task can execute on this processor and a cleared bit means the opposite.

NOTES:
The task processor affinity is initialized to the set of online processors.

108 Chapter 7. Task Manager

Chapter 7 Section 7.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.4.19 TASK_SET_AFFINITY - Set task processor affinity

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_affinity(
2 rtems_id id,
3 size_t cpusetsize,
4 const cpu_set_t *cpuset
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ADDRESS cpuset is NULL
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER invalid processor affinity set

DESCRIPTION:
Sets the processor affinity set for the task specified by cpuset. A set bit in the affinity set
means that the task can execute on this processor and a cleared bit means the opposite.

NOTES:
This function will not change the scheduler of the task. The intersection of the processor
affinity set and the set of processors owned by the scheduler of the task must be non-empty.
It is not an error if the processor affinity set contains processors that are not part of the set
of processors owned by the scheduler instance of the task. A task will simply not run under
normal circumstances on these processors since the scheduler ignores them. Some locking
protocols may temporarily use processors that are not included in the processor affinity set
of the task. It is also not an error if the processor affinity set contains processors that are not
part of the system.

In case a scheduler without support for task affinites is used for the task, then the task pro-
cessor affinity set must contain all online processors of the system. This prevents odd corner
cases if processors are added/removed at run-time to/from scheduler instances.

7.4. Directives 109

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.4

7.4.20 TASK_ITERATE - Iterate Over Tasks

CALLING SEQUENCE:

1 typedef bool (*rtems_task_visitor)(rtems_tcb *tcb, void *arg);
2

3 void rtems_task_iterate(
4 rtems_task_visitor visitor,
5 void *arg
6);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Iterates over all tasks in the system. This operation covers all tasks of all APIs. The user should
be careful in accessing the contents of the thread control block tcb. The visitor argument arg
is passed to all invocations of visitor in addition to the thread control block. The iteration
stops immediately in case the visitor function returns true.

NOTES:
Must be called from task context. This operation obtains and releases the objects allocator
lock. The task visitor is called while owning the objects allocator lock. It is possible to
perform blocking operations in the task visitor, however, take care that no deadlocks via the
object allocator lock can occur.

110 Chapter 7. Task Manager

Chapter 7 Section 7.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.5 Deprecated Directives

7.5. Deprecated Directives 111

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.5

7.5.1 ITERATE_OVER_ALL_THREADS - Iterate Over Tasks

Warning: This directive is deprecated. Its use is unsafe. Use TASK_ITERATE - Iterate Over
Tasks (page 110) instead.

CALLING SEQUENCE:

1 typedef void (*rtems_per_thread_routine)(Thread_Control *the_thread);
2 void rtems_iterate_over_all_threads(
3 rtems_per_thread_routine routine
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive iterates over all of the existant threads in the system and invokes routine on
each of them. The user should be careful in accessing the contents of the_thread.

This routine is intended for use in diagnostic utilities and is not intented for routine use in an
operational system.

NOTES:
There is no protection while this routine is called. The thread control block may be in an
inconsistent state or may change due to interrupts or activity on other processors.

112 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.6 Removed Directives

7.6. Removed Directives 113

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.6

7.6.1 TASK_GET_NOTE - Get task notepad entry

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_get_note(
2 rtems_id id,
3 uint32_t notepad,
4 uint32_t *note
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL note value obtained successfully
RTEMS_INVALID_ADDRESS note parameter is NULL
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER invalid notepad location

DESCRIPTION:
This directive returns the note contained in the notepad location of the task specified by id.

NOTES:
This directive will not cause the running task to be preempted.

If id is set to RTEMS_SELF, the calling task accesses its own notepad.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_0 through
RTEMS_NOTEPAD_15.

Getting a note of a global task which does not reside on the local node will generate a request
to the remote node to obtain the notepad entry of the specified task.

114 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.6.2 TASK_SET_NOTE - Set task notepad entry

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_set_note(
2 rtems_id id,
3 uint32_t notepad,
4 uint32_t note
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL note set successfully
RTEMS_INVALID_ID invalid task id
RTEMS_INVALID_NUMBER invalid notepad location

DESCRIPTION:
This directive sets the notepad entry for the task specified by id to the value note.

NOTES:
If id is set to RTEMS_SELF, the calling task accesses its own notepad.

This directive will not cause the running task to be preempted.

The sixteen notepad locations can be accessed using the constants RTEMS_NOTEPAD_0 through
RTEMS_NOTEPAD_15.

Setting a note of a global task which does not reside on the local node will generate a request
to the remote node to set the notepad entry of the specified task.

7.6. Removed Directives 115

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.6

7.6.3 TASK_VARIABLE_ADD - Associate per task variable

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_add(
2 rtems_id tid,
3 void **task_variable,
4 void (*dtor)(void *)
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable added successfully
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_INVALID_ID invalid task id
RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_ON_REMOTE_OBJECT not supported on remote tasks

DESCRIPTION:
This directive adds the memory location specified by the ptr argument to the context of the
given task. The variable will then be private to the task. The task can access and modify the
variable, but the modifications will not appear to other tasks, and other tasks’ modifications
to that variable will not affect the value seen by the task. This is accomplished by saving and
restoring the variable’s value each time a task switch occurs to or from the calling task. If
the dtor argument is non-NULL it specifies the address of a ‘destructor’ function which will be
called when the task is deleted. The argument passed to the destructor function is the task’s
value of the variable.

NOTES:
Task variables increase the context switch time to and from the tasks that own them so it is
desirable to minimize the number of task variables. One efficient method is to have a single
task variable that is a pointer to a dynamically allocated structure containing the task’s private
‘global’ data. In this case the destructor function could be ‘free’.

Per-task variables are disabled in SMP configurations and this service is not available.

116 Chapter 7. Task Manager

Chapter 7 Section 7.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

7.6.4 TASK_VARIABLE_GET - Obtain value of a per task variable

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_get(
2 rtems_id tid,
3 void **task_variable,
4 void **task_variable_value
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable obtained successfully
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_INVALID_ADDRESS task_variable_value is NULL
RTEMS_INVALID_ADDRESS task_variable is not found
RTEMS_NO_MEMORY invalid task id
RTEMS_ILLEGAL_ON_REMOTE_OBJECT not supported on remote tasks

DESCRIPTION:
This directive looks up the private value of a task variable for a specified task and stores that
value in the location pointed to by the result argument. The specified task is usually not the
calling task, which can get its private value by directly accessing the variable.

NOTES:
If you change memory which task_variable_value points to, remember to declare that mem-
ory as volatile, so that the compiler will optimize it correctly. In this case both the pointer
task_variable_value and data referenced by task_variable_value should be considered
volatile.

Per-task variables are disabled in SMP configurations and this service is not available.

7.6. Removed Directives 117

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 7 Section 7.6

7.6.5 TASK_VARIABLE_DELETE - Remove per task variable

Warning: This directive was removed in RTEMS 5.1.

CALLING SEQUENCE:

1 rtems_status_code rtems_task_variable_delete(
2 rtems_id id,
3 void **task_variable
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL per task variable deleted successfully
RTEMS_INVALID_ID invalid task id
RTEMS_NO_MEMORY invalid task id
RTEMS_INVALID_ADDRESS task_variable is NULL
RTEMS_ILLEGAL_ON_REMOTE_OBJECT not supported on remote tasks

DESCRIPTION:
This directive removes the given location from a task’s context.

NOTES:
Per-task variables are disabled in SMP configurations and this service is not available.

118 Chapter 7. Task Manager

CHAPTER

EIGHT

INTERRUPT MANAGER

119

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.1

8.1 Introduction

Any real-time executive must provide a mechanism for quick response to externally generated
interrupts to satisfy the critical time constraints of the application. The interrupt manager
provides this mechanism for RTEMS. This manager permits quick interrupt response times by
providing the critical ability to alter task execution which allows a task to be preempted upon
exit from an ISR. The interrupt manager includes the following directive:

• rtems_interrupt_catch (page 127) - Establish an ISR

• rtems_interrupt_disable (page 128) - Disable Interrupts

• rtems_interrupt_enable (page 129) - Restore Interrupt Level

• rtems_interrupt_flash (page 130) - Flash Interrupt

• rtems_interrupt_local_disable (page 131) - Disable Interrupts on Current Processor

• rtems_interrupt_local_enable (page 133) - Restore Interrupt Level on Current Processor

• rtems_interrupt_lock_initialize (page 134) - Initialize an ISR Lock

• rtems_interrupt_lock_acquire (page 135) - Acquire an ISR Lock

• rtems_interrupt_lock_release (page 136) - Release an ISR Lock

• rtems_interrupt_lock_acquire_isr (page 137) - Acquire an ISR Lock from ISR

• rtems_interrupt_lock_release_isr (page 138) - Release an ISR Lock from ISR

• rtems_interrupt_is_in_progress (page 139) - Is an ISR in Progress

120 Chapter 8. Interrupt Manager

Chapter 8 Section 8.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.2 Background

8.2.1 Processing an Interrupt

The interrupt manager allows the application to connect a function to a hardware interrupt
vector. When an interrupt occurs, the processor will automatically vector to RTEMS. RTEMS
saves and restores all registers which are not preserved by the normal C calling convention for
the target processor and invokes the user’s ISR. The user’s ISR is responsible for processing the
interrupt, clearing the interrupt if necessary, and device specific manipulation.

The rtems_interrupt_catch directive connects a procedure to an interrupt vector. The vector
number is managed using the rtems_vector_number data type.

The interrupt service routine is assumed to abide by these conventions and have a prototype
similar to the following:

1 rtems_isr user_isr(
2 rtems_vector_number vector
3);

The vector number argument is provided by RTEMS to allow the application to identify the
interrupt source. This could be used to allow a single routine to service interrupts from mul-
tiple instances of the same device. For example, a single routine could service interrupts from
multiple serial ports and use the vector number to identify which port requires servicing.

To minimize the masking of lower or equal priority level interrupts, the ISR should perform
the minimum actions required to service the interrupt. Other non-essential actions should be
handled by application tasks. Once the user’s ISR has completed, it returns control to the
RTEMS interrupt manager which will perform task dispatching and restore the registers saved
before the ISR was invoked.

The RTEMS interrupt manager guarantees that proper task scheduling and dispatching are per-
formed at the conclusion of an ISR. A system call made by the ISR may have readied a task of
higher priority than the interrupted task. Therefore, when the ISR completes, the postponed
dispatch processing must be performed. No dispatch processing is performed as part of direc-
tives which have been invoked by an ISR.

Applications must adhere to the following rule if proper task scheduling and dispatching is to
be performed:

Note: The interrupt manager must be used for all ISRs which may be interrupted by the highest
priority ISR which invokes an RTEMS directive.

Consider a processor which allows a numerically low interrupt level to interrupt a numerically
greater interrupt level. In this example, if an RTEMS directive is used in a level 4 ISR, then all
ISRs which execute at levels 0 through 4 must use the interrupt manager.

Interrupts are nested whenever an interrupt occurs during the execution of another ISR. RTEMS
supports efficient interrupt nesting by allowing the nested ISRs to terminate without performing
any dispatch processing. Only when the outermost ISR terminates will the postponed dispatch-
ing occur.

8.2. Background 121

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.2

8.2.2 RTEMS Interrupt Levels

Many processors support multiple interrupt levels or priorities. The exact number of inter-
rupt levels is processor dependent. RTEMS internally supports 256 interrupt levels which are
mapped to the processor’s interrupt levels. For specific information on the mapping between
RTEMS and the target processor’s interrupt levels, refer to the Interrupt Processing chapter of
the Applications Supplement document for a specific target processor.

8.2.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical sections of code may be executed. When these
sections are encountered, RTEMS disables all maskable interrupts before the execution of the
section and restores them to the previous level upon completion of the section. RTEMS has been
optimized to ensure that interrupts are disabled for a minimum length of time. The maximum
length of time interrupts are disabled by RTEMS is processor dependent and is detailed in the
Timing Specification chapter of the Applications Supplement document for a specific target
processor.

Non-maskable interrupts (NMI) cannot be disabled, and ISRs which execute at this level MUST
NEVER issue RTEMS system calls. If a directive is invoked, unpredictable results may occur due
to the inability of RTEMS to protect its critical sections. However, ISRs that make no system
calls may safely execute as non-maskable interrupts.

122 Chapter 8. Interrupt Manager

Chapter 8 Section 8.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.3 Operations

8.3.1 Establishing an ISR

The rtems_interrupt_catch directive establishes an ISR for the system. The address of the ISR
and its associated CPU vector number are specified to this directive. This directive installs the
RTEMS interrupt wrapper in the processor’s Interrupt Vector Table and the address of the user’s
ISR in the RTEMS’ Vector Table. This directive returns the previous contents of the specified
vector in the RTEMS’ Vector Table.

8.3.2 Directives Allowed from an ISR

Using the interrupt manager ensures that RTEMS knows when a directive is being called from
an ISR. The ISR may then use system calls to synchronize itself with an application task. The
synchronization may involve messages, events or signals being passed by the ISR to the desired
task. Directives invoked by an ISR must operate only on objects which reside on the local node.
The following is a list of RTEMS system calls that may be made from an ISR:

• Task Management Although it is acceptable to operate on the RTEMS_SELF task (e.g. the
currently executing task), while in an ISR, this will refer to the interrupted task. Most of
the time, it is an application implementation error to use RTEMS_SELF from an ISR.

– rtems_task_suspend

– rtems_task_resume

• Interrupt Management

– rtems_interrupt_enable

– rtems_interrupt_disable

– rtems_interrupt_flash

– rtems_interrupt_lock_acquire

– rtems_interrupt_lock_release

– rtems_interrupt_lock_acquire_isr

– rtems_interrupt_lock_release_isr

– rtems_interrupt_is_in_progress

– rtems_interrupt_catch

• Clock Management

– rtems_clock_set

– rtems_clock_get_tod

– rtems_clock_get_tod_timeval

– rtems_clock_get_seconds_since_epoch

– rtems_clock_get_ticks_per_second

– rtems_clock_get_ticks_since_boot

8.3. Operations 123

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.3

– rtems_clock_get_uptime

• Timer Management

– rtems_timer_cancel

– rtems_timer_reset

– rtems_timer_fire_after

– rtems_timer_fire_when

– rtems_timer_server_fire_after

– rtems_timer_server_fire_when

• Event Management

– rtems_event_send

– rtems_event_system_send

– rtems_event_transient_send

• Semaphore Management

– rtems_semaphore_release

• Message Management

– rtems_message_queue_broadcast

– rtems_message_queue_send

– rtems_message_queue_urgent

• Signal Management

– rtems_signal_send

• Dual-Ported Memory Management

– rtems_port_external_to_internal

– rtems_port_internal_to_external

• IO Management The following services are safe to call from an ISR if and only if the device
driver service invoked is also safe. The IO Manager itself is safe but the invoked driver
entry point may or may not be.

– rtems_io_initialize

– rtems_io_open

– rtems_io_close

– rtems_io_read

– rtems_io_write

– rtems_io_control

• Fatal Error Management

– rtems_fatal

– rtems_fatal_error_occurred

124 Chapter 8. Interrupt Manager

Chapter 8 Section 8.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• Multiprocessing

– rtems_multiprocessing_announce

8.3. Operations 125

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

8.4 Directives

This section details the interrupt manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

126 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.4.1 INTERRUPT_CATCH - Establish an ISR

CALLING SEQUENCE:

1 rtems_status_code rtems_interrupt_catch(
2 rtems_isr_entry new_isr_handler,
3 rtems_vector_number vector,
4 rtems_isr_entry *old_isr_handler
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL ISR established successfully
RTEMS_INVALID_NUMBER illegal vector number
RTEMS_INVALID_ADDRESS illegal ISR entry point or invalid old_isr_handler

DESCRIPTION:
This directive establishes an interrupt service routine (ISR) for the specified interrupt vector
number. The new_isr_handler parameter specifies the entry point of the ISR. The entry point
of the previous ISR for the specified vector is returned in old_isr_handler.

To release an interrupt vector, pass the old handler’s address obtained when the vector was
first capture.

NOTES:
This directive will not cause the calling task to be preempted.

8.4. Directives 127

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

8.4.2 INTERRUPT_DISABLE - Disable Interrupts

CALLING SEQUENCE:

1 void rtems_interrupt_disable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive disables all maskable interrupts and returns the previous interrupt level in
level.

NOTES:
A later invocation of the rtems_interrupt_enable directive should be used to restore the
interrupt level.

This directive is implemented as a macro which sets the level parameter.

This directive will not cause the calling task to be preempted.

This directive is only available in uniprocessor configurations. The directive
rtems_interrupt_local_disable is available in all configurations.

1 void critical_section(void)
2 {
3 rtems_interrupt_level level;
4

5 /*
6 * Please note that the rtems_interrupt_disable() is a macro. The
7 * previous interrupt level (before the maskable interrupts are
8 * disabled) is returned here in the level macro parameter. This
9 * would be wrong:

10 *
11 * rtems_interrupt_disable(&level);
12 */
13 rtems_interrupt_disable(level);
14

15 /* Critical section, maskable interrupts are disabled */
16

17 {
18 rtems_interrupt_level level2;
19

20 rtems_interrupt_disable(level2);
21

22 /* Nested critical section */
23

24 rtems_interrupt_enable(level2);
25 }
26

27 /* Maskable interrupts are still disabled */
28

29 rtems_interrupt_enable(level);
30 }

128 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.4.3 INTERRUPT_ENABLE - Restore Interrupt Level

CALLING SEQUENCE:

1 void rtems_interrupt_enable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive restores the interrupt level specified by level.

NOTES:
The level parameter value must be obtained by a previous call to rtems_interrupt_disable
or rtems_interrupt_flash. Using an otherwise obtained value is undefined behaviour.

This directive is unsuitable to enable particular interrupt sources, for example in an interrupt
controller.

This directive will not cause the calling task to be preempted.

This directive is only available in uniprocessor configurations. The directive
rtems_interrupt_local_enable is available in all configurations.

8.4. Directives 129

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

8.4.4 INTERRUPT_FLASH - Flash Interrupts

CALLING SEQUENCE:

1 void rtems_interrupt_flash(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive is functionally equivalent to a rtems_interrupt_enable(level) immediately
followed by a rtems_interrupt_disable(level). On some architectures it is possible to
provide an optimized implementation for this sequence.

NOTES:
The level parameter value must be obtained by a previous call to rtems_interrupt_disable
or rtems_interrupt_flash. Using an otherwise obtained value is undefined behaviour.

This directive will not cause the calling task to be preempted.

This directive is only available in uniprocessor configurations. The directives
rtems_interrupt_local_disable and rtems_interrupt_local_enable are available in all
configurations.

Historically, the interrupt flash directive was heavily used in the operating system implemen-
tation. However, this is no longer the case. The interrupt flash directive is provided for
backward compatibility reasons.

130 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.4.5 INTERRUPT_LOCAL_DISABLE - Disable Interrupts on Current Processor

CALLING SEQUENCE:

1 void rtems_interrupt_local_disable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive disables all maskable interrupts on the current processor and returns the previ-
ous interrupt level in level.

NOTES:
A later invocation of the rtems_interrupt_local_enable directive should be used to restore
the interrupt level.

This directive is implemented as a macro which sets the level parameter.

This directive will not cause the calling task to be preempted.

In SMP configurations, this will not ensure system wide mutual exclusion. Use interrupt locks
instead.

1 void local_critical_section(void)
2 {
3 rtems_interrupt_level level;
4

5 /*
6 * Please note that the rtems_interrupt_local_disable() is a macro.
7 * The previous interrupt level (before the maskable interrupts are
8 * disabled) is returned here in the level macro parameter. This
9 * would be wrong:

10 *
11 * rtems_interrupt_local_disable(&level);
12 */
13 rtems_interrupt_local_disable(level);
14

15 /*
16 * Local critical section, maskable interrupts on the current
17 * processor are disabled.
18 */
19

20 {
21 rtems_interrupt_level level2;
22

23 rtems_interrupt_local_disable(level2);
24

25 /* Nested local critical section */
26

27 rtems_interrupt_local_enable(level2);
28 }
29

30 /* Maskable interrupts are still disabled */

(continues on next page)

8.4. Directives 131

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

(continued from previous page)

31

32 rtems_interrupt_local_enable(level);
33 }

132 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.4.6 INTERRUPT_LOCAL_ENABLE - Restore Interrupt Level on Current Processor

CALLING SEQUENCE:

1 void rtems_interrupt_local_enable(
2 rtems_interrupt_level level
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive restores the interrupt level specified by level on the current processor.

NOTES:
The level parameter value must be obtained by a previous call to
rtems_interrupt_local_disable. Using an otherwise obtained value is undefined be-
haviour.

This directive is unsuitable to enable particular interrupt sources, for example in an interrupt
controller.

This directive will not cause the calling task to be preempted.

8.4. Directives 133

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

8.4.7 INTERRUPT_LOCK_INITIALIZE - Initialize an ISR Lock

CALLING SEQUENCE:

1 void rtems_interrupt_lock_initialize(
2 rtems_interrupt_lock *lock,
3 const char *name
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Initializes an interrupt lock. The name must be persistent throughout the lifetime of the lock.

NOTES:
Concurrent initialization leads to unpredictable results.

134 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.4.8 INTERRUPT_LOCK_ACQUIRE - Acquire an ISR Lock

CALLING SEQUENCE:

1 void rtems_interrupt_lock_acquire(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Maskable interrupts will be disabled. In SMP configurations, this directive acquires an SMP
lock.

NOTES:
A separate lock context must be provided for each acquire/release pair, for example an auto-
matic variable.

An attempt to recursively acquire the lock may result in an infinite loop with maskable inter-
rupts disabled.

This directive will not cause the calling thread to be preempted. This directive can be used in
thread and interrupt context.

8.4. Directives 135

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

8.4.9 INTERRUPT_LOCK_RELEASE - Release an ISR Lock

CALLING SEQUENCE:

1 void rtems_interrupt_lock_release(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt level will be restored. In SMP configurations, this directive releases an SMP
lock.

NOTES:
The lock context must be the one used to acquire the lock, otherwise the result is unpre-
dictable.

This directive will not cause the calling thread to be preempted. This directive can be used in
thread and interrupt context.

136 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.4.10 INTERRUPT_LOCK_ACQUIRE_ISR - Acquire an ISR Lock from ISR

CALLING SEQUENCE:

1 void rtems_interrupt_lock_acquire_isr(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt level will remain unchanged. In SMP configurations, this directive acquires an
SMP lock.

NOTES:
A separate lock context must be provided for each acquire/release pair, for example an auto-
matic variable.

An attempt to recursively acquire the lock may result in an infinite loop.

This directive is intended for device drivers and should be called from the corresponding
interrupt service routine.

In case the corresponding interrupt service routine can be interrupted by higher priority in-
terrupts and these interrupts enter the critical section protected by this lock, then the result
is unpredictable.

8.4. Directives 137

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

8.4.11 INTERRUPT_LOCK_RELEASE_ISR - Release an ISR Lock from ISR

CALLING SEQUENCE:

1 void rtems_interrupt_lock_release_isr(
2 rtems_interrupt_lock *lock,
3 rtems_interrupt_lock_context *lock_context
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
The interrupt level will remain unchanged. In SMP configurations, this directive releases an
SMP lock.

NOTES:
The lock context must be the one used to acquire the lock, otherwise the result is unpre-
dictable.

This directive is intended for device drivers and should be called from the corresponding
interrupt service routine.

138 Chapter 8. Interrupt Manager

Chapter 8 Section 8.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

8.4.12 INTERRUPT_IS_IN_PROGRESS - Is an ISR in Progress

CALLING SEQUENCE:

1 bool rtems_interrupt_is_in_progress(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive returns TRUE if the processor is currently servicing an interrupt and FALSE oth-
erwise. A return value of TRUE indicates that the caller is an interrupt service routine, NOT a
task. The directives available to an interrupt service routine are restricted.

NOTES:
This directive will not cause the calling task to be preempted.

8.4. Directives 139

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 8 Section 8.4

140 Chapter 8. Interrupt Manager

CHAPTER

NINE

CLOCK MANAGER

141

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.1

9.1 Introduction

The clock manager provides support for time of day and other time related capabilities. The
directives provided by the clock manager are:

• rtems_clock_set (page 148) - Set date and time

• rtems_clock_get_tod (page 149) - Get date and time in TOD format

• rtems_clock_get_tod_timeval (page 150) - Get date and time in timeval format

• rtems_clock_get_seconds_since_epoch (page 151) - Get seconds since epoch

• rtems_clock_get_ticks_per_second (page 152) - Get ticks per second

• rtems_clock_get_ticks_since_boot (page 153) - Get current ticks counter value

• rtems_clock_tick_later (page 154) - Get tick value in the future

• rtems_clock_tick_later_usec (page 155) - Get tick value in the future in microseconds

• rtems_clock_tick_before (page 156) - Is tick value is before a point in time

• rtems_clock_get_uptime (page 157) - Get time since boot

• rtems_clock_get_uptime_timeval (page 158) - Get time since boot in timeval format

• rtems_clock_get_uptime_seconds (page 159) - Get seconds since boot

• rtems_clock_get_uptime_nanoseconds (page 160) - Get nanoseconds since boot

142 Chapter 9. Clock Manager

Chapter 9 Section 9.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.2 Background

9.2.1 Required Support

For the features provided by the clock manager to be utilized, periodic timer interrupts are
required. Therefore, a real-time clock or hardware timer is necessary to create the timer inter-
rupts. The clock tick directive is normally called by the timer ISR to announce to RTEMS that
a system clock tick has occurred. Elapsed time is measured in ticks. A tick is defined to be an
integral number of microseconds which is specified by the user in the Configuration Table.

9.2.2 Time and Date Data Structures

The clock facilities of the clock manager operate upon calendar time. These directives utilize
the following date and time structure for the native time and date format:

1 struct rtems_tod_control {
2 uint32_t year; /* greater than 1987 */
3 uint32_t month; /* 1 - 12 */
4 uint32_t day; /* 1 - 31 */
5 uint32_t hour; /* 0 - 23 */
6 uint32_t minute; /* 0 - 59 */
7 uint32_t second; /* 0 - 59 */
8 uint32_t ticks; /* elapsed between seconds */
9 };

10 typedef struct rtems_tod_control rtems_time_of_day;

The native date and time format is the only format supported when setting the system date and
time using the rtems_clock_set directive. Some applications expect to operate on a UNIX-style
date and time data structure. The rtems_clock_get_tod_timeval always returns the date and
time in struct timeval format.

The struct timeval data structure has two fields: tv_sec and tv_usec which are seconds and
microseconds, respectively. The tv_sec field in this data structure is the number of seconds since
the POSIX epoch of January 1, 1970 but will never be prior to the RTEMS epoch of January 1,
1988.

9.2.3 Clock Tick and Timeslicing

Timeslicing is a task scheduling discipline in which tasks of equal priority are executed for a
specific period of time before control of the CPU is passed to another task. It is also sometimes
referred to as the automatic round-robin scheduling algorithm. The length of time allocated to
each task is known as the quantum or timeslice.

The system’s timeslice is defined as an integral number of ticks, and is specified in the Config-
uration Table. The timeslice is defined for the entire system of tasks, but timeslicing is enabled
and disabled on a per task basis.

The clock tick directives implement timeslicing by decrementing the running task’s time-
remaining counter when both timeslicing and preemption are enabled. If the task’s timeslice
has expired, then that task will be preempted if there exists a ready task of equal priority.

9.2. Background 143

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.2

9.2.4 Delays

A sleep timer allows a task to delay for a given interval or up until a given time, and
then wake and continue execution. This type of timer is created automatically by the
rtems_task_wake_after and rtems_task_wake_when directives and, as a result, does not have
an RTEMS ID. Once activated, a sleep timer cannot be explicitly deleted. Each task may activate
one and only one sleep timer at a time.

9.2.5 Timeouts

Timeouts are a special type of timer automatically created when the timeout option is used
on the rtems_message_queue_receive, rtems_event_receive, rtems_semaphore_obtain and
rtems_region_get_segment directives. Each task may have one and only one timeout active
at a time. When a timeout expires, it unblocks the task with a timeout status code.

144 Chapter 9. Clock Manager

Chapter 9 Section 9.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.3 Operations

9.3.1 Announcing a Tick

RTEMS provides the several clock tick directives which are called from the user’s real-time clock
ISR to inform RTEMS that a tick has elapsed. Depending on the timer hardware capabilities
the clock driver must choose the most appropriate clock tick directive. The tick frequency
value, defined in microseconds, is a configuration parameter found in the Configuration Table.
RTEMS divides one million microseconds (one second) by the number of microseconds per
tick to determine the number of calls to the clock tick directive per second. The frequency of
clock tick calls determines the resolution (granularity) for all time dependent RTEMS actions.
For example, calling the clock tick directive ten times per second yields a higher resolution
than calling the clock tick two times per second. The clock tick directives are responsible for
maintaining both calendar time and the dynamic set of timers.

9.3.2 Setting the Time

The rtems_clock_set directive allows a task or an ISR to set the date and time maintained by
RTEMS. If setting the date and time causes any outstanding timers to pass their deadline, then
the expired timers will be fired during the invocation of the rtems_clock_set directive.

9.3.3 Obtaining the Time

RTEMS provides multiple directives which can be used by an application to obtain the current
date and time or date and time related information. These directives allow a task or an ISR
to obtain the current date and time or date and time related information. The current date
and time can be returned in either native or UNIX-style format. Additionally, the application
can obtain date and time related information such as the number of seconds since the RTEMS
epoch, the number of ticks since the executive was initialized, and the number of ticks per
second. The following directives are available:

rtems_clock_get_tod
obtain native style date and time

rtems_clock_get_time_value
obtain UNIX-style date and time

rtems_clock_get_ticks_since_boot
obtain number of ticks since RTEMS was initialized

rtems_clock_get_seconds_since_epoch
obtain number of seconds since RTEMS epoch

rtems_clock_get_ticks_per_second
obtain number of clock ticks per second

Calendar time operations will return an error code if invoked before the date and time have
been set.

9.3. Operations 145

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.3

9.3.4 Transition Advice for the Removed rtems_clock_get()

The directive CLOCK_GET - Get date and time information (page 162) took an untyped pointer
with an options argument to indicate the time information desired. This has been replaced with
a set of typed directives:

• CLOCK_GET_SECONDS_SINCE_EPOCH - Get seconds since epoch (page 151)

• CLOCK_GET_TICKS_PER_SECOND - Get ticks per second (page 152)

• CLOCK_GET_TICKS_SINCE_BOOT - Get current ticks counter value (page 153)

• CLOCK_GET_TOD - Get date and time in TOD format (page 149)

• CLOCK_GET_TOD_TIMEVAL - Get date and time in timeval format (page 150)

These directives directly correspond to what were previously referred to as clock options. These
strongly typed directives were available for multiple releases in parallel with rtems_clock_get()
until that directive was removed.

146 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.4 Directives

This section details the clock manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

9.4. Directives 147

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.4

9.4.1 CLOCK_SET - Set date and time

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_set(
2 rtems_time_of_day *time_buffer
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL date and time set successfully
RTEMS_INVALID_ADDRESS time_buffer is NULL
RTEMS_INVALID_CLOCK invalid time of day

DESCRIPTION:
This directive sets the system date and time. The date, time, and ticks in the time_buffer
structure are all range-checked, and an error is returned if any one is out of its valid range.

NOTES:
Years before 1988 are invalid.

The system date and time are based on the configured tick rate (number of microseconds in
a tick).

Setting the time forward may cause a higher priority task, blocked waiting on a specific time,
to be made ready. In this case, the calling task will be preempted after the next clock tick.

Re-initializing RTEMS causes the system date and time to be reset to an uninitialized state.
Another call to rtems_clock_set is required to re-initialize the system date and time to appli-
cation specific specifications.

148 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.4.2 CLOCK_GET_TOD - Get date and time in TOD format

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_tod(
2 rtems_time_of_day *time_buffer
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL current time obtained successfully
RTEMS_NOT_DEFINED system date and time is not set
RTEMS_INVALID_ADDRESS time_buffer is NULL

DESCRIPTION:
This directive obtains the system date and time. If the date and time has not been set with a
previous call to rtems_clock_set, then the RTEMS_NOT_DEFINED status code is returned.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re-initializing RTEMS causes
the system date and time to be reset to an uninitialized state. Another call to rtems_clock_set
is required to re-initialize the system date and time to application specific specifications.

9.4. Directives 149

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.4

9.4.3 CLOCK_GET_TOD_TIMEVAL - Get date and time in timeval format

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_tod_interval(
2 struct timeval *time
3);

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive obtains the system date and time in POSIX struct timeval format. If
the date and time has not been set with a previous call to rtems_clock_set, then the
RTEMS_NOT_DEFINED status code is returned.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re-initializing RTEMS causes
the system date and time to be reset to an uninitialized state. Another call to rtems_clock_set
is required to re-initialize the system date and time to application specific specifications.

150 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.4.4 CLOCK_GET_SECONDS_SINCE_EPOCH - Get seconds since epoch

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_seconds_since_epoch(
2 rtems_interval *the_interval
3);

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive returns the number of seconds since the RTEMS epoch and the current system
date and time. If the date and time has not been set with a previous call to rtems_clock_set,
then the RTEMS_NOT_DEFINED status code is returned.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re-initializing RTEMS causes
the system date and time to be reset to an uninitialized state. Another call to rtems_clock_set
is required to re-initialize the system date and time to application specific specifications.

9.4. Directives 151

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.4

9.4.5 CLOCK_GET_TICKS_PER_SECOND - Get ticks per second

CALLING SEQUENCE:

1 rtems_interval rtems_clock_get_ticks_per_second(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive returns the number of clock ticks per second. This is strictly based upon the
microseconds per clock tick that the application has configured.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted.

152 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.4.6 CLOCK_GET_TICKS_SINCE_BOOT - Get current ticks counter value

CALLING SEQUENCE:

1 rtems_interval rtems_clock_get_ticks_since_boot(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:

This directive returns the current tick counter value. With a 1ms clock tick, this
counter overflows after 50 days since boot. This is the historical measure of uptime
in an RTEMS system. The newer service rtems_clock_get_uptime is another and
potentially more accurate way of obtaining similar information.

NOTES:

This directive is callable from an ISR.

This directive will not cause the running task to be preempted.

9.4. Directives 153

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.4

9.4.7 CLOCK_TICK_LATER - Get tick value in the future

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_later(
2 rtems_interval delta
3);

DESCRIPTION:
Returns the ticks counter value delta ticks in the future.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted.

154 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.4.8 CLOCK_TICK_LATER_USEC - Get tick value in the future in microseconds

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_later_usec(
2 rtems_interval delta_in_usec
3);

DESCRIPTION:
Returns the ticks counter value at least delta microseconds in the future.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted.

9.4. Directives 155

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.4

9.4.9 CLOCK_TICK_BEFORE - Is tick value is before a point in time

CALLING SEQUENCE:

1 rtems_interval rtems_clock_tick_before(
2 rtems_interval tick
3);

DESCRIPTION:
Returns true if the current ticks counter value indicates a time before the time specified by
the tick value and false otherwise.

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted.

EXAMPLE:

1 status busy(void)
2 {
3 rtems_interval timeout = rtems_clock_tick_later_usec(10000);
4 do {
5 if (ok()) {
6 return success;
7 }
8 } while (rtems_clock_tick_before(timeout));
9 return timeout;

10 }

156 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.4.10 CLOCK_GET_UPTIME - Get the time since boot

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get_uptime(
2 struct timespec *uptime
3);

DIRECTIVE STATUS CODES:

DESCRIPTION:
This directive returns the seconds and nanoseconds since the system was booted. If the BSP
supports nanosecond clock accuracy, the time reported will probably be different on every
call.

NOTES:
This directive may be called from an ISR.

9.4. Directives 157

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.4

9.4.11 CLOCK_GET_UPTIME_TIMEVAL - Get the time since boot in timeval format

CALLING SEQUENCE:

1 void rtems_clock_get_uptime_timeval(
2 struct timeval *uptime
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive returns the seconds and microseconds since the system was booted. If the BSP
supports nanosecond clock accuracy, the time reported will probably be different on every
call.

NOTES:
This directive may be called from an ISR.

158 Chapter 9. Clock Manager

Chapter 9 Section 9.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.4.12 CLOCK_GET_UPTIME_SECONDS - Get the seconds since boot

CALLING SEQUENCE:

1 time_t rtems_clock_get_uptime_seconds(void);

DIRECTIVE STATUS CODES:
The system uptime in seconds.

DESCRIPTION:
This directive returns the seconds since the system was booted.

NOTES:
This directive may be called from an ISR.

9.4. Directives 159

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.4

9.4.13 CLOCK_GET_UPTIME_NANOSECONDS - Get the nanoseconds since boot

CALLING SEQUENCE:

1 uint64_t rtems_clock_get_uptime_nanoseconds(void);

DIRECTIVE STATUS CODES:
The system uptime in nanoseconds.

DESCRIPTION:
This directive returns the nanoseconds since the system was booted.

NOTES:
This directive may be called from an ISR.

160 Chapter 9. Clock Manager

Chapter 9 Section 9.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

9.5 Removed Directives

9.5. Removed Directives 161

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 9 Section 9.5

9.5.1 CLOCK_GET - Get date and time information

Warning: This directive was removed in RTEMS 5.1. See also Transition Advice for the
Removed rtems_clock_get() (page 146).

CALLING SEQUENCE:

1 rtems_status_code rtems_clock_get(
2 rtems_clock_get_options option,
3 void *time_buffer
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL current time obtained successfully
RTEMS_NOT_DEFINED system date and time is not set
RTEMS_INVALID_ADDRESS time_buffer is NULL

DESCRIPTION:
This directive obtains the system date and time. If the caller is attempting to obtain
the date and time (i.e. option is set to either RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH,
RTEMS_CLOCK_GET_TOD, or RTEMS_CLOCK_GET_TIME_VALUE) and the date and time has not
been set with a previous call to rtems_clock_set, then the RTEMS_NOT_DEFINED status code
is returned. The caller can always obtain the number of ticks per second (option is
RTEMS_CLOCK_GET_TICKS_PER_SECOND) and the number of ticks since the executive was ini-
tialized option is RTEMS_CLOCK_GET_TICKS_SINCE_BOOT).

The option argument may taken on any value of the enumerated type
rtems_clock_get_options. The data type expected for time_buffer is based on the
value of option as indicated below:

Option Return type
RTEMS_CLOCK_GET_TOD (rtems_time_of_day *)

RTEMS_CLOCK_GET_SECONDS_SINCE_EPOCH (rtems_interval *)

RTEMS_CLOCK_GET_TICKS_SINCE_BOOT (rtems_interval *)

RTEMS_CLOCK_GET_TICKS_PER_SECOND (rtems_interval *)

RTEMS_CLOCK_GET_TIME_VALUE (struct timeval *)

NOTES:
This directive is callable from an ISR.

This directive will not cause the running task to be preempted. Re-initializing RTEMS causes
the system date and time to be reset to an uninitialized state. Another call to rtems_clock_set
is required to re-initialize the system date and time to application specific specifications.

162 Chapter 9. Clock Manager

CHAPTER

TEN

TIMER MANAGER

163

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.1

10.1 Introduction

The timer manager provides support for timer facilities. The directives provided by the timer
manager are:

• rtems_timer_create (page 170) - Create a timer

• rtems_timer_ident (page 171) - Get ID of a timer

• rtems_timer_cancel (page 172) - Cancel a timer

• rtems_timer_delete (page 173) - Delete a timer

• rtems_timer_fire_after (page 174) - Fire timer after interval

• rtems_timer_fire_when (page 175) - Fire timer when specified

• rtems_timer_initiate_server (page 176) - Initiate server for task-based timers

• rtems_timer_server_fire_after (page 177) - Fire task-based timer after interval

• rtems_timer_server_fire_when (page 178) - Fire task-based timer when specified

• rtems_timer_reset (page 179) - Reset an interval timer

164 Chapter 10. Timer Manager

Chapter 10 Section 10.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.2 Background

10.2.1 Required Support

A clock tick is required to support the functionality provided by this manager.

10.2.2 Timers

A timer is an RTEMS object which allows the application to schedule operations to occur at
specific times in the future. User supplied timer service routines are invoked by either a clock
tick directive or a special Timer Server task when the timer fires. Timer service routines may
perform any operations or directives which normally would be performed by the application
code which invoked a clock tick directive.

The timer can be used to implement watchdog routines which only fire to denote that an appli-
cation error has occurred. The timer is reset at specific points in the application to ensure that
the watchdog does not fire. Thus, if the application does not reset the watchdog timer, then the
timer service routine will fire to indicate that the application has failed to reach a reset point.
This use of a timer is sometimes referred to as a “keep alive” or a “deadman” timer.

10.2.3 Timer Server

The Timer Server task is responsible for executing the timer service routines associated with
all task-based timers. This task executes at a priority specified by rtems_timer_initiate_server()
(page 176) and it may have a priority of zero (the highest priority). In uniprocessor configura-
tions, it is created non-preemptible.

By providing a mechanism where timer service routines execute in task rather than interrupt
space, the application is allowed a bit more flexibility in what operations a timer service routine
can perform. For example, the Timer Server can be configured to have a floating point context
in which case it would be safe to perform floating point operations from a task-based timer.
Most of the time, executing floating point instructions from an interrupt service routine is not
considered safe. The timer service routines invoked by the Timer Server may block, however,
since this blocks the Timer Server itself, other timer service routines that are already pending
do not run until the blocked timer service routine finished its work.

The Timer Server is designed to remain blocked until a task-based timer fires. This reduces the
execution overhead of the Timer Server.

10.2.4 Timer Service Routines

The timer service routine should adhere to C calling conventions and have a prototype similar
to the following:

1 rtems_timer_service_routine user_routine(
2 rtems_id timer_id,
3 void *user_data
4);

10.2. Background 165

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.2

Where the timer_id parameter is the RTEMS object ID of the timer which is being fired and
user_data is a pointer to user-defined information which may be utilized by the timer service
routine. The argument user_data may be NULL.

166 Chapter 10. Timer Manager

Chapter 10 Section 10.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.3 Operations

10.3.1 Creating a Timer

The rtems_timer_create directive creates a timer by allocating a Timer Control Block (TMCB),
assigning the timer a user-specified name, and assigning it a timer ID. Newly created timers do
not have a timer service routine associated with them and are not active.

10.3.2 Obtaining Timer IDs

When a timer is created, RTEMS generates a unique timer ID and assigns it to the created timer
until it is deleted. The timer ID may be obtained by either of two methods. First, as the result
of an invocation of the rtems_timer_create directive, the timer ID is stored in a user provided
location. Second, the timer ID may be obtained later using the rtems_timer_ident directive.
The timer ID is used by other directives to manipulate this timer.

10.3.3 Initiating an Interval Timer

The rtems_timer_fire_after and rtems_timer_server_fire_after directives initiate a timer
to fire a user provided timer service routine after the specified number of clock ticks have
elapsed. When the interval has elapsed, the timer service routine will be invoked from a clock
tick directive if it was initiated by the rtems_timer_fire_after directive and from the Timer
Server task if initiated by the rtems_timer_server_fire_after directive.

10.3.4 Initiating a Time of Day Timer

The rtems_timer_fire_when and rtems_timer_server_fire_when directive initiate a timer to
fire a user provided timer service routine when the specified time of day has been reached.
When the interval has elapsed, the timer service routine will be invoked from a clock tick
directive by the rtems_timer_fire_when directive and from the Timer Server task if initiated by
the rtems_timer_server_fire_when directive.

10.3.5 Canceling a Timer

The rtems_timer_cancel directive is used to halt the specified timer. Once canceled, the timer
service routine will not fire unless the timer is reinitiated. The timer can be reinitiated using
the rtems_timer_reset, rtems_timer_fire_after, and rtems_timer_fire_when directives.

10.3.6 Resetting a Timer

The rtems_timer_reset directive is used to restore an interval timer initiated by a previous
invocation of rtems_timer_fire_after or rtems_timer_server_fire_after to its original in-
terval length. If the timer has not been used or the last usage of this timer was by the
rtems_timer_fire_when or rtems_timer_server_fire_when directive, then an error is returned.
The timer service routine is not changed or fired by this directive.

10.3. Operations 167

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.3

10.3.7 Initiating the Timer Server

The rtems_timer_initiate_server directive is used to allocate and start the execution of the
Timer Server task. The application can specify both the stack size and attributes of the Timer
Server. The Timer Server executes at a priority higher than any application task and thus the
user can expect to be preempted as the result of executing the rtems_timer_initiate_server
directive.

10.3.8 Deleting a Timer

The rtems_timer_delete directive is used to delete a timer. If the timer is running and has not
expired, the timer is automatically canceled. The timer’s control block is returned to the TMCB
free list when it is deleted. A timer can be deleted by a task other than the task which created
the timer. Any subsequent references to the timer’s name and ID are invalid.

168 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.4 Directives

This section details the timer manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

10.4. Directives 169

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.4

10.4.1 TIMER_CREATE - Create a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_create(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer created successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME invalid timer name
RTEMS_TOO_MANY too many timers created

DESCRIPTION:
This directive creates a timer. The assigned timer id is returned in id. This id is used to access
the timer with other timer manager directives. For control and maintenance of the timer,
RTEMS allocates a TMCB from the local TMCB free pool and initializes it.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

In SMP configurations, the processor of the currently executing thread determines the pro-
cessor used for the created timer. During the life-time of the timer this processor is used to
manage the timer internally.

170 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.4.2 TIMER_IDENT - Get ID of a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer identified successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME timer name not found

DESCRIPTION:
This directive obtains the timer id associated with the timer name to be acquired. If the timer
name is not unique, then the timer id will match one of the timers with that name. However,
this timer id is not guaranteed to correspond to the desired timer. The timer id is used to
access this timer in other timer related directives.

NOTES:
This directive will not cause the running task to be preempted.

10.4. Directives 171

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.4

10.4.3 TIMER_CANCEL - Cancel a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_cancel(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer canceled successfully
RTEMS_INVALID_ID invalid timer id

DESCRIPTION:
This directive cancels the timer id. This timer will be reinitiated by the next invocation of
rtems_timer_reset, rtems_timer_fire_after, or rtems_timer_fire_when with this id.

NOTES:
This directive will not cause the running task to be preempted.

172 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.4.4 TIMER_DELETE - Delete a timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer deleted successfully
RTEMS_INVALID_ID invalid timer id

DESCRIPTION:
This directive deletes the timer specified by id. If the timer is running, it is automatically
canceled. The TMCB for the deleted timer is reclaimed by RTEMS.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

A timer can be deleted by a task other than the task which created the timer.

10.4. Directives 173

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.4

10.4.5 TIMER_FIRE_AFTER - Fire timer after interval

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_fire_after(
2 rtems_id id,
3 rtems_interval ticks,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer initiated successfully
RTEMS_INVALID_ADDRESS routine is NULL
RTEMS_INVALID_ID invalid timer id
RTEMS_INVALID_NUMBER invalid interval

DESCRIPTION:
This directive initiates the timer specified by id. If the timer is running, it is automatically
canceled before being initiated. The timer is scheduled to fire after an interval ticks clock
ticks has passed. When the timer fires, the timer service routine routine will be invoked with
the argument user_data.

NOTES:
This directive will not cause the running task to be preempted.

174 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.4.6 TIMER_FIRE_WHEN - Fire timer when specified

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_fire_when(
2 rtems_id id,
3 rtems_time_of_day *wall_time,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer initiated successfully
RTEMS_INVALID_ADDRESS routine is NULL
RTEMS_INVALID_ADDRESS wall_time is NULL
RTEMS_INVALID_ID invalid timer id
RTEMS_NOT_DEFINED system date and time is not set
RTEMS_INVALID_CLOCK invalid time of day

DESCRIPTION:
This directive initiates the timer specified by id. If the timer is running, it is automatically
canceled before being initiated. The timer is scheduled to fire at the time of day specified by
wall_time. When the timer fires, the timer service routine routine will be invoked with the
argument user_data.

NOTES:
This directive will not cause the running task to be preempted.

10.4. Directives 175

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.4

10.4.7 TIMER_INITIATE_SERVER - Initiate server for task-based timers

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_initiate_server(
2 uint32_t priority,
3 uint32_t stack_size,
4 rtems_attribute attribute_set
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL Timer Server initiated successfully
RTEMS_TOO_MANY too many tasks created

DESCRIPTION:
This directive initiates the Timer Server task. This task is responsible for executing all timers
initiated via the rtems_timer_server_fire_after or rtems_timer_server_fire_when direc-
tives.

NOTES:
This directive could cause the calling task to be preempted.

The Timer Server task is created using the rtems_task_create service and must be accounted
for when configuring the system.

Even through this directive invokes the rtems_task_create and rtems_task_start directives,
it should only fail due to resource allocation problems.

176 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.4.8 TIMER_SERVER_FIRE_AFTER - Fire task-based timer after interval

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_server_fire_after(
2 rtems_id id,
3 rtems_interval ticks,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer initiated successfully
RTEMS_INVALID_ADDRESS routine is NULL
RTEMS_INVALID_ID invalid timer id
RTEMS_INVALID_NUMBER invalid interval
RTEMS_INCORRECT_STATE Timer Server not initiated

DESCRIPTION:
This directive initiates the timer specified by id and specifies that when it fires it will be
executed by the Timer Server.

If the timer is running, it is automatically canceled before being initiated. The timer is sched-
uled to fire after an interval ticks clock ticks has passed. When the timer fires, the timer
service routine routine will be invoked with the argument user_data.

NOTES:
This directive will not cause the running task to be preempted.

10.4. Directives 177

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.4

10.4.9 TIMER_SERVER_FIRE_WHEN - Fire task-based timer when specified

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_server_fire_when(
2 rtems_id id,
3 rtems_time_of_day *wall_time,
4 rtems_timer_service_routine_entry routine,
5 void *user_data
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer initiated successfully
RTEMS_INVALID_ADDRESS routine is NULL
RTEMS_INVALID_ADDRESS wall_time is NULL
RTEMS_INVALID_ID invalid timer id
RTEMS_NOT_DEFINED system date and time is not set
RTEMS_INVALID_CLOCK invalid time of day
RTEMS_INCORRECT_STATE Timer Server not initiated

DESCRIPTION:
This directive initiates the timer specified by id and specifies that when it fires it will be
executed by the Timer Server.

If the timer is running, it is automatically canceled before being initiated. The timer is sched-
uled to fire at the time of day specified by wall_time. When the timer fires, the timer service
routine routine will be invoked with the argument user_data.

NOTES:
This directive will not cause the running task to be preempted.

178 Chapter 10. Timer Manager

Chapter 10 Section 10.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

10.4.10 TIMER_RESET - Reset an interval timer

CALLING SEQUENCE:

1 rtems_status_code rtems_timer_reset(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL timer reset successfully
RTEMS_INVALID_ID invalid timer id
RTEMS_NOT_DEFINED attempted to reset a when or newly created timer

DESCRIPTION:
This directive resets the timer associated with id. This timer must have been previously
initiated with either the rtems_timer_fire_after or rtems_timer_server_fire_after di-
rective. If active the timer is canceled, after which the timer is reinitiated using the
same interval and timer service routine which the original rtems_timer_fire_after or
rtems_timer_server_fire_after directive used.

NOTES:
If the timer has not been used or the last usage of this timer was by a rtems_timer_fire_when
or rtems_timer_server_fire_when directive, then the RTEMS_NOT_DEFINED error is returned.

Restarting a cancelled after timer results in the timer being reinitiated with its previous timer
service routine and interval.

This directive will not cause the running task to be preempted.

10.4. Directives 179

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 10 Section 10.4

180 Chapter 10. Timer Manager

CHAPTER

ELEVEN

RATE MONOTONIC MANAGER

181

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.1

11.1 Introduction

The rate monotonic manager provides facilities to implement tasks which execute in a periodic
fashion. Critically, it also gathers information about the execution of those periods and can
provide important statistics to the user which can be used to analyze and tune the application.
The directives provided by the rate monotonic manager are:

• rtems_rate_monotonic_create (page 194) - Create a rate monotonic period

• rtems_rate_monotonic_ident (page 195) - Get ID of a period

• rtems_rate_monotonic_cancel (page 196) - Cancel a period

• rtems_rate_monotonic_delete (page 197) - Delete a rate monotonic period

• rtems_rate_monotonic_period (page 198) - Conclude current/Start next period

• rtems_rate_monotonic_get_status (page 199) - Obtain status from a period

• rtems_rate_monotonic_get_statistics (page 200) - Obtain statistics from a period

• rtems_rate_monotonic_reset_statistics (page 201) - Reset statistics for a period

• rtems_rate_monotonic_reset_all_statistics (page 202) - Reset statistics for all periods

• rtems_rate_monotonic_report_statistics (page 203) - Print period statistics report

182 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.2 Background

The rate monotonic manager provides facilities to manage the execution of periodic tasks.
This manager was designed to support application designers who utilize the Rate Monotonic
Scheduling Algorithm (RMS) to ensure that their periodic tasks will meet their deadlines, even
under transient overload conditions. Although designed for hard real-time systems, the ser-
vices provided by the rate monotonic manager may be used by any application which requires
periodic tasks.

11.2.1 Rate Monotonic Manager Required Support

A clock tick is required to support the functionality provided by this manager.

11.2.2 Period Statistics

This manager maintains a set of statistics on each period object. These statistics are reset
implictly at period creation time and may be reset or obtained at any time by the application.
The following is a list of the information kept:

owner
is the id of the thread that owns this period.

count
is the total number of periods executed.

missed_count
is the number of periods that were missed.

min_cpu_time
is the minimum amount of CPU execution time consumed on any execution of the periodic
loop.

max_cpu_time
is the maximum amount of CPU execution time consumed on any execution of the periodic
loop.

total_cpu_time
is the total amount of CPU execution time consumed by executions of the periodic loop.

min_wall_time
is the minimum amount of wall time that passed on any execution of the periodic loop.

max_wall_time
is the maximum amount of wall time that passed on any execution of the periodic loop.

total_wall_time
is the total amount of wall time that passed during executions of the periodic loop.

Each period is divided into two consecutive phases. The period starts with the active phase
of the task and is followed by the inactive phase of the task. In the inactive phase the task
is blocked and waits for the start of the next period. The inactive phase is skipped in case of
a period miss. The wall time includes the time during the active phase of the task on which
the task is not executing on a processor. The task is either blocked (for example it waits for a
resource) or a higher priority tasks executes, thus preventing it from executing. In case the wall

11.2. Background 183

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.2

time exceeds the period time, then this is a period miss. The gap between the wall time and the
period time is the margin between a period miss or success.

The period statistics information is inexpensive to maintain and can provide very useful insights
into the execution characteristics of a periodic task loop. But it is just information. The period
statistics reported must be analyzed by the user in terms of what the applications is. For exam-
ple, in an application where priorities are assigned by the Rate Monotonic Algorithm, it would
be very undesirable for high priority (i.e. frequency) tasks to miss their period. Similarly, in
nearly any application, if a task were supposed to execute its periodic loop every 10 milliseconds
and it averaged 11 milliseconds, then application requirements are not being met.

The information reported can be used to determine the “hot spots” in the application. Given
a period’s id, the user can determine the length of that period. From that information and
the CPU usage, the user can calculate the percentage of CPU time consumed by that periodic
task. For example, a task executing for 20 milliseconds every 200 milliseconds is consuming 10
percent of the processor’s execution time. This is usually enough to make it a good candidate
for optimization.

However, execution time alone is not enough to gauge the value of optimizing a particular
task. It is more important to optimize a task executing 2 millisecond every 10 milliseconds (20
percent of the CPU) than one executing 10 milliseconds every 100 (10 percent of the CPU). As
a general rule of thumb, the higher frequency at which a task executes, the more important it
is to optimize that task.

11.2.3 Periodicity Definitions

A periodic task is one which must be executed at a regular interval. The interval between suc-
cessive iterations of the task is referred to as its period. Periodic tasks can be characterized by
the length of their period and execution time. The period and execution time of a task can be
used to determine the processor utilization for that task. Processor utilization is the percentage
of processor time used and can be calculated on a per-task or system-wide basis. Typically,
the task’s worst-case execution time will be less than its period. For example, a periodic task’s
requirements may state that it should execute for 10 milliseconds every 100 milliseconds. Al-
though the execution time may be the average, worst, or best case, the worst-case execution
time is more appropriate for use when analyzing system behavior under transient overload
conditions. . . index:: aperiodic task, definition

In contrast, an aperiodic task executes at irregular intervals and has only a soft deadline. In
other words, the deadlines for aperiodic tasks are not rigid, but adequate response times are
desirable. For example, an aperiodic task may process user input from a terminal.

Finally, a sporadic task is an aperiodic task with a hard deadline and minimum interarrival time.
The minimum interarrival time is the minimum period of time which exists between successive
iterations of the task. For example, a sporadic task could be used to process the pressing of
a fire button on a joystick. The mechanical action of the fire button ensures a minimum time
period between successive activations, but the missile must be launched by a hard deadline.

11.2.4 Rate Monotonic Scheduling Algorithm

The Rate Monotonic Scheduling Algorithm (RMS) is important to real-time systems designers
because it allows one to sufficiently guarantee that a set of tasks is schedulable (see [LL73],
[LSD89], [SG90], [Bur91]).

184 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

A set of tasks is said to be schedulable if all of the tasks can meet their deadlines. RMS provides
a set of rules which can be used to perform a guaranteed schedulability analysis for a task
set. This analysis determines whether a task set is schedulable under worst-case conditions and
emphasizes the predictability of the system’s behavior. It has been proven that:

RMS

RMS is an optimal fixed-priority algorithm for scheduling independent, preemptible, periodic
tasks on a single processor.

RMS is optimal in the sense that if a set of tasks can be scheduled by any fixed-priority algorithm,
then RMS will be able to schedule that task set. RMS bases it schedulability analysis on the
processor utilization level below which all deadlines can be met.

RMS calls for the static assignment of task priorities based upon their period. The shorter
a task’s period, the higher its priority. For example, a task with a 1 millisecond period has
higher priority than a task with a 100 millisecond period. If two tasks have the same period,
then RMS does not distinguish between the tasks. However, RTEMS specifies that when given
tasks of equal priority, the task which has been ready longest will execute first. RMS’s priority
assignment scheme does not provide one with exact numeric values for task priorities. For
example, consider the following task set and priority assignments:

Task Period (in milliseconds) Priority
1 100 Low
2 50 Medium
3 50 Medium
4 25 High

RMS only calls for task 1 to have the lowest priority, task 4 to have the highest priority, and tasks
2 and 3 to have an equal priority between that of tasks 1 and 4. The actual RTEMS priorities
assigned to the tasks must only adhere to those guidelines.

Many applications have tasks with both hard and soft deadlines. The tasks with hard deadlines
are typically referred to as the critical task set, with the soft deadline tasks being the non-
critical task set. The critical task set can be scheduled using RMS, with the non-critical tasks not
executing under transient overload, by simply assigning priorities such that the lowest priority
critical task (i.e. longest period) has a higher priority than the highest priority non-critical task.
Although RMS may be used to assign priorities to the non-critical tasks, it is not necessary. In
this instance, schedulability is only guaranteed for the critical task set.

11.2.5 Schedulability Analysis

RMS allows application designers to ensure that tasks can meet all deadlines under fixed-
priority assignment, even under transient overload, without knowing exactly when any given
task will execute by applying proven schedulability analysis rules.

11.2.5.1 Assumptions

The schedulability analysis rules for RMS were developed based on the following assumptions:

11.2. Background 185

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.2

• The requests for all tasks for which hard deadlines exist are periodic, with a constant
interval between requests.

• Each task must complete before the next request for it occurs.

• The tasks are independent in that a task does not depend on the initiation or completion
of requests for other tasks.

• The execution time for each task without preemption or interruption is constant and does
not vary.

• Any non-periodic tasks in the system are special. These tasks displace periodic tasks while
executing and do not have hard, critical deadlines.

Once the basic schedulability analysis is understood, some of the above assumptions can be
relaxed and the side-effects accounted for.

11.2.5.2 Processor Utilization Rule

The Processor Utilization Rule requires that processor utilization be calculated based upon the
period and execution time of each task. The fraction of processor time spent executing task
index is Time(i) / Period(i). The processor utilization can be calculated as follows where n
is the number of tasks in the set being analyzed:

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =

𝑛∑︁
𝑖=1

𝑇𝑖𝑚𝑒𝑖/𝑃𝑒𝑟𝑖𝑜𝑑𝑖

To ensure schedulability even under transient overload, the processor utilization must adhere
to the following rule:

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑛 * (2
1
𝑛 − 1)

As the number of tasks increases, the above formula approaches ln(2) for a worst-case utiliza-
tion factor of approximately 0.693. Many tasks sets can be scheduled with a greater utilization
factor. In fact, the average processor utilization threshold for a randomly generated task set is
approximately 0.88. See more detail in [LL73].

11.2.5.3 Processor Utilization Rule Example

This example illustrates the application of the Processor Utilization Rule to an application with
three critical periodic tasks. The following table details the RMS priority, period, execution
time, and processor utilization for each task:

Task RMS Priority Period Execution Time Processor Utilization
1 High 100 15 0.15
2 Medium 200 50 0.25
3 Low 300 100 0.33

The total processor utilization for this task set is 0.73 which is below the upper bound of 3 *
(2**(1/3) - 1), or 0.779, imposed by the Processor Utilization Rule. Therefore, this task set is
guaranteed to be schedulable using RMS.

186 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.2.5.4 First Deadline Rule

If a given set of tasks do exceed the processor utilization upper limit imposed by the Processor
Utilization Rule, they can still be guaranteed to meet all their deadlines by application of the
First Deadline Rule. This rule can be stated as follows:

For a given set of independent periodic tasks, if each task meets its first deadline when all tasks
are started at the same time, then the deadlines will always be met for any combination of start
times.

A key point with this rule is that ALL periodic tasks are assumed to start at the exact same
instant in time. Although this assumption may seem to be invalid, RTEMS makes it quite easy
to ensure. By having a non-preemptible user initialization task, all application tasks, regardless
of priority, can be created and started before the initialization deletes itself. This technique
ensures that all tasks begin to compete for execution time at the same instant - when the user
initialization task deletes itself. See more detail in [LSD89].

11.2.5.5 First Deadline Rule Example

The First Deadline Rule can ensure schedulability even when the Processor Utilization Rule
fails. The example below is a modification of the Processor Utilization Rule example where task
execution time has been increased from 15 to 25 units. The following table details the RMS
priority, period, execution time, and processor utilization for each task:

Task RMS Priority Period Execution Time Processor Utilization
1 High 100 25 0.25
2 Medium 200 50 0.25
3 Low 300 100 0.33

The total processor utilization for the modified task set is 0.83 which is above the upper bound of
3 * (2**(1/3) - 1), or 0.779, imposed by the Processor Utilization Rule. Therefore, this task set
is not guaranteed to be schedulable using RMS. However, the First Deadline Rule can guarantee
the schedulability of this task set. This rule calls for one to examine each occurrence of deadline
until either all tasks have met their deadline or one task failed to meet its first deadline. The
following table details the time of each deadline occurrence, the maximum number of times
each task may have run, the total execution time, and whether all the deadlines have been met:

Deadline Time Task 1 Task 2 Task 3 Total Execution Time All DeadlinesMet?
100 1 1 1 25 + 50 + 100 = 175 NO
200 2 1 1 50 + 50 + 100 = 200 YES

The key to this analysis is to recognize when each task will execute. For example at time 100,
task 1 must have met its first deadline, but tasks 2 and 3 may also have begun execution. In
this example, at time 100 tasks 1 and 2 have completed execution and thus have met their first
deadline. Tasks 1 and 2 have used (25 + 50) = 75 time units, leaving (100 - 75) = 25 time
units for task 3 to begin. Because task 3 takes 100 ticks to execute, it will not have completed
execution at time 100. Thus at time 100, all of the tasks except task 3 have met their first
deadline.

At time 200, task 1 must have met its second deadline and task 2 its first deadline. As a result,
of the first 200 time units, task 1 uses (2 * 25) = 50 and task 2 uses 50, leaving (200 - 100)

11.2. Background 187

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.2

time units for task 3. Task 3 requires 100 time units to execute, thus it will have completed
execution at time 200. Thus, all of the tasks have met their first deadlines at time 200, and the
task set is schedulable using the First Deadline Rule.

11.2.5.6 Relaxation of Assumptions

The assumptions used to develop the RMS schedulability rules are uncommon in most real-time
systems. For example, it was assumed that tasks have constant unvarying execution time. It is
possible to relax this assumption, simply by using the worst-case execution time of each task.

Another assumption is that the tasks are independent. This means that the tasks do not wait
for one another or contend for resources. This assumption can be relaxed by accounting for the
amount of time a task spends waiting to acquire resources. Similarly, each task’s execution time
must account for any I/O performed and any RTEMS directive calls.

In addition, the assumptions did not account for the time spent executing interrupt service
routines. This can be accounted for by including all the processor utilization by interrupt service
routines in the utilization calculation. Similarly, one should also account for the impact of delays
in accessing local memory caused by direct memory access and other processors accessing local
dual-ported memory.

The assumption that nonperiodic tasks are used only for initialization or failure-recovery can
be relaxed by placing all periodic tasks in the critical task set. This task set can be scheduled
and analyzed using RMS. All nonperiodic tasks are placed in the non-critical task set. Although
the critical task set can be guaranteed to execute even under transient overload, the non-critical
task set is not guaranteed to execute.

In conclusion, the application designer must be fully cognizant of the system and its run-time
behavior when performing schedulability analysis for a system using RMS. Every hardware and
software factor which impacts the execution time of each task must be accounted for in the
schedulability analysis.

188 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.3 Operations

11.3.1 Creating a Rate Monotonic Period

The rtems_rate_monotonic_create directive creates a rate monotonic period which is to be
used by the calling task to delineate a period. RTEMS allocates a Period Control Block (PCB)
from the PCB free list. This data structure is used by RTEMS to manage the newly created rate
monotonic period. RTEMS returns a unique period ID to the application which is used by other
rate monotonic manager directives to access this rate monotonic period.

11.3.2 Manipulating a Period

The rtems_rate_monotonic_period directive is used to establish and maintain periodic
execution utilizing a previously created rate monotonic period. Once initiated by the
rtems_rate_monotonic_period directive, the period is said to run until it either expires or is
reinitiated. The state of the rate monotonic period results in one of the following scenarios:

• If the rate monotonic period is running, the calling task will be blocked for the remain-
der of the outstanding period and, upon completion of that period, the period will be
reinitiated with the specified period.

• If the rate monotonic period is not currently running and has not expired, it is initiated
with a length of period ticks and the calling task returns immediately.

• If the rate monotonic period has expired before the task invokes the
rtems_rate_monotonic_period directive, the postponed job will be released until
there is no more postponed jobs. The calling task returns immediately with a timeout
error status. In the watchdog routine, the period will still be updated periodically and
track the count of the postponed jobs [CvdBruggenC16]. Please note, the count of the
postponed jobs is only saturated until 0xffffffff.

11.3.3 Obtaining the Status of a Period

If the rtems_rate_monotonic_period directive is invoked with a period of RTEMS_PERIOD_STATUS
ticks, the current state of the specified rate monotonic period will be returned. The following
table details the relationship between the period’s status and the directive status code returned
by the rtems_rate_monotonic_period directive:

RTEMS_SUCCESSFUL period is running
RTEMS_TIMEOUT period has expired
RTEMS_NOT_DEFINED period has never been initiated

Obtaining the status of a rate monotonic period does not alter the state or length of that period.

11.3.4 Canceling a Period

The rtems_rate_monotonic_cancel directive is used to stop the period maintained by the spec-
ified rate monotonic period. The period is stopped and the rate monotonic period can be reini-
tiated using the rtems_rate_monotonic_period directive.

11.3. Operations 189

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.3

11.3.5 Deleting a Rate Monotonic Period

The rtems_rate_monotonic_delete directive is used to delete a rate monotonic period. If the
period is running and has not expired, the period is automatically canceled. The rate monotonic
period’s control block is returned to the PCB free list when it is deleted. A rate monotonic period
can be deleted by a task other than the task which created the period.

11.3.6 Examples

The following sections illustrate common uses of rate monotonic periods to construct periodic
tasks.

11.3.7 Simple Periodic Task

This example consists of a single periodic task which, after initialization, executes every 100
clock ticks.

1 rtems_task Periodic_task(rtems_task_argument arg)
2 {
3 rtems_name name;
4 rtems_id period;
5 rtems_status_code status;
6 name = rtems_build_name('P', 'E', 'R', 'D');
7 status = rtems_rate_monotonic_create(name, &period);
8 if (status != RTEMS_SUCCESSFUL) {
9 printf("rtems_monotonic_create failed with status of %d.\n", status);

10 exit(1);
11 }
12 while (1) {
13 if (rtems_rate_monotonic_period(period, 100) == RTEMS_TIMEOUT)
14 break;
15 /* Perform some periodic actions */
16 }
17 /* missed period so delete period and SELF */
18 status = rtems_rate_monotonic_delete(period);
19 if (status != RTEMS_SUCCESSFUL) {
20 printf("rtems_rate_monotonic_delete failed with status of %d.\n", status);
21 exit(1);
22 }
23 status = rtems_task_delete(RTEMS_SELF); /* should not return */
24 printf("rtems_task_delete returned with status of %d.\n", status);
25 exit(1);
26 }

The above task creates a rate monotonic period as part of its initialization. The first time the loop
is executed, the rtems_rate_monotonic_period directive will initiate the period for 100 ticks
and return immediately. Subsequent invocations of the rtems_rate_monotonic_period directive
will result in the task blocking for the remainder of the 100 tick period. If, for any reason,
the body of the loop takes more than 100 ticks to execute, the rtems_rate_monotonic_period
directive will return the RTEMS_TIMEOUT status. If the above task misses its deadline, it will
delete the rate monotonic period and itself.

190 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.3.8 Task with Multiple Periods

This example consists of a single periodic task which, after initialization, performs two sets of
actions every 100 clock ticks. The first set of actions is performed in the first forty clock ticks
of every 100 clock ticks, while the second set of actions is performed between the fortieth and
seventieth clock ticks. The last thirty clock ticks are not used by this task.

1 rtems_task Periodic_task(rtems_task_argument arg)
2 {
3 rtems_name name_1, name_2;
4 rtems_id period_1, period_2;
5 name_1 = rtems_build_name('P', 'E', 'R', '1');
6 name_2 = rtems_build_name('P', 'E', 'R', '2');
7 (void) rtems_rate_monotonic_create(name_1, &period_1);
8 (void) rtems_rate_monotonic_create(name_2, &period_2);
9 while (1) {

10 if (rtems_rate_monotonic_period(period_1, 100) == RTEMS_TIMEOUT)
11 break;
12 if (rtems_rate_monotonic_period(period_2, 40) == RTEMS_TIMEOUT)
13 break;
14 /*
15 * Perform first set of actions between clock
16 * ticks 0 and 39 of every 100 ticks.
17 */
18 if (rtems_rate_monotonic_period(period_2, 30) == RTEMS_TIMEOUT)
19 break;
20 /*
21 * Perform second set of actions between clock 40 and 69
22 * of every 100 ticks. THEN ...
23 *
24 * Check to make sure we didn't miss the period_2 period.
25 */
26 if (rtems_rate_monotonic_period(period_2, RTEMS_PERIOD_STATUS) == RTEMS_

→˓TIMEOUT)
27 break;
28 (void) rtems_rate_monotonic_cancel(period_2);
29 }
30 /* missed period so delete period and SELF */
31 (void) rtems_rate_monotonic_delete(period_1);
32 (void) rtems_rate_monotonic_delete(period_2);
33 (void) rtems_task_delete(RTEMS_SELF);
34 }

The above task creates two rate monotonic periods as part of its initialization. The
first time the loop is executed, the rtems_rate_monotonic_period directive will initiate
the period_1 period for 100 ticks and return immediately. Subsequent invocations of the
rtems_rate_monotonic_period directive for period_1 will result in the task blocking for the
remainder of the 100 tick period. The period_2 period is used to control the execution
time of the two sets of actions within each 100 tick period established by period_1. The
rtems_rate_monotonic_cancel(period_2) call is performed to ensure that the period_2 pe-
riod does not expire while the task is blocked on the period_1 period. If this cancel operation
were not performed, every time the rtems_rate_monotonic_period(period_2, 40) call is ex-
ecuted, except for the initial one, a directive status of RTEMS_TIMEOUT is returned. It is important
to note that every time this call is made, the period_2 period will be initiated immediately and
the task will not block.

11.3. Operations 191

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.3

If, for any reason, the task misses any deadline, the rtems_rate_monotonic_period directive
will return the RTEMS_TIMEOUT directive status. If the above task misses its deadline, it will
delete the rate monotonic periods and itself.

192 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.4 Directives

This section details the rate monotonic manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

11.4. Directives 193

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.4

11.4.1 RATE_MONOTONIC_CREATE - Create a rate monotonic period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_create(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL rate monotonic period created successfully
RTEMS_INVALID_NAME invalid period name
RTEMS_TOO_MANY too many periods created

DESCRIPTION:
This directive creates a rate monotonic period. The assigned rate monotonic id is returned
in id. This id is used to access the period with other rate monotonic manager directives. For
control and maintenance of the rate monotonic period, RTEMS allocates a PCB from the local
PCB free pool and initializes it.

NOTES:
This directive will not cause the calling task to be preempted.

194 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.4.2 RATE_MONOTONIC_IDENT - Get ID of a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL period identified successfully
RTEMS_INVALID_NAME period name not found

DESCRIPTION:
This directive obtains the period id associated with the period name to be acquired. If the
period name is not unique, then the period id will match one of the periods with that name.
However, this period id is not guaranteed to correspond to the desired period. The period id
is used to access this period in other rate monotonic manager directives.

NOTES:
This directive will not cause the running task to be preempted.

11.4. Directives 195

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.4

11.4.3 RATE_MONOTONIC_CANCEL - Cancel a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_cancel(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL period canceled successfully
RTEMS_INVALID_ID invalid rate monotonic period id
RTEMS_NOT_OWNER_OF_RESOURCE rate monotonic period not created by calling task

DESCRIPTION:

This directive cancels the rate monotonic period id. This period will be reinitiated
by the next invocation of rtems_rate_monotonic_period with id.

NOTES:
This directive will not cause the running task to be preempted.

The rate monotonic period specified by id must have been created by the calling task.

196 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.4.4 RATE_MONOTONIC_DELETE - Delete a rate monotonic period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL period deleted successfully
RTEMS_INVALID_ID invalid rate monotonic period id

DESCRIPTION:

This directive deletes the rate monotonic period specified by id. If the period is
running, it is automatically canceled. The PCB for the deleted period is reclaimed
by RTEMS.

NOTES:
This directive will not cause the running task to be preempted.

A rate monotonic period can be deleted by a task other than the task which created the period.

11.4. Directives 197

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.4

11.4.5 RATE_MONOTONIC_PERIOD - Conclude current/Start next period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_period(
2 rtems_id id,
3 rtems_interval length
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL period initiated successfully
RTEMS_INVALID_ID invalid rate monotonic period id
RTEMS_NOT_OWNER_OF_
RESOURCE

period not created by calling task

RTEMS_NOT_DEFINED period has never been initiated (only possible when period is set
to PERIOD_STATUS)

RTEMS_TIMEOUT period has expired

DESCRIPTION:
This directive initiates the rate monotonic period id with a length of period ticks. If id is
running, then the calling task will block for the remainder of the period before reinitiating
the period with the specified period. If id was not running (either expired or never initiated),
the period is immediately initiated and the directive returns immediately. If id has expired its
period, the postponed job will be released immediately and the following calls of this directive
will release postponed jobs until there is no more deadline miss.

If invoked with a period of RTEMS_PERIOD_STATUS ticks, the current state of id will be returned.
The directive status indicates the current state of the period. This does not alter the state or
period of the period.

NOTES:
This directive will not cause the running task to be preempted.

198 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.4.6 RATE_MONOTONIC_GET_STATUS - Obtain status from a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_get_status(
2 rtems_id id,
3 rtems_rate_monotonic_period_status *status
4);

DIRECTIVE STATUS CODES:

RTEMS_
SUCCESSFUL

period status retrieved successfully

RTEMS_INVALID_
ID

invalid rate monotonic period id

RTEMS_INVALID_
ADDRESS

invalid address of status

RTEMS_NOT_
DEFINED

no status is available due to the cpu usage of the task having been reset
since the period initiated

*DESCRIPTION:
This directive returns status information associated with the rate monotonic period id in the
following data structure:

1 typedef struct {
2 rtems_id owner;
3 rtems_rate_monotonic_period_states state;
4 rtems_rate_monotonic_period_time_t since_last_period;
5 rtems_thread_cpu_usage_t executed_since_last_period;
6 uint32_t postponed_jobs_count;
7 } rtems_rate_monotonic_period_status;

A configure time option can be used to select whether the time information is given in ticks
or seconds and nanoseconds. The default is seconds and nanoseconds. If the period’s state
is RATE_MONOTONIC_INACTIVE, both time values will be set to 0. Otherwise, both time values
will contain time information since the last invocation of the rtems_rate_monotonic_period
directive. More specifically, the since_last_period value contains the elapsed time which has
occurred since the last invocation of the rtems_rate_monotonic_period directive and the
executed_since_last_period contains how much processor time the owning task has con-
sumed since the invocation of the rtems_rate_monotonic_period directive. In addition, the
postponed_jobs_count value contains the count of jobs which are not released yet.

NOTES:
This directive will not cause the running task to be preempted.

11.4. Directives 199

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.4

11.4.7 RATE_MONOTONIC_GET_STATISTICS - Obtain statistics from a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_get_statistics(
2 rtems_id id,
3 rtems_rate_monotonic_period_statistics *statistics
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL period statistics retrieved successfully
RTEMS_INVALID_ID invalid rate monotonic period id
RTEMS_INVALID_ADDRESS invalid address of statistics

DESCRIPTION:
This directive returns statistics information associated with the rate monotonic period id in
the following data structure:

1 typedef struct {
2 uint32_t count;
3 uint32_t missed_count;
4 #ifdef RTEMS_ENABLE_NANOSECOND_CPU_USAGE_STATISTICS
5 struct timespec min_cpu_time;
6 struct timespec max_cpu_time;
7 struct timespec total_cpu_time;
8 #else
9 uint32_t min_cpu_time;

10 uint32_t max_cpu_time;
11 uint32_t total_cpu_time;
12 #endif
13 #ifdef RTEMS_ENABLE_NANOSECOND_RATE_MONOTONIC_STATISTICS
14 struct timespec min_wall_time;
15 struct timespec max_wall_time;
16 struct timespec total_wall_time;
17 #else
18 uint32_t min_wall_time;
19 uint32_t max_wall_time;
20 uint32_t total_wall_time;
21 #endif
22 } rtems_rate_monotonic_period_statistics;

This directive returns the current statistics information for the period instance assocaited with
id. The information returned is indicated by the structure above.

NOTES:
This directive will not cause the running task to be preempted.

200 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.4.8 RATE_MONOTONIC_RESET_STATISTICS - Reset statistics for a period

CALLING SEQUENCE:

1 rtems_status_code rtems_rate_monotonic_reset_statistics(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL period initiated successfully
RTEMS_INVALID_ID invalid rate monotonic period id

DESCRIPTION:
This directive resets the statistics information associated with this rate monotonic period in-
stance.

NOTES:
This directive will not cause the running task to be preempted.

11.4. Directives 201

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.4

11.4.9 RATE_MONOTONIC_RESET_ALL_STATISTICS - Reset statistics for all periods

CALLING SEQUENCE:

1 void rtems_rate_monotonic_reset_all_statistics(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive resets the statistics information associated with all rate monotonic period in-
stances.

NOTES:
This directive will not cause the running task to be preempted.

202 Chapter 11. Rate Monotonic Manager

Chapter 11 Section 11.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

11.4.10 RATE_MONOTONIC_REPORT_STATISTICS - Print period statistics report

CALLING SEQUENCE:

1 void rtems_rate_monotonic_report_statistics(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive prints a report on all active periods which have executed at least one period.
The following is an example of the output generated by this directive.

1 ID OWNER PERIODS MISSED CPU TIME WALL TIME
2 MIN/MAX/AVG MIN/MAX/AVG
3 0x42010001 TA1 502 0 0/1/0.99 0/0/0.00
4 0x42010002 TA2 502 0 0/1/0.99 0/0/0.00
5 0x42010003 TA3 501 0 0/1/0.99 0/0/0.00
6 0x42010004 TA4 501 0 0/1/0.99 0/0/0.00
7 0x42010005 TA5 10 0 0/1/0.90 0/0/0.00

NOTES:
This directive will not cause the running task to be preempted.

11.4. Directives 203

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 11 Section 11.4

204 Chapter 11. Rate Monotonic Manager

CHAPTER

TWELVE

SEMAPHORE MANAGER

205

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.1

12.1 Introduction

The semaphore manager utilizes standard Dijkstra counting semaphores to provide synchro-
nization and mutual exclusion capabilities. The directives provided by the semaphore manager
are:

• rtems_semaphore_create (page 213) - Create a semaphore

• rtems_semaphore_ident (page 215) - Get ID of a semaphore

• rtems_semaphore_delete (page 216) - Delete a semaphore

• rtems_semaphore_obtain (page 217) - Acquire a semaphore

• rtems_semaphore_release (page 219) - Release a semaphore

• rtems_semaphore_flush (page 220) - Unblock all tasks waiting on a semaphore

• rtems_semaphore_set_priority (page 222) - Set priority by scheduler for a semaphore

206 Chapter 12. Semaphore Manager

Chapter 12 Section 12.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

12.2 Background

A semaphore can be viewed as a protected variable whose value can be modified only with the
rtems_semaphore_create, rtems_semaphore_obtain, and rtems_semaphore_release directives.
RTEMS supports both binary and counting semaphores. A binary semaphore is restricted to
values of zero or one, while a counting semaphore can assume any non-negative integer value.

A binary semaphore (not a simple binary semaphore) can be used to control access to a single
resource. In particular, it can be used to enforce mutual exclusion for a critical section in user
code (mutex). In this instance, the semaphore would be created with an initial count of one to
indicate that no task is executing the critical section of code. Upon entry to the critical section, a
task must issue the rtems_semaphore_obtain directive to prevent other tasks from entering the
critical section. Upon exit from the critical section, the task that obtained the binary semaphore
must issue the rtems_semaphore_release directive to allow another task to execute the critical
section. A binary semaphore must be released by the task that obtained it.

A counting semaphore can be used to control access to a pool of two or more resources.
For example, access to three printers could be administered by a semaphore created with
an initial count of three. When a task requires access to one of the printers, it issues the
rtems_semaphore_obtain directive to obtain access to a printer. If a printer is not currently
available, the task can wait for a printer to become available or return immediately. When the
task has completed printing, it should issue the rtems_semaphore_release directive to allow
other tasks access to the printer.

Task synchronization may be achieved by creating a semaphore with an initial count of
zero. One task waits for the arrival of another task by issuing a rtems_semaphore_obtain
directive when it reaches a synchronization point. The other task performs a corresponding
rtems_semaphore_release operation when it reaches its synchronization point, thus unblock-
ing the pending task.

12.2.1 Nested Resource Access

Deadlock occurs when a task owning a binary semaphore attempts to acquire that same
semaphore and blocks as result. Since the semaphore is allocated to a task, it cannot be
deleted. Therefore, the task that currently holds the semaphore and is also blocked waiting
for that semaphore will never execute again.

RTEMS addresses this problem by allowing the task holding the binary semaphore to obtain the
same binary semaphore multiple times in a nested manner. Each rtems_semaphore_obtain must
be accompanied with a rtems_semaphore_release. The semaphore will only be made available
for acquisition by other tasks when the outermost rtems_semaphore_obtain is matched with a
rtems_semaphore_release.

Simple binary semaphores do not allow nested access and so can be used for task synchroniza-
tion.

12.2.2 Priority Inheritance

RTEMS supports priority inheritance (page 28) for local, binary semaphores that use the priority
task wait queue blocking discipline. In SMP configurations, the O(m) Independence-Preserving
Protocol (OMIP) (page 29) is used instead.

12.2. Background 207

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.2

12.2.3 Priority Ceiling

RTEMS supports priority ceiling (page 28) for local, binary semaphores that use the priority task
wait queue blocking discipline.

12.2.4 Multiprocessor Resource Sharing Protocol

RTEMS supports the Multiprocessor Resource Sharing Protocol (MrsP) (page 29) for local, binary
semaphores that use the priority task wait queue blocking discipline. In uniprocessor configu-
rations, the Immediate Ceiling Priority Protocol (ICPP) (page 28) is used instead.

12.2.5 Building a Semaphore Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The
following table lists the set of valid semaphore attributes:

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority
RTEMS_BINARY_SEMAPHORE restrict values to 0 and 1
RTEMS_COUNTING_SEMAPHORE no restriction on values (default)
RTEMS_SIMPLE_BINARY_
SEMAPHORE

restrict values to 0 and 1, do not allow nested access, allow
deletion of locked semaphore.

RTEMS_NO_INHERIT_PRIORITY do not use priority inheritance (default)
RTEMS_INHERIT_PRIORITY use priority inheritance
RTEMS_NO_PRIORITY_CEILING do not use priority ceiling (default)
RTEMS_PRIORITY_CEILING use priority ceiling
RTEMS_NO_MULTIPROCESSOR_
RESOURCE_SHARING

do not use Multiprocessor Resource Sharing Protocol (de-
fault)

RTEMS_MULTIPROCESSOR_
RESOURCE_SHARING

use Multiprocessor Resource Sharing Protocol

RTEMS_LOCAL local semaphore (default)
RTEMS_GLOBAL global semaphore

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An attribute listed as a default is not required to appear in the attribute list, although
it is a good programming practice to specify default attributes. If all defaults are desired, the
attribute RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a local semaphore
with the task priority waiting queue discipline. The attribute_set parameter passed
to the rtems_semaphore_create directive could be either RTEMS_PRIORITY or RTEMS_LOCAL
| RTEMS_PRIORITY. The attribute_set parameter can be set to RTEMS_PRIORITY because
RTEMS_LOCAL is the default for all created tasks. If a similar semaphore were to be known
globally, then the attribute_set parameter would be RTEMS_GLOBAL | RTEMS_PRIORITY.

Some combinatinos of these attributes are invalid. For example, priority ordered blocking dis-
cipline must be applied to a binary semaphore in order to use either the priority inheritance or
priority ceiling functionality. The following tree figure illustrates the valid combinations.

208 Chapter 12. Semaphore Manager

Chapter 12 Section 12.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

12.2.6 Building a SEMAPHORE_OBTAIN Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_semaphore_obtain directive are listed in the following table:

RTEMS_WAIT task will wait for semaphore (default)
RTEMS_NO_WAIT task should not wait

Option values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An option listed as a default is not required to appear in the list, although it is a
good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for a semaphore. The option
parameter passed to the rtems_semaphore_obtain directive should be RTEMS_NO_WAIT.

12.2. Background 209

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.3

12.3 Operations

12.3.1 Creating a Semaphore

The rtems_semaphore_create directive creates a binary or counting semaphore with a user-
specified name as well as an initial count. If a binary semaphore is created with a count of zero
(0) to indicate that it has been allocated, then the task creating the semaphore is considered
the current holder of the semaphore. At create time the method for ordering waiting tasks
in the semaphore’s task wait queue (by FIFO or task priority) is specified. Additionally, the
priority inheritance or priority ceiling algorithm may be selected for local, binary semaphores
that use the priority task wait queue blocking discipline. If the priority ceiling algorithm is
selected, then the highest priority of any task which will attempt to obtain this semaphore must
be specified. RTEMS allocates a Semaphore Control Block (SMCB) from the SMCB free list.
This data structure is used by RTEMS to manage the newly created semaphore. Also, a unique
semaphore ID is generated and returned to the calling task.

12.3.2 Obtaining Semaphore IDs

When a semaphore is created, RTEMS generates a unique semaphore ID and assigns it to the
created semaphore until it is deleted. The semaphore ID may be obtained by either of two
methods. First, as the result of an invocation of the rtems_semaphore_create directive, the
semaphore ID is stored in a user provided location. Second, the semaphore ID may be obtained
later using the rtems_semaphore_ident directive. The semaphore ID is used by other semaphore
manager directives to access this semaphore.

12.3.3 Acquiring a Semaphore

The rtems_semaphore_obtain directive is used to acquire the specified semaphore. A simplified
version of the rtems_semaphore_obtain directive can be described as follows:

If the semaphore’s count is greater than zero then decrement the semaphore’s count
else wait for release of semaphore then return SUCCESSFUL.

When the semaphore cannot be immediately acquired, one of the following situations applies:

• By default, the calling task will wait forever to acquire the semaphore.

• Specifying RTEMS_NO_WAIT forces an immediate return with an error status code.

• Specifying a timeout limits the interval the task will wait before returning with an error
status code.

If the task waits to acquire the semaphore, then it is placed in the semaphore’s task wait queue
in either FIFO or task priority order. If the task blocked waiting for a binary semaphore using
priority inheritance and the task’s priority is greater than that of the task currently holding the
semaphore, then the holding task will inherit the priority of the blocking task. All tasks waiting
on a semaphore are returned an error code when the semaphore is deleted.

When a task successfully obtains a semaphore using priority ceiling and the priority ceiling for
this semaphore is greater than that of the holder, then the holder’s priority will be elevated.

210 Chapter 12. Semaphore Manager

Chapter 12 Section 12.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

12.3.4 Releasing a Semaphore

The rtems_semaphore_release directive is used to release the specified semaphore. A simplified
version of the rtems_semaphore_release directive can be described as follows:

If there are no tasks are waiting on this semaphore then increment the semaphore’s
count else assign semaphore to a waiting task and return SUCCESSFUL.

If this is the outermost release of a binary semaphore that uses priority inheritance or prior-
ity ceiling and the task does not currently hold any other binary semaphores, then the task
performing the rtems_semaphore_release will have its priority restored to its normal value.

12.3.5 Deleting a Semaphore

The rtems_semaphore_delete directive removes a semaphore from the system and frees its
control block. A semaphore can be deleted by any local task that knows the semaphore’s ID.
As a result of this directive, all tasks blocked waiting to acquire the semaphore will be readied
and returned a status code which indicates that the semaphore was deleted. Any subsequent
references to the semaphore’s name and ID are invalid.

12.3. Operations 211

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.4

12.4 Directives

This section details the semaphore manager’s directives. A subsection is dedicated to each of
this manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

212 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

12.4.1 SEMAPHORE_CREATE - Create a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_create(
2 rtems_name name,
3 uint32_t count,
4 rtems_attribute attribute_set,
5 rtems_task_priority priority_ceiling,
6 rtems_id *id
7);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL semaphore created successfully
RTEMS_INVALID_NAME invalid semaphore name
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_TOO_MANY too many semaphores created
RTEMS_NOT_DEFINED invalid attribute set
RTEMS_INVALID_NUMBER invalid starting count for binary semaphore
RTEMS_MP_NOT_CONFIGURED multiprocessing not configured
RTEMS_TOO_MANY too many global objects

DESCRIPTION:
This directive creates a semaphore which resides on the local node. The created semaphore
has the user-defined name specified in name and the initial count specified in count. For con-
trol and maintenance of the semaphore, RTEMS allocates and initializes a SMCB. The RTEMS-
assigned semaphore id is returned in id. This semaphore id is used with other semaphore
related directives to access the semaphore.

Specifying PRIORITY in attribute_set causes tasks waiting for a semaphore to be serviced
according to task priority. When FIFO is selected, tasks are serviced in First In-First Out order.

NOTES:
This directive will not cause the calling task to be preempted.

The priority inheritance and priority ceiling algorithms are only supported for local, binary
semaphores that use the priority task wait queue blocking discipline.

The following semaphore attribute constants are defined by RTEMS:

12.4. Directives 213

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.4

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority
RTEMS_BINARY_SEMAPHORE restrict values to 0 and 1
RTEMS_COUNTING_SEMAPHORE no restriction on values (default)
RTEMS_SIMPLE_BINARY_
SEMAPHORE

restrict values to 0 and 1, block on nested access, allow
deletion of locked semaphore.

RTEMS_NO_INHERIT_PRIORITY do not use priority inheritance (default)
RTEMS_INHERIT_PRIORITY use priority inheritance
RTEMS_NO_PRIORITY_CEILING do not use priority ceiling (default)
RTEMS_PRIORITY_CEILING use priority ceiling
RTEMS_NO_MULTIPROCESSOR_
RESOURCE_SHARING

do not use Multiprocessor Resource Sharing Protocol (de-
fault)

RTEMS_MULTIPROCESSOR_
RESOURCE_SHARING

use Multiprocessor Resource Sharing Protocol

RTEMS_LOCAL local semaphore (default)
RTEMS_GLOBAL global semaphore

Semaphores should not be made global unless remote tasks must interact with the cre-
ated semaphore. This is to avoid the system overhead incurred by the creation of a global
semaphore. When a global semaphore is created, the semaphore’s name and id must be
transmitted to every node in the system for insertion in the local copy of the global object
table.

Note, some combinations of attributes are not valid. See the earlier discussion on this.

The total number of global objects, including semaphores, is limited by the maxi-
mum_global_objects field in the Configuration Table.

It is not allowed to create an initially locked MrsP semaphore and the RTEMS_INVALID_NUMBER
status code will be returned in SMP configurations in this case. This prevents lock order
reversal problems with the allocator mutex.

214 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

12.4.2 SEMAPHORE_IDENT - Get ID of a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL semaphore identified successfully
RTEMS_INVALID_NAME semaphore name not found
RTEMS_INVALID_NODE invalid node id

DESCRIPTION:
This directive obtains the semaphore id associated with the semaphore name. If the
semaphore name is not unique, then the semaphore id will match one of the semaphores
with that name. However, this semaphore id is not guaranteed to correspond to the desired
semaphore. The semaphore id is used by other semaphore related directives to access the
semaphore.

NOTES:
This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched
first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then only the
semaphores exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of
the global object table.

12.4. Directives 215

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.4

12.4.3 SEMAPHORE_DELETE - Delete a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL semaphore deleted successfully
RTEMS_INVALID_ID invalid semaphore id
RTEMS_RESOURCE_IN_USE binary semaphore is in use
RTEMS_ILLEGAL_ON_REMOTE_OBJECT cannot delete remote semaphore

DESCRIPTION:
This directive deletes the semaphore specified by id. All tasks blocked waiting to acquire the
semaphore will be readied and returned a status code which indicates that the semaphore
was deleted. The SMCB for this semaphore is reclaimed by RTEMS.

NOTES:
The calling task will be preempted if it is enabled by the task’s execution mode and a higher
priority local task is waiting on the deleted semaphore. The calling task will NOT be pre-
empted if all of the tasks that are waiting on the semaphore are remote tasks.

The calling task does not have to be the task that created the semaphore. Any local task that
knows the semaphore id can delete the semaphore.

When a global semaphore is deleted, the semaphore id must be transmitted to every node in
the system for deletion from the local copy of the global object table.

The semaphore must reside on the local node, even if the semaphore was created with the
RTEMS_GLOBAL option.

Proxies, used to represent remote tasks, are reclaimed when the semaphore is deleted.

216 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

12.4.4 SEMAPHORE_OBTAIN - Acquire a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_obtain(
2 rtems_id id,
3 rtems_option option_set,
4 rtems_interval timeout
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL semaphore obtained successfully
RTEMS_UNSATISFIED semaphore not available
RTEMS_TIMEOUT timed out waiting for semaphore
RTEMS_OBJECT_WAS_DELETED semaphore deleted while waiting
RTEMS_INVALID_ID invalid semaphore id

DESCRIPTION:
This directive acquires the semaphore specified by id. The RTEMS_WAIT and RTEMS_NO_WAIT
components of the options parameter indicate whether the calling task wants to wait for
the semaphore to become available or return immediately if the semaphore is not currently
available. With either RTEMS_WAIT or RTEMS_NO_WAIT, if the current semaphore count is posi-
tive, then it is decremented by one and the semaphore is successfully acquired by returning
immediately with a successful return code.

If the calling task chooses to return immediately and the current semaphore count is zero
or negative, then a status code is returned indicating that the semaphore is not available. If
the calling task chooses to wait for a semaphore and the current semaphore count is zero or
negative, then it is decremented by one and the calling task is placed on the semaphore’s wait
queue and blocked. If the semaphore was created with the RTEMS_PRIORITY attribute, then
the calling task is inserted into the queue according to its priority. However, if the semaphore
was created with the RTEMS_FIFO attribute, then the calling task is placed at the rear of the
wait queue. If the binary semaphore was created with the RTEMS_INHERIT_PRIORITY attribute,
then the priority of the task currently holding the binary semaphore is guaranteed to be
greater than or equal to that of the blocking task. If the binary semaphore was created with
the RTEMS_PRIORITY_CEILING attribute, a task successfully obtains the semaphore, and the
priority of that task is greater than the ceiling priority for this semaphore, then the priority of
the task obtaining the semaphore is elevated to that of the ceiling.

The timeout parameter specifies the maximum interval the calling task is willing to be blocked
waiting for the semaphore. If it is set to RTEMS_NO_TIMEOUT, then the calling task will wait
forever. If the semaphore is available or the RTEMS_NO_WAIT option component is set, then
timeout is ignored.

In case a semaphore is not available, then RTEMS_UNSATISFIED will be returned. This happens
immediately in case RTEMS_NO_WAIT is specified, or as a result of another task invoking the
rtems_semaphore_flush directive in case RTEMS_WAIT is specified.

Deadlock situations are detected for MrsP semaphores and the RTEMS_UNSATISFIED status code
will be returned in SMP configurations in this case.

12.4. Directives 217

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.4

NOTES:
The following semaphore acquisition option constants are defined by RTEMS:

RTEMS_WAIT task will wait for semaphore (default)
RTEMS_NO_WAIT task should not wait

Attempting to obtain a global semaphore which does not reside on the local node will generate
a request to the remote node to access the semaphore. If the semaphore is not available
and RTEMS_NO_WAIT was not specified, then the task must be blocked until the semaphore is
released. A proxy is allocated on the remote node to represent the task until the semaphore
is released.

A clock tick is required to support the timeout functionality of this directive.

It is not allowed to obtain a MrsP semaphore more than once by one task at a time (nested
access) and the RTEMS_UNSATISFIED status code will be returned in SMP configurations in this
case.

218 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

12.4.5 SEMAPHORE_RELEASE - Release a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_release(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL semaphore released successfully
RTEMS_INVALID_ID invalid semaphore id
RTEMS_NOT_OWNER_OF_RESOURCE calling task does not own semaphore
RTEMS_INCORRECT_STATE invalid unlock order

DESCRIPTION:
This directive releases the semaphore specified by id. The semaphore count is incremented
by one. If the count is zero or negative, then the first task on this semaphore’s wait queue is
removed and unblocked. The unblocked task may preempt the running task if the running
task’s preemption mode is enabled and the unblocked task has a higher priority than the
running task.

NOTES:
The calling task may be preempted if it causes a higher priority task to be made ready for
execution.

Releasing a global semaphore which does not reside on the local node will generate a request
telling the remote node to release the semaphore.

If the task to be unblocked resides on a different node from the semaphore, then the
semaphore allocation is forwarded to the appropriate node, the waiting task is unblocked,
and the proxy used to represent the task is reclaimed.

The outermost release of a local, binary, priority inheritance or priority ceiling semaphore
may result in the calling task having its priority lowered. This will occur if the calling task
holds no other binary semaphores and it has inherited a higher priority.

The MrsP semaphores must be released in the reversed obtain order, otherwise the
RTEMS_INCORRECT_STATE status code will be returned in SMP configurations in this case.

12.4. Directives 219

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.4

12.4.6 SEMAPHORE_FLUSH - Unblock all tasks waiting on a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_flush(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL semaphore released successfully
RTEMS_INVALID_ID invalid semaphore id
RTEMS_NOT_DEFINED operation not defined for the protocol of the

semaphore
RTEMS_ILLEGAL_ON_REMOTE_
OBJECT

not supported for remote semaphores

DESCRIPTION:
This directive unblocks all tasks waiting on the semaphore specified by id. Since there are
tasks blocked on the semaphore, the semaphore’s count is not changed by this directive and
thus is zero before and after this directive is executed. Tasks which are unblocked as the result
of this directive will return from the rtems_semaphore_obtain directive with a status code of
RTEMS_UNSATISFIED to indicate that the semaphore was not obtained.

This directive may unblock any number of tasks. Any of the unblocked tasks may preempt
the running task if the running task’s preemption mode is enabled and an unblocked task has
a higher priority than the running task.

NOTES:
The calling task may be preempted if it causes a higher priority task to be made ready for
execution.

If the task to be unblocked resides on a different node from the semaphore, then the waiting
task is unblocked, and the proxy used to represent the task is reclaimed.

It is not allowed to flush a MrsP semaphore and the RTEMS_NOT_DEFINED status code will be
returned in SMP configurations in this case.

Using the rtems_semaphore_flush directive for condition synchronization in concert with an-
other semaphore may be subject to the lost wake-up problem. The following attempt to
implement a condition variable is broken.

1 #include <rtems.h>
2 #include <assert.h>
3

4 void cnd_wait(rtems_id cnd, rtems_id mtx)
5 {
6 rtems_status_code sc;
7

8 sc = rtems_semaphore_release(mtx);
9 assert(sc == RTEMS_SUCCESSFUL);

10

(continues on next page)

220 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

(continued from previous page)

11 /*
12 * Here, a higher priority task may run and satisfy the condition. We
13 * may never wake up from the next semaphore obtain.
14 */
15

16 sc = rtems_semaphore_obtain(cnd, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
17 assert(sc == RTEMS_UNSATISFIED);
18

19 sc = rtems_semaphore_obtain(mtx, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
20 assert(sc == RTEMS_SUCCESSFUL);
21 }
22

23 void cnd_broadcast(rtems_id cnd)
24 {
25 rtems_status_code sc;
26

27 sc = rtems_semaphore_flush(cnd);
28 assert(sc == RTEMS_SUCCESSFUL);
29 }

For barrier synchronization, the Barrier Manager (page 225) offers a cleaner alternative to
using the rtems_semaphore_flush directive. Unlike POSIX barriers, they have a manual release
option.

12.4. Directives 221

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.4

12.4.7 SEMAPHORE_SET_PRIORITY - Set priority by scheduler for a semaphore

CALLING SEQUENCE:

1 rtems_status_code rtems_semaphore_set_priority(
2 rtems_id semaphore_id,
3 rtems_id scheduler_id,
4 rtems_task_priority new_priority,
5 rtems_task_priority *old_priority
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successful operation
RTEMS_INVALID_ID invalid semaphore or scheduler id
RTEMS_INVALID_ADDRESS old_priority is NULL
RTEMS_INVALID_PRIORITY invalid new priority value
RTEMS_NOT_DEFINED operation not defined for the protocol ofthe

semaphore
RTEMS_ILLEGAL_ON_REMOTE_
OBJECT

not supported for remote semaphores

DESCRIPTION:
This directive sets the priority value with respect to the specified scheduler of a semaphore.

The special priority value RTEMS_CURRENT_PRIORITY can be used to get the current priority
value without changing it.

The interpretation of the priority value depends on the protocol of the semaphore object.

• The Multiprocessor Resource Sharing Protocol needs a ceiling priority per scheduler in-
stance. This operation can be used to specify these priority values.

• For the Priority Ceiling Protocol the ceiling priority is used with this operation.

• For other protocols this operation is not defined.

EXAMPLE:

1 #include <assert.h>
2 #include <stdlib.h>
3 #include <rtems.h>
4

5 #define SCHED_A rtems_build_name(' ', ' ', ' ', 'A')
6 #define SCHED_B rtems_build_name(' ', ' ', ' ', 'B')
7

8 static void Init(rtems_task_argument arg)
9 {

10 rtems_status_code sc;
11 rtems_id semaphore_id;
12 rtems_id scheduler_a_id;
13 rtems_id scheduler_b_id;
14 rtems_task_priority prio;

(continues on next page)

222 Chapter 12. Semaphore Manager

Chapter 12 Section 12.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

(continued from previous page)

15

16 /* Get the scheduler identifiers */
17 sc = rtems_scheduler_ident(SCHED_A, &scheduler_a_id);
18 assert(sc == RTEMS_SUCCESSFUL);
19 sc = rtems_scheduler_ident(SCHED_B, &scheduler_b_id);
20 assert(sc == RTEMS_SUCCESSFUL);
21

22 /* Create a MrsP semaphore object */
23 sc = rtems_semaphore_create(
24 rtems_build_name('M', 'R', 'S', 'P'),
25 1,
26 RTEMS_MULTIPROCESSOR_RESOURCE_SHARING | RTEMS_BINARY_SEMAPHORE,
27 1,
28 &semaphore_id
29);
30 assert(sc == RTEMS_SUCCESSFUL);
31

32 /*
33 * The ceiling priority values per scheduler are equal to the value specified
34 * for object creation.
35 */
36 prio = RTEMS_CURRENT_PRIORITY;
37 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_a_id, prio, &prio);
38 assert(sc == RTEMS_SUCCESSFUL);
39 assert(prio == 1);
40

41 /* Check the old value and set a new ceiling priority for scheduler B */
42 prio = 2;
43 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_b_id, prio, &prio);
44 assert(sc == RTEMS_SUCCESSFUL);
45 assert(prio == 1);
46

47 /* Check the ceiling priority values */
48 prio = RTEMS_CURRENT_PRIORITY;
49 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_a_id, prio, &prio);
50 assert(sc == RTEMS_SUCCESSFUL);
51 assert(prio == 1);
52 prio = RTEMS_CURRENT_PRIORITY;
53 sc = rtems_semaphore_set_priority(semaphore_id, scheduler_b_id, prio, &prio);
54 assert(sc == RTEMS_SUCCESSFUL);
55 assert(prio == 2);
56

57 sc = rtems_semaphore_delete(semaphore_id);
58 assert(sc == RTEMS_SUCCESSFUL);
59

60 exit(0);
61 }
62

63 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
64 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
65 #define CONFIGURE_MAXIMUM_TASKS 1
66 #define CONFIGURE_MAXIMUM_SEMAPHORES 1
67 #define CONFIGURE_MAXIMUM_PROCESSORS 2
68

69 #define CONFIGURE_SCHEDULER_SIMPLE_SMP
70

(continues on next page)

12.4. Directives 223

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 12 Section 12.4

(continued from previous page)

71 #include <rtems/scheduler.h>
72

73 RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(a);
74 RTEMS_SCHEDULER_CONTEXT_SIMPLE_SMP(b);
75

76 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \
77 RTEMS_SCHEDULER_TABLE_SIMPLE_SMP(a, SCHED_A), \
78 RTEMS_SCHEDULER_TABLE_SIMPLE_SMP(b, SCHED_B)
79

80 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \
81 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
82 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY)
83

84 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
85 #define CONFIGURE_INIT
86

87 #include <rtems/confdefs.h>

224 Chapter 12. Semaphore Manager

CHAPTER

THIRTEEN

BARRIER MANAGER

225

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 13 Section 13.1

13.1 Introduction

The barrier manager provides a unique synchronization capability which can be used to have
a set of tasks block and be unblocked as a set. The directives provided by the barrier manager
are:

• rtems_barrier_create (page 230) - Create a barrier

• rtems_barrier_ident (page 231) - Get ID of a barrier

• rtems_barrier_delete (page 232) - Delete a barrier

• rtems_barrier_wait (page 233) - Wait at a barrier

• rtems_barrier_release (page 234) - Release a barrier

226 Chapter 13. Barrier Manager

Chapter 13 Section 13.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

13.2 Background

A barrier can be viewed as a gate at which tasks wait until the gate is opened. This has many
analogies in the real world. Horses and other farm animals may approach a closed gate and
gather in front of it, waiting for someone to open the gate so they may proceed. Similarly, ticket
holders gather at the gates of arenas before concerts or sporting events waiting for the arena
personnel to open the gates so they may enter.

Barriers are useful during application initialization. Each application task can perform its local
initialization before waiting for the application as a whole to be initialized. Once all tasks have
completed their independent initializations, the “application ready” barrier can be released.

13.2.1 Automatic Versus Manual Barriers

Just as with a real-world gate, barriers may be configured to be manually opened or automat-
ically opened. All tasks calling the rtems_barrier_wait directive will block until a controlling
task invokes the rtems_barrier_release directive.

Automatic barriers are created with a limit to the number of tasks which may simultaneously
block at the barrier. Once this limit is reached, all of the tasks are released. For example, if the
automatic limit is ten tasks, then the first nine tasks calling the rtems_barrier_wait directive
will block. When the tenth task calls the rtems_barrier_wait directive, the nine blocked tasks
will be released and the tenth task returns to the caller without blocking.

13.2.2 Building a Barrier Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The
following table lists the set of valid barrier attributes:

RTEMS_BARRIER_AUTOMATIC_RELEASE
automatically release the barrier when the configured number of tasks are blocked

RTEMS_BARRIER_MANUAL_RELEASE
only release the barrier when the application invokes the rtems_barrier_release directive.
(default)

Note: Barriers only support FIFO blocking order because all waiting tasks are released as a set.
Thus the released tasks will all become ready to execute at the same time and compete for the
processor based upon their priority.

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An attribute listed as a default is not required to appear in the attribute list, although
it is a good programming practice to specify default attributes. If all defaults are desired, the
attribute RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a barrier with the
automatic release policy. The attribute_set parameter passed to the rtems_barrier_create
directive will be RTEMS_BARRIER_AUTOMATIC_RELEASE. In this case, the user must also specify the
maximum_waiters parameter.

13.2. Background 227

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 13 Section 13.3

13.3 Operations

13.3.1 Creating a Barrier

The rtems_barrier_create directive creates a barrier with a user-specified name and the de-
sired attributes. RTEMS allocates a Barrier Control Block (BCB) from the BCB free list. This
data structure is used by RTEMS to manage the newly created barrier. Also, a unique barrier ID
is generated and returned to the calling task.

13.3.2 Obtaining Barrier IDs

When a barrier is created, RTEMS generates a unique barrier ID and assigns it to the created
barrier until it is deleted. The barrier ID may be obtained by either of two methods. First, as the
result of an invocation of the rtems_barrier_create directive, the barrier ID is stored in a user
provided location. Second, the barrier ID may be obtained later using the rtems_barrier_ident
directive. The barrier ID is used by other barrier manager directives to access this barrier.

13.3.3 Waiting at a Barrier

The rtems_barrier_wait directive is used to wait at the specified barrier. The task may wait
forever for the barrier to be released or it may specify a timeout. Specifying a timeout limits the
interval the task will wait before returning with an error status code.

If the barrier is configured as automatic and there are already one less then the maximum
number of waiters, then the call will unblock all tasks waiting at the barrier and the caller will
return immediately.

When the task does wait to acquire the barrier, then it is placed in the barrier’s task wait queue
in FIFO order. All tasks waiting on a barrier are returned an error code when the barrier is
deleted.

13.3.4 Releasing a Barrier

The rtems_barrier_release directive is used to release the specified barrier. When the
rtems_barrier_release is invoked, all tasks waiting at the barrier are immediately made ready
to execute and begin to compete for the processor to execute.

13.3.5 Deleting a Barrier

The rtems_barrier_delete directive removes a barrier from the system and frees its control
block. A barrier can be deleted by any local task that knows the barrier’s ID. As a result of this
directive, all tasks blocked waiting for the barrier to be released, will be readied and returned
a status code which indicates that the barrier was deleted. Any subsequent references to the
barrier’s name and ID are invalid.

228 Chapter 13. Barrier Manager

Chapter 13 Section 13.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

13.4 Directives

This section details the barrier manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

13.4. Directives 229

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 13 Section 13.4

13.4.1 BARRIER_CREATE - Create a barrier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_create(
2 rtems_name name,
3 rtems_attribute attribute_set,
4 uint32_t maximum_waiters,
5 rtems_id *id
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL barrier created successfully
RTEMS_INVALID_NAME invalid barrier name
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_TOO_MANY too many barriers created

DESCRIPTION:
This directive creates a barrier which resides on the local node. The created barrier has
the user-defined name specified in name and the initial count specified in count. For control
and maintenance of the barrier, RTEMS allocates and initializes a BCB. The RTEMS-assigned
barrier id is returned in id. This barrier id is used with other barrier related directives to
access the barrier.

RTEMS_BARRIER_MANUAL_RELEASE only release

Specifying RTEMS_BARRIER_AUTOMATIC_RELEASE in attribute_set causes tasks calling the
rtems_barrier_wait directive to block until there are maximum_waiters - 1 tasks waiting
at the barrier. When the maximum_waiters task invokes the rtems_barrier_wait directive, the
previous maximum_waiters - 1 tasks are automatically released and the caller returns.

In contrast, when the RTEMS_BARRIER_MANUAL_RELEASE attribute is specified, there is no limit
on the number of tasks that will block at the barrier. Only when the rtems_barrier_release
directive is invoked, are the tasks waiting at the barrier unblocked.

NOTES:
This directive will not cause the calling task to be preempted.

The following barrier attribute constants are defined by RTEMS:

RTEMS_BARRIER_
AUTOMATIC_RELEASE

automatically release the barrier when the configured number of
tasks are blocked

RTEMS_BARRIER_
MANUAL_RELEASE

only release the barrier when the application invokes the rtems_
barrier_release directive. (default)

230 Chapter 13. Barrier Manager

Chapter 13 Section 13.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

13.4.2 BARRIER_IDENT - Get ID of a barrier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL barrier identified successfully
RTEMS_INVALID_NAME barrier name not found
RTEMS_INVALID_NODE invalid node id

DESCRIPTION:
This directive obtains the barrier id associated with the barrier name. If the barrier name is
not unique, then the barrier id will match one of the barriers with that name. However, this
barrier id is not guaranteed to correspond to the desired barrier. The barrier id is used by
other barrier related directives to access the barrier.

NOTES:
This directive will not cause the running task to be preempted.

13.4. Directives 231

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 13 Section 13.4

13.4.3 BARRIER_DELETE - Delete a barrier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL barrier deleted successfully
RTEMS_INVALID_ID invalid barrier id

DESCRIPTION:
This directive deletes the barrier specified by id. All tasks blocked waiting for the barrier to
be released will be readied and returned a status code which indicates that the barrier was
deleted. The BCB for this barrier is reclaimed by RTEMS.

NOTES:
The calling task will be preempted if it is enabled by the task’s execution mode and a higher
priority local task is waiting on the deleted barrier. The calling task will NOT be preempted if
all of the tasks that are waiting on the barrier are remote tasks.

The calling task does not have to be the task that created the barrier. Any local task that
knows the barrier id can delete the barrier.

232 Chapter 13. Barrier Manager

Chapter 13 Section 13.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

13.4.4 BARRIER_WAIT - Wait at a barrier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_wait(
2 rtems_id id,
3 rtems_interval timeout
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL barrier released and task unblocked
RTEMS_UNSATISFIED barrier not available
RTEMS_TIMEOUT timed out waiting for barrier
RTEMS_OBJECT_WAS_DELETED barrier deleted while waiting
RTEMS_INVALID_ID invalid barrier id

DESCRIPTION:

This directive waits at the barrier specified by id. The timeout parameter specifies
the maximum interval the calling task is willing to be blocked waiting for the barrier.
If it is set to RTEMS_NO_TIMEOUT, then the calling task will wait until the barrier is
released.

Conceptually, the calling task should always be thought of as blocking when it makes
this call and being unblocked when the barrier is released. If the barrier is config-
ured for manual release, this rule of thumb will always be valid. If the barrier is
configured for automatic release, all callers will block except for the one which is
the Nth task which trips the automatic release condition.

NOTES:
A clock tick is required to support the timeout functionality of this directive.

13.4. Directives 233

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 13 Section 13.4

13.4.5 BARRIER_RELEASE - Release a barrier

CALLING SEQUENCE:

1 rtems_status_code rtems_barrier_release(
2 rtems_id id,
3 uint32_t *released
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL barrier released successfully
RTEMS_INVALID_ID invalid barrier id

DESCRIPTION:
This directive releases the barrier specified by id. All tasks waiting at the barrier will be
unblocked.

NOTES:
The calling task may be preempted if it causes a higher priority task to be made ready for
execution.

234 Chapter 13. Barrier Manager

CHAPTER

FOURTEEN

MESSAGE MANAGER

235

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.1

14.1 Introduction

The message manager provides communication and synchronization capabilities using RTEMS
message queues. The directives provided by the message manager are:

• rtems_message_queue_create (page 242) - Create a queue

• rtems_message_queue_ident (page 244) - Get ID of a queue

• rtems_message_queue_delete (page 245) - Delete a queue

• rtems_message_queue_send (page 246) - Put message at rear of a queue

• rtems_message_queue_urgent (page 247) - Put message at front of a queue

• rtems_message_queue_broadcast (page 248) - Broadcast N messages to a queue

• rtems_message_queue_receive (page 249) - Receive message from a queue

• rtems_message_queue_get_number_pending (page 251) - Get number of messages pending
on a queue

• rtems_message_queue_flush (page 252) - Flush all messages on a queue

236 Chapter 14. Message Manager

Chapter 14 Section 14.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

14.2 Background

14.2.1 Messages

A message is a variable length buffer where information can be stored to support communica-
tion. The length of the message and the information stored in that message are user-defined
and can be actual data, pointer(s), or empty.

14.2.2 Message Queues

A message queue permits the passing of messages among tasks and ISRs. Message queues
can contain a variable number of messages. Normally messages are sent to and received
from the queue in FIFO order using the rtems_message_queue_send directive. However, the
rtems_message_queue_urgent directive can be used to place messages at the head of a queue in
LIFO order.

Synchronization can be accomplished when a task can wait for a message to arrive at a queue.
Also, a task may poll a queue for the arrival of a message.

The maximum length message which can be sent is set on a per message queue basis. The
message content must be copied in general to/from an internal buffer of the message queue or
directly to a peer in certain cases. This copy operation is performed with interrupts disabled.
So it is advisable to keep the messages as short as possible.

14.2.3 Building a Message Queue Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set
of valid message queue attributes is provided in the following table:

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority
RTEMS_LOCAL local message queue (default)
RTEMS_GLOBAL global message queue

An attribute listed as a default is not required to appear in the attribute list, although it is a
good programming practice to specify default attributes. If all defaults are desired, the attribute
RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a local message
queue with the task priority waiting queue discipline. The attribute_set parameter to
the rtems_message_queue_create directive could be either RTEMS_PRIORITY or RTEMS_LOCAL
| RTEMS_PRIORITY. The attribute_set parameter can be set to RTEMS_PRIORITY because
RTEMS_LOCAL is the default for all created message queues. If a similar message queue were to
be known globally, then the attribute_set parameter would be RTEMS_GLOBAL | RTEMS_PRIORITY.

14.2.4 Building a MESSAGE_QUEUE_RECEIVE Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_message_queue_receive directive are listed in the following table:

14.2. Background 237

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.2

RTEMS_WAIT task will wait for a message (default)
RTEMS_NO_WAIT task should not wait

An option listed as a default is not required to appear in the option OR list, although it is a
good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for a message to arrive. The op-
tion parameter passed to the rtems_message_queue_receive directive should be RTEMS_NO_WAIT.

238 Chapter 14. Message Manager

Chapter 14 Section 14.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

14.3 Operations

14.3.1 Creating a Message Queue

The rtems_message_queue_create directive creates a message queue with the user-defined
name. The user specifies the maximum message size and maximum number of messages which
can be placed in the message queue at one time. The user may select FIFO or task priority as
the method for placing waiting tasks in the task wait queue. RTEMS allocates a Queue Control
Block (QCB) from the QCB free list to maintain the newly created queue as well as memory for
the message buffer pool associated with this message queue. RTEMS also generates a message
queue ID which is returned to the calling task.

For GLOBAL message queues, the maximum message size is effectively limited to the longest
message which the MPCI is capable of transmitting.

14.3.2 Obtaining Message Queue IDs

When a message queue is created, RTEMS generates a unique message queue ID. The message
queue ID may be obtained by either of two methods. First, as the result of an invocation of
the rtems_message_queue_create directive, the queue ID is stored in a user provided location.
Second, the queue ID may be obtained later using the rtems_message_queue_ident directive.
The queue ID is used by other message manager directives to access this message queue.

14.3.3 Receiving a Message

The rtems_message_queue_receive directive attempts to retrieve a message from the specified
message queue. If at least one message is in the queue, then the message is removed from the
queue, copied to the caller’s message buffer, and returned immediately along with the length of
the message. When messages are unavailable, one of the following situations applies:

• By default, the calling task will wait forever for the message to arrive.

• Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

• Specifying a timeout limits the period the task will wait before returning with an error
status.

If the task waits for a message, then it is placed in the message queue’s task wait queue in either
FIFO or task priority order. All tasks waiting on a message queue are returned an error code
when the message queue is deleted.

14.3.4 Sending a Message

Messages can be sent to a queue with the rtems_message_queue_send and
rtems_message_queue_urgent directives. These directives work identically when tasks
are waiting to receive a message. A task is removed from the task waiting queue, unblocked,
and the message is copied to a waiting task’s message buffer.

When no tasks are waiting at the queue, rtems_message_queue_send places the message at the
rear of the message queue, while rtems_message_queue_urgent places the message at the front
of the queue. The message is copied to a message buffer from this message queue’s buffer pool

14.3. Operations 239

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.3

and then placed in the message queue. Neither directive can successfully send a message to a
message queue which has a full queue of pending messages.

14.3.5 Broadcasting a Message

The rtems_message_queue_broadcast directive sends the same message to every task waiting
on the specified message queue as an atomic operation. The message is copied to each waiting
task’s message buffer and each task is unblocked. The number of tasks which were unblocked
is returned to the caller.

14.3.6 Deleting a Message Queue

The rtems_message_queue_delete directive removes a message queue from the system and
frees its control block as well as the memory associated with this message queue’s message
buffer pool. A message queue can be deleted by any local task that knows the message queue’s
ID. As a result of this directive, all tasks blocked waiting to receive a message from the message
queue will be readied and returned a status code which indicates that the message queue was
deleted. Any subsequent references to the message queue’s name and ID are invalid. Any
messages waiting at the message queue are also deleted and deallocated.

240 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

14.4 Directives

This section details the message manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

14.4. Directives 241

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.4

14.4.1 MESSAGE_QUEUE_CREATE - Create a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_create(
2 rtems_name name,
3 uint32_t count,
4 size_t max_message_size,
5 rtems_attribute attribute_set,
6 rtems_id *id
7);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL queue created successfully
RTEMS_INVALID_NAME invalid queue name
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NUMBER invalid message count
RTEMS_INVALID_SIZE invalid message size
RTEMS_TOO_MANY too many queues created
RTEMS_UNSATISFIED unable to allocate message buffers
RTEMS_MP_NOT_CONFIGURED multiprocessing not configured
RTEMS_TOO_MANY too many global objects

DESCRIPTION:
This directive creates a message queue which resides on the local node with the user-defined
name specified in name. For control and maintenance of the queue, RTEMS allocates and
initializes a QCB. Memory is allocated from the RTEMS Workspace for the specified count of
messages, each of max_message_size bytes in length. The RTEMS-assigned queue id, returned
in id, is used to access the message queue.

Specifying RTEMS_PRIORITY in attribute_set causes tasks waiting for a message to be serviced
according to task priority. When RTEMS_FIFO is specified, waiting tasks are serviced in First
In-First Out order.

NOTES:
This directive will not cause the calling task to be preempted.

The following message queue attribute constants are defined by RTEMS:

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority
RTEMS_LOCAL local message queue (default)
RTEMS_GLOBAL global message queue

Message queues should not be made global unless remote tasks must interact with the created
message queue. This is to avoid the system overhead incurred by the creation of a global
message queue. When a global message queue is created, the message queue’s name and id
must be transmitted to every node in the system for insertion in the local copy of the global
object table.

242 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

For GLOBAL message queues, the maximum message size is effectively limited to the longest
message which the MPCI is capable of transmitting.

The total number of global objects, including message queues, is limited by the
maximum_global_objects field in the configuration table.

14.4. Directives 243

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.4

14.4.2 MESSAGE_QUEUE_IDENT - Get ID of a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL queue identified successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME queue name not found
RTEMS_INVALID_NODE invalid node id

DESCRIPTION:
This directive obtains the queue id associated with the queue name specified in name. If the
queue name is not unique, then the queue id will match one of the queues with that name.
However, this queue id is not guaranteed to correspond to the desired queue. The queue id is
used with other message related directives to access the message queue.

NOTES:
This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched
first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then only the message
queues exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of
the global object table.

244 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

14.4.3 MESSAGE_QUEUE_DELETE - Delete a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL queue deleted successfully
RTEMS_INVALID_ID invalid queue id
RTEMS_ILLEGAL_ON_REMOTE_OBJECT cannot delete remote queue

DESCRIPTION:
This directive deletes the message queue specified by id. As a result of this directive, all
tasks blocked waiting to receive a message from this queue will be readied and returned a
status code which indicates that the message queue was deleted. If no tasks are waiting, but
the queue contains messages, then RTEMS returns these message buffers back to the system
message buffer pool. The QCB for this queue as well as the memory for the message buffers
is reclaimed by RTEMS.

NOTES:
The calling task will be preempted if its preemption mode is enabled and one or more local
tasks with a higher priority than the calling task are waiting on the deleted queue. The calling
task will NOT be preempted if the tasks that are waiting are remote tasks.

The calling task does not have to be the task that created the queue, although the task and
queue must reside on the same node.

When the queue is deleted, any messages in the queue are returned to the free message buffer
pool. Any information stored in those messages is lost.

When a global message queue is deleted, the message queue id must be transmitted to every
node in the system for deletion from the local copy of the global object table.

Proxies, used to represent remote tasks, are reclaimed when the message queue is deleted.

14.4. Directives 245

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.4

14.4.4 MESSAGE_QUEUE_SEND - Put message at rear of a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_send(
2 rtems_id id,
3 const void *buffer,
4 size_t size
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL message sent successfully
RTEMS_INVALID_ID invalid queue id
RTEMS_INVALID_SIZE invalid message size
RTEMS_INVALID_ADDRESS buffer is NULL
RTEMS_UNSATISFIED out of message buffers
RTEMS_TOO_MANY queue’s limit has been reached

DESCRIPTION:
This directive sends the message buffer of size bytes in length to the queue specified by id.
If a task is waiting at the queue, then the message is copied to the waiting task’s buffer and
the task is unblocked. If no tasks are waiting at the queue, then the message is copied to
a message buffer which is obtained from this message queue’s message buffer pool. The
message buffer is then placed at the rear of the queue.

NOTES:
The calling task will be preempted if it has preemption enabled and a higher priority task is
unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the local node will
generate a request to the remote node to post the message on the specified message queue.

If the task to be unblocked resides on a different node from the message queue, then the
message is forwarded to the appropriate node, the waiting task is unblocked, and the proxy
used to represent the task is reclaimed.

246 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

14.4.5 MESSAGE_QUEUE_URGENT - Put message at front of a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_urgent(
2 rtems_id id,
3 const void *buffer,
4 size_t size
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL message sent successfully
RTEMS_INVALID_ID invalid queue id
RTEMS_INVALID_SIZE invalid message size
RTEMS_INVALID_ADDRESS buffer is NULL
RTEMS_UNSATISFIED out of message buffers
RTEMS_TOO_MANY queue’s limit has been reached

DESCRIPTION:
This directive sends the message buffer of size bytes in length to the queue specified by id.
If a task is waiting on the queue, then the message is copied to the task’s buffer and the task
is unblocked. If no tasks are waiting on the queue, then the message is copied to a message
buffer which is obtained from this message queue’s message buffer pool. The message buffer
is then placed at the front of the queue.

NOTES:
The calling task will be preempted if it has preemption enabled and a higher priority task is
unblocked as the result of this directive.

Sending a message to a global message queue which does not reside on the local node will
generate a request telling the remote node to post the message on the specified message
queue.

If the task to be unblocked resides on a different node from the message queue, then the
message is forwarded to the appropriate node, the waiting task is unblocked, and the proxy
used to represent the task is reclaimed.

14.4. Directives 247

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.4

14.4.6 MESSAGE_QUEUE_BROADCAST - Broadcast N messages to a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_broadcast(
2 rtems_id id,
3 const void *buffer,
4 size_t size,
5 uint32_t *count
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL message broadcasted successfully
RTEMS_INVALID_ID invalid queue id
RTEMS_INVALID_ADDRESS buffer is NULL
RTEMS_INVALID_ADDRESS count is NULL
RTEMS_INVALID_SIZE invalid message size

DESCRIPTION:
This directive causes all tasks that are waiting at the queue specified by id to be unblocked
and sent the message contained in buffer. Before a task is unblocked, the message buffer of
size byes in length is copied to that task’s message buffer. The number of tasks that were
unblocked is returned in count.

NOTES:
The calling task will be preempted if it has preemption enabled and a higher priority task is
unblocked as the result of this directive.

The execution time of this directive is directly related to the number of tasks waiting on the
message queue, although it is more efficient than the equivalent number of invocations of
rtems_message_queue_send.

Broadcasting a message to a global message queue which does not reside on the local node
will generate a request telling the remote node to broadcast the message to the specified
message queue.

When a task is unblocked which resides on a different node from the message queue, a copy
of the message is forwarded to the appropriate node, the waiting task is unblocked, and the
proxy used to represent the task is reclaimed.

248 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

14.4.7 MESSAGE_QUEUE_RECEIVE - Receive message from a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_receive(
2 rtems_id id,
3 void *buffer,
4 size_t *size,
5 rtems_option option_set,
6 rtems_interval timeout
7);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL message received successfully
RTEMS_INVALID_ID invalid queue id
RTEMS_INVALID_ADDRESS buffer is NULL
RTEMS_INVALID_ADDRESS size is NULL
RTEMS_UNSATISFIED queue is empty
RTEMS_TIMEOUT timed out waiting for message
RTEMS_OBJECT_WAS_DELETED queue deleted while waiting

DESCRIPTION:
This directive receives a message from the message queue specified in id. The RTEMS_WAIT
and RTEMS_NO_WAIT options of the options parameter allow the calling task to specify whether
to wait for a message to become available or return immediately. For either option, if there is
at least one message in the queue, then it is copied to buffer, size is set to return the length
of the message in bytes, and this directive returns immediately with a successful return code.
The buffer has to be big enough to receive a message of the maximum length with respect to
this message queue.

If the calling task chooses to return immediately and the queue is empty, then a status code
indicating this condition is returned. If the calling task chooses to wait at the message queue
and the queue is empty, then the calling task is placed on the message wait queue and blocked.
If the queue was created with the RTEMS_PRIORITY option specified, then the calling task is
inserted into the wait queue according to its priority. But, if the queue was created with the
RTEMS_FIFO option specified, then the calling task is placed at the rear of the wait queue.

A task choosing to wait at the queue can optionally specify a timeout value in the timeout
parameter. The timeout parameter specifies the maximum interval to wait before the calling
task desires to be unblocked. If it is set to RTEMS_NO_TIMEOUT, then the calling task will wait
forever.

NOTES:
The following message receive option constants are defined by RTEMS:

RTEMS_WAIT task will wait for a message (default)
RTEMS_NO_WAIT task should not wait

Receiving a message from a global message queue which does not reside on the local node
will generate a request to the remote node to obtain a message from the specified message

14.4. Directives 249

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.4

queue. If no message is available and RTEMS_WAIT was specified, then the task must be blocked
until a message is posted. A proxy is allocated on the remote node to represent the task until
the message is posted.

A clock tick is required to support the timeout functionality of this directive.

250 Chapter 14. Message Manager

Chapter 14 Section 14.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

14.4.8 MESSAGE_QUEUE_GET_NUMBER_PENDING - Get number of messages pend-
ing on a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_get_number_pending(
2 rtems_id id,
3 uint32_t *count
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL number of messages pending returned successfully
RTEMS_INVALID_ADDRESS count is NULL
RTEMS_INVALID_ID invalid queue id

DESCRIPTION:
This directive returns the number of messages pending on this message queue in count. If no
messages are present on the queue, count is set to zero.

NOTES:
Getting the number of pending messages on a global message queue which does not reside
on the local node will generate a request to the remote node to actually obtain the pending
message count for the specified message queue.

14.4. Directives 251

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 14 Section 14.4

14.4.9 MESSAGE_QUEUE_FLUSH - Flush all messages on a queue

CALLING SEQUENCE:

1 rtems_status_code rtems_message_queue_flush(
2 rtems_id id,
3 uint32_t *count
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL message queue flushed successfully
RTEMS_INVALID_ADDRESS count is NULL
RTEMS_INVALID_ID invalid queue id

DESCRIPTION:
This directive removes all pending messages from the specified queue id. The number of
messages removed is returned in count. If no messages are present on the queue, count is set
to zero.

NOTES:
Flushing all messages on a global message queue which does not reside on the local node will
generate a request to the remote node to actually flush the specified message queue.

252 Chapter 14. Message Manager

CHAPTER

FIFTEEN

EVENT MANAGER

253

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 15 Section 15.1

15.1 Introduction

The event manager provides a high performance method of intertask communication and syn-
chronization. The directives provided by the event manager are:

• rtems_event_send (page 259) - Send event set to a task

• rtems_event_receive (page 260) - Receive event condition

254 Chapter 15. Event Manager

Chapter 15 Section 15.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

15.2 Background

15.2.1 Event Sets

An event flag is used by a task (or ISR) to inform another task of the occurrence of a significant
situation. Thirty-two event flags are associated with each task. A collection of one or more
event flags is referred to as an event set. The data type rtems_event_set is used to manage
event sets.

The application developer should remember the following key characteristics of event opera-
tions when utilizing the event manager:

• Events provide a simple synchronization facility.

• Events are aimed at tasks.

• Tasks can wait on more than one event simultaneously.

• Events are independent of one another.

• Events do not hold or transport data.

• Events are not queued. In other words, if an event is sent more than once to a task before
being received, the second and subsequent send operations to that same task have no
effect.

An event set is posted when it is directed (or sent) to a task. A pending event is an event that
has been posted but not received. An event condition is used to specify the event set which the
task desires to receive and the algorithm which will be used to determine when the request is
satisfied. An event condition is satisfied based upon one of two algorithms which are selected
by the user. The RTEMS_EVENT_ANY algorithm states that an event condition is satisfied when at
least a single requested event is posted. The RTEMS_EVENT_ALL algorithm states that an event
condition is satisfied when every requested event is posted.

15.2.2 Building an Event Set or Condition

An event set or condition is built by a bitwise OR of the desired events. The set of valid events
is RTEMS_EVENT_0 through RTEMS_EVENT_31. If an event is not explicitly specified in the set or
condition, then it is not present. Events are specifically designed to be mutually exclusive,
therefore bitwise OR and addition operations are equivalent as long as each event appears
exactly once in the event set list.

For example, when sending the event set consisting of RTEMS_EVENT_6, RTEMS_EVENT_15,
and RTEMS_EVENT_31, the event parameter to the rtems_event_send directive should be
RTEMS_EVENT_6 | RTEMS_EVENT_15 | RTEMS_EVENT_31.

15.2.3 Building an EVENT_RECEIVE Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_event_receive directive are listed in the following table:

15.2. Background 255

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 15 Section 15.2

RTEMS_WAIT task will wait for event (default)
RTEMS_NO_WAIT task should not wait
RTEMS_EVENT_ALL return after all events (default)
RTEMS_EVENT_ANY return after any events

Option values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each option appears exactly once in the component
list. An option listed as a default is not required to appear in the option list, although it is a
good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for all events in a particular
event condition to arrive. The option parameter passed to the rtems_event_receive direc-
tive should be either RTEMS_EVENT_ALL | RTEMS_NO_WAIT or RTEMS_NO_WAIT. The option pa-
rameter can be set to RTEMS_NO_WAIT because RTEMS_EVENT_ALL is the default condition for
rtems_event_receive.

256 Chapter 15. Event Manager

Chapter 15 Section 15.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

15.3 Operations

15.3.1 Sending an Event Set

The rtems_event_send directive allows a task (or an ISR) to direct an event set to a target task.
Based upon the state of the target task, one of the following situations applies:

• Target Task is Blocked Waiting for Events

– If the waiting task’s input event condition is satisfied, then the task is made ready for
execution.

– If the waiting task’s input event condition is not satisfied, then the event set is posted
but left pending and the task remains blocked.

• Target Task is Not Waiting for Events

– The event set is posted and left pending.

15.3.2 Receiving an Event Set

The rtems_event_receive directive is used by tasks to accept a specific input event condition.
The task also specifies whether the request is satisfied when all requested events are available or
any single requested event is available. If the requested event condition is satisfied by pending
events, then a successful return code and the satisfying event set are returned immediately. If
the condition is not satisfied, then one of the following situations applies:

• By default, the calling task will wait forever for the event condition to be satisfied.

• Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

• Specifying a timeout limits the period the task will wait before returning with an error
status code.

15.3.3 Determining the Pending Event Set

A task can determine the pending event set by calling the rtems_event_receive directive with a
value of RTEMS_PENDING_EVENTS for the input event condition. The pending events are returned
to the calling task but the event set is left unaltered.

15.3.4 Receiving all Pending Events

A task can receive all of the currently pending events by calling the rtems_event_receive di-
rective with a value of RTEMS_ALL_EVENTS for the input event condition and RTEMS_NO_WAIT |
RTEMS_EVENT_ANY for the option set. The pending events are returned to the calling task and the
event set is cleared. If no events are pending then the RTEMS_UNSATISFIED status code will be
returned.

15.3. Operations 257

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 15 Section 15.4

15.4 Directives

This section details the event manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

258 Chapter 15. Event Manager

Chapter 15 Section 15.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

15.4.1 EVENT_SEND - Send event set to a task

CALLING SEQUENCE:

1 rtems_status_code rtems_event_send (
2 rtems_id id,
3 rtems_event_set event_in
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL event set sent successfully
RTEMS_INVALID_ID invalid task id

DESCRIPTION:
This directive sends an event set, event_in, to the task specified by id. If a blocked task’s input
event condition is satisfied by this directive, then it will be made ready. If its input event
condition is not satisfied, then the events satisfied are updated and the events not satisfied
are left pending. If the task specified by id is not blocked waiting for events, then the events
sent are left pending.

NOTES:
Specifying RTEMS_SELF for id results in the event set being sent to the calling task.

Identical events sent to a task are not queued. In other words, the second, and subsequent,
posting of an event to a task before it can perform an rtems_event_receive has no effect.

The calling task will be preempted if it has preemption enabled and a higher priority task is
unblocked as the result of this directive.

Sending an event set to a global task which does not reside on the local node will generate a
request telling the remote node to send the event set to the appropriate task.

15.4. Directives 259

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 15 Section 15.4

15.4.2 EVENT_RECEIVE - Receive event condition

CALLING SEQUENCE:

1 rtems_status_code rtems_event_receive (
2 rtems_event_set event_in,
3 rtems_option option_set,
4 rtems_interval ticks,
5 rtems_event_set *event_out
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL event received successfully
RTEMS_UNSATISFIED input event not satisfied (RTEMS_NO_WAIT)
RTEMS_INVALID_ADDRESS event_out is NULL
RTEMS_TIMEOUT timed out waiting for event

DESCRIPTION:

This directive attempts to receive the event condition specified in event_in. If
event_in is set to RTEMS_PENDING_EVENTS, then the current pending events are re-
turned in event_out and left pending. The RTEMS_WAIT and RTEMS_NO_WAIT options
in the option_set parameter are used to specify whether or not the task is willing to
wait for the event condition to be satisfied. RTEMS_EVENT_ANY and RTEMS_EVENT_ALL
are used in the option_set parameter are used to specify whether a single event or
the complete event set is necessary to satisfy the event condition. The event_out pa-
rameter is returned to the calling task with the value that corresponds to the events
in event_in that were satisfied.

If pending events satisfy the event condition, then event_out is set to the satisfied
events and the pending events in the event condition are cleared. If the event con-
dition is not satisfied and RTEMS_NO_WAIT is specified, then event_out is set to the
currently satisfied events. If the calling task chooses to wait, then it will block wait-
ing for the event condition.

If the calling task must wait for the event condition to be satisfied, then the time-
out parameter is used to specify the maximum interval to wait. If it is set to
RTEMS_NO_TIMEOUT, then the calling task will wait forever.

NOTES:
This directive only affects the events specified in event_in. Any pending events that do not
correspond to any of the events specified in event_in will be left pending.

The following event receive option constants are defined by RTEMS:

RTEMS_WAIT task will wait for event (default)
RTEMS_NO_WAIT task should not wait
RTEMS_EVENT_ALL return after all events (default)
RTEMS_EVENT_ANY return after any events

A clock tick is required to support the functionality of this directive.

260 Chapter 15. Event Manager

CHAPTER

SIXTEEN

SIGNAL MANAGER

261

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 16 Section 16.1

16.1 Introduction

The signal manager provides the capabilities required for asynchronous communication. The
directives provided by the signal manager are:

• rtems_signal_catch (page 268) - Establish an ASR

• rtems_signal_send (page 269) - Send signal set to a task

262 Chapter 16. Signal Manager

Chapter 16 Section 16.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

16.2 Background

16.2.1 Signal Manager Definitions

The signal manager allows a task to optionally define an asynchronous signal routine (ASR). An
ASR is to a task what an ISR is to an application’s set of tasks. When the processor is interrupted,
the execution of an application is also interrupted and an ISR is given control. Similarly, when
a signal is sent to a task, that task’s execution path will be “interrupted” by the ASR. Sending a
signal to a task has no effect on the receiving task’s current execution state.

A signal flag is used by a task (or ISR) to inform another task of the occurrence of a significant
situation. Thirty-two signal flags are associated with each task. A collection of one or more
signals is referred to as a signal set. The data type rtems_signal_set is used to manipulate
signal sets.

A signal set is posted when it is directed (or sent) to a task. A pending signal is a signal that has
been sent to a task with a valid ASR, but has not been processed by that task’s ASR.

16.2.2 A Comparison of ASRs and ISRs

The format of an ASR is similar to that of an ISR with the following exceptions:

• ISRs are scheduled by the processor hardware. ASRs are scheduled by RTEMS.

• ISRs do not execute in the context of a task and may invoke only a subset of directives.
ASRs execute in the context of a task and may execute any directive.

• When an ISR is invoked, it is passed the vector number as its argument. When an ASR is
invoked, it is passed the signal set as its argument.

• An ASR has a task mode which can be different from that of the task. An ISR does not
execute as a task and, as a result, does not have a task mode.

16.2.3 Building a Signal Set

A signal set is built by a bitwise OR of the desired signals. The set of valid signals is
RTEMS_SIGNAL_0 through RTEMS_SIGNAL_31. If a signal is not explicitly specified in the signal
set, then it is not present. Signal values are specifically designed to be mutually exclusive,
therefore bitwise OR and addition operations are equivalent as long as each signal appears
exactly once in the component list.

This example demonstrates the signal parameter used when sending the signal set consist-
ing of RTEMS_SIGNAL_6, RTEMS_SIGNAL_15, and RTEMS_SIGNAL_31. The signal parameter pro-
vided to the rtems_signal_send directive should be RTEMS_SIGNAL_6 | RTEMS_SIGNAL_15 |
RTEMS_SIGNAL_31.

16.2.4 Building an ASR Mode

In general, an ASR’s mode is built by a bitwise OR of the desired mode components. The set
of valid mode components is the same as those allowed with the task_create and task_mode
directives. A complete list of mode options is provided in the following table:

16.2. Background 263

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 16 Section 16.2

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_
LEVEL(0)

is masked by RTEMS_INTERRUPT_MASK and enables all interrupts

RTEMS_INTERRUPT_
LEVEL(n)

is masked by RTEMS_INTERRUPT_MASK and sets interrupts level n

Mode values are specifically designed to be mutually exclusive, therefore bitwise OR and addi-
tion operations are equivalent as long as each mode appears exactly once in the component list.
A mode component listed as a default is not required to appear in the mode list, although it is a
good programming practice to specify default components. If all defaults are desired, the mode
DEFAULT_MODES should be specified on this call.

This example demonstrates the mode parameter used with the rtems_signal_catch to establish
an ASR which executes at interrupt level three and is non-preemptible. The mode should be
set to RTEMS_INTERRUPT_LEVEL(3) | RTEMS_NO_PREEMPT to indicate the desired processor mode
and interrupt level.

264 Chapter 16. Signal Manager

Chapter 16 Section 16.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

16.3 Operations

16.3.1 Establishing an ASR

The rtems_signal_catch directive establishes an ASR for the calling task. The address of the
ASR and its execution mode are specified to this directive. The ASR’s mode is distinct from
the task’s mode. For example, the task may allow preemption, while that task’s ASR may have
preemption disabled. Until a task calls rtems_signal_catch the first time, its ASR is invalid,
and no signal sets can be sent to the task.

A task may invalidate its ASR and discard all pending signals by calling rtems_signal_catch
with a value of NULL for the ASR’s address. When a task’s ASR is invalid, new signal sets sent
to this task are discarded.

A task may disable ASR processing (RTEMS_NO_ASR) via the task_mode directive. When a task’s
ASR is disabled, the signals sent to it are left pending to be processed later when the ASR is
enabled.

Any directive that can be called from a task can also be called from an ASR. A task is only
allowed one active ASR. Thus, each call to rtems_signal_catch replaces the previous one.

Normally, signal processing is disabled for the ASR’s execution mode, but if signal processing is
enabled for the ASR, the ASR must be reentrant.

16.3.2 Sending a Signal Set

The rtems_signal_send directive allows both tasks and ISRs to send signals to a target task. The
target task and a set of signals are specified to the rtems_signal_send directive. The sending of
a signal to a task has no effect on the execution state of that task. If the task is not the currently
running task, then the signals are left pending and processed by the task’s ASR the next time
the task is dispatched to run. The ASR is executed immediately before the task is dispatched.
If the currently running task sends a signal to itself or is sent a signal from an ISR, its ASR is
immediately dispatched to run provided signal processing is enabled.

If an ASR with signals enabled is preempted by another task or an ISR and a new signal set is
sent, then a new copy of the ASR will be invoked, nesting the preempted ASR. Upon completion
of processing the new signal set, control will return to the preempted ASR. In this situation, the
ASR must be reentrant.

Like events, identical signals sent to a task are not queued. In other words, sending the same
signal multiple times to a task (without any intermediate signal processing occurring for the
task), has the same result as sending that signal to that task once.

16.3.3 Processing an ASR

Asynchronous signals were designed to provide the capability to generate software interrupts.
The processing of software interrupts parallels that of hardware interrupts. As a result, the dif-
ferences between the formats of ASRs and ISRs is limited to the meaning of the single argument
passed to an ASR. The ASR should have the following calling sequence and adhere to C calling
conventions:

16.3. Operations 265

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 16 Section 16.3

1 rtems_asr user_routine(
2 rtems_signal_set signals
3);

When the ASR returns to RTEMS the mode and execution path of the interrupted task (or ASR)
is restored to the context prior to entering the ASR.

266 Chapter 16. Signal Manager

Chapter 16 Section 16.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

16.4 Directives

This section details the signal manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

16.4. Directives 267

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 16 Section 16.4

16.4.1 SIGNAL_CATCH - Establish an ASR

CALLING SEQUENCE:

1 rtems_status_code rtems_signal_catch(
2 rtems_asr_entry asr_handler,
3 rtems_mode mode
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL always successful

DESCRIPTION:
This directive establishes an asynchronous signal routine (ASR) for the calling task. The
asr_handler parameter specifies the entry point of the ASR. If asr_handler is NULL, the ASR
for the calling task is invalidated and all pending signals are cleared. Any signals sent to a task
with an invalid ASR are discarded. The mode parameter specifies the execution mode for the
ASR. This execution mode supersedes the task’s execution mode while the ASR is executing.

NOTES:
This directive will not cause the calling task to be preempted.

The following task mode constants are defined by RTEMS:

RTEMS_PREEMPT is masked by RTEMS_PREEMPT_MASK and enables preemption
RTEMS_NO_PREEMPT is masked by RTEMS_PREEMPT_MASK and disables preemption
RTEMS_NO_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and disables timeslicing
RTEMS_TIMESLICE is masked by RTEMS_TIMESLICE_MASK and enables timeslicing
RTEMS_ASR is masked by RTEMS_ASR_MASK and enables ASR processing
RTEMS_NO_ASR is masked by RTEMS_ASR_MASK and disables ASR processing
RTEMS_INTERRUPT_
LEVEL(0)

is masked by RTEMS_INTERRUPT_MASK and enables all inter-
rupts

RTEMS_INTERRUPT_
LEVEL(n)

is masked by RTEMS_INTERRUPT_MASK and sets interrupts level
n

268 Chapter 16. Signal Manager

Chapter 16 Section 16.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

16.4.2 SIGNAL_SEND - Send signal set to a task

CALLING SEQUENCE:

1 rtems_status_code rtems_signal_send(
2 rtems_id id,
3 rtems_signal_set signal_set
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL signal sent successfully
RTEMS_INVALID_ID task id invalid
RTEMS_INVALID_NUMBER empty signal set
RTEMS_NOT_DEFINED ASR invalid

DESCRIPTION:
This directive sends a signal set to the task specified in id. The signal_set parameter contains
the signal set to be sent to the task.

If a caller sends a signal set to a task with an invalid ASR, then an error code is returned to
the caller. If a caller sends a signal set to a task whose ASR is valid but disabled, then the
signal set will be caught and left pending for the ASR to process when it is enabled. If a caller
sends a signal set to a task with an ASR that is both valid and enabled, then the signal set is
caught and the ASR will execute the next time the task is dispatched to run.

NOTES:
Sending a signal set to a task has no effect on that task’s state. If a signal set is sent to a
blocked task, then the task will remain blocked and the signals will be processed when the
task becomes the running task.

Sending a signal set to a global task which does not reside on the local node will generate a
request telling the remote node to send the signal set to the specified task.

16.4. Directives 269

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 16 Section 16.4

270 Chapter 16. Signal Manager

CHAPTER

SEVENTEEN

PARTITION MANAGER

271

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 17 Section 17.1

17.1 Introduction

The partition manager provides facilities to dynamically allocate memory in fixed-size units.
The directives provided by the partition manager are:

• rtems_partition_create (page 276) - Create a partition

• rtems_partition_ident (page 278) - Get ID of a partition

• rtems_partition_delete (page 279) - Delete a partition

• rtems_partition_get_buffer (page 280) - Get buffer from a partition

• rtems_partition_return_buffer (page 281) - Return buffer to a partition

272 Chapter 17. Partition Manager

Chapter 17 Section 17.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

17.2 Background

17.2.1 Partition Manager Definitions

A partition is a physically contiguous memory area divided into fixed-size buffers that can be
dynamically allocated and deallocated.

Partitions are managed and maintained as a list of buffers. Buffers are obtained from the front
of the partition’s free buffer chain and returned to the rear of the same chain. When a buffer is
on the free buffer chain, RTEMS uses two pointers of memory from each buffer as the free buffer
chain. When a buffer is allocated, the entire buffer is available for application use. Therefore,
modifying memory that is outside of an allocated buffer could destroy the free buffer chain or
the contents of an adjacent allocated buffer.

17.2.2 Building a Partition Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set
of valid partition attributes is provided in the following table:

RTEMS_LOCAL local partition (default)
RTEMS_GLOBAL global partition

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each attribute appears exactly once in the component
list. An attribute listed as a default is not required to appear in the attribute list, although it is a
good programming practice to specify default attributes. If all defaults are desired, the attribute
RTEMS_DEFAULT_ATTRIBUTES should be specified on this call. The attribute_set parameter should
be RTEMS_GLOBAL to indicate that the partition is to be known globally.

17.2. Background 273

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 17 Section 17.3

17.3 Operations

17.3.1 Creating a Partition

The rtems_partition_create directive creates a partition with a user-specified name.
The partition’s name, starting address, length and buffer size are all specified to the
rtems_partition_create directive. RTEMS allocates a Partition Control Block (PTCB) from
the PTCB free list. This data structure is used by RTEMS to manage the newly created partition.
The number of buffers in the partition is calculated based upon the specified partition length
and buffer size. If successful,the unique partition ID is returned to the calling task.

17.3.2 Obtaining Partition IDs

When a partition is created, RTEMS generates a unique partition ID and assigned it to the
created partition until it is deleted. The partition ID may be obtained by either of two methods.
First, as the result of an invocation of the rtems_partition_create directive, the partition ID
is stored in a user provided location. Second, the partition ID may be obtained later using the
rtems_partition_ident directive. The partition ID is used by other partition manager directives
to access this partition.

17.3.3 Acquiring a Buffer

A buffer can be obtained by calling the rtems_partition_get_buffer directive. If a buffer is
available, then it is returned immediately with a successful return code. Otherwise, an unsuc-
cessful return code is returned immediately to the caller. Tasks cannot block to wait for a buffer
to become available.

17.3.4 Releasing a Buffer

Buffers are returned to a partition’s free buffer chain with the rtems_partition_return_buffer
directive. This directive returns an error status code if the returned buffer was not previously
allocated from this partition.

17.3.5 Deleting a Partition

The rtems_partition_delete directive allows a partition to be removed and returned to
RTEMS. When a partition is deleted, the PTCB for that partition is returned to the PTCB free
list. A partition with buffers still allocated cannot be deleted. Any task attempting to do so will
be returned an error status code.

274 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

17.4 Directives

This section details the partition manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

17.4. Directives 275

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 17 Section 17.4

17.4.1 PARTITION_CREATE - Create a partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_create(
2 rtems_name name,
3 void *starting_address,
4 uintptr_t length,
5 size_t buffer_size,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL partition created successfully
RTEMS_INVALID_NAME invalid partition name

RTEMS_TOO_MANY too many partitions created
RTEMS_INVALID_ADDRESS starting_address is not on a pointer size boundary
RTEMS_INVALID_ADDRESS starting_address is NULL
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_SIZE length or buffer_size is 0
RTEMS_INVALID_SIZE length is less than the buffer_size

RTEMS_INVALID_SIZE buffer_size is not an integral multiple of the pointer size
RTEMS_INVALID_SIZE buffer_size is less than two times the pointer size
RTEMS_MP_NOT_CONFIGURED multiprocessing not configured
RTEMS_TOO_MANY too many global objects

DESCRIPTION:
This directive creates a partition of fixed size buffers from a physically contiguous memory
space which starts at starting_address and is length bytes in size. Each allocated buffer is to be
of buffer_size in bytes. The assigned partition id is returned in id. This partition id is used
to access the partition with other partition related directives. For control and maintenance of
the partition, RTEMS allocates a PTCB from the local PTCB free pool and initializes it.

NOTES:
This directive will not cause the calling task to be preempted.

The partition buffer area specified by the starting_address must be properly aligned. It
must be possible to directly store target architecture pointers and the also the user data. For
example, if the user data contains some long double or vector data types, the partition buffer
area and the buffer size must take the alignment of these types into account which is usually
larger than the pointer alignment. A cache line alignment may be also a factor.

The buffer_size parameter must be an integral multiple of the pointer size on the target
architecture. Additionally, buffer_size must be large enough to hold two pointers on the
target architecture. This is required for RTEMS to manage the buffers when they are free.

Memory from the partition is not used by RTEMS to store the Partition Control Block.

The following partition attribute constants are defined by RTEMS:

276 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

RTEMS_LOCAL local partition (default)
RTEMS_GLOBAL global partition

The PTCB for a global partition is allocated on the local node. The memory space used for the
partition must reside in shared memory. Partitions should not be made global unless remote
tasks must interact with the partition. This is to avoid the overhead incurred by the creation
of a global partition. When a global partition is created, the partition’s name and id must be
transmitted to every node in the system for insertion in the local copy of the global object
table.

The total number of global objects, including partitions, is limited by the maxi-
mum_global_objects field in the Configuration Table.

EXAMPLE:

1 #include <rtems.h>
2 #include <rtems/chain.h>
3

4 #include <assert.h>
5

6 typedef struct {
7 char less;
8 short more;
9 } item;

10

11 union {
12 item data;
13 rtems_chain_node node;
14 } items[13];
15

16 rtems_id create_partition(void)
17 {
18 rtems_id id;
19 rtems_status_code sc;
20

21 sc = rtems_partition_create(
22 rtems_build_name('P', 'A', 'R', 'T'),
23 items,
24 sizeof(items),
25 sizeof(items[0]),
26 RTEMS_DEFAULT_ATTRIBUTES,
27 &id
28);
29 assert(sc == RTEMS_SUCCESSFUL);
30

31 return id;
32 }

17.4. Directives 277

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 17 Section 17.4

17.4.2 PARTITION_IDENT - Get ID of a partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_ident(
2 rtems_name name,
3 uint32_t node,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL partition identified successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME partition name not found
RTEMS_INVALID_NODE invalid node id

DESCRIPTION:
This directive obtains the partition id associated with the partition name. If the partition name
is not unique, then the partition id will match one of the partitions with that name. However,
this partition id is not guaranteed to correspond to the desired partition. The partition id is
used with other partition related directives to access the partition.

NOTES:
This directive will not cause the running task to be preempted.

If node is RTEMS_SEARCH_ALL_NODES, all nodes are searched with the local node being searched
first. All other nodes are searched with the lowest numbered node searched first.

If node is a valid node number which does not represent the local node, then only the parti-
tions exported by the designated node are searched.

This directive does not generate activity on remote nodes. It accesses only the local copy of
the global object table.

278 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

17.4.3 PARTITION_DELETE - Delete a partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL partition deleted successfully
RTEMS_INVALID_ID invalid partition id
RTEMS_RESOURCE_IN_USE buffers still in use
RTEMS_ILLEGAL_ON_REMOTE_OBJECT cannot delete remote partition

DESCRIPTION:
This directive deletes the partition specified by id. The partition cannot be deleted if any of
its buffers are still allocated. The PTCB for the deleted partition is reclaimed by RTEMS.

NOTES:
This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the partition. Any local task that
knows the partition id can delete the partition.

When a global partition is deleted, the partition id must be transmitted to every node in the
system for deletion from the local copy of the global object table.

The partition must reside on the local node, even if the partition was created with the
RTEMS_GLOBAL option.

17.4. Directives 279

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 17 Section 17.4

17.4.4 PARTITION_GET_BUFFER - Get buffer from a partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_get_buffer(
2 rtems_id id,
3 void **buffer
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL buffer obtained successfully
RTEMS_INVALID_ADDRESS buffer is NULL
RTEMS_INVALID_ID invalid partition id
RTEMS_UNSATISFIED all buffers are allocated

DESCRIPTION:
This directive allows a buffer to be obtained from the partition specified in id. The address of
the allocated buffer is returned in buffer.

NOTES:
This directive will not cause the running task to be preempted.

All buffers begin on a four byte boundary.

A task cannot wait on a buffer to become available.

Getting a buffer from a global partition which does not reside on the local node will generate
a request telling the remote node to allocate a buffer from the specified partition.

280 Chapter 17. Partition Manager

Chapter 17 Section 17.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

17.4.5 PARTITION_RETURN_BUFFER - Return buffer to a partition

CALLING SEQUENCE:

1 rtems_status_code rtems_partition_return_buffer(
2 rtems_id id,
3 void *buffer
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL buffer returned successfully
RTEMS_INVALID_ADDRESS buffer is NULL
RTEMS_INVALID_ID invalid partition id
RTEMS_INVALID_ADDRESS buffer address not in partition

DESCRIPTION:
This directive returns the buffer specified by buffer to the partition specified by id.

NOTES:
This directive will not cause the running task to be preempted.

Returning a buffer to a global partition which does not reside on the local node will generate
a request telling the remote node to return the buffer to the specified partition.

Returning a buffer multiple times is an error. It will corrupt the internal state of the partition.

17.4. Directives 281

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 17 Section 17.4

282 Chapter 17. Partition Manager

CHAPTER

EIGHTEEN

REGION MANAGER

283

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.1

18.1 Introduction

The region manager provides facilities to dynamically allocate memory in variable sized units.
The directives provided by the region manager are:

• rtems_region_create (page 290) - Create a region

• rtems_region_ident (page 292) - Get ID of a region

• rtems_region_delete (page 293) - Delete a region

• rtems_region_extend (page 294) - Add memory to a region

• rtems_region_get_segment (page 295) - Get segment from a region

• rtems_region_return_segment (page 297) - Return segment to a region

• rtems_region_get_segment_size (page 298) - Obtain size of a segment

• rtems_region_resize_segment (page 299) - Change size of a segment

• rtems_region_get_information (page 300) - Get region information

• rtems_region_get_free_information (page 301) - Get region free information

284 Chapter 18. Region Manager

Chapter 18 Section 18.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.2 Background

18.2.1 Region Manager Definitions

A region makes up a physically contiguous memory space with user-defined boundaries from
which variable-sized segments are dynamically allocated and deallocated. A segment is a vari-
able size section of memory which is allocated in multiples of a user-defined page size. This
page size is required to be a multiple of four greater than or equal to four. For example, if a re-
quest for a 350-byte segment is made in a region with 256-byte pages, then a 512-byte segment
is allocated.

Regions are organized as doubly linked chains of variable sized memory blocks. Memory re-
quests are allocated using a first-fit algorithm. If available, the requester receives the number of
bytes requested (rounded up to the next page size). RTEMS requires some overhead from the
region’s memory for each segment that is allocated. Therefore, an application should only mod-
ify the memory of a segment that has been obtained from the region. The application should
NOT modify the memory outside of any obtained segments and within the region’s boundaries
while the region is currently active in the system.

Upon return to the region, the free block is coalesced with its neighbors (if free) on both sides
to produce the largest possible unused block.

18.2.2 Building an Attribute Set

In general, an attribute set is built by a bitwise OR of the desired attribute components. The set
of valid region attributes is provided in the following table:

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority

Attribute values are specifically designed to be mutually exclusive, therefore bitwise OR and
addition operations are equivalent as long as each attribute appears exactly once in the compo-
nent list. An attribute listed as a default is not required to appear in the attribute list, although
it is a good programming practice to specify default attributes. If all defaults are desired, the
attribute RTEMS_DEFAULT_ATTRIBUTES should be specified on this call.

This example demonstrates the attribute_set parameter needed to create a region with the
task priority waiting queue discipline. The attribute_set parameter to the rtems_region_create
directive should be RTEMS_PRIORITY.

18.2.3 Building an Option Set

In general, an option is built by a bitwise OR of the desired option components. The set of valid
options for the rtems_region_get_segment directive are listed in the following table:

RTEMS_WAIT task will wait for segment (default)
RTEMS_NO_WAIT task should not wait

Option values are specifically designed to be mutually exclusive, therefore bitwise OR and ad-
dition operations are equivalent as long as each option appears exactly once in the component

18.2. Background 285

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.2

list. An option listed as a default is not required to appear in the option list, although it is a
good programming practice to specify default options. If all defaults are desired, the option
RTEMS_DEFAULT_OPTIONS should be specified on this call.

This example demonstrates the option parameter needed to poll for a segment. The option
parameter passed to the rtems_region_get_segment directive should be RTEMS_NO_WAIT.

286 Chapter 18. Region Manager

Chapter 18 Section 18.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.3 Operations

18.3.1 Creating a Region

The rtems_region_create directive creates a region with the user-defined name. The user may
select FIFO or task priority as the method for placing waiting tasks in the task wait queue.
RTEMS allocates a Region Control Block (RNCB) from the RNCB free list to maintain the newly
created region. RTEMS also generates a unique region ID which is returned to the calling task.

It is not possible to calculate the exact number of bytes available to the user since RTEMS
requires overhead for each segment allocated. For example, a region with one segment that
is the size of the entire region has more available bytes than a region with two segments that
collectively are the size of the entire region. This is because the region with one segment
requires only the overhead for one segment, while the other region requires the overhead for
two segments.

Due to automatic coalescing, the number of segments in the region dynamically changes. There-
fore, the total overhead required by RTEMS dynamically changes.

18.3.2 Obtaining Region IDs

When a region is created, RTEMS generates a unique region ID and assigns it to the created
region until it is deleted. The region ID may be obtained by either of two methods. First, as the
result of an invocation of the rtems_region_create directive, the region ID is stored in a user
provided location. Second, the region ID may be obtained later using the rtems_region_ident
directive. The region ID is used by other region manager directives to access this region.

18.3.3 Adding Memory to a Region

The rtems_region_extend directive may be used to add memory to an existing region. The
caller specifies the size in bytes and starting address of the memory being added.

18.3.4 Acquiring a Segment

The rtems_region_get_segment directive attempts to acquire a segment from a specified region.
If the region has enough available free memory, then a segment is returned successfully to the
caller. When the segment cannot be allocated, one of the following situations applies:

• By default, the calling task will wait forever to acquire the segment.

• Specifying the RTEMS_NO_WAIT option forces an immediate return with an error status code.

• Specifying a timeout limits the interval the task will wait before returning with an error
status code.

If the task waits for the segment, then it is placed in the region’s task wait queue in either FIFO
or task priority order. All tasks waiting on a region are returned an error when the message
queue is deleted.

18.3. Operations 287

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.3

18.3.5 Releasing a Segment

When a segment is returned to a region by the rtems_region_return_segment directive, it is
merged with its unallocated neighbors to form the largest possible segment. The first task on
the wait queue is examined to determine if its segment request can now be satisfied. If so, it is
given a segment and unblocked. This process is repeated until the first task’s segment request
cannot be satisfied.

18.3.6 Obtaining the Size of a Segment

The rtems_region_get_segment_size directive returns the size in bytes of the specified seg-
ment. The size returned includes any “extra” memory included in the segment because of
rounding up to a page size boundary.

18.3.7 Changing the Size of a Segment

The rtems_region_resize_segment directive is used to change the size in bytes of the specified
segment. The size may be increased or decreased. When increasing the size of a segment, it is
possible that the request cannot be satisfied. This directive provides functionality similar to the
realloc() function in the Standard C Library.

18.3.8 Deleting a Region

A region can be removed from the system and returned to RTEMS with the
rtems_region_delete directive. When a region is deleted, its control block is returned to the
RNCB free list. A region with segments still allocated is not allowed to be deleted. Any task
attempting to do so will be returned an error. As a result of this directive, all tasks blocked
waiting to obtain a segment from the region will be readied and returned a status code which
indicates that the region was deleted.

288 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.4 Directives

This section details the region manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

18.4. Directives 289

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.4

18.4.1 REGION_CREATE - Create a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_create(
2 rtems_name name,
3 void *starting_address,
4 uintptr_t length,
5 uintptr_t page_size,
6 rtems_attribute attribute_set,
7 rtems_id *id
8);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL region created successfully
RTEMS_INVALID_
NAME

invalid region name

RTEMS_INVALID_
ADDRESS

id is NULL

RTEMS_INVALID_
ADDRESS

starting_address is NULL

RTEMS_TOO_MANY too many regions created
RTEMS_INVALID_
SIZE

invalid page size

RTEMS_INVALID_
SIZE

the memory area defined by the starting address and the length pa-
rameters is too small

DESCRIPTION:
This directive creates a region from a contiguous memory area which starts at start-
ing_address and is length bytes long. The memory area must be large enough to contain some
internal region administration data. Segments allocated from the region will be a multiple of
page_size bytes in length. The specified page size will be aligned to an architecture-specific
minimum alignment if necessary.

The assigned region id is returned in id. This region id is used as an argument to other region
related directives to access the region.

For control and maintenance of the region, RTEMS allocates and initializes an RNCB from the
RNCB free pool. Thus memory from the region is not used to store the RNCB. However, some
overhead within the region is required by RTEMS each time a segment is constructed in the
region.

Specifying RTEMS_PRIORITY in attribute_set causes tasks waiting for a segment to be
serviced according to task priority. Specifying RTEMS_FIFO in attribute_set or selecting
RTEMS_DEFAULT_ATTRIBUTES will cause waiting tasks to be serviced in First In-First Out or-
der.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

The following region attribute constants are defined by RTEMS:

290 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

RTEMS_FIFO tasks wait by FIFO (default)
RTEMS_PRIORITY tasks wait by priority

18.4. Directives 291

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.4

18.4.2 REGION_IDENT - Get ID of a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL region identified successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME region name not found

DESCRIPTION:

This directive obtains the region id associated with the region name to be acquired.
If the region name is not unique, then the region id will match one of the regions
with that name. However, this region id is not guaranteed to correspond to the
desired region. The region id is used to access this region in other region manager
directives.

NOTES:
This directive will not cause the running task to be preempted.

292 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.4.3 REGION_DELETE - Delete a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL region deleted successfully
RTEMS_INVALID_ID invalid region id
RTEMS_RESOURCE_IN_USE segments still in use

DESCRIPTION:
This directive deletes the region specified by id. The region cannot be deleted if any of its
segments are still allocated. The RNCB for the deleted region is reclaimed by RTEMS.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

The calling task does not have to be the task that created the region. Any local task that
knows the region id can delete the region.

18.4. Directives 293

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.4

18.4.4 REGION_EXTEND - Add memory to a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_extend(
2 rtems_id id,
3 void *starting_address,
4 uintptr_t length
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL region extended successfully
RTEMS_INVALID_ADDRESS starting_address is NULL
RTEMS_INVALID_ID invalid region id
RTEMS_INVALID_ADDRESS invalid address of area to add

DESCRIPTION:
This directive adds the memory area which starts at starting_address for length bytes to
the region specified by id.

There are no alignment requirements for the memory area. The memory area must be big
enough to contain some maintenance blocks. It must not overlap parts of the current heap
memory areas. Disconnected memory areas added to the heap will lead to used blocks which
cover the gaps. Extending with an inappropriate memory area will corrupt the heap resulting
in undefined behaviour.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

The calling task does not have to be the task that created the region. Any local task that
knows the region identifier can extend the region.

294 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.4.5 REGION_GET_SEGMENT - Get segment from a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_segment(
2 rtems_id id,
3 uintptr_t size,
4 rtems_option option_set,
5 rtems_interval timeout,
6 void **segment
7);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL segment obtained successfully
RTEMS_INVALID_
ADDRESS

segment is NULL

RTEMS_INVALID_ID invalid region id
RTEMS_INVALID_
SIZE

request is for zero bytes or exceeds the size of maximum segment
which is possible for this region

RTEMS_
UNSATISFIED

segment of requested size not available

RTEMS_TIMEOUT timed out waiting for segment
RTEMS_OBJECT_
WAS_DELETED

region deleted while waiting

DESCRIPTION:
This directive obtains a variable size segment from the region specified by id. The address
of the allocated segment is returned in segment. The RTEMS_WAIT and RTEMS_NO_WAIT compo-
nents of the options parameter are used to specify whether the calling tasks wish to wait for
a segment to become available or return immediately if no segment is available. For either
option, if a sufficiently sized segment is available, then the segment is successfully acquired
by returning immediately with the RTEMS_SUCCESSFUL status code.

If the calling task chooses to return immediately and a segment large enough is not available,
then an error code indicating this fact is returned. If the calling task chooses to wait for the
segment and a segment large enough is not available, then the calling task is placed on the
region’s segment wait queue and blocked. If the region was created with the RTEMS_PRIORITY
option, then the calling task is inserted into the wait queue according to its priority. However,
if the region was created with the RTEMS_FIFO option, then the calling task is placed at the
rear of the wait queue.

The timeout parameter specifies the maximum interval that a task is willing to wait to obtain
a segment. If timeout is set to RTEMS_NO_TIMEOUT, then the calling task will wait forever.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

The actual length of the allocated segment may be larger than the requested size because a
segment size is always a multiple of the region’s page size.

The following segment acquisition option constants are defined by RTEMS:

18.4. Directives 295

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.4

RTEMS_WAIT task will wait for segment (default)
RTEMS_NO_WAIT task should not wait

A clock tick is required to support the timeout functionality of this directive.

296 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.4.6 REGION_RETURN_SEGMENT - Return segment to a region

CALLING SEQUENCE:

1 rtems_status_code rtems_region_return_segment(
2 rtems_id id,
3 void *segment
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL segment returned successfully
RTEMS_INVALID_ADDRESS segment is NULL
RTEMS_INVALID_ID invalid region id
RTEMS_INVALID_ADDRESS segment address not in region

DESCRIPTION:
This directive returns the segment specified by segment to the region specified by id. The
returned segment is merged with its neighbors to form the largest possible segment. The first
task on the wait queue is examined to determine if its segment request can now be satisfied. If
so, it is given a segment and unblocked. This process is repeated until the first task’s segment
request cannot be satisfied.

NOTES:
This directive will cause the calling task to be preempted if one or more local tasks are waiting
for a segment and the following conditions exist:

• a waiting task has a higher priority than the calling task

• the size of the segment required by the waiting task is less than or equal to the size of
the segment returned.

18.4. Directives 297

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.4

18.4.7 REGION_GET_SEGMENT_SIZE - Obtain size of a segment

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_segment_size(
2 rtems_id id,
3 void *segment,
4 uintptr_t *size
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL segment obtained successfully
RTEMS_INVALID_ADDRESS segment is NULL
RTEMS_INVALID_ADDRESS size is NULL
RTEMS_INVALID_ID invalid region id
RTEMS_INVALID_ADDRESS segment address not in region

DESCRIPTION:
This directive obtains the size in bytes of the specified segment.

NOTES:
The actual length of the allocated segment may be larger than the requested size because a
segment size is always a multiple of the region’s page size.

298 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.4.8 REGION_RESIZE_SEGMENT - Change size of a segment

CALLING SEQUENCE:

1 rtems_status_code rtems_region_resize_segment(
2 rtems_id id,
3 void *segment,
4 uintptr_t new_size,
5 uintptr_t *old_size
6);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL segment obtained successfully
RTEMS_INVALID_ADDRESS segment is NULL
RTEMS_INVALID_ADDRESS old_size is NULL
RTEMS_INVALID_ID invalid region id
RTEMS_INVALID_ADDRESS segment address not in region
RTEMS_UNSATISFIED unable to make segment larger

DESCRIPTION:
This directive is used to increase or decrease the size of a segment. When increasing the size
of a segment, it is possible that there is not memory available contiguous to the segment. In
this case, the request is unsatisfied.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

If an attempt to increase the size of a segment fails, then the application may want to allocate
a new segment of the desired size, copy the contents of the original segment to the new, larger
segment and then return the original segment.

18.4. Directives 299

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.4

18.4.9 REGION_GET_INFORMATION - Get region information

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_information(
2 rtems_id id,
3 Heap_Information_block *the_info
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL information obtained successfully
RTEMS_INVALID_ADDRESS the_info is NULL
RTEMS_INVALID_ID invalid region id

DESCRIPTION:
This directive is used to obtain information about the used and free memory in the region
specified by id. This is a snapshot at the time of the call. The information will be returned in
the structure pointed to by the_info.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

This is primarily intended as a mechanism to obtain a diagnostic information. This method
forms am O(n) scan of the free and an O(n) scan of the used blocks in the region to calculate
the information provided. Given that the execution time is driven by the number of used and
free blocks, it can take a non-deterministic time to execute.

300 Chapter 18. Region Manager

Chapter 18 Section 18.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

18.4.10 REGION_GET_FREE_INFORMATION - Get region free information

CALLING SEQUENCE:

1 rtems_status_code rtems_region_get_free_information(
2 rtems_id id,
3 Heap_Information_block *the_info
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL information obtained successfully
RTEMS_INVALID_ADDRESS the_info is NULL
RTEMS_INVALID_ID invalid region id

DESCRIPTION:
This directive is used to obtain information about the free memory in the region specified by
id. This is a snapshot at the time of the call. The information will be returned in the structure
pointed to by the_info.

NOTES:
This directive will obtain the allocator mutex and may cause the calling task to be preempted.

This uses the same structure to return information as the rtems_region_get_information
directive but does not fill in the used information.

This is primarily intended as a mechanism to obtain a diagnostic information. This method
forms am O(n) scan of the free in the region to calculate the information provided. Given
that the execution time is driven by the number of used and free blocks, it can take a
non-deterministic time to execute. Typically, there are many used blocks and a much
smaller number of used blocks making a call to this directive less expensive than a call to
rtems_region_get_information.

18.4. Directives 301

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 18 Section 18.4

302 Chapter 18. Region Manager

CHAPTER

NINETEEN

DUAL-PORTED MEMORY MANAGER

303

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 19 Section 19.1

19.1 Introduction

The dual-ported memory manager provides a mechanism for converting addresses between
internal and external representations for multiple dual-ported memory areas (DPMA). The di-
rectives provided by the dual-ported memory manager are:

• rtems_port_create (page 308) - Create a port

• rtems_port_ident (page 309) - Get ID of a port

• rtems_port_delete (page 310) - Delete a port

• rtems_port_external_to_internal (page 311) - Convert external to internal address

• rtems_port_internal_to_external (page 312) - Convert internal to external address

304 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

19.2 Background

A dual-ported memory area (DPMA) is an contiguous block of RAM owned by a particular
processor but which can be accessed by other processors in the system. The owner accesses the
memory using internal addresses, while other processors must use external addresses. RTEMS
defines a port as a particular mapping of internal and external addresses.

There are two system configurations in which dual-ported memory is commonly found. The first
is tightly-coupled multiprocessor computer systems where the dual-ported memory is shared
between all nodes and is used for inter-node communication. The second configuration is
computer systems with intelligent peripheral controllers. These controllers typically utilize the
DPMA for high-performance data transfers.

19.2. Background 305

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 19 Section 19.3

19.3 Operations

19.3.1 Creating a Port

The rtems_port_create directive creates a port into a DPMA with the user-defined name. The
user specifies the association between internal and external representations for the port being
created. RTEMS allocates a Dual-Ported Memory Control Block (DPCB) from the DPCB free list
to maintain the newly created DPMA. RTEMS also generates a unique dual-ported memory port
ID which is returned to the calling task. RTEMS does not initialize the dual-ported memory area
or access any memory within it.

19.3.2 Obtaining Port IDs

When a port is created, RTEMS generates a unique port ID and assigns it to the created port
until it is deleted. The port ID may be obtained by either of two methods. First, as the result
of an invocation of the‘‘rtems_port_create‘‘ directive, the task ID is stored in a user provided
location. Second, the port ID may be obtained later using the rtems_port_ident directive. The
port ID is used by other dual-ported memory manager directives to access this port.

19.3.3 Converting an Address

The rtems_port_external_to_internal directive is used to convert an address from external to
internal representation for the specified port. The rtems_port_internal_to_external directive
is used to convert an address from internal to external representation for the specified port.
If an attempt is made to convert an address which lies outside the specified DPMA, then the
address to be converted will be returned.

19.3.4 Deleting a DPMA Port

A port can be removed from the system and returned to RTEMS with the rtems_port_delete
directive. When a port is deleted, its control block is returned to the DPCB free list.

306 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

19.4 Directives

This section details the dual-ported memory manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

19.4. Directives 307

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 19 Section 19.4

19.4.1 PORT_CREATE - Create a port

CALLING SEQUENCE:

1 rtems_status_code rtems_port_create(
2 rtems_name name,
3 void *internal_start,
4 void *external_start,
5 uint32_t length,
6 rtems_id *id
7);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL port created successfully
RTEMS_INVALID_NAME invalid port name
RTEMS_INVALID_ADDRESS address not on four byte boundary
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_TOO_MANY too many DP memory areas created

DESCRIPTION:
This directive creates a port which resides on the local node for the specified DPMA. The
assigned port id is returned in id. This port id is used as an argument to other dual-ported
memory manager directives to convert addresses within this DPMA.

For control and maintenance of the port, RTEMS allocates and initializes an DPCB from the
DPCB free pool. Thus memory from the dual-ported memory area is not used to store the
DPCB.

NOTES:
The internal_address and external_address parameters must be on a four byte boundary.

This directive will not cause the calling task to be preempted.

308 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

19.4.2 PORT_IDENT - Get ID of a port

CALLING SEQUENCE:

1 rtems_status_code rtems_port_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL port identified successfully
RTEMS_INVALID_ADDRESS id is NULL
RTEMS_INVALID_NAME port name not found

DESCRIPTION:
This directive obtains the port id associated with the specified name to be acquired. If the port
name is not unique, then the port id will match one of the DPMAs with that name. However,
this port id is not guaranteed to correspond to the desired DPMA. The port id is used to access
this DPMA in other dual-ported memory area related directives.

NOTES:
This directive will not cause the running task to be preempted.

19.4. Directives 309

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 19 Section 19.4

19.4.3 PORT_DELETE - Delete a port

CALLING SEQUENCE:

1 rtems_status_code rtems_port_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL port deleted successfully
RTEMS_INVALID_ID invalid port id

DESCRIPTION:
This directive deletes the dual-ported memory area specified by id. The DPCB for the deleted
dual-ported memory area is reclaimed by RTEMS.

NOTES:
This directive will not cause the calling task to be preempted.

The calling task does not have to be the task that created the port. Any local task that knows
the port id can delete the port.

310 Chapter 19. Dual-Ported Memory Manager

Chapter 19 Section 19.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

19.4.4 PORT_EXTERNAL_TO_INTERNAL - Convert external to internal address

CALLING SEQUENCE:

1 rtems_status_code rtems_port_external_to_internal(
2 rtems_id id,
3 void *external,
4 void **internal
5);

DIRECTIVE STATUS CODES:

RTEMS_INVALID_ADDRESS internal is NULL
RTEMS_SUCCESSFUL successful conversion

DESCRIPTION:
This directive converts a dual-ported memory address from external to internal representation
for the specified port. If the given external address is invalid for the specified port, then the
internal address is set to the given external address.

NOTES:
This directive is callable from an ISR.

This directive will not cause the calling task to be preempted.

19.4. Directives 311

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 19 Section 19.4

19.4.5 PORT_INTERNAL_TO_EXTERNAL - Convert internal to external address

CALLING SEQUENCE:

1 rtems_status_code rtems_port_internal_to_external(
2 rtems_id id,
3 void *internal,
4 void **external
5);

DIRECTIVE STATUS CODES:

RTEMS_INVALID_ADDRESS external is NULL
RTEMS_SUCCESSFUL successful conversion

DESCRIPTION:
This directive converts a dual-ported memory address from internal to external representation
so that it can be passed to owner of the DPMA represented by the specified port. If the given
internal address is an invalid dual-ported address, then the external address is set to the given
internal address.

NOTES:
This directive is callable from an ISR.

This directive will not cause the calling task to be preempted.

312 Chapter 19. Dual-Ported Memory Manager

CHAPTER

TWENTY

I/O MANAGER

313

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.1

20.1 Introduction

The input/output interface manager provides a well-defined mechanism for accessing device
drivers and a structured methodology for organizing device drivers. The directives provided by
the I/O manager are:

• rtems_io_initialize (page 322) - Initialize a device driver

• rtems_io_register_driver (page 320) - Register a device driver

• rtems_io_unregister_driver (page 321) - Unregister a device driver

• rtems_io_register_name (page 323) - Register a device name

• rtems_io_lookup_name (page 324) - Look up a device name

• rtems_io_open (page 325) - Open a device

• rtems_io_close (page 326) - Close a device

• rtems_io_read (page 327) - Read from a device

• rtems_io_write (page 328) - Write to a device

• rtems_io_control (page 329) - Special device services

314 Chapter 20. I/O Manager

Chapter 20 Section 20.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.2 Background

20.2.1 Device Driver Table

Each application utilizing the RTEMS I/O manager must specify the address of a Device Driver
Table in its Configuration Table. This table contains each device driver’s entry points that is
to be initialised by RTEMS during initialization. Each device driver may contain the following
entry points:

• Initialization

• Open

• Close

• Read

• Write

• Control

If the device driver does not support a particular entry point, then that entry in the Configuration
Table should be NULL. RTEMS will return RTEMS_SUCCESSFUL as the executive’s and zero (0) as
the device driver’s return code for these device driver entry points.

Applications can register and unregister drivers with the RTEMS I/O manager avoiding the need
to have all drivers statically defined and linked into this table.

The confdefs.h entry CONFIGURE_MAXIMUM_DRIVERS configures the number of driver slots avail-
able to the application.

20.2.2 Major and Minor Device Numbers

Each call to the I/O manager must provide a device’s major and minor numbers as arguments.
The major number is the index of the requested driver’s entry points in the Device Driver Table,
and is used to select a specific device driver. The exact usage of the minor number is driver
specific, but is commonly used to distinguish between a number of devices controlled by the
same driver.

The data types rtems_device_major_number and rtems_device_minor_number are used to ma-
nipulate device major and minor numbers, respectively.

20.2.3 Device Names

The I/O Manager provides facilities to associate a name with a particular device. Directives
are provided to register the name of a device and to look up the major/minor number pair
associated with a device name.

20.2.4 Device Driver Environment

Application developers, as well as device driver developers, must be aware of the following
regarding the RTEMS I/O Manager:

20.2. Background 315

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.2

• A device driver routine executes in the context of the invoking task. Thus if the driver
blocks, the invoking task blocks.

• The device driver is free to change the modes of the invoking task, although the driver
should restore them to their original values.

• Device drivers may be invoked from ISRs.

• Only local device drivers are accessible through the I/O manager.

• A device driver routine may invoke all other RTEMS directives, including I/O directives,
on both local and global objects.

Although the RTEMS I/O manager provides a framework for device drivers, it makes no as-
sumptions regarding the construction or operation of a device driver.

20.2.5 Runtime Driver Registration

Board support package and application developers can select wether a device driver is statically
entered into the default device table or registered at runtime.

Dynamic registration helps applications where:

• The BSP and kernel libraries are common to a range of applications for a specific target
platform. An application may be built upon a common library with all drivers. The
application selects and registers the drivers. Uniform driver name lookup protects the
application.

• The type and range of drivers may vary as the application probes a bus during initializa-
tion.

• Support for hot swap bus system such as Compact PCI.

• Support for runtime loadable driver modules.

20.2.6 Device Driver Interface

When an application invokes an I/O manager directive, RTEMS determines which device driver
entry point must be invoked. The information passed by the application to RTEMS is then
passed to the correct device driver entry point. RTEMS will invoke each device driver entry
point assuming it is compatible with the following prototype:

1 rtems_device_driver io_entry(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument_block
5);

The format and contents of the parameter block are device driver and entry point dependent.

It is recommended that a device driver avoid generating error codes which conflict with those
used by application components. A common technique used to generate driver specific error
codes is to make the most significant part of the status indicate a driver specific code.

316 Chapter 20. I/O Manager

Chapter 20 Section 20.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.2.7 Device Driver Initialization

RTEMS automatically initializes all device drivers when multitasking is initiated via the
rtems_initialize_executive directive. RTEMS initializes the device drivers by invoking each
device driver initialization entry point with the following parameters:

major
the major device number for this device driver.

minor
zero.

argument_block
will point to the Configuration Table.

The returned status will be ignored by RTEMS. If the driver cannot successfully initialize the
device, then it should invoke the fatal_error_occurred directive.

20.2. Background 317

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.3

20.3 Operations

20.3.1 Register and Lookup Name

The rtems_io_register directive associates a name with the specified device (i.e. major/minor
number pair). Device names are typically registered as part of the device driver initialization
sequence. The rtems_io_lookup directive is used to determine the major/minor number pair
associated with the specified device name. The use of these directives frees the application from
being dependent on the arbitrary assignment of major numbers in a particular application. No
device naming conventions are dictated by RTEMS.

20.3.2 Accessing an Device Driver

The I/O manager provides directives which enable the application program to utilize de-
vice drivers in a standard manner. There is a direct correlation between the RTEMS I/O
manager directives rtems_io_initialize, rtems_io_open, rtems_io_close, rtems_io_read,
rtems_io_write, and rtems_io_control and the underlying device driver entry points.

318 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.4 Directives

This section details the I/O manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

20.4. Directives 319

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.4

20.4.1 IO_REGISTER_DRIVER - Register a device driver

CALLING SEQUENCE:

1 rtems_status_code rtems_io_register_driver(
2 rtems_device_major_number major,
3 rtems_driver_address_table *driver_table,
4 rtems_device_major_number *registered_major
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully registered
RTEMS_INVALID_ADDRESS invalid registered major pointer
RTEMS_INVALID_ADDRESS invalid driver table
RTEMS_INVALID_NUMBER invalid major device number
RTEMS_TOO_MANY no available major device table slot
RTEMS_RESOURCE_IN_USE major device number entry in use

DESCRIPTION:
This directive attempts to add a new device driver to the Device Driver Table. The user can
specify a specific major device number via the directive’s major parameter, or let the registra-
tion routine find the next available major device number by specifing a major number of 0.
The selected major device number is returned via the registered_major directive parameter.
The directive automatically allocation major device numbers from the highest value down.

This directive automatically invokes the IO_INITIALIZE directive if the driver address table
has an initialization and open entry.

The directive returns RTEMS_TOO_MANY if Device Driver Table is full, and
RTEMS_RESOURCE_IN_USE if a specific major device number is requested and it is already
in use.

NOTES:
The Device Driver Table size is specified in the Configuration Table condiguration. This needs
to be set to maximum size the application requires.

320 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.4.2 IO_UNREGISTER_DRIVER - Unregister a device driver

CALLING SEQUENCE:

1 rtems_status_code rtems_io_unregister_driver(
2 rtems_device_major_number major
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully registered
RTEMS_INVALID_NUMBER invalid major device number

DESCRIPTION:
This directive removes a device driver from the Device Driver Table.

NOTES:
Currently no specific checks are made and the driver is not closed.

20.4. Directives 321

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.4

20.4.3 IO_INITIALIZE - Initialize a device driver

CALLING SEQUENCE:

1 rtems_status_code rtems_io_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_INVALID_NUMBER invalid major device number

DESCRIPTION:
This directive calls the device driver initialization routine specified in the Device Driver Table
for this major number. This directive is automatically invoked for each device driver when
multitasking is initiated via the initialize_executive directive.

A device driver initialization module is responsible for initializing all hardware and data struc-
tures associated with a device. If necessary, it can allocate memory to be used during other
operations.

NOTES:
This directive may or may not cause the calling task to be preempted. This is dependent on
the device driver being initialized.

322 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.4.4 IO_REGISTER_NAME - Register a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_register_name(
2 const char *name,
3 rtems_device_major_number major,
4 rtems_device_minor_number minor
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_TOO_MANY too many devices registered

DESCRIPTION:
This directive associates name with the specified major/minor number pair.

NOTES:
This directive will not cause the calling task to be preempted.

20.4. Directives 323

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.4

20.4.5 IO_LOOKUP_NAME - Lookup a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_lookup_name(
2 const char *name,
3 rtems_driver_name_t *device_info
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_UNSATISFIED name not registered

DESCRIPTION:
This directive returns the major/minor number pair associated with the given device name in
device_info.

NOTES:
This directive will not cause the calling task to be preempted.

324 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.4.6 IO_OPEN - Open a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_open(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_INVALID_NUMBER invalid major device number

DESCRIPTION:
This directive calls the device driver open routine specified in the Device Driver Table for this
major number. The open entry point is commonly used by device drivers to provide exclusive
access to a device.

NOTES:
This directive may or may not cause the calling task to be preempted. This is dependent on
the device driver being invoked.

20.4. Directives 325

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.4

20.4.7 IO_CLOSE - Close a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_INVALID_NUMBER invalid major device number

DESCRIPTION:
This directive calls the device driver close routine specified in the Device Driver Table for
this major number. The close entry point is commonly used by device drivers to relinquish
exclusive access to a device.

NOTES:
This directive may or may not cause the calling task to be preempted. This is dependent on
the device driver being invoked.

326 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.4.8 IO_READ - Read from a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_read(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_INVALID_NUMBER invalid major device number

DESCRIPTION:
This directive calls the device driver read routine specified in the Device Driver Table for this
major number. Read operations typically require a buffer address as part of the argument
parameter block. The contents of this buffer will be replaced with data from the device.

NOTES:
This directive may or may not cause the calling task to be preempted. This is dependent on
the device driver being invoked.

20.4. Directives 327

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.4

20.4.9 IO_WRITE - Write to a device

CALLING SEQUENCE:

1 rtems_status_code rtems_io_write(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_INVALID_NUMBER invalid major device number

DESCRIPTION:
This directive calls the device driver write routine specified in the Device Driver Table for this
major number. Write operations typically require a buffer address as part of the argument
parameter block. The contents of this buffer will be sent to the device.

NOTES:
This directive may or may not cause the calling task to be preempted. This is dependent on
the device driver being invoked.

328 Chapter 20. I/O Manager

Chapter 20 Section 20.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

20.4.10 IO_CONTROL - Special device services

CALLING SEQUENCE:

1 rtems_status_code rtems_io_control(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *argument
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL successfully initialized
RTEMS_INVALID_NUMBER invalid major device number

DESCRIPTION:
This directive calls the device driver I/O control routine specified in the Device Driver Table
for this major number. The exact functionality of the driver entry called by this directive is
driver dependent. It should not be assumed that the control entries of two device drivers
are compatible. For example, an RS-232 driver I/O control operation may change the baud
rate of a serial line, while an I/O control operation for a floppy disk driver may cause a seek
operation.

NOTES:
This directive may or may not cause the calling task to be preempted. This is dependent on
the device driver being invoked.

20.4. Directives 329

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 20 Section 20.4

330 Chapter 20. I/O Manager

CHAPTER

TWENTYONE

FATAL ERROR MANAGER

331

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.1

21.1 Introduction

The fatal error manager processes all fatal or irrecoverable errors and other sources of system
termination (for example after exit()). Fatal errors are identified by the (fatal source, error
code) pair. The directives provided by the fatal error manager are:

• rtems_fatal (page 341) - Invoke the fatal error handler

• rtems_panic (page 342) - Print a message and invoke the fatal error handler

• rtems_shutdown_executive (page 343) - Shutdown RTEMS

• rtems_exception_frame_print (page 344) - Print the CPU exception frame

• rtems_fatal_source_text (page 345) - Return the fatal source text

• rtems_internal_error_text (page 346) - Return the error code text

• rtems_fatal_error_occurred (page 347) - Invoke the fatal error handler (deprecated)

332 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

21.2 Background

21.2.1 Overview

The fatal error manager is called upon detection of an irrecoverable error condition by either
RTEMS or the application software. Fatal errors are also used in case it is difficult or impossible
to return an error condition by other means, e.g. a return value of a directive call. Fatal errors
can be detected from various sources, for example

• the executive (RTEMS),

• support libraries,

• user system code, and

• user application code.

RTEMS automatically invokes the fatal error manager upon detection of an error it considers
to be fatal. Similarly, the user should invoke the fatal error manager upon detection of a fatal
error.

Each static or dynamic user extension set may include a fatal error handler. The fatal error
handler in the static extension set can be used to provide access to debuggers and monitors
which may be present on the target hardware. If any user-supplied fatal error handlers are
installed, the fatal error manager will invoke them. Usually, the board support package provides
a fatal error extension which resets the board. If no user handlers are configured or if all the user
handler return control to the fatal error manager, then the RTEMS default fatal error handler is
invoked. If the default fatal error handler is invoked, then the system state is marked as failed.

Although the precise behavior of the default fatal error handler is processor specific, in general,
it will disable all maskable interrupts, place the error code in a known processor dependent
place (generally either on the stack or in a register), and halt the processor. The precise actions
of the RTEMS fatal error are discussed in the Default Fatal Error Processing chapter of the
Applications Supplement document for a specific target processor.

21.2.2 Fatal Sources

The following fatal sources are defined for RTEMS via the rtems_fatal_source enumeration.
Each symbolic name has the corresponding numeric fatal source in parenthesis.

INTERNAL_ERROR_CORE (0)
Errors of the core operating system. See Internal Error Codes (page 334).

INTERNAL_ERROR_RTEMS_API (1)
Errors of the Classic API.

INTERNAL_ERROR_POSIX_API (2)
Errors of the POSIX API.

RTEMS_FATAL_SOURCE_BDBUF (3)
Fatal source for the block device cache. See rtems_bdbuf_fatal_code.

RTEMS_FATAL_SOURCE_APPLICATION (4)
Fatal source for application-specific errors. The fatal code is application-specific.

21.2. Background 333

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.2

RTEMS_FATAL_SOURCE_EXIT (5)
Fatal source of exit(). The fatal code is the exit() status code.

RTEMS_FATAL_SOURCE_BSP (6)
Fatal source for BSP errors. The fatal codes are defined in <bsp/fatal.h>. Examples are
interrupt and exception initialization. See bsp_fatal_code and bsp_fatal().

RTEMS_FATAL_SOURCE_ASSERT (7)
Fatal source of assert(). The fatal code is the pointer value of the assert context. See
rtems_assert_context.

RTEMS_FATAL_SOURCE_STACK_CHECKER (8)
Fatal source of the stack checker. The fatal code is the object name of the executing task.

RTEMS_FATAL_SOURCE_EXCEPTION (9)
Fatal source of the exceptions. The fatal code is the pointer value of the exception frame
pointer. See rtems_exception_frame and EXCEPTION_FRAME_PRINT - Prints the exception
frame (page 344).

RTEMS_FATAL_SOURCE_SMP (10)
Fatal source of SMP domain. See SMP_Fatal_code.

RTEMS_FATAL_SOURCE_PANIC (11)
Fatal source of rtems_panic(), see PANIC - Print a message and invoke the fatal error handler
(page 342).

RTEMS_FATAL_SOURCE_INVALID_HEAP_FREE (12)
Fatal source for invalid C program heap frees via free(). The fatal code is the bad pointer.

RTEMS_FATAL_SOURCE_HEAP (13)
Fatal source for heap errors. The fatal code is the address to a heap error context. See
Heap_Error_context.

21.2.3 Internal Error Codes

The following error codes are defined for the INTERNAL_ERROR_CORE fatal source. Each symbolic
name has the corresponding numeric error code in parenthesis.

INTERNAL_ERROR_TOO_LITTLE_WORKSPACE (2)
There is not enough memory for the workspace. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_WORKSPACE_ALLOCATION (3)
An allocation from the workspace failed. This fatal error may occur during system initializa-
tion. It is an application configuration error.

INTERNAL_ERROR_INTERRUPT_STACK_TOO_SMALL (4)
The configured interrupt stack size is too small. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_THREAD_EXITTED (5)
A non-POSIX thread entry function returned. This is an API usage error.

An example code to provoke this fatal error is:

334 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

1 rtems_task task(rtems_task_argument arg)
2 {
3 /* Classic API tasks must not return */
4 }
5

6 void create_bad_task(void)
7 {
8 rtems_status_code sc;
9 rtems_id task_id;

10

11 sc = rtems_task_create(
12 rtems_build_name('T', 'A', 'S', 'K'),
13 1,
14 RTEMS_MINIMUM_STACK_SIZE,
15 RTEMS_DEFAULT_MODES,
16 RTEMS_DEFAULT_ATTRIBUTES,
17 &task_id
18);
19 assert(sc == RTEMS_SUCCESSFUL);
20

21 sc = rtems_task_start(task_id, task, 0);
22 assert(sc == RTEMS_SUCCESSFUL);
23 }

INTERNAL_ERROR_INCONSISTENT_MP_INFORMATION (6)
This fatal error can only occur on MPCI configurations. The MPCI nodes or global objects
configuration is inconsistent. This fatal error may occur during system initialization. It is an
application configuration error.

INTERNAL_ERROR_INVALID_NODE (7)
This fatal error can only occur on MPCI configurations. The own MPCI node number is invalid.
This fatal error may occur during system initialization. It is an application configuration error.

INTERNAL_ERROR_NO_MPCI (8)
This fatal error can only occur on MPCI configurations. There is no MPCI configuration table.
This fatal error may occur during system initialization. It is an application configuration error.

INTERNAL_ERROR_BAD_PACKET (9)
This fatal error can only occur on MPCI configurations. The MPCI server thread received a
bad packet.

INTERNAL_ERROR_OUT_OF_PACKETS (10)
This fatal error can only occur on MPCI configurations. The MPCI packet pool is empty. It is
an application configuration error.

INTERNAL_ERROR_OUT_OF_GLOBAL_OBJECTS (11)
This fatal error can only occur on MPCI configurations. The MPCI global objects pool is empty.
It is an application configuration error.

INTERNAL_ERROR_OUT_OF_PROXIES (12)
This fatal error can only occur on MPCI configurations. The MPCI thread proxy pool is empty.
It is an application configuration error.

INTERNAL_ERROR_INVALID_GLOBAL_ID (13)
This fatal error can only occur on MPCI configurations. The system cannot find the global
object for a specific object identifier. In case this happens, then this is probably an operating
system bug.

21.2. Background 335

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.2

INTERNAL_ERROR_BAD_STACK_HOOK (14)
The stack allocator hook or stack free hook is NULL. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_UNLIMITED_AND_MAXIMUM_IS_0 (19)
An object class is configured to use the unlimited objects option, however, the count of objects
for each extension is zero. This fatal error may occur during system initialization. It is an
application configuration error.

INTERNAL_ERROR_NO_MEMORY_FOR_HEAP (23)
There is not enough memory for the C program heap. This fatal error may occur during
system initialization. It is an application configuration error.

INTERNAL_ERROR_CPU_ISR_INSTALL_VECTOR (24)
The use of _CPU_ISR_install_vector() is illegal on this system.

INTERNAL_ERROR_RESOURCE_IN_USE (25)
This fatal error can only occur on debug configurations. It happens in case a thread which
owns mutexes is deleted. Mutexes owned by a deleted thread are in an inconsistent state.

INTERNAL_ERROR_RTEMS_INIT_TASK_ENTRY_IS_NULL (26)
An RTEMS initialization task entry function is NULL. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_THREAD_QUEUE_DEADLOCK (28)
A deadlock was detected during a thread queue enqueue operation.

INTERNAL_ERROR_THREAD_QUEUE_ENQUEUE_STICKY_FROM_BAD_STATE (29)
This fatal error can only happen in SMP configurations. It is not allowed to obtain MrsP
semaphores in a context with thread dispatching disabled, for example interrupt context.

An example code to provoke this fatal error is:

1 rtems_timer_service_routine bad(rtems_id timer_id, void *arg)
2 {
3 rtems_id *sem_id;
4

5 sem_id = arg;
6

7 rtems_semaphore_obtain(*sem_id, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
8 assert(0);
9 }

10

11 rtems_task fire_bad_timer(rtems_task_argument arg)
12 {
13 rtems_status_code sc;
14 rtems_id sem_id;
15 rtems_id timer_id;
16

17 sc = rtems_semaphore_create(
18 rtems_build_name('M', 'R', 'S', 'P'),
19 1,
20 RTEMS_MULTIPROCESSOR_RESOURCE_SHARING
21 | RTEMS_BINARY_SEMAPHORE,
22 1,
23 &sem_id
24);
25 assert(sc == RTEMS_SUCCESSFUL);

(continues on next page)

336 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

(continued from previous page)

26

27 sc = rtems_timer_create(
28 rtems_build_name('E', 'V', 'I', 'L'),
29 &timer_id
30);
31 assert(sc == RTEMS_SUCCESSFUL);
32

33 sc = rtems_semaphore_obtain(sem_id, RTEMS_WAIT, RTEMS_NO_TIMEOUT);
34 assert(sc == RTEMS_SUCCESSFUL);
35

36 sc = rtems_timer_fire_after(timer_id, 1, bad, &sem_id);
37 assert(sc == RTEMS_SUCCESSFUL);
38

39 rtems_task_wake_after(2);
40 assert(0);
41 }

INTERNAL_ERROR_BAD_THREAD_DISPATCH_DISABLE_LEVEL (30)
It is illegal to call blocking operating system services with thread dispatching disabled, for
example in interrupt context.

An example code to provoke this fatal error is:

1 void bad(rtems_id id, void *arg)
2 {
3 rtems_task_wake_after(RTEMS_YIELD_PROCESSOR);
4 assert(0);
5 }
6

7 void fire_bad_timer(void)
8 {
9 rtems_status_code sc;

10 rtems_id id;
11

12 sc = rtems_timer_create(
13 rtems_build_name('E', 'V', 'I', 'L'),
14 &id
15);
16 assert(sc == RTEMS_SUCCESSFUL);
17

18 sc = rtems_timer_fire_after(id, 1, bad, NULL);
19 assert(sc == RTEMS_SUCCESSFUL);
20

21 rtems_task_wake_after(2);
22 assert(0);
23 }

INTERNAL_ERROR_BAD_THREAD_DISPATCH_ENVIRONMENT (31)
In SMP configurations, it is a fatal error to call blocking operating system with interrupts dis-
abled, since this prevents delivery of inter-processor interrupts. This could lead to executing
threads which are not allowed to execute resulting in undefined system behaviour.

Some CPU ports, for example the ARM Cortex-M port, have a similar problem, since the
interrupt state is not a part of the thread context.

This fatal error is detected in the operating system core function _Thread_Do_dispatch()

21.2. Background 337

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.2

responsible to carry out a thread dispatch.

An example code to provoke this fatal error is:

1 void bad(void)
2 {
3 rtems_interrupt_level level;
4

5 rtems_interrupt_local_disable(level);
6 rtems_task_suspend(RTEMS_SELF);
7 rtems_interrupt_local_enable(level);
8 }

INTERNAL_ERROR_RTEMS_INIT_TASK_CREATE_FAILED (32)
Creation of an RTEMS initialization task failed. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_POSIX_INIT_THREAD_CREATE_FAILED (33)
Creation of a POSIX initialization thread failed. This fatal error may occur during system
initialization. It is an application configuration error.

INTERNAL_ERROR_LIBIO_USER_ENV_KEY_CREATE_FAILED (34)
Creation of the IO library user environment POSIX key failed. This fatal error may occur
during system initialization. It is an application configuration error.

INTERNAL_ERROR_LIBIO_SEM_CREATE_FAILED (35)
Creation of the IO library semaphore failed. This fatal error may occur during system initial-
ization. It is an application configuration error.

INTERNAL_ERROR_LIBIO_STDOUT_FD_OPEN_FAILED (36)
Open of the standard output file descriptor failed or resulted in an unexpected file descriptor
number. This fatal error may occur during system initialization. It is an application configu-
ration error.

INTERNAL_ERROR_LIBIO_STDERR_FD_OPEN_FAILED (37)
Open of the standard error file descriptor failed or resulted in an unexpected file descriptor
number. This fatal error may occur during system initialization. It is an application configu-
ration error.

INTERNAL_ERROR_ILLEGAL_USE_OF_FLOATING_POINT_UNIT (38)
The floating point unit was used illegally, for example in interrupt context on some architec-
tures.

INTERNAL_ERROR_ARC4RANDOM_GETENTROPY_FAIL (39)
A getentropy() system call failed in one of the ARC4RANDOM(3) functions. This fatal error
can only be fixed with a different implementation of getentropy().

INTERNAL_ERROR_NO_MEMORY_FOR_PER_CPU_DATA (40)
This fatal error may happen during workspace initialization. There is not enough memory
available to populate the per-CPU data areas, see <rtems/score/percpudata.h>.

338 Chapter 21. Fatal Error Manager

https://man.openbsd.org/arc4random.3
https://git.rtems.org/rtems/tree/cpukit/include/rtems/score/percpudata.h

Chapter 21 Section 21.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

21.3 Operations

21.3.1 Announcing a Fatal Error

The _Terminate() internal error handler is invoked when the application or the executive itself
determines that a fatal error has occurred or a final system state is reached (for example after
rtems_fatal() or exit()).

The first action of the internal error handler is to call the fatal extension of the user extensions.
For the initial extensions the following conditions are required

• a valid stack pointer and enough stack space,

• a valid code memory, and

• valid read-only data.

For the initial extensions the read-write data (including .bss segment) is not required on single
processor configurations. In SMP configurations, however, the read-write data must be initial-
ized since this function must determine the state of the other processors and request them to
shut-down if necessary.

Non-initial extensions require in addition valid read-write data. The board support package
(BSP) may install an initial extension that performs a system reset. In this case the non-initial
extensions will be not called.

The fatal extensions are called with three parameters:

• the fatal source,

• a legacy parameter which is always false, and

• an error code with a fatal source dependent content.

Once all fatal extensions executed, the error information will be stored to
_Internal_errors_What_happened and the system state is set to SYSTEM_STATE_TERMINATED.

The final step is to call the CPU port specific _CPU_Fatal_halt().

21.3. Operations 339

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.4

21.4 Directives

This section details the fatal error manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

340 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

21.4.1 FATAL - Invoke the fatal error handler

CALLING SEQUENCE:

1 void rtems_fatal(
2 rtems_fatal_source fatal_source,
3 rtems_fatal_code error_code
4) RTEMS_NO_RETURN;

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
This directive terminates the system.

NOTE:
Registered atexit() or on_exit() handlers are not called. Use exit() in case these handlers
should be invoked.

21.4. Directives 341

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.4

21.4.2 PANIC - Print a message and invoke the fatal error handler

CALLING SEQUENCE:

1 void rtems_panic(
2 const char *fmt,
3 ...
4) RTEMS_NO_RETURN RTEMS_PRINTFLIKE(1, 2);

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
This directive prints a message via printk() specified by the format and optional parameters
and then terminates the system with the RTEMS_FATAL_SOURCE_PANIC fatal source. The fatal
code is set to the format string address.

NOTE:
Registered atexit() or on_exit() handlers are not called. Use exit() in case these handlers
should be invoked.

342 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

21.4.3 SHUTDOWN_EXECUTIVE - Shutdown RTEMS

CALLING SEQUENCE:

1 void rtems_shutdown_executive(
2 uint32_t result
3);

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
This directive is called when the application wishes to shutdown RTEMS. The system is ter-
minated with a fatal source of RTEMS_FATAL_SOURCE_EXIT and the specified result code.

NOTES:
This directive must be the last RTEMS directive invoked by an application and it does not
return to the caller.

This directive may be called any time.

21.4. Directives 343

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.4

21.4.4 EXCEPTION_FRAME_PRINT - Prints the exception frame

CALLING SEQUENCE:

1 void rtems_exception_frame_print(
2 const rtems_exception_frame *frame
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
Prints the exception frame via printk().

344 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

21.4.5 FATAL_SOURCE_TEXT - Returns a text for a fatal source

CALLING SEQUENCE:

1 const char *rtems_fatal_source_text(
2 rtems_fatal_source source
3);

DIRECTIVE STATUS CODES:
The fatal source text or “?” in case the passed fatal source is invalid.

DESCRIPTION:
Returns a text for a fatal source. The text for fatal source is the enumerator constant.

21.4. Directives 345

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.4

21.4.6 INTERNAL_ERROR_TEXT - Returns a text for an internal error code

CALLING SEQUENCE:

1 const char *rtems_internal_error_text(
2 rtems_fatal_code error
3);

DIRECTIVE STATUS CODES:
The error code text or “?” in case the passed error code is invalid.

DESCRIPTION:
Returns a text for an internal error code. The text for each internal error code is the enumer-
ator constant.

346 Chapter 21. Fatal Error Manager

Chapter 21 Section 21.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

21.4.7 FATAL_ERROR_OCCURRED - Invoke the fatal error handler (deprecated)

CALLING SEQUENCE:

1 void rtems_fatal_error_occurred(
2 uint32_t the_error
3) RTEMS_NO_RETURN;

DIRECTIVE STATUS CODES:
NONE - This function will not return to the caller.

DESCRIPTION:
This directive processes fatal errors. If the FATAL error extension is defined in the configu-
ration table, then the user-defined error extension is called. If configured and the provided
FATAL error extension returns, then the RTEMS default error handler is invoked. This direc-
tive can be invoked by RTEMS or by the user’s application code including initialization tasks,
other tasks, and ISRs.

NOTES:
This directive is deprecated and should not be used in new code.

This directive supports local operations only.

Unless the user-defined error extension takes special actions such as restarting the calling
task, this directive WILL NOT RETURN to the caller.

The user-defined extension for this directive may wish to initiate a global shutdown.

21.4. Directives 347

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 21 Section 21.4

348 Chapter 21. Fatal Error Manager

CHAPTER

TWENTYTWO

BOARD SUPPORT PACKAGES

349

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 22 Section 22.1

22.1 Introduction

A board support package (BSP) is a collection of user-provided facilities which interface RTEMS
and an application with a specific hardware platform. These facilities may include hardware
initialization, device drivers, user extensions, and a Multiprocessor Communications Interface
(MPCI). However, a minimal BSP need only support processor reset and initialization and, if
needed, a clock tick.

350 Chapter 22. Board Support Packages

Chapter 22 Section 22.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

22.2 Reset and Initialization

An RTEMS based application is initiated or re-initiated when the processor is reset. This ini-
tialization code is responsible for preparing the target platform for the RTEMS application.
Although the exact actions performed by the initialization code are highly processor and target
dependent, the logical functionality of these actions are similar across a variety of processors
and target platforms.

Normally, the BSP and some of the application initialization is intertwined in the RTEMS initial-
ization sequence controlled by the shared function boot_card().

The reset application initialization code is executed first when the processor is reset. All of the
hardware must be initialized to a quiescent state by this software before initializing RTEMS.
When in quiescent state, devices do not generate any interrupts or require any servicing by the
application. Some of the hardware components may be initialized in this code as well as any
application initialization that does not involve calls to RTEMS directives.

The processor’s Interrupt Vector Table which will be used by the application may need to be
set to the required value by the reset application initialization code. Because interrupts are
enabled automatically by RTEMS as part of the context switch to the first task, the Interrupt
Vector Table MUST be set before this directive is invoked to ensure correct interrupt vectoring.
The processor’s Interrupt Vector Table must be accessible by RTEMS as it will be modified by
the when installing user Interrupt Service Routines (ISRs) On some CPUs, RTEMS installs it’s
own Interrupt Vector Table as part of initialization and thus these requirements are met auto-
matically. The reset code which is executed before the call to any RTEMS initialization routines
has the following requirements:

• Must not make any blocking RTEMS directive calls.

• If the processor supports multiple privilege levels, must leave the processor in the most
privileged, or supervisory, state.

• Must allocate a stack of sufficient size to execute the initialization and shutdown of the
system. This stack area will NOT be used by any task once the system is initialized. This
stack is often reserved via the linker script or in the assembly language start up file.

• Must initialize the stack pointer for the initialization process to that allocated.

• Must initialize the processor’s Interrupt Vector Table.

• Must disable all maskable interrupts.

• If the processor supports a separate interrupt stack, must allocate the interrupt stack and
initialize the interrupt stack pointer.

At the end of the initialization sequence, RTEMS does not return to the BSP initialization code,
but instead context switches to the highest priority task to begin application execution. This
task is typically a User Initialization Task which is responsible for performing both local and
global application initialization which is dependent on RTEMS facilities. It is also responsible
for initializing any higher level RTEMS services the application uses such as networking and
blocking device drivers.

22.2.1 Interrupt Stack Requirements

The worst-case stack usage by interrupt service routines must be taken into account when de-
signing an application. If the processor supports interrupt nesting, the stack usage must include

22.2. Reset and Initialization 351

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 22 Section 22.2

the deepest nest level. The worst-case stack usage must account for the following requirements:

• Processor’s interrupt stack frame

• Processor’s subroutine call stack frame

• RTEMS system calls

• Registers saved on stack

• Application subroutine calls

The size of the interrupt stack must be greater than or equal to the confugured minimum stack
size.

22.2.2 Processors with a Separate Interrupt Stack

Some processors support a separate stack for interrupts. When an interrupt is vectored and the
interrupt is not nested, the processor will automatically switch from the current stack to the
interrupt stack. The size of this stack is based solely on the worst-case stack usage by interrupt
service routines.

The dedicated interrupt stack for the entire application on some architectures is supplied and
initialized by the reset and initialization code of the user’s Board Support Package. Whether
allocated and initialized by the BSP or RTEMS, since all ISRs use this stack, the stack size must
take into account the worst case stack usage by any combination of nested ISRs.

22.2.3 Processors Without a Separate Interrupt Stack

Some processors do not support a separate stack for interrupts. In this case, without special
assistance every task’s stack must include enough space to handle the task’s worst-case stack
usage as well as the worst-case interrupt stack usage. This is necessary because the worst-case
interrupt nesting could occur while any task is executing.

On many processors without dedicated hardware managed interrupt stacks, RTEMS manages a
dedicated interrupt stack in software. If this capability is supported on a CPU, then it is logically
equivalent to the processor supporting a separate interrupt stack in hardware.

352 Chapter 22. Board Support Packages

Chapter 22 Section 22.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

22.3 Device Drivers

Device drivers consist of control software for special peripheral devices and provide a logical in-
terface for the application developer. The RTEMS I/O manager provides directives which allow
applications to access these device drivers in a consistent fashion. A Board Support Package may
include device drivers to access the hardware on the target platform. These devices typically
include serial and parallel ports, counter/timer peripherals, real-time clocks, disk interfaces,
and network controllers.

For more information on device drivers, refer to the I/O Manager chapter.

22.3.1 Clock Tick Device Driver

Most RTEMS applications will include a clock tick device driver which invokes a clock tick di-
rective at regular intervals. The clock tick is necessary if the application is to utilize timeslicing,
the clock manager, the timer manager, the rate monotonic manager, or the timeout option on
blocking directives.

The clock tick is usually provided as an interrupt from a counter/timer or a real-time clock de-
vice. When a counter/timer is used to provide the clock tick, the device is typically programmed
to operate in continuous mode. This mode selection causes the device to automatically reload
the initial count and continue the countdown without programmer intervention. This reduces
the overhead required to manipulate the counter/timer in the clock tick ISR and increases the
accuracy of tick occurrences. The initial count can be based on the microseconds_per_tick field
in the RTEMS Configuration Table. An alternate approach is to set the initial count for a fixed
time period (such as one millisecond) and have the ISR invoke a clock tick directive on the
configured microseconds_per_tick boundaries. Obviously, this can induce some error if the
configured microseconds_per_tick is not evenly divisible by the chosen clock interrupt quan-
tum.

It is important to note that the interval between clock ticks directly impacts the granularity of
RTEMS timing operations. In addition, the frequency of clock ticks is an important factor in the
overall level of system overhead. A high clock tick frequency results in less processor time being
available for task execution due to the increased number of clock tick ISRs.

22.3. Device Drivers 353

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 22 Section 22.4

22.4 User Extensions

RTEMS allows the application developer to augment selected features by invoking user-supplied
extension routines when the following system events occur:

• Task creation

• Task initiation

• Task reinitiation

• Task deletion

• Task context switch

• Post task context switch

• Task begin

• Task exits

• Fatal error detection

User extensions can be used to implement a wide variety of functions including execution pro-
filing, non-standard coprocessor support, debug support, and error detection and recovery. For
example, the context of a non-standard numeric coprocessor may be maintained via the user
extensions. In this example, the task creation and deletion extensions are responsible for allo-
cating and deallocating the context area, the task initiation and reinitiation extensions would
be responsible for priming the context area, and the task context switch extension would save
and restore the context of the device.

For more information on user extensions, refer to User Extensions Manager (page 357).

354 Chapter 22. Board Support Packages

Chapter 22 Section 22.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

22.5 Multiprocessor Communications Interface (MPCI)

RTEMS requires that an MPCI layer be provided when a multiple node application is developed.
This MPCI layer must provide an efficient and reliable communications mechanism between the
multiple nodes. Tasks on different nodes communicate and synchronize with one another via
the MPCI. Each MPCI layer must be tailored to support the architecture of the target platform.

For more information on the MPCI, refer to the Multiprocessing Manager chapter.

22.5.1 Tightly-Coupled Systems

A tightly-coupled system is a multiprocessor configuration in which the processors communicate
solely via shared global memory. The MPCI can simply place the RTEMS packets in the shared
memory space. The two primary considerations when designing an MPCI for a tightly-coupled
system are data consistency and informing another node of a packet.

The data consistency problem may be solved using atomic “test and set” operations to provide
a “lock” in the shared memory. It is important to minimize the length of time any particular
processor locks a shared data structure.

The problem of informing another node of a packet can be addressed using one of two tech-
niques. The first technique is to use an interprocessor interrupt capability to cause an interrupt
on the receiving node. This technique requires that special support hardware be provided by
either the processor itself or the target platform. The second technique is to have a node poll
for arrival of packets. The drawback to this technique is the overhead associated with polling.

22.5.2 Loosely-Coupled Systems

A loosely-coupled system is a multiprocessor configuration in which the processors communi-
cate via some type of communications link which is not shared global memory. The MPCI sends
the RTEMS packets across the communications link to the destination node. The characteristics
of the communications link vary widely and have a significant impact on the MPCI layer. For
example, the bandwidth of the communications link has an obvious impact on the maximum
MPCI throughput.

The characteristics of a shared network, such as Ethernet, lend themselves to supporting an
MPCI layer. These networks provide both the point-to-point and broadcast capabilities which
are expected by RTEMS.

22.5.3 Systems with Mixed Coupling

A mixed-coupling system is a multiprocessor configuration in which the processors commu-
nicate via both shared memory and communications links. A unique characteristic of mixed-
coupling systems is that a node may not have access to all communication methods. There
may be multiple shared memory areas and communication links. Therefore, one of the pri-
mary functions of the MPCI layer is to efficiently route RTEMS packets between nodes. This
routing may be based on numerous algorithms. In addition, the router may provide alternate
communications paths in the event of an overload or a partial failure.

22.5. Multiprocessor Communications Interface (MPCI) 355

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 22 Section 22.5

22.5.4 Heterogeneous Systems

Designing an MPCI layer for a heterogeneous system requires special considerations by the
developer. RTEMS is designed to eliminate many of the problems associated with sharing data
in a heterogeneous environment. The MPCI layer need only address the representation of thirty-
two (32) bit unsigned quantities.

For more information on supporting a heterogeneous system, refer the Supporting Heteroge-
neous Environments in the Multiprocessing Manager chapter.

356 Chapter 22. Board Support Packages

CHAPTER

TWENTYTHREE

USER EXTENSIONS MANAGER

357

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 23 Section 23.1

23.1 Introduction

The user extensions manager allows the application developer to augment the executive by
allowing them to supply extension routines which are invoked at critical system events. The
directives provided by the user extensions manager are:

• rtems_extension_create (page 366) - Create an extension set

• rtems_extension_ident (page 367) - Get ID of an extension set

• rtems_extension_delete (page 368) - Delete an extension set

358 Chapter 23. User Extensions Manager

Chapter 23 Section 23.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

23.2 Background

User extensions (call-back functions) are invoked by the system when the following events occur

• thread creation,

• thread start,

• thread restart,

• thread switch,

• thread begin,

• thread exitted (return from thread entry function),

• thread termination,

• thread deletion, and

• fatal error detection (system termination).

The user extensions have event-specific arguments, invocation orders and execution con-
texts. Extension sets can be installed at run-time via rtems_extension_create() (page 366)
(dynamic extension sets) or at link-time via the application configuration option CONFIG-
URE_INITIAL_EXTENSIONS (page 379) (initial extension sets).

The execution context of user extensions varies. Some user extensions are invoked with own-
ership of the allocator mutex. The allocator mutex protects dynamic memory allocations and
object creation/deletion. Some user extensions are invoked with thread dispatching disabled.
The fatal error extension is invoked in an arbitrary context.

23.2.1 Extension Sets

User extensions are maintained as a set. All user extensions are optional and may be NULL.
Together a set of these user extensions typically performs a specific functionality such as perfor-
mance monitoring or debugger support. The extension set is defined via the following structure.

1 typedef struct {
2 rtems_task_create_extension thread_create;
3 rtems_task_start_extension thread_start;
4 rtems_task_restart_extension thread_restart;
5 rtems_task_delete_extension thread_delete;
6 rtems_task_switch_extension thread_switch;
7 rtems_task_begin_extension thread_begin;
8 rtems_task_exitted_extension thread_exitted;
9 rtems_fatal_extension fatal;

10 rtems_task_terminate_extension thread_terminate;
11 } rtems_extensions_table;

23.2.2 TCB Extension Area

There is no system-provided storage for the initial extension sets.

The task control block (TCB) contains a pointer for each dynamic extension set. The pointer
is initialized to NULL during thread initialization before the thread create extension is invoked.
The pointer may be used by the dynamic extension set to maintain thread-specific data.

23.2. Background 359

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 23 Section 23.2

The TCB extension is an array of pointers in the TCB. The index into the table can be obtained
from the extension identifier returned when the extension object is created:

1 index = rtems_object_id_get_index(extension_id);

The number of pointers in the area is the same as the number of dynamic user extension sets
configured. This allows an application to augment the TCB with user-defined information.
For example, an application could implement task profiling by storing timing statistics in the
TCB’s extended memory area. When a task context switch is being executed, the thread switch
extension could read a real-time clock to calculate how long the task being swapped out has
run as well as timestamp the starting time for the task being swapped in.

If used, the extended memory area for the TCB should be allocated and the TCB extension
pointer should be set at the time the task is created or started by either the thread create or
thread start extension. The application is responsible for managing this extended memory area
for the TCBs. The memory may be reinitialized by the thread restart extension and should be
deallocated by the thread delete extension when the task is deleted. Since the TCB extension
buffers would most likely be of a fixed size, the RTEMS partition manager could be used to
manage the application’s extended memory area. The application could create a partition of
fixed size TCB extension buffers and use the partition manager’s allocation and deallocation
directives to obtain and release the extension buffers.

23.2.3 Order of Invocation

The user extensions are invoked in either forward or reverse order. In forward order, the user
extensions of initial extension sets are invoked before the user extensions of the dynamic ex-
tension sets. The forward order of initial extension sets is defined by the initial extension sets
table index. The forward order of dynamic extension sets is defined by the order in which the
dynamic extension sets were created. The reverse order is defined accordingly. By invoking the
user extensions in this order, extensions can be built upon one another. At the following system
events, the user extensions are invoked in forward order

• thread creation,

• thread start,

• thread restart,

• thread switch,

• thread begin,

• thread exitted (return from thread entry function), and

• fatal error detection.

At the following system events, the user extensions are invoked in reverse order:

• thread termination, and

• thread deletion.

At these system events, the user extensions are invoked in reverse order to insure that if an
extension set is built upon another, the more complicated user extension is invoked before the
user extension it is built upon. An example is use of the thread delete extension by the Standard
C Library. Extension sets which are installed after the Standard C Library will operate correctly

360 Chapter 23. User Extensions Manager

Chapter 23 Section 23.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

even if they utilize the C Library because the C Library’s thread delete extension is invoked after
that of the other thread delete extensions.

23.2.4 Thread Create Extension

The thread create extension is invoked during thread creation, for example via
rtems_task_create() (page 89) or pthread_create(). The thread create extension is defined
as follows.

1 typedef bool (*rtems_task_create_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *created
4);

The executing is a pointer to the TCB of the currently executing thread. The created is a
pointer to the TCB of the created thread. The created thread is completely initialized with
respect to the operating system.

The executing thread is the owner of the allocator mutex except during creation of the idle
threads. Since the allocator mutex allows nesting the normal memory allocation routines can
be used.

A thread create extension will frequently attempt to allocate resources. If this allocation fails,
then the thread create extension must return false and the entire thread create operation will
fail, otherwise it must return true.

The thread create extension is invoked in forward order with thread dispatching enabled (except
during system initialization).

23.2.5 Thread Start Extension

The thread start extension is invoked during a thread start, for example via rtems_task_start()
(page 93) or pthread_create(). The thread start extension is defined as follows.

1 typedef void (*rtems_task_start_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *started
4);

The executing is a pointer to the TCB of the currently executing thread. The started is a
pointer to the TCB of the started thread. It is invoked after the environment of the started
thread has been loaded and the started thread has been made ready. So, in SMP configurations,
the thread may already run on another processor before the thread start extension is actually
invoked. Thread switch and thread begin extensions may run before or in parallel with the
thread start extension in SMP configurations.

The thread start extension is invoked in forward order with thread dispatching disabled.

23.2.6 Thread Restart Extension

The thread restart extension is invoked during a thread restart, for example via
rtems_task_restart() (page 93). The thread restart extension is defined as follows.

23.2. Background 361

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 23 Section 23.2

1 typedef void (*rtems_task_restart_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *restarted
4);

Both executing and restarted are pointers the TCB of the currently executing thread. It is
invoked in the context of the executing thread right before the execution context is reloaded.
The thread stack reflects the previous execution context.

The thread restart extension is invoked in forward order with thread dispatching enabled (ex-
cept during system initialization). The thread life is protected. Thread restart and delete re-
quests issued by thread restart extensions lead to recursion. The POSIX cleanup handlers, POSIX
key destructors and thread-local object destructors run in this context.

23.2.7 Thread Switch Extension

The thread switch extension is defined as follows.

1 typedef void (*rtems_task_switch_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *heir
4);

The invocation conditions of the thread switch extension depend on whether RTEMS was config-
ured for uniprocessor or SMP systems. A user must pay attention to the differences to correctly
implement a thread switch extension.

In uniprocessor configurations, the thread switch extension is invoked before the context switch
from the currently executing thread to the heir thread. The executing is a pointer to the TCB of
the currently executing thread. The heir is a pointer to the TCB of the heir thread. The context
switch initiated through the multitasking start is not covered by the thread switch extension.

In SMP configurations, the thread switch extension is invoked after the context switch to the
new executing thread (previous heir thread). The executing is a pointer to the TCB of the
previously executing thread. Despite the name, this is not the currently executing thread. The
heir is a pointer to the TCB of the newly executing thread. This is the currently executing
thread. The context switches initiated through the multitasking start are covered by the thread
switch extension. The reason for the differences to uniprocessor configurations is that the con-
text switch may update the heir thread of the processor, see Thread Dispatch Details (page 529).
The thread switch extensions are invoked with disabled interrupts and with ownership of a per-
processor SMP lock. Thread switch extensions may run in parallel on multiple processors. It is
recommended to use thread-local or per-processor data structures for thread switch extensions.
A global SMP lock should be avoided for performance reasons.

The thread switch extension is invoked in forward order with thread dispatching disabled.

23.2.8 Thread Begin Extension

The thread begin extension is invoked during a thread begin before the thread entry function is
called. The thread begin extension is defined as follows.

362 Chapter 23. User Extensions Manager

Chapter 23 Section 23.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

1 typedef void (*rtems_task_begin_extension)(
2 rtems_tcb *executing
3);

The executing is a pointer to the TCB of the currently executing thread. The thread begin
extension executes in a normal thread context and may allocate resources for the executing
thread. In particular, it has access to thread-local storage of the executing thread.

The thread begin extension is invoked in forward order with thread dispatching enabled. The
thread switch extension may be called multiple times for this thread before or during the thread
begin extension is invoked.

23.2.9 Thread Exitted Extension

The thread exitted extension is invoked once the thread entry function returns. The thread
exitted extension is defined as follows.

1 typedef void (*rtems_task_exitted_extension)(
2 rtems_tcb *executing
3);

The executing is a pointer to the TCB of the currently executing thread.

This extension is invoked in forward order with thread dispatching enabled.

23.2.10 Thread Termination Extension

The thread termination extension is invoked in case a termination request is recognized by the
currently executing thread. Termination requests may result due to calls of rtems_task_delete()
(page 95), pthread_exit(), or pthread_cancel(). The thread termination extension is defined
as follows.

1 typedef void (*rtems_task_terminate_extension)(
2 rtems_tcb *executing
3);

The executing is a pointer to the TCB of the currently executing thread.

It is invoked in the context of the terminated thread right before the thread dispatch to the heir
thread. The POSIX cleanup handlers, POSIX key destructors and thread-local object destructors
run in this context. Depending on the order, the thread termination extension has access to
thread-local storage and thread-specific data of POSIX keys.

The thread terminate extension is invoked in reverse order with thread dispatching enabled.
The thread life is protected. Thread restart and delete requests issued by thread terminate
extensions lead to recursion.

23.2.11 Thread Delete Extension

The thread delete extension is invoked in case a zombie thread is killed. A thread becomes a
zombie thread after it terminated. The thread delete extension is defined as follows.

23.2. Background 363

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 23 Section 23.2

1 typedef void (*rtems_task_delete_extension)(
2 rtems_tcb *executing,
3 rtems_tcb *deleted
4);

The executing is a pointer to the TCB of the currently executing thread. The deleted is a
pointer to the TCB of the deleted thread. The executing and deleted pointers are never equal.

The executing thread is the owner of the allocator mutex. Since the allocator mutex allows
nesting the normal memory allocation routines can be used.

The thread delete extension is invoked in reverse order with thread dispatching enabled.

Please note that a thread delete extension is not immediately invoked with a call to
rtems_task_delete() (page 95) or similar. The thread must first terminate and this may take
some time. The thread delete extension is invoked by rtems_task_create() (page 89) or similar
as a result of a lazy garbage collection of zombie threads.

23.2.12 Fatal Error Extension

The fatal error extension is invoked during system termination (page 339). The fatal error
extension is defined as follows.

1 typedef void(*rtems_fatal_extension)(
2 rtems_fatal_source source,
3 bool always_set_to_false,
4 rtems_fatal_code code
5);

The source parameter is the fatal source indicating the subsystem the fatal condition originated
in. The always_set_to_false parameter is always set to false and provided only for backward
compatibility reasons. The code parameter is the fatal error code. This value must be interpreted
with respect to the source.

The fatal error extension is invoked in forward order.

It is strongly advised to use initial extension sets to install a fatal error extension. Usually, the
initial extension set of board support package provides a fatal error extension which resets the
board. In this case, the dynamic fatal error extensions are not invoked.

364 Chapter 23. User Extensions Manager

Chapter 23 Section 23.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

23.3 Directives

This section details the user extension manager’s directives. A subsection is dedicated to each
of this manager’s directives and describes the calling sequence, related constants, usage, and
status codes.

23.3. Directives 365

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 23 Section 23.3

23.3.1 EXTENSION_CREATE - Create a extension set

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_create(
2 rtems_name name,
3 const rtems_extensions_table *table,
4 rtems_id *id
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL extension set created successfully
RTEMS_INVALID_ADDRESS table or id are NULL
RTEMS_INVALID_NAME invalid extension set name
RTEMS_TOO_MANY too many extension sets created

DESCRIPTION:

This directive creates an extension set object and initializes it using the specified
extension set table. The assigned extension set identifier is returned in id. This
identifier is used to access the extension set with other user extension manager
directives. For control and maintenance of the extension set, RTEMS allocates an
Extension Set Control Block (ESCB) from the local ESCB free pool and initializes
it. The user-specified name is assigned to the ESCB and may be used to identify the
extension set via rtems_extension_ident() (page 367). The extension set specified by
table is copied to the ESCB.

NOTES:

This directive will not cause the calling task to be preempted.

366 Chapter 23. User Extensions Manager

Chapter 23 Section 23.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

23.3.2 EXTENSION_IDENT - Get ID of a extension set

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_ident(
2 rtems_name name,
3 rtems_id *id
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL extension set identified successfully
RTEMS_INVALID_NAME extension set name not found

DESCRIPTION:
This directive obtains the extension set identifier associated with the extension set name to
be acquired and returns it in id. If the extension set name is not unique, then the extension
set identifier will match one of the extension sets with that name. However, this extension
set identifier is not guaranteed to correspond to the desired extension set. The extension set
identifier is used to access this extension set in other extension set related directives.

NOTES:
This directive will not cause the running task to be preempted.

23.3. Directives 367

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 23 Section 23.3

23.3.3 EXTENSION_DELETE - Delete a extension set

CALLING SEQUENCE:

1 rtems_status_code rtems_extension_delete(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL extension set deleted successfully
RTEMS_INVALID_ID invalid extension set id

DESCRIPTION:
This directive deletes the extension set specified by id. If the extension set is running, it is
automatically canceled. The ESCB for the deleted extension set is reclaimed by RTEMS.

NOTES:
This directive will not cause the running task to be preempted.

A extension set can be deleted by a task other than the task which created the extension set.

368 Chapter 23. User Extensions Manager

CHAPTER

TWENTYFOUR

CONFIGURING A SYSTEM

369

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.1

24.1 Introduction

RTEMS must be configured for an application. This configuration encompasses a variety of
information including the length of each clock tick, the maximum number of each informa-
tion RTEMS object that can be created, the application initialization tasks, the task scheduling
algorithm to be used, and the device drivers in the application.

Although this information is contained in data structures that are used by RTEMS at system
initialization time, the data structures themselves must not be generated by hand. RTEMS
provides a set of macros system which provides a simple standard mechanism to automate the
generation of these structures.

The RTEMS header file <rtems/confdefs.h> is at the core of the automatic generation of system
configuration. It is based on the idea of setting macros which define configuration parameters
of interest to the application and defaulting or calculating all others. This variety of macros can
automatically produce all of the configuration data required for an RTEMS application.

As a general rule, application developers only specify values for the configuration parameters
of interest to them. They define what resources or features they require. In most cases, when
a parameter is not specified, it defaults to zero (0) instances, a standards compliant value, or
disabled as appropriate. For example, by default there will be 256 task priority levels but this
can be lowered by the application. This number of priority levels is required to be compliant
with the RTEID/ORKID standards upon which the Classic API is based. There are similar cases
where the default is selected to be compliant with the POSIX standard.

For each configuration parameter in the configuration tables, the macro corresponding to that
field is discussed. The RTEMS Maintainers expect that all systems can be easily configured using
the <rtems/confdefs.h> mechanism and that using this mechanism will avoid internal RTEMS
configuration changes impacting applications.

370 Chapter 24. Configuring a System

Chapter 24 Section 24.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.2 Default Value Selection Philosophy

The user should be aware that the defaults are intentionally set as low as possible. By default,
no application resources are configured. The <rtems/confdefs.h> file ensures that at least one
application task or thread is configured and that at least one of the initialization task/thread
tables is configured.

24.2. Default Value Selection Philosophy 371

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.3

24.3 Sizing the RTEMS Workspace

The RTEMS Workspace is a user-specified block of memory reserved for use by RTEMS. The
application should NOT modify this memory. This area consists primarily of the RTEMS data
structures whose exact size depends upon the values specified in the Configuration Table. In
addition, task stacks and floating point context areas are dynamically allocated from the RTEMS
Workspace.

The <rtems/confdefs.h> mechanism calculates the size of the RTEMS Workspace automatically.
It assumes that all tasks are floating point and that all will be allocated the minimum stack
space. This calculation includes the amount of memory that will be allocated for internal use by
RTEMS. The automatic calculation may underestimate the workspace size truly needed by the
application, in which case one can use the CONFIGURE_MEMORY_OVERHEAD macro to add a value
to the estimate. See Specify Memory Overhead for more details.

The memory area for the RTEMS Workspace is determined by the BSP. In case the RTEMS
Workspace is too large for the available memory, then a fatal run-time error occurs and the
system terminates.

The file <rtems/confdefs.h> will calculate the value of the work_space_size parameter of the
Configuration Table. There are many parameters the application developer can specify to help
<rtems/confdefs.h> in its calculations. Correctly specifying the application requirements via
parameters such as CONFIGURE_EXTRA_TASK_STACKS and CONFIGURE_MAXIMUM_TASKS is critical for
production software.

For each class of objects, the allocation can operate in one of two ways. The default way has an
ceiling on the maximum number of object instances which can concurrently exist in the system.
Memory for all instances of that object class is reserved at system initialization. The second way
allocates memory for an initial number of objects and increases the current allocation by a fixed
increment when required. Both ways allocate space from inside the RTEMS Workspace.

See Unlimited Objects (page 376) for more details about the second way, which allows for
dynamic allocation of objects and therefore does not provide determinism. This mode is useful
mostly for when the number of objects cannot be determined ahead of time or when porting
software for which you do not know the object requirements.

The space needed for stacks and for RTEMS objects will vary from one version of RTEMS and
from one target processor to another. Therefore it is safest to use <rtems/confdefs.h> and
specify your application’s requirements in terms of the numbers of objects and multiples of
RTEMS_MINIMUM_STACK_SIZE, as far as is possible. The automatic estimates of space required
will in general change when:

• a configuration parameter is changed,

• task or interrupt stack sizes change,

• the floating point attribute of a task changes,

• task floating point attribute is altered,

• RTEMS is upgraded, or

• the target processor is changed.

Failure to provide enough space in the RTEMS Workspace may result in fatal run-time errors
terminating the system.

372 Chapter 24. Configuring a System

Chapter 24 Section 24.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.4 Potential Issues with RTEMS Workspace Size Estimation

The <rtems/confdefs.h> file estimates the amount of memory required for the RTEMS
Workspace. This estimate is only as accurate as the information given to <rtems/confdefs.
h> and may be either too high or too low for a variety of reasons. Some of the reasons that
<rtems/confdefs.h> may reserve too much memory for RTEMS are:

• All tasks/threads are assumed to be floating point.

Conversely, there are many more reasons that the resource estimate could be too low:

• Task/thread stacks greater than minimum size must be accounted for explicitly by devel-
oper.

• Memory for messages is not included.

• Device driver requirements are not included.

• Network stack requirements are not included.

• Requirements for add-on libraries are not included.

In general, <rtems/confdefs.h> is very accurate when given enough information. However, it
is quite easy to use a library and forget to account for its resources.

24.4. Potential Issues with RTEMS Workspace Size Estimation 373

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.5

24.5 Configuration Example

In the following example, the configuration information for a system with a single message
queue, four (4) tasks, and a timeslice of fifty (50) milliseconds is as follows:

1 #include <bsp.h>
2 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
3 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
4 #define CONFIGURE_MICROSECONDS_PER_TICK 1000 /* 1 millisecond */
5 #define CONFIGURE_TICKS_PER_TIMESLICE 50 /* 50 milliseconds */
6 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
7 #define CONFIGURE_MAXIMUM_TASKS 4
8 #define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 1
9 #define CONFIGURE_MESSAGE_BUFFER_MEMORY \

10 CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(20, sizeof(struct USER_MESSAGE))
11 #define CONFIGURE_INIT
12 #include <rtems/confdefs.h>

In this example, only a few configuration parameters are specified. The impact of these are as
follows:

• The example specified CONFIGURE_RTEMS_INIT_TASK_TABLE but did not specify any addi-
tional parameters. This results in a configuration of an application which will begin exe-
cution of a single initialization task named Init which is non-preemptible and at priority
one (1).

• By specifying CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER, this application is configured
to have a clock tick device driver. Without a clock tick device driver, RTEMS has no way
to know that time is passing and will be unable to support delays and wall time. Further
configuration details about time are provided. Per CONFIGURE_MICROSECONDS_PER_TICK
and CONFIGURE_TICKS_PER_TIMESLICE, the user specified they wanted a clock tick to occur
each millisecond, and that the length of a timeslice would be fifty (50) milliseconds.

• By specifying CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER, the application will in-
clude a console device driver. Although the console device driver may support
a combination of multiple serial ports and display and keyboard combinations, it
is only required to provide a single device named /dev/console. This device
will be used for Standard Input, Output and Error I/O Streams. Thus when
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER is specified, implicitly three (3) file de-
scriptors are reserved for the Standard I/O Streams and those file descriptors are associ-
ated with /dev/console during initialization. All console devices are expected to support
the POSIX*termios* interface.

• The example above specifies via CONFIGURE_MAXIMUM_TASKS that the application requires
a maximum of four (4) simultaneously existing Classic API tasks. Similarly, by specifying
CONFIGURE_MAXIMUM_MESSAGE_QUEUES, there may be a maximum of only one (1) concur-
rently existent Classic API message queues.

• The most surprising configuration parameter in this example is the use of
CONFIGURE_MESSAGE_BUFFER_MEMORY. Message buffer memory is allocated from the RTEMS
Workspace and must be accounted for. In this example, the single message queue will have
up to twenty (20) messages of type struct USER_MESSAGE.

• The CONFIGURE_INIT constant must be defined in order to make <rtems/confdefs.h> in-
stantiate the configuration data structures. This can only be defined in one source file

374 Chapter 24. Configuring a System

Chapter 24 Section 24.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

per application that includes <rtems/confdefs.h> or the symbol table will be instantiated
multiple times and linking errors produced.

This example illustrates that parameters have default values. Among other things, the applica-
tion implicitly used the following defaults:

• All unspecified types of communications and synchronization objects in the Classic and
POSIX Threads API have maximums of zero (0).

• The filesystem will be the default filesystem which is the In-Memory File System (IMFS).

• The application will have the default number of priority levels.

• The minimum task stack size will be that recommended by RTEMS for the target architec-
ture.

24.5. Configuration Example 375

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.6

24.6 Unlimited Objects

In real-time embedded systems the RAM is normally a limited, critical resource and dynamic
allocation is avoided as much as possible to ensure predictable, deterministic execution times.
For such cases, see Sizing the RTEMS Workspace (page 372) for an overview of how to tune
the size of the workspace. Frequently when users are porting software to RTEMS the precise
resource requirements of the software is unknown. In these situations users do not need to
control the size of the workspace very tightly because they just want to get the new software to
run; later they can tune the workspace size as needed.

The following object classes in the Classic API can be configured in unlimited mode:

• Barriers

• Message Queues

• Partitions

• Periods

• Ports

• Regions

• Semaphores

• Tasks

• Timers

Additionally, the following object classes from the POSIX API can be configured in unlimited
mode:

• Keys – pthread_key_create()

• Key Value Pairs – pthread_setspecific()

• Message Queues – mq_open()

• Named Semaphores – sem_open()

• Shared Memory – shm_open()

• Threads – pthread_create()

• Timers – timer_create()

Warning: The following object classes can not be configured in unlimited mode:

• Drivers

• File Descriptors

• POSIX Queued Signals

• User Extensions

Due to the memory requirements of unlimited objects it is strongly recommended to use them
only in combination with the unified work areas. See Separate or Unified Work Areas for more
information on unified work areas.

376 Chapter 24. Configuring a System

Chapter 24 Section 24.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

The following example demonstrates how the two simple configuration defines for unlimited
objects and unified works areas can replace many seperate configuration defines for supported
object classes:

1 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
2 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
3 #define CONFIGURE_UNIFIED_WORK_AREAS
4 #define CONFIGURE_UNLIMITED_OBJECTS
5 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
6 #define CONFIGURE_INIT
7 #include <rtems/confdefs.h>

Users are cautioned that using unlimited objects is not recommended for production software
unless the dynamic growth is absolutely required. It is generally considered a safer embed-
ded systems programming practice to know the system limits rather than experience an out of
memory error at an arbitrary and largely unpredictable time in the field.

24.6.1 Unlimited Objects by Class

When the number of objects is not known ahead of time, RTEMS provides an auto-
extending mode that can be enabled individually for each object type by using the macro
rtems_resource_unlimited. This takes a value as a parameter, and is used to set the object
maximum number field in an API Configuration table. The value is an allocation unit size.
When RTEMS is required to grow the object table it is grown by this size. The kernel will return
the object memory back to the RTEMS Workspace when an object is destroyed. The kernel will
only return an allocated block of objects to the RTEMS Workspace if at least half the alloca-
tion size of free objects remain allocated. RTEMS always keeps one allocation block of objects
allocated. Here is an example of using rtems_resource_unlimited:

1 #define CONFIGURE_MAXIMUM_TASKS rtems_resource_unlimited(5)

Object maximum specifications can be evaluated with the rtems_resource_is_unlimited
and‘‘rtems_resource_maximum_per_allocation‘‘ macros.

24.6.2 Unlimited Objects by Default

To ease the burden of developers who are porting new software RTEMS also provides
the capability to make all object classes listed above operate in unlimited mode in a sim-
ple manner. The application developer is only responsible for enabling unlimited objects
(CONFIGURE_UNLIMITED_OBJECTS (page 387)) and specifying the allocation size (CONFIG-
URE_UNLIMITED_ALLOCATION_SIZE (page 387)).

1 #define CONFIGURE_UNLIMITED_OBJECTS
2 #define CONFIGURE_UNLIMITED_ALLOCATION_SIZE 5

24.6. Unlimited Objects 377

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.7

24.7 General System Configuration

This section describes general system configuration options.

24.7.1 CONFIGURE_DIRTY_MEMORY

CONSTANT:
CONFIGURE_DIRTY_MEMORY

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the memory areas used for the RTEMS
Workspace and the C Program Heap are dirtied with a 0xCF byte pattern during system ini-
tialization.

NOTES:
Dirtying memory can add significantly to system initialization time. It may assist in finding
code that incorrectly assumes the contents of free memory areas is cleared to zero during
system initialization. In case CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY (page 388)
is also defined, then the memory is first dirtied and then zeroed.

See also CONFIGURE_MALLOC_DIRTY (page 381).

24.7.2 CONFIGURE_DISABLE_NEWLIB_REENTRANCY

CONSTANT:
CONFIGURE_DISABLE_NEWLIB_REENTRANCY

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Newlib reentrancy support per thread is
disabled and a global reentrancy structure is used.

NOTES:
You can enable this option to reduce the size of the TCB. Use this option with care, since it
can lead to race conditions and undefined system behaviour. For example, errno is no longer
a thread-local variable if this option is enabled.

24.7.3 CONFIGURE_EXECUTIVE_RAM_SIZE

CONSTANT:
CONFIGURE_EXECUTIVE_RAM_SIZE

378 Chapter 24. Configuring a System

Chapter 24 Section 24.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
If this configuration option is undefined, then the RTEMS Workspace and task stack space size
is calculated by <rtems/confdefs.h> based on the values configuration options.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to UINTPTR_MAX.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

DESCRIPTION:
The value of this configuration option defines the RTEMS Workspace size in bytes.

NOTES:
This is an advanced configuration option. Use it only if you know exactly what you are doing.

24.7.4 CONFIGURE_EXTRA_TASK_STACKS

CONSTANT:
CONFIGURE_EXTRA_TASK_STACKS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

DESCRIPTION:
The value of this configuration option defines the number of bytes the applications wishes to
add to the task stack requirements calculated by <rtems/confdefs.h>.

NOTES:
This parameter is very important. If the application creates tasks with stacks larger then the
minimum, then that memory is not accounted for by <rtems/confdefs.h>.

24.7.5 CONFIGURE_INITIAL_EXTENSIONS

CONSTANT:
CONFIGURE_INITIAL_EXTENSIONS

OPTION TYPE:
This configuration option is an initializer define.

24.7. General System Configuration 379

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.7

DEFAULT VALUE:
The default value is the empty list.

VALUE CONSTRAINTS:
The value of this configuration option shall be a list of initializers for structures of type
rtems_extensions_table.

DESCRIPTION:
The value of this configuration option is used to initialize the table of initial user extensions.

NOTES:
The value of this configuration option is placed before the entries of BSP_INITIAL_EXTENSION
(page 455) and after the entries of all other initial user extensions.

24.7.6 CONFIGURE_INTERRUPT_STACK_SIZE

CONSTANT:
CONFIGURE_INTERRUPT_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is BSP_INTERRUPT_STACK_SIZE (page 455) in case it is defined, otherwise
the default value is CPU_STACK_MINIMUM_SIZE.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to a BSP-specific and application-specific minimum value.

• It shall be small enough so that the interrupt stack area calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type size_t.

• It shall be aligned according to CPU_INTERRUPT_STACK_ALIGNMENT.

DESCRIPTION:
The value of this configuration option defines the size of an interrupt stack in bytes.

NOTES:
There is one interrupt stack available for each configured processor (CONFIG-
URE_MAXIMUM_PROCESSORS (page 381)). The interrupt stack areas are statically allocated
in a special linker section (.rtemsstack.interrupt). The placement of this linker section is
BSP-specific.

Some BSPs use the interrupt stack as the initialization stack which is used to perform the
sequential system initialization before the multithreading is started.

The interrupt stacks are covered by the stack checker (page 386). However, using a too small
interrupt stack size may still result in undefined behaviour.

In releases before RTEMS 5.1 the default value was CONFIG-
URE_MINIMUM_TASK_STACK_SIZE (page 385) instead of CPU_STACK_MINIMUM_SIZE.

380 Chapter 24. Configuring a System

Chapter 24 Section 24.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.7.7 CONFIGURE_MALLOC_DIRTY

CONSTANT:
CONFIGURE_MALLOC_DIRTY

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then each memory area returned by C Program
Heap allocator functions such as malloc() is dirtied with a 0xCF byte pattern before it is
handed over to the application.

NOTES:
The dirtying performed by this option is carried out for each successful memory allocation
from the C Program Heap in contrast to CONFIGURE_DIRTY_MEMORY (page 378) which
dirties the memory only once during the system initialization.

24.7.8 CONFIGURE_MAXIMUM_FILE_DESCRIPTORS

CONSTANT:
CONFIGURE_MAXIMUM_FILE_DESCRIPTORS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 3.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to SIZE_MAX.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

DESCRIPTION:
The value of this configuration option defines the maximum number of file like objects that
can be concurrently open.

NOTES:
The default value of three file descriptors allows RTEMS to support standard input, output,
and error I/O streams on /dev/console.

24.7.9 CONFIGURE_MAXIMUM_PROCESSORS

CONSTANT:
CONFIGURE_MAXIMUM_PROCESSORS

24.7. General System Configuration 381

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.7

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 1.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to CPU_MAXIMUM_PROCESSORS.

DESCRIPTION:
The value of this configuration option defines the maximum number of processors an appli-
cation intends to use. The number of actually available processors depends on the hardware
and may be less. It is recommended to use the smallest value suitable for the application
in order to save memory. Each processor needs an IDLE task stack and interrupt stack for
example.

NOTES:
If there are more processors available than configured, the rest will be ignored.

This configuration option is only evaluated in SMP configurations (e.g. RTEMS was built with
the --enable-smp build configuration option). In all other configurations it has no effect.

24.7.10 CONFIGURE_MAXIMUM_THREAD_NAME_SIZE

CONSTANT:
CONFIGURE_MAXIMUM_THREAD_NAME_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 16.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to SIZE_MAX.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

DESCRIPTION:
The value of this configuration option defines the maximum thread name size including the
terminating NUL character.

NOTES:
The default value was chosen for Linux compatibility, see PTHREAD_SETNAME_NP(3).

The size of the thread control block is increased by the maximum thread name size.

This configuration option is available since RTEMS 5.1.

382 Chapter 24. Configuring a System

http://man7.org/linux/man-pages/man3/pthread_setname_np.3.html

Chapter 24 Section 24.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.7.11 CONFIGURE_MEMORY_OVERHEAD

CONSTANT:
CONFIGURE_MEMORY_OVERHEAD

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the RTEMS Workspace size calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type uintptr_t.

DESCRIPTION:
The value of this configuration option defines the number of kilobytes the application wishes
to add to the RTEMS Workspace size calculated by <rtems/confdefs.h>.

NOTES:
This configuration option should only be used when it is suspected that a bug in <rtems/
confdefs.h> has resulted in an underestimation. Typically the memory allocation will be too
low when an application does not account for all message queue buffers or task stacks, see
CONFIGURE_MESSAGE_BUFFER_MEMORY (page 383).

24.7.12 CONFIGURE_MESSAGE_BUFFER_MEMORY

CONSTANT:
CONFIGURE_MESSAGE_BUFFER_MEMORY

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the RTEMS Workspace size calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type uintptr_t.

DESCRIPTION:
The value of this configuration option defines the number of bytes reserved for message queue
buffers in the RTEMS Workspace.

24.7. General System Configuration 383

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.7

NOTES:
The configuration options CONFIGURE_MAXIMUM_MESSAGE_QUEUES (page 398) and CON-
FIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES (page 410) define only how many message
queues can be created by the application. The memory for the message buffers is configured
by this option. For each message queue you have to reserve some memory for the message
buffers. The size dependes on the maximum number of pending messages and the maximum
size of the messages of a message queue. Use the CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE()
macro to specify the message buffer memory for each message queue and sum them up to
define the value for CONFIGURE_MAXIMUM_MESSAGE_QUEUES.

The interface for the CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE() help macro is as follows:

1 CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(max_messages, max_msg_size)

Where max_messages is the maximum number of pending messages and max_msg_size is the
maximum size in bytes of the messages of the corresponding message queue. Both parameters
shall be compile time constants. Not using this help macro (e.g. just using max_messages *
max_msg_size) may result in an underestimate of the RTEMS Workspace size.

The following example illustrates how the CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE()
help macro can be used to assist in calculating the message buffer memory required. In this
example, there are two message queues used in this application. The first message queue
has a maximum of 24 pending messages with the message structure defined by the type
one_message_type. The other message queue has a maximum of 500 pending messages with
the message structure defined by the type other_message_type.

1 #define CONFIGURE_MESSAGE_BUFFER_MEMORY (\
2 CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(\
3 24, \
4 sizeof(one_message_type) \
5) \
6 + CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(\
7 500, \
8 sizeof(other_message_type) \
9) \

10)

24.7.13 CONFIGURE_MICROSECONDS_PER_TICK

CONSTANT:
CONFIGURE_MICROSECONDS_PER_TICK

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 10000.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to a Clock Driver specific value.

• It shall be less than or equal to a Clock Driver specific value.

• The resulting clock ticks per second should be an integer.

384 Chapter 24. Configuring a System

Chapter 24 Section 24.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

DESCRIPTION:
The value of this configuration option defines the length of time in microseconds between
clock ticks (clock tick quantum).

When the clock tick quantum value is too low, the system will spend so much time processing
clock ticks that it does not have processing time available to perform application work. In this
case, the system will become unresponsive.

The lowest practical time quantum varies widely based upon the speed of the target hardware
and the architectural overhead associated with interrupts. In general terms, you do not want
to configure it lower than is needed for the application.

The clock tick quantum should be selected such that it all blocking and delay times in the
application are evenly divisible by it. Otherwise, rounding errors will be introduced which
may negatively impact the application.

NOTES:
This configuration option has no impact if the Clock Driver is not configured, see CONFIG-
URE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 389).

There may be Clock Driver specific limits on the resolution or maximum value of a clock tick
quantum.

24.7.14 CONFIGURE_MINIMUM_TASK_STACK_SIZE

CONSTANT:
CONFIGURE_MINIMUM_TASK_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is CPU_STACK_MINIMUM_SIZE.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

• It shall be greater than or equal to a BSP-specific and application-specific minimum value.

DESCRIPTION:
The value of this configuration option defines the minimum stack size in bytes for every user
task or thread in the system.

NOTES:
Adjusting this parameter should be done with caution. Examining the actual stack us-
age using the stack checker usage reporting facility is recommended (see also CONFIG-
URE_STACK_CHECKER_ENABLED (page 386)).

This parameter can be used to lower the minimum from that recommended. This can be used
in low memory systems to reduce memory consumption for stacks. However, this shall be
done with caution as it could increase the possibility of a blown task stack.

This parameter can be used to increase the minimum from that recommended. This can
be used in higher memory systems to reduce the risk of stack overflow without performing
analysis on actual consumption.

24.7. General System Configuration 385

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.7

By default, this configuration parameter defines also the minimum stack size of POSIX
threads. This can be changed with the CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE
(page 414) configuration option.

In releases before RTEMS 5.1 the CONFIGURE_MINIMUM_TASK_STACK_SIZE was used to define
the default value of CONFIGURE_INTERRUPT_STACK_SIZE (page 380).

24.7.15 CONFIGURE_STACK_CHECKER_ENABLED

CONSTANT:
CONFIGURE_STACK_CHECKER_ENABLED

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the stack checker is enabled.

NOTES:
The stack checker performs run-time stack bounds checking. This increases the time required
to create tasks as well as adding overhead to each context switch.

In 4.9 and older, this configuration option was named STACK_CHECKER_ON.

24.7.16 CONFIGURE_TICKS_PER_TIMESLICE

CONSTANT:
CONFIGURE_TICKS_PER_TIMESLICE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 50.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the length of the timeslice quantum in ticks for
each task.

NOTES:
This configuration option has no impact if the Clock Driver is not configured, see CONFIG-
URE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 389).

24.7.17 CONFIGURE_UNIFIED_WORK_AREAS

CONSTANT:
CONFIGURE_UNIFIED_WORK_AREAS

386 Chapter 24. Configuring a System

Chapter 24 Section 24.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then there will be separate memory pools for the
RTEMS Workspace and C Program Heap.

DESCRIPTION:
In case this configuration option is defined, then the RTEMS Workspace and the C Program
Heap will be one pool of memory.

NOTES:
Having separate pools does have some advantages in the event a task blows a stack or writes
outside its memory area. However, in low memory systems the overhead of the two pools
plus the potential for unused memory in either pool is very undesirable.

In high memory environments, this is desirable when you want to use the Unlimited Objects
(page 376) option. You will be able to create objects until you run out of all available memory
rather then just until you run out of RTEMS Workspace.

24.7.18 CONFIGURE_UNLIMITED_ALLOCATION_SIZE

CONSTANT:
CONFIGURE_UNLIMITED_ALLOCATION_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 8.

VALUE CONSTRAINTS:
The value of this configuration option shall meet the constraints of all object classes to which
it is applied.

DESCRIPTION:
If CONFIGURE_UNLIMITED_OBJECTS (page 387) is defined, then the value of this configu-
ration option defines the default objects maximum of all object classes supporting Unlimited
Objects (page 376) to rtems_resource_unlimited(CONFIGURE_UNLIMITED_ALLOCATION_SIZE).

NOTES:
By allowing users to declare all resources as being unlimited the user can avoid identifying
and limiting the resources used.

The object maximum of each class can be configured also individually using the
rtems_resource_unlimited() macro.

24.7.19 CONFIGURE_UNLIMITED_OBJECTS

CONSTANT:
CONFIGURE_UNLIMITED_OBJECTS

OPTION TYPE:
This configuration option is a boolean feature define.

24.7. General System Configuration 387

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.7

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then unlimited objects are used by default.

NOTES:
When using unlimited objects, it is common practice to also specify CONFIG-
URE_UNIFIED_WORK_AREAS (page 386) so the system operates with a single pool of memory
for both RTEMS Workspace and C Program Heap.

This option does not override an explicit configuration for a particular object class by the user.

See also CONFIGURE_UNLIMITED_ALLOCATION_SIZE (page 387).

24.7.20 CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION

CONSTANT:
CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the system initialization is verbose.

NOTES:
You may use this feature to debug system initialization issues. The printk() function is used
to print the information.

24.7.21 CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

CONSTANT:
CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the memory areas used for the RTEMS
Workspace and the C Program Heap are zeroed with a 0x00 byte pattern during system ini-
tialization.

NOTES:
Zeroing memory can add significantly to the system initialization time. It is not necessary
for RTEMS but is often assumed by support libraries. In case CONFIGURE_DIRTY_MEMORY
(page 378) is also defined, then the memory is first dirtied and then zeroed.

388 Chapter 24. Configuring a System

Chapter 24 Section 24.8 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.8 Device Driver Configuration

This section describes configuration options related to the device drivers. Note that network
device drivers are not covered by the following options.

24.8.1 CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then a Clock Driver may be initialized during system
initialization.

DESCRIPTION:
In case this configuration option is defined, then no Clock Driver is initialized during system
initialization.

NOTES:
This configuration parameter is intended to prevent the common user error of using the Hello
World example as the baseline for an application and leaving out a clock tick source.

The application shall define exactly one of the following configuration options

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER (page 390),

• CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER, or

• CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER (page 394),

otherwise a compile time error in the configuration file will occur.

24.8.2 CONFIGURE_APPLICATION_EXTRA_DRIVERS

CONSTANT:
CONFIGURE_APPLICATION_EXTRA_DRIVERS

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is the empty list.

VALUE CONSTRAINTS:
The value of this configuration option shall be a list of initializers for structures of type
rtems_driver_address_table.

DESCRIPTION:
The value of this configuration option is used to initialize the Device Driver Table.

NOTES:
The value of this configuration option is placed after the entries of other device driver config-
uration options.

24.8. Device Driver Configuration 389

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.8

See CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS (page 396) for an alternative place-
ment of application device driver initializers.

24.8.3 CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the ATA Driver is initialized during system
initialization.

NOTES:
Most BSPs do not include support for an ATA Driver.

If this option is defined and the BSP does not have this device driver, then the user will get a
link time error for an undefined symbol.

24.8.4 CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Clock Driver is initialized during system
initialization.

NOTES:
The Clock Driver is responsible for providing a regular interrupt which invokes a clock tick
directive.

The application shall define exactly one of the following configuration options

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER,

• CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 389), or

• CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER (page 394),

otherwise a compile time error in the configuration file will occur.

390 Chapter 24. Configuring a System

Chapter 24 Section 24.8 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.8.5 CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Console Driver is initialized during sys-
tem initialization.

NOTES:
The Console Driver is responsible for providing the /dev/console device file. This device is
used to initialize the standard input, output, and error file descriptors.

BSPs should be constructed in a manner that allows printk() to work properly without the
need for the Console Driver to be configured.

The

• CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 391),

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER (page 393), and

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER (page 393)

configuration options are mutually exclusive.

24.8.6 CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Frame Buffer Driver is initialized during
system initialization.

NOTES:
Most BSPs do not include support for a Frame Buffer Driver. This is because many boards do
not include the required hardware.

If this option is defined and the BSP does not have this device driver, then the user will get a
link time error for an undefined symbol.

24.8. Device Driver Configuration 391

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.8

24.8.7 CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the IDE Driver is initialized during system
initialization.

NOTES:
Most BSPs do not include support for an IDE Driver.

If this option is defined and the BSP does not have this device driver, then the user will get a
link time error for an undefined symbol.

24.8.8 CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the /dev/null Driver is initialized during
system initialization.

NOTES:
This device driver is supported by all BSPs.

24.8.9 CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Real-Time Clock Driver is initialized
during system initialization.

392 Chapter 24. Configuring a System

Chapter 24 Section 24.8 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

NOTES:
Most BSPs do not include support for a real-time clock (RTC). This is because many boards
do not include the required hardware.

If this is defined and the BSP does not have this device driver, then the user will get a link
time error for an undefined symbol.

24.8.10 CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Simple Console Driver is initialized
during system initialization.

NOTES:
This device driver is responsible for providing the /dev/console device file. This device is
used to initialize the standard input, output, and error file descriptors.

This device driver reads via getchark().

This device driver writes via rtems_putc().

The Termios framework is not used. There is no support to change device settings, e.g. baud,
stop bits, parity, etc.

The

• CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 391),

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER (page 393), and

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER (page 393)

configuration options are mutually exclusive.

24.8.11 CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Simple Task Console Driver is initialized
during system initialization.

24.8. Device Driver Configuration 393

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.8

NOTES:
This device driver is responsible for providing the /dev/console device file. This device is
used to initialize the standard input, output, and error file descriptors.

This device driver reads via getchark().

This device driver writes into a write buffer. The count of characters written into the write
buffer is returned. It might be less than the requested count, in case the write buffer is full.
The write is non-blocking and may be called from interrupt context. A dedicated task reads
from the write buffer and outputs the characters via rtems_putc(). This task runs with the
least important priority. The write buffer size is 2047 characters and it is not configurable.

Use fsync(STDOUT_FILENO) or fdatasync(STDOUT_FILENO) to drain the write buffer.

The Termios framework is not used. There is no support to change device settings, e.g. baud,
stop bits, parity, etc.

The

• CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER (page 391),

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER (page 393), and

• CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER (page 393)

configuration options are mutually exclusive.

24.8.12 CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Stub Driver is initialized during system
initialization.

NOTES:
This device driver simply provides entry points that return successful and is primarily a test
fixture. It is supported by all BSPs.

24.8.13 CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

394 Chapter 24. Configuring a System

Chapter 24 Section 24.8 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

DESCRIPTION:
In case this configuration option is defined, then the Benchmark Timer Driver is initialized
during system initialization.

NOTES:
The Benchmark Timer Driver is intended for the benchmark tests of the RTEMS Testsuite.
Applications should not use this driver.

The application shall define exactly one of the following configuration options

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER (page 390),

• CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER (page 389), or

• CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER,

otherwise a compile time error will occur.

24.8.14 CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Watchdog Driver is initialized during
system initialization.

NOTES:
Most BSPs do not include support for a watchdog device driver. This is because many boards
do not include the required hardware.

If this is defined and the BSP does not have this device driver, then the user will get a link
time error for an undefined symbol.

24.8.15 CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the /dev/zero Driver is initialized during
system initialization.

NOTES:
This device driver is supported by all BSPs.

24.8. Device Driver Configuration 395

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.8

24.8.16 CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS

CONSTANT:
CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is the empty list.

VALUE CONSTRAINTS:
The value of this configuration option shall be a list of initializers for structures of type
rtems_driver_address_table.

DESCRIPTION:
The value of this configuration option is used to initialize the Device Driver Table.

NOTES:
The value of this configuration option is placed after the entries defined by CONFIG-
URE_BSP_PREREQUISITE_DRIVERS (page 456) and before all other device driver configu-
ration options.

See CONFIGURE_APPLICATION_EXTRA_DRIVERS (page 389) for an alternative placement of
application device driver initializers.

24.8.17 CONFIGURE_ATA_DRIVER_TASK_PRIORITY

CONSTANT:
CONFIGURE_ATA_DRIVER_TASK_PRIORITY

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 140.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid Classic API task priority. The set of valid
task priorities is scheduler-specific.

DESCRIPTION:
The value of this configuration option defines the ATA task priority.

NOTES:
This configuration option is only evaluated if the configuration option CONFIG-
URE_APPLICATION_NEEDS_ATA_DRIVER (page 390) is defined.

24.8.18 CONFIGURE_MAXIMUM_DRIVERS

CONSTANT:
CONFIGURE_MAXIMUM_DRIVERS

OPTION TYPE:
This configuration option is an integer define.

396 Chapter 24. Configuring a System

Chapter 24 Section 24.8 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

DEFAULT VALUE:
This is computed by default, and is set to the number of device drivers configured using the
CONFIGURE_APPLICATIONS_NEEDS_XXX_DRIVER configuration options.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be less than or equal to SIZE_MAX.

• It shall be greater than or equal than the number of statically configured device drivers.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

DESCRIPTION:
The value of this configuration option defines the number of device drivers.

NOTES:
If the application will dynamically install device drivers, then this configuration parameter
shall be larger than the number of statically configured device drivers. Drivers configured
using the CONFIGURE_APPLICATIONS_NEEDS_XXX_DRIVER configuration options are statically in-
stalled.

24.8. Device Driver Configuration 397

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.9

24.9 Classic API Configuration

This section describes configuration options related to the Classic API.

24.9.1 CONFIGURE_MAXIMUM_BARRIERS

CONSTANT:
CONFIGURE_MAXIMUM_BARRIERS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Barriers
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

24.9.2 CONFIGURE_MAXIMUM_MESSAGE_QUEUES

CONSTANT:
CONFIGURE_MAXIMUM_MESSAGE_QUEUES

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

398 Chapter 24. Configuring a System

Chapter 24 Section 24.9 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Message
Queues that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376). You have to account for the memory used to store the messages of each mes-
sage queue, see CONFIGURE_MESSAGE_BUFFER_MEMORY (page 383).

24.9.3 CONFIGURE_MAXIMUM_PARTITIONS

CONSTANT:
CONFIGURE_MAXIMUM_PARTITIONS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Partitions
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

24.9.4 CONFIGURE_MAXIMUM_PERIODS

CONSTANT:
CONFIGURE_MAXIMUM_PERIODS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

24.9. Classic API Configuration 399

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.9

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Periods
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

24.9.5 CONFIGURE_MAXIMUM_PORTS

CONSTANT:
CONFIGURE_MAXIMUM_PORTS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Ports that
can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

400 Chapter 24. Configuring a System

Chapter 24 Section 24.9 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.9.6 CONFIGURE_MAXIMUM_REGIONS

CONSTANT:
CONFIGURE_MAXIMUM_REGIONS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Regions
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

24.9.7 CONFIGURE_MAXIMUM_SEMAPHORES

CONSTANT:
CONFIGURE_MAXIMUM_SEMAPHORES

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

24.9. Classic API Configuration 401

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.9

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Semaphore
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

In SMP configurations, the size of a Semaphore Control Block depends on the scheduler count
(see Configuration Step 3 - Scheduler Table (page 451)). The semaphores using the Multipro-
cessor Resource Sharing Protocol (MrsP) (page 29) need a ceiling priority per scheduler.

24.9.8 CONFIGURE_MAXIMUM_TASKS

CONSTANT:
CONFIGURE_MAXIMUM_TASKS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Tasks that
can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

The calculations for the required memory in the RTEMS Workspace for tasks assume that each
task has a minimum stack size and has floating point support enabled. The configuration
parameter CONFIGURE_EXTRA_TASK_STACKS is used to specify task stack requirements ABOVE
the minimum size required. See Reserve Task/Thread Stack Memory Above Minimum for
more information about CONFIGURE_EXTRA_TASK_STACKS.

The maximum number of POSIX threads is specified by CONFIG-
URE_MAXIMUM_POSIX_THREADS (page 412).

402 Chapter 24. Configuring a System

Chapter 24 Section 24.9 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

A future enhancement to <rtems/confdefs.h> could be to eliminate the assumption that all
tasks have floating point enabled. This would require the addition of a new configuration
parameter to specify the number of tasks which enable floating point support.

24.9.9 CONFIGURE_MAXIMUM_TIMERS

CONSTANT:
CONFIGURE_MAXIMUM_TIMERS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API Timers
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

24.9.10 CONFIGURE_MAXIMUM_USER_EXTENSIONS

CONSTANT:
CONFIGURE_MAXIMUM_USER_EXTENSIONS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

24.9. Classic API Configuration 403

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.9

DESCRIPTION:
The value of this configuration option defines the maximum number of Classic API User Ex-
tensions that can be concurrently active.

NOTES:
This object class cannot be configured in unlimited allocation mode.

404 Chapter 24. Configuring a System

Chapter 24 Section 24.10 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.10 Classic API Initialization Task Configuration

This section describes configuration options related to the Classic API initialization task.

24.10.1 CONFIGURE_INIT_TASK_ARGUMENTS

CONSTANT:
CONFIGURE_INIT_TASK_ARGUMENTS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid integer of type rtems_task_argument.

DESCRIPTION:
The value of this configuration option defines task argument of the Classic API initialization
task.

NOTES:
None.

24.10.2 CONFIGURE_INIT_TASK_ATTRIBUTES

CONSTANT:
CONFIGURE_INIT_TASK_ATTRIBUTES

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is RTEMS_DEFAULT_ATTRIBUTES.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid task attribute set.

DESCRIPTION:
The value of this configuration option defines the task attributes of the Classic API initializa-
tion task.

NOTES:
None.

24.10.3 CONFIGURE_INIT_TASK_ENTRY_POINT

CONSTANT:
CONFIGURE_INIT_TASK_ENTRY_POINT

OPTION TYPE:
This configuration option is an initializer define.

24.10. Classic API Initialization Task Configuration 405

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.10

DEFAULT VALUE:
The default value is Init.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a valid function pointer of the type
void (*entry_point)(rtems_task_argument).

DESCRIPTION:
The value of this configuration option initializes the entry point of the Classic API initialization
task.

NOTES:
The application shall provide the function referenced by this configuration option.

24.10.4 CONFIGURE_INIT_TASK_INITIAL_MODES

CONSTANT:
CONFIGURE_INIT_TASK_INITIAL_MODES

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
In SMP configurations, the default value is RTEMS_DEFAULT_MODES, otherwise the default value
is RTEMS_NO_PREEMPT.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid task mode set.

DESCRIPTION:
The value of this configuration option defines the initial execution mode of the Classic API
initialization task.

NOTES:
None.

24.10.5 CONFIGURE_INIT_TASK_NAME

CONSTANT:
CONFIGURE_INIT_TASK_NAME

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is rtems_build_name('U', 'I', '1', ' ').

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid integer of type rtems_name.

DESCRIPTION:
The value of this configuration option defines the name of the Classic API initialization task.

NOTES:
Use rtems_build_name() to define the task name.

406 Chapter 24. Configuring a System

Chapter 24 Section 24.10 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.10.6 CONFIGURE_INIT_TASK_PRIORITY

CONSTANT:
CONFIGURE_INIT_TASK_PRIORITY

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 1.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid Classic API task priority. The set of valid
task priorities is scheduler-specific.

DESCRIPTION:
The value of this configuration option defines the initial priority of the Classic API initializa-
tion task.

NOTES:
None.

24.10.7 CONFIGURE_INIT_TASK_STACK_SIZE

CONSTANT:
CONFIGURE_INIT_TASK_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 385).

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to CONFIGURE_MINIMUM_TASK_STACK_SIZE
(page 385).

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

DESCRIPTION:
The value of this configuration option defines the task stack size of the Classic API initializa-
tion task.

NOTES:
None.

24.10.8 CONFIGURE_RTEMS_INIT_TASKS_TABLE

CONSTANT:
CONFIGURE_RTEMS_INIT_TASKS_TABLE

OPTION TYPE:
This configuration option is a boolean feature define.

24.10. Classic API Initialization Task Configuration 407

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.10

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then exactly one Classic API initialization task is
configured.

NOTES:
The application shall define exactly one of the following configuration options

• CONFIGURE_RTEMS_INIT_TASKS_TABLE,

• CONFIGURE_POSIX_INIT_THREAD_TABLE (page 416), or

• CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION (page 440)

otherwise a compile time error in the configuration file will occur.

408 Chapter 24. Configuring a System

Chapter 24 Section 24.11 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.11 POSIX API Configuration

This section describes configuration options related to the POSIX API. Most POSIX API objects
are available by default since RTEMS 5.1. The queued signals and timers are only available if
RTEMS was built with the --enable-posix build configuration option.

24.11.1 CONFIGURE_MAXIMUM_POSIX_KEYS

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_KEYS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of POSIX API Keys that
can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

24.11.2 CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is CONFIGURE_MAXIMUM_POSIX_KEYS (page 409) * CONFIG-
URE_MAXIMUM_TASKS (page 402) + CONFIGURE_MAXIMUM_POSIX_THREADS (page 412).

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

24.11. POSIX API Configuration 409

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.11

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of key value pairs used
by POSIX API Keys that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

A key value pair is created by pthread_setspecific() if the value is not NULL, otherwise it is
deleted.

24.11.3 CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the RTEMS Workspace size calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type uintptr_t.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of POSIX API Message
Queues that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376). You have to account for the memory used to store the messages of each mes-
sage queue, see CONFIGURE_MESSAGE_BUFFER_MEMORY (page 383).

410 Chapter 24. Configuring a System

Chapter 24 Section 24.11 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.11.4 CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the RTEMS Workspace size calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type uintptr_t.

• It shall be zero if the POSIX API is not enabled (e.g. RTEMS was built without the
--enable-posix build configuration option). Otherwise a compile time error in the con-
figuration file will occur.

DESCRIPTION:
The value of this configuration option defines the maximum number of POSIX API Queued
Signals that can be concurrently active.

NOTES:
Unlimited objects are not available for queued signals.

Queued signals are only available if RTEMS was built with the --enable-posix build config-
uration option.

24.11.5 CONFIGURE_MAXIMUM_POSIX_SEMAPHORES

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_SEMAPHORES

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the RTEMS Workspace size calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type uintptr_t.

24.11. POSIX API Configuration 411

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.11

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of POSIX API Named
Semaphores that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

Named semaphores are created with sem_open(). Semaphores initialized with sem_init()
are not affected by this configuration option since the storage space for these semaphores is
user-provided.

24.11.6 CONFIGURE_MAXIMUM_POSIX_SHMS

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_SHMS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the RTEMS Workspace size calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type uintptr_t.

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

DESCRIPTION:
The value of this configuration option defines the maximum number of POSIX API Shared
Memory objects that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

24.11.7 CONFIGURE_MAXIMUM_POSIX_THREADS

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_THREADS

412 Chapter 24. Configuring a System

Chapter 24 Section 24.11 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

DESCRIPTION:
The value of this configuration option defines the maximum number of POSIX API Threads
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

This calculations for the required memory in the RTEMS Workspace for threads assume that
each thread has a minimum stack size and has floating point support enabled. The configu-
ration option CONFIGURE_EXTRA_TASK_STACKS (page 379) is used to specify thread stack
requirements above the minimum size required. See Reserve Task/Thread Stack Memory
Above Minimum for more information about CONFIGURE_EXTRA_TASK_STACKS.

The maximum number of Classic API Tasks is specified by CONFIGURE_MAXIMUM_TASKS
(page 402).

All POSIX threads have floating point enabled.

24.11.8 CONFIGURE_MAXIMUM_POSIX_TIMERS

CONSTANT:
CONFIGURE_MAXIMUM_POSIX_TIMERS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to 65535.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

24.11. POSIX API Configuration 413

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.11

• It may be defined through rtems_resource_unlimited() the enable unlimited objects for
this object class, if the value passed to rtems_resource_unlimited() satisfies all other
constraints of this configuration option.

• It shall be zero if the POSIX API is not enabled (e.g. RTEMS was built without the
--enable-posix build configuration option). Otherwise a compile time error in the con-
figuration file will occur.

DESCRIPTION:
The value of this configuration option defines the maximum number of POSIX API Timers
that can be concurrently active.

NOTES:
This object class can be configured in unlimited allocation mode, see Unlimited Objects
(page 376).

Timers are only available if RTEMS was built with the --enable-posix build configuration
option.

24.11.9 CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE

CONSTANT:
CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is two times the value of CONFIGURE_MINIMUM_TASK_STACK_SIZE
(page 385).

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

• It shall be greater than or equal to a BSP-specific and application-specific minimum value.

DESCRIPTION:
The value of this configuration option defines the minimum stack size in bytes for every POSIX
thread in the system.

NOTES:
None.

414 Chapter 24. Configuring a System

Chapter 24 Section 24.12 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.12 POSIX Initialization Thread Configuration

This section describes configuration options related to the POSIX initialization thread.

24.12.1 CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT

CONSTANT:
CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is POSIX_Init.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a valid function pointer of the type
void *(*entry_point)(void *).

DESCRIPTION:
The value of this configuration option initializes the entry point of the POSIX API initialization
thread.

NOTES:
The application shall provide the function referenced by this configuration option.

24.12.2 CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE

CONSTANT:
CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE (page 414).

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to CONFIGURE_MINIMUM_TASK_STACK_SIZE
(page 385).

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

DESCRIPTION:
The value of this configuration option defines the thread stack size of the POSIX API initial-
ization thread.

NOTES:
None.

24.12. POSIX Initialization Thread Configuration 415

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.12

24.12.3 CONFIGURE_POSIX_INIT_THREAD_TABLE

CONSTANT:
CONFIGURE_POSIX_INIT_THREAD_TABLE

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then exactly one POSIX initialization thread is
configured.

NOTES:
The application shall define exactly one of the following configuration options

• CONFIGURE_RTEMS_INIT_TASKS_TABLE (page 407),

• CONFIGURE_POSIX_INIT_THREAD_TABLE, or

• CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION (page 440)

otherwise a compile time error in the configuration file will occur.

416 Chapter 24. Configuring a System

Chapter 24 Section 24.13 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.13 Event Recording Configuration

This section describes configuration options related to the event recording.

24.13.1 CONFIGURE_RECORD_EXTENSIONS_ENABLED

CONSTANT:
CONFIGURE_RECORD_EXTENSIONS_ENABLED

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case

• this configuration option is defined

• and CONFIGURE_RECORD_PER_PROCESSOR_ITEMS (page 418) is properly defined,

then the event record extensions are enabled.

NOTES:
The record extensions capture thread create, start, restart, delete, switch, begin, exitted and
terminate events.

24.13.2 CONFIGURE_RECORD_FATAL_DUMP_BASE64

CONSTANT:
CONFIGURE_RECORD_FATAL_DUMP_BASE64

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case

• this configuration option is defined

• and CONFIGURE_RECORD_PER_PROCESSOR_ITEMS (page 418) is properly defined,

• and CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB (page 418) is undefined,

then the event records are dumped in Base64 encoding in a fatal error extension (see An-
nouncing a Fatal Error (page 339)).

NOTES:
This extension can be used to produce crash dumps.

24.13. Event Recording Configuration 417

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.13

24.13.3 CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB

CONSTANT:
CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case

• this configuration option is defined

• and CONFIGURE_RECORD_PER_PROCESSOR_ITEMS (page 418) is properly defined,

then the event records are compressed by zlib and dumped in Base64 encoding in a fatal error
extension (see Announcing a Fatal Error (page 339)).

NOTES:
The zlib compression needs about 512KiB of RAM. This extension can be used to produce
crash dumps.

24.13.4 CONFIGURE_RECORD_PER_PROCESSOR_ITEMS

CONSTANT:
CONFIGURE_RECORD_PER_PROCESSOR_ITEMS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 16.

• It shall be less than or equal to SIZE_MAX.

• It shall be a power of two.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

DESCRIPTION:
The value of this configuration option defines the event record item count per processor.

NOTES:
The event record buffers are statically allocated for each configured processor (CONFIG-
URE_MAXIMUM_PROCESSORS (page 381)). If the value of this configuration option is zero,
then nothing is allocated.

418 Chapter 24. Configuring a System

Chapter 24 Section 24.14 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.14 Filesystem Configuration

This section describes configuration options related to filesytems. By default, the In-
Memory Filesystem (IMFS) is used as the base filesystem (also known as root filesys-
tem). In order to save some memory for your application, you can disable the filesys-
tem support with the CONFIGURE_APPLICATION_DISABLE_FILESYSTEM (page 419) con-
figuration option. Alternatively, you can strip down the features of the base filesys-
tem with the CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM (page 429) and CONFIG-
URE_USE_DEVFS_AS_BASE_FILESYSTEM (page 428) configuration options. These three con-
figuration options are mutually exclusive. They are intended for an advanced application con-
figuration.

Features of the IMFS can be disabled and enabled with the following configuration options:

• CONFIGURE_IMFS_DISABLE_CHMOD (page 423)

• CONFIGURE_IMFS_DISABLE_CHOWN (page 423)

• CONFIGURE_IMFS_DISABLE_LINK (page 423)

• CONFIGURE_IMFS_DISABLE_MKNOD (page 424)

• CONFIGURE_IMFS_DISABLE_MKNOD_FILE (page 424)

• CONFIGURE_IMFS_DISABLE_MOUNT (page 425)

• CONFIGURE_IMFS_DISABLE_READDIR (page 425)

• CONFIGURE_IMFS_DISABLE_READLINK (page 425)

• CONFIGURE_IMFS_DISABLE_RENAME (page 426)

• CONFIGURE_IMFS_DISABLE_RMNOD (page 426)

• CONFIGURE_IMFS_DISABLE_SYMLINK (page 426)

• CONFIGURE_IMFS_DISABLE_UNMOUNT (page 427)

• CONFIGURE_IMFS_DISABLE_UTIME (page 427)

• CONFIGURE_IMFS_ENABLE_MKFIFO (page 427)

24.14.1 CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

CONSTANT:
CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then a base filesystem and the configured filesystems
are initialized during system initialization.

DESCRIPTION:
In case this configuration option is defined, then no base filesystem is initialized during system
initialization and no filesystems are configured.

24.14. Filesystem Configuration 419

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.14

NOTES:
Filesystems shall be initialized to support file descriptor based device drivers and basic in-
put/output functions such as printf(). Filesystems can be disabled to reduce the memory
footprint of an application.

24.14.2 CONFIGURE_FILESYSTEM_ALL

CONSTANT:
CONFIGURE_FILESYSTEM_ALL

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the following configuration options will be
defined as well

• CONFIGURE_FILESYSTEM_DOSFS (page 420),

• CONFIGURE_FILESYSTEM_FTPFS (page 421),

• CONFIGURE_FILESYSTEM_IMFS (page 421),

• CONFIGURE_FILESYSTEM_JFFS2 (page 421),

• CONFIGURE_FILESYSTEM_NFS (page 422),

• CONFIGURE_FILESYSTEM_RFS (page 422), and

• CONFIGURE_FILESYSTEM_TFTPFS (page 422).

NOTES:
None.

24.14.3 CONFIGURE_FILESYSTEM_DOSFS

CONSTANT:
CONFIGURE_FILESYSTEM_DOSFS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the DOS (FAT) filesystem is registered, so
that instances of this filesystem can be mounted by the application.

NOTES:
This filesystem requires a Block Device Cache configuration, see CONFIG-
URE_APPLICATION_NEEDS_LIBBLOCK (page 431).

420 Chapter 24. Configuring a System

Chapter 24 Section 24.14 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.14.4 CONFIGURE_FILESYSTEM_FTPFS

CONSTANT:
CONFIGURE_FILESYSTEM_FTPFS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the FTP filesystem (FTP client) is registered,
so that instances of this filesystem can be mounted by the application.

NOTES:
None.

24.14.5 CONFIGURE_FILESYSTEM_IMFS

CONSTANT:
CONFIGURE_FILESYSTEM_IMFS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the In-Memory Filesystem (IMFS) is regis-
tered, so that instances of this filesystem can be mounted by the application.

NOTES:
Applications will rarely need this configuration option. This configuration option is intended
for test programs. You do not need to define this configuration option for the base filesystem
(also known as root filesystem).

24.14.6 CONFIGURE_FILESYSTEM_JFFS2

CONSTANT:
CONFIGURE_FILESYSTEM_JFFS2

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the JFFS2 filesystem is registered, so that
instances of this filesystem can be mounted by the application.

NOTES:
None.

24.14. Filesystem Configuration 421

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.14

24.14.7 CONFIGURE_FILESYSTEM_NFS

CONSTANT:
CONFIGURE_FILESYSTEM_NFS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Network Filesystem (NFS) client is reg-
istered, so that instances of this filesystem can be mounted by the application.

NOTES:
None.

24.14.8 CONFIGURE_FILESYSTEM_RFS

CONSTANT:
CONFIGURE_FILESYSTEM_RFS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the RTEMS Filesystem (RFS) is registered,
so that instances of this filesystem can be mounted by the application.

NOTES:
This filesystem requires a Block Device Cache configuration, see CONFIG-
URE_APPLICATION_NEEDS_LIBBLOCK (page 431).

24.14.9 CONFIGURE_FILESYSTEM_TFTPFS

CONSTANT:
CONFIGURE_FILESYSTEM_TFTPFS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the TFTP filesystem (TFTP client) is regis-
tered, so that instances of this filesystem can be mounted by the application.

NOTES:
None.

422 Chapter 24. Configuring a System

Chapter 24 Section 24.14 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.14.10 CONFIGURE_IMFS_DISABLE_CHMOD

CONSTANT:
CONFIGURE_IMFS_DISABLE_CHMOD

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports changing the mode of
files.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support changing the
mode of files (no support for chmod()).

NOTES:
None.

24.14.11 CONFIGURE_IMFS_DISABLE_CHOWN

CONSTANT:
CONFIGURE_IMFS_DISABLE_CHOWN

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports changing the ownership
of files.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support changing the
ownership of files (no support for chown()).

NOTES:
None.

24.14.12 CONFIGURE_IMFS_DISABLE_LINK

CONSTANT:
CONFIGURE_IMFS_DISABLE_LINK

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports hard links.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support hard links
(no support for link()).

NOTES:
None.

24.14. Filesystem Configuration 423

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.14

24.14.13 CONFIGURE_IMFS_DISABLE_MKNOD

CONSTANT:
CONFIGURE_IMFS_DISABLE_MKNOD

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports making files.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support making files
(no support for mknod()).

NOTES:
None.

24.14.14 CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE

CONSTANT:
CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports making device files.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support making
device files.

NOTES:
None.

24.14.15 CONFIGURE_IMFS_DISABLE_MKNOD_FILE

CONSTANT:
CONFIGURE_IMFS_DISABLE_MKNOD_FILE

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports making regular files.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support making
regular files.

NOTES:
None.

424 Chapter 24. Configuring a System

Chapter 24 Section 24.14 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.14.16 CONFIGURE_IMFS_DISABLE_MOUNT

CONSTANT:
CONFIGURE_IMFS_DISABLE_MOUNT

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports mounting other filesys-
tems.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support mounting
other filesystems (no support for mount()).

NOTES:
None.

24.14.17 CONFIGURE_IMFS_DISABLE_READDIR

CONSTANT:
CONFIGURE_IMFS_DISABLE_READDIR

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports reading directories.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support reading
directories (no support for readdir()). It is still possible to open files in a directory.

NOTES:
None.

24.14.18 CONFIGURE_IMFS_DISABLE_READLINK

CONSTANT:
CONFIGURE_IMFS_DISABLE_READLINK

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports reading symbolic links.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support reading
symbolic links (no support for readlink()).

NOTES:
None.

24.14. Filesystem Configuration 425

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.14

24.14.19 CONFIGURE_IMFS_DISABLE_RENAME

CONSTANT:
CONFIGURE_IMFS_DISABLE_RENAME

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports renaming files.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support renaming
files (no support for rename()).

NOTES:
None.

24.14.20 CONFIGURE_IMFS_DISABLE_RMNOD

CONSTANT:
CONFIGURE_IMFS_DISABLE_RMNOD

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports removing files.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support removing
files (no support for rmnod()).

NOTES:
None.

24.14.21 CONFIGURE_IMFS_DISABLE_SYMLINK

CONSTANT:
CONFIGURE_IMFS_DISABLE_SYMLINK

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports creating symbolic links.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support creating
symbolic links (no support for symlink()).

NOTES:
None.

426 Chapter 24. Configuring a System

Chapter 24 Section 24.14 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.14.22 CONFIGURE_IMFS_DISABLE_UNMOUNT

CONSTANT:
CONFIGURE_IMFS_DISABLE_UNMOUNT

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports unmounting other
filesystems.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support unmounting
other filesystems (no support for unmount()).

NOTES:
None.

24.14.23 CONFIGURE_IMFS_DISABLE_UTIME

CONSTANT:
CONFIGURE_IMFS_DISABLE_UTIME

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS supports changing file times.

DESCRIPTION:
In case this configuration option is defined, then the root IMFS does not support changing file
times (no support for utime()).

NOTES:
None.

24.14.24 CONFIGURE_IMFS_ENABLE_MKFIFO

CONSTANT:
CONFIGURE_IMFS_ENABLE_MKFIFO

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the root IMFS does not support making FIFOs
(no support for mkfifo()).

DESCRIPTION:
In case this configuration option is defined, then the root IMFS supports making FIFOs.

NOTES:
None.

24.14. Filesystem Configuration 427

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.14

24.14.25 CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK

CONSTANT:
CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 128.

VALUE CONSTRAINTS:
The value of this configuration option shall be an element of {16, 32, 64, 128, 256, 512}.

DESCRIPTION:
The value of this configuration option defines the block size for in-memory files managed by
the IMFS.

NOTES:
The configured block size has two impacts. The first is the average amount of unused memory
in the last block of each file. For example, when the block size is 512, on average one-half of
the last block of each file will remain unused and the memory is wasted. In contrast, when
the block size is 16, the average unused memory per file is only 8 bytes. However, it requires
more allocations for the same size file and thus more overhead per block for the dynamic
memory management.

Second, the block size has an impact on the maximum size file that can be stored in the IMFS.
With smaller block size, the maximum file size is correspondingly smaller. The following
shows the maximum file size possible based on the configured block size:

• when the block size is 16 bytes, the maximum file size is 1,328 bytes.

• when the block size is 32 bytes, the maximum file size is 18,656 bytes.

• when the block size is 64 bytes, the maximum file size is 279,488 bytes.

• when the block size is 128 bytes, the maximum file size is 4,329,344 bytes.

• when the block size is 256 bytes, the maximum file size is 68,173,568 bytes.

• when the block size is 512 bytes, the maximum file size is 1,082,195,456 bytes.

24.14.26 CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM

CONSTANT:
CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then an IMFS with a reduced feature set will be
the base filesystem (also known as root filesystem).

428 Chapter 24. Configuring a System

Chapter 24 Section 24.14 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

NOTES:
In case this configuration option is defined, then the following configuration options will be
defined as well

• CONFIGURE_IMFS_DISABLE_CHMOD (page 423),

• CONFIGURE_IMFS_DISABLE_CHOWN (page 423),

• CONFIGURE_IMFS_DISABLE_LINK (page 423),

• CONFIGURE_IMFS_DISABLE_MKNOD_FILE (page 424),

• CONFIGURE_IMFS_DISABLE_MOUNT (page 425),

• CONFIGURE_IMFS_DISABLE_READDIR (page 425),

• CONFIGURE_IMFS_DISABLE_READLINK (page 425),

• CONFIGURE_IMFS_DISABLE_RENAME (page 426),

• CONFIGURE_IMFS_DISABLE_RMNOD (page 426),

• CONFIGURE_IMFS_DISABLE_SYMLINK (page 426),

• CONFIGURE_IMFS_DISABLE_UTIME (page 427), and

• CONFIGURE_IMFS_DISABLE_UNMOUNT (page 427).

In addition, a simplified path evaluation is enabled. It allows only a look up of absolute paths.

This configuration of the IMFS is basically a device-only filesystem. It is comparable in func-
tionality to the pseudo-filesystem name space provided before RTEMS release 4.5.0.

24.14.27 CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

CONSTANT:
CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then an IMFS with a reduced feature set will be
the base filesystem (also known as root filesystem).

NOTES:
In case this configuration option is defined, then the following configuration options will be
defined as well

• CONFIGURE_IMFS_DISABLE_CHMOD (page 423),

• CONFIGURE_IMFS_DISABLE_CHOWN (page 423),

• CONFIGURE_IMFS_DISABLE_LINK (page 423),

• CONFIGURE_IMFS_DISABLE_READLINK (page 425),

• CONFIGURE_IMFS_DISABLE_RENAME (page 426),

• CONFIGURE_IMFS_DISABLE_SYMLINK (page 426),

24.14. Filesystem Configuration 429

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.14

• CONFIGURE_IMFS_DISABLE_UTIME (page 427), and

• CONFIGURE_IMFS_DISABLE_UNMOUNT (page 427).

430 Chapter 24. Configuring a System

Chapter 24 Section 24.15 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.15 Block Device Cache Configuration

This section describes configuration options related to the Block Device Cache (bdbuf).

24.15.1 CONFIGURE_APPLICATION_NEEDS_LIBBLOCK

CONSTANT:
CONFIGURE_APPLICATION_NEEDS_LIBBLOCK

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the Block Device Cache is initialized during
system initialization.

NOTES:
Each option of the Block Device Cache (bdbuf) configuration can be explicitly set by the user
with the configuration options below. The Block Device Cache is used for example by the RFS
and DOSFS filesystems.

24.15.2 CONFIGURE_BDBUF_BUFFER_MAX_SIZE

CONSTANT:
CONFIGURE_BDBUF_BUFFER_MAX_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 4096.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be an integral multiple of CONFIGURE_BDBUF_BUFFER_MIN_SIZE (page 431).

DESCRIPTION:
The value of this configuration option defines the maximum size of a buffer in bytes.

NOTES:
None.

24.15.3 CONFIGURE_BDBUF_BUFFER_MIN_SIZE

CONSTANT:
CONFIGURE_BDBUF_BUFFER_MIN_SIZE

OPTION TYPE:
This configuration option is an integer define.

24.15. Block Device Cache Configuration 431

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.15

DEFAULT VALUE:
The default value is 512.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the minimum size of a buffer in bytes.

NOTES:
None.

24.15.4 CONFIGURE_BDBUF_CACHE_MEMORY_SIZE

CONSTANT:
CONFIGURE_BDBUF_CACHE_MEMORY_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 32768.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to SIZE_MAX.

DESCRIPTION:
The value of this configuration option defines the size of the cache memory in bytes.

NOTES:
None.

24.15.5 CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS

CONSTANT:
CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the maximum blocks per read-ahead request.

NOTES:
A value of 0 disables the read-ahead task (default). The read-ahead task will issue speculative
read transfers if a sequential access pattern is detected. This can improve the performance on
some systems.

432 Chapter 24. Configuring a System

Chapter 24 Section 24.15 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.15.6 CONFIGURE_BDBUF_MAX_WRITE_BLOCKS

CONSTANT:
CONFIGURE_BDBUF_MAX_WRITE_BLOCKS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 16.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the maximum blocks per write request.

NOTES:
None.

24.15.7 CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY

CONSTANT:
CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 15.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid Classic API task priority. The set of valid
task priorities is scheduler-specific.

DESCRIPTION:
The value of this configuration option defines the read-ahead task priority.

NOTES:
None.

24.15.8 CONFIGURE_BDBUF_TASK_STACK_SIZE

CONSTANT:
CONFIGURE_BDBUF_TASK_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is RTEMS_MINIMUM_STACK_SIZE.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

24.15. Block Device Cache Configuration 433

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.15

• It shall be greater than or equal to CONFIGURE_MINIMUM_TASK_STACK_SIZE
(page 385).

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

• It shall be small enough so that the task stack space calculation carried out by <rtems/
confdefs.h> does not overflow an integer of type uintptr_t.

DESCRIPTION:
The value of this configuration option defines the task stack size of the Block Device Cache
tasks in bytes.

NOTES:
None.

24.15.9 CONFIGURE_SWAPOUT_BLOCK_HOLD

CONSTANT:
CONFIGURE_SWAPOUT_BLOCK_HOLD

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 1000.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the swapout task maximum block hold time in
milliseconds.

NOTES:
None.

24.15.10 CONFIGURE_SWAPOUT_SWAP_PERIOD

CONSTANT:
CONFIGURE_SWAPOUT_SWAP_PERIOD

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 250.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the swapout task swap period in milliseconds.

434 Chapter 24. Configuring a System

Chapter 24 Section 24.15 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

NOTES:
None.

24.15.11 CONFIGURE_SWAPOUT_TASK_PRIORITY

CONSTANT:
CONFIGURE_SWAPOUT_TASK_PRIORITY

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 15.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid Classic API task priority. The set of valid
task priorities is scheduler-specific.

DESCRIPTION:
The value of this configuration option defines the swapout task priority.

NOTES:
None.

24.15.12 CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY

CONSTANT:
CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 15.

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid Classic API task priority. The set of valid
task priorities is scheduler-specific.

DESCRIPTION:
The value of this configuration option defines the swapout worker task priority.

NOTES:
None.

24.15.13 CONFIGURE_SWAPOUT_WORKER_TASKS

CONSTANT:
CONFIGURE_SWAPOUT_WORKER_TASKS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

24.15. Block Device Cache Configuration 435

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.15

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the swapout worker task count.

NOTES:
None.

436 Chapter 24. Configuring a System

Chapter 24 Section 24.16 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.16 Task Stack Allocator Configuration

This section describes configuration options related to the task stack allocator. RTEMS allows
the application or BSP to define its own allocation and deallocation methods for task stacks. This
can be used to place task stacks in special areas of memory or to utilize a Memory Management
Unit so that stack overflows are detected in hardware.

24.16.1 CONFIGURE_TASK_STACK_ALLOCATOR

CONSTANT:
CONFIGURE_TASK_STACK_ALLOCATOR

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is _Workspace_Allocate, which indicates that task stacks will be allocated
from the RTEMS Workspace.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a valid function pointer of the type
void *(*allocate)(size_t).

DESCRIPTION:
The value of this configuration option initializes the stack allocator allocate handler.

NOTES:
A correctly configured system shall configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT (page 437)

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR (page 438)

24.16.2 CONFIGURE_TASK_STACK_ALLOCATOR_INIT

CONSTANT:
CONFIGURE_TASK_STACK_ALLOCATOR_INIT

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is NULL.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a valid function pointer of the type
void (*initialize)(size_t) or to NULL.

DESCRIPTION:
The value of this configuration option initializes the stack allocator initialization handler.

NOTES:
A correctly configured system shall configure the following to be consistent:

24.16. Task Stack Allocator Configuration 437

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.16

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR (page 437)

• CONFIGURE_TASK_STACK_DEALLOCATOR (page 438)

24.16.3 CONFIGURE_TASK_STACK_DEALLOCATOR

CONSTANT:
CONFIGURE_TASK_STACK_DEALLOCATOR

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is _Workspace_Free, which indicates that task stacks will be allocated from
the RTEMS Workspace.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a valid function pointer of the type
void (*deallocate)(void *).

DESCRIPTION:
The value of this configuration option initializes the stack allocator deallocate handler.

NOTES:
A correctly configured system shall configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT (page 437)

• CONFIGURE_TASK_STACK_ALLOCATOR (page 437)

• CONFIGURE_TASK_STACK_DEALLOCATOR

24.16.4 CONFIGURE_TASK_STACK_FROM_ALLOCATOR

CONSTANT:
CONFIGURE_TASK_STACK_FROM_ALLOCATOR

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is a macro which supports the system heap allocator.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a macro which accepts exactly one
parameter and returns an unsigned integer. The parameter will be an allocation size and the
macro shall return this size plus the overhead of the allocator to manage an allocation request
for this size.

DESCRIPTION:
The value of this configuration option is used to calculate the task stack space size.

NOTES:
This configuration option may be used if a custom task stack allocator is configured, see
CONFIGURE_TASK_STACK_ALLOCATOR (page 437).

438 Chapter 24. Configuring a System

Chapter 24 Section 24.16 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.16.5 CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE

CONSTANT:
CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the system is informed that the task stack
allocator does not use the RTEMS Workspace.

NOTES:
This configuration option may be used if a custom task stack allocator is configured, see
CONFIGURE_TASK_STACK_ALLOCATOR (page 437).

24.16. Task Stack Allocator Configuration 439

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.17

24.17 Idle Task Configuration

This section describes configuration options related to the idle tasks.

24.17.1 CONFIGURE_IDLE_TASK_BODY

CONSTANT:
CONFIGURE_IDLE_TASK_BODY

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
If BSP_IDLE_TASK_BODY (page 454) is defined, then this will be the default value, otherwise
the default value is _CPU_Thread_Idle_body.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a valid function pointer of the type
void *(*idle_body)(uintptr_t).

DESCRIPTION:
The value of this configuration option initializes the IDLE thread body.

NOTES:
IDLE threads shall not block. A blocking IDLE thread results in undefined system behaviour
because the scheduler assume that at least one ready thread exists.

IDLE threads can be used to initialize the application, see configuration option CONFIG-
URE_IDLE_TASK_INITIALIZES_APPLICATION (page 440).

24.17.2 CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

CONSTANT:
CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the user is assumed to provide one or more
initialization tasks.

DESCRIPTION:
This configuration option is defined to indicate that the user has configured no user ini-
tialization tasks or threads and that the user provided IDLE task will perform application
initialization and then transform itself into an IDLE task.

NOTES:
If you use this option be careful, the user IDLE task cannot block at all during the initialization
sequence. Further, once application initialization is complete, it shall make itself preemptible
and enter an idle body loop.

The IDLE task shall run at the lowest priority of all tasks in the system.

440 Chapter 24. Configuring a System

Chapter 24 Section 24.17 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

If this configuration option is defined, then it is mandatory to configure a user IDLE task
with the CONFIGURE_IDLE_TASK_BODY (page 440) configuration option, otherwise a com-
pile time error in the configuration file will occur.

The application shall define exactly one of the following configuration options

• CONFIGURE_RTEMS_INIT_TASKS_TABLE (page 407),

• CONFIGURE_POSIX_INIT_THREAD_TABLE (page 416), or

• CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

otherwise a compile time error in the configuration file will occur.

24.17.3 CONFIGURE_IDLE_TASK_STACK_SIZE

CONSTANT:
CONFIGURE_IDLE_TASK_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 385).

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to a BSP-specific and application-specific minimum value.

• It shall be small enough so that the IDLE task stack area calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type size_t.

DESCRIPTION:
The value of this configuration option defines the task stack size for an IDLE task.

NOTES:
In SMP configurations, there is one IDLE task per configured processor, see CONFIG-
URE_MAXIMUM_PROCESSORS (page 381).

24.17. Idle Task Configuration 441

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.18

24.18 General Scheduler Configuration

This section describes configuration options related to selecting a scheduling algorithm for an
application. A scheduler configuration is optional and only necessary in very specific circum-
stances. A normal application configuration does not need any of the configuration options
described in this section.

By default, the Deterministic Priority Scheduler (page 44) algorithm is used in uniprocessor
configurations. In case SMP is enabled and the configured maximum processors (CONFIG-
URE_MAXIMUM_PROCESSORS (page 381)) is greater than one, then the Earliest Deadline First
(EDF) SMP Scheduler (page 46) is selected as the default scheduler algorithm.

For the schedulers built into RTEMS (page 41), the configuration is straightforward. All that is
required is to define the configuration option which specifies which scheduler you want for in
your application.

The pluggable scheduler interface also enables the user to provide their own scheduling algo-
rithm. If you choose to do this, you must define multiple configuration option.

24.18.1 CONFIGURE_CBS_MAXIMUM_SERVERS

CONSTANT:
CONFIGURE_CBS_MAXIMUM_SERVERS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is CONFIGURE_MAXIMUM_TASKS (page 402).

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to SIZE_MAX.

• It shall be less than or equal to a BSP-specific and application-specific value which de-
pends on the size of the memory available to the application.

DESCRIPTION:
The value of this configuration option defines the maximum number Constant Bandwidth
Servers that can be concurrently active.

NOTES:
This configuration option is only evaluated if the configuration option CONFIG-
URE_SCHEDULER_CBS (page 444) is defined.

24.18.2 CONFIGURE_MAXIMUM_PRIORITY

CONSTANT:
CONFIGURE_MAXIMUM_PRIORITY

OPTION TYPE:
This configuration option is an integer define.

442 Chapter 24. Configuring a System

Chapter 24 Section 24.18 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

DEFAULT VALUE:
The default value is 255.

VALUE CONSTRAINTS:
The value of this configuration option shall be an element of {3, 7, 31, 63, 127, 255}.

DESCRIPTION:
For the following schedulers

• Deterministic Priority Scheduler (page 44), which is the default in uniprocessor con-
figurations and can be configured through the CONFIGURE_SCHEDULER_PRIORITY
(page 446) configuration option,

• Deterministic Priority SMP Scheduler (page 46) which can be configured through the
CONFIGURE_SCHEDULER_PRIORITY_SMP (page 447) configuration option, and

• Arbitrary Processor Affinity Priority SMP Scheduler (page 46) which can be configured
through the CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP (page 446) configura-
tion option

this configuration option specifies the maximum numeric priority of any task for these sched-
ulers and one less that the number of priority levels for these schedulers. For all other sched-
ulers provided by RTEMS, this configuration option has no effect.

NOTES:
The numerically greatest priority is the logically lowest priority in the system and will thus be
used by the IDLE task.

Priority zero is reserved for internal use by RTEMS and is not available to applications.

Reducing the number of priorities through this configuration option reduces the amount of
memory allocated by the schedulers listed above. These schedulers use a chain control struc-
ture per priority and this structure consists of three pointers. On a 32-bit architecture, the
allocated memory is 12 bytes * (CONFIGURE_MAXIMUM_PRIORITY + 1), e.g. 3072 bytes for 256
priority levels (default), 48 bytes for 4 priority levels (CONFIGURE_MAXIMUM_PRIORITY == 3).

The default value is 255, because RTEMS shall support 256 priority levels to be compliant
with various standards. These priorities range from 0 to 255.

24.18.3 CONFIGURE_SCHEDULER_ASSIGNMENTS

CONSTANT:
CONFIGURE_SCHEDULER_ASSIGNMENTS

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value of this configuration option is computed so that the default scheduler is
assigned to each configured processor (up to 32).

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be a list of the following macros:

– RTEMS_SCHEDULER_ASSIGN(processor_index, attributes)

– RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER

24.18. General Scheduler Configuration 443

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.18

• It shall be a list of exactly CONFIGURE_MAXIMUM_PROCESSORS (page 381) elements.

DESCRIPTION:
The value of this configuration option is used to initialize the initial scheduler to processor
assignments.

NOTES:
This configuration option is only evaluated in SMP configurations.

This is an advanced configuration option, see Clustered Scheduler Configuration (page 450).

24.18.4 CONFIGURE_SCHEDULER_CBS

CONSTANT:
CONFIGURE_SCHEDULER_CBS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Constant Bandwidth Server (CBS) Scheduler
(page 45) algorithm is made available to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for exactly one processor.

24.18.5 CONFIGURE_SCHEDULER_EDF

CONSTANT:
CONFIGURE_SCHEDULER_EDF

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Earliest Deadline First (EDF) Scheduler
(page 44) algorithm is made available to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for exactly one processor.

444 Chapter 24. Configuring a System

Chapter 24 Section 24.18 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.18.6 CONFIGURE_SCHEDULER_EDF_SMP

CONSTANT:
CONFIGURE_SCHEDULER_EDF_SMP

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Earliest Deadline First (EDF) SMP Scheduler
(page 46) algorithm is made available to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for up to 32 processors.

This scheduler algorithm is the default in SMP configurations if CONFIG-
URE_MAXIMUM_PROCESSORS (page 381) is greater than one.

24.18.7 CONFIGURE_SCHEDULER_NAME

CONSTANT:
CONFIGURE_SCHEDULER_NAME

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is

• "MEDF" for the EDF SMP Scheduler (page 46),

• "MPA " for the Arbitrary Processor Affinity Priority SMP Scheduler (page 46),

• "MPD " for the Deterministic Priority SMP Scheduler (page 46),

• "MPS " for the Simple Priority SMP Scheduler (page 46),

• "UCBS" for the Uniprocessor CBS Scheduler (page 45),

• "UEDF" for the Uniprocessor EDF Scheduler (page 44),

• "UPD " for the Uniprocessor Deterministic Priority Scheduler (page 44), and

• "UPS " for the Uniprocessor Simple Priority Scheduler (page 44).

VALUE CONSTRAINTS:
The value of this configuration option shall be a valid integer of type rtems_name.

DESCRIPTION:
The value of this configuration option defines the name of the default scheduler.

24.18. General Scheduler Configuration 445

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.18

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

Schedulers can be identified via c:func:rtems_scheduler_ident.

Use rtems_build_name() to define the scheduler name.

24.18.8 CONFIGURE_SCHEDULER_PRIORITY

CONSTANT:
CONFIGURE_SCHEDULER_PRIORITY

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Deterministic Priority Scheduler (page 44)
algorithm is made available to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for exactly one processor.

This scheduler algorithm is the default when CONFIGURE_MAXIMUM_PROCESSORS
(page 381) is exactly one.

The memory allocated for this scheduler depends on the CONFIGURE_MAXIMUM_PRIORITY
(page 442) configuration option.

24.18.9 CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP

CONSTANT:
CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Arbitrary Processor Affinity SMP Scheduler
(page 46) algorithm is made available to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

446 Chapter 24. Configuring a System

Chapter 24 Section 24.18 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for up to 32 processors.

The memory allocated for this scheduler depends on the CONFIGURE_MAXIMUM_PRIORITY
(page 442) configuration option.

24.18.10 CONFIGURE_SCHEDULER_PRIORITY_SMP

CONSTANT:
CONFIGURE_SCHEDULER_PRIORITY_SMP

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Deterministic Priority SMP Scheduler
(page 46) algorithm is made available to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for up to 32 processors.

The memory allocated for this scheduler depends on the CONFIGURE_MAXIMUM_PRIORITY
(page 442) configuration option.

24.18.11 CONFIGURE_SCHEDULER_SIMPLE

CONSTANT:
CONFIGURE_SCHEDULER_SIMPLE

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Simple Priority Scheduler (page 44) algorithm
is made available to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for exactly one processor.

24.18. General Scheduler Configuration 447

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.18

24.18.12 CONFIGURE_SCHEDULER_SIMPLE_SMP

CONSTANT:
CONFIGURE_SCHEDULER_SIMPLE_SMP

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Simple Priority SMP Scheduler (page 46)
algorithm is made available to the application. application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

In case no explicit clustered scheduler configuration (page 450) is present, then it is used as
the scheduler for up to 32 processors.

24.18.13 CONFIGURE_SCHEDULER_STRONG_APA

CONSTANT:
CONFIGURE_SCHEDULER_STRONG_APA

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then Strong APA algorithm is made available to
the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

This scheduler algorithm is only available when RTEMS is built with SMP support enabled.

This scheduler algorithm is not correctly implemented. Do not use it.

24.18.14 CONFIGURE_SCHEDULER_USER

CONSTANT:
CONFIGURE_SCHEDULER_USER

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

448 Chapter 24. Configuring a System

Chapter 24 Section 24.18 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

DESCRIPTION:
In case this configuration option is defined, then the user shall provide a scheduler algorithm
to the application.

NOTES:
This scheduler configuration option is an advanced configuration option. Think twice before
you use it.

RTEMS allows the application to provide its own task/thread scheduling algorithm. In order
to do this, one shall define CONFIGURE_SCHEDULER_USER to indicate the application provides
its own scheduling algorithm. If CONFIGURE_SCHEDULER_USER is defined then the following
additional macros shall be defined:

• CONFIGURE_SCHEDULER shall be defined to a static definition of the scheduler data struc-
tures of the user scheduler.

• CONFIGURE_SCHEDULER_TABLE_ENTRIES shall be defined to a scheduler table entry initial-
izer for the user scheduler.

• CONFIGURE_SCHEDULER_USER_PER_THREAD shall be defined to the type of the per-thread
information of the user scheduler.

At this time, the mechanics and requirements for writing a new scheduler are evolving and
not fully documented. It is recommended that you look at the existing Deterministic Priority
Scheduler in cpukit/score/src/schedulerpriority*.c for guidance. For guidance on the
configuration macros, please examine cpukit/sapi/include/confdefs.h for how these are
defined for the Deterministic Priority Scheduler.

24.18. General Scheduler Configuration 449

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.19

24.19 Clustered Scheduler Configuration

This section describes configuration options related to clustered scheduling. A clustered sched-
uler configuration is optional. It is an advanced configuration area and only necessary in specific
circumstances.

Clustered scheduling helps to control the worst-case latencies in a multiprocessor system (SMP).
The goal is to reduce the amount of shared state in the system and thus prevention of lock
contention. Modern multiprocessor systems tend to have several layers of data and instruction
caches. With clustered scheduling it is possible to honour the cache topology of a system and
thus avoid expensive cache synchronization traffic.

We have clustered scheduling in case the set of processors of a system is partitioned into non-
empty pairwise-disjoint subsets. These subsets are called clusters. Clusters with a cardinality of
one are partitions. Each cluster is owned by exactly one scheduler.

In order to use clustered scheduling the application designer has to answer two questions.

1. How is the set of processors partitioned into clusters?

2. Which scheduler algorithm is used for which cluster?

The schedulers are statically configured.

24.19.1 Configuration Step 1 - Scheduler Algorithms

Firstly, the application must select which scheduling algorithms are available with the following
defines

• CONFIGURE_SCHEDULER_EDF_SMP (page 445),

• CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP (page 446),

• CONFIGURE_SCHEDULER_PRIORITY_SMP (page 447), and

• CONFIGURE_SCHEDULER_SIMPLE_SMP (page 448).

This is necessary to calculate the per-thread overhead introduced by the scheduler algorithms.
After these definitions the configuration file must #include <rtems/scheduler.h> to have access
to scheduler-specific configuration macros.

It is possible to make more than one scheduler algorithm available to the application. For
example a Simple Priority SMP Scheduler (page 46) could be used in a partition for low latency
tasks in addition to an EDF SMP Scheduler (page 46) for a general-purpose cluster. Since the
per-thread overhead depends on the scheduler algorithm only the scheduler algorithms used by
the application should be configured.

24.19.2 Configuration Step 2 - Schedulers

Each scheduler needs some data structures. Use the following macros to create the scheduler
data structures for a particular scheduler identified in the configuration by name.

• RTEMS_SCHEDULER_EDF_SMP(name),

• RTEMS_SCHEDULER_PRIORITY_AFFINITY_SMP(name, prio_count),

• RTEMS_SCHEDULER_PRIORITY_SMP(name, prio_count), and

450 Chapter 24. Configuring a System

Chapter 24 Section 24.19 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• RTEMS_SCHEDULER_SIMPLE_SMP(name).

The name parameter is used as part of a designator for scheduler-specific data structures, so the
usual C/C++ designator rules apply. This name is not the scheduler object name. Additional
parameters are scheduler-specific.

24.19.3 Configuration Step 3 - Scheduler Table

The schedulers are registered in the system via the scheduler table. To populate the scheduler
table define CONFIGURE_SCHEDULER_TABLE_ENTRIES to a list of the following scheduler table entry
initializers

• RTEMS_SCHEDULER_TABLE_EDF_SMP(name, obj_name),

• RTEMS_SCHEDULER_TABLE_PRIORITY_AFFINITY_SMP(name, obj_name),

• RTEMS_SCHEDULER_TABLE_PRIORITY_SMP(name, obj_name), and

• RTEMS_SCHEDULER_TABLE_SIMPLE_SMP(name, obj_name).

The name parameter must correspond to the parameter defining the scheduler data structures
of configuration step 2. The obj_name determines the scheduler object name and can be used
in rtems_scheduler_ident() (page 54) to get the scheduler object identifier. The scheduler index
is defined by the index of the scheduler table. It is a configuration error to add a scheduler
multiple times to the scheduler table.

24.19.4 Configuration Step 4 - Processor to Scheduler Assignment

The last step is to define which processor uses which scheduler. For this purpose a sched-
uler assignment table must be defined. The entry count of this table must be equal to the
configured maximum processors (CONFIGURE_MAXIMUM_PROCESSORS (page 381)). A pro-
cessor assignment to a scheduler can be optional or mandatory. The boot processor must
have a scheduler assigned. In case the system needs more mandatory processors than avail-
able then a fatal run-time error will occur. To specify the scheduler assignments define
CONFIGURE_SCHEDULER_ASSIGNMENTS to a list of

• RTEMS_SCHEDULER_ASSIGN(scheduler_index, attr) and

• RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER

macros. The scheduler_index parameter must be a valid index into the scheduler table defined
by configuration step 3. The attr parameter defines the scheduler assignment attributes. By de-
fault, a scheduler assignment to a processor is optional. For the scheduler assignment attribute
use one of the mutually exclusive variants

• RTEMS_SCHEDULER_ASSIGN_DEFAULT,

• RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY, and

• RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL.

It is possible to add/remove processors to/from schedulers at run-time, see
rtems_scheduler_add_processor() (page 63) and rtems_scheduler_remove_processor() (page 64).

24.19. Clustered Scheduler Configuration 451

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.19

24.19.5 Configuration Example

The following example shows a scheduler configuration for a hypothetical product using two
chip variants. One variant has four processors which is used for the normal product line and
another provides eight processors for the high-performance product line. The first processor
performs hard-real time control of actuators and sensors. The second processor is not used by
RTEMS at all and runs a Linux instance to provide a graphical user interface. The additional
processors are used for a worker thread pool to perform data processing operations.

The processors managed by RTEMS use two Deterministic Priority SMP schedulers capable of
dealing with 256 priority levels. The scheduler with index zero has the name "IO ". The
scheduler with index one has the name "WORK". The scheduler assignments of the first, third
and fourth processor are mandatory, so the system must have at least four processors, otherwise
a fatal run-time error will occur during system startup. The processor assignments for the fifth
up to the eighth processor are optional so that the same application can be used for the normal
and high-performance product lines. The second processor has no scheduler assigned and runs
Linux. A hypervisor will ensure that the two systems cannot interfere in an undesirable way.

1 #define CONFIGURE_MAXIMUM_PROCESSORS 8
2 #define CONFIGURE_MAXIMUM_PRIORITY 255
3

4 /* Configuration Step 1 - Scheduler Algorithms */
5 #define CONFIGURE_SCHEDULER_PRIORITY_SMP
6 #include <rtems/scheduler.h>
7

8 /* Configuration Step 2 - Schedulers */
9 RTEMS_SCHEDULER_PRIORITY_SMP(io, CONFIGURE_MAXIMUM_PRIORITY + 1);

10 RTEMS_SCHEDULER_PRIORITY_SMP(work, CONFIGURE_MAXIMUM_PRIORITY + 1);
11

12 /* Configuration Step 3 - Scheduler Table */
13 #define CONFIGURE_SCHEDULER_TABLE_ENTRIES \
14 RTEMS_SCHEDULER_TABLE_PRIORITY_SMP(\
15 io, \
16 rtems_build_name('I', 'O', ' ', ' ') \
17), \
18 RTEMS_SCHEDULER_TABLE_PRIORITY_SMP(\
19 work, \
20 rtems_build_name('W', 'O', 'R', 'K') \
21)
22

23 /* Configuration Step 4 - Processor to Scheduler Assignment */
24 #define CONFIGURE_SCHEDULER_ASSIGNMENTS \
25 RTEMS_SCHEDULER_ASSIGN(0, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
26 RTEMS_SCHEDULER_ASSIGN_NO_SCHEDULER, \
27 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
28 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_MANDATORY), \
29 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \
30 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \
31 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL), \
32 RTEMS_SCHEDULER_ASSIGN(1, RTEMS_SCHEDULER_ASSIGN_PROCESSOR_OPTIONAL)

24.19.6 Configuration Errors

In case one of the scheduler indices in CONFIGURE_SCHEDULER_ASSIGNMENTS is invalid a link-time
error will occur with an undefined reference to RTEMS_SCHEDULER_INVALID_INDEX.

452 Chapter 24. Configuring a System

Chapter 24 Section 24.19 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

Some fatal errors may occur in case of scheduler configuration inconsistencies or a lack of
processors on the system. The fatal source is RTEMS_FATAL_SOURCE_SMP.

• SMP_FATAL_BOOT_PROCESSOR_NOT_ASSIGNED_TO_SCHEDULER - the boot processor must have
a scheduler assigned.

• SMP_FATAL_MANDATORY_PROCESSOR_NOT_PRESENT - there exists a mandatory processor be-
yond the range of physically or virtually available processors. The processor demand
must be reduced for this system.

• SMP_FATAL_START_OF_MANDATORY_PROCESSOR_FAILED - the start of a mandatory pro-
cessor failed during system initialization. The system may not have this proces-
sor at all or it could be a problem with a boot loader for example. Check the
CONFIGURE_SCHEDULER_ASSIGNMENTS definition.

• SMP_FATAL_MULTITASKING_START_ON_UNASSIGNED_PROCESSOR - it is not allowed to start
multitasking on a processor with no scheduler assigned.

24.19. Clustered Scheduler Configuration 453

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.20

24.20 BSP Related Configuration Options

This section describes configuration options related to the BSP. Some configuration options
may have a BSP-specific setting which is defined by <bsp.h>. The BSP-specific settings can be
disabled by the CONFIGURE_DISABLE_BSP_SETTINGS (page 456) configuration option.

24.20.1 BSP_IDLE_TASK_BODY

CONSTANT:
BSP_IDLE_TASK_BODY

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is BSP-specific.

VALUE CONSTRAINTS:
The value of this configuration option shall be defined to a valid function pointer of the type
void *(*idle_body)(uintptr_t).

DESCRIPTION:
If

• this configuration option is defined by the BSP

• and CONFIGURE_DISABLE_BSP_SETTINGS (page 456) is undefined,

then the value of this configuration option defines the default value of CONFIG-
URE_IDLE_TASK_BODY (page 440).

NOTES:
As it has knowledge of the specific CPU model, system controller logic, and peripheral buses,
a BSP-specific IDLE task may be capable of turning components off to save power during
extended periods of no task activity.

24.20.2 BSP_IDLE_TASK_STACK_SIZE

CONSTANT:
BSP_IDLE_TASK_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is BSP-specific.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to a BSP-specific and application-specific minimum value.

• It shall be small enough so that the IDLE task stack area calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type size_t.

DESCRIPTION:
If

454 Chapter 24. Configuring a System

Chapter 24 Section 24.20 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• this configuration option is defined by the BSP

• and CONFIGURE_DISABLE_BSP_SETTINGS (page 456) is undefined,

then the value of this configuration option defines the default value of CONFIG-
URE_IDLE_TASK_SIZE.

NOTES:
None.

24.20.3 BSP_INITIAL_EXTENSION

CONSTANT:
BSP_INITIAL_EXTENSION

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is BSP-specific.

VALUE CONSTRAINTS:
The value of this configuration option shall be a list of initializers for structures of type
rtems_extensions_table.

DESCRIPTION:
If

• this configuration option is defined by the BSP

• and CONFIGURE_DISABLE_BSP_SETTINGS (page 456) is undefined,

then the value of this configuration option is used to initialize the table of initial user exten-
sions.

NOTES:
The value of this configuration option is placed after the entries of all other initial user exten-
sions.

24.20.4 BSP_INTERRUPT_STACK_SIZE

CONSTANT:
BSP_INTERRUPT_STACK_SIZE

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is BSP-specific.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to a BSP-specific and application-specific minimum value.

• It shall be small enough so that the interrupt stack area calculation carried out by
<rtems/confdefs.h> does not overflow an integer of type size_t.

24.20. BSP Related Configuration Options 455

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.20

• It shall be aligned according to CPU_INTERRUPT_STACK_ALIGNMENT.

DESCRIPTION:
If

• this configuration option is defined by the BSP

• and CONFIGURE_DISABLE_BSP_SETTINGS (page 456) is undefined,

then the value of this configuration option defines the default value of CONFIG-
URE_INTERRUPT_STACK_SIZE (page 380).

NOTES:
None.

24.20.5 CONFIGURE_BSP_PREREQUISITE_DRIVERS

CONSTANT:
CONFIGURE_BSP_PREREQUISITE_DRIVERS

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is BSP-specific.

VALUE CONSTRAINTS:
The value of this configuration option shall be a list of initializers for structures of type
rtems_extensions_table.

DESCRIPTION:
If

• this configuration option is defined by the BSP

• and CONFIGURE_DISABLE_BSP_SETTINGS (page 456) is undefined,

then the value of this configuration option is used to initialize the table of initial user exten-
sions.

NOTES:
The value of this configuration option is placed before the entries of all other initial user
extensions (including CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS (page 396)).

24.20.6 CONFIGURE_DISABLE_BSP_SETTINGS

CONSTANT:
CONFIGURE_DISABLE_BSP_SETTINGS

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
In case this configuration option is defined, then the following BSP related configuration
options are undefined:

456 Chapter 24. Configuring a System

Chapter 24 Section 24.20 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• BSP_IDLE_TASK_BODY (page 454)

• BSP_IDLE_TASK_STACK_SIZE (page 454)

• BSP_INITIAL_EXTENSION (page 455)

• BSP_INTERRUPT_STACK_SIZE (page 455)

• CONFIGURE_BSP_PREREQUISITE_DRIVERS (page 456)

• CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK (page 457)

NOTES:
None.

24.20.7 CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK

CONSTANT:
CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the described feature is not enabled.

DESCRIPTION:
If

• this configuration option is defined by the BSP

• and CONFIGURE_DISABLE_BSP_SETTINGS (page 456) is undefined,

then not all memory is made available to the C Program Heap immediately at system initial-
ization time. When malloc() or other standard memory allocation functions are unable to
allocate memory, they will call the BSP supplied sbrk() function to obtain more memory.

NOTES:
This option should not be defined by the application. Only the BSP knows how it allocates
memory to the C Program Heap.

24.20. BSP Related Configuration Options 457

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.21

24.21 Multiprocessing Configuration

This section describes multiprocessing related configuration options. The options are only used
if RTEMS was built with the --enable-multiprocessing build configuration option. Addition-
ally, this class of configuration options are only applicable if the configuration option CONFIG-
URE_MP_APPLICATION (page 458) is defined. The multiprocessing (MPCI) support must not
be confused with the SMP support.

24.21.1 CONFIGURE_MP_APPLICATION

CONSTANT:
CONFIGURE_MP_APPLICATION

OPTION TYPE:
This configuration option is a boolean feature define.

DEFAULT CONFIGURATION:
If this configuration option is undefined, then the multiprocessing services are not initialized.

DESCRIPTION:
This configuration option is defined to indicate that the application intends to be part of a
multiprocessing configuration. Additional configuration options are assumed to be provided.

NOTES:
This configuration option shall be undefined if the multiprocessing support is not enabled
(e.g. RTEMS was built without the --enable-multiprocessing build configuration option).
Otherwise a compile time error in the configuration file will occur.

24.21.2 CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK

CONSTANT:
CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 0.

VALUE CONSTRAINTS:
The value of this configuration option shall satisfy all of the following constraints:

• It shall be greater than or equal to 0.

• It shall be less than or equal to UINT32_MAX.

• It shall be small enough so that the MPCI receive server stack area calculation carried
out by <rtems/confdefs.h> does not overflow an integer of type size_t.

DESCRIPTION:
The value of this configuration option defines the number of bytes the applications wishes to
add to the MPCI task stack on top of CONFIGURE_MINIMUM_TASK_STACK_SIZE (page 385).

NOTES:
This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 458) is
defined.

458 Chapter 24. Configuring a System

Chapter 24 Section 24.21 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.21.3 CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS

CONSTANT:
CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 32.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the maximum number of concurrently active
global objects in a multiprocessor system.

NOTES:
This value corresponds to the total number of objects which can be created with the
RTEMS_GLOBAL attribute.

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 458) is
defined.

24.21.4 CONFIGURE_MP_MAXIMUM_NODES

CONSTANT:
CONFIGURE_MP_MAXIMUM_NODES

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is 2.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the maximum number of nodes in a multipro-
cessor system.

NOTES:
This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 458) is
defined.

24.21.5 CONFIGURE_MP_MAXIMUM_PROXIES

CONSTANT:
CONFIGURE_MP_MAXIMUM_PROXIES

OPTION TYPE:
This configuration option is an integer define.

24.21. Multiprocessing Configuration 459

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.21

DEFAULT VALUE:
The default value is 32.

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the maximum number of concurrently active
thread/task proxies on this node in a multiprocessor system.

NOTES:
Since a proxy is used to represent a remote task/thread which is blocking on this node. This
configuration parameter reflects the maximum number of remote tasks/threads which can be
blocked on objects on this node, see Proxies (page 509).

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 458) is
defined.

24.21.6 CONFIGURE_MP_MPCI_TABLE_POINTER

CONSTANT:
CONFIGURE_MP_MPCI_TABLE_POINTER

OPTION TYPE:
This configuration option is an initializer define.

DEFAULT VALUE:
The default value is &MPCI_table.

VALUE CONSTRAINTS:
The value of this configuration option shall be a pointer to rtems_mpci_table.

DESCRIPTION:
The value of this configuration option initializes the MPCI Configuration Table.

NOTES:
RTEMS provides a Shared Memory MPCI Device Driver which can be used on any Multipro-
cessor System assuming the BSP provides the proper set of supporting methods.

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 458) is
defined.

24.21.7 CONFIGURE_MP_NODE_NUMBER

CONSTANT:
CONFIGURE_MP_NODE_NUMBER

OPTION TYPE:
This configuration option is an integer define.

DEFAULT VALUE:
The default value is NODE_NUMBER.

460 Chapter 24. Configuring a System

Chapter 24 Section 24.21 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

VALUE CONSTRAINTS:
The value of this configuration option shall be greater than or equal to 0 and less than or
equal to UINT32_MAX.

DESCRIPTION:
The value of this configuration option defines the node number of this node in a multiproces-
sor system.

NOTES:
In the RTEMS Multiprocessing Test Suite, the node number is derived from the Makefile
variable NODE_NUMBER. The same code is compiled with the NODE_NUMBER set to different values.
The test programs behave differently based upon their node number.

This configuration option is only evaluated if CONFIGURE_MP_APPLICATION (page 458) is
defined.

24.21. Multiprocessing Configuration 461

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.22

24.22 PCI Library Configuration

This section defines the system configuration parameters supported by rtems/confdefs.h re-
lated to configuring the PCI Library for RTEMS.

The PCI Library startup behaviour can be configured in four different ways depending on how
CONFIGURE_PCI_CONFIG_LIB is defined:

PCI_LIB_AUTO
Used to enable the PCI auto configuration software. PCI will be automatically probed, PCI
buses enumerated, all devices and bridges will be initialized using Plug & Play software rou-
tines. The PCI device tree will be populated based on the PCI devices found in the system, PCI
devices will be configured by allocating address region resources automatically in PCI space
according to the BSP or host bridge driver set up.

PCI_LIB_READ
Used to enable the PCI read configuration software. The current PCI configuration is read
to create the RAM representation (the PCI device tree) of the PCI devices present. PCI de-
vices are assumed to already have been initialized and PCI buses enumerated, it is therefore
required that a BIOS or a boot loader has set up configuration space prior to booting into
RTEMS.

PCI_LIB_STATIC
Used to enable the PCI static configuration software. The user provides a PCI tree with
information how all PCI devices are to be configured at compile time by linking in a custom
struct pci_bus pci_hb tree. The static PCI library will not probe PCI for devices, instead it
will assume that all devices defined by the user are present, it will enumerate the PCI buses
and configure all PCI devices in static configuration accordingly. Since probe and allocation
software is not needed the startup is faster, has smaller footprint and does not require dynamic
memory allocation.

PCI_LIB_PERIPHERAL
Used to enable the PCI peripheral configuration. It is similar to PCI_LIB_STATIC, but it will
never write the configuration to the PCI devices since PCI peripherals are not allowed to
access PCI configuration space.

Note that selecting PCI_LIB_STATIC or PCI_LIB_PERIPHERAL but not defining pci_hb will reuslt
in link errors. Note also that in these modes Plug & Play is not performed.

462 Chapter 24. Configuring a System

Chapter 24 Section 24.23 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.23 Ada Configuration

The GNU Ada runtime library (libgnarl) uses threads, mutexes, condition variables, and signals
from the pthreads API. It uses also thread-local storage for the Ada Task Control Block (ATCB).
From these resources only the threads need to be accounted for in the configuration. You
should include the Ada tasks in your setting of the CONFIGURE_MAXIMUM_POSIX_THREADS
(page 412) configuration option.

24.23. Ada Configuration 463

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.24

24.24 Obsolete Configuration Options

24.24.1 CONFIGURE_BDBUF_BUFFER_COUNT

This configuration option was introduced in RTEMS 4.7.0 and is obsolete since RTEMS 4.10.0.

24.24.2 CONFIGURE_BDBUF_BUFFER_SIZE

This configuration option was introduced in RTEMS 4.7.0 and is obsolete since RTEMS 4.10.0.

24.24.3 CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS

This configuration option was introduced in RTEMS 4.9.0 and is obsolete since RTEMS 5.1.

24.24.4 CONFIGURE_ENABLE_GO

This configuration option is obsolete since RTEMS 5.1.

24.24.5 CONFIGURE_GNAT_RTEMS

This configuration option was present in all RTEMS versions since 1997 and is obsolete since
RTEMS 5.1. See also Ada Configuration (page 463).

24.24.6 CONFIGURE_HAS_OWN_CONFIGURATION_TABLE

This configuration option is obsolete since RTEMS 5.1.

24.24.7 CONFIGURE_HAS_OWN_BDBUF_TABLE

This configuration option was introduced in RTEMS 4.7.0 and is obsolete since RTEMS 4.10.0.

24.24.8 CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1.

24.24.9 CONFIGURE_HAS_OWN_INIT_TASK_TABLE

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1. If you used this configuration option or you think that there should be a way
to configure more than one Classic API initialization task, then please ask on the Users Mailing
List.

464 Chapter 24. Configuring a System

https://lists.rtems.org/mailman/listinfo/users/
https://lists.rtems.org/mailman/listinfo/users/

Chapter 24 Section 24.24 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

24.24.10 CONFIGURE_HAS_OWN_MOUNT_TABLE

This configuration option is obsolete since RTEMS 5.1.

24.24.11 CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE

This configuration option is obsolete since RTEMS 5.1.

24.24.12 CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS

This configuration option was present in all RTEMS versions since 1998 and is obsolete since
RTEMS 5.1. See also CONFIGURE_MAXIMUM_FILE_DESCRIPTORS (page 381).

24.24.13 CONFIGURE_MAXIMUM_ADA_TASKS

This configuration option was present in all RTEMS versions since 1997 and is obsolete since
RTEMS 5.1. See also Ada Configuration (page 463).

24.24.14 CONFIGURE_MAXIMUM_DEVICES

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1.

24.24.15 CONFIGURE_MAXIMUM_FAKE_ADA_TASKS

This configuration option was present in all RTEMS versions since 1997 and is obsolete since
RTEMS 5.1. See also Ada Configuration (page 463).

24.24.16 CONFIGURE_MAXIMUM_GO_CHANNELS

This configuration option is obsolete since RTEMS 5.1.

24.24.17 CONFIGURE_MAXIMUM_GOROUTINES

This configuration option is obsolete since RTEMS 5.1.

24.24.18 CONFIGURE_MAXIMUM_MRSP_SEMAPHORES

This configuration option is obsolete since RTEMS 5.1.

24.24.19 CONFIGURE_NUMBER_OF_TERMIOS_PORTS

This configuration option is obsolete since RTEMS 5.1.

24.24. Obsolete Configuration Options 465

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 24 Section 24.24

24.24.20 CONFIGURE_MAXIMUM_POSIX_BARRIERS

This configuration option is obsolete since RTEMS 5.1.

24.24.21 CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES

This configuration option is obsolete since RTEMS 5.1.

24.24.22 CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS

This configuration option was introduced in RTEMS 4.10.0 and is obsolete since RTEMS 5.1.

24.24.23 CONFIGURE_MAXIMUM_POSIX_MUTEXES

This configuration option is obsolete since RTEMS 5.1.

24.24.24 CONFIGURE_MAXIMUM_POSIX_RWLOCKS

This configuration option is obsolete since RTEMS 5.1.

24.24.25 CONFIGURE_MAXIMUM_POSIX_SPINLOCKS

This configuration option is obsolete since RTEMS 5.1.

24.24.26 CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE

This configuration option was present in all RTEMS versions since at least 1995 and is obsolete
since RTEMS 5.1. If you used this configuration option or you think that there should be a way
to configure more than one POSIX initialization thread, then please ask on the Users Mailing
List.

24.24.27 CONFIGURE_SMP_APPLICATION

This configuration option was introduced in RTEMS 4.11.0 and is obsolete since RTEMS 5.1.

24.24.28 CONFIGURE_SMP_MAXIMUM_PROCESSORS

This configuration option was introduced in RTEMS 4.11.0 and is obsolete since RTEMS 5.1.
See also CONFIGURE_MAXIMUM_PROCESSORS (page 381).

24.24.29 CONFIGURE_TERMIOS_DISABLED

This configuration option is obsolete since RTEMS 5.1.

466 Chapter 24. Configuring a System

https://lists.rtems.org/mailman/listinfo/users/
https://lists.rtems.org/mailman/listinfo/users/

CHAPTER

TWENTYFIVE

SELF-CONTAINED OBJECTS

467

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.1

25.1 Introduction

One of the original design goals of RTEMS was the support for heterogeneous computing
based on message passing. This was realized by synchronization objects with an architecture-
independent identifier provided by the system during object creation (a 32-bit unsigned integer
used as a bitfield) and a user-defined four character name. This approach in the so called Classic
API has some weaknesses:

• Dynamic memory (the workspace) is used to allocate object pools. This requires a com-
plex configuration with heavy use of the C pre-processor. The unlimited objects support
optionally expands and shrinks the object pool. Dynamic memory is strongly discouraged
by some coding standards, e.g. MISRA C:2012 [BBB+13].

• Objects are created via function calls which return an object identifier. The object opera-
tions use this identifier and map it internally to an object representation.

• The object identifier is only known at run-time. This hinders compiler optimizations and
static analysis.

• The objects reside in a table, e.g. they are subject to false sharing of cache lines [Dre07].

• The object operations use a rich set of options and attributes. For each object operation
these parameters must be evaluated and validated at run-time to figure out what to do
exactly for this operation.

For applications that use fine grained locking the mapping of the identifier to the object repre-
sentation and the parameter evaluation are a significant overhead that may degrade the per-
formance dramatically. An example is the new network stack (libbsd) which uses hundreds of
locks in a basic setup. Another example is the OpenMP support (libgomp).

To overcome these issues new self-contained synchronization objects are available since RTEMS
4.11. Self-contained synchronization objects encapsulate all their state in exactly one data struc-
ture. The user must provide the storage space for this structure and nothing more. The user is
responsible for the object life-cycle. Initialization and destruction of self-contained synchroniza-
tion objects cannot fail provided all function parameters are valid. In particular, a not enough
memory error cannot happen. It is possible to statically initialize self-contained synchronization
objects. This allows an efficient use of static analysis tools.

Several header files define self-contained synchronization objects. The Newlib <sys/lock.h>
header file provides

• mutexes,

• recursive mutexes,

• condition variables,

• counting semaphores,

• binary semaphores, and

• Futex synchronization [FRK02].

They are used internally in Newlib (e.g. for FILE objects), for the C++11 threads and the
OpenMP support (libgomp). The Newlib provided self-contained synchronization objects focus
on performance. There are no error checks to catch software errors, e.g. invalid parame-
ters. The application configuration is significantly simplified, since it is no longer necessary to

468 Chapter 25. Self-Contained Objects

https://git.rtems.org/rtems-libbsd

Chapter 25 Section 25.1 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

account for lock objects used by Newlib and GCC. The Newlib defined self-contained synchro-
nization objects can be a statically initialized and reside in the .bss section. Destruction is a
no-operation.

The header file <pthread.h> provides

• POSIX barriers (pthread_barrier_t),

• POSIX condition variables (pthread_cond_t),

• POSIX mutexes (pthread_mutex_t),

• POSIX reader/writer locks (pthread_rwlock_t), and

• POSIX spinlocks (pthread_spinlock_t)

as self-contained synchronization objects. The POSIX synchronization objects are used for ex-
ample by the Ada run-time support. The header file <semaphore.h> provides self-contained

• POSIX unnamed semaphores (sem_t initialized via sem_init()).

25.1. Introduction 469

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.2

25.2 RTEMS Thread API

To give RTEMS users access to self-contained synchronization objects an API is necessary. One
option would be to simply use the POSIX threads API (pthreads), C11 threads or C++11
threads. However, these standard APIs lack for example binary semaphores which are im-
portant for task/interrupt synchronization. The timed operations use in general time values
specified by seconds and nanoseconds. Setting up the time values in seconds (time_t has 64
bits) and nanoseconds is burdened with a high overhead compared to time values in clock ticks
for relative timeouts. The POSIX API mutexes can be configured for various protocols and op-
tions, this adds a run-time overhead. There are a variety of error conditions. This is a problem
in combination with some coding standards, e.g. MISRA C:2012. APIs used by Linux (e.g.
<linux/mutex.h>) or the FreeBSD kernel (e.g. MUTEX(9)) are better suited as a template for
high-performance synchronization objects. The goal of the RTEMS Thread API is to offer the
highest performance with the lowest space-overhead on RTEMS. It should be suitable for device
drivers.

470 Chapter 25. Self-Contained Objects

http://lxr.free-electrons.com/source/include/linux/mutex.h
https://www.freebsd.org/cgi/man.cgi?query=mutex&sektion=9

Chapter 25 Section 25.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.3 Mutual Exclusion

The rtems_mutex and rtems_recursive_mutex objects provide mutual-exclusion synchroniza-
tion using the Priority Inheritance Protocol (page 28) in uniprocessor configurations or the O(m)
Independence-Preserving Protocol (OMIP) (page 29) in SMP configurations. Recursive locking
should be used with care [Wil12]. The storage space for these object must be provided by the
user. There are no defined comparison or assignment operators for these type. Only the object
itself may be used for performing synchronization. The result of referring to copies of the object
in calls to

• rtems_mutex_lock(),

• rtems_recursive_mutex_lock(),

• rtems_mutex_unlock(),

• rtems_recursive_mutex_unlock(),

• rtems_mutex_set_name(),

• rtems_recursive_mutex_set_name(),

• rtems_mutex_get_name(),

• rtems_recursive_mutex_get_name(),

• rtems_mutex_destroy(), and

• rtems_recursive_mutex_destroy()

is undefined. Objects of the type rtems_mutex must be initialized via

• RTEMS_MUTEX_INITIALIZER(), or

• rtems_mutex_init().

They must be destroyed via

• rtems_mutex_destroy().

Objects of the type rtems_recursive_mutex must be initialized via

• RTEMS_RECURSIVE_MUTEX_INITIALIZER(), or

• rtems_recursive_mutex_init().

They must be destroyed via

• rtems_recursive_mutex_destroy().

25.3. Mutual Exclusion 471

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.3

25.3.1 Static mutex initialization

CALLING SEQUENCE:

1 rtems_mutex mutex = RTEMS_MUTEX_INITIALIZER(
2 name
3);
4

5 rtems_recursive_mutex mutex = RTEMS_RECURSIVE_MUTEX_INITIALIZER(
6 name
7);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to rtems_mutex_init() or
rtems_recursive_mutex_init() respectively.

NOTES:
Global mutexes with a name of NULL may reside in the .bss section.

472 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.3.2 Run-time mutex initialization

CALLING SEQUENCE:

1 void rtems_mutex_init(
2 rtems_mutex *mutex,
3 const char *name
4);
5

6 void rtems_recursive_mutex_init(
7 rtems_recursive_mutex *mutex,
8 const char *name
9);

DESCRIPTION:
Initializes the mutex with the specified name.

NOTES:
The name must be persistent throughout the life-time of the mutex. A name of NULL is valid.
The mutex is unlocked after initialization.

25.3. Mutual Exclusion 473

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.3

25.3.3 Lock the mutex

CALLING SEQUENCE:

1 void rtems_mutex_lock(
2 rtems_mutex *mutex
3);
4

5 void rtems_recursive_mutex_lock(
6 rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Locks the mutex.

NOTES:
This function must be called from thread context with interrupts enabled. In case the mutex
is currently locked by another thread, then the thread is blocked until it becomes the mutex
owner. Threads wait in priority order.

A recursive lock happens in case the mutex owner tries to lock the mutex again. The result
of recursively locking a mutex depends on the mutex variant. For a normal (non-recursive)
mutex (rtems_mutex) the result is unpredictable. It could block the owner indefinetly or
lead to a fatal deadlock error. A recursive mutex (rtems_recursive_mutex) can be locked
recursively by the mutex owner.

Each mutex lock operation must have a corresponding unlock operation.

474 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.3.4 Unlock the mutex

CALLING SEQUENCE:

1 void rtems_mutex_unlock(
2 rtems_mutex *mutex
3);
4

5 void rtems_recursive_mutex_unlock(
6 rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Unlocks the mutex.

NOTES:
This function must be called from thread context with interrupts enabled. In case the cur-
rently executing thread is not the owner of the mutex, then the result is unpredictable.

Exactly the outer-most unlock will make a recursive mutex available to other threads.

25.3. Mutual Exclusion 475

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.3

25.3.5 Set mutex name

CALLING SEQUENCE:

1 void rtems_mutex_set_name(
2 rtems_mutex *mutex,
3 const char *name
4);
5

6 void rtems_recursive_mutex_set_name(
7 rtems_recursive_mutex *mutex,
8 const char *name
9);

DESCRIPTION:
Sets the mutex name to name.

NOTES:
The name must be persistent throughout the life-time of the mutex. A name of NULL is valid.

476 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.3.6 Get mutex name

CALLING SEQUENCE:

1 const char *rtems_mutex_get_name(
2 const rtems_mutex *mutex
3);
4

5 const char *rtems_recursive_mutex_get_name(
6 const rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Returns the mutex name.

NOTES:
The name may be NULL.

25.3.7 Mutex destruction

CALLING SEQUENCE:

1 void rtems_mutex_destroy(
2 rtems_mutex *mutex
3);
4

5 void rtems_recursive_mutex_destroy(
6 rtems_recursive_mutex *mutex
7);

DESCRIPTION:
Destroys the mutex.

NOTES:
In case the mutex is locked or still in use, then the result is unpredictable.

25.3. Mutual Exclusion 477

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.4

25.4 Condition Variables

The rtems_condition_variable object provides a condition variable synchronization object.
The storage space for this object must be provided by the user. There are no defined compar-
ison or assignment operators for this type. Only the object itself may be used for performing
synchronization. The result of referring to copies of the object in calls to

• rtems_condition_variable_wait(),

• rtems_condition_variable_signal(),

• rtems_condition_variable_broadcast(),

• rtems_condition_variable_set_name(),

• rtems_condition_variable_get_name(), and

• rtems_condition_variable_destroy()

is undefined. Objects of this type must be initialized via

• RTEMS_CONDITION_VARIABLE_INITIALIZER(), or

• rtems_condition_variable_init().

They must be destroyed via

• rtems_condition_variable_destroy().

478 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.4.1 Static condition variable initialization

CALLING SEQUENCE:

1 rtems_condition_variable condition_variable = RTEMS_CONDITION_VARIABLE_INITIALIZER(
2 name
3);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to
rtems_condition_variable_init().

NOTES:
Global condition variables with a name of NULL may reside in the .bss section.

25.4. Condition Variables 479

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.4

25.4.2 Run-time condition variable initialization

CALLING SEQUENCE:

1 void rtems_condition_variable_init(
2 rtems_condition_variable *condition_variable,
3 const char *name
4);

DESCRIPTION:
Initializes the condition_variable with the specified name.

NOTES:
The name must be persistent throughout the life-time of the condition variable. A name of NULL
is valid.

480 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.4.3 Wait for condition signal

CALLING SEQUENCE:

1 void rtems_condition_variable_wait(
2 rtems_condition_variable *condition_variable,
3 rtems_mutex *mutex
4);

DESCRIPTION:
Atomically waits for a condition signal and unlocks the mutex. Once the condition is signalled
to the thread it wakes up and locks the mutex again.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

25.4. Condition Variables 481

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.4

25.4.4 Signals a condition change

CALLING SEQUENCE:

1 void rtems_condition_variable_signal(
2 rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Signals a condition change to the highest priority waiting thread. If no threads wait currently
on this condition variable, then nothing happens.

482 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.4.5 Broadcasts a condition change

CALLING SEQUENCE:

1 void rtems_condition_variable_broadcast(
2 rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Signals a condition change to all waiting thread. If no threads wait currently on this condition
variable, then nothing happens.

25.4. Condition Variables 483

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.4

25.4.6 Set condition variable name

CALLING SEQUENCE:

1 void rtems_condition_variable_set_name(
2 rtems_condition_variable *condition_variable,
3 const char *name
4);

DESCRIPTION:
Sets the condition_variable name to name.

NOTES:
The name must be persistent throughout the life-time of the condition variable. A name of NULL
is valid.

484 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.4.7 Get condition variable name

CALLING SEQUENCE:

1 const char *rtems_condition_variable_get_name(
2 const rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Returns the condition_variable name.

NOTES:
The name may be NULL.

25.4.8 Condition variable destruction

CALLING SEQUENCE:

1 void rtems_condition_variable_destroy(
2 rtems_condition_variable *condition_variable
3);

DESCRIPTION:
Destroys the condition_variable.

NOTES:
In case the condition variable still in use, then the result is unpredictable.

25.4. Condition Variables 485

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.5

25.5 Counting Semaphores

The rtems_counting_semaphore object provides a counting semaphore synchronization object.
The storage space for this object must be provided by the user. There are no defined compar-
ison or assignment operators for this type. Only the object itself may be used for performing
synchronization. The result of referring to copies of the object in calls to

• rtems_counting_semaphore_wait(),

• rtems_counting_semaphore_post(),

• rtems_counting_semaphore_set_name(),

• rtems_counting_semaphore_get_name(), and

• rtems_counting_semaphore_destroy()

is undefined. Objects of this type must be initialized via

• RTEMS_COUNTING_SEMAPHORE_INITIALIZER(), or

• rtems_counting_semaphore_init().

They must be destroyed via

• rtems_counting_semaphore_destroy().

486 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.5.1 Static counting semaphore initialization

CALLING SEQUENCE:

1 rtems_counting_semaphore counting_semaphore = RTEMS_COUNTING_SEMAPHORE_INITIALIZER(
2 name,
3 value
4);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to
rtems_counting_semaphore_init().

NOTES:
Global counting semaphores with a name of NULL may reside in the .bss section.

25.5. Counting Semaphores 487

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.5

25.5.2 Run-time counting semaphore initialization

CALLING SEQUENCE:

1 void rtems_counting_semaphore_init(
2 rtems_counting_semaphore *counting_semaphore,
3 const char *name,
4 unsigned int value
5);

DESCRIPTION:
Initializes the counting_semaphore with the specified name and value. The initial value is set
to value.

NOTES:
The name must be persistent throughout the life-time of the counting semaphore. A name of
NULL is valid.

488 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.5.3 Wait for a counting semaphore

CALLING SEQUENCE:

1 void rtems_counting_semaphore_wait(
2 rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Waits for the counting_semaphore. In case the current semaphore value is positive, then the
value is decremented and the function returns immediately, otherwise the thread is blocked
waiting for a semaphore post.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

25.5. Counting Semaphores 489

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.5

25.5.4 Post a counting semaphore

CALLING SEQUENCE:

1 void rtems_counting_semaphore_post(
2 rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Posts the counting_semaphore. In case at least one thread is waiting on the counting
semaphore, then the highest priority thread is woken up, otherwise the current value is incre-
mented.

NOTES:
This function may be called from interrupt context. In case it is called from thread context,
then interrupts must be enabled.

490 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.5.5 Set counting semaphore name

CALLING SEQUENCE:

1 void rtems_counting_semaphore_set_name(
2 rtems_counting_semaphore *counting_semaphore,
3 const char *name
4);

DESCRIPTION:
Sets the counting_semaphore name to name.

NOTES:
The name must be persistent throughout the life-time of the counting semaphore. A name of
NULL is valid.

25.5. Counting Semaphores 491

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.5

25.5.6 Get counting semaphore name

CALLING SEQUENCE:

1 const char *rtems_counting_semaphore_get_name(
2 const rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Returns the counting_semaphore name.

NOTES:
The name may be NULL.

25.5.7 Counting semaphore destruction

CALLING SEQUENCE:

1 void rtems_counting_semaphore_destroy(
2 rtems_counting_semaphore *counting_semaphore
3);

DESCRIPTION:
Destroys the counting_semaphore.

NOTES:
In case the counting semaphore still in use, then the result is unpredictable.

492 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.6 Binary Semaphores

The rtems_binary_semaphore object provides a binary semaphore synchronization object. The
storage space for this object must be provided by the user. There are no defined comparison or
assignment operators for this type. Only the object itself may be used for performing synchro-
nization. The result of referring to copies of the object in calls to

• rtems_binary_semaphore_wait(),

• rtems_binary_semaphore_wait_timed_ticks(),

• rtems_binary_semaphore_try_wait(),

• rtems_binary_semaphore_post(),

• rtems_binary_semaphore_set_name(),

• rtems_binary_semaphore_get_name(), and

• rtems_binary_semaphore_destroy()

is undefined. Objects of this type must be initialized via

• RTEMS_BINARY_SEMAPHORE_INITIALIZER(), or

• rtems_binary_semaphore_init().

They must be destroyed via

• rtems_binary_semaphore_destroy().

25.6. Binary Semaphores 493

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.6

25.6.1 Static binary semaphore initialization

CALLING SEQUENCE:

1 rtems_binary_semaphore binary_semaphore = RTEMS_BINARY_SEMAPHORE_INITIALIZER(
2 name
3);

DESCRIPTION:
An initializer for static initialization. It is equivalent to a call to
rtems_binary_semaphore_init().

NOTES:
Global binary semaphores with a name of NULL may reside in the .bss section.

494 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.6.2 Run-time binary semaphore initialization

CALLING SEQUENCE:

1 void rtems_binary_semaphore_init(
2 rtems_binary_semaphore *binary_semaphore,
3 const char *name
4);

DESCRIPTION:
Initializes the binary_semaphore with the specified name. The initial value is set to zero.

NOTES:
The name must be persistent throughout the life-time of the binary semaphore. A name of NULL
is valid.

25.6. Binary Semaphores 495

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.6

25.6.3 Wait for a binary semaphore

CALLING SEQUENCE:

1 void rtems_binary_semaphore_wait(
2 rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Waits for the binary_semaphore. In case the current semaphore value is one, then the value
is set to zero and the function returns immediately, otherwise the thread is blocked waiting
for a semaphore post.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

496 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.6.4 Wait for a binary semaphore with timeout in ticks

CALLING SEQUENCE:

1 int rtems_binary_semaphore_wait_timed_ticks(
2 rtems_binary_semaphore *binary_semaphore,
3 uint32_t ticks
4);

DIRECTIVE STATUS CODES:

0 The semaphore wait was successful.
ETIMEDOUT The semaphore wait timed out.

DESCRIPTION:
Waits for the binary_semaphore with a timeout in ticks. In case the current semaphore value
is one, then the value is set to zero and the function returns immediately with a return value
of 0, otherwise the thread is blocked waiting for a semaphore post. The time waiting for a
semaphore post is limited by ticks. A ticks value of zero specifies an infinite timeout.

NOTES:
This function must be called from thread context with interrupts enabled. Threads wait in
priority order.

25.6. Binary Semaphores 497

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.6

25.6.5 Tries to wait for a binary semaphore

CALLING SEQUENCE:

1 int rtems_binary_semaphore_try_wait(
2 rtems_binary_semaphore *binary_semaphore
3);

DIRECTIVE STATUS CODES:

0 The semaphore wait was successful.
EAGAIN The semaphore wait failed.

DESCRIPTION:
Tries to wait for the binary_semaphore. In case the current semaphore value is one, then the
value is set to zero and the function returns immediately with a return value of 0, otherwise
it returns immediately with a return value of EAGAIN.

NOTES:
This function may be called from interrupt context. In case it is called from thread context,
then interrupts must be enabled.

498 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.6.6 Post a binary semaphore

CALLING SEQUENCE:

1 void rtems_binary_semaphore_post(
2 rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Posts the binary_semaphore. In case at least one thread is waiting on the binary semaphore,
then the highest priority thread is woken up, otherwise the current value is set to one.

NOTES:
This function may be called from interrupt context. In case it is called from thread context,
then interrupts must be enabled.

25.6. Binary Semaphores 499

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.6

25.6.7 Set binary semaphore name

CALLING SEQUENCE:

1 void rtems_binary_semaphore_set_name(
2 rtems_binary_semaphore *binary_semaphore,
3 const char *name
4);

DESCRIPTION:
Sets the binary_semaphore name to name.

NOTES:
The name must be persistent throughout the life-time of the binary semaphore. A name of NULL
is valid.

500 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.6 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

25.6.8 Get binary semaphore name

CALLING SEQUENCE:

1 const char *rtems_binary_semaphore_get_name(
2 const rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Returns the binary_semaphore name.

NOTES:
The name may be NULL.

25.6.9 Binary semaphore destruction

CALLING SEQUENCE:

1 void rtems_binary_semaphore_destroy(
2 rtems_binary_semaphore *binary_semaphore
3);

DESCRIPTION:
Destroys the binary_semaphore.

NOTES:
In case the binary semaphore still in use, then the result is unpredictable.

25.6. Binary Semaphores 501

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.7

25.7 Threads

Warning: The self-contained threads support is work in progress. In contrast to the syn-
chronization objects the self-contained thread support is not just an API glue layer to already
existing implementations.

The rtems_thread object provides a thread of execution.

CALLING SEQUENCE:

1 RTEMS_THREAD_INITIALIZER(
2 name,
3 thread_size,
4 priority,
5 flags,
6 entry,
7 arg
8);
9

10 void rtems_thread_start(
11 rtems_thread *thread,
12 const char *name,
13 size_t thread_size,
14 uint32_t priority,
15 uint32_t flags,
16 void (*entry)(void *),
17 void *arg
18);
19

20 void rtems_thread_restart(
21 rtems_thread *thread,
22 void *arg
23) RTEMS_NO_RETURN;
24

25 void rtems_thread_event_send(
26 rtems_thread *thread,
27 uint32_t events
28);
29

30 uint32_t rtems_thread_event_poll(
31 rtems_thread *thread,
32 uint32_t events_of_interest
33);
34

35 uint32_t rtems_thread_event_wait_all(
36 rtems_thread *thread,
37 uint32_t events_of_interest
38);
39

40 uint32_t rtems_thread_event_wait_any(
41 rtems_thread *thread,
42 uint32_t events_of_interest
43);

(continues on next page)

502 Chapter 25. Self-Contained Objects

Chapter 25 Section 25.7 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

(continued from previous page)

44

45 void rtems_thread_destroy(
46 rtems_thread *thread
47);
48

49 void rtems_thread_destroy_self(
50 void
51) RTEMS_NO_RETURN;

25.7. Threads 503

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 25 Section 25.7

504 Chapter 25. Self-Contained Objects

CHAPTER

TWENTYSIX

MULTIPROCESSING MANAGER

505

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 26 Section 26.1

26.1 Introduction

In multiprocessor real-time systems, new requirements, such as sharing data and global re-
sources between processors, are introduced. This requires an efficient and reliable communi-
cations vehicle which allows all processors to communicate with each other as necessary. In
addition, the ramifications of multiple processors affect each and every characteristic of a real-
time system, almost always making them more complicated.

RTEMS addresses these issues by providing simple and flexible real-time multiprocessing capa-
bilities. The executive easily lends itself to both tightly-coupled and loosely-coupled configura-
tions of the target system hardware. In addition, RTEMS supports systems composed of both
homogeneous and heterogeneous mixtures of processors and target boards.

A major design goal of the RTEMS executive was to transcend the physical boundaries of the
target hardware configuration. This goal is achieved by presenting the application software
with a logical view of the target system where the boundaries between processor nodes are
transparent. As a result, the application developer may designate objects such as tasks, queues,
events, signals, semaphores, and memory blocks as global objects. These global objects may
then be accessed by any task regardless of the physical location of the object and the accessing
task. RTEMS automatically determines that the object being accessed resides on another pro-
cessor and performs the actions required to access the desired object. Simply stated, RTEMS
allows the entire system, both hardware and software, to be viewed logically as a single system.

The directives provided by the Manager are:

• rtems_multiprocessing_announce (page 516) - A multiprocessing communications packet
has arrived

506 Chapter 26. Multiprocessing Manager

Chapter 26 Section 26.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

26.2 Background

RTEMS makes no assumptions regarding the connection media or topology of a multiproces-
sor system. The tasks which compose a particular application can be spread among as many
processors as needed to satisfy the application’s timing requirements. The application tasks can
interact using a subset of the RTEMS directives as if they were on the same processor. These
directives allow application tasks to exchange data, communicate, and synchronize regardless
of which processor they reside upon.

The RTEMS multiprocessor execution model is multiple instruction streams with multiple data
streams (MIMD). This execution model has each of the processors executing code independent
of the other processors. Because of this parallelism, the application designer can more easily
guarantee deterministic behavior.

By supporting heterogeneous environments, RTEMS allows the systems designer to select the
most efficient processor for each subsystem of the application. Configuring RTEMS for a hetero-
geneous environment is no more difficult than for a homogeneous one. In keeping with RTEMS
philosophy of providing transparent physical node boundaries, the minimal heterogeneous pro-
cessing required is isolated in the MPCI layer.

26.2.1 Nodes

A processor in a RTEMS system is referred to as a node. Each node is assigned a unique non-
zero node number by the application designer. RTEMS assumes that node numbers are as-
signed consecutively from one to the maximum_nodes configuration parameter. The node num-
ber, node, and the maximum number of nodes, maximum_nodes, in a system are found in the
Multiprocessor Configuration Table. The maximum_nodes field and the number of global objects,
maximum_global_objects, is required to be the same on all nodes in a system.

The node number is used by RTEMS to identify each node when performing remote opera-
tions. Thus, the Multiprocessor Communications Interface Layer (MPCI) must be able to route
messages based on the node number.

26.2.2 Global Objects

All RTEMS objects which are created with the GLOBAL attribute will be known on all other
nodes. Global objects can be referenced from any node in the system, although certain directive
specific restrictions (e.g. one cannot delete a remote object) may apply. A task does not have
to be global to perform operations involving remote objects. The maximum number of global
objects is the system is user configurable and can be found in the maximum_global_objects field
in the Multiprocessor Configuration Table. The distribution of tasks to processors is performed
during the application design phase. Dynamic task relocation is not supported by RTEMS.

26.2.3 Global Object Table

RTEMS maintains two tables containing object information on every node in a multiprocessor
system: a local object table and a global object table. The local object table on each node is
unique and contains information for all objects created on this node whether those objects are
local or global. The global object table contains information regarding all global objects in the
system and, consequently, is the same on every node.

26.2. Background 507

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 26 Section 26.2

Since each node must maintain an identical copy of the global object table, the maximum
number of entries in each copy of the table must be the same. The maximum number of entries
in each copy is determined by the maximum_global_objects parameter in the Multiprocessor
Configuration Table. This parameter, as well as the maximum_nodes parameter, is required to
be the same on all nodes. To maintain consistency among the table copies, every node in the
system must be informed of the creation or deletion of a global object.

26.2.4 Remote Operations

When an application performs an operation on a remote global object, RTEMS must generate
a Remote Request (RQ) message and send it to the appropriate node. After completing the
requested operation, the remote node will build a Remote Response (RR) message and send
it to the originating node. Messages generated as a side-effect of a directive (such as deleting
a global task) are known as Remote Processes (RP) and do not require the receiving node to
respond.

Other than taking slightly longer to execute directives on remote objects, the application is
unaware of the location of the objects it acts upon. The exact amount of overhead required for
a remote operation is dependent on the media connecting the nodes and, to a lesser degree, on
the efficiency of the user-provided MPCI routines.

The following shows the typical transaction sequence during a remote application:

1. The application issues a directive accessing a remote global object.

2. RTEMS determines the node on which the object resides.

3. RTEMS calls the user-provided MPCI routine GET_PACKET to obtain a packet in which to
build a RQ message.

4. After building a message packet, RTEMS calls the user-provided MPCI routine
SEND_PACKET to transmit the packet to the node on which the object resides (referred
to as the destination node).

5. The calling task is blocked until the RR message arrives, and control of the processor is
transferred to another task.

6. The MPCI layer on the destination node senses the arrival of a packet (commonly in an
ISR), and calls the rtems_multiprocessing_announce directive. This directive readies the
Multiprocessing Server.

7. The Multiprocessing Server calls the user-provided MPCI routine RECEIVE_PACKET, per-
forms the requested operation, builds an RR message, and returns it to the originating
node.

8. The MPCI layer on the originating node senses the arrival of a packet (typically via an in-
terrupt), and calls the RTEMS rtems_multiprocessing_announce directive. This directive
readies the Multiprocessing Server.

9. The Multiprocessing Server calls the user-provided MPCI routine RECEIVE_PACKET, readies
the original requesting task, and blocks until another packet arrives. Control is transferred
to the original task which then completes processing of the directive.

If an uncorrectable error occurs in the user-provided MPCI layer, the fatal error handler should
be invoked. RTEMS assumes the reliable transmission and reception of messages by the MPCI
and makes no attempt to detect or correct errors.

508 Chapter 26. Multiprocessing Manager

Chapter 26 Section 26.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

26.2.5 Proxies

A proxy is an RTEMS data structure which resides on a remote node and is used to represent
a task which must block as part of a remote operation. This action can occur as part of the
rtems_semaphore_obtain and rtems_message_queue_receive directives. If the object were lo-
cal, the task’s control block would be available for modification to indicate it was blocking on a
message queue or semaphore. However, the task’s control block resides only on the same node
as the task. As a result, the remote node must allocate a proxy to represent the task until it can
be readied.

The maximum number of proxies is defined in the Multiprocessor Configuration Table. Each
node in a multiprocessor system may require a different number of proxies to be configured.
The distribution of proxy control blocks is application dependent and is different from the dis-
tribution of tasks.

26.2.6 Multiprocessor Configuration Table

The Multiprocessor Configuration Table contains information needed by RTEMS when used in
a multiprocessor system. This table is discussed in detail in the section Multiprocessor Configu-
ration Table of the Configuring a System chapter.

26.2. Background 509

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 26 Section 26.3

26.3 Multiprocessor Communications Interface Layer

The Multiprocessor Communications Interface Layer (MPCI) is a set of user-provided proce-
dures which enable the nodes in a multiprocessor system to communicate with one another.
These routines are invoked by RTEMS at various times in the preparation and processing of
remote requests. Interrupts are enabled when an MPCI procedure is invoked. It is assumed that
if the execution mode and/or interrupt level are altered by the MPCI layer, that they will be
restored prior to returning to RTEMS.

The MPCI layer is responsible for managing a pool of buffers called packets and for sending
these packets between system nodes. Packet buffers contain the messages sent between the
nodes. Typically, the MPCI layer will encapsulate the packet within an envelope which contains
the information needed by the MPCI layer. The number of packets available is dependent on
the MPCI layer implementation.

The entry points to the routines in the user’s MPCI layer should be placed in the Multiprocessor
Communications Interface Table. The user must provide entry points for each of the following
table entries in a multiprocessor system:

initialization initialize the MPCI
get_packet obtain a packet buffer
return_packet return a packet buffer
send_packet send a packet to another node
receive_packet called to get an arrived packet

A packet is sent by RTEMS in each of the following situations:

• an RQ is generated on an originating node;

• an RR is generated on a destination node;

• a global object is created;

• a global object is deleted;

• a local task blocked on a remote object is deleted;

• during system initialization to check for system consistency.

If the target hardware supports it, the arrival of a packet at a node may generate an inter-
rupt. Otherwise, the real-time clock ISR can check for the arrival of a packet. In any case, the
rtems_multiprocessing_announce directive must be called to announce the arrival of a packet.
After exiting the ISR, control will be passed to the Multiprocessing Server to process the packet.
The Multiprocessing Server will call the get_packet entry to obtain a packet buffer and the
receive_entry entry to copy the message into the buffer obtained.

26.3.1 INITIALIZATION

The INITIALIZATION component of the user-provided MPCI layer is called as part of the
rtems_initialize_executive directive to initialize the MPCI layer and associated hardware.
It is invoked immediately after all of the device drivers have been initialized. This component
should be adhere to the following prototype:

510 Chapter 26. Multiprocessing Manager

Chapter 26 Section 26.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

1 rtems_mpci_entry user_mpci_initialization(void);

Operations on global objects cannot be performed until this component is invoked. The INI-
TIALIZATION component is invoked only once in the life of any system. If the MPCI layer
cannot be successfully initialized, the fatal error manager should be invoked by this routine.

One of the primary functions of the MPCI layer is to provide the executive with packet buffers.
The INITIALIZATION routine must create and initialize a pool of packet buffers. There must be
enough packet buffers so RTEMS can obtain one whenever needed.

26.3.2 GET_PACKET

The GET_PACKET component of the user-provided MPCI layer is called when RTEMS must
obtain a packet buffer to send or broadcast a message. This component should be adhere to the
following prototype:

1 rtems_mpci_entry user_mpci_get_packet(
2 rtems_packet_prefix **packet
3);

where packet is the address of a pointer to a packet. This routine always succeeds and, upon
return, packet will contain the address of a packet. If for any reason, a packet cannot be
successfully obtained, then the fatal error manager should be invoked.

RTEMS has been optimized to avoid the need for obtaining a packet each time a message is sent
or broadcast. For example, RTEMS sends response messages (RR) back to the originator in the
same packet in which the request message (RQ) arrived.

26.3.3 RETURN_PACKET

The RETURN_PACKET component of the user-provided MPCI layer is called when RTEMS needs
to release a packet to the free packet buffer pool. This component should be adhere to the
following prototype:

1 rtems_mpci_entry user_mpci_return_packet(
2 rtems_packet_prefix *packet
3);

where packet is the address of a packet. If the packet cannot be successfully returned, the fatal
error manager should be invoked.

26.3.4 RECEIVE_PACKET

The RECEIVE_PACKET component of the user-provided MPCI layer is called when RTEMS needs
to obtain a packet which has previously arrived. This component should be adhere to the
following prototype:

1 rtems_mpci_entry user_mpci_receive_packet(
2 rtems_packet_prefix **packet
3);

26.3. Multiprocessor Communications Interface Layer 511

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 26 Section 26.3

where packet is a pointer to the address of a packet to place the message from another node. If
a message is available, then packet will contain the address of the message from another node.
If no messages are available, this entry packet should contain NULL.

26.3.5 SEND_PACKET

The SEND_PACKET component of the user-provided MPCI layer is called when RTEMS needs
to send a packet containing a message to another node. This component should be adhere to
the following prototype:

1 rtems_mpci_entry user_mpci_send_packet(
2 uint32_t node,
3 rtems_packet_prefix **packet
4);

where node is the node number of the destination and packet is the address of a packet which
containing a message. If the packet cannot be successfully sent, the fatal error manager should
be invoked.

If node is set to zero, the packet is to be broadcasted to all other nodes in the system. Although
some MPCI layers will be built upon hardware which support a broadcast mechanism, others
may be required to generate a copy of the packet for each node in the system.

Many MPCI layers use the packet_length field of the rtems_packet_prefix portion of the
packet to avoid sending unnecessary data. This is especially useful if the media connecting
the nodes is relatively slow.

The to_convert field of the rtems_packet_prefix portion of the packet indicates how much of
the packet in 32-bit units may require conversion in a heterogeneous system.

26.3.6 Supporting Heterogeneous Environments

Developing an MPCI layer for a heterogeneous system requires a thorough understanding of
the differences between the processors which comprise the system. One difficult problem is the
varying data representation schemes used by different processor types. The most pervasive data
representation problem is the order of the bytes which compose a data entity. Processors which
place the least significant byte at the smallest address are classified as little endian processors.
Little endian byte-ordering is shown below:

1 +---------------+----------------+---------------+----------------+
2 | | | | |
3 | Byte 3 | Byte 2 | Byte 1 | Byte 0 |
4 | | | | |
5 +---------------+----------------+---------------+----------------+

Conversely, processors which place the most significant byte at the smallest address are classified
as big endian processors. Big endian byte-ordering is shown below:

1 +---------------+----------------+---------------+----------------+
2 | | | | |
3 | Byte 0 | Byte 1 | Byte 2 | Byte 3 |
4 | | | | |
5 +---------------+----------------+---------------+----------------+

512 Chapter 26. Multiprocessing Manager

Chapter 26 Section 26.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

Unfortunately, sharing a data structure between big endian and little endian processors requires
translation into a common endian format. An application designer typically chooses the com-
mon endian format to minimize conversion overhead.

Another issue in the design of shared data structures is the alignment of data structure ele-
ments. Alignment is both processor and compiler implementation dependent. For example,
some processors allow data elements to begin on any address boundary, while others impose
restrictions. Common restrictions are that data elements must begin on either an even address
or on a long word boundary. Violation of these restrictions may cause an exception or impose a
performance penalty.

Other issues which commonly impact the design of shared data structures include the represen-
tation of floating point numbers, bit fields, decimal data, and character strings. In addition, the
representation method for negative integers could be one’s or two’s complement. These fac-
tors combine to increase the complexity of designing and manipulating data structures shared
between processors.

RTEMS addressed these issues in the design of the packets used to communicate between nodes.
The RTEMS packet format is designed to allow the MPCI layer to perform all necessary conver-
sion without burdening the developer with the details of the RTEMS packet format. As a result,
the MPCI layer must be aware of the following:

• All packets must begin on a four byte boundary.

• Packets are composed of both RTEMS and application data. All RTEMS data is treated as
32-bit unsigned quantities and is in the first to_convert 32-bit quantities of the packet.
The to_convert field is part of the rtems_packet_prefix portion of the packet.

• The RTEMS data component of the packet must be in native endian format. Endian
conversion may be performed by either the sending or receiving MPCI layer.

• RTEMS makes no assumptions regarding the application data component of the packet.

26.3. Multiprocessor Communications Interface Layer 513

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 26 Section 26.4

26.4 Operations

26.4.1 Announcing a Packet

The rtems_multiprocessing_announce directive is called by the MPCI layer to inform RTEMS
that a packet has arrived from another node. This directive can be called from an interrupt
service routine or from within a polling routine.

514 Chapter 26. Multiprocessing Manager

Chapter 26 Section 26.5 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

26.5 Directives

This section details the additional directives required to support RTEMS in a multiprocessor
configuration. A subsection is dedicated to each of this manager’s directives and describes the
calling sequence, related constants, usage, and status codes.

26.5. Directives 515

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 26 Section 26.5

26.5.1 MULTIPROCESSING_ANNOUNCE - Announce the arrival of a packet

CALLING SEQUENCE:

1 void rtems_multiprocessing_announce(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive informs RTEMS that a multiprocessing communications packet has arrived from
another node. This directive is called by the user-provided MPCI, and is only used in multi-
processor configurations.

NOTES:
This directive is typically called from an ISR.

This directive will almost certainly cause the calling task to be preempted.

This directive does not generate activity on remote nodes.

516 Chapter 26. Multiprocessing Manager

CHAPTER

TWENTYSEVEN

SYMMETRIC MULTIPROCESSING (SMP)

517

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 27 Section 27.1

27.1 Introduction

The Symmetric Multiprocessing (SMP) support of the RTEMS is available on

• ARMv7-A,

• PowerPC,

• RISC-V, and

• SPARC.

Warning: The SMP support is only available if RTEMS was built with the --enable-smp
build configuration option.

RTEMS is supposed to be a real-time operating system. What does this mean in the context
of SMP? The RTEMS interpretation of real-time on SMP is the support for Clustered Scheduling
(page 521) with priority based schedulers and adequate locking protocols. One aim is to enable
a schedulability analysis under the sporadic task model [Bra11] [BW13].

518 Chapter 27. Symmetric Multiprocessing (SMP)

Chapter 27 Section 27.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

27.2 Background

27.2.1 Application Configuration

By default, the maximum processor count is set to one in the application configuration.
To enable SMP, the application configuration option CONFIGURE_MAXIMUM_PROCESSORS
(page 381) must be defined to a value greater than one. It is recommended to use the smallest
value suitable for the application in order to save memory. Each processor needs an idle thread
and interrupt stack for example.

The default scheduler for SMP applications supports up to 32 processors and is a global fixed
priority scheduler, see also Clustered Scheduler Configuration (page 450).

The following compile-time test can be used to check if the SMP support is available or not.

1 #include <rtems.h>
2

3 #ifdef RTEMS_SMP
4 #warning "SMP support is enabled"
5 #else
6 #warning "SMP support is disabled"
7 #endif

27.2.2 Examples

For example applications see testsuites/smptests.

27.2.3 Uniprocessor versus SMP Parallelism

Uniprocessor systems have long been used in embedded systems. In this hardware model, there
are some system execution characteristics which have long been taken for granted:

• one task executes at a time

• hardware events result in interrupts

There is no true parallelism. Even when interrupts appear to occur at the same time, they are
processed in largely a serial fashion. This is true even when the interupt service routines are
allowed to nest. From a tasking viewpoint, it is the responsibility of the real-time operatimg sys-
tem to simulate parallelism by switching between tasks. These task switches occur in response
to hardware interrupt events and explicit application events such as blocking for a resource or
delaying.

With symmetric multiprocessing, the presence of multiple processors allows for true concur-
rency and provides for cost-effective performance improvements. Uniprocessors tend to in-
crease performance by increasing clock speed and complexity. This tends to lead to hot, power
hungry microprocessors which are poorly suited for many embedded applications.

The true concurrency is in sharp contrast to the single task and interrupt model of uniprocessor
systems. This results in a fundamental change to uniprocessor system characteristics listed
above. Developers are faced with a different set of characteristics which, in turn, break some
existing assumptions and result in new challenges. In an SMP system with N processors, these
are the new execution characteristics.

27.2. Background 519

https://git.rtems.org/rtems/tree/testsuites/smptests

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 27 Section 27.2

• N tasks execute in parallel

• hardware events result in interrupts

There is true parallelism with a task executing on each processor and the possibility of inter-
rupts occurring on each processor. Thus in contrast to their being one task and one interrupt
to consider on a uniprocessor, there are N tasks and potentially N simultaneous interrupts to
consider on an SMP system.

This increase in hardware complexity and presence of true parallelism results in the application
developer needing to be even more cautious about mutual exclusion and shared data access
than in a uniprocessor embedded system. Race conditions that never or rarely happened when
an application executed on a uniprocessor system, become much more likely due to multiple
threads executing in parallel. On a uniprocessor system, these race conditions would only
happen when a task switch occurred at just the wrong moment. Now there are N-1 tasks
executing in parallel all the time and this results in many more opportunities for small windows
in critical sections to be hit.

27.2.4 Task Affinity

RTEMS provides services to manipulate the affinity of a task. Affinity is used to specify the
subset of processors in an SMP system on which a particular task can execute.

By default, tasks have an affinity which allows them to execute on any available processor.

Task affinity is a possible feature to be supported by SMP-aware schedulers. However, only a
subset of the available schedulers support affinity. Although the behavior is scheduler specific,
if the scheduler does not support affinity, it is likely to ignore all attempts to set affinity.

The scheduler with support for arbitary processor affinities uses a proof of concept implemen-
tation. See https://devel.rtems.org/ticket/2510.

27.2.5 Task Migration

With more than one processor in the system tasks can migrate from one processor to another.
There are four reasons why tasks migrate in RTEMS.

• The scheduler changes explicitly via rtems_task_set_scheduler() (page 106) or similar di-
rectives.

• The task processor affinity changes explicitly via rtems_task_set_affinity() (page 109) or
similar directives.

• The task resumes execution after a blocking operation. On a priority based scheduler it
will evict the lowest priority task currently assigned to a processor in the processor set
managed by the scheduler instance.

• The task moves temporarily to another scheduler instance due to locking protocols like
the Multiprocessor Resource Sharing Protocol (MrsP) (page 29) or the O(m) Independence-
Preserving Protocol (OMIP) (page 29).

Task migration should be avoided so that the working set of a task can stay on the most local
cache level.

520 Chapter 27. Symmetric Multiprocessing (SMP)

https://devel.rtems.org/ticket/2510

Chapter 27 Section 27.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

27.2.6 Clustered Scheduling

The scheduler is responsible to assign processors to some of the threads which are ready to
execute. Trouble starts if more ready threads than processors exist at the same time. There are
various rules how the processor assignment can be performed attempting to fulfill additional
constraints or yield some overall system properties. As a matter of fact it is impossible to meet
all requirements at the same time. The way a scheduler works distinguishes real-time operating
systems from general purpose operating systems.

We have clustered scheduling in case the set of processors of a system is partitioned into non-
empty pairwise-disjoint subsets of processors. These subsets are called clusters. Clusters with
a cardinality of one are partitions. Each cluster is owned by exactly one scheduler instance. In
case the cluster size equals the processor count, it is called global scheduling.

Modern SMP systems have multi-layer caches. An operating system which neglects cache con-
straints in the scheduler will not yield good performance. Real-time operating systems usually
provide priority (fixed or job-level) based schedulers so that each of the highest priority threads
is assigned to a processor. Priority based schedulers have difficulties in providing cache locality
for threads and may suffer from excessive thread migrations [Bra11] [CMV14]. Schedulers that
use local run queues and some sort of load-balancing to improve the cache utilization may not
fulfill global constraints [GCB13] and are more difficult to implement than one would normally
expect [LLF+16].

Clustered scheduling was implemented for RTEMS SMP to best use the cache topology of a
system and to keep the worst-case latencies under control. The low-level SMP locks use FIFO
ordering. So, the worst-case run-time of operations increases with each processor involved.
The scheduler configuration is quite flexible and done at link-time, see Clustered Scheduler Con-
figuration (page 450). It is possible to re-assign processors to schedulers during run-time via
rtems_scheduler_add_processor() (page 63) and rtems_scheduler_remove_processor() (page 64).
The schedulers are implemented in an object-oriented fashion.

The problem is to provide synchronization primitives for inter-cluster synchronization (more
than one cluster is involved in the synchronization process). In RTEMS there are currently
some means available

• events,

• message queues,

• mutexes using the O(m) Independence-Preserving Protocol (OMIP) (page 29),

• mutexes using the Multiprocessor Resource Sharing Protocol (MrsP) (page 29), and

• binary and counting semaphores.

The clustered scheduling approach enables separation of functions with real-time requirements
and functions that profit from fairness and high throughput provided the scheduler instances
are fully decoupled and adequate inter-cluster synchronization primitives are used.

To set the scheduler of a task see rtems_scheduler_ident() (page 54) and
rtems_task_set_scheduler() (page 106).

27.2.7 OpenMP

OpenMP support for RTEMS is available via the GCC provided libgomp. There is libgomp
support for RTEMS in the POSIX configuration of libgomp since GCC 4.9 (requires a Newlib

27.2. Background 521

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 27 Section 27.2

snapshot after 2015-03-12). In GCC 6.1 or later (requires a Newlib snapshot after 2015-07-
30 for <sys/lock.h> provided self-contained synchronization objects) there is a specialized
libgomp configuration for RTEMS which offers a significantly better performance compared to
the POSIX configuration of libgomp. In addition application configurable thread pools for each
scheduler instance are available in GCC 6.1 or later.

The run-time configuration of libgomp is done via environment variables documented in the
libgomp manual. The environment variables are evaluated in a constructor function which
executes in the context of the first initialization task before the actual initialization task function
is called (just like a global C++ constructor). To set application specific values, a higher priority
constructor function must be used to set up the environment variables.

1 #include <stdlib.h>
2 void __attribute__((constructor(1000))) config_libgomp(void)
3 {
4 setenv("OMP_DISPLAY_ENV", "VERBOSE", 1);
5 setenv("GOMP_SPINCOUNT", "30000", 1);
6 setenv("GOMP_RTEMS_THREAD_POOLS", "1$2@SCHD", 1);
7 }

The environment variable GOMP_RTEMS_THREAD_POOLS is RTEMS-specific. It determines the
thread pools for each scheduler instance. The format for GOMP_RTEMS_THREAD_POOLS is a list of
optional <thread-pool-count>[$<priority>]@<scheduler-name> configurations separated by :
where:

• <thread-pool-count> is the thread pool count for this scheduler instance.

• $<priority> is an optional priority for the worker threads of a thread pool according to
pthread_setschedparam. In case a priority value is omitted, then a worker thread will
inherit the priority of the OpenMP master thread that created it. The priority of the
worker thread is not changed by libgomp after creation, even if a new OpenMP master
thread using the worker has a different priority.

• @<scheduler-name> is the scheduler instance name according to the RTEMS application
configuration.

In case no thread pool configuration is specified for a scheduler instance, then each OpenMP
master thread of this scheduler instance will use its own dynamically allocated thread pool.
To limit the worker thread count of the thread pools, each OpenMP master thread must call
omp_set_num_threads.

Lets suppose we have three scheduler instances IO, WRK0, and WRK1 with
GOMP_RTEMS_THREAD_POOLS set to "1@WRK0:3$4@WRK1". Then there are no thread pool re-
strictions for scheduler instance IO. In the scheduler instance WRK0 there is one thread pool
available. Since no priority is specified for this scheduler instance, the worker thread inherits
the priority of the OpenMP master thread that created it. In the scheduler instance WRK1 there
are three thread pools available and their worker threads run at priority four.

27.2.8 Atomic Operations

There is no public RTEMS API for atomic operations. It is recommended to use the standard C
<stdatomic.h> or C++ <atomic> APIs in applications.

522 Chapter 27. Symmetric Multiprocessing (SMP)

https://gcc.gnu.org/onlinedocs/libgomp/
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/cpp/atomic/atomic

Chapter 27 Section 27.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

27.3 Application Issues

Most operating system services provided by the uniprocessor RTEMS are available in SMP con-
figurations as well. However, applications designed for an uniprocessor environment may need
some changes to correctly run in an SMP configuration.

As discussed earlier, SMP systems have opportunities for true parallelism which was not possible
on uniprocessor systems. Consequently, multiple techniques that provided adequate critical
sections on uniprocessor systems are unsafe on SMP systems. In this section, some of these
unsafe techniques will be discussed.

In general, applications must use proper operating system provided mutual exclusion mecha-
nisms to ensure correct behavior.

27.3.1 Task variables

Task variables are ordinary global variables with a dedicated value for each thread. During a
context switch from the executing thread to the heir thread, the value of each task variable is
saved to the thread control block of the executing thread and restored from the thread control
block of the heir thread. This is inherently broken if more than one executing thread exists.
Alternatives to task variables are POSIX keys and TLS. All use cases of task variables in the
RTEMS code base were replaced with alternatives. The task variable API has been removed in
RTEMS 5.1.

27.3.2 Highest Priority Thread Never Walks Alone

On a uniprocessor system, it is safe to assume that when the highest priority task in an appli-
cation executes, it will execute without being preempted until it voluntarily blocks. Interrupts
may occur while it is executing, but there will be no context switch to another task unless the
highest priority task voluntarily initiates it.

Given the assumption that no other tasks will have their execution interleaved with the highest
priority task, it is possible for this task to be constructed such that it does not need to acquire a
mutex for protected access to shared data.

In an SMP system, it cannot be assumed there will never be a single task executing. It should
be assumed that every processor is executing another application task. Further, those tasks
will be ones which would not have been executed in a uniprocessor configuration and should
be assumed to have data synchronization conflicts with what was formerly the highest priority
task which executed without conflict.

27.3.3 Disabling of Thread Preemption

A thread which disables preemption prevents that a higher priority thread gets hold of its proces-
sor involuntarily. In uniprocessor configurations, this can be used to ensure mutual exclusion
at thread level. In SMP configurations, however, more than one executing thread may exist.
Thus, it is impossible to ensure mutual exclusion using this mechanism. In order to prevent
that applications using preemption for this purpose, would show inappropriate behaviour, this
feature is disabled in SMP configurations and its use would case run-time errors.

27.3. Application Issues 523

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 27 Section 27.3

27.3.4 Disabling of Interrupts

A low overhead means that ensures mutual exclusion in uniprocessor configurations is the dis-
abling of interrupts around a critical section. This is commonly used in device driver code. In
SMP configurations, however, disabling the interrupts on one processor has no effect on other
processors. So, this is insufficient to ensure system-wide mutual exclusion. The macros

• rtems_interrupt_disable() (page 128),

• rtems_interrupt_enable() (page 129), and

• rtems_interrupt_flash() (page 130).

are disabled in SMP configurations and its use will cause compile-time warnings and link-time
errors. In the unlikely case that interrupts must be disabled on the current processor, the

• rtems_interrupt_local_disable() (page 131), and

• rtems_interrupt_local_enable() (page 133).

macros are now available in all configurations.

Since disabling of interrupts is insufficient to ensure system-wide mutual exclusion on SMP a
new low-level synchronization primitive was added – interrupt locks. The interrupt locks are
a simple API layer on top of the SMP locks used for low-level synchronization in the operating
system core. Currently, they are implemented as a ticket lock. In uniprocessor configurations,
they degenerate to simple interrupt disable/enable sequences by means of the C pre-processor.
It is disallowed to acquire a single interrupt lock in a nested way. This will result in an infinite
loop with interrupts disabled. While converting legacy code to interrupt locks, care must be
taken to avoid this situation to happen.

1 #include <rtems.h>
2

3 void legacy_code_with_interrupt_disable_enable(void)
4 {
5 rtems_interrupt_level level;
6

7 rtems_interrupt_disable(level);
8 /* Critical section */
9 rtems_interrupt_enable(level);

10 }
11

12 RTEMS_INTERRUPT_LOCK_DEFINE(static, lock, "Name")
13

14 void smp_ready_code_with_interrupt_lock(void)
15 {
16 rtems_interrupt_lock_context lock_context;
17

18 rtems_interrupt_lock_acquire(&lock, &lock_context);
19 /* Critical section */
20 rtems_interrupt_lock_release(&lock, &lock_context);
21 }

An alternative to the RTEMS-specific interrupt locks are POSIX spinlocks. The
pthread_spinlock_t is defined as a self-contained object, e.g. the user must provide the storage
for this synchronization object.

524 Chapter 27. Symmetric Multiprocessing (SMP)

Chapter 27 Section 27.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

1 #include <assert.h>
2 #include <pthread.h>
3

4 pthread_spinlock_t lock;
5

6 void smp_ready_code_with_posix_spinlock(void)
7 {
8 int error;
9

10 error = pthread_spin_lock(&lock);
11 assert(error == 0);
12 /* Critical section */
13 error = pthread_spin_unlock(&lock);
14 assert(error == 0);
15 }

In contrast to POSIX spinlock implementation on Linux or FreeBSD, it is not allowed to call
blocking operating system services inside the critical section. A recursive lock attempt is a
severe usage error resulting in an infinite loop with interrupts disabled. Nesting of different
locks is allowed. The user must ensure that no deadlock can occur. As a non-portable feature
the locks are zero-initialized, e.g. statically initialized global locks reside in the .bss section
and there is no need to call pthread_spin_init().

27.3.5 Interrupt Service Routines Execute in Parallel With Threads

On a machine with more than one processor, interrupt service routines (this includes timer ser-
vice routines installed via rtems_timer_fire_after() (page 174)) and threads can execute in par-
allel. Interrupt service routines must take this into account and use proper locking mechanisms
to protect critical sections from interference by threads (interrupt locks or POSIX spinlocks).
This likely requires code modifications in legacy device drivers.

27.3.6 Timers Do Not Stop Immediately

Timer service routines run in the context of the clock interrupt. On uniprocessor configurations,
it is sufficient to disable interrupts and remove a timer from the set of active timers to stop
it. In SMP configurations, however, the timer service routine may already run and wait on an
SMP lock owned by the thread which is about to stop the timer. This opens the door to subtle
synchronization issues. During destruction of objects, special care must be taken to ensure that
timer service routines cannot access (partly or fully) destroyed objects.

27.3.7 False Sharing of Cache Lines Due to Objects Table

The Classic API and most POSIX API objects are indirectly accessed via an object identifier. The
user-level functions validate the object identifier and map it to the actual object structure which
resides in a global objects table for each object class. So, unrelated objects are packed together
in a table. This may result in false sharing of cache lines. The effect of false sharing of cache
lines can be observed with the TMFINE 1 test program on a suitable platform, e.g. QorIQ T4240.
High-performance SMP applications need full control of the object storage [Dre07]. Therefore,
self-contained synchronization objects are now available for RTEMS.

27.3. Application Issues 525

https://git.rtems.org/rtems/tree/testsuites/tmtests/tmfine01

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 27 Section 27.4

27.4 Implementation Details

This section covers some implementation details of the RTEMS SMP support.

27.4.1 Low-Level Synchronization

All low-level synchronization primitives are implemented using C11 atomic operations, so no
target-specific hand-written assembler code is necessary. Four synchronization primitives are
currently available

• ticket locks (mutual exclusion),

• MCS locks (mutual exclusion),

• barriers, implemented as a sense barrier, and

• sequence locks [Boe12].

A vital requirement for low-level mutual exclusion is FIFO fairness since we are interested in a
predictable system and not maximum throughput. With this requirement, there are only few
options to resolve this problem. For reasons of simplicity, the ticket lock algorithm was chosen
to implement the SMP locks. However, the API is capable to support MCS locks, which may
be interesting in the future for systems with a processor count in the range of 32 or more, e.g.
NUMA, many-core systems.

The test program SMPLOCK 1 can be used to gather performance and fairness data for several
scenarios. The SMP lock performance and fairness measured on the QorIQ T4240 follows as an
example. This chip contains three L2 caches. Each L2 cache is shared by eight processors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Active Workers

0.0

0.5

1.0

1.5

2.0

2.5

O
p
e
ra
ti
o
n
 C
o
u
n
t

1e7 SMP Lock Performance

Ticket Lock
MCS Lock
TAS Lock
TTAS Lock

526 Chapter 27. Symmetric Multiprocessing (SMP)

https://git.rtems.org/rtems/tree/testsuites/smptests/smplock01

Chapter 27 Section 27.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Active Workers

10-6

10-5

10-4

10-3

10-2

10-1

100

N
o
rm

e
d
 C
o
e
ff
ic
ie
n
t
o
f
V
a
ri
a
ti
o
n

SMP Lock Fairness

Ticket Lock
MCS Lock
TAS Lock
TTAS Lock

27.4.2 Internal Locking

In SMP configurations, the operating system uses non-recursive SMP locks for low-level mutual
exclusion. The locking domains are roughly

• a particular data structure,

• the thread queue operations,

• the thread state changes, and

• the scheduler operations.

For a good average-case performance it is vital that every high-level synchronization object, e.g.
mutex, has its own SMP lock. In the average-case, only this SMP lock should be involved to carry
out a specific operation, e.g. obtain/release a mutex. In general, the high-level synchronization
objects have a thread queue embedded and use its SMP lock.

In case a thread must block on a thread queue, then things get complicated. The executing
thread first acquires the SMP lock of the thread queue and then figures out that it needs to
block. The procedure to block the thread on this particular thread queue involves state changes
of the thread itself and for this thread-specific SMP locks must be used.

In order to determine if a thread is blocked on a thread queue or not thread-specific SMP locks
must be used. A thread priority change must propagate this to the thread queue (possibly
recursively). Care must be taken to not have a lock order reversal between thread queue and
thread-specific SMP locks.

Each scheduler instance has its own SMP lock. For the scheduler helping protocol multiple
scheduler instances may be in charge of a thread. It is not possible to acquire two scheduler
instance SMP locks at the same time, otherwise deadlocks would happen. A thread-specific SMP
lock is used to synchronize the thread data shared by different scheduler instances.

The thread state SMP lock protects various things, e.g. the thread state, join operations, signals,
post-switch actions, the home scheduler instance, etc.

27.4. Implementation Details 527

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 27 Section 27.4

27.4.3 Profiling

To identify the bottlenecks in the system, support for profiling of low-level synchroniza-
tion is optionally available. The profiling support is a BSP build time configuration option
(--enable-profiling) and is implemented with an acceptable overhead, even for production
systems. A low-overhead counter for short time intervals must be provided by the hardware.

Profiling reports are generated in XML for most test programs of the RTEMS testsuite (more than
500 test programs). This gives a good sample set for statistics. For example the maximum thread
dispatch disable time, the maximum interrupt latency or lock contention can be determined.

1 <ProfilingReport name="SMPMIGRATION 1">
2 <PerCPUProfilingReport processorIndex="0">
3 <MaxThreadDispatchDisabledTime unit="ns">36636</MaxThreadDispatchDisabledTime>
4 <MeanThreadDispatchDisabledTime unit="ns">5065</MeanThreadDispatchDisabledTime>
5 <TotalThreadDispatchDisabledTime unit="ns">3846635988
6 </TotalThreadDispatchDisabledTime>
7 <ThreadDispatchDisabledCount>759395</ThreadDispatchDisabledCount>
8 <MaxInterruptDelay unit="ns">8772</MaxInterruptDelay>
9 <MaxInterruptTime unit="ns">13668</MaxInterruptTime>

10 <MeanInterruptTime unit="ns">6221</MeanInterruptTime>
11 <TotalInterruptTime unit="ns">6757072</TotalInterruptTime>
12 <InterruptCount>1086</InterruptCount>
13 </PerCPUProfilingReport>
14 <PerCPUProfilingReport processorIndex="1">
15 <MaxThreadDispatchDisabledTime unit="ns">39408</MaxThreadDispatchDisabledTime>
16 <MeanThreadDispatchDisabledTime unit="ns">5060</MeanThreadDispatchDisabledTime>
17 <TotalThreadDispatchDisabledTime unit="ns">3842749508
18 </TotalThreadDispatchDisabledTime>
19 <ThreadDispatchDisabledCount>759391</ThreadDispatchDisabledCount>
20 <MaxInterruptDelay unit="ns">8412</MaxInterruptDelay>
21 <MaxInterruptTime unit="ns">15868</MaxInterruptTime>
22 <MeanInterruptTime unit="ns">3525</MeanInterruptTime>
23 <TotalInterruptTime unit="ns">3814476</TotalInterruptTime>
24 <InterruptCount>1082</InterruptCount>
25 </PerCPUProfilingReport>
26 <!-- more reports omitted --->
27 <SMPLockProfilingReport name="Scheduler">
28 <MaxAcquireTime unit="ns">7092</MaxAcquireTime>
29 <MaxSectionTime unit="ns">10984</MaxSectionTime>
30 <MeanAcquireTime unit="ns">2320</MeanAcquireTime>
31 <MeanSectionTime unit="ns">199</MeanSectionTime>
32 <TotalAcquireTime unit="ns">3523939244</TotalAcquireTime>
33 <TotalSectionTime unit="ns">302545596</TotalSectionTime>
34 <UsageCount>1518758</UsageCount>
35 <ContentionCount initialQueueLength="0">759399</ContentionCount>
36 <ContentionCount initialQueueLength="1">759359</ContentionCount>
37 <ContentionCount initialQueueLength="2">0</ContentionCount>
38 <ContentionCount initialQueueLength="3">0</ContentionCount>
39 </SMPLockProfilingReport>
40 </ProfilingReport>

27.4.4 Scheduler Helping Protocol

The scheduler provides a helping protocol to support locking protocols like the O(m)
Independence-Preserving Protocol (OMIP) (page 29) or the Multiprocessor Resource Sharing Pro-

528 Chapter 27. Symmetric Multiprocessing (SMP)

Chapter 27 Section 27.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

tocol (MrsP) (page 29). Each thread has a scheduler node for each scheduler instance in
the system which are located in its TCB. A thread has exactly one home scheduler instance
which is set during thread creation. The home scheduler instance can be changed with
rtems_task_set_scheduler() (page 106). Due to the locking protocols a thread may gain access
to scheduler nodes of other scheduler instances. This allows the thread to temporarily migrate
to another scheduler instance in case of preemption.

The scheduler infrastructure is based on an object-oriented design. The scheduler operations
for a thread are defined as virtual functions. For the scheduler helping protocol the following
operations must be implemented by an SMP-aware scheduler

• ask a scheduler node for help,

• reconsider the help request of a scheduler node,

• withdraw a schedule node.

All currently available SMP-aware schedulers use a framework which is customized via inline
functions. This eases the implementation of scheduler variants. Up to now, only priority-based
schedulers are implemented.

In case a thread is allowed to use more than one scheduler node it will ask these nodes for help

• in case of preemption, or

• an unblock did not schedule the thread, or

• a yield was successful.

The actual ask for help scheduler operations are carried out as a side-effect of the thread dis-
patch procedure. Once a need for help is recognized, a help request is registered in one of
the processors related to the thread and a thread dispatch is issued. This indirection leads to
a better decoupling of scheduler instances. Unrelated processors are not burdened with extra
work for threads which participate in resource sharing. Each ask for help operation indicates if
it could help or not. The procedure stops after the first successful ask for help. Unsuccessful ask
for help operations will register this need in the scheduler context.

After a thread dispatch the reconsider help request operation is used to clean up stale help
registrations in the scheduler contexts.

The withdraw operation takes away scheduler nodes once the thread is no longer allowed to
use them, e.g. it released a mutex. The availability of scheduler nodes for a thread is controlled
by the thread queues.

27.4.5 Thread Dispatch Details

This section gives background information to developers interested in the interrupt latencies
introduced by thread dispatching. A thread dispatch consists of all work which must be done
to stop the currently executing thread on a processor and hand over this processor to an heir
thread.

In SMP systems, scheduling decisions on one processor must be propagated to other processors
through inter-processor interrupts. A thread dispatch which must be carried out on another
processor does not happen instantaneously. Thus, several thread dispatch requests might be
in the air and it is possible that some of them may be out of date before the corresponding
processor has time to deal with them. The thread dispatch mechanism uses three per-processor
variables,

27.4. Implementation Details 529

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 27 Section 27.4

• the executing thread,

• the heir thread, and

• a boolean flag indicating if a thread dispatch is necessary or not.

Updates of the heir thread are done via a normal store operation. The thread dispatch necessary
indicator of another processor is set as a side-effect of an inter-processor interrupt. So, this
change notification works without the use of locks. The thread context is protected by a TTAS
lock embedded in the context to ensure that it is used on at most one processor at a time.
Normally, only thread-specific or per-processor locks are used during a thread dispatch. This
implementation turned out to be quite efficient and no lock contention was observed in the
testsuite. The heavy-weight thread dispatch sequence is only entered in case the thread dispatch
indicator is set.

The context-switch is performed with interrupts enabled. During the transition from the exe-
cuting to the heir thread neither the stack of the executing nor the heir thread must be used
during interrupt processing. For this purpose a temporary per-processor stack is set up which
may be used by the interrupt prologue before the stack is switched to the interrupt stack.

27.4.6 Per-Processor Data

RTEMS provides two means for per-processor data:

1. Per-processor data which is used by RTEMS itself is contained in the Per_CPU_Control
structure. The application configuration via <rtems/confdefs.h> creates a table of these
structures (_Per_CPU_Information[]). The table is dimensioned according to the count of
configured processors (CONFIGURE_MAXIMUM_PROCESSORS (page 381)).

2. For low level support libraries an API for statically allocated per-processor data is available
via <rtems/score/percpudata.h>. This API is not intended for general application use.
Please ask on the development mailing list in case you want to use it.

27.4.7 Thread Pinning

Thread pinning ensures that a thread is only dispatched to the processor on which it is pinned.
It may be used to access per-processor data structures in critical sections with enabled thread
dispatching, e.g. a pinned thread is allowed to block. The _Thread_Pin() operation will pin the
executing thread to its current processor. A thread may be pinned recursively, the last unpin
request via _Thread_Unpin() revokes the pinning.

Thread pinning should be used only for short critical sections and not all the time. Thread
pinning is a very low overhead operation in case the thread is not preempted during the pinning.
A preemption will result in scheduler operations to ensure that the thread executes only on
its pinned processor. Thread pinning must be used with care, since it prevents help through
the locking protocols. This makes the OMIP (page 29) and MrsP (page 29) locking protocols
ineffective if pinned threads are involved.

The thread pinning is not intended for general application use. Please ask on the development
mailing list in case you want to use it.

530 Chapter 27. Symmetric Multiprocessing (SMP)

https://git.rtems.org/rtems/tree/cpukit/include/rtems/score/percpudata.h

CHAPTER

TWENTYEIGHT

PCI LIBRARY

531

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 28 Section 28.1

28.1 Introduction

The Peripheral Component Interconnect (PCI) bus is a very common computer bus architecture
that is found in almost every PC today. The PCI bus is normally located at the motherboard
where some PCI devices are soldered directly onto the PCB and expansion slots allows the user
to add custom devices easily. There is a wide range of PCI hardware available implementing all
sorts of interfaces and functions.

This section describes the PCI Library available in RTEMS used to access the PCI bus in a
portable way across computer architectures supported by RTEMS.

The PCI Library aims to be compatible with PCI 2.3 with a couple of limitations, for example
there is no support for hot-plugging, 64-bit memory space and cardbus bridges.

In order to support different architectures and with small foot-print embedded systems in mind
the PCI Library offers four different configuration options listed below. It is selected during
compile time by defining the appropriate macros in confdefs.h. It is also possible to enable
PCI_LIB_NONE (No Configuration) which can be used for debuging PCI access functions.

• Auto Configuration (Plug & Play)

• Read Configuration (read BIOS or boot loader configuration)

• Static Configuration (write user defined configuration)

• Peripheral Configuration (no access to cfg-space)

532 Chapter 28. PCI Library

Chapter 28 Section 28.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

28.2 Background

The PCI bus is constructed in a way where on-board devices and devices in expansion slots can
be automatically found (probed) and configured using Plug & Play completely implemented in
software. The bus is set up once during boot up. The Plug & Play information can be read
and written from PCI configuration space. A PCI device is identified in configuration space
by a unique bus, slot and function number. Each PCI slot can have up to 8 functions and
interface to another PCI sub-bus by implementing a PCI-to-PCI bridge according to the PCI
Bridge Architecture specification.

Using the unique [bus:slot:func] any device can be configured regardless of how PCI is currently
set up as long as all PCI buses are enumerated correctly. The enumeration is done during
probing, all bridges are given a bus number in order for the bridges to respond to accesses from
both directions. The PCI library can assign address ranges to which a PCI device should respond
using Plug & Play technique or a static user defined configuration. After the configuration has
been performed the PCI device drivers can find devices by the read-only PCI Class type, Vendor
ID and Device ID information found in configuration space for each device.

In some systems there is a boot loader or BIOS which have already configured all PCI devices,
but on embedded targets it is quite common that there is no BIOS or boot loader, thus RTEMS
must configure the PCI bus. Only the PCI host may do configuration space access, the host
driver or BSP is responsible to translate the [bus:slot:func] into a valid PCI configuration space
access.

If the target is not a host, but a peripheral, configuration space can not be accessed, the periph-
eral is set up by the host during start up. In complex embedded PCI systems the peripheral may
need to access other PCI boards than the host. In such systems a custom (static) configuration
of both the host and peripheral may be a convenient solution.

The PCI bus defines four interrupt signals INTA#..INTD#. The interrupt signals must be mapped
into a system interrupt/vector, it is up to the BSP or host driver to know the mapping, however
the BIOS or boot loader may use the 8-bit read/write “Interrupt Line” register to pass the knowl-
edge along to the OS.

The PCI standard defines and recommends that the backplane route the interupt lines in a sys-
tematic way, however in standard there is no such requirement. The PCI Auto Configuration
Library implements the recommended way of routing which is very common but it is also sup-
ported to some extent to override the interrupt routing from the BSP or Host Bridge driver using
the configuration structure.

28.2.1 Software Components

The PCI library is located in cpukit/libpci, it consists of different parts:

• PCI Host bridge driver interface

• Configuration routines

• Access (Configuration, I/O and Memory space) routines

• Interrupt routines (implemented by BSP)

• Print routines

• Static/peripheral configuration creation

28.2. Background 533

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 28 Section 28.2

• PCI shell command

28.2.2 PCI Configuration

During start up the PCI bus must be configured in order for host and peripherals to access one
another using Memory or I/O accesses and that interrupts are properly handled. Three different
spaces are defined and mapped separately:

1. I/O space (IO)

2. non-prefetchable Memory space (MEMIO)

3. prefetchable Memory space (MEM)

Regions of the same type (I/O or Memory) may not overlap which is guaranteed by the software.
MEM regions may be mapped into MEMIO regions, but MEMIO regions can not be mapped
into MEM, for that could lead to prefetching of registers. The interrupt pin which a board is
driving can be read out from PCI configuration space, however it is up to software to know
how interrupt signals are routed between PCI-to-PCI bridges and how PCI INT[A..D]# pins are
mapped to system IRQ. In systems where previous software (boot loader or BIOS) has already
set up this the configuration is overwritten or simply read out.

In order to support different configuration methods the following configuration libraries are
selectable by the user:

• Auto Configuration (run Plug & Play software)

• Read Configuration (relies on a boot loader or BIOS)

• Static Configuration (write user defined setup, no Plug & Play)

• Peripheral Configuration (user defined setup, no access to configuration space)

A host driver can be made to support all three configuration methods, or any combination. It
may be defined by the BSP which approach is used.

The configuration software is called from the PCI driver (pci_config_init()).

Regardless of configuration method a PCI device tree is created in RAM during initialization,
the tree can be accessed to find devices and resources without accessing configuration space
later on. The user is responsible to create the device tree at compile time when using the
static/peripheral method.

28.2.2.1 RTEMS Configuration selection

The active configuration method can be selected at compile time in the same way as other
project parameters by including rtems/confdefs.h and setting

• CONFIGURE_INIT

• RTEMS_PCI_CONFIG_LIB

• CONFIGURE_PCI_LIB = PCI_LIB_(AUTO,STATIC,READ,PERIPHERAL)

See the RTEMS configuration section how to setup the PCI library.

534 Chapter 28. PCI Library

Chapter 28 Section 28.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

28.2.2.2 Auto Configuration

The auto configuration software enumerates PCI buses and initializes all PCI devices found
using Plug & Play. The auto configuration software requires that a configuration setup has been
registered by the driver or BSP in order to setup the I/O and Memory regions at the correct
address ranges. PCI interrupt pins can optionally be routed over PCI-to-PCI bridges and mapped
to a system interrupt number. BAR resources are sorted by size and required alignment, unused
“dead” space may be created when PCI bridges are present due to the PCI bridge window size
does not equal the alignment. To cope with that resources are reordered to fit smaller BARs
into the dead space to minimize the PCI space required. If a BAR or ROM register can not be
allocated a PCI address region (due to too few resources available) the register will be given
the value of pci_invalid_address which defaults to 0.

The auto configuration routines support:

• PCI 2.3

• Little and big endian PCI bus

• one I/O 16 or 32-bit range (IO)

• memory space (MEMIO)

• prefetchable memory space (MEM), if not present MEM will be mapped into MEMIO

• multiple PCI buses - PCI-to-PCI bridges

• standard BARs, PCI-to-PCI bridge BARs, ROM BARs

• Interrupt routing over bridges

• Interrupt pin to system interrupt mapping

Not supported:

• hot-pluggable devices

• Cardbus bridges

• 64-bit memory space

• 16-bit and 32-bit I/O address ranges at the same time

In PCI 2.3 there may exist I/O BARs that must be located at the low 64kBytes address range, in
order to support this the host driver or BSP must make sure that I/O addresses region is within
this region.

28.2.2.3 Read Configuration

When a BIOS or boot loader already has setup the PCI bus the configuration can be read di-
rectly from the PCI resource registers and buses are already enumerated, this is a much simpler
approach than configuring PCI ourselves. The PCI device tree is automatically created based on
the current configuration and devices present. After initialization is done there is no difference
between the auto or read configuration approaches.

28.2. Background 535

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 28 Section 28.2

28.2.2.4 Static Configuration

To support custom configurations and small-footprint PCI systems, the user may provide the
PCI device tree which contains the current configuration. The PCI buses are enumerated and all
resources are written to PCI devices during initialization. When this approach is selected PCI
boards must be located at the same slots every time and devices can not be removed or added,
Plug & Play is not performed. Boards of the same type may of course be exchanged.

The user can create a configuration by calling pci_cfg_print() on a running system that has
had PCI setup by the auto or read configuration routines, it can be called from the PCI shell
command. The user must provide the PCI device tree named pci_hb.

28.2.2.5 Peripheral Configuration

On systems where a peripheral PCI device needs to access other PCI devices than the host the
peripheral configuration approach may be handy. Most PCI devices answers on the PCI host’s
requests and start DMA accesses into the Hosts memory, however in some complex systems PCI
devices may want to access other devices on the same bus or at another PCI bus.

A PCI peripheral is not allowed to do PCI configuration cycles, which means that it must either
rely on the host to give it the addresses it needs, or that the addresses are predefined.

This configuration approach is very similar to the static option, however the configuration is
never written to PCI bus, instead it is only used for drivers to find PCI devices and resources
using the same PCI API as for the host

28.2.3 PCI Access

The PCI access routines are low-level routines provided for drivers, configuration software,
etc. in order to access different regions in a way not dependent upon the host driver, BSP or
platform.

• PCI configuration space

• PCI I/O space

• Registers over PCI memory space

• Translate PCI address into CPU accessible address and vice versa

By using the access routines drivers can be made portable over different architectures. The
access routines take the architecture endianness into consideration and let the host driver or
BSP implement I/O space and configuration space access.

Some non-standard hardware may also define the PCI bus big-endian, for example the LEON2
AT697 PCI host bridge and some LEON3 systems may be configured that way. It is up to the
BSP to set the appropriate PCI endianness on compile time (BSP_PCI_BIG_ENDIAN) in order for
inline macros to be correctly defined. Another possibility is to use the function pointers defined
by the access layer to implement drivers that support “run-time endianness detection”.

28.2.3.1 Configuration space

Configuration space is accessed using the routines listed below. The pci_dev_t type is used to
specify a specific PCI bus, device and function. It is up to the host driver or BSP to create a valid

536 Chapter 28. PCI Library

Chapter 28 Section 28.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

access to the requested PCI slot. Requests made to slots that are not supported by hardware
should result in PCISTS_MSTABRT and/or data must be ignored (writes) or 0xFFFFFFFF is always
returned (reads).

1 /* Configuration Space Access Read Routines */
2 extern int pci_cfg_r8(pci_dev_t dev, int ofs, uint8_t *data);
3 extern int pci_cfg_r16(pci_dev_t dev, int ofs, uint16_t *data);
4 extern int pci_cfg_r32(pci_dev_t dev, int ofs, uint32_t *data);
5

6 /* Configuration Space Access Write Routines */
7 extern int pci_cfg_w8(pci_dev_t dev, int ofs, uint8_t data);
8 extern int pci_cfg_w16(pci_dev_t dev, int ofs, uint16_t data);
9 extern int pci_cfg_w32(pci_dev_t dev, int ofs, uint32_t data);

28.2.3.2 I/O space

The BSP or driver provide special routines in order to access I/O space. Some architectures have
a special instruction accessing I/O space, others have it mapped into a “PCI I/O window” in the
standard address space accessed by the CPU. The window size may vary and must be taken into
consideration by the host driver. The below routines must be used to access I/O space. The
address given to the functions is not the PCI I/O addresses, the caller must have translated PCI
I/O addresses (available in the PCI BARs) into a BSP or host driver custom address, see Access
functions (page 538) for how addresses are translated.

1 /* Read a register over PCI I/O Space */
2 extern uint8_t pci_io_r8(uint32_t adr);
3 extern uint16_t pci_io_r16(uint32_t adr);
4 extern uint32_t pci_io_r32(uint32_t adr);
5

6 /* Write a register over PCI I/O Space */
7 extern void pci_io_w8(uint32_t adr, uint8_t data);
8 extern void pci_io_w16(uint32_t adr, uint16_t data);
9 extern void pci_io_w32(uint32_t adr, uint32_t data);

28.2.3.3 Registers over Memory space

PCI host bridge hardware normally swap data accesses into the endianness of the host architec-
ture in order to lower the load of the CPU, peripherals can do DMA without swapping. However,
the host controller can not separate a standard memory access from a memory access to a regis-
ter, registers may be mapped into memory space. This leads to register content being swapped,
which must be swapped back. The below routines makes it possible to access registers over
PCI memory space in a portable way on different architectures, the BSP or architecture must
provide necessary functions in order to implement this.

1 static inline uint16_t pci_ld_le16(volatile uint16_t *addr);
2 static inline void pci_st_le16(volatile uint16_t *addr, uint16_t val);
3 static inline uint32_t pci_ld_le32(volatile uint32_t *addr);
4 static inline void pci_st_le32(volatile uint32_t *addr, uint32_t val);
5 static inline uint16_t pci_ld_be16(volatile uint16_t *addr);
6 static inline void pci_st_be16(volatile uint16_t *addr, uint16_t val);
7 static inline uint32_t pci_ld_be32(volatile uint32_t *addr);
8 static inline void pci_st_be32(volatile uint32_t *addr, uint32_t val);

28.2. Background 537

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 28 Section 28.2

In order to support non-standard big-endian PCI bus the above pci_* functions is required,
pci_ld_le16 != ld_le16 on big endian PCI buses.

28.2.3.4 Access functions

The PCI Access Library can provide device drivers with function pointers executing the above
Configuration, I/O and Memory space accesses. The functions have the same arguments and
return values as the above functions.

The pci_access_func() function defined below can be used to get a function pointer of a specific
access type.

1 /* Get Read/Write function for accessing a register over PCI Memory Space
2 * (non-inline functions).
3 *
4 * Arguments
5 * wr 0(Read), 1(Write)
6 * size 1(Byte), 2(Word), 4(Double Word)
7 * func Where function pointer will be stored
8 * endian PCI_LITTLE_ENDIAN or PCI_BIG_ENDIAN
9 * type 1(I/O), 3(REG over MEM), 4(CFG)

10 *
11 * Return
12 * 0 Found function
13 * others No such function defined by host driver or BSP
14 */
15 int pci_access_func(int wr, int size, void **func, int endian, int type);

PCI device drivers may be written to support run-time detection of endianess, this is mosly for
debugging or for development systems. When the product is finally deployed macros switch to
using the inline functions instead which have been configured for the correct endianness.

28.2.3.5 PCI address translation

When PCI addresses, both I/O and memory space, is not mapped 1:1 address translation before
access is needed. If drivers read the PCI resources directly using configuration space routines or
in the device tree, the addresses given are PCI addresses. The below functions can be used to
translate PCI addresses into CPU accessible addresses or vice versa, translation may be different
for different PCI spaces/regions.

1 /* Translate PCI address into CPU accessible address */
2 static inline int pci_pci2cpu(uint32_t *address, int type);
3

4 /* Translate CPU accessible address into PCI address (for DMA) */
5 static inline int pci_cpu2pci(uint32_t *address, int type);

28.2.4 PCI Interrupt

The PCI specification defines four different interrupt lines INTA#..INTD#, the interrupts are low
level sensitive which make it possible to support multiple interrupt sources on the same inter-
rupt line. Since the lines are level sensitive the interrupt sources must be acknowledged before
clearing the interrupt contoller, or the interrupt controller must be masked. The BSP must

538 Chapter 28. PCI Library

Chapter 28 Section 28.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

provide a routine for clearing/acknowledging the interrupt controller, it is up to the interrupt
service routine to acknowledge the interrupt source.

The PCI Library relies on the BSP for implementing shared interrupt handling through the
BSP_PCI_shared_interrupt_* functions/macros, they must be defined when including bsp.h.

PCI device drivers may use the pci_interrupt_* routines in order to call the BSP specific functions
in a platform independent way. The PCI interrupt interface has been made similar to the RTEMS
IRQ extension so that a BSP can use the standard RTEMS interrupt functions directly.

28.2.5 PCI Shell command

The RTEMS shell has a PCI command ‘pci’ which makes it possible to read/write configuration
space, print the current PCI configuration and print out a configuration C-file for the static or
peripheral library.

28.2. Background 539

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 28 Section 28.2

540 Chapter 28. PCI Library

CHAPTER

TWENTYNINE

STACK BOUNDS CHECKER

541

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 29 Section 29.1

29.1 Introduction

The stack bounds checker is an RTEMS support component that determines if a task has overrun
its run-time stack. The routines provided by the stack bounds checker manager are:

• rtems_stack_checker_is_blown (page 546) - Has the Current Task Blown its Stack

• rtems_stack_checker_report_usage (page 546) - Report Task Stack Usage

542 Chapter 29. Stack Bounds Checker

Chapter 29 Section 29.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

29.2 Background

29.2.1 Task Stack

Each task in a system has a fixed size stack associated with it. This stack is allocated when the
task is created. As the task executes, the stack is used to contain parameters, return addresses,
saved registers, and local variables. The amount of stack space required by a task is dependent
on the exact set of routines used. The peak stack usage reflects the worst case of subroutine
pushing information on the stack. For example, if a subroutine allocates a local buffer of 1024
bytes, then this data must be accounted for in the stack of every task that invokes that routine.

Recursive routines make calculating peak stack usage difficult, if not impossible. Each call to
the recursive routine consumes n bytes of stack space. If the routine recursives 1000 times, then
1000 * n bytes of stack space are required.

29.2.2 Execution

The stack bounds checker operates as a set of task extensions. At task creation time, the task’s
stack is filled with a pattern to indicate the stack is unused. As the task executes, it will overwrite
this pattern in memory. At each task switch, the stack bounds checker’s task switch extension is
executed. This extension checks that:

• the last n bytes of the task’s stack have not been overwritten. If this pattern has been
damaged, it indicates that at some point since this task was context switch to the CPU, it
has used too much stack space.

• the current stack pointer of the task is not within the address range allocated for use as
the task’s stack.

If either of these conditions is detected, then a blown stack error is reported using the printk
routine.

The number of bytes checked for an overwrite is processor family dependent. The minimum
stack frame per subroutine call varies widely between processor families. On CISC families like
the Motorola MC68xxx and Intel ix86, all that is needed is a return address. On more complex
RISC processors, the minimum stack frame per subroutine call may include space to save a
significant number of registers.

Another processor dependent feature that must be taken into account by the stack bounds
checker is the direction that the stack grows. On some processor families, the stack grows up or
to higher addresses as the task executes. On other families, it grows down to lower addresses.
The stack bounds checker implementation uses the stack description definitions provided by
every RTEMS port to get for this information.

29.2. Background 543

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 29 Section 29.3

29.3 Operations

29.3.1 Initializing the Stack Bounds Checker

The stack checker is initialized automatically when its task create extension runs for the first
time.

The application must include the stack bounds checker extension set in its set of Initial Ex-
tensions. This set of extensions is defined as STACK_CHECKER_EXTENSION. If using <rtems/
confdefs.h> for Configuration Table generation, then all that is necessary is to define the macro
CONFIGURE_STACK_CHECKER_ENABLED before including <rtems/confdefs.h> as shown below:

1 #define CONFIGURE_STACK_CHECKER_ENABLED
2 ...
3 #include <rtems/confdefs.h>

29.3.2 Checking for Blown Task Stack

The application may check whether the stack pointer of currently executing task is within proper
bounds at any time by calling the rtems_stack_checker_is_blown method. This method return
FALSE if the task is operating within its stack bounds and has not damaged its pattern area.

29.3.3 Reporting Task Stack Usage

The application may dynamically report the stack usage for every task in the system by calling
the rtems_stack_checker_report_usage routine. This routine prints a table with the peak usage
and stack size of every task in the system. The following is an example of the report generated:

1 ID NAME LOW HIGH AVAILABLE USED
2 0x04010001 IDLE 0x003e8a60 0x003e9667 2952 200
3 0x08010002 TA1 0x003e5750 0x003e7b57 9096 1168
4 0x08010003 TA2 0x003e31c8 0x003e55cf 9096 1168
5 0x08010004 TA3 0x003e0c40 0x003e3047 9096 1104
6 0xffffffff INTR 0x003ecfc0 0x003effbf 12160 128

Notice the last line. The task id is 0xffffffff and its name is INTR. This is not actually a task,
it is the interrupt stack.

29.3.4 When a Task Overflows the Stack

When the stack bounds checker determines that a stack overflow has occurred, it will attempt
to print a message using printk identifying the task and then shut the system down. If the stack
overflow has caused corruption, then it is possible that the message cannot be printed.

The following is an example of the output generated:

1 BLOWN STACK!!! Offending task(0x3eb360): id=0x08010002; name=0x54413120
2 stack covers range 0x003e5750 - 0x003e7b57 (9224 bytes)
3 Damaged pattern begins at 0x003e5758 and is 128 bytes long

544 Chapter 29. Stack Bounds Checker

Chapter 29 Section 29.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

The above includes the task id and a pointer to the task control block as well as enough infor-
mation so one can look at the task’s stack and see what was happening.

29.3. Operations 545

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 29 Section 29.4

29.4 Routines

This section details the stack bounds checker’s routines. A subsection is dedicated to each of
routines and describes the calling sequence, related constants, usage, and status codes.

29.4.1 STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack

CALLING SEQUENCE:

1 bool rtems_stack_checker_is_blown(void);

STATUS CODES:

TRUE Stack is operating within its stack limits
FALSE Current stack pointer is outside allocated area

DESCRIPTION:
This method is used to determine if the current stack pointer of the currently executing task
is within bounds.

NOTES:
This method checks the current stack pointer against the high and low addresses of the stack
memory allocated when the task was created and it looks for damage to the high water mark
pattern for the worst case usage of the task being called.

29.4.2 STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage

CALLING SEQUENCE:

1 void rtems_stack_checker_report_usage(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine prints a table with the peak stack usage and stack space allocation of every task
in the system.

NOTES:
NONE

546 Chapter 29. Stack Bounds Checker

CHAPTER

THIRTY

CPU USAGE STATISTICS

547

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 30 Section 30.1

30.1 Introduction

The CPU usage statistics manager is an RTEMS support component that provides a convenient
way to manipulate the CPU usage information associated with each task The routines provided
by the CPU usage statistics manager are:

• rtems_cpu_usage_report (page 552) - Report CPU Usage Statistics

• rtems_cpu_usage_reset (page 553) - Reset CPU Usage Statistics

548 Chapter 30. CPU Usage Statistics

Chapter 30 Section 30.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

30.2 Background

When analyzing and debugging real-time applications, it is important to be able to know how
much CPU time each task in the system consumes. This support component provides a mecha-
nism to easily obtain this information with little burden placed on the target.

The raw data is gathered as part of performing a context switch. RTEMS keeps track of how
many clock ticks have occurred which the task being switched out has been executing. If the
task has been running less than 1 clock tick, then for the purposes of the statistics, it is assumed
to have executed 1 clock tick. This results in some inaccuracy but the alternative is for the task
to have appeared to execute 0 clock ticks.

RTEMS versions newer than the 4.7 release series, support the ability to obtain timestamps with
nanosecond granularity if the BSP provides support. It is a desirable enhancement to change
the way the usage data is gathered to take advantage of this recently added capability. Please
consider sponsoring the core RTEMS development team to add this capability.

30.2. Background 549

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 30 Section 30.3

30.3 Operations

30.3.1 Report CPU Usage Statistics

The application may dynamically report the CPU usage for every task in the system by calling
the rtems_cpu_usage_report routine. This routine prints a table with the following information
per task:

• task id

• task name

• number of clock ticks executed

• percentage of time consumed by this task

The following is an example of the report generated:

1 +--+
2 |CPU USAGE BY THREAD |
3 +-----------+--+-------------------------+
4 |ID | NAME | SECONDS | PERCENT |
5 +-----------+--+---------------+---------+
6 |0x04010001 | IDLE | 0 | 0.000 |
7 +-----------+--+---------------+---------+
8 |0x08010002 | TA1 | 1203 | 0.748 |
9 +-----------+--+---------------+---------+

10 |0x08010003 | TA2 | 203 | 0.126 |
11 +-----------+--+---------------+---------+
12 |0x08010004 | TA3 | 202 | 0.126 |
13 +-----------+--+---------------+---------+
14 |TICKS SINCE LAST SYSTEM RESET: 1600 |
15 |TOTAL UNITS: 1608 |
16 +--+

Notice that the TOTAL UNITS is greater than the ticks per reset. This is an artifact of the way
in which RTEMS keeps track of CPU usage. When a task is context switched into the CPU, the
number of clock ticks it has executed is incremented. While the task is executing, this number
is incremented on each clock tick. Otherwise, if a task begins and completes execution between
successive clock ticks, there would be no way to tell that it executed at all.

Another thing to keep in mind when looking at idle time, is that many systems - especially
during debug - have a task providing some type of debug interface. It is usually fine to think of
the total idle time as being the sum of the IDLE task and a debug task that will not be included
in a production build of an application.

30.3.2 Reset CPU Usage Statistics

Invoking the rtems_cpu_usage_reset routine resets the CPU usage statistics for all tasks in the
system.

550 Chapter 30. CPU Usage Statistics

Chapter 30 Section 30.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

30.4 Directives

This section details the CPU usage statistics manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

30.4. Directives 551

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 30 Section 30.4

30.4.1 cpu_usage_report - Report CPU Usage Statistics

CALLING SEQUENCE:

1 void rtems_cpu_usage_report(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine prints out a table detailing the CPU usage statistics for all tasks in the system.

NOTES:
The table is printed using the printk routine.

552 Chapter 30. CPU Usage Statistics

Chapter 30 Section 30.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

30.4.2 cpu_usage_reset - Reset CPU Usage Statistics

CALLING SEQUENCE:

1 void rtems_cpu_usage_reset(void);

STATUS CODES:
NONE

DESCRIPTION:
This routine re-initializes the CPU usage statistics for all tasks in the system to their initial
state. The initial state is that a task has not executed and thus has consumed no CPU time.
default state which is when zero period executions have occurred.

NOTES:
NONE

30.4. Directives 553

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 30 Section 30.4

554 Chapter 30. CPU Usage Statistics

CHAPTER

THIRTYONE

OBJECT SERVICES

555

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.1

31.1 Introduction

RTEMS provides a collection of services to assist in the management and usage of the objects
created and utilized via other managers. These services assist in the manipulation of RTEMS
objects independent of the API used to create them. The object related services provided by
RTEMS are:

• build_id

• rtems_build_name (page 561) - build object name from characters

• rtems_object_get_classic_name (page 562) - lookup name from Id

• rtems_object_get_name (page 563) - obtain object name as string

• rtems_object_set_name (page 564) - set object name

• rtems_object_id_get_api (page 565) - obtain API from Id

• rtems_object_id_get_class (page 566) - obtain class from Id

• rtems_object_id_get_node (page 567) - obtain node from Id

• rtems_object_id_get_index (page 568) - obtain index from Id

• rtems_build_id (page 569) - build object id from components

• rtems_object_id_api_minimum (page 570) - obtain minimum API value

• rtems_object_id_api_maximum (page 571) - obtain maximum API value

• rtems_object_id_api_minimum_class (page 574) - obtain minimum class value

• rtems_object_id_api_maximum_class (page 575) - obtain maximum class value

• rtems_object_get_api_name (page 576) - obtain API name

• rtems_object_get_api_class_name (page 577) - obtain class name

• rtems_object_get_class_information (page 578) - obtain class information

• rtems_object_get_local_node (page 579) - obtain local node

556 Chapter 31. Object Services

Chapter 31 Section 31.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.2 Background

31.2.1 APIs

RTEMS implements multiple APIs including an Internal API, the Classic API, and the POSIX
API. These APIs share the common foundation of SuperCore objects and thus share object man-
agement code. This includes a common scheme for object Ids and for managing object names
whether those names be in the thirty-two bit form used by the Classic API or C strings.

The object Id contains a field indicating the API that an object instance is associated with. This
field holds a numerically small non-zero integer.

31.2.2 Object Classes

Each API consists of a collection of managers. Each manager is responsible for instances of a
particular object class. Classic API Tasks and POSIX Mutexes example classes.

The object Id contains a field indicating the class that an object instance is associated with. This
field holds a numerically small non-zero integer. In all APIs, a class value of one is reserved for
tasks or threads.

31.2.3 Object Names

Every RTEMS object which has an Id may also have a name associated with it. Depending on
the API, names may be either thirty-two bit integers as in the Classic API or strings as in the
POSIX API.

Some objects have Ids but do not have a defined way to associate a name with them. For
example, POSIX threads have Ids but per POSIX do not have names. In RTEMS, objects
not defined to have thirty-two bit names may have string names assigned to them via the
rtems_object_set_name service. The original impetus in providing this service was so the nor-
mally anonymous POSIX threads could have a user defined name in CPU Usage Reports.

31.2. Background 557

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.3

31.3 Operations

31.3.1 Decomposing and Recomposing an Object Id

Services are provided to decompose an object Id into its subordinate components. The following
services are used to do this:

• rtems_object_id_get_api

• rtems_object_id_get_class

• rtems_object_id_get_node

• rtems_object_id_get_index

The following C language example illustrates the decomposition of an Id and printing the values.

1 void printObjectId(rtems_id id)
2 {
3 printf(
4 "API=%d Class=%" PRIu32 " Node=%" PRIu32 " Index=%" PRIu16 "\n",
5 rtems_object_id_get_api(id),
6 rtems_object_id_get_class(id),
7 rtems_object_id_get_node(id),
8 rtems_object_id_get_index(id)
9);

10 }

This prints the components of the Ids as integers.

It is also possible to construct an arbitrary Id using the rtems_build_id service. The following
C language example illustrates how to construct the “next Id.”

1 rtems_id nextObjectId(rtems_id id)
2 {
3 return rtems_build_id(
4 rtems_object_id_get_api(id),
5 rtems_object_id_get_class(id),
6 rtems_object_id_get_node(id),
7 rtems_object_id_get_index(id) + 1
8);
9 }

Note that this Id may not be valid in this system or associated with an allocated object.

31.3.2 Printing an Object Id

RTEMS also provides services to associate the API and Class portions of an Object Id with strings.
This allows the application developer to provide more information about an object in diagnostic
messages.

In the following C language example, an Id is decomposed into its constituent parts and “pretty-
printed.”

558 Chapter 31. Object Services

Chapter 31 Section 31.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

1 void prettyPrintObjectId(rtems_id id)
2 {
3 int tmpAPI;
4 uint32_t tmpClass;
5

6 tmpAPI = rtems_object_id_get_api(id),
7 tmpClass = rtems_object_id_get_class(id),
8

9 printf(
10 "API=%s Class=%s Node=%" PRIu32 " Index=%" PRIu16 "\n",
11 rtems_object_get_api_name(tmpAPI),
12 rtems_object_get_api_class_name(tmpAPI, tmpClass),
13 rtems_object_id_get_node(id),
14 rtems_object_id_get_index(id)
15);
16 }

31.3. Operations 559

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4 Directives

560 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.1 BUILD_NAME - Build object name from characters

CALLING SEQUENCE:

1 rtems_name rtems_build_name(
2 uint8_t c1,
3 uint8_t c2,
4 uint8_t c3,
5 uint8_t c4
6);

DIRECTIVE STATUS CODES:
Returns a name constructed from the four characters.

DESCRIPTION:
This service takes the four characters provided as arguments and constructs a thirty-two bit
object name with c1 in the most significant byte and c4 in the least significant byte.

NOTES:
This directive is strictly local and does not impact task scheduling.

31.4. Directives 561

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.2 OBJECT_GET_CLASSIC_NAME - Lookup name from id

CALLING SEQUENCE:

1 rtems_status_code rtems_object_get_classic_name(
2 rtems_id id,
3 rtems_name *name
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL name looked up successfully
RTEMS_INVALID_ADDRESS invalid name pointer
RTEMS_INVALID_ID invalid object id

DESCRIPTION:
This service looks up the name for the object id specified and, if found, places the result in
*name.

NOTES:
This directive is strictly local and does not impact task scheduling.

562 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.3 OBJECT_GET_NAME - Obtain object name as string

CALLING SEQUENCE:

1 char* rtems_object_get_name(
2 rtems_id id,
3 size_t length,
4 char *name
5);

DIRECTIVE STATUS CODES:
Returns a pointer to the name if successful or NULL otherwise.

DESCRIPTION:
This service looks up the name of the object specified by id and places it in the memory
pointed to by name. Every attempt is made to return name as a printable string even if the
object has the Classic API thirty-two bit style name.

NOTES:
This directive is strictly local and does not impact task scheduling.

31.4. Directives 563

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.4 OBJECT_SET_NAME - Set object name

CALLING SEQUENCE:

1 rtems_status_code rtems_object_set_name(
2 rtems_id id,
3 const char *name
4);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL name looked up successfully
RTEMS_INVALID_ADDRESS invalid name pointer
RTEMS_INVALID_ID invalid object id

DESCRIPTION:
This service sets the name of id to that specified by the string located at name.

NOTES:
This directive is strictly local and does not impact task scheduling.

If the object specified by id is of a class that has a string name, this method will free the exist-
ing name to the RTEMS Workspace and allocate enough memory from the RTEMS Workspace
to make a copy of the string located at name.

If the object specified by id is of a class that has a thirty-two bit integer style name, then
the first four characters in *name will be used to construct the name. name to the RTEMS
Workspace and allocate enough memory from the RTEMS Workspace to make a copy of the
string

564 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.5 OBJECT_ID_GET_API - Obtain API from Id

CALLING SEQUENCE:

1 int rtems_object_id_get_api(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the API portion of the object Id.

DESCRIPTION:
This directive returns the API portion of the provided object id.

NOTES:
This directive is strictly local and does not impact task scheduling.

This directive does NOT validate the id provided.

31.4. Directives 565

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.6 OBJECT_ID_GET_CLASS - Obtain Class from Id

CALLING SEQUENCE:

1 uint32_t rtems_object_id_get_class(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the class portion of the object Id.

DESCRIPTION:
This directive returns the class portion of the provided object id.

NOTES:
This directive is strictly local and does not impact task scheduling.

This directive does NOT validate the id provided.

566 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.7 OBJECT_ID_GET_NODE - Obtain Node from Id

CALLING SEQUENCE:

1 uint32_t rtems_object_id_get_node(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the node portion of the object Id.

DESCRIPTION:
This directive returns the node portion of the provided object id.

NOTES:
This directive is strictly local and does not impact task scheduling.

This directive does NOT validate the id provided.

31.4. Directives 567

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.8 OBJECT_ID_GET_INDEX - Obtain Index from Id

CALLING SEQUENCE:

1 uint16_t rtems_object_id_get_index(
2 rtems_id id
3);

DIRECTIVE STATUS CODES:
Returns the index portion of the object Id.

DESCRIPTION:
This directive returns the index portion of the provided object id.

NOTES:
This directive is strictly local and does not impact task scheduling.

This directive does NOT validate the id provided.

568 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.9 BUILD_ID - Build Object Id From Components

CALLING SEQUENCE:

1 rtems_id rtems_build_id(
2 int the_api,
3 int the_class,
4 int the_node,
5 int the_index
6);

DIRECTIVE STATUS CODES:
Returns an object Id constructed from the provided arguments.

DESCRIPTION:
This service constructs an object Id from the provided the_api, the_class, the_node, and
the_index.

NOTES:
This directive is strictly local and does not impact task scheduling.

This directive does NOT validate the arguments provided or the Object id returned.

31.4. Directives 569

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.10 OBJECT_ID_API_MINIMUM - Obtain Minimum API Value

CALLING SEQUENCE:

1 int rtems_object_id_api_minimum(void);

DIRECTIVE STATUS CODES:
Returns the minimum valid for the API portion of an object Id.

DESCRIPTION:
This service returns the minimum valid for the API portion of an object Id.

NOTES:
This directive is strictly local and does not impact task scheduling.

570 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.11 OBJECT_ID_API_MAXIMUM - Obtain Maximum API Value

CALLING SEQUENCE:

1 int rtems_object_id_api_maximum(void);

DIRECTIVE STATUS CODES:
Returns the maximum valid for the API portion of an object Id.

DESCRIPTION:
This service returns the maximum valid for the API portion of an object Id.

NOTES:
This directive is strictly local and does not impact task scheduling.

31.4. Directives 571

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.12 OBJECT_API_MINIMUM_CLASS - Obtain Minimum Class Value

CALLING SEQUENCE:

1 int rtems_object_api_minimum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the minimum valid for the class portion of an object Id for
the specified api.

DESCRIPTION:
This service returns the minimum valid for the class portion of an object Id for the specified
api.

NOTES:
This directive is strictly local and does not impact task scheduling.

572 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.13 OBJECT_API_MAXIMUM_CLASS - Obtain Maximum Class Value

CALLING SEQUENCE:

1 int rtems_object_api_maximum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the maximum valid for the class portion of an object Id for
the specified api.

DESCRIPTION:
This service returns the maximum valid for the class portion of an object Id for the specified
api.

NOTES:
This directive is strictly local and does not impact task scheduling.

31.4. Directives 573

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.14 OBJECT_ID_API_MINIMUM_CLASS - Obtain Minimum Class Value for an API

CALLING SEQUENCE:

1 int rtems_object_get_id_api_minimum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the index corresponding to the first object class of the speci-
fied api.

DESCRIPTION:
This service returns the index for the first object class associated with the specified api.

NOTES:
This directive is strictly local and does not impact task scheduling.

574 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.15 OBJECT_ID_API_MAXIMUM_CLASS - Obtain Maximum Class Value for an API

CALLING SEQUENCE:

1 int rtems_object_get_api_maximum_class(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, -1 is returned.

If successful, this service returns the index corresponding to the last object class of the speci-
fied api.

DESCRIPTION:
This service returns the index for the last object class associated with the specified api.

NOTES:
This directive is strictly local and does not impact task scheduling.

31.4. Directives 575

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.16 OBJECT_GET_API_NAME - Obtain API Name

CALLING SEQUENCE:

1 const char* rtems_object_get_api_name(
2 int api
3);

DIRECTIVE STATUS CODES:
If api is not valid, the string "BAD API" is returned.

If successful, this service returns a pointer to a string containing the name of the specified
api.

DESCRIPTION:
This service returns the name of the specified api.

NOTES:
This directive is strictly local and does not impact task scheduling.

The string returned is from constant space. Do not modify or free it.

576 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.17 OBJECT_GET_API_CLASS_NAME - Obtain Class Name

CALLING SEQUENCE:

1 const char *rtems_object_get_api_class_name(
2 int the_api,
3 int the_class
4);

DIRECTIVE STATUS CODES:
If the_api is not valid, the string "BAD API" is returned.

If the_class is not valid, the string "BAD CLASS" is returned.

If successful, this service returns a pointer to a string containing the name of the specified
the_api / the_class pair.

DESCRIPTION:
This service returns the name of the object class indicated by the specified the_api and
the_class.

NOTES:
This directive is strictly local and does not impact task scheduling.

The string returned is from constant space. Do not modify or free it.

31.4. Directives 577

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

31.4.18 OBJECT_GET_CLASS_INFORMATION - Obtain Class Information

CALLING SEQUENCE:

1 rtems_status_code rtems_object_get_class_information(
2 int the_api,
3 int the_class,
4 rtems_object_api_class_information *info
5);

DIRECTIVE STATUS CODES:

RTEMS_SUCCESSFUL information obtained successfully
RTEMS_INVALID_ADDRESS info is NULL
RTEMS_INVALID_NUMBER invalid api or the_class

If successful, the structure located at info will be filled in with information about the specified
api / the_class pairing.

DESCRIPTION:
This service returns information about the object class indicated by the specified api and
the_class. This structure is defined as follows:

1 typedef struct {
2 rtems_id minimum_id;
3 rtems_id maximum_id;
4 int maximum;
5 bool auto_extend;
6 int unallocated;
7 } rtems_object_api_class_information;

NOTES:
This directive is strictly local and does not impact task scheduling.

578 Chapter 31. Object Services

Chapter 31 Section 31.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

31.4.19 OBJECT_GET_LOCAL_NODE - Obtain Local Node

CALLING SEQUENCE:

1 uint16_t rtems_object_get_local_node(void);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This service returns the local MPCI node.

NOTES:
This directive is strictly local and does not impact task scheduling.

31.4. Directives 579

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 31 Section 31.4

580 Chapter 31. Object Services

CHAPTER

THIRTYTWO

CHAINS

581

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.1

32.1 Introduction

The Chains API is an interface to the Super Core (score) chain implementation. The Super Core
uses chains for all list type functions. This includes wait queues and task queues. The Chains
API provided by RTEMS is:

• rtems_chain_initialize (page 587) - initialize the chain with nodes

• rtems_chain_initialize_empty (page 588) - initialize the chain as empty

• rtems_chain_is_null_node (page 589) - Is the node NULL ?

• rtems_chain_head (page 590) - Return the chain’s head

• rtems_chain_tail (page 591) - Return the chain’s tail

• rtems_chain_are_nodes_equal (page 592) - Are the node’s equal ?

• rtems_chain_is_empty (page 593) - Is the chain empty ?

• rtems_chain_is_first (page 594) - Is the Node the first in the chain ?

• rtems_chain_is_last (page 595) - Is the Node the last in the chain ?

• rtems_chain_has_only_one_node (page 596) - Does the node have one node ?

• rtems_chain_node_count_unprotected (page 597) - Returns the node count of the chain
(unprotected)

• rtems_chain_is_head (page 598) - Is the node the head ?

• rtems_chain_is_tail (page 599) - Is the node the tail ?

• rtems_chain_extract (page 600) - Extract the node from the chain

• rtems_chain_extract_unprotected (page 601) - Extract the node from the chain (unpro-
tected)

• rtems_chain_get (page 602) - Return the first node on the chain

• rtems_chain_get_unprotected (page 603) - Return the first node on the chain (unprotected)

• rtems_chain_insert (page 604) - Insert the node into the chain

• rtems_chain_insert_unprotected (page 605) - Insert the node into the chain (unprotected)

• rtems_chain_append (page 606) - Append the node to chain

• rtems_chain_append_unprotected (page 607) - Append the node to chain (unprotected)

• rtems_chain_prepend (page 608) - Prepend the node to the end of the chain

• rtems_chain_prepend_unprotected (page 609) - Prepend the node to chain (unprotected)

582 Chapter 32. Chains

Chapter 32 Section 32.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.2 Background

The Chains API maps to the Super Core Chains API. Chains are implemented as a double linked
list of nodes anchored to a control node. The list starts at the control node and is terminated at
the control node. A node has previous and next pointers. Being a double linked list nodes can
be inserted and removed without the need to travse the chain.

Chains have a small memory footprint and can be used in interrupt service routines and are
thread safe in a multi-threaded environment. The directives list which operations disable inter-
rupts.

Chains are very useful in Board Support packages and applications.

32.2.1 Nodes

A chain is made up from nodes that orginate from a chain control object. A node is of type
rtems_chain_node. The node is designed to be part of a user data structure and a cast is used
to move from the node address to the user data structure address. For example:

1 typedef struct foo
2 {
3 rtems_chain_node node;
4 int bar;
5 } foo;

creates a type foo that can be placed on a chain. To get the foo structure from the list you
perform the following:

1 foo* get_foo(rtems_chain_control* control)
2 {
3 return (foo*) rtems_chain_get(control);
4 }

The node is placed at the start of the user’s structure to allow the node address on the chain to
be easly cast to the user’s structure address.

32.2.2 Controls

A chain is anchored with a control object. Chain control provide the user with access to the
nodes on the chain. The control is head of the node.

1 [Control]
2 first ------------------------>
3 permanent_null <--------------- [NODE]
4 last ------------------------->

The implementation does not require special checks for manipulating the first and last nodes on
the chain. To accomplish this the rtems_chain_control structure is treated as two overlapping
rtems_chain_node structures. The permanent head of the chain overlays a node structure on
the first and permanent_null fields. The permanent_tail of the chain overlays a node structure
on the permanent_null and last elements of the structure.

32.2. Background 583

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.3

32.3 Operations

32.3.1 Multi-threading

Chains are designed to be used in a multi-threading environment. The directives list which
operations mask interrupts. Chains supports tasks and interrupt service routines appending and
extracting nodes with out the need for extra locks. Chains how-ever cannot insure the integrity
of a chain for all operations. This is the responsibility of the user. For example an interrupt
service routine extracting nodes while a task is iterating over the chain can have unpredictable
results.

32.3.2 Creating a Chain

To create a chain you need to declare a chain control then add nodes to the control. Consider a
user structure and chain control:

1 typedef struct foo
2 {
3 rtems_chain_node node;
4 char* data;
5 } foo;
6 rtems_chain_control chain;

Add nodes with the following code:

1 rtems_chain_initialize_empty (&chain);
2

3 for (i = 0; i < count; i++)
4 {
5 foo* bar = malloc (sizeof (foo));
6 if (!bar)
7 return -1;
8 bar->data = malloc (size);
9 rtems_chain_append (&chain, &bar->node);

10 }

The chain is initialized and the nodes allocated and appended to the chain. This is an example
of a pool of buffers.

32.3.3 Iterating a Chain

Iterating a chain is a common function. The example shows how to iterate the buffer pool chain
created in the last section to find buffers starting with a specific string. If the buffer is located it
is extracted from the chain and placed on another chain:

1 void foobar (const char* match,
2 rtems_chain_control* chain,
3 rtems_chain_control* out)
4 {
5 rtems_chain_node* node;
6 foo* bar;
7

(continues on next page)

584 Chapter 32. Chains

Chapter 32 Section 32.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

(continued from previous page)

8 rtems_chain_initialize_empty (out);
9

10 node = rtems_chain_head (chain);
11 while (!rtems_chain_is_tail (chain, node))
12 {
13 bar = (foo*) node;
14 rtems_chain_node* next_node = node->next;
15 if (strcmp (match, bar->data) == 0)
16 {
17 rtems_chain_extract (node);
18 rtems_chain_append (out, node);
19 }
20 node = next_node;
21 }
22 }

32.3. Operations 585

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4 Directives

The section details the Chains directives.

586 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.1 Initialize Chain With Nodes

CALLING SEQUENCE:

1 void rtems_chain_initialize(
2 rtems_chain_control *the_chain,
3 void *starting_address,
4 size_t number_nodes,
5 size_t node_size
6)

RETURNS:
Returns nothing.

DESCRIPTION:
This function take in a pointer to a chain control and initializes it to contain a set of chain
nodes. The chain will contain number_nodes chain nodes from the memory pointed to by
start_address. Each node is assumed to be node_size bytes.

NOTES:
This call will discard any nodes on the chain.

This call does NOT inititialize any user data on each node.

32.4. Directives 587

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.2 Initialize Empty

CALLING SEQUENCE:

1 void rtems_chain_initialize_empty(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This function take in a pointer to a chain control and initializes it to empty.

NOTES:
This call will discard any nodes on the chain.

588 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.3 Is Null Node ?

CALLING SEQUENCE:

1 bool rtems_chain_is_null_node(
2 const rtems_chain_node *the_node
3);

RETURNS:
Returns true is the node point is NULL and false if the node is not NULL.

DESCRIPTION:
Tests the node to see if it is a NULL returning true if a null.

32.4. Directives 589

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.4 Head

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_head(
2 rtems_chain_control *the_chain
3)

RETURNS:
Returns the permanent head node of the chain.

DESCRIPTION:
This function returns a pointer to the first node on the chain.

590 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.5 Tail

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_tail(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns the permanent tail node of the chain.

DESCRIPTION:
This function returns a pointer to the last node on the chain.

32.4. Directives 591

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.6 Are Two Nodes Equal ?

CALLING SEQUENCE:

1 bool rtems_chain_are_nodes_equal(
2 const rtems_chain_node *left,
3 const rtems_chain_node *right
4);

RETURNS:
This function returns true if the left node and the right node are equal, and false otherwise.

DESCRIPTION:
This function returns true if the left node and the right node are equal, and false otherwise.

592 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.7 Is the Chain Empty

CALLING SEQUENCE:

1 bool rtems_chain_is_empty(
2 rtems_chain_control *the_chain
3);

RETURNS:
This function returns true if there a no nodes on the chain and false otherwise.

DESCRIPTION:
This function returns true if there a no nodes on the chain and false otherwise.

32.4. Directives 593

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.8 Is this the First Node on the Chain ?

CALLING SEQUENCE:

1 bool rtems_chain_is_first(
2 const rtems_chain_node *the_node
3);

RETURNS:
This function returns true if the node is the first node on a chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the first node on a chain and false otherwise.

594 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.9 Is this the Last Node on the Chain ?

CALLING SEQUENCE:

1 bool rtems_chain_is_last(
2 const rtems_chain_node *the_node
3);

RETURNS:
This function returns true if the node is the last node on a chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the last node on a chain and false otherwise.

32.4. Directives 595

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.10 Does this Chain have only One Node ?

CALLING SEQUENCE:

1 bool rtems_chain_has_only_one_node(
2 const rtems_chain_control *the_chain
3);

RETURNS:
This function returns true if there is only one node on the chain and false otherwise.

DESCRIPTION:
This function returns true if there is only one node on the chain and false otherwise.

596 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.11 Returns the node count of the chain (unprotected)

CALLING SEQUENCE:

1 size_t rtems_chain_node_count_unprotected(
2 const rtems_chain_control *the_chain
3);

RETURNS:
This function returns the node count of the chain.

DESCRIPTION:
This function returns the node count of the chain.

32.4. Directives 597

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.12 Is this Node the Chain Head ?

CALLING SEQUENCE:

1 bool rtems_chain_is_head(
2 rtems_chain_control *the_chain,
3 rtems_const chain_node *the_node
4);

RETURNS:
This function returns true if the node is the head of the chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the head of the chain and false otherwise.

598 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.13 Is this Node the Chain Tail ?

CALLING SEQUENCE:

1 bool rtems_chain_is_tail(
2 rtems_chain_control *the_chain,
3 const rtems_chain_node *the_node
4)

RETURNS:
This function returns true if the node is the tail of the chain and false otherwise.

DESCRIPTION:
This function returns true if the node is the tail of the chain and false otherwise.

32.4. Directives 599

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.14 Extract a Node

CALLING SEQUENCE:

1 void rtems_chain_extract(
2 rtems_chain_node *the_node
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine extracts the node from the chain on which it resides.

NOTES:
Interrupts are disabled while extracting the node to ensure the atomicity of the operation.

Use rtems_chain_extract_unprotected to avoid disabling of interrupts.

600 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.15 Extract a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_extract_unprotected(
2 rtems_chain_node *the_node
3);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine extracts the node from the chain on which it resides.

NOTES:
The function does nothing to ensure the atomicity of the operation.

32.4. Directives 601

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.16 Get the First Node

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_get(
2 rtems_chain_control *the_chain
3);

RETURNS:
Returns a pointer a node. If a node was removed, then a pointer to that node is returned. If
the chain was empty, then NULL is returned.

DESCRIPTION:
This function removes the first node from the chain and returns a pointer to that node. If the
chain is empty, then NULL is returned.

NOTES:
Interrupts are disabled while obtaining the node to ensure the atomicity of the operation.

Use rtems_chain_get_unprotected() to avoid disabling of interrupts.

602 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.17 Get the First Node (unprotected)

CALLING SEQUENCE:

1 rtems_chain_node *rtems_chain_get_unprotected(
2 rtems_chain_control *the_chain
3);

RETURNS:
A pointer to the former first node is returned.

DESCRIPTION:
Removes the first node from the chain and returns a pointer to it. In case the chain was empty,
then the results are unpredictable.

NOTES:
The function does nothing to ensure the atomicity of the operation.

32.4. Directives 603

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.18 Insert a Node

CALLING SEQUENCE:

1 void rtems_chain_insert(
2 rtems_chain_node *after_node,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine inserts a node on a chain immediately following the specified node.

NOTES:
Interrupts are disabled during the insert to ensure the atomicity of the operation.

Use rtems_chain_insert_unprotected() to avoid disabling of interrupts.

604 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.19 Insert a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_insert_unprotected(
2 rtems_chain_node *after_node,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine inserts a node on a chain immediately following the specified node.

NOTES:
The function does nothing to ensure the atomicity of the operation.

32.4. Directives 605

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.20 Append a Node

CALLING SEQUENCE:

1 void rtems_chain_append(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine appends a node to the end of a chain.

NOTES:
Interrupts are disabled during the append to ensure the atomicity of the operation.

Use rtems_chain_append_unprotected to avoid disabling of interrupts.

606 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.21 Append a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_append_unprotected(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine appends a node to the end of a chain.

NOTES:
The function does nothing to ensure the atomicity of the operation.

32.4. Directives 607

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

32.4.22 Prepend a Node

CALLING SEQUENCE:

1 void rtems_chain_prepend(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine prepends a node to the front of the chain.

NOTES:
Interrupts are disabled during the prepend to ensure the atomicity of the operation.

Use rtems_chain_prepend_unprotected to avoid disabling of interrupts.

608 Chapter 32. Chains

Chapter 32 Section 32.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

32.4.23 Prepend a Node (unprotected)

CALLING SEQUENCE:

1 void rtems_chain_prepend_unprotected(
2 rtems_chain_control *the_chain,
3 rtems_chain_node *the_node
4);

RETURNS:
Returns nothing.

DESCRIPTION:
This routine prepends a node to the front of the chain.

NOTES:
The function does nothing to ensure the atomicity of the operation.

32.4. Directives 609

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 32 Section 32.4

610 Chapter 32. Chains

CHAPTER

THIRTYTHREE

RED-BLACK TREES

611

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 33 Section 33.1

33.1 Introduction

The Red-Black Tree API is an interface to the SuperCore (score) rbtree implementation. Within
RTEMS, red-black trees are used when a binary search tree is needed, including dynamic priority
thread queues and non-contiguous heap memory. The Red-Black Tree API provided by RTEMS
is:

• rtems_rtems_rbtree_node - Red-Black Tree node embedded in another struct

• rtems_rtems_rbtree_control - Red-Black Tree control node for an entire tree

• rtems_rtems_rbtree_initialize - initialize the red-black tree with nodes

• rtems_rtems_rbtree_initialize_empty - initialize the red-black tree as empty

• rtems_rtems_rbtree_set_off_tree - Clear a node’s links

• rtems_rtems_rbtree_root - Return the red-black tree’s root node

• rtems_rtems_rbtree_min - Return the red-black tree’s minimum node

• rtems_rtems_rbtree_max - Return the red-black tree’s maximum node

• rtems_rtems_rbtree_left - Return a node’s left child node

• rtems_rtems_rbtree_right - Return a node’s right child node

• rtems_rtems_rbtree_parent - Return a node’s parent node

• rtems_rtems_rbtree_are_nodes_equal - Are the node’s equal ?

• rtems_rtems_rbtree_is_empty - Is the red-black tree empty ?

• rtems_rtems_rbtree_is_min - Is the Node the minimum in the red-black tree ?

• rtems_rtems_rbtree_is_max - Is the Node the maximum in the red-black tree ?

• rtems_rtems_rbtree_is_root - Is the Node the root of the red-black tree ?

• rtems_rtems_rbtree_find - Find the node with a matching key in the red-black tree

• rtems_rtems_rbtree_predecessor - Return the in-order predecessor of a node.

• rtems_rtems_rbtree_successor - Return the in-order successor of a node.

• rtems_rtems_rbtree_extract - Remove the node from the red-black tree

• rtems_rtems_rbtree_get_min - Remove the minimum node from the red-black tree

• rtems_rtems_rbtree_get_max - Remove the maximum node from the red-black tree

• rtems_rtems_rbtree_peek_min - Returns the minimum node from the red-black tree

• rtems_rtems_rbtree_peek_max - Returns the maximum node from the red-black tree

• rtems_rtems_rbtree_insert - Add the node to the red-black tree

612 Chapter 33. Red-Black Trees

Chapter 33 Section 33.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

33.2 Background

The Red-Black Trees API is a thin layer above the SuperCore Red-Black Trees implementation. A
Red-Black Tree is defined by a control node with pointers to the root, minimum, and maximum
nodes in the tree. Each node in the tree consists of a parent pointer, two children pointers, and
a color attribute. A tree is parameterized as either unique, meaning identical keys are rejected,
or not, in which case duplicate keys are allowed.

Users must provide a comparison functor that gets passed to functions that need to compare
nodes. In addition, no internal synchronization is offered within the red-black tree implemen-
tation, thus users must ensure at most one thread accesses a red-black tree instance at a time.

33.2.1 Nodes

A red-black tree is made up from nodes that orginate from a red-black tree control object.
A node is of type rtems_rtems_rbtree_node. The node is designed to be part of a user data
structure. To obtain the encapsulating structure users can use the RTEMS_CONTAINER_OF macro.
The node can be placed anywhere within the user’s structure and the macro will calculate the
structure’s address from the node’s address.

33.2.2 Controls

A red-black tree is rooted with a control object. Red-Black Tree control provide the user
with access to the nodes on the red-black tree. The implementation does not require
special checks for manipulating the root of the red-black tree. To accomplish this the
rtems_rtems_rbtree_control structure is treated as a rtems_rtems_rbtree_node structure with
a NULL parent and left child pointing to the root.

33.2. Background 613

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 33 Section 33.3

33.3 Operations

Examples for using the red-black trees can be found in the testsuites/sptests/sprbtree01/
init.c file.

614 Chapter 33. Red-Black Trees

Chapter 33 Section 33.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

33.4 Directives

33.4.1 Documentation for the Red-Black Tree Directives

Source documentation for the Red-Black Tree API can be found in the generated Doxygen output
for cpukit/sapi.

33.4. Directives 615

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 33 Section 33.4

616 Chapter 33. Red-Black Trees

CHAPTER

THIRTYFOUR

TIMESPEC HELPERS

617

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.1

34.1 Introduction

The Timespec helpers manager provides directives to assist in manipulating instances of the
POSIX struct timespec structure.

The directives provided by the timespec helpers manager are:

• rtems_timespec_set (page 622) - Set timespec’s value

• rtems_timespec_zero (page 623) - Zero timespec’s value

• rtems_timespec_is_valid (page 624) - Check if timespec is valid

• rtems_timespec_add_to (page 625) - Add two timespecs

• rtems_timespec_subtract (page 626) - Subtract two timespecs

• rtems_timespec_divide (page 627) - Divide two timespecs

• rtems_timespec_divide_by_integer (page 628) - Divide timespec by integer

• rtems_timespec_less_than (page 629) - Less than operator

• rtems_timespec_greater_than (page 630) - Greater than operator

• rtems_timespec_equal_to (page 631) - Check if two timespecs are equal

• rtems_timespec_get_seconds (page 632) - Obtain seconds portion of timespec

• rtems_timespec_get_nanoseconds (page 633) - Obtain nanoseconds portion of timespec

• rtems_timespec_to_ticks (page 634) - Convert timespec to number of ticks

• rtems_timespec_from_ticks (page 635) - Convert ticks to timespec

618 Chapter 34. Timespec Helpers

Chapter 34 Section 34.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.2 Background

34.2.1 Time Storage Conventions

Time can be stored in many ways. One of them is the struct timespec format which is a struc-
ture that consists of the fields tv_sec to represent seconds and tv_nsec to represent nanosec-
onds. The‘‘struct timeval‘‘ structure is simular and consists of seconds (stored in tv_sec) and
microseconds (stored in tv_usec). Either‘‘struct timespec‘‘ or struct timeval can be used to
represent elapsed time, time of executing some operations, or time of day.

34.2. Background 619

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.3

34.3 Operations

34.3.1 Set and Obtain Timespec Value

A user may write a specific time by passing the desired seconds and nanoseconds values and
the destination struct timespec using the rtems_timespec_set directive.

The rtems_timespec_zero directive is used to zero the seconds and nanoseconds portions of a
struct timespec instance.

Users may obtain the seconds or nanoseconds portions of a struct timespec instance with the
rtems_timespec_get_seconds or rtems_timespec_get_nanoseconds methods, respectively.

34.3.2 Timespec Math

A user can perform multiple operations on struct timespec instances. The helpers in this
manager assist in adding, subtracting, and performing divison on struct timespec instances.

• Adding two struct timespec can be done using the rtems_timespec_add_to directive.
This directive is used mainly to calculate total amount of time consumed by multiple
operations.

• The rtems_timespec_subtract is used to subtract two struct timespecs instances and
determine the elapsed time between those two points in time.

• The rtems_timespec_divide is used to use to divide one struct timespec instance by
another. This calculates the percentage with a precision to three decimal points.

• The rtems_timespec_divide_by_integer is used to divide a struct timespec instance by
an integer. It is commonly used in benchmark calculations to dividing duration by the
number of iterations performed.

34.3.3 Comparing struct timespec Instances

A user can compare two struct timespec instances using the rtems_timespec_less_than,
rtems_timespec_greater_than or rtems_timespec_equal_to routines.

34.3.4 Conversions and Validity Check

Conversion to and from clock ticks may be performed by using the rtems_timespec_to_ticks
and rtems_timespec_from_ticks directives.

User can also check validity of timespec with rtems_timespec_is_valid routine.

620 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4 Directives

This section details the Timespec Helpers manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

34.4. Directives 621

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

34.4.1 TIMESPEC_SET - Set struct timespec Instance

CALLING SEQUENCE:

1 void rtems_timespec_set(
2 struct timespec *time,
3 time_t seconds,
4 uint32_t nanoseconds
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This directive sets the struct timespec time to the desired seconds and nanoseconds values.

NOTES:
This method does NOT check if nanoseconds is less than the maximum number of nanosec-
onds in a second.

622 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4.2 TIMESPEC_ZERO - Zero struct timespec Instance

CALLING SEQUENCE:

1 void rtems_timespec_zero(
2 struct timespec *time
3);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine sets the contents of the struct timespec instance time to zero.

NOTES:
NONE

34.4. Directives 623

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

34.4.3 TIMESPEC_IS_VALID - Check validity of a struct timespec instance

CALLING SEQUENCE:

1 bool rtems_timespec_is_valid(
2 const struct timespec *time
3);

DIRECTIVE STATUS CODES:
This method returns true if the instance is valid, and false otherwise.

DESCRIPTION:
This routine check validity of a struct timespec instance. It checks if the nanoseconds
portion of the struct timespec instanceis in allowed range (less than the maximum number
of nanoseconds per second).

NOTES:
NONE

624 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4.4 TIMESPEC_ADD_TO - Add Two struct timespec Instances

CALLING SEQUENCE:

1 uint32_t rtems_timespec_add_to(
2 struct timespec *time,
3 const struct timespec *add
4);

DIRECTIVE STATUS CODES:
The method returns the number of seconds time increased by.

DESCRIPTION:
This routine adds two struct timespec instances. The second argument is added to the first.
The parameter time is the base time to which the add parameter is added.

NOTES:
NONE

34.4. Directives 625

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

34.4.5 TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances

CALLING SEQUENCE:

1 void rtems_timespec_subtract(
2 const struct timespec *start,
3 const struct timespec *end,
4 struct timespec *result
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine subtracts start from end saves the difference in result. The primary use of this
directive is to calculate elapsed time.

NOTES:
It is possible to subtract when end is less than start and it produce negative result. When
doing this you should be careful and remember that only the seconds portion of a struct
timespec instance is signed, which means that nanoseconds portion is always increasing.
Due to that when your timespec has seconds = -1 and nanoseconds = 500,000,000 it means
that result is -0.5 second, NOT the expected -1.5!

626 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4.6 TIMESPEC_DIVIDE - Divide Two struct timespec Instances

CALLING SEQUENCE:

1 void rtems_timespec_divide(
2 const struct timespec *lhs,
3 const struct timespec *rhs,
4 uint32_t *ival_percentage,
5 uint32_t *fval_percentage
6);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine divides the struct timespec instance lhs by the struct timespec instance rhs.
The result is returned in the ival_percentage and fval_percentage, representing the integer
and fractional results of the division respectively.

The ival_percentage is integer value of calculated percentage and fval_percentage is frac-
tional part of calculated percentage.

NOTES:
The intended use is calculating percentges to three decimal points.

When dividing by zero, this routine return both ival_percentage and fval_percentage equal
zero.

The division is performed using exclusively integer operations.

34.4. Directives 627

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

34.4.7 TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by an In-
teger

CALLING SEQUENCE:

1 int rtems_timespec_divide_by_integer(
2 const struct timespec *time,
3 uint32_t iterations,
4 struct timespec *result
5);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine divides the struct timespec instance time by the integer value iterations. The
result is saved in result.

NOTES:
The expected use is to assist in benchmark calculations where you typically divide a duration
(time) by a number of iterations what gives average time.

628 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4.8 TIMESPEC_LESS_THAN - Less than operator

CALLING SEQUENCE:

1 bool rtems_timespec_less_than(
2 const struct timespec *lhs,
3 const struct timespec *rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is less than rhs and struct false otherwise.

DESCRIPTION:
This method is the less than operator for struct timespec instances. The first parameter is
the left hand side and the second is the right hand side of the comparison.

NOTES:
NONE

34.4. Directives 629

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

34.4.9 TIMESPEC_GREATER_THAN - Greater than operator

CALLING SEQUENCE:

1 bool rtems_timespec_greater_than(
2 const struct timespec *_lhs,
3 const struct timespec *_rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is greater than rhs and struct false otherwise.

DESCRIPTION:
This method is greater than operator for struct timespec instances.

NOTES:
NONE

630 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4.10 TIMESPEC_EQUAL_TO - Check equality of timespecs

CALLING SEQUENCE:

1 bool rtems_timespec_equal_to(
2 const struct timespec *lhs,
3 const struct timespec *rhs
4);

DIRECTIVE STATUS CODES:
This method returns struct true if lhs is equal to rhs and struct false otherwise.

DESCRIPTION:
This method is equality operator for struct timespec instances.

NOTES:
NONE

34.4. Directives 631

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

34.4.11 TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec Instance

CALLING SEQUENCE:

1 time_t rtems_timespec_get_seconds(
2 struct timespec *time
3);

DIRECTIVE STATUS CODES:
This method returns the seconds portion of the specified struct timespec instance.

DESCRIPTION:
This method returns the seconds portion of the specified struct timespec instance time.

NOTES:
NONE

632 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4.12 TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the struct
timespec Instance

CALLING SEQUENCE:

1 uint32_t rtems_timespec_get_nanoseconds(
2 struct timespec *_time
3);

DIRECTIVE STATUS CODES:
This method returns the nanoseconds portion of the specified struct timespec instance.

DESCRIPTION:
This method returns the nanoseconds portion of the specified timespec which is pointed by
_time.

NOTES:
NONE

34.4. Directives 633

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

34.4.13 TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks

CALLING SEQUENCE:

1 uint32_t rtems_timespec_to_ticks(
2 const struct timespec *time
3);

DIRECTIVE STATUS CODES:
This directive returns the number of ticks computed.

DESCRIPTION:
This directive converts the time timespec to the corresponding number of clock ticks.

NOTES:
NONE

634 Chapter 34. Timespec Helpers

Chapter 34 Section 34.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

34.4.14 TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representation

CALLING SEQUENCE:

1 void rtems_timespec_from_ticks(
2 uint32_t ticks,
3 struct timespec *time
4);

DIRECTIVE STATUS CODES:
NONE

DESCRIPTION:
This routine converts the ticks to the corresponding struct timespec representation and
stores it in time.

NOTES:
NONE

34.4. Directives 635

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 34 Section 34.4

636 Chapter 34. Timespec Helpers

CHAPTER

THIRTYFIVE

CONSTANT BANDWIDTH SERVER
SCHEDULER API

637

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.1

35.1 Introduction

Unlike simple schedulers, the Constant Bandwidth Server (CBS) requires a special API for tasks
to indicate their scheduling parameters. The directives provided by the CBS API are:

• rtems_cbs_initialize (page 644) - Initialize the CBS library

• rtems_cbs_cleanup (page 645) - Cleanup the CBS library

• rtems_cbs_create_server (page 646) - Create a new bandwidth server

• rtems_cbs_attach_thread (page 647) - Attach a thread to server

• rtems_cbs_detach_thread (page 648) - Detach a thread from server

• rtems_cbs_destroy_server (page 649) - Destroy a bandwidth server

• rtems_cbs_get_server_id (page 650) - Get an ID of a server

• rtems_cbs_get_parameters (page 651) - Get scheduling parameters of a server

• rtems_cbs_set_parameters (page 652) - Set scheduling parameters of a server

• rtems_cbs_get_execution_time (page 653) - Get elapsed execution time

• rtems_cbs_get_remaining_budget (page 654) - Get remainig execution time

• rtems_cbs_get_approved_budget (page 655) - Get scheduler approved execution time

638 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.2 Background

35.2.1 Constant Bandwidth Server Definitions

The Constant Bandwidth Server API enables tasks to communicate with the scheduler and
indicate its scheduling parameters. The scheduler has to be set up first (by defining
CONFIGURE_SCHEDULER_CBS macro).

The difference to a plain EDF is the presence of servers. It is a budget aware extention of the
EDF scheduler, therefore, tasks attached to servers behave in a similar way as with EDF unless
they exceed their budget.

The intention of servers is reservation of a certain computation time (budget) of the processor
for all subsequent periods. The structure rtems_cbs_parameters determines the behavior of a
server. It contains deadline which is equal to period, and budget which is the time the server
is allowed to spend on CPU per each period. The ratio between those two parameters yields
the maximum percentage of the CPU the server can use (bandwidth). Moreover, thanks to this
limitation the overall utilization of CPU is under control, and the sum of bandwidths of all
servers in the system yields the overall reserved portion of processor. The rest is still available
for ordinary tasks that are not attached to any server.

In order to make the server effective to the executing tasks, tasks have to be attached to the
servers. The rtems_cbs_server_id is a type denoting an id of a server and rtems_id a type for
id of tasks. .. index:: CBS periodic tasks

35.2.2 Handling Periodic Tasks

Each task’s execution begins with a default background priority (see the chapter Scheduling
Concepts to understand the concept of priorities in EDF). Once you decide the tasks should
start periodic execution, you have two possibilities. Either you use only the Rate Monotonic
manager which takes care of periodic behavior, or you declare deadline and budget using the
CBS API in which case these properties are constant for all subsequent periods, unless you
change them using the CBS API again. Task now only has to indicate and end of each period
using rtems_rate_monotonic_period. .. index:: CBS overrun handler

35.2.3 Registering a Callback Function

In case tasks attached to servers are not aware of their execution time and happen to exceed
it, the scheduler does not guarantee execution any more and pulls the priority of the task
to background, which would possibly lead to immediate preemption (if there is at least one
ready task with a higher pirority). However, the task is not blocked but a callback function
is invoked. The callback function (rtems_cbs_budget_overrun) might be optionally registered
upon a server creation (rtems_cbs_create_server).

This enables the user to define what should happen in case of budget overrun. There is obvi-
ously no space for huge operations because the priority is down and not real time any more,
however, you still can at least in release resources for other tasks, restart the task or log an error
information. Since the routine is called directly from kernel, use printk() instead of printf().

The calling convention of the callback function is:

35.2. Background 639

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.2

1 void overrun_handler(
2 rtems_cbs_server_id server_id
3);

35.2.4 Limitations

When using this scheduler you have to keep in mind several things:

• it_limitations

• In the current implementation it is possible to attach only a single task to each server.

• If you have a task attached to a server and you voluntatily block it in the beginning of
its execution, its priority will be probably pulled to background upon unblock, thus not
guaranteed deadline any more. This is because you are effectively raising computation
time of the task. When unbocking, you should be always sure that the ratio between
remaining computation time and remaining deadline is not higher that the utilization you
have agreed with the scheduler.

640 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.3 Operations

35.3.1 Setting up a server

The directive rtems_cbs_create_server is used to create a new server that is characterized
by rtems_cbs_parameters. You also might want to register the rtems_cbs_budget_overrun
callback routine. After this step tasks can be attached to the server. The directive
rtems_cbs_set_parameters can change the scheduling parameters to avoid destroying and cre-
ating a new server again.

35.3.2 Attaching Task to a Server

If a task is attached to a server using rtems_cbs_attach_thread, the task’s computation time
per period is limited by the server and the deadline (period) of task is equal to deadline of the
server which means if you conclude a period using rate_monotonic_period, the length of next
period is always determined by the server’s property.

The task has a guaranteed bandwidth given by the server but should not exceed it,
otherwise the priority is pulled to background until the start of next period and the
rtems_cbs_budget_overrun callback function is invoked.

When attaching a task to server, the preemptability flag of the task is raised, otherwise it would
not be possible to control the execution of the task.

35.3.3 Detaching Task from a Server

The directive rtems_cbs_detach_thread is just an inverse operation to the previous one, the
task continues its execution with the initial priority.

Preemptability of the task is restored to the initial value.

35.3.4 Examples

The following example presents a simple common use of the API.

You can see the initialization and cleanup call here, if there are multiple tasks in the system, it
is obvious that the initialization should be called before creating the task.

Notice also that in this case we decided to register an overrun handler, instead of which there
could be NULL. This handler just prints a message to terminal, what else may be done here
depends on a specific application.

During the periodic execution, remaining budget should be watched to avoid overrun.

1 void overrun_handler (
2 rtems_cbs_server_id server_id
3)
4 {
5 printk("Budget overrun, fixing the task\n");
6 return;
7 }
8

(continues on next page)

35.3. Operations 641

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.3

(continued from previous page)

9 rtems_task Tasks_Periodic(
10 rtems_task_argument argument
11)
12 {
13 rtems_id rmid;
14 rtems_cbs_server_id server_id;
15 rtems_cbs_parameters params;
16

17 params.deadline = 10;
18 params.budget = 4;
19

20 rtems_cbs_initialize();
21 rtems_cbs_create_server(¶ms, &overrun_handler, &server_id);
22 rtems_cbs_attach_thread(server_id, RTEMS_SELF);
23 rtems_rate_monotonic_create(argument, &rmid);
24

25 while (1) {
26 if (rtems_rate_monotonic_period(rmid, params.deadline) == RTEMS_TIMEOUT)
27 break;
28 /* Perform some periodic action */
29 }
30

31 rtems_rate_monotonic_delete(rmid);
32 rtems_cbs_cleanup();
33 exit(1);
34 }

642 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.4 Directives

This section details the Constant Bandwidth Server’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

35.4. Directives 643

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.4

35.4.1 CBS_INITIALIZE - Initialize the CBS library

CALLING SEQUENCE:

1 int rtems_cbs_initialize(void);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful initialization
RTEMS_CBS_ERROR_NO_MEMORY not enough memory for data

DESCRIPTION:
This routine initializes the library in terms of allocating necessary memory for the servers. In
case not enough memory is available in the system, RTEMS_CBS_ERROR_NO_MEMORY is returned,
otherwise RTEMS_CBS_OK.

NOTES:
Additional memory per each server is allocated upon invocation of rtems_cbs_create_server.

Tasks in the system are not influenced, they still keep executing with their initial parameters.

644 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.4.2 CBS_CLEANUP - Cleanup the CBS library

CALLING SEQUENCE:

1 int rtems_cbs_cleanup(void);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK always successful

DESCRIPTION:
This routine detaches all tasks from their servers, destroys all servers and returns memory
back to the system.

NOTES:
All tasks continue executing with their initial priorities.

35.4. Directives 645

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.4

35.4.3 CBS_CREATE_SERVER - Create a new bandwidth server

CALLING SEQUENCE:

1 int rtems_cbs_create_server (
2 rtems_cbs_parameters *params,
3 rtems_cbs_budget_overrun budget_overrun_callback,
4 rtems_cbs_server_id *server_id
5);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully created
RTEMS_CBS_ERROR_NO_MEMORY not enough memory for data
RTEMS_CBS_ERROR_FULL maximum servers exceeded
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument

DESCRIPTION:
This routine prepares an instance of a constant bandwidth server. The input parame-
ter rtems_cbs_parameters specifies scheduling parameters of the server (period and bud-
get). If these are not valid, RTEMS_CBS_ERROR_INVALID_PARAMETER is returned. The
budget_overrun_callback is an optional callback function, which is invoked in case the
server’s budget within one period is exceeded. Output parameter server_id becomes an id
of the newly created server. If there is not enough memory, the RTEMS_CBS_ERROR_NO_MEMORY
is returned. If the maximum server count in the system is exceeded, RTEMS_CBS_ERROR_FULL
is returned.

NOTES:
No task execution is being influenced so far.

646 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.4.4 CBS_ATTACH_THREAD - Attach a thread to server

CALLING SEQUENCE:

1 int rtems_cbs_attach_thread (
2 rtems_cbs_server_id server_id,
3 rtems_id task_id
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully attached
RTEMS_CBS_ERROR_FULL server maximum tasks exceeded
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
Attaches a task (task_id) to a server (server_id). The server has to be previously created.
Now, the task starts to be scheduled according to the server parameters and not using initial
priority. This implementation allows only one task per server, if the user tries to bind another
task to the same server, RTEMS_CBS_ERROR_FULL is returned.

NOTES:
Tasks attached to servers become preemptible.

35.4. Directives 647

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.4

35.4.5 CBS_DETACH_THREAD - Detach a thread from server

CALLING SEQUENCE:

1 int rtems_cbs_detach_thread (
2 rtems_cbs_server_id server_id,
3 rtems_id task_id
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully detached
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive detaches a thread from server. The task continues its execution with initial
priority.

NOTES:
The server can be reused for any other task.

648 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.4.6 CBS_DESTROY_SERVER - Destroy a bandwidth server

CALLING SEQUENCE:

1 int rtems_cbs_destroy_server (
2 rtems_cbs_server_id server_id
3);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successfully destroyed
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive destroys a server. If any task was attached to the server, the task is detached
and continues its execution according to EDF rules with initial properties.

NOTES:
This again enables one more task to be created.

35.4. Directives 649

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.4

35.4.7 CBS_GET_SERVER_ID - Get an ID of a server

CALLING SEQUENCE:

1 int rtems_cbs_get_server_id (
2 rtems_id task_id,
3 rtems_cbs_server_id *server_id
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns an id of server belonging to a given task.

650 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.4.8 CBS_GET_PARAMETERS - Get scheduling parameters of a server

CALLING SEQUENCE:

1 rtems_cbs_get_parameters (
2 rtems_cbs_server_id server_id,
3 rtems_cbs_parameters *params
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns a structure with current scheduling parameters of a given server (period
and execution time).

NOTES:
It makes no difference if any task is assigned or not.

35.4. Directives 651

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.4

35.4.9 CBS_SET_PARAMETERS - Set scheduling parameters

CALLING SEQUENCE:

1 int rtems_cbs_set_parameters (
2 rtems_cbs_server_id server_id,
3 rtems_cbs_parameters *params
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive sets new scheduling parameters to the server. This operation can be performed
regardless of whether a task is assigned or not. If a task is assigned, the parameters become
effective imediately, therefore it is recommended to apply the change between two subsequent
periods.

NOTES:
There is an upper limit on both period and budget equal to (2^31)-1 ticks.

652 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.4.10 CBS_GET_EXECUTION_TIME - Get elapsed execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_execution_time (
2 rtems_cbs_server_id server_id,
3 time_t *exec_time,
4 time_t *abs_time
5);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This routine returns consumed execution time (exec_time) of a server during the current
period.

NOTES:
Absolute time (abs_time) not supported now.

35.4. Directives 653

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.4

35.4.11 CBS_GET_REMAINING_BUDGET - Get remaining execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_remaining_budget (
2 rtems_cbs_server_id server_id,
3 time_t *remaining_budget
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns remaining execution time of a given server for current period.

NOTES:
If the execution time approaches zero, the assigned task should finish computations of the
current period.

654 Chapter 35. Constant Bandwidth Server Scheduler API

Chapter 35 Section 35.4 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

35.4.12 CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time

CALLING SEQUENCE:

1 int rtems_cbs_get_approved_budget (
2 rtems_cbs_server_id server_id,
3 time_t *appr_budget
4);

DIRECTIVE STATUS CODES:

RTEMS_CBS_OK successful
RTEMS_CBS_ERROR_INVALID_PARAMETER invalid input argument
RTEMS_CBS_ERROR_NOSERVER server is not valid

DESCRIPTION:
This directive returns server’s approved budget for subsequent periods.

35.4. Directives 655

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 35 Section 35.4

656 Chapter 35. Constant Bandwidth Server Scheduler API

CHAPTER

THIRTYSIX

ADA SUPPORT

657

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 36 Section 36.1

36.1 Introduction

RTEMS has long had support for the Ada programming language by supporting the GNU Ada
Compiler (GNAT). There are two primary components to this support:

• Ada Programming Language Support

• Classic API Ada Bindings

658 Chapter 36. Ada Support

Chapter 36 Section 36.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

36.2 Ada Programming Language Support

The Ada programming natively supports multi-threaded programming with its own tasking and
concurrency model. Native Ada multi-threaded applications should work using GNAT/RTEMS
with no changes.

The application developer will have to account for the specific requirements of the GNAT Run-
Time when configuring RTEMS. There are example Ada programs with RTEMS configuration
and startup sequences.

36.2. Ada Programming Language Support 659

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 36 Section 36.3

36.3 Classic API Ada Bindings

An Ada language binding exists for a subset of the RTEMS Classic API. In the early 1990’s,
there were C and Ada implementations of RTEMS which were functionally equivalent. The
source structure was as similar as possible. In fact, the top level c/ directory at one point had
a sibling ada/. The current Ada language bindings and test code was derived from that Ada
implementation.

The Ada binding specifically excludes some methods which are either not safe or not intended
for use from Ada programs. However, methods are generally only added to this binding when
a user makes a requests. Thus some methods that could be supported are not. If in doubt, ask
about a methods and contribute bindings.

The bindings are located in the c/src/ada directory of the RTEMS source tree. The tests are in
c/src/ada-tests. The bindings following a simple pattern to map the C Classic API calls into
Ada subprograms. The following rules are used:

• All RTEMS interfaces are in the RTEMS Ada package. The rtems_ and RTEMS_ prefixes in
the C version of the Classic API thus correspond to “RTEMS.” in Ada symbol nomenclature.
For example, rtems_task_create() in C is RTEMS.Task_Create() in Ada.

• Classic API directives tend to return an rtems_status_code. Some directives also have
an output parameter such as an object id on a create operation. Ada subprograms are
either pure functions with only a single return value or subprograms. For consistency, the
returned status code is always the last parameter of the Ada calling sequence.

Caution should be exercised when writing programs which mix Ada tasks, Classic API tasks,
and POSIX API threads. Ada tasks use a priority numbering scheme defined by the Ada pro-
gramming language. Each Ada task is implemented in GNAT/RTEMS as a single POSIX thread.
Thus Ada task priorities must be mapped onto POSIX thread priorities. Complicating matters,
Classic API tasks and POSIX API threads use different numbering schemes for priority. Low
numbers are high priority in the Classic API while indicating low priority in the POSIX threads
API. Experience writing mixed threading model programs teaches that creating a table of the
priorities used in the application with the value in all tasking models used is helpful.

The GNAT run-time uses a priority ceiling mutex to protect its data structures. The priority
ceiling value is one priority more important than the most important Ada task priority (in POSIX
API terms). Do not invoke any services implemented in Ada from a thread or task which is of
greater priority. This will result in a priority ceiling violation error and lead to a failure in the
Ada run-time.

Exercise extreme caution when considering writing code in Ada which will execute in the con-
text of an interrupt handler. Hardware interrupts are processed outside the context of any
thread in RTEMS and this can lead to violating assumptions in the GNAT run-time. Specifically
a priority ceiling mutex should never be used from an ISR and it is difficult to predict when the
Ada compiler or run-time will use a mutex.

RTEMS has two capabilities which can assist in avoiding this problem. The Classic API Timer
Manager allows the creation of Timer Service Routines which execute in the context of a task
rather than the clock tick Interrupt Service Routine. Similarly, there is support for Interrupt
Tasks which is a mechanism to defer the processing of the event from the hardware interrupt
level to a thread.

660 Chapter 36. Ada Support

CHAPTER

THIRTYSEVEN

LINKER SETS

661

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.1

37.1 Introduction

Linker sets are a flexible means to create arrays of items out of a set of object files at link-time.
For example its possible to define an item I of type T in object file A and an item J of type T in
object file B to be a member of a linker set S. The linker will then collect these two items I and
J and place them in consecutive memory locations, so that they can be accessed like a normal
array defined in one object file. The size of a linker set is defined by its begin and end markers.
A linker set may be empty. It should only contain items of the same type.

The following macros are provided to create, populate and use linker sets.

• RTEMS_LINKER_SET_BEGIN (page 666) - Designator of the linker set begin marker

• RTEMS_LINKER_SET_END (page 667) - Designator of the linker set end marker

• RTEMS_LINKER_SET_SIZE (page 668) - The linker set size in characters

• RTEMS_LINKER_SET_ITEM_COUNT (page 669) - The linker set item count

• RTEMS_LINKER_SET_IS_EMPTY (page 670) - Is the linker set empty?

• RTEMS_LINKER_SET_FOREACH (page 671) - Iterate through the linker set items

• RTEMS_LINKER_ROSET_DECLARE (page 672) - Declares a read-only linker set

• RTEMS_LINKER_ROSET (page 673) - Defines a read-only linker set

• RTEMS_LINKER_ROSET_ITEM_DECLARE (page 674) - Declares a read-only linker set item

• RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE (page 675) - Declares an ordered
read-only linker set item

• RTEMS_LINKER_ROSET_ITEM_REFERENCE (page 676) - References a read-only linker set
item

• RTEMS_LINKER_ROSET_ITEM (page 677) - Defines a read-only linker set item

• RTEMS_LINKER_ROSET_ITEM_ORDERED (page 678) - Defines an ordered read-only linker
set item

• RTEMS_LINKER_ROSET_CONTENT (page 679) - Marks a declaration as a read-only linker
set content

• RTEMS_LINKER_RWSET_DECLARE (page 680) - Declares a read-write linker set

• RTEMS_LINKER_RWSET (page 681) - Defines a read-write linker set

• RTEMS_LINKER_RWSET_ITEM_DECLARE (page 682) - Declares a read-write linker set
item

• RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE (page 683) - Declares an ordered
read-write linker set item

• RTEMS_LINKER_RWSET_ITEM_REFERENCE (page 684) - References a read-write linker
set item

• RTEMS_LINKER_RWSET_ITEM (page 685) - Defines a read-write linker set item

• RTEMS_LINKER_RWSET_ITEM_ORDERED (page 686) - Defines an ordered read-write
linker set item

662 Chapter 37. Linker Sets

Chapter 37 Section 37.1 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

• RTEMS_LINKER_RWSET_CONTENT (page 687) - Marks a declaration as a read-write
linker set content

37.1. Introduction 663

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.2

37.2 Background

Linker sets are used not only in RTEMS, but also for example in Linux, in FreeBSD, for the GNU
C constructor extension and for global C++ constructors. They provide a space efficient and
flexible means to initialize modules. A linker set consists of

• dedicated input sections for the linker (e.g. .ctors and .ctors.* in the case of global
constructors),

• a begin marker (e.g. provided by crtbegin.o, and

• an end marker (e.g. provided by ctrend.o).

A module may place a certain data item into the dedicated input section. The linker will collect
all such data items in this section and creates a begin and end marker. The initialization code
can then use the begin and end markers to find all the collected data items (e.g. pointers to
initialization functions).

In the linker command file of the GNU linker we need the following output section descriptions.

1 /* To be placed in a read-only memory region */
2 .rtemsroset : {
3 KEEP (*(SORT(.rtemsroset.*)))
4 }
5 /* To be placed in a read-write memory region */
6 .rtemsrwset : {
7 KEEP (*(SORT(.rtemsrwset.*)))
8 }

The KEEP() ensures that a garbage collection by the linker will not discard the content of this
section. This would normally be the case since the linker set items are not referenced directly.
The SORT() directive sorts the input sections lexicographically. Please note the lexicographical
order of the .begin, .content and .end section name parts in the RTEMS linker sets macros
which ensures that the position of the begin and end markers are right.

So, what is the benefit of using linker sets to initialize modules? It can be used to ini-
tialize and include only those RTEMS managers and other components which are used
by the application. For example, in case an application uses message queues, it must
call rtems_message_queue_create(). In the module implementing this function, we can
place a linker set item and register the message queue handler constructor. Otherwise,
in case the application does not use message queues, there will be no reference to the
rtems_message_queue_create() function and the constructor is not registered, thus nothing
of the message queue handler will be in the final executable.

For an example see test program sptests/splinkersets01.

664 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3 Directives

37.3. Directives 665

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.1 RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker

CALLING SEQUENCE:

1 type *begin = RTEMS_LINKER_SET_BEGIN(set);

DESCRIPTION:
This macro generates the designator of the begin marker of the linker set identified by set.
The item at the begin marker address is the first member of the linker set if it exists, e.g. the
linker set is not empty. A linker set is empty, if and only if the begin and end markers have
the same address.

The set parameter itself must be a valid C designator on which no macro expansion is per-
formed. It uniquely identifies the linker set.

NOTE:
The compiler may try to be smart. In general it will not work to assign linker set be-
gin and end addresses to pointer variables and treat them like ordinary pointers. The
compiler may exploit the fact that actually two distinct objects are involved and use
this to optimize. To avoid trouble use RTEMS_LINKER_SET_SIZE - The linker set size
in characters (page 668), RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count
(page 669), RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty? (page 670) and
RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items (page 671).

666 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.2 RTEMS_LINKER_SET_END - Designator of the linker set end marker

CALLING SEQUENCE:

1 type *end = RTEMS_LINKER_SET_END(set);

DESCRIPTION:
This macro generates the designator of the end marker of the linker set identified by set.
The item at the end marker address is not a member of the linker set. The set parameter
itself must be a valid C designator on which no macro expansion is performed. It uniquely
identifies the linker set.

37.3. Directives 667

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.3 RTEMS_LINKER_SET_SIZE - The linker set size in characters

CALLING SEQUENCE:

1 size_t size = RTEMS_LINKER_SET_SIZE(set);

DESCRIPTION:
This macro returns the size of the linker set identified by set in characters. The set parameter
itself must be a valid C designator on which no macro expansion is performed. It uniquely
identifies the linker set.

668 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.4 RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count

CALLING SEQUENCE:

1 size_t item_count = RTEMS_LINKER_SET_ITEM_COUNT(set);

DESCRIPTION:
This macro returns the item count of the linker set identified by set. The set parameter itself
must be a valid C designator on which no macro expansion is performed. It uniquely identifies
the linker set.

37.3. Directives 669

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.5 RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty?

CALLING SEQUENCE:

1 bool is_empty = RTEMS_LINKER_SET_IS_EMPTY(set);

DESCRIPTION:
This macro returns true if the linker set identified by set is empty, otherwise returns false. The
set parameter itself must be a valid C designator on which no macro expansion is performed.
It uniquely identifies the linker set.

670 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.6 RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET(myset, int);
2

3 int count(void)
4 {
5 int *item;
6 int n;
7

8 n = 0;
9 RTEMS_LINKER_SET_FOREACH(myset, item) {

10 n += *item;
11 }
12

13 return n;
14 }

DESCRIPTION:
This macro generates a for loop statement which iterates through each item of a linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The item parameter must be a
pointer to an item of the linker set. It iterates through all items of the linker set from begin
to end.

37.3. Directives 671

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.7 RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_DECLARE(set, type);

DESCRIPTION:
This macro generates declarations for the begin and end markers of a read-only linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

672 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.8 RTEMS_LINKER_ROSET - Defines a read-only linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET(set, type);

DESCRIPTION:
This macro generates definitions for the begin and end markers of a read-only linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

37.3. Directives 673

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.9 RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_DECLARE(set, type, item);

DESCRIPTION:
This macro generates a declaration of an item contained in the read-only linker set
identified by set. For a description of the set, type, and item parameters see
RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item (page 677).

674 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.10 RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE - Declares an ordered
read-only linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE(set, type, item, order);

DESCRIPTION:
This macro generates a declaration of an ordered item contained in the read-only linker
set identified by set. For a description of the set, type, item, and order parameters
see RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-only linker set item
(page 678).

37.3. Directives 675

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.11 RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only linker
set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_REFERENCE(set, type, item);

DESCRIPTION:
This macro generates a reference to an item contained in the read-only linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

676 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.12 RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM(set, type, item);

DESCRIPTION:
This macro generates a definition of an item contained in the read-only linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

37.3. Directives 677

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.13 RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-only
linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_ITEM_ORDERED(set, type, item, order);

DESCRIPTION:
This macro generates a definition of an ordered item contained in the read-only linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines the
type of the linker set items. The type must be the same for all macro invocations of a par-
ticular linker set. The item parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies an item in the linker set. The order parame-
ter must be a valid linker input section name part on which macro expansion is performed.
The items are lexicographically ordered according to the order parameter within a linker set.
Ordered items are placed before unordered items in the linker set.

NOTES:
To be resilient to typos in the order parameter, it is recommended to use the following con-
struct in macros defining items for a particular linker set (see enum in XYZ_ITEM()).

1 #include <rtems/linkersets.h>
2

3 typedef struct {
4 int foo;
5 } xyz_item;
6

7 /* The XYZ-order defines */
8 #define XYZ_ORDER_FIRST 0x00001000
9 #define XYZ_ORDER_AND_SO_ON 0x00002000

10

11 /* Defines an ordered XYZ-item */
12 #define XYZ_ITEM(item, order) \
13 enum { xyz_##item = order }; \
14 RTEMS_LINKER_ROSET_ITEM_ORDERED(\
15 xyz, const xyz_item *, item, order \
16) = { &item }
17

18 /* Example item */
19 static const xyz_item some_item = { 123 };
20 XYZ_ITEM(some_item, XYZ_ORDER_FIRST);

678 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.14 RTEMS_LINKER_ROSET_CONTENT - Marks a declaration as a read-only
linker set content

CALLING SEQUENCE:

1 RTEMS_LINKER_ROSET_CONTENT(set, decl);

DESCRIPTION:
This macro marks a declaration as a read-only linker set content. The linker set is identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The decl parameter must be an arbitrary
variable declaration.

37.3. Directives 679

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.15 RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_DECLARE(set, type);

DESCRIPTION:
This macro generates declarations for the begin and end markers of a read-write linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

680 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.16 RTEMS_LINKER_RWSET - Defines a read-write linker set

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET(set, type);

DESCRIPTION:
This macro generates definitions for the begin and end markers of a read-write linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines
the type of the linker set items. The type must be the same for all macro invocations of a
particular linker set.

37.3. Directives 681

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.17 RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker set
item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_DECLARE(set, type, item);

DESCRIPTION:
This macro generates a declaration of an item contained in the read-write linker set
identified by set. For a description of the set, type, and item parameters see
RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item (page 685).

682 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.18 RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE - Declares an ordered
read-write linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE(set, type, item, order);

DESCRIPTION:
This macro generates a declaration of an ordered item contained in the read-write linker
set identified by set. For a description of the set, type, item, and order parameters
see RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-write linker set item
(page 686).

37.3. Directives 683

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.19 RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write linker
set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_REFERENCE(set, type, item);

DESCRIPTION:
This macro generates a reference to an item contained in the read-write linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

684 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.20 RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM(set, type, item);

DESCRIPTION:
This macro generates a definition of an item contained in the read-write linker set identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The type parameter defines the type of the
linker set items. The type must be the same for all macro invocations of a particular linker
set. The item parameter itself must be a valid C designator on which no macro expansion is
performed. It uniquely identifies an item in the linker set.

37.3. Directives 685

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

37.3.21 RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-write
linker set item

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_ITEM_ORDERED(set, type, item, order);

DESCRIPTION:
This macro generates a definition of an ordered item contained in the read-write linker set
identified by set. The set parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies the linker set. The type parameter defines the
type of the linker set items. The type must be the same for all macro invocations of a par-
ticular linker set. The item parameter itself must be a valid C designator on which no macro
expansion is performed. It uniquely identifies an item in the linker set. The order parame-
ter must be a valid linker input section name part on which macro expansion is performed.
The items are lexicographically ordered according to the order parameter within a linker set.
Ordered items are placed before unordered items in the linker set.

NOTES:
To be resilient to typos in the order parameter, it is recommended to use the following con-
struct in macros defining items for a particular linker set (see enum in XYZ_ITEM()).

1 #include <rtems/linkersets.h>
2

3 typedef struct {
4 int foo;
5 } xyz_item;
6

7 /* The XYZ-order defines */
8 #define XYZ_ORDER_FIRST 0x00001000
9 #define XYZ_ORDER_AND_SO_ON 0x00002000

10

11 /* Defines an ordered XYZ-item */
12 #define XYZ_ITEM(item, order) \
13 enum { xyz_##item = order }; \
14 RTEMS_LINKER_RWSET_ITEM_ORDERED(\
15 xyz, const xyz_item *, item, order \
16) = { &item }
17

18 /* Example item */
19 static const xyz_item some_item = { 123 };
20 XYZ_ITEM(some_item, XYZ_ORDER_FIRST);

686 Chapter 37. Linker Sets

Chapter 37 Section 37.3 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

37.3.22 RTEMS_LINKER_RWSET_CONTENT - Marks a declaration as a read-write
linker set content

CALLING SEQUENCE:

1 RTEMS_LINKER_RWSET_CONTENT(set, decl);

DESCRIPTION:
This macro marks a declaration as a read-write linker set content. The linker set is identified
by set. The set parameter itself must be a valid C designator on which no macro expansion
is performed. It uniquely identifies the linker set. The decl parameter must be an arbitrary
variable declaration.

37.3. Directives 687

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 37 Section 37.3

688 Chapter 37. Linker Sets

CHAPTER

THIRTYEIGHT

DIRECTIVE STATUS CODES

689

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 38 Section 38.1

38.1 Introduction

The directive status code directives are:

• rtems_status_text (page 692) - Return the name for the status code

690 Chapter 38. Directive Status Codes

Chapter 38 Section 38.2 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

38.2 Directives

The directives are:

RTEMS_SUCCESSFUL successful completion
RTEMS_TASK_EXITTED returned from a task
RTEMS_MP_NOT_CONFIGURED multiprocessing not configured
RTEMS_INVALID_NAME invalid object name
RTEMS_INVALID_ID invalid object id
RTEMS_TOO_MANY too many
RTEMS_TIMEOUT timed out waiting
RTEMS_OBJECT_WAS_DELETED object was deleted while waiting
RTEMS_INVALID_SIZE invalid specified size
RTEMS_INVALID_ADDRESS invalid address specified
RTEMS_INVALID_NUMBER number was invalid
RTEMS_NOT_DEFINED item not initialized
RTEMS_RESOURCE_IN_USE resources outstanding
RTEMS_UNSATISFIED request not satisfied
RTEMS_INCORRECT_STATE task is in wrong state
RTEMS_ALREADY_SUSPENDED task already in state
RTEMS_ILLEGAL_ON_SELF illegal for calling task
RTEMS_ILLEGAL_ON_REMOTE_
OBJECT

illegal for remote object

RTEMS_CALLED_FROM_ISR invalid environment
RTEMS_INVALID_PRIORITY invalid task priority
RTEMS_INVALID_CLOCK invalid time buffer
RTEMS_INVALID_NODE invalid node id
RTEMS_NOT_CONFIGURED directive not configured
RTEMS_NOT_OWNER_OF_
RESOURCE

not owner of resource

RTEMS_NOT_IMPLEMENTED directive not implemented or feature not available in con-
figuration

RTEMS_INTERNAL_ERROR RTEMS inconsistency detected
RTEMS_NO_MEMORY could not get enough memory
RTEMS_IO_ERROR driver I/O error
RTEMS_INTERRUPTED returned by driver to indicate interrupted operation

38.2. Directives 691

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 38 Section 38.2

38.2.1 STATUS_TEXT - Returns the enumeration name for a status code

CALLING SEQUENCE:

1 const char *rtems_status_text(
2 rtems_status_code code
3);

DIRECTIVE STATUS CODES
The status code enumeration name or “?” in case the status code is invalid.

DESCRIPTION:
Returns the enumeration name for the specified status code.

692 Chapter 38. Directive Status Codes

CHAPTER

THIRTYNINE

EXAMPLE APPLICATION

1 /*
2 * This file contains an example of a simple RTEMS
3 * application. It instantiates the RTEMS Configuration
4 * Information using confdef.h and contains two tasks:
5 * a user initialization task and a simple task.
6 */
7

8 #include <rtems.h>
9

10 rtems_task user_application(rtems_task_argument argument);
11

12 rtems_task init_task(
13 rtems_task_argument ignored
14)
15 {
16 rtems_id tid;
17 rtems_status_code status;
18 rtems_name name;
19

20 name = rtems_build_name('A', 'P', 'P', '1')
21

22 status = rtems_task_create(
23 name, 1, RTEMS_MINIMUM_STACK_SIZE,
24 RTEMS_NO_PREEMPT, RTEMS_FLOATING_POINT, &tid
25);
26 if (status != RTEMS_SUCCESSFUL) {
27 printf("rtems_task_create failed with status of %d.\n", status);
28 exit(1);
29 }
30

31 status = rtems_task_start(tid, user_application, 0);
32 if (status != RTEMS_SUCCESSFUL) {
33 printf("rtems_task_start failed with status of %d.\n", status);
34 exit(1);
35 }
36

37 status = rtems_task_delete(SELF); /* should not return */
38

39 printf("rtems_task_delete returned with status of %d.\n", status);
40 exit(1);
41 }
42

(continues on next page)

693

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 39 Section 39.0

(continued from previous page)

43 rtems_task user_application(rtems_task_argument argument)
44 {
45 /* application specific initialization goes here */
46 while (1) { /* infinite loop */
47 /* APPLICATION CODE GOES HERE
48 *
49 * This code will typically include at least one
50 * directive which causes the calling task to
51 * give up the processor.
52 */
53 }
54 }
55

56 /* The Console Driver supplies Standard I/O. */
57 #define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
58 /* The Clock Driver supplies the clock tick. */
59 #define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
60 #define CONFIGURE_MAXIMUM_TASKS 2
61 #define CONFIGURE_INIT_TASK_NAME rtems_build_name('E', 'X', 'A', 'M')
62 #define CONFIGURE_RTEMS_INIT_TASKS_TABLE
63 #define CONFIGURE_INIT
64 #include <rtems/confdefs.h>

694 Chapter 39. Example Application

CHAPTER

FORTY

GLOSSARY

ABI
This term is an acronym for Application Binary Interface.

active
A term used to describe an object which has been created by an application.

aperiodic task
A task which must execute only at irregular intervals and has only a soft deadline.

API
This term is an acronym for Application Programming Interface.

application
In this document, software which makes use of RTEMS.

ASR
This term is an acronym for Asynchronous Signal Routine.

assembler language
The assembler language is a programming language which can be translated very easily into
machine code and data. For this project assembler languages are restricted to languages
accepted by the GNU assembler program for the target architectures.

asynchronous
Not related in order or timing to other occurrences in the system.

Asynchronous Signal Routine
Similar to a hardware interrupt except that it is associated with a task and is run in the context
of a task. The directives provided by the signal manager are used to service signals.

atomic operations
Atomic operations are defined in terms of C11.

awakened
A term used to describe a task that has been unblocked and may be scheduled to the CPU.

big endian
A data representation scheme in which the bytes composing a numeric value are arranged
such that the most significant byte is at the lowest address.

bit-mapped
A data encoding scheme in which each bit in a variable is used to represent something differ-
ent. This makes for compact data representation.

695

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

block
A physically contiguous area of memory.

blocked task
The task state entered by a task which has been previously started and cannot continue exe-
cution until the reason for waiting has been satisfied. Blocked tasks are not an element of the
set of ready tasks of a scheduler instance.

Board Support Package
A collection of device initialization and control routines specific to a particular type of board
or collection of boards.

broadcast
To simultaneously send a message to a logical set of destinations.

BSP
This term is an acronym for Board Support Package.

buffer
A fixed length block of memory allocated from a partition.

C language
The C language for this project is defined in terms of C11.

C++11
The standard ISO/IEC 14882:2011.

C11
The standard ISO/IEC 9899:2011.

calling convention
The processor and compiler dependent rules which define the mechanism used to invoke
subroutines in a high-level language. These rules define the passing of arguments, the call
and return mechanism, and the register set which must be preserved.

CCB
This term is an acronym for Change Control Board.

Central Processing Unit
This term is equivalent to the terms processor and microprocessor.

chain
A data structure which allows for efficient dynamic addition and removal of elements. It
differs from an array in that it is not limited to a predefined size.

cluster
We have clustered scheduling in case the set of processors of a system is partitioned into non-
empty pairwise disjoint subsets. These subsets are called clusters. Clusters with a cardinality
of one are partitions. Each cluster is owned by exactly one scheduler instance.

coalesce
The process of merging adjacent holes into a single larger hole. Sometimes this process is
referred to as garbage collection.

Configuration Table
A table which contains information used to tailor RTEMS for a particular application.

context
All of the processor registers and operating system data structures associated with a task.

696 Chapter 40. Glossary

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

context switch
Alternate term for task switch. Taking control of the processor from one task and transferring
it to another task.

control block
A data structure used by the executive to define and control an object.

core
When used in this manual, this term refers to the internal executive utility functions. In the
interest of application portability, the core of the executive should not be used directly by
applications.

CPU
This term is an acronym for Central Processing Unit.

critical section
A section of code which must be executed indivisibly.

CRT
This term is an acronym for Cathode Ray Tube. Normally used in reference to the man-
machine interface.

deadline
A fixed time limit by which a task must have completed a set of actions. Beyond this point,
the results are of reduced value and may even be considered useless or harmful.

device
A peripheral used by the application that requires special operation software. See also device
driver.

device driver
Control software for special peripheral devices used by the application.

Device Driver Table
A table which contains the entry points for each of the configured device drivers.

directives
RTEMS’ provided routines that provide support mechanisms for real-time applications.

dispatch
The act of loading a task’s context onto the CPU and transferring control of the CPU to that
task.

Doorstop
Doorstop is a requirements management tool.

dormant
The state entered by a task after it is created and before it has been started.

dual-ported
A term used to describe memory which can be accessed at two different addresses.

EARS
This term is an acronym for Easy Approach to Requirements Syntax.

ELF
This term is an acronym for Executable and Linkable Format.

697

https://github.com/doorstop-dev/doorstop
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

embedded
An application that is delivered as a hidden part of a larger system. For example, the soft-
ware in a fuel-injection control system is an embedded application found in many late-model
automobiles.

entry point
The address at which a function or task begins to execute. In C, the entry point of a function
is the function’s name.

envelope
A buffer provided by the MPCI layer to RTEMS which is used to pass messages between nodes
in a multiprocessor system. It typically contains routing information needed by the MPCI. The
contents of an envelope are referred to as a packet.

error code
This term has the same meaning as status code.

events
A method for task communication and synchronization. The directives provided by the event
manager are used to service events.

exception
A synonym for interrupt.

executing task
The task state entered by a task after it has been given control of the processor. In SMP
configurations, a task may be registered as executing on more than one processor for short
time frames during task migration. Blocked tasks can be executing until they issue a thread
dispatch.

executive
In this document, this term is used to referred to RTEMS. Commonly, an executive is a small
real-time operating system used in embedded systems.

exported
An object known by all nodes in a multiprocessor system. An object created with the GLOBAL
attribute will be exported.

external address
The address used to access dual-ported memory by all the nodes in a system which do not
own the memory.

FIFO
This term is an acronym for First In First Out.

First In First Out
A discipline for manipulating entries in a data structure.

floating point coprocessor
A component used in computer systems to enhance performance in mathematically intensive
situations. It is typically viewed as a logical extension of the primary processor.

freed
A resource that has been released by the application to RTEMS.

GCC
This term is an acronym for GNU Compiler Collection.

698 Chapter 40. Glossary

https://gcc.gnu.org/

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

global
An object that has been created with the GLOBAL attribute and exported to all nodes in a
multiprocessor system.

GNAT
GNAT is the GNU compiler for Ada, integrated into the GCC.

GNU
This term is an acronym for GNU’s Not Unix.

handler
The equivalent of a manager, except that it is internal to RTEMS and forms part of the core.
A handler is a collection of routines which provide a related set of functions. For example,
there is a handler used by RTEMS to manage all objects.

hard real-time system
A real-time system in which a missed deadline causes the worked performed to have no value
or to result in a catastrophic effect on the integrity of the system.

heap
A data structure used to dynamically allocate and deallocate variable sized blocks of memory.

heir task
A task is an heir if it is registered as an heir in a processor of the system. A task can be the
heir on at most one processor in the system. In case the executing and heir tasks differ on
a processor and a thread dispatch is marked as necessary, then the next thread dispatch will
make the heir task the executing task.

heterogeneous
A multiprocessor computer system composed of dissimilar processors.

homogeneous
A multiprocessor computer system composed of a single type of processor.

I/O
This term is an acronym for Input/Output.

ID
An RTEMS assigned identification tag used to access an active object.

IDLE task
A special low priority task which assumes control of the CPU when no other task is able to
execute.

interface
A specification of the methodology used to connect multiple independent subsystems.

internal address
The address used to access dual-ported memory by the node which owns the memory.

interrupt
A hardware facility that causes the CPU to suspend execution, save its status, and transfer
control to a specific location.

interrupt level
A mask used to by the CPU to determine which pending interrupts should be serviced. If a
pending interrupt is below the current interrupt level, then the CPU does not recognize that
interrupt.

699

https://www.gnu.org/

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

interrupt service
An interrupt service consists of an Interrupt Service Routine which is called with a user provided
argument upon reception of an interrupt service request. The routine is invoked in interrupt
context. Interrupt service requests may have a priority and an affinity to a set of processors.
An interrupt service is a software component.

Interrupt Service Routine
An ISR is invoked by the CPU to process a pending interrupt.

ISR
This term is an acronym for Interrupt Service Routine.

ISVV
This term is an acronym for Independent Software Verification and Validation.

kernel
In this document, this term is used as a synonym for executive.

list
A data structure which allows for dynamic addition and removal of entries. It is not statically
limited to a particular size.

little endian
A data representation scheme in which the bytes composing a numeric value are arranged
such that the least significant byte is at the lowest address.

local
An object which was created with the LOCAL attribute and is accessible only on the node it
was created and resides upon. In a single processor configuration, all objects are local.

local operation
The manipulation of an object which resides on the same node as the calling task.

logical address
An address used by an application. In a system without memory management, logical ad-
dresses will equal physical addresses.

loosely-coupled
A multiprocessor configuration where shared memory is not used for communication.

major number
The index of a device driver in the Device Driver Table.

manager
A group of related RTEMS’ directives which provide access and control over resources.

MCS
This term is an acronym for Mellor-Crummey Scott.

memory pool
Used interchangeably with heap.

message
A sixteen byte entity used to communicate between tasks. Messages are sent to message
queues and stored in message buffers.

message buffer
A block of memory used to store messages.

700 Chapter 40. Glossary

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

message queue
An RTEMS object used to synchronize and communicate between tasks by transporting mes-
sages between sending and receiving tasks.

Message Queue Control Block
A data structure associated with each message queue used by RTEMS to manage that message
queue.

minor number
A numeric value passed to a device driver, the exact usage of which is driver dependent.

mode
An entry in a task’s control block that is used to determine if the task allows preemption,
timeslicing, processing of signals, and the interrupt disable level used by the task.

MPCI
This term is an acronym for Multiprocessor Communications Interface Layer.

multiprocessing
The simultaneous execution of two or more processes by a multiple processor computer sys-
tem.

multiprocessor
A computer with multiple CPUs available for executing applications.

Multiprocessor Communications Interface Layer
A set of user-provided routines which enable the nodes in a multiprocessor system to commu-
nicate with one another.

Multiprocessor Configuration Table
The data structure defining the characteristics of the multiprocessor target system with which
RTEMS will communicate.

multitasking
The alternation of execution amongst a group of processes on a single CPU. A scheduling
algorithm is used to determine which process executes at which time.

mutual exclusion
A term used to describe the act of preventing other tasks from accessing a resource simulta-
neously.

nested
A term used to describe an ASR that occurs during another ASR or an ISR that occurs during
another ISR.

node
A term used to reference a processor running RTEMS in a multiprocessor system.

non-existent
The state occupied by an uncreated or deleted task.

NUMA
This term is an acronym for Non-Uniform Memory Access.

numeric coprocessor
A component used in computer systems to enhance performance in mathematically intensive
situations. It is typically viewed as a logical extension of the primary processor.

701

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

object
In this document, this term is used to refer collectively to tasks, timers, message queues,
partitions, regions, semaphores, ports, and rate monotonic periods. All RTEMS objects have
IDs and user-assigned names.

object-oriented
A term used to describe systems with common mechanisms for utilizing a variety of entities.
Object-oriented systems shield the application from implementation details.

operating system
The software which controls all the computer’s resources and provides the base upon which
application programs can be written.

overhead
The portion of the CPUs processing power consumed by the operating system.

packet
A buffer which contains the messages passed between nodes in a multiprocessor system. A
packet is the contents of an envelope.

partition
This term has two definitions:

1. A partition is an RTEMS object which is used to allocate and deallocate fixed size blocks
of memory from an dynamically specified area of memory.

2. A cluster with a cardinality of one is a partition.

Partition Control Block
A data structure associated with each partition used by RTEMS to manage that partition.

pending
A term used to describe a task blocked waiting for an event, message, semaphore, or signal.

periodic task
A task which must execute at regular intervals and comply with a hard deadline.

physical address
The actual hardware address of a resource.

poll
A mechanism used to determine if an event has occurred by periodically checking for a par-
ticular status. Typical events include arrival of data, completion of an action, and errors.

pool
A collection from which resources are allocated.

portability
A term used to describe the ease with which software can be rehosted on another computer.

posting
The act of sending an event, message, semaphore, or signal to a task.

preempt
The act of forcing a task to relinquish the processor and dispatching to another task.

priority
A mechanism used to represent the relative importance of an element in a set of items. RTEMS
uses priority to determine which task should execute.

702 Chapter 40. Glossary

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

priority boosting
A simple approach to extend the priority inheritance protocol for clustered scheduling is pri-
ority boosting. In case a mutex is owned by a task of another cluster, then the priority of the
owner task is raised to an artificially high priority, the pseudo-interrupt priority.

priority inheritance
An algorithm that calls for the lower priority task holding a resource to have its priority
increased to that of the highest priority task blocked waiting for that resource. This avoids
the problem of priority inversion.

priority inversion
A form of indefinite postponement which occurs when a high priority tasks requests access
to shared resource currently allocated to low priority task. The high priority task must block
until the low priority task releases the resource.

processor utilization
The percentage of processor time used by a task or a set of tasks.

proxy
An RTEMS control structure used to represent, on a remote node, a task which must block as
part of a remote operation.

Proxy Control Block
A data structure associated with each proxy used by RTEMS to manage that proxy.

PTCB
This term is an acronym for Partition Control Block.

PXCB
This term is an acronym for Proxy Control Block.

QCB
This term is an acronym for Message Queue Control Block.

quantum
The application defined unit of time in which the processor is allocated.

queue
Alternate term for message queue.

ready task
A task occupies this state when it is available to be given control of a processor. A ready
task has no processor assigned. The scheduler decided that other tasks are currently more
important. A task that is ready to execute and has a processor assigned is called scheduled.

real-time
A term used to describe systems which are characterized by requiring deterministic response
times to external stimuli. The external stimuli require that the response occur at a precise
time or the response is incorrect.

reentrant
A term used to describe routines which do not modify themselves or global variables.

region
An RTEMS object which is used to allocate and deallocate variable size blocks of memory
from a dynamically specified area of memory.

Region Control Block
A data structure associated with each region used by RTEMS to manage that region.

703

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

registers
Registers are locations physically located within a component, typically used for device control
or general purpose storage.

remote
Any object that does not reside on the local node.

remote operation
The manipulation of an object which does not reside on the same node as the calling task.

ReqIF
This term is an acronym for Requirements Interchange Format.

resource
A hardware or software entity to which access must be controlled.

resume
Removing a task from the suspend state. If the task’s state is ready following a call to the
rtems_task_resume directive, then the task is available for scheduling.

return code
This term has the same meaning as status code.

return value
The value returned by a function. A return value may be a status code.

RNCB
This term is an acronym for Region Control Block.

round-robin
A task scheduling discipline in which tasks of equal priority are executed in the order in which
they are made ready.

RS-232
A standard for serial communications.

RTEMS
This term is an acronym for Real-Time Executive for Multiprocessor Systems.

running
The state of a rate monotonic timer while it is being used to delineate a period. The timer
exits this state by either expiring or being canceled.

schedulable
A set of tasks which can be guaranteed to meet their deadlines based upon a specific schedul-
ing algorithm.

schedule
The process of choosing which task should next enter the executing state.

scheduled task
A task is scheduled if it is allowed to execute and has a processor assigned. Such a task
executes currently on a processor or is about to start execution. A task about to start execution
it is an heir task on exactly one processor in the system.

scheduler
A scheduler or scheduling algorithm allocates processors to a subset of its set of ready tasks.
So it manages access to the processor resource. Various algorithms exist to choose the tasks
allowed to use a processor out of the set of ready tasks. One method is to assign each task a

704 Chapter 40. Glossary

https://www.omg.org/spec/ReqIF/About-ReqIF/

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

priority number and assign the tasks with the lowest priority number to one processor of the
set of processors owned by a scheduler instance.

scheduler instance
A scheduler instance is a scheduling algorithm with a corresponding context to store its in-
ternal state. Each processor in the system is owned by at most one scheduler instance. The
processor to scheduler instance assignment is determined at application configuration time.
See Configuring a System (page 369).

segments
Variable sized memory blocks allocated from a region.

semaphore
An RTEMS object which is used to synchronize tasks and provide mutually exclusive access
to resources.

Semaphore Control Block
A data structure associated with each semaphore used by RTEMS to manage that semaphore.

shared memory
Memory which is accessible by multiple nodes in a multiprocessor system.

signal
An RTEMS provided mechanism to communicate asynchronously with a task. Upon reception
of a signal, the ASR of the receiving task will be invoked.

signal set
A thirty-two bit entity which is used to represent a task’s collection of pending signals and the
signals sent to a task.

SMCB
This term is an acronym for Semaphore Control Block.

SMP
This term is an acronym for Symmetric Multiprocessing.

SMP barriers
The SMP barriers ensure that a defined set of independent threads of execution on a set of
processors reaches a common synchronization point in time. They are implemented using
atomic operations. Currently a sense barrier is used in RTEMS.

SMP locks
The SMP locks ensure mutual exclusion on the lowest level and are a replacement for the
sections of disabled interrupts. Interrupts are usually disabled while holding an SMP lock.
They are implemented using atomic operations. Currently a ticket lock is used in RTEMS.

soft real-time system
A real-time system in which a missed deadline does not compromise the integrity of the
system.

software component
This term is defined by ECSS-E-ST-40C 3.2.28 as a “part of a software system”. For this project
a software component shall be any of the following items and nothing else:

• software unit

• explicitly defined ELF symbol in a source code file

• assembler language data in a source code file

705

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

• C language object with static storage duration

• C language object with thread-local storage duration

• thread

• interrupt service

• collection of software components (this is a software architecture element)

Please note that explicitly defined ELF symbols and assembler language data are considered
a software component only if they are defined in a source code file. For example, this rules
out symbols and data generated as side-effects by the toolchain (compiler, assembler, linker)
such as jump tables, linker trampolines, exception frame information, etc.

software item
This term has the same meaning as software product.

software product
The software product is the RTEMS real-time operating system.

software unit
This term is defined by ECSS-E-ST-40C 3.2.24 as a “separately compilable piece of source
code”. For this project a software unit shall be any of the following items and nothing else:

• assembler language function in a source code file

• C language function (external and internal linkage)

A software unit is a software component.

source code
This project uses the source code definition of the Linux Information Project: “Source code
(also referred to as source or code) is the version of software as it is originally written (i.e.,
typed into a computer) by a human in plain text (i.e., human readable alphanumeric charac-
ters).”

sporadic task
A task which executes at irregular intervals and must comply with a hard deadline. A mini-
mum period of time between successive iterations of the task can be guaranteed.

stack
A data structure that is managed using a Last In First Out (LIFO) discipline. Each task has a
stack associated with it which is used to store return information and local variables.

status code
A status code indicates the completion status of an operation. For example most RTEMS
directives return a status code through the return value to indicate a successful operation or
error conditions.

suspend
A term used to describe a task that is not competing for the CPU because it has had a
rtems_task_suspend directive.

synchronous
Related in order or timing to other occurrences in the system.

system call
In this document, this is used as an alternate term for directive.

706 Chapter 40. Glossary

http://www.linfo.org/source_code.html

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

target
The system on which the application will ultimately execute.

TAS
This term is an acronym for Test-And-Set.

task
This project uses the thread definition of Wikipedia: “a thread of execution is the smallest
sequence of programmed instructions that can be managed independently by a scheduler,
which is typically a part of the operating system.”

It consists normally of a set of registers and a stack. The scheduler assigns processors to a
subset of the ready tasks. The terms task and thread are synonym in RTEMS. The term task is
used throughout the Classic API, however, internally in the operating system implementation
and the POSIX API the term thread is used.

A task is a software component.

Task Control Block
A data structure associated with each task used by RTEMS to manage that task.

task migration
Task migration happens in case a task stops execution on one processor and resumes execution
on another processor.

task processor affinity
The set of processors on which a task is allowed to execute.

task switch
Alternate terminology for context switch. Taking control of the processor from one task and
given to another.

TCB
This term is an acronym for Task Control Block.

thread
This term has the same meaning as task.

thread dispatch
The thread dispatch transfers control of the processor from the currently executing thread to
the heir thread of the processor.

tick
The basic unit of time used by RTEMS. It is a user-configurable number of microseconds. The
current tick expires when a clock tick directive is invoked.

tightly-coupled
A multiprocessor configuration system which communicates via shared memory.

timeout
An argument provided to a number of directives which determines the maximum length of
time an application task is willing to wait to acquire the resource if it is not immediately
available.

timer
An RTEMS object used to invoke subprograms at a later time.

Timer Control Block
A data structure associated with each timer used by RTEMS to manage that timer.

707

https://en.wikipedia.org/wiki/Thread_(computing)

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

timeslice
The application defined unit of time in which the processor is allocated.

timeslicing
A task scheduling discipline in which tasks of equal priority are executed for a specific period
of time before being preempted by another task.

TLS
This term is an acronym for Thread-Local Storage [Dre13]. TLS is available in C11 and
C++11. The support for TLS depends on the CPU port [RTE].

TMCB
This term is an acronym for Timer Control Block.

transient overload
A temporary rise in system activity which may cause deadlines to be missed. Rate Monotonic
Scheduling can be used to determine if all deadlines will be met under transient overload.

TTAS
This term is an acronym for Test and Test-And-Set.

User Extension Table
A table which contains the entry points for each user extensions.

user extensions
Software routines provided by the application to enhance the functionality of RTEMS.

User Initialization Tasks Table
A table which contains the information needed to create and start each of the user initializa-
tion tasks.

user-provided
These terms are used to designate any software routines which must be written by the appli-
cation designer.

user-supplied
This term has the same meaning as user-provided.

vector
Memory pointers used by the processor to fetch the address of routines which will handle
various exceptions and interrupts.

wait queue
The list of tasks blocked pending the release of a particular resource. Message queues, re-
gions, and semaphores have a wait queue associated with them.

YAML
This term is an acronym for YAML Ain’t Markup Language.

yield
When a task voluntarily releases control of the processor.

708 Chapter 40. Glossary

https://yaml.org/

BIBLIOGRAPHY

[RTE] RTEMS CPU Architecture Supplement. URL: https://docs.rtems.org/branches/
master/cpu-supplement.pdf.

[BBB+13] Dave Banham, Andrew Banks, Mark Bradbury, Paul Burden, Mark Dawson-
Butterworth, Mike Hennell, Chris Hills, Steve Montgomery, Chris Tapp, and Liz
Whiting. MISRA C:2012 Guidelines for the Use of the C Language in Critical Systems.
MISRA Limited, March 2013. ISBN 978-1906400101.

[Boe12] Hans-J. Boehm. Can Seqlocks Get Along With Programming Language Memory
Models? Technical Report, HP Laboratories, June 2012. HPL-2012-68. URL: http:
//www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf.

[Bra11] Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Oper-
ating Systems. PhD thesis, The University of North Carolina at Chapel Hill, 2011.
URL: http://www.cs.unc.edu/~bbb/diss/brandenburg-diss.pdf.

[Bra13] Björn B. Brandenburg. A Fully Preemptive Multiprocessor Semaphore Protocol
for Latency-Sensitive Real-Time Applications. In Proceedings of the 25th Euromi-
cro Conference on Real-Time Systems (ECRTS 2013), 292–302. 2013. URL: http:
//www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf.

[Bur91] A. Burns. Scheduling hard real-time systems: a review. Software Engineering Jour-
nal, 6:116–128, 1991.

[BW01] A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX. Addison-Wesley, November 2001. ISBN
978-0321417459.

[BW13] A. Burns and A. J. Wellings. A Schedulability Compatible Multiprocessor Resource
Sharing Protocol - MrsP. In Proceedings of the 25th Euromicro Conference on Real-
Time Systems (ECRTS 2013). 2013. URL: http://www-users.cs.york.ac.uk/~burns/
MRSPpaper.pdf.

[CBHM15] Sebastiano Catellani, Luca Bonato, Sebastian Huber, and Enrico Mezzetti. Chal-
lenges in the Implementation of MrsP. In Reliable Software Technologies - Ada-
Europe 2015, 179–195. 2015.

[CvdBruggenC16] Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen. Overrun
Handling for Mixed-Criticality Support in RTEMS. In Mixed Criticality Systems -
WMC 2016, 13–14. 2016. URL: http://ls12-www.cs.tu-dortmund.de/daes/media/
documents/publications/downloads/2016-wmc.pdf.

709

https://docs.rtems.org/branches/master/cpu-supplement.pdf
https://docs.rtems.org/branches/master/cpu-supplement.pdf
http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
http://www.cs.unc.edu/~bbb/diss/brandenburg-diss.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/ecrts13b.pdf
http://www-users.cs.york.ac.uk/~burns/MRSPpaper.pdf
http://www-users.cs.york.ac.uk/~burns/MRSPpaper.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-wmc.pdf
http://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2016-wmc.pdf

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

[CMV14] Davide Compagnin, Enrico Mezzetti, and Tullio Vardanega. Putting RUN into prac-
tice: implementation and evaluation. In Proceedings of the 26th Euromicro Confer-
ence on Real-Time Systems (ECRTS 2014). 2014.

[Dre07] Ulrich Drepper. What Every Programmer Should Know About Memory. 2007. URL:
http://www.akkadia.org/drepper/cpumemory.pdf.

[Dre13] Ulrich Drepper. ELF Handling For Thread-Local Storage. 2013. URL: http://www.
akkadia.org/drepper/tls.pdf.

[FRK02] Hubertus Franke, Rusty Russel, and Matthew Kirkwood. Fuss, Futexes and Fur-
wocks: Fast Userlevel Locking in Linux. In Proceedings of the Ottawa Linux
Symposium 2002, 479–495. 2002. URL: https://www.kernel.org/doc/ols/2002/
ols2002-pages-479-495.pdf.

[GN06] Thomas Gleixner and Douglas Niehaus. Hrtimers and Beyond: Transforming the
Linux Time Subsystems. In Proceedings of the Linux Symposium, 333–346. 2006.
URL: https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf.

[GCB13] Arpan Gujarati, Felipe Cerqueira, and Björn B. Brandenburg. Schedulability Anal-
ysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities. In
Proceedings of the 25th Euromicro Conference on Real-Time Systems (ECRTS 2013).
2013. URL: https://people.mpi-sws.org/~bbb/papers/pdf/ecrts13a-rev1.pdf.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm: ex-
act characterization and average case behavior. In Real-Time Systems Symposium,
166–171. 1989.

[LL73] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment. Journal of the ACM, 20:46–61, 1973.

[LLF+16] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma, and
Alexandra Fedorova. The Linux Scheduler: a Decade of Wasted Cores. In Proceed-
ings of the Eleventh European Conference on Computer Systems (EuroSys ‘16). 2016.
URL: https://hal.archives-ouvertes.fr/hal-01295194/document.

[Mot88] Motorola. Real Time Executive Interface Definition. Motorola Inc., Microcom-
puter Division and Software Components Group, Inc., January 1988. DRAFT
2.1. URL: https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.
1/RTEID-2_1.pdf.

[SG90] Lui Sha and J. B. Goodenough. Real-time scheduling theory and Ada. Computer,
23:53–62, 1990.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Proto-
cols: An Approach to Real-Time Synchronization. IEEE Transactions on Computers,
39:1175–1185, 1990.

[VC95] G. Varghese and A. Costello. Redesigning the BSD callout and timer facili-
ties. Technical Report, Washington University in St. Louis, November 1995.
WUCS-95-23. URL: http://web.mit.edu/afs.new/sipb/user/daveg/ATHENA/Info/
wucs-95-23.ps.

[VL87] G. Varghese and T. Lauck. Hashed and Hierarchical Timing Wheels: Data Struc-
tures for the Efficient Implementation of a Timer Facility. In Proceedings of the
11th ACM Symposium on Operating Systems Principles. 1987. URL: http://www.cs.
columbia.edu/~nahum/w6998/papers/sosp87-timing-wheels.pdf.

710 Bibliography

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/tls.pdf
http://www.akkadia.org/drepper/tls.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-333-346.pdf
https://people.mpi-sws.org/~bbb/papers/pdf/ecrts13a-rev1.pdf
https://hal.archives-ouvertes.fr/hal-01295194/document
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
http://web.mit.edu/afs.new/sipb/user/daveg/ATHENA/Info/wucs-95-23.ps
http://web.mit.edu/afs.new/sipb/user/daveg/ATHENA/Info/wucs-95-23.ps
http://www.cs.columbia.edu/~nahum/w6998/papers/sosp87-timing-wheels.pdf
http://www.cs.columbia.edu/~nahum/w6998/papers/sosp87-timing-wheels.pdf

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

[VIT90] VITA. Open Real-Time Kernel Interface Definition. VITA, the VMEbus International
Trade Association, August 1990. Draft 2.1. URL: https://ftp.rtems.org/pub/rtems/
publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf.

[Wil12] Anthony Williams. C++ Concurrency in Action - Practical Multithreading. Manning
Publications Co, 2012. ISBN 978-1933988771.

Bibliography 711

https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

712 Bibliography

INDEX

Symbols
/dev/null, 392
/dev/zero, 395
_Terminate, 339
<rtems/confdefs.h>, 370

A
ABI, 693
active, 693
Ada, 655
add memory, 294
add memory to a region, 294
announce, 341, 347
announce arrival of package, 516
announce fatal error, 341, 347
aperiodic task, 693
API, 693
application, 693
Application architecture, 10
ASR, 693
ASR, 263
ASR mode, 263
ASR vs. ISR, 263
assembler language, 693
asynchronous, 693
Asynchronous Signal Routine, 693
asynchronous signal routine, 263
atomic operations, 693
attach a thread to server, 647
awakened, 693

B
barrier, 224
big endian, 693
binary semaphores, 203
bit-mapped, 693
block, 694
blocked task, 694
Board Support Package, 694
Board Support Packages, 347
broadcast, 694

broadcast message to a queue, 248
BSP, 694
BSP, 347
BSP_IDLE_TASK_BODY, 454
BSP_IDLE_TASK_STACK_SIZE, 454
BSP_INITIAL_EXTENSION, 455
BSP_INTERRUPT_STACK_SIZE, 455
BSPs, 347
buffer, 694
buffers, 273
build object id from components, 569
build object name, 561
building, 83, 255, 263, 273, 285

C
C language, 694
C Program Heap, 386
C++11, 694
C11, 694
calling convention, 694
cancel a period, 196
cancel a timer, 172
cbs, 635
CBS limitations, 640
CBS parameters, 638
CCB, 694
Central Processing Unit, 694
chain, 694
chain append a node, 606
chain append a node unprotected, 607
chain extract a node, 600
chain extract a node unprotected, 601
chain get first node, 602, 603
chain get head, 590
chain get tail, 591
chain initialize, 587
chain initialize empty, 588
chain insert a node, 604
chain insert a node unprotected, 605
chain is chain empty, 593
chain is node null, 589

713

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

chain is node the first, 594
chain is node the head, 598
chain is node the last, 595
chain is node the tail, 599
chain iterate, 584
chain only one node, 596, 597
chains, 579
chare are nodes equal, 592
cleanup the CBS library, 645
clear C Program Heap, 388
clear RTEMS Workspace, 388
clock, 139
clock get nanoseconds uptime, 160
clock get uptime, 157
clock get uptime interval, 158
clock get uptime seconds, 159
clock tick quantum, 384
close a device, 326
cluster, 694
coalesce, 694
communication and synchronization, 26
conclude current period, 198
confdefs.h, 370
Configuration Table, 694
configure message queue buffer memory,

383
CONFIGURE_APPLICATION_DISABLE_

FILESYSTEM, 419
CONFIGURE_APPLICATION_DOES_NOT_NEED_

CLOCK_DRIVER, 389
CONFIGURE_APPLICATION_EXTRA_DRIVERS, 389
CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER,

390
CONFIGURE_APPLICATION_NEEDS_CLOCK_

DRIVER, 390
CONFIGURE_APPLICATION_NEEDS_CONSOLE_

DRIVER, 390
CONFIGURE_APPLICATION_NEEDS_FRAME_

BUFFER_DRIVER, 391
CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER,

391
CONFIGURE_APPLICATION_NEEDS_LIBBLOCK, 431
CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER,

392
CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER,

392
CONFIGURE_APPLICATION_NEEDS_SIMPLE_

CONSOLE_DRIVER, 393
CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_

CONSOLE_DRIVER, 393
CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER,

394
CONFIGURE_APPLICATION_NEEDS_TIMER_

DRIVER, 394
CONFIGURE_APPLICATION_NEEDS_WATCHDOG_

DRIVER, 395
CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER,

395
CONFIGURE_APPLICATION_PREREQUISITE_

DRIVERS, 395
CONFIGURE_ATA_DRIVER_TASK_PRIORITY, 396
CONFIGURE_BDBUF_BUFFER_COUNT, 464
CONFIGURE_BDBUF_BUFFER_MAX_SIZE, 431
CONFIGURE_BDBUF_BUFFER_MIN_SIZE, 431
CONFIGURE_BDBUF_BUFFER_SIZE, 464
CONFIGURE_BDBUF_CACHE_MEMORY_SIZE, 432
CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS,

432
CONFIGURE_BDBUF_MAX_WRITE_BLOCKS, 432
CONFIGURE_BDBUF_READ_AHEAD_TASK_

PRIORITY, 433
CONFIGURE_BDBUF_TASK_STACK_SIZE, 433
CONFIGURE_BSP_PREREQUISITE_DRIVERS, 456
CONFIGURE_CBS_MAXIMUM_SERVERS, 442
CONFIGURE_DIRTY_MEMORY, 378
CONFIGURE_DISABLE_BSP_SETTINGS, 456
CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS,

464
CONFIGURE_DISABLE_NEWLIB_REENTRANCY, 378
CONFIGURE_ENABLE_GO, 464
CONFIGURE_EXECUTIVE_RAM_SIZE, 378
CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_

STACK, 458
CONFIGURE_EXTRA_TASK_STACKS, 379
CONFIGURE_FILESYSTEM_ALL, 420
CONFIGURE_FILESYSTEM_DOSFS, 420
CONFIGURE_FILESYSTEM_FTPFS, 420
CONFIGURE_FILESYSTEM_IMFS, 421
CONFIGURE_FILESYSTEM_JFFS2, 421
CONFIGURE_FILESYSTEM_NFS, 421
CONFIGURE_FILESYSTEM_RFS, 422
CONFIGURE_FILESYSTEM_TFTPFS, 422
CONFIGURE_GNAT_RTEMS, 464
CONFIGURE_HAS_OWN_BDBUF_TABLE, 464
CONFIGURE_HAS_OWN_CONFIGURATION_TABLE,

464
CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE,

464
CONFIGURE_HAS_OWN_INIT_TASK_TABLE, 464
CONFIGURE_HAS_OWN_MOUNT_TABLE, 464
CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE,

465

714 Index

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

CONFIGURE_IDLE_TASK_BODY, 440
CONFIGURE_IDLE_TASK_INITIALIZES_

APPLICATION, 440
CONFIGURE_IDLE_TASK_STACK_SIZE, 441
CONFIGURE_IMFS_DISABLE_CHMOD, 422
CONFIGURE_IMFS_DISABLE_CHOWN, 423
CONFIGURE_IMFS_DISABLE_LINK, 423
CONFIGURE_IMFS_DISABLE_MKNOD, 423
CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE, 424
CONFIGURE_IMFS_DISABLE_MKNOD_FILE, 424
CONFIGURE_IMFS_DISABLE_MOUNT, 424
CONFIGURE_IMFS_DISABLE_READDIR, 425
CONFIGURE_IMFS_DISABLE_READLINK, 425
CONFIGURE_IMFS_DISABLE_RENAME, 425
CONFIGURE_IMFS_DISABLE_RMNOD, 426
CONFIGURE_IMFS_DISABLE_SYMLINK, 426
CONFIGURE_IMFS_DISABLE_UNMOUNT, 426
CONFIGURE_IMFS_DISABLE_UTIME, 427
CONFIGURE_IMFS_ENABLE_MKFIFO, 427
CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK,

427
CONFIGURE_INIT_TASK_ARGUMENTS, 405
CONFIGURE_INIT_TASK_ATTRIBUTES, 405
CONFIGURE_INIT_TASK_ENTRY_POINT, 405
CONFIGURE_INIT_TASK_INITIAL_MODES, 406
CONFIGURE_INIT_TASK_NAME, 406
CONFIGURE_INIT_TASK_PRIORITY, 406
CONFIGURE_INIT_TASK_STACK_SIZE, 407
CONFIGURE_INITIAL_EXTENSIONS, 379
CONFIGURE_INTERRUPT_STACK_SIZE, 380
CONFIGURE_LIBIO_MAXIMUM_FILE_

DESCRIPTORS, 465
CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK, 457
CONFIGURE_MALLOC_DIRTY, 380
CONFIGURE_MAXIMUM_ADA_TASKS, 465
CONFIGURE_MAXIMUM_BARRIERS, 398
CONFIGURE_MAXIMUM_DEVICES, 465
CONFIGURE_MAXIMUM_DRIVERS, 396
CONFIGURE_MAXIMUM_FAKE_ADA_TASKS, 465
CONFIGURE_MAXIMUM_FILE_DESCRIPTORS, 381
CONFIGURE_MAXIMUM_GO_CHANNELS, 465
CONFIGURE_MAXIMUM_GOROUTINES, 465
CONFIGURE_MAXIMUM_MESSAGE_QUEUES, 398
CONFIGURE_MAXIMUM_MRSP_SEMAPHORES, 465
CONFIGURE_MAXIMUM_PARTITIONS, 399
CONFIGURE_MAXIMUM_PERIODS, 399
CONFIGURE_MAXIMUM_PORTS, 400
CONFIGURE_MAXIMUM_POSIX_BARRIERS, 465
CONFIGURE_MAXIMUM_POSIX_CONDITION_

VARIABLES, 466
CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS,

409
CONFIGURE_MAXIMUM_POSIX_KEYS, 409
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_

DESCRIPTORS, 466
CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES,

410
CONFIGURE_MAXIMUM_POSIX_MUTEXES, 466
CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS,

410
CONFIGURE_MAXIMUM_POSIX_RWLOCKS, 466
CONFIGURE_MAXIMUM_POSIX_SEMAPHORES, 411
CONFIGURE_MAXIMUM_POSIX_SHMS, 412
CONFIGURE_MAXIMUM_POSIX_SPINLOCKS, 466
CONFIGURE_MAXIMUM_POSIX_THREADS, 412
CONFIGURE_MAXIMUM_POSIX_TIMERS, 413
CONFIGURE_MAXIMUM_PRIORITY, 442
CONFIGURE_MAXIMUM_PROCESSORS, 381
CONFIGURE_MAXIMUM_REGIONS, 400
CONFIGURE_MAXIMUM_SEMAPHORES, 401
CONFIGURE_MAXIMUM_TASKS, 402
CONFIGURE_MAXIMUM_THREAD_NAME_SIZE, 382
CONFIGURE_MAXIMUM_TIMERS, 403
CONFIGURE_MAXIMUM_USER_EXTENSIONS, 403
CONFIGURE_MEMORY_OVERHEAD, 382
CONFIGURE_MESSAGE_BUFFER_MEMORY, 383
CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE, 383
CONFIGURE_MICROSECONDS_PER_TICK, 384
CONFIGURE_MINIMUM_POSIX_THREAD_STACK_

SIZE, 414
CONFIGURE_MINIMUM_TASK_STACK_SIZE, 385
CONFIGURE_MP_APPLICATION, 458
CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS, 458
CONFIGURE_MP_MAXIMUM_NODES, 459
CONFIGURE_MP_MAXIMUM_PROXIES, 459
CONFIGURE_MP_MPCI_TABLE_POINTER, 460
CONFIGURE_MP_NODE_NUMBER, 460
CONFIGURE_NUMBER_OF_TERMIOS_PORTS, 465
CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_

TABLE, 466
CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT,

415
CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE,

415
CONFIGURE_POSIX_INIT_THREAD_TABLE, 415
CONFIGURE_RECORD_EXTENSIONS_ENABLED, 417
CONFIGURE_RECORD_FATAL_DUMP_BASE64, 417
CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB,

417
CONFIGURE_RECORD_PER_PROCESSOR_ITEMS, 418
CONFIGURE_RTEMS_INIT_TASKS_TABLE, 407
CONFIGURE_SCHEDULER_ASSIGNMENTS, 443

Index 715

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

CONFIGURE_SCHEDULER_CBS, 444
CONFIGURE_SCHEDULER_EDF, 444
CONFIGURE_SCHEDULER_EDF_SMP, 444
CONFIGURE_SCHEDULER_NAME, 445
CONFIGURE_SCHEDULER_PRIORITY, 446
CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_

SMP, 446
CONFIGURE_SCHEDULER_PRIORITY_SMP, 447
CONFIGURE_SCHEDULER_SIMPLE, 447
CONFIGURE_SCHEDULER_SIMPLE_SMP, 447
CONFIGURE_SCHEDULER_STRONG_APA, 448
CONFIGURE_SCHEDULER_USER, 448
CONFIGURE_SMP_APPLICATION, 466
CONFIGURE_SMP_MAXIMUM_PROCESSORS, 466
CONFIGURE_STACK_CHECKER_ENABLED, 386
CONFIGURE_SWAPOUT_BLOCK_HOLD, 434
CONFIGURE_SWAPOUT_SWAP_PERIOD, 434
CONFIGURE_SWAPOUT_TASK_PRIORITY, 434
CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY,

435
CONFIGURE_SWAPOUT_WORKER_TASKS, 435
CONFIGURE_TASK_STACK_ALLOCATOR, 437
CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_

WORK_SPACE, 438
CONFIGURE_TASK_STACK_ALLOCATOR_INIT, 437
CONFIGURE_TASK_STACK_DEALLOCATOR, 438
CONFIGURE_TASK_STACK_FROM_ALLOCATOR, 438
CONFIGURE_TERMIOS_DISABLED, 466
CONFIGURE_TICKS_PER_TIMESLICE, 386
CONFIGURE_UNIFIED_WORK_AREAS, 386
CONFIGURE_UNLIMITED_ALLOCATION_SIZE, 387
CONFIGURE_UNLIMITED_OBJECTS, 387
CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM,

428
CONFIGURE_USE_MINIIMFS_AS_BASE_

FILESYSTEM, 429
CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION,

388
CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY,

388
configuring a system, 368
constant bandwidth server scheduling, 45
context, 694
context switch, 695
control block, 695
convert external to internal address, 311
convert internal to external address, 312
core, 695
counting semaphores, 203
CPU, 695
CPU Usage, 546

create a barrier, 230
create a message queue, 242
create a new bandwidth server, 646
create a partition, 276
create a period, 194
create a port, 308
create a region, 290
create a semaphore, 213
create a task, 89
create a timer, 170
create an extension set, 366
critical section, 695
CRT, 695
current task mode, 102
current task priority, 100, 101

D
data types, 33
deadline, 695
definition, 79, 184, 255, 273, 285, 304, 347,

507, 508, 510
delay a task for an interval, 103
delay a task until a wall time, 104
delays, 143
delete a barrier, 232
delete a message queue, 245
delete a partition, 279
delete a period, 197
delete a port, 310
delete a region, 293
delete a semaphore, 216
delete a timer, 173
delete an extension set, 368
deleting a task, 95, 96
destroy a bandwidth server, 649
detach a thread from server, 648
device, 695
device driver, 695
device driver interface, 316
Device Driver Table, 695
Device Driver Table, 315
device drivers, 312
device names, 315
directives, 695
disable interrupts, 128, 131
disabling interrupts, 122
dispatch, 695
dispatching, 48
Doorstop, 695
dormant, 695
dual ported memory, 301, 304

716 Index

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

dual-ported, 695

E
earliest deadline first scheduling, 44
EARS, 695
ELF, 695
embedded, 696
enable interrupts, 129, 133
entry point, 696
envelope, 696
error code, 696
establish an ASR, 268
establish an ISR, 127
event condition, 255
event flag, 255
event set, 255
events, 696
events, 252
exception, 696
exception frame, 344
executing task, 696
executive, 696
exported, 696
external address, 696
external addresses, 304

F
fatal error, 341, 345–347
fatal error detection, 333
fatal error processing, 333
fatal error user extension, 333
fatal errors, 329
FIFO, 696
fire a task-based timer at wall time, 178
fire a timer after an interval, 174
fire a timer at wall time, 175
fire task-based a timer after an interval,

177
First In First Out, 696
flash interrupts, 130
floating point, 82
floating point coprocessor, 696
flush a semaphore, 220
flush messages on a queue, 252
freed, 696

G
GCC, 696
get an ID of a server, 650
get buffer from partition, 280
get class from object ID, 26
get current ticks counter value, 153

get elapsed execution time, 653
get ID of a barrier, 231
get ID of a message queue, 244
get ID of a partition, 278
get ID of a period, 195
get ID of a port, 309
get ID of a region, 292
get ID of a semaphore, 215
get ID of a task, 91
get ID of an extension set, 367
get index from object ID, 26
get name from id, 562
get node from object ID, 26
get number of pending messages, 251
get object name as string, 563
get per-task variable, 117
get remaining execution time, 654
get scheduler approved execution time,

655
get scheduling parameters of a server, 651
get segment from region, 295
get size of segment, 298
get statistics of period, 200
get status of period, 199
get task mode, 102
get task notepad entry, 114
get task preemption mode, 102
get task priority, 100, 101
global, 697
global objects, 507
global objects table, 507
GNAT, 697
GNU, 697

H
handler, 697
hard real-time system, 697
heap, 697
heir task, 697
heterogeneous, 697
heterogeneous multiprocessing, 512
homogeneous, 697

I
I/O, 697
ID, 697
IDLE task, 697
immediate ceiling priority protocol, 28
initialization tasks, 67
initialize a device driver, 322
initialize RTEMS, 75
initialize the CBS library, 644

Index 717

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

initiate the Timer Server, 176
install an ASR, 268
install an ISR, 127
int16_t, 39
int32_t, 39
int64_t, 39
int8_t, 39
interface, 697
internal address, 697
internal addresses, 304
Internal Architecture, 11
interrupt, 697
interrupt level, 697
interrupt level, 81
interrupt levels, 121
interrupt processing, 121
interrupt service, 698
Interrupt Service Routine, 698
interrupt stack size, 380
interrupts, 118
IO Control, 329
IO Manager, 312
is interrupt in progress, 139
is task suspended, 99
ISR, 698
ISR vs. ASR, 263
ISVV, 698
iterate over all threads, 110

K
kernel, 698

L
libpci, 530
linkersets, 660
list, 698
little endian, 698
local, 698
local operation, 698
lock a semaphore, 217
locking protocols, 27
logical address, 698
lookup device major and minor number, 324
loosely-coupled, 698

M
major device number, 315
major number, 698
manager, 698
manual round robin, 47
maximum file descriptors, 381
maximum priority, 442

maximum thread name size, 382
MCS, 698
memory for a single message queue’s

buffers, 383
memory for task tasks, 379
memory management, 32
memory pool, 698
message, 698
message buffer, 698
message queue, 699
message queue attributes, 237
Message Queue Control Block, 699
message queues, 234
messages, 234
minimum POSIX thread stack size, 414
minimum task stack size, 385
minor device number, 315
minor number, 699
mode, 699
MPCI, 699
MPCI, 510
MPCI and remote operations, 508
MPCI entry points, 510
multiprocessing, 699
multiprocessing, 503
multiprocessing topologies, 506
multiprocessor, 699
Multiprocessor Communications Interface

Layer, 699
Multiprocessor Configuration Table, 699
Multiprocessor Resource Sharing Protocol

(MrsP), 29
multitasking, 699
mutual exclusion, 699
mutual exclusion, 203

N
nested, 699
node, 699
nodes, 507
non-existent, 699
NUMA, 699
number of priority levels, 442
numeric coprocessor, 699

O
O(m) Independence-Preserving Protocol

(OMIP), 29
object, 700
object ID, 25
object ID composition, 25
object manipulation, 553

718 Index

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

object name, 25
object-oriented, 700
objects, 24
obtain a semaphore, 217
obtain API from id, 565
obtain API name, 576
obtain buffer from partition, 280
obtain class from object id, 566
obtain class information, 578
obtain class name, 577
obtain ID of a barrier, 231
obtain ID of a partition, 278
obtain ID of a period, 195
obtain ID of a port, 309
obtain ID of a region, 292
obtain ID of a semaphore, 215
obtain ID of an extension set, 367
obtain ID of caller, 92
obtain index from object id, 568
obtain local node, 579
obtain maximum API value, 571
obtain maximum class value, 573
obtain maximum class value for an API, 575
obtain minimum API value, 570
obtain minimum class value, 572
obtain minimum class value for an API, 574
obtain name from id, 562
obtain node from object id, 567
obtain object name as string, 563
obtain per-task variable, 117
obtain region information, 300
obtain region information on free blocks,

301
obtain seconds since epoch, 151, 152
obtain statistics of period, 200
obtain status of period, 199
obtain task mode, 102
obtain task priority, 100, 101
obtain the ID of a timer, 171
obtain the time of day, 149, 150, 162
obtain ticks since boot, 153
obtaining class from object ID, 26
obtaining index from object ID, 26
obtaining node from object ID, 26
open a devive, 325
operating system, 700
overhead, 700

P
packet, 700
panic, 342

partition, 700
partition, 273
partition attribute set, 273
Partition Control Block, 700
partitions, 269
PCI, 530
PCI address translation, 538
PCI Interrupt, 538
PCI_LIB_AUTO, 462
PCI_LIB_PERIPHERAL, 462
PCI_LIB_READ, 462
PCI_LIB_STATIC, 462
pending, 700
per-task variable, 116, 118
period initiation, 198
period statistics report, 203
periodic task, 700
periodic task, 184
periodic tasks, 179
physical address, 700
poll, 700
pool, 700
portability, 700
ports, 301
posting, 700
preempt, 700
preemption, 47, 81
prepend node, 608
prepend node unprotected, 609
print period statistics report, 203
priority, 700
priority, 80
priority boosting, 701
priority ceiling protocol, 28
priority inheritance, 701
priority inheritance protocol, 28
priority inversion, 701
priority inversion, 28
priority scheduling, 42
processor utilization, 701
proxy, 701
proxy, 508
Proxy Control Block, 701
PTCB, 701
put message at front of queue, 247
PXCB, 701

Q
QCB, 701
quantum, 701
queue, 701

Index 719

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

R
rate mononitonic tasks, 179
Rate Monotonic Scheduling Algorithm, 184
rbtree doc, 615
rbtrees, 609
read from a device, 327
ready task, 701
real-time, 701
Real-time applications, 8
Real-time executive, 9
receive event condition, 260
receive message from a queue, 249
Red-Black Trees, 609
reentrant, 701
region, 701
region, 285, 294
region attribute set, 285
Region Control Block, 701
regions, 281
register a device driver, 320
register device, 323
registers, 702
release a barrier, 234
release a semaphore, 219
remote, 702
remote operation, 702
ReqIF, 702
reset a timer, 179
reset statistics of all periods, 202
reset statistics of period, 201
resize segment, 299
resource, 702
restarting a task, 94
restore interrupt level, 129, 133
resume, 702
resuming a task, 98
return buffer to partitition, 281
return code, 702
return segment to region, 297
return value, 702
RMS Algorithm, 184
RMS First Deadline Rule, 186
RMS Processor Utilization Rule, 186
RMS schedulability analysis, 185
RNCB, 702
round robin scheduling, 47
round-robin, 702
RS-232, 702
RTEMS, 702
RTEMS Data Types, 33
rtems extensions table index, 360

RTEMS Workspace, 386
rtems_address, 37
rtems_asr, 37, 265, 639
rtems_asr_entry, 37
rtems_attribute, 37
rtems_barrier_create, 230
rtems_barrier_delete, 232
rtems_barrier_ident, 231
rtems_barrier_release, 234
rtems_barrier_wait, 233
rtems_boolean, 37
rtems_build_id, 569
rtems_build_name, 25, 561
rtems_cbs_attach_thread, 647
rtems_cbs_cleanup, 645
rtems_cbs_create_server, 646
rtems_cbs_destroy_server, 649
rtems_cbs_detach_thread, 648
rtems_cbs_get_approved_budget, 655
rtems_cbs_get_execution_time, 653
rtems_cbs_get_parameters, 651
rtems_cbs_get_remaining_budget, 654
rtems_cbs_get_server_id, 650
rtems_cbs_initialize, 644
rtems_cbs_parameters, 638
rtems_cbs_set_parameters, 652
rtems_chain_append, 606
rtems_chain_append_unprotected, 607
rtems_chain_are_nodes_equal, 592
rtems_chain_extract, 600
rtems_chain_extract_unprotected, 601
rtems_chain_get, 602
rtems_chain_get_unprotected, 603
rtems_chain_has_only_one_node, 596
rtems_chain_head, 590
rtems_chain_initialize, 587
rtems_chain_initialize_empty, 588
rtems_chain_insert, 604
rtems_chain_insert_unprotected, 605
rtems_chain_is_empty, 593
rtems_chain_is_first, 594
rtems_chain_is_head, 598
rtems_chain_is_last, 595
rtems_chain_is_null_node, 589
rtems_chain_is_tail, 599
rtems_chain_node_count_unprotected, 597
rtems_chain_prepend, 608
rtems_chain_prepend_unprotected, 609
rtems_chain_tail, 591
rtems_clock_get, 162
rtems_clock_get_options, 162

720 Index

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

rtems_clock_get_seconds_since_epoch, 151
rtems_clock_get_ticks_per_second, 152
rtems_clock_get_ticks_since_boot, 153
rtems_clock_get_tod, 149
rtems_clock_get_tod_timeval, 150
rtems_clock_get_uptime, 157
rtems_clock_get_uptime_nanoseconds, 160
rtems_clock_get_uptime_seconds, 159
rtems_clock_get_uptime_timeval, 158
rtems_clock_set, 148
rtems_clock_tick_before, 156
rtems_clock_tick_later, 154
rtems_clock_tick_later_usec, 155
rtems_context, 37
rtems_context_fp, 37
rtems_cpu_usage_report, 552
rtems_cpu_usage_reset, 553
rtems_device_driver, 37
rtems_device_driver_entry, 37
rtems_device_major_number, 37, 315
rtems_device_minor_number, 37, 315
rtems_double, 37
rtems_event_receive, 260
rtems_event_send, 259
rtems_event_set, 37, 255
rtems_exception_frame_print, 344
rtems_extension, 37
rtems_extension_create, 366
rtems_extension_delete, 368
rtems_extension_ident, 367
rtems_extensions_table, 359
rtems_fatal, 341
rtems_fatal_error_occurred, 347
rtems_fatal_extension, 37, 364
rtems_fatal_source_text, 345
rtems_id, 25, 37
rtems_initialize_executive, 75
rtems_internal_error_text, 346
rtems_interrupt_catch, 127
rtems_interrupt_disable, 128
rtems_interrupt_enable, 129
rtems_interrupt_flash, 130
rtems_interrupt_frame, 37
rtems_interrupt_is_in_progress, 139
rtems_interrupt_level, 37
rtems_interrupt_local_disable, 131
rtems_interrupt_local_enable, 133
rtems_interrupt_lock_acquire, 135
rtems_interrupt_lock_acquire_isr, 137
rtems_interrupt_lock_initialize, 134
rtems_interrupt_lock_release, 136

rtems_interrupt_lock_release_isr, 138
rtems_interval, 31, 38
rtems_io_close, 326
rtems_io_control, 329
rtems_io_initialize, 322
rtems_io_lookup_name, 324
rtems_io_open, 325
rtems_io_read, 327
rtems_io_register_driver, 320
rtems_io_register_name, 323
rtems_io_unregister_driver, 321
rtems_io_write, 328
rtems_isr, 38, 121
rtems_isr_entry, 38
rtems_iterate_over_all_threads, 112
RTEMS_LINKER_ROSET, 672
RTEMS_LINKER_ROSET_CONTENT, 678
RTEMS_LINKER_ROSET_DECLARE, 671
RTEMS_LINKER_ROSET_ITEM, 676
RTEMS_LINKER_ROSET_ITEM_DECLARE, 673
RTEMS_LINKER_ROSET_ITEM_ORDERED, 677
RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE,

674
RTEMS_LINKER_ROSET_ITEM_REFERENCE, 675
RTEMS_LINKER_RWSET, 680
RTEMS_LINKER_RWSET_CONTENT, 686
RTEMS_LINKER_RWSET_DECLARE, 679
RTEMS_LINKER_RWSET_ITEM, 684
RTEMS_LINKER_RWSET_ITEM_DECLARE, 681
RTEMS_LINKER_RWSET_ITEM_ORDERED, 685
RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE,

682
RTEMS_LINKER_RWSET_ITEM_REFERENCE, 683
RTEMS_LINKER_SET_BEGIN, 665
RTEMS_LINKER_SET_END, 666
RTEMS_LINKER_SET_FOREACH, 670
RTEMS_LINKER_SET_IS_EMPTY, 669
RTEMS_LINKER_SET_ITEM_COUNT, 668
RTEMS_LINKER_SET_SIZE, 667
rtems_message_queue_broadcast, 248
rtems_message_queue_create, 242
rtems_message_queue_delete, 245
rtems_message_queue_flush, 252
rtems_message_queue_get_number_pending,

251
rtems_message_queue_ident, 244
rtems_message_queue_receive, 249
rtems_message_queue_send, 246
rtems_message_queue_urgent, 247
rtems_mode, 38
rtems_mp_packet_classes, 38

Index 721

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

rtems_mpci_entry, 38, 510
rtems_mpci_get_packet_entry, 38
rtems_mpci_initialization_entry, 38
rtems_mpci_receive_packet_entry, 38
rtems_mpci_return_packet_entry, 38
rtems_mpci_send_packet_entry, 38
rtems_mpci_table, 38
rtems_multiprocessing_announce, 516
rtems_name, 25, 38
rtems_object_api_maximum_class, 573
rtems_object_api_minimum_class, 572
rtems_object_get_api_class_name, 577
rtems_object_get_api_name, 576
rtems_object_get_class_information, 578
rtems_object_get_classic_name, 562
rtems_object_get_local_node, 579
rtems_object_get_name, 25, 563
rtems_object_id_api_maximum, 571
rtems_object_id_api_maximum_class, 575
rtems_object_id_api_minimum, 570
rtems_object_id_api_minimum_class, 574
rtems_object_id_get_api, 26, 565
rtems_object_id_get_class, 26, 566
rtems_object_id_get_index, 26, 568
rtems_object_id_get_node, 26, 567
rtems_object_set_name, 564
rtems_option, 38
rtems_packet_prefix, 38
rtems_panic, 342
rtems_partition_create, 276
rtems_partition_delete, 279
rtems_partition_get_buffer, 280
rtems_partition_ident, 278
rtems_partition_return_buffer, 281
rtems_port_create, 308
rtems_port_delete, 310
rtems_port_external_to_internal, 311
rtems_port_ident, 309
rtems_port_internal_to_external, 312
rtems_rate_monotonic_cancel, 196
rtems_rate_monotonic_create, 194
rtems_rate_monotonic_delete, 197
rtems_rate_monotonic_get_statistics, 200
rtems_rate_monotonic_get_status, 199
rtems_rate_monotonic_ident, 195
rtems_rate_monotonic_period, 198
rtems_rate_monotonic_period_statistics,

200, 203
rtems_rate_monotonic_period_status, 199
rtems_rate_monotonic_report_statistics,

203

rtems_rate_monotonic_reset_all_
statistics, 202

rtems_rate_monotonic_reset_statistics,
201

rtems_region_delete, 293
rtems_region_extend, 294
rtems_region_get_free_information, 301
rtems_region_get_information, 300
rtems_region_get_segment, 295
rtems_region_get_segment_size, 298
rtems_region_ident, 292
rtems_region_resize_segment, 299
rtems_region_return_segment, 297
rtems_resource_is_unlimited, 377
rtems_resource_maximum_per_allocation,

377
rtems_resource_unlimited, 377
rtems_semaphore_create, 213
rtems_semaphore_delete, 216
rtems_semaphore_flush, 220
rtems_semaphore_ident, 215
rtems_semaphore_obtain, 217
rtems_semaphore_release, 219
rtems_semaphore_set_priority, 222
rtems_shutdown_executive, 343
rtems_signal_catch, 268
rtems_signal_send, 269
rtems_signal_set, 38, 263
rtems_single, 39
rtems_status_code, 39, 689
rtems_status_text, 690
rtems_task, 39, 82
rtems_task_argument, 39
rtems_task_begin_extension, 39, 362
rtems_task_create, 89
rtems_task_create_extension, 39, 361
rtems_task_delete, 95
rtems_task_delete_extension, 39, 363
rtems_task_entry, 39
rtems_task_exit, 96
rtems_task_exitted_extension, 39, 363
rtems_task_get_note, 87, 114
rtems_task_get_priority, 101
rtems_task_ident, 91
rtems_task_is_suspended, 99
rtems_task_iterate, 110
rtems_task_mode, 80, 102
rtems_task_priority, 39, 80
rtems_task_restart, 94
rtems_task_restart_extension, 39, 361
rtems_task_resume, 98

722 Index

Chapter 40 Section 40.0 RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020)

rtems_task_self, 92
rtems_task_set_note, 87, 115
rtems_task_set_priority, 100
rtems_task_start, 93
rtems_task_start_extension, 39, 361
rtems_task_suspend, 97
rtems_task_switch_extension, 40, 362
rtems_task_terminate_extension, 363
rtems_task_variable_add, 87, 116
rtems_task_variable_delete, 87, 118
rtems_task_variable_get, 87, 117
rtems_task_wake_after, 103
rtems_task_wake_when, 104
rtems_tcb, 40
rtems_time_of_day, 31, 40, 143
rtems_timer_cancel, 172
rtems_timer_create, 170
rtems_timer_delete, 173
rtems_timer_fire_after, 174
rtems_timer_fire_when, 175
rtems_timer_ident, 171
rtems_timer_initiate_server, 176
rtems_timer_reset, 179
rtems_timer_server_fire_after, 177
rtems_timer_server_fire_when, 178
rtems_timer_service_routine, 40, 165
rtems_timer_service_routine_entry, 40
rtems_timespec_add_to, 625
rtems_timespec_divide, 627
rtems_timespec_divide_by_integer, 628
rtems_timespec_equal_to, 631
rtems_timespec_from_ticks, 635
rtems_timespec_get_nanoseconds, 633
rtems_timespec_get_seconds, 632
rtems_timespec_greater_than, 630
rtems_timespec_is_valid, 624
rtems_timespec_less_than, 629
rtems_timespec_set, 622
rtems_timespec_subtract, 626
rtems_timespec_to_ticks, 634
rtems_timespec_zero, 623
rtems_vector_number, 40, 121
running, 702
runtime driver registration, 316

S
schedulable, 702
schedule, 702
scheduled task, 702
scheduler, 702
scheduler instance, 703

scheduling, 40
scheduling algorithms, 42
scheduling mechanisms, 46
segment, 285
segments, 703
semaphore, 703
Semaphore Control Block, 703
semaphores, 203
send event set to a task, 259
send message to a queue, 246
send signal set, 269
separate work areas, 386
set object name, 564
set priority by scheduler for a semaphore,

222
set scheduling parameters, 652
set struct timespec instance, 622
set task mode, 102
set task notepad entry, 115
set task preemption mode, 102
set task priority, 100
set the time of day, 148
shared memory, 703
shutdown RTEMS, 343
signal, 703
signal set, 703
signal set, 263
signals, 260
SMCB, 703
SMP, 703
SMP, 516
SMP barriers, 703
SMP locks, 703
soft real-time system, 703
software component, 703
software item, 704
software product, 704
software unit, 704
source code, 704
special device services, 329
sporadic task, 704
sporadic task, 184
stack, 704
stack, 539
Stack Bounds Checker, 539
start current period, 198
start multitasking, 75
starting a task, 93
status code, 704
Status Codes, 686
suspend, 704

Index 723

RTEMS Classic API Guide, Release 5.0.0-m2006-2 (17th June 2020) Chapter 40 Section 40.0

suspending a task, 97
Symmetric Multiprocessing, 516
synchronous, 704
system call, 704

T
target, 705
TAS, 705
task, 705
task, 79–81
task affinity, 520
task arguments, 81
task attributes, 83
Task Control Block, 705
task memory, 79
task migration, 705
task migration, 520
task mode, 80, 83
task name, 80
task priority, 47, 80
task private data, 116, 118
task private variable, 116, 118
task processor affinity, 705
task prototype, 81
task scheduling, 40
task stack allocator, 437, 438
task stack deallocator, 438
task state transitions, 49
task states, 80
task switch, 705
tasks, 75
TCB, 705
TCB extension area, 359
thread, 705
thread affinity, 520
thread dispatch, 705
thread migration, 520
thread queues, 29
tick, 705
tick quantum, 384
ticks per timeslice, 386
tightly-coupled, 705
time, 30
timeout, 705
timeouts, 144
timer, 705
Timer Control Block, 705
timers, 162
timeslice, 706
timeslicing, 706
timeslicing, 47, 81, 143

TImespec Helpers, 615
TLS, 706
TMCB, 706
transient overload, 706
TTAS, 706

U
uint16_t, 40
uint32_t, 40
uint64_t, 40
uint8_t, 40
uintptr_t, 40
unblock all tasks waiting on a semaphore,

220
unified work areas, 386
unlock a semaphore, 219
unregister a device driver, 321
uptime, 157–160
user extension set, 359
User Extension Table, 706
user extensions, 706
user extensions, 356
User Initialization Tasks Table, 706
user-provided, 706
user-supplied, 706

V
vector, 706

W
wait at a barrier, 233
wait queue, 706
wake up after an interval, 103
wake up at a wall time, 104
write to a device, 328

Y
YAML, 706
yield, 706

Z
zero C Program Heap, 388
zero RTEMS Workspace, 388

724 Index

	Preface
	Overview
	Introduction
	Real-time Application Systems
	Real-time Executive
	RTEMS Application Architecture
	RTEMS Internal Architecture
	User Customization and Extensibility
	Portability
	Memory Requirements
	Audience
	Conventions
	Manual Organization

	Key Concepts
	Introduction
	Objects
	Object Names
	Object IDs
	Object ID Format

	Object ID Description

	Communication and Synchronization
	Locking Protocols
	Priority Inversion
	Immediate Ceiling Priority Protocol (ICPP)
	Priority Inheritance Protocol
	Multiprocessor Resource Sharing Protocol (MrsP)
	O(m) Independence-Preserving Protocol (OMIP)

	Thread Queues
	Time
	Timer and Timeouts
	Memory Management

	RTEMS Data Types
	Introduction
	List of Data Types

	Scheduling Concepts
	Introduction
	Scheduling Algorithms
	Priority Scheduling

	Uniprocessor Schedulers
	Deterministic Priority Scheduler
	Simple Priority Scheduler
	Earliest Deadline First Scheduler
	Constant Bandwidth Server Scheduling (CBS)

	SMP Schedulers
	Earliest Deadline First SMP Scheduler
	Deterministic Priority SMP Scheduler
	Simple Priority SMP Scheduler
	Arbitrary Processor Affinity Priority SMP Scheduler

	Scheduling Modification Mechanisms
	Task Priority and Scheduling
	Preemption
	Timeslicing
	Manual Round-Robin

	Dispatching Tasks
	Task State Transitions
	Directives
	SCHEDULER_IDENT - Get ID of a scheduler
	SCHEDULER_IDENT_BY_PROCESSOR - Get ID of a scheduler by processor
	SCHEDULER_IDENT_BY_PROCESSOR_SET - Get ID of a scheduler by processor set
	SCHEDULER_GET_MAXIMUM_PRIORITY - Get maximum task priority of a scheduler
	SCHEDULER_MAP_PRIORITY_TO_POSIX - Map task priority to POSIX thread prority
	SCHEDULER_MAP_PRIORITY_FROM_POSIX - Map POSIX thread prority to task priority
	SCHEDULER_GET_PROCESSOR - Get current processor index
	SCHEDULER_GET_PROCESSOR_MAXIMUM - Get processor maximum
	SCHEDULER_GET_PROCESSOR_SET - Get processor set of a scheduler
	SCHEDULER_ADD_PROCESSOR - Add processor to a scheduler
	SCHEDULER_REMOVE_PROCESSOR - Remove processor from a scheduler

	Initialization Manager
	Introduction
	Background
	Initialization Tasks
	The Idle Task
	Initialization Manager Failure

	Operations
	Initializing RTEMS
	Global Construction

	Directives
	INITIALIZE_EXECUTIVE - Initialize RTEMS

	Task Manager
	Introduction
	Background
	Task Definition
	Task Control Block
	Task Memory
	Task Name
	Task States
	Task Priority
	Task Mode
	Accessing Task Arguments
	Floating Point Considerations
	Building a Task Attribute Set
	Building a Mode and Mask

	Operations
	Creating Tasks
	Obtaining Task IDs
	Starting and Restarting Tasks
	Suspending and Resuming Tasks
	Delaying the Currently Executing Task
	Changing Task Priority
	Changing Task Mode
	Task Deletion
	Setting Affinity to a Single Processor
	Transition Advice for Removed Notepads
	Transition Advice for Removed Task Variables

	Directives
	TASK_CREATE - Create a task
	TASK_IDENT - Get ID of a task
	TASK_SELF - Obtain ID of caller
	TASK_START - Start a task
	TASK_RESTART - Restart a task
	TASK_DELETE - Delete a task
	TASK_EXIT - Delete the calling task
	TASK_SUSPEND - Suspend a task
	TASK_RESUME - Resume a task
	TASK_IS_SUSPENDED - Determine if a task is Suspended
	TASK_SET_PRIORITY - Set task priority
	TASK_GET_PRIORITY - Get task priority
	TASK_MODE - Change the current task mode
	TASK_WAKE_AFTER - Wake up after interval
	TASK_WAKE_WHEN - Wake up when specified
	TASK_GET_SCHEDULER - Get scheduler of a task
	TASK_SET_SCHEDULER - Set scheduler of a task
	TASK_GET_AFFINITY - Get task processor affinity
	TASK_SET_AFFINITY - Set task processor affinity
	TASK_ITERATE - Iterate Over Tasks

	Deprecated Directives
	ITERATE_OVER_ALL_THREADS - Iterate Over Tasks

	Removed Directives
	TASK_GET_NOTE - Get task notepad entry
	TASK_SET_NOTE - Set task notepad entry
	TASK_VARIABLE_ADD - Associate per task variable
	TASK_VARIABLE_GET - Obtain value of a per task variable
	TASK_VARIABLE_DELETE - Remove per task variable

	Interrupt Manager
	Introduction
	Background
	Processing an Interrupt
	RTEMS Interrupt Levels
	Disabling of Interrupts by RTEMS

	Operations
	Establishing an ISR
	Directives Allowed from an ISR

	Directives
	INTERRUPT_CATCH - Establish an ISR
	INTERRUPT_DISABLE - Disable Interrupts
	INTERRUPT_ENABLE - Restore Interrupt Level
	INTERRUPT_FLASH - Flash Interrupts
	INTERRUPT_LOCAL_DISABLE - Disable Interrupts on Current Processor
	INTERRUPT_LOCAL_ENABLE - Restore Interrupt Level on Current Processor
	INTERRUPT_LOCK_INITIALIZE - Initialize an ISR Lock
	INTERRUPT_LOCK_ACQUIRE - Acquire an ISR Lock
	INTERRUPT_LOCK_RELEASE - Release an ISR Lock
	INTERRUPT_LOCK_ACQUIRE_ISR - Acquire an ISR Lock from ISR
	INTERRUPT_LOCK_RELEASE_ISR - Release an ISR Lock from ISR
	INTERRUPT_IS_IN_PROGRESS - Is an ISR in Progress

	Clock Manager
	Introduction
	Background
	Required Support
	Time and Date Data Structures
	Clock Tick and Timeslicing
	Delays
	Timeouts

	Operations
	Announcing a Tick
	Setting the Time
	Obtaining the Time
	Transition Advice for the Removed rtems_clock_get()

	Directives
	CLOCK_SET - Set date and time
	CLOCK_GET_TOD - Get date and time in TOD format
	CLOCK_GET_TOD_TIMEVAL - Get date and time in timeval format
	CLOCK_GET_SECONDS_SINCE_EPOCH - Get seconds since epoch
	CLOCK_GET_TICKS_PER_SECOND - Get ticks per second
	CLOCK_GET_TICKS_SINCE_BOOT - Get current ticks counter value
	CLOCK_TICK_LATER - Get tick value in the future
	CLOCK_TICK_LATER_USEC - Get tick value in the future in microseconds
	CLOCK_TICK_BEFORE - Is tick value is before a point in time
	CLOCK_GET_UPTIME - Get the time since boot
	CLOCK_GET_UPTIME_TIMEVAL - Get the time since boot in timeval format
	CLOCK_GET_UPTIME_SECONDS - Get the seconds since boot
	CLOCK_GET_UPTIME_NANOSECONDS - Get the nanoseconds since boot

	Removed Directives
	CLOCK_GET - Get date and time information

	Timer Manager
	Introduction
	Background
	Required Support
	Timers
	Timer Server
	Timer Service Routines

	Operations
	Creating a Timer
	Obtaining Timer IDs
	Initiating an Interval Timer
	Initiating a Time of Day Timer
	Canceling a Timer
	Resetting a Timer
	Initiating the Timer Server
	Deleting a Timer

	Directives
	TIMER_CREATE - Create a timer
	TIMER_IDENT - Get ID of a timer
	TIMER_CANCEL - Cancel a timer
	TIMER_DELETE - Delete a timer
	TIMER_FIRE_AFTER - Fire timer after interval
	TIMER_FIRE_WHEN - Fire timer when specified
	TIMER_INITIATE_SERVER - Initiate server for task-based timers
	TIMER_SERVER_FIRE_AFTER - Fire task-based timer after interval
	TIMER_SERVER_FIRE_WHEN - Fire task-based timer when specified
	TIMER_RESET - Reset an interval timer

	Rate Monotonic Manager
	Introduction
	Background
	Rate Monotonic Manager Required Support
	Period Statistics
	Periodicity Definitions
	Rate Monotonic Scheduling Algorithm
	Schedulability Analysis
	Assumptions
	Processor Utilization Rule
	Processor Utilization Rule Example
	First Deadline Rule
	First Deadline Rule Example
	Relaxation of Assumptions

	Operations
	Creating a Rate Monotonic Period
	Manipulating a Period
	Obtaining the Status of a Period
	Canceling a Period
	Deleting a Rate Monotonic Period
	Examples
	Simple Periodic Task
	Task with Multiple Periods

	Directives
	RATE_MONOTONIC_CREATE - Create a rate monotonic period
	RATE_MONOTONIC_IDENT - Get ID of a period
	RATE_MONOTONIC_CANCEL - Cancel a period
	RATE_MONOTONIC_DELETE - Delete a rate monotonic period
	RATE_MONOTONIC_PERIOD - Conclude current/Start next period
	RATE_MONOTONIC_GET_STATUS - Obtain status from a period
	RATE_MONOTONIC_GET_STATISTICS - Obtain statistics from a period
	RATE_MONOTONIC_RESET_STATISTICS - Reset statistics for a period
	RATE_MONOTONIC_RESET_ALL_STATISTICS - Reset statistics for all periods
	RATE_MONOTONIC_REPORT_STATISTICS - Print period statistics report

	Semaphore Manager
	Introduction
	Background
	Nested Resource Access
	Priority Inheritance
	Priority Ceiling
	Multiprocessor Resource Sharing Protocol
	Building a Semaphore Attribute Set
	Building a SEMAPHORE_OBTAIN Option Set

	Operations
	Creating a Semaphore
	Obtaining Semaphore IDs
	Acquiring a Semaphore
	Releasing a Semaphore
	Deleting a Semaphore

	Directives
	SEMAPHORE_CREATE - Create a semaphore
	SEMAPHORE_IDENT - Get ID of a semaphore
	SEMAPHORE_DELETE - Delete a semaphore
	SEMAPHORE_OBTAIN - Acquire a semaphore
	SEMAPHORE_RELEASE - Release a semaphore
	SEMAPHORE_FLUSH - Unblock all tasks waiting on a semaphore
	SEMAPHORE_SET_PRIORITY - Set priority by scheduler for a semaphore

	Barrier Manager
	Introduction
	Background
	Automatic Versus Manual Barriers
	Building a Barrier Attribute Set

	Operations
	Creating a Barrier
	Obtaining Barrier IDs
	Waiting at a Barrier
	Releasing a Barrier
	Deleting a Barrier

	Directives
	BARRIER_CREATE - Create a barrier
	BARRIER_IDENT - Get ID of a barrier
	BARRIER_DELETE - Delete a barrier
	BARRIER_WAIT - Wait at a barrier
	BARRIER_RELEASE - Release a barrier

	Message Manager
	Introduction
	Background
	Messages
	Message Queues
	Building a Message Queue Attribute Set
	Building a MESSAGE_QUEUE_RECEIVE Option Set

	Operations
	Creating a Message Queue
	Obtaining Message Queue IDs
	Receiving a Message
	Sending a Message
	Broadcasting a Message
	Deleting a Message Queue

	Directives
	MESSAGE_QUEUE_CREATE - Create a queue
	MESSAGE_QUEUE_IDENT - Get ID of a queue
	MESSAGE_QUEUE_DELETE - Delete a queue
	MESSAGE_QUEUE_SEND - Put message at rear of a queue
	MESSAGE_QUEUE_URGENT - Put message at front of a queue
	MESSAGE_QUEUE_BROADCAST - Broadcast N messages to a queue
	MESSAGE_QUEUE_RECEIVE - Receive message from a queue
	MESSAGE_QUEUE_GET_NUMBER_PENDING - Get number of messages pending on a queue
	MESSAGE_QUEUE_FLUSH - Flush all messages on a queue

	Event Manager
	Introduction
	Background
	Event Sets
	Building an Event Set or Condition
	Building an EVENT_RECEIVE Option Set

	Operations
	Sending an Event Set
	Receiving an Event Set
	Determining the Pending Event Set
	Receiving all Pending Events

	Directives
	EVENT_SEND - Send event set to a task
	EVENT_RECEIVE - Receive event condition

	Signal Manager
	Introduction
	Background
	Signal Manager Definitions
	A Comparison of ASRs and ISRs
	Building a Signal Set
	Building an ASR Mode

	Operations
	Establishing an ASR
	Sending a Signal Set
	Processing an ASR

	Directives
	SIGNAL_CATCH - Establish an ASR
	SIGNAL_SEND - Send signal set to a task

	Partition Manager
	Introduction
	Background
	Partition Manager Definitions
	Building a Partition Attribute Set

	Operations
	Creating a Partition
	Obtaining Partition IDs
	Acquiring a Buffer
	Releasing a Buffer
	Deleting a Partition

	Directives
	PARTITION_CREATE - Create a partition
	PARTITION_IDENT - Get ID of a partition
	PARTITION_DELETE - Delete a partition
	PARTITION_GET_BUFFER - Get buffer from a partition
	PARTITION_RETURN_BUFFER - Return buffer to a partition

	Region Manager
	Introduction
	Background
	Region Manager Definitions
	Building an Attribute Set
	Building an Option Set

	Operations
	Creating a Region
	Obtaining Region IDs
	Adding Memory to a Region
	Acquiring a Segment
	Releasing a Segment
	Obtaining the Size of a Segment
	Changing the Size of a Segment
	Deleting a Region

	Directives
	REGION_CREATE - Create a region
	REGION_IDENT - Get ID of a region
	REGION_DELETE - Delete a region
	REGION_EXTEND - Add memory to a region
	REGION_GET_SEGMENT - Get segment from a region
	REGION_RETURN_SEGMENT - Return segment to a region
	REGION_GET_SEGMENT_SIZE - Obtain size of a segment
	REGION_RESIZE_SEGMENT - Change size of a segment
	REGION_GET_INFORMATION - Get region information
	REGION_GET_FREE_INFORMATION - Get region free information

	Dual-Ported Memory Manager
	Introduction
	Background
	Operations
	Creating a Port
	Obtaining Port IDs
	Converting an Address
	Deleting a DPMA Port

	Directives
	PORT_CREATE - Create a port
	PORT_IDENT - Get ID of a port
	PORT_DELETE - Delete a port
	PORT_EXTERNAL_TO_INTERNAL - Convert external to internal address
	PORT_INTERNAL_TO_EXTERNAL - Convert internal to external address

	I/O Manager
	Introduction
	Background
	Device Driver Table
	Major and Minor Device Numbers
	Device Names
	Device Driver Environment
	Runtime Driver Registration
	Device Driver Interface
	Device Driver Initialization

	Operations
	Register and Lookup Name
	Accessing an Device Driver

	Directives
	IO_REGISTER_DRIVER - Register a device driver
	IO_UNREGISTER_DRIVER - Unregister a device driver
	IO_INITIALIZE - Initialize a device driver
	IO_REGISTER_NAME - Register a device
	IO_LOOKUP_NAME - Lookup a device
	IO_OPEN - Open a device
	IO_CLOSE - Close a device
	IO_READ - Read from a device
	IO_WRITE - Write to a device
	IO_CONTROL - Special device services

	Fatal Error Manager
	Introduction
	Background
	Overview
	Fatal Sources
	Internal Error Codes

	Operations
	Announcing a Fatal Error

	Directives
	FATAL - Invoke the fatal error handler
	PANIC - Print a message and invoke the fatal error handler
	SHUTDOWN_EXECUTIVE - Shutdown RTEMS
	EXCEPTION_FRAME_PRINT - Prints the exception frame
	FATAL_SOURCE_TEXT - Returns a text for a fatal source
	INTERNAL_ERROR_TEXT - Returns a text for an internal error code
	FATAL_ERROR_OCCURRED - Invoke the fatal error handler (deprecated)

	Board Support Packages
	Introduction
	Reset and Initialization
	Interrupt Stack Requirements
	Processors with a Separate Interrupt Stack
	Processors Without a Separate Interrupt Stack

	Device Drivers
	Clock Tick Device Driver

	User Extensions
	Multiprocessor Communications Interface (MPCI)
	Tightly-Coupled Systems
	Loosely-Coupled Systems
	Systems with Mixed Coupling
	Heterogeneous Systems

	User Extensions Manager
	Introduction
	Background
	Extension Sets
	TCB Extension Area
	Order of Invocation
	Thread Create Extension
	Thread Start Extension
	Thread Restart Extension
	Thread Switch Extension
	Thread Begin Extension
	Thread Exitted Extension
	Thread Termination Extension
	Thread Delete Extension
	Fatal Error Extension

	Directives
	EXTENSION_CREATE - Create a extension set
	EXTENSION_IDENT - Get ID of a extension set
	EXTENSION_DELETE - Delete a extension set

	Configuring a System
	Introduction
	Default Value Selection Philosophy
	Sizing the RTEMS Workspace
	Potential Issues with RTEMS Workspace Size Estimation
	Configuration Example
	Unlimited Objects
	Unlimited Objects by Class
	Unlimited Objects by Default

	General System Configuration
	CONFIGURE_DIRTY_MEMORY
	CONFIGURE_DISABLE_NEWLIB_REENTRANCY
	CONFIGURE_EXECUTIVE_RAM_SIZE
	CONFIGURE_EXTRA_TASK_STACKS
	CONFIGURE_INITIAL_EXTENSIONS
	CONFIGURE_INTERRUPT_STACK_SIZE
	CONFIGURE_MALLOC_DIRTY
	CONFIGURE_MAXIMUM_FILE_DESCRIPTORS
	CONFIGURE_MAXIMUM_PROCESSORS
	CONFIGURE_MAXIMUM_THREAD_NAME_SIZE
	CONFIGURE_MEMORY_OVERHEAD
	CONFIGURE_MESSAGE_BUFFER_MEMORY
	CONFIGURE_MICROSECONDS_PER_TICK
	CONFIGURE_MINIMUM_TASK_STACK_SIZE
	CONFIGURE_STACK_CHECKER_ENABLED
	CONFIGURE_TICKS_PER_TIMESLICE
	CONFIGURE_UNIFIED_WORK_AREAS
	CONFIGURE_UNLIMITED_ALLOCATION_SIZE
	CONFIGURE_UNLIMITED_OBJECTS
	CONFIGURE_VERBOSE_SYSTEM_INITIALIZATION
	CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

	Device Driver Configuration
	CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER
	CONFIGURE_APPLICATION_EXTRA_DRIVERS
	CONFIGURE_APPLICATION_NEEDS_ATA_DRIVER
	CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER
	CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER
	CONFIGURE_APPLICATION_NEEDS_IDE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER
	CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER
	CONFIGURE_APPLICATION_NEEDS_SIMPLE_CONSOLE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_SIMPLE_TASK_CONSOLE_DRIVER
	CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER
	CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER
	CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER
	CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER
	CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS
	CONFIGURE_ATA_DRIVER_TASK_PRIORITY
	CONFIGURE_MAXIMUM_DRIVERS

	Classic API Configuration
	CONFIGURE_MAXIMUM_BARRIERS
	CONFIGURE_MAXIMUM_MESSAGE_QUEUES
	CONFIGURE_MAXIMUM_PARTITIONS
	CONFIGURE_MAXIMUM_PERIODS
	CONFIGURE_MAXIMUM_PORTS
	CONFIGURE_MAXIMUM_REGIONS
	CONFIGURE_MAXIMUM_SEMAPHORES
	CONFIGURE_MAXIMUM_TASKS
	CONFIGURE_MAXIMUM_TIMERS
	CONFIGURE_MAXIMUM_USER_EXTENSIONS

	Classic API Initialization Task Configuration
	CONFIGURE_INIT_TASK_ARGUMENTS
	CONFIGURE_INIT_TASK_ATTRIBUTES
	CONFIGURE_INIT_TASK_ENTRY_POINT
	CONFIGURE_INIT_TASK_INITIAL_MODES
	CONFIGURE_INIT_TASK_NAME
	CONFIGURE_INIT_TASK_PRIORITY
	CONFIGURE_INIT_TASK_STACK_SIZE
	CONFIGURE_RTEMS_INIT_TASKS_TABLE

	POSIX API Configuration
	CONFIGURE_MAXIMUM_POSIX_KEYS
	CONFIGURE_MAXIMUM_POSIX_KEY_VALUE_PAIRS
	CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES
	CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS
	CONFIGURE_MAXIMUM_POSIX_SEMAPHORES
	CONFIGURE_MAXIMUM_POSIX_SHMS
	CONFIGURE_MAXIMUM_POSIX_THREADS
	CONFIGURE_MAXIMUM_POSIX_TIMERS
	CONFIGURE_MINIMUM_POSIX_THREAD_STACK_SIZE

	POSIX Initialization Thread Configuration
	CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT
	CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE
	CONFIGURE_POSIX_INIT_THREAD_TABLE

	Event Recording Configuration
	CONFIGURE_RECORD_EXTENSIONS_ENABLED
	CONFIGURE_RECORD_FATAL_DUMP_BASE64
	CONFIGURE_RECORD_FATAL_DUMP_BASE64_ZLIB
	CONFIGURE_RECORD_PER_PROCESSOR_ITEMS

	Filesystem Configuration
	CONFIGURE_APPLICATION_DISABLE_FILESYSTEM
	CONFIGURE_FILESYSTEM_ALL
	CONFIGURE_FILESYSTEM_DOSFS
	CONFIGURE_FILESYSTEM_FTPFS
	CONFIGURE_FILESYSTEM_IMFS
	CONFIGURE_FILESYSTEM_JFFS2
	CONFIGURE_FILESYSTEM_NFS
	CONFIGURE_FILESYSTEM_RFS
	CONFIGURE_FILESYSTEM_TFTPFS
	CONFIGURE_IMFS_DISABLE_CHMOD
	CONFIGURE_IMFS_DISABLE_CHOWN
	CONFIGURE_IMFS_DISABLE_LINK
	CONFIGURE_IMFS_DISABLE_MKNOD
	CONFIGURE_IMFS_DISABLE_MKNOD_DEVICE
	CONFIGURE_IMFS_DISABLE_MKNOD_FILE
	CONFIGURE_IMFS_DISABLE_MOUNT
	CONFIGURE_IMFS_DISABLE_READDIR
	CONFIGURE_IMFS_DISABLE_READLINK
	CONFIGURE_IMFS_DISABLE_RENAME
	CONFIGURE_IMFS_DISABLE_RMNOD
	CONFIGURE_IMFS_DISABLE_SYMLINK
	CONFIGURE_IMFS_DISABLE_UNMOUNT
	CONFIGURE_IMFS_DISABLE_UTIME
	CONFIGURE_IMFS_ENABLE_MKFIFO
	CONFIGURE_IMFS_MEMFILE_BYTES_PER_BLOCK
	CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM
	CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

	Block Device Cache Configuration
	CONFIGURE_APPLICATION_NEEDS_LIBBLOCK
	CONFIGURE_BDBUF_BUFFER_MAX_SIZE
	CONFIGURE_BDBUF_BUFFER_MIN_SIZE
	CONFIGURE_BDBUF_CACHE_MEMORY_SIZE
	CONFIGURE_BDBUF_MAX_READ_AHEAD_BLOCKS
	CONFIGURE_BDBUF_MAX_WRITE_BLOCKS
	CONFIGURE_BDBUF_READ_AHEAD_TASK_PRIORITY
	CONFIGURE_BDBUF_TASK_STACK_SIZE
	CONFIGURE_SWAPOUT_BLOCK_HOLD
	CONFIGURE_SWAPOUT_SWAP_PERIOD
	CONFIGURE_SWAPOUT_TASK_PRIORITY
	CONFIGURE_SWAPOUT_WORKER_TASK_PRIORITY
	CONFIGURE_SWAPOUT_WORKER_TASKS

	Task Stack Allocator Configuration
	CONFIGURE_TASK_STACK_ALLOCATOR
	CONFIGURE_TASK_STACK_ALLOCATOR_INIT
	CONFIGURE_TASK_STACK_DEALLOCATOR
	CONFIGURE_TASK_STACK_FROM_ALLOCATOR
	CONFIGURE_TASK_STACK_ALLOCATOR_AVOIDS_WORK_SPACE

	Idle Task Configuration
	CONFIGURE_IDLE_TASK_BODY
	CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION
	CONFIGURE_IDLE_TASK_STACK_SIZE

	General Scheduler Configuration
	CONFIGURE_CBS_MAXIMUM_SERVERS
	CONFIGURE_MAXIMUM_PRIORITY
	CONFIGURE_SCHEDULER_ASSIGNMENTS
	CONFIGURE_SCHEDULER_CBS
	CONFIGURE_SCHEDULER_EDF
	CONFIGURE_SCHEDULER_EDF_SMP
	CONFIGURE_SCHEDULER_NAME
	CONFIGURE_SCHEDULER_PRIORITY
	CONFIGURE_SCHEDULER_PRIORITY_AFFINITY_SMP
	CONFIGURE_SCHEDULER_PRIORITY_SMP
	CONFIGURE_SCHEDULER_SIMPLE
	CONFIGURE_SCHEDULER_SIMPLE_SMP
	CONFIGURE_SCHEDULER_STRONG_APA
	CONFIGURE_SCHEDULER_USER

	Clustered Scheduler Configuration
	Configuration Step 1 - Scheduler Algorithms
	Configuration Step 2 - Schedulers
	Configuration Step 3 - Scheduler Table
	Configuration Step 4 - Processor to Scheduler Assignment
	Configuration Example
	Configuration Errors

	BSP Related Configuration Options
	BSP_IDLE_TASK_BODY
	BSP_IDLE_TASK_STACK_SIZE
	BSP_INITIAL_EXTENSION
	BSP_INTERRUPT_STACK_SIZE
	CONFIGURE_BSP_PREREQUISITE_DRIVERS
	CONFIGURE_DISABLE_BSP_SETTINGS
	CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK

	Multiprocessing Configuration
	CONFIGURE_MP_APPLICATION
	CONFIGURE_EXTRA_MPCI_RECEIVE_SERVER_STACK
	CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS
	CONFIGURE_MP_MAXIMUM_NODES
	CONFIGURE_MP_MAXIMUM_PROXIES
	CONFIGURE_MP_MPCI_TABLE_POINTER
	CONFIGURE_MP_NODE_NUMBER

	PCI Library Configuration
	Ada Configuration
	Obsolete Configuration Options
	CONFIGURE_BDBUF_BUFFER_COUNT
	CONFIGURE_BDBUF_BUFFER_SIZE
	CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS
	CONFIGURE_ENABLE_GO
	CONFIGURE_GNAT_RTEMS
	CONFIGURE_HAS_OWN_CONFIGURATION_TABLE
	CONFIGURE_HAS_OWN_BDBUF_TABLE
	CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE
	CONFIGURE_HAS_OWN_INIT_TASK_TABLE
	CONFIGURE_HAS_OWN_MOUNT_TABLE
	CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE
	CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS
	CONFIGURE_MAXIMUM_ADA_TASKS
	CONFIGURE_MAXIMUM_DEVICES
	CONFIGURE_MAXIMUM_FAKE_ADA_TASKS
	CONFIGURE_MAXIMUM_GO_CHANNELS
	CONFIGURE_MAXIMUM_GOROUTINES
	CONFIGURE_MAXIMUM_MRSP_SEMAPHORES
	CONFIGURE_NUMBER_OF_TERMIOS_PORTS
	CONFIGURE_MAXIMUM_POSIX_BARRIERS
	CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES
	CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS
	CONFIGURE_MAXIMUM_POSIX_MUTEXES
	CONFIGURE_MAXIMUM_POSIX_RWLOCKS
	CONFIGURE_MAXIMUM_POSIX_SPINLOCKS
	CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE
	CONFIGURE_SMP_APPLICATION
	CONFIGURE_SMP_MAXIMUM_PROCESSORS
	CONFIGURE_TERMIOS_DISABLED

	Self-Contained Objects
	Introduction
	RTEMS Thread API
	Mutual Exclusion
	Static mutex initialization
	Run-time mutex initialization
	Lock the mutex
	Unlock the mutex
	Set mutex name
	Get mutex name
	Mutex destruction

	Condition Variables
	Static condition variable initialization
	Run-time condition variable initialization
	Wait for condition signal
	Signals a condition change
	Broadcasts a condition change
	Set condition variable name
	Get condition variable name
	Condition variable destruction

	Counting Semaphores
	Static counting semaphore initialization
	Run-time counting semaphore initialization
	Wait for a counting semaphore
	Post a counting semaphore
	Set counting semaphore name
	Get counting semaphore name
	Counting semaphore destruction

	Binary Semaphores
	Static binary semaphore initialization
	Run-time binary semaphore initialization
	Wait for a binary semaphore
	Wait for a binary semaphore with timeout in ticks
	Tries to wait for a binary semaphore
	Post a binary semaphore
	Set binary semaphore name
	Get binary semaphore name
	Binary semaphore destruction

	Threads

	Multiprocessing Manager
	Introduction
	Background
	Nodes
	Global Objects
	Global Object Table
	Remote Operations
	Proxies
	Multiprocessor Configuration Table

	Multiprocessor Communications Interface Layer
	INITIALIZATION
	GET_PACKET
	RETURN_PACKET
	RECEIVE_PACKET
	SEND_PACKET
	Supporting Heterogeneous Environments

	Operations
	Announcing a Packet

	Directives
	MULTIPROCESSING_ANNOUNCE - Announce the arrival of a packet

	Symmetric Multiprocessing (SMP)
	Introduction
	Background
	Application Configuration
	Examples
	Uniprocessor versus SMP Parallelism
	Task Affinity
	Task Migration
	Clustered Scheduling
	OpenMP
	Atomic Operations

	Application Issues
	Task variables
	Highest Priority Thread Never Walks Alone
	Disabling of Thread Preemption
	Disabling of Interrupts
	Interrupt Service Routines Execute in Parallel With Threads
	Timers Do Not Stop Immediately
	False Sharing of Cache Lines Due to Objects Table

	Implementation Details
	Low-Level Synchronization
	Internal Locking
	Profiling
	Scheduler Helping Protocol
	Thread Dispatch Details
	Per-Processor Data
	Thread Pinning

	PCI Library
	Introduction
	Background
	Software Components
	PCI Configuration
	RTEMS Configuration selection
	Auto Configuration
	Read Configuration
	Static Configuration
	Peripheral Configuration

	PCI Access
	Configuration space
	I/O space
	Registers over Memory space
	Access functions
	PCI address translation

	PCI Interrupt
	PCI Shell command

	Stack Bounds Checker
	Introduction
	Background
	Task Stack
	Execution

	Operations
	Initializing the Stack Bounds Checker
	Checking for Blown Task Stack
	Reporting Task Stack Usage
	When a Task Overflows the Stack

	Routines
	STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack
	STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage

	CPU Usage Statistics
	Introduction
	Background
	Operations
	Report CPU Usage Statistics
	Reset CPU Usage Statistics

	Directives
	cpu_usage_report - Report CPU Usage Statistics
	cpu_usage_reset - Reset CPU Usage Statistics

	Object Services
	Introduction
	Background
	APIs
	Object Classes
	Object Names

	Operations
	Decomposing and Recomposing an Object Id
	Printing an Object Id

	Directives
	BUILD_NAME - Build object name from characters
	OBJECT_GET_CLASSIC_NAME - Lookup name from id
	OBJECT_GET_NAME - Obtain object name as string
	OBJECT_SET_NAME - Set object name
	OBJECT_ID_GET_API - Obtain API from Id
	OBJECT_ID_GET_CLASS - Obtain Class from Id
	OBJECT_ID_GET_NODE - Obtain Node from Id
	OBJECT_ID_GET_INDEX - Obtain Index from Id
	BUILD_ID - Build Object Id From Components
	OBJECT_ID_API_MINIMUM - Obtain Minimum API Value
	OBJECT_ID_API_MAXIMUM - Obtain Maximum API Value
	OBJECT_API_MINIMUM_CLASS - Obtain Minimum Class Value
	OBJECT_API_MAXIMUM_CLASS - Obtain Maximum Class Value
	OBJECT_ID_API_MINIMUM_CLASS - Obtain Minimum Class Value for an API
	OBJECT_ID_API_MAXIMUM_CLASS - Obtain Maximum Class Value for an API
	OBJECT_GET_API_NAME - Obtain API Name
	OBJECT_GET_API_CLASS_NAME - Obtain Class Name
	OBJECT_GET_CLASS_INFORMATION - Obtain Class Information
	OBJECT_GET_LOCAL_NODE - Obtain Local Node

	Chains
	Introduction
	Background
	Nodes
	Controls

	Operations
	Multi-threading
	Creating a Chain
	Iterating a Chain

	Directives
	Initialize Chain With Nodes
	Initialize Empty
	Is Null Node ?
	Head
	Tail
	Are Two Nodes Equal ?
	Is the Chain Empty
	Is this the First Node on the Chain ?
	Is this the Last Node on the Chain ?
	Does this Chain have only One Node ?
	Returns the node count of the chain (unprotected)
	Is this Node the Chain Head ?
	Is this Node the Chain Tail ?
	Extract a Node
	Extract a Node (unprotected)
	Get the First Node
	Get the First Node (unprotected)
	Insert a Node
	Insert a Node (unprotected)
	Append a Node
	Append a Node (unprotected)
	Prepend a Node
	Prepend a Node (unprotected)

	Red-Black Trees
	Introduction
	Background
	Nodes
	Controls

	Operations
	Directives
	Documentation for the Red-Black Tree Directives

	Timespec Helpers
	Introduction
	Background
	Time Storage Conventions

	Operations
	Set and Obtain Timespec Value
	Timespec Math
	Comparing struct timespec Instances
	Conversions and Validity Check

	Directives
	TIMESPEC_SET - Set struct timespec Instance
	TIMESPEC_ZERO - Zero struct timespec Instance
	TIMESPEC_IS_VALID - Check validity of a struct timespec instance
	TIMESPEC_ADD_TO - Add Two struct timespec Instances
	TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances
	TIMESPEC_DIVIDE - Divide Two struct timespec Instances
	TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by an Integer
	TIMESPEC_LESS_THAN - Less than operator
	TIMESPEC_GREATER_THAN - Greater than operator
	TIMESPEC_EQUAL_TO - Check equality of timespecs
	TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec Instance
	TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the struct timespec Instance
	TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks
	TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representation

	Constant Bandwidth Server Scheduler API
	Introduction
	Background
	Constant Bandwidth Server Definitions
	Handling Periodic Tasks
	Registering a Callback Function
	Limitations

	Operations
	Setting up a server
	Attaching Task to a Server
	Detaching Task from a Server
	Examples

	Directives
	CBS_INITIALIZE - Initialize the CBS library
	CBS_CLEANUP - Cleanup the CBS library
	CBS_CREATE_SERVER - Create a new bandwidth server
	CBS_ATTACH_THREAD - Attach a thread to server
	CBS_DETACH_THREAD - Detach a thread from server
	CBS_DESTROY_SERVER - Destroy a bandwidth server
	CBS_GET_SERVER_ID - Get an ID of a server
	CBS_GET_PARAMETERS - Get scheduling parameters of a server
	CBS_SET_PARAMETERS - Set scheduling parameters
	CBS_GET_EXECUTION_TIME - Get elapsed execution time
	CBS_GET_REMAINING_BUDGET - Get remaining execution time
	CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time

	Ada Support
	Introduction
	Ada Programming Language Support
	Classic API Ada Bindings

	Linker Sets
	Introduction
	Background
	Directives
	RTEMS_LINKER_SET_BEGIN - Designator of the linker set begin marker
	RTEMS_LINKER_SET_END - Designator of the linker set end marker
	RTEMS_LINKER_SET_SIZE - The linker set size in characters
	RTEMS_LINKER_SET_ITEM_COUNT - The linker set item count
	RTEMS_LINKER_SET_IS_EMPTY - Is the linker set empty?
	RTEMS_LINKER_SET_FOREACH - Iterate through the linker set items
	RTEMS_LINKER_ROSET_DECLARE - Declares a read-only linker set
	RTEMS_LINKER_ROSET - Defines a read-only linker set
	RTEMS_LINKER_ROSET_ITEM_DECLARE - Declares a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_ORDERED_DECLARE - Declares an ordered read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_REFERENCE - References a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM - Defines a read-only linker set item
	RTEMS_LINKER_ROSET_ITEM_ORDERED - Defines an ordered read-only linker set item
	RTEMS_LINKER_ROSET_CONTENT - Marks a declaration as a read-only linker set content
	RTEMS_LINKER_RWSET_DECLARE - Declares a read-write linker set
	RTEMS_LINKER_RWSET - Defines a read-write linker set
	RTEMS_LINKER_RWSET_ITEM_DECLARE - Declares a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_ORDERED_DECLARE - Declares an ordered read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_REFERENCE - References a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM - Defines a read-write linker set item
	RTEMS_LINKER_RWSET_ITEM_ORDERED - Defines an ordered read-write linker set item
	RTEMS_LINKER_RWSET_CONTENT - Marks a declaration as a read-write linker set content

	Directive Status Codes
	Introduction
	Directives
	STATUS_TEXT - Returns the enumeration name for a status code

	Example Application
	Glossary
	Bibliography
	Index

