
RTEMSBSP andDriver Guide
Release 5.db971a6 (2nd April 2020)

RTEMSDocumentation Project

Apr 02, 2020

CONTENTS

1 Introduction 3

2 Target Dependent Files 5
2.1 CPU Dependent . 6
2.2 Board Dependent . 7
2.3 Peripheral Dependent . 8
2.4 Questions to Ask . 9
2.5 CPU Dependent Executive Files . 10
2.6 Board Support Package Structure . 11

3 Linker Script 13
3.1 What is a “linkcmds” file? . 14
3.2 Program Sections . 15
3.3 Image of an Executable . 16
3.4 Example Linker Command Script . 17
3.5 Initialized Data . 21

4 Miscellaneous Support Files 23
4.1 GCC Compiler Specifications File . 24
4.2 README Files . 25
4.3 Times . 26
4.4 Tools Subdirectory . 27
4.5 bsp.h Include File . 28
4.6 tm27.h Include File . 29
4.7 sbrk() Implementation . 30
4.8 bsp_fatal_extension() - Cleanup the Hardware 31
4.9 Configuration Macros . 32
4.10 set_vector() - Install an Interrupt Vector . 33
4.11 Interrupt Delay Profiling . 34
4.12 Programmable Interrupt Controller API . 35

5 System Initialization 37
5.1 Introduction . 38
5.2 Low-Level Initialization via Start Code in the Start File (start.o) 39
5.3 High-Level Initialization via boot_card() . 40

5.3.1 Early BSP Initialization . 40
5.3.2 Memory Information . 40
5.3.3 BSP Initialization . 40

i

5.4 Error Handling . 41

6 Console Driver 43
6.1 Introduction . 44
6.2 Build System and Files . 45
6.3 Driver Functioning Modes . 46
6.4 Polled Mode . 47
6.5 Interrupt Driven Mode . 48
6.6 First Open . 50
6.7 Last Close . 51
6.8 Set Attributes . 52
6.9 IO Control . 53
6.10 Flow Control . 54
6.11 General Initialization . 55

7 Clock Driver 57
7.1 Introduction . 58
7.2 Initialization . 59

7.2.1 Timecounter Variant . 59
7.2.2 Simple Timecounter Variant . 60
7.2.3 Clock Tick Only Variant . 61

7.3 Install Clock Tick Interrupt Service Routine . 62
7.4 Support At Tick . 63
7.5 System Shutdown Support . 64
7.6 SMP Support . 65
7.7 Multiple Clock Driver Ticks Per Clock Tick . 66
7.8 Clock Driver Ticks Counter . 67

8 Entropy Source 69

9 I2C Driver 71

10 SPI Driver 73

11 Real-Time Clock Driver 75
11.1 Introduction . 76
11.2 Initialization . 78
11.3 setRealTimeToRTEMS . 79
11.4 setRealTimeFromRTEMS . 80
11.5 getRealTime . 81
11.6 setRealTime . 82
11.7 checkRealTime . 83

12 Networking Driver 85
12.1 Introduction . 86
12.2 Learn about the network device . 87
12.3 Understand the network scheduling conventions 88
12.4 Network Driver Makefile . 89
12.5 Write the Driver Attach Function . 90
12.6 Write the Driver Start Function. 92
12.7 Write the Driver Initialization Function. 93
12.8 Write the Driver Transmit Task . 94
12.9 Write the Driver Receive Task . 95

ii

12.10Write the Driver Interrupt Handler . 96
12.11Write the Driver IOCTL Function . 97
12.12Write the Driver Statistic-Printing Function . 98

13 Frame Buffer Driver 99
13.1 Introduction . 100
13.2 Driver Function Overview . 101

13.2.1 Initialization . 101
13.2.2 Opening the Frame Buffer Device . 101
13.2.3 Closing the Frame Buffer Device . 102
13.2.4 Reading from the Frame Buffer Device 102
13.2.5 Writing to the Frame Buffer Device . 103
13.2.6 Frame Buffer IO Control . 103

14 Ada95 Interrupt Support 105
14.1 Introduction . 106
14.2 Mapping Interrupts to POSIX Signals . 107
14.3 Example Ada95 Interrupt Program . 108
14.4 Version Requirements . 109

15 Shared Memory Support Driver 111
15.1 Shared Memory Configuration Table . 112
15.2 Primitives . 114

15.2.1 Convert Address . 114
15.2.2 Get Configuration . 114
15.2.3 Locking Primitives . 114

15.2.3.1 Initializing a Shared Lock . 115
15.2.3.2 Acquiring a Shared Lock . 115
15.2.3.3 Releasing a Shared Lock . 115

15.3 Installing the MPCI ISR . 117

16 Timer Driver 119
16.1 Benchmark Timer . 120

16.1.1 benchmark_timer_initialize . 120
16.1.2 Read_timer . 120
16.1.3 benchmark_timer_disable_subtracting_average_overhead 120

16.2 gen68340 UART FIFO Full Mode . 121

17 ATA Driver 123
17.1 Terms . 124
17.2 Introduction . 125
17.3 Initialization . 126
17.4 ATA Driver Architecture . 127

17.4.1 ATA Driver Main Internal Data Structures 127
17.4.2 Brief ATA Driver Core Overview . 128

18 IDE Controller Driver 129
18.1 Introduction . 130
18.2 Initialization . 131
18.3 Read IDE Controller Register . 132
18.4 Write IDE Controller Register . 133
18.5 Read Data Block Through IDE Controller Data Register 134

iii

18.6 Write Data Block Through IDE Controller Data Register 135

19 Command and Variable Index 137

20 Doxygen Recommendations for BSPs 139
20.1 BSP Basics . 140
20.2 Common Features Found In BSPs . 141
20.3 Shared Features . 142
20.4 Rationale . 143
20.5 The Structure of the bsps/ directory . 144
20.6 Doxygen . 146
20.7 Doxygen Basics . 147
20.8 Doxygen Headers . 148
20.9 The @defgroup Command . 149
20.10The @ingroup Command . 150
20.11The @brief Command . 151
20.12The Two Types of Doxygen Headers . 152
20.13Generating Documentation . 154
20.14Doxygen in bsps/ . 155
20.15Group Naming Conventions . 156
20.16Where to place @defgroup . 157
20.17@defgroups for CPU Architectures and Shared Directories 158
20.18@defgroups for BSPs . 159
20.19@defgroups for Everything Else . 160
20.20Look Common Features Implemented . 161
20.21Check out the Makefile . 162
20.22Start with a .h, and look for files that include it 163
20.23Files with similar names . 164
20.24Where to place @ingroup . 165
20.25@ingroup in the first type of Doxygen Header . 166
20.26@ingroup in the second type of Doxygen Header 167
20.27@ingroup for shared code . 168

Index 169

iv

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

Copyrights and License

© 2017 Christian Mauderer
© 2016, 2020 embedded brains GmbH
© 2016, 2020 Sebastian Huber
© 1988, 2017 On-Line Applications Research Corporation (OAR)

This document is available under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional Public License.

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at https://www.rtems.org. Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home https://www.rtems.org
Documentation https://docs.rtems.org
Mailing Lists https://lists.rtems.org
Bug Reporting https://devel.rtems.org/wiki/Developer/Bug_Reporting
Git Repositories https://git.rtems.org
Developers https://devel.rtems.org

1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://devel.rtems.org/wiki/Developer/Bug_Reporting
https://git.rtems.org
https://devel.rtems.org

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This document describes how to create or modify a Board Support Package (BSP) for RTEMS,
i.e. how to port RTEMS on a new microcontroller, system on chip (SoC) or board. It is strongly
recommended to notify the RTEMS development mailing about any activity in this area and
maybe also add tickets for specific work packages.

A basic BSP consists of the following components:

• Low-level initialization

• Console driver

• Clock driver

3

https://lists.rtems.org/mailman/listinfo/devel
https://devel.rtems.org/newticket

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 1 Section 1.0

4 Chapter 1. Introduction

CHAPTER

TWO

TARGET DEPENDENT FILES

Warning: This chapter contains outdated and confusing information.

RTEMS has a multi-layered approach to portability. This is done to maximize the amount of
software that can be reused. Much of the RTEMS source code can be reused on all RTEMS
platforms. Other parts of the executive are specific to hardware in some sense. RTEMS classifies
target dependent code based upon its dependencies into one of the following categories.

• CPU dependent

• Board dependent

• Peripheral dependent

5

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 2 Section 2.1

2.1 CPU Dependent

This class of code includes the foundation routines for the executive proper such as the con-
text switch and the interrupt subroutine implementations. Sources for the supported processor
families can be found in cpukit/score/cpu. A good starting point for a new family of proces-
sors is the no_cpu directory, which holds both prototypes and descriptions of each needed CPU
dependent function.

CPU dependent code is further subcategorized if the implementation is dependent on a particu-
lar CPU model. For example, the MC68000 and MC68020 processors are both members of the
m68k CPU family but there are significant differences between these CPU models which RTEMS
must take into account.

The source code found in the cpukit/score/cpu is required to only depend upon the CPU model
variations that GCC distinguishes for the purposes of multilib’ing. Multilib is the term the GNU
community uses to refer to building a single library source multiple times with different com-
piler options so the binary code generated is compatible. As an example, from GCC’s perspec-
tive, many PowerPC CPU models are just a PPC603e. Remember that GCC only cares about the
CPU code itself and need not be aware of any peripherals. In the embedded community, we are
exposed to thousands of CPU models which are all based upon only a relative small number of
CPU cores.

Similarly for the SPARC/ERC32 BSP, the RTEMS_CPU is specified as erc32 which is the name of
the CPU model and BSP for this SPARC V7 system on chip. But the multilib variant used is
actually v7 which indicates the ERC32 CPU core is a SPARC V7.

6 Chapter 2. Target Dependent Files

Chapter 2 Section 2.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

2.2 Board Dependent

This class of code provides the most specific glue between RTEMS and a particular board. This
code is represented by the Board Support Packages and associated Device Drivers. Sources for
the BSPs included in the RTEMS distribution are located in the directory bsps. The BSP source
directory is further subdivided based on the CPU family and BSP.

Some BSPs may support multiple board models within a single board family. This is necessary
when the board supports multiple variants on a single base board. For example, the Motorola
MVME162 board family has a fairly large number of variations based upon the particular CPU
model and the peripherals actually placed on the board.

2.2. Board Dependent 7

https://git.rtems.org/rtems/tree/bsps

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 2 Section 2.3

2.3 Peripheral Dependent

This class of code provides a reusable library of peripheral device drivers which can be tailored
easily to a particular board. The libchip library is a collection of reusable software objects that
correspond to standard controllers. Just as the hardware engineer chooses a standard controller
when designing a board, the goal of this library is to let the software engineer do the same thing.

The source code for the reusable peripheral driver library may be found in the directory
cpukit/dev or bsps/shared/dev. The source code is further divided based upon the class of
hardware. Example classes include serial communications controllers, real-time clocks, non-
volatile memory, and network controllers.

8 Chapter 2. Target Dependent Files

https://git.rtems.org/rtems/tree/cpukit/dev
https://git.rtems.org/rtems/tree/bsps/shared/dev

Chapter 2 Section 2.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

2.4 Questions to Ask

When evaluating what is required to support RTEMS applications on a particular target board,
the following questions should be asked:

• Does a BSP for this board exist?

• Does a BSP for a similar board exists?

• Is the board’s CPU supported?

If there is already a BSP for the board, then things may already be ready to start developing ap-
plication software. All that remains is to verify that the existing BSP provides device drivers for
all the peripherals on the board that the application will be using. For example, the application
in question may require that the board’s Ethernet controller be used and the existing BSP may
not support this.

If the BSP does not exist and the board’s CPU model is supported, then examine the reusable
chip library and existing BSPs for a close match. Other BSPs and libchip provide starting points
for the development of a new BSP. It is often possible to copy existing components in the
reusable chip library or device drivers from BSPs from different CPU families as the starting
point for a new device driver. This will help reduce the development effort required.

If the board’s CPU family is supported but the particular CPU model on that board is not, then
the RTEMS port to that CPU family will have to be augmented. After this is done, development
of the new BSP can proceed.

Otherwise both CPU dependent code and the BSP will have to be written.

This type of development often requires specialized skills and there are people in the community
who provide those services. If you need help in making these modifications to RTEMS try a
search in a search engine with something like “RTEMS support”. The RTEMS Project encourages
users to use support services however we do not endorse any providers.

2.4. Questions to Ask 9

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 2 Section 2.5

2.5 CPU Dependent Executive Files

The CPU dependent files in the RTEMS executive source code are found in the cpukit/score/
cpu/${RTEMS_CPU} directories. The ${RTEMS_CPU} is a particular architecture, e.g. arm, pow-
erpc, riscv, sparc, etc.

Within each CPU dependent directory inside the executive proper is a file named cpu.h which
contains information about each of the supported CPU models within that family.

10 Chapter 2. Target Dependent Files

Chapter 2 Section 2.6 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

2.6 Board Support Package Structure

The BSPs are all under the bsps directory. The structure in this source subtree is:

• bsps/shared

• bsps/${RTEMS_CPU}/shared

• bsps/${RTEMS_CPU}/${RTEMS_BSP_FAMILY}

The ${RTEMS_CPU} is a particular architecture, e.g. arm, powerpc, riscv, sparc, etc. The
shared directories contain code shared by all BSPs or BSPs of a particular architecture. The
${RTEMS_BSP_FAMILY} directories contain BSPs for a particular system on chip (SoC) or proces-
sor family.

Use the following structure under the bsps/${RTEMS_CPU}/${RTEMS_BSP_FAMILY}:

• ata - the legacy ATA/IDE driver

• btimer - the legacy benchmark timer driver

• cache - cache controller support

• clock - the clock driver

• config - build system configuration files

• console - the console driver

• contrib - imports of external sources

– the layout of external sources should be used as is if possible

• i2c - the I2C driver

• include - public header files

• irq - the interrupt controller support

• mpci - support for heterogeneous multiprocessing (RTEMS_MULTIPROCESSING)

• net - legacy network stack drivers

• rtc - the RTC driver

• spi - the SPI driver

• start - everything required to run a minimal application without devices

– start.S - lowest level startup code

– bspstart.c - low level startup code

– bspsmp.c - SMP support

– linkcmds - a linker command file

2.6. Board Support Package Structure 11

https://git.rtems.org/rtems/tree/bsps

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 2 Section 2.6

12 Chapter 2. Target Dependent Files

CHAPTER

THREE

LINKER SCRIPT

Warning: This chapter contains outdated and confusing information.

13

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 3 Section 3.1

3.1 What is a “linkcmds” file?

The linkcmds file is a script which is passed to the linker at linking time. This file describes
the memory configuration of the board as needed to link the program. Specifically it specifies
where the code and data for the application will reside in memory.

The format of the linker script is defined by the GNU Loader ld which is included as a com-
ponent of the GNU Binary Utilities. If you are using GNU/Linux, then you probably have the
documentation installed already and are using these same tools configured for native use. Please
visit the Binutils project http://sourceware.org/binutils/ if you need more information.

14 Chapter 3. Linker Script

http://sourceware.org/binutils/

Chapter 3 Section 3.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

3.2 Program Sections

An embedded systems programmer must be much more aware of the placement of their exe-
cutable image in memory than the average applications programmer. A program destined to be
embedded as well as the target system have some specific properties that must be taken into
account. Embedded machines often mean average performances and small memory usage. It is
the memory usage that concerns us when examining the linker command file.

Two types of memories have to be distinguished:

• RAM - volatile offering read and write access

• ROM - non-volatile but read only

Even though RAM and ROM can be found in every personal computer, one generally doesn’t care
about them. In a personal computer, a program is nearly always stored on disk and executed in
RAM. Things are a bit different for embedded targets: the target will execute the program each
time it is rebooted or switched on. The application program is stored in non-volatile memory
such as ROM, PROM, EEPROM, or Flash. On the other hand, data processing occurs in RAM.

This leads us to the structure of an embedded program. In rough terms, an embedded program
is made of sections. It is the responsibility of the application programmer to place these sections
in the appropriate place in target memory. To make this clearer, if using the COFF object file
format on the Motorola m68k family of microprocessors, the following sections will be present:

• code (.text) section: is the program’s code and it should not be modified. This section
may be placed in ROM.

• non-initialized data (.bss) section: holds uninitialized variables of the program. It can
stay in RAM.

• initialized data (.data) section: holds the initialized program data which may be modified
during the program’s life. This means they have to be in RAM. On the other hand, these
variables must be set to predefined values, and those predefined values have to be stored
in ROM.

Note: Many programs and support libraries unknowingly assume that the .bss section and,
possibly, the application heap are initialized to zero at program start. This is not required by
the ISO/ANSI C Standard but is such a common requirement that most BSPs do this.

That brings us up to the notion of the image of an executable: it consists of the set of the
sections that together constitute the application.

3.2. Program Sections 15

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 3 Section 3.3

3.3 Image of an Executable

As a program executable has many sections (note that the user can define their own, and that
compilers define theirs without any notice), one has to specify the placement of each section
as well as the type of memory (RAM or ROM) the sections will be placed into. For instance,
a program compiled for a Personal Computer will see all the sections to go to RAM, while a
program destined to be embedded will see some of his sections going into the ROM.

The connection between a section and where that section is loaded into memory is made at link
time. One has to let the linker know where the different sections are to be placed once they are
in memory.

The following example shows a simple layout of program sections. With some object formats,
there are many more sections but the basic layout is conceptually similar.

.text RAM or ROM

.data RAM

.bss RAM

16 Chapter 3. Linker Script

Chapter 3 Section 3.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

3.4 Example Linker Command Script

The GNU linker has a command language to specify the image format. This command language
can be quite complicated but most of what is required can be learned by careful examination of
a well-documented example. The following is a heavily commented version of the linker script
used with the the gen68340 BSP This file can be found at $BSP340_ROOT/startup/linkcmds.

1 /*
2 * Specify that the output is to be coff-m68k regardless of what the
3 * native object format is.
4 */
5 OUTPUT_FORMAT(coff-m68k)
6 /*
7 * Set the amount of RAM on the target board.
8 *
9 * NOTE: The default may be overridden by passing an argument to ld.

10 */
11 RamSize = DEFINED(RamSize) ? RamSize : 4M;
12 /*
13 * Set the amount of RAM to be used for the application heap. Objects
14 * allocated using malloc() come from this area. Having a tight heap
15 * size is somewhat difficult and multiple attempts to squeeze it may
16 * be needed reducing memory usage is important. If all objects are
17 * allocated from the heap at system initialization time, this eases
18 * the sizing of the application heap.
19 *
20 * NOTE 1: The default may be overridden by passing an argument to ld.
21 *
22 * NOTE 2: The TCP/IP stack requires additional memory in the Heap.
23 *
24 * NOTE 3: The GNAT/RTEMS run-time requires additional memory in
25 * the Heap.
26 */
27 HeapSize = DEFINED(HeapSize) ? HeapSize : 0x10000;
28 /*
29 * Set the size of the starting stack used during BSP initialization
30 * until first task switch. After that point, task stacks allocated
31 * by RTEMS are used.
32 *
33 * NOTE: The default may be overridden by passing an argument to ld.
34 */
35 StackSize = DEFINED(StackSize) ? StackSize : 0x1000;
36 /*
37 * Starting addresses and length of RAM and ROM.
38 *
39 * The addresses must be valid addresses on the board. The
40 * Chip Selects should be initialized such that the code addresses
41 * are valid.
42 */
43 MEMORY {
44 ram : ORIGIN = 0x10000000, LENGTH = 4M
45 rom : ORIGIN = 0x01000000, LENGTH = 4M
46 }
47 /*
48 * This is for the network driver. See the Networking documentation
49 * for more details.

(continues on next page)

3.4. Example Linker Command Script 17

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 3 Section 3.4

(continued from previous page)

50 */
51 ETHERNET_ADDRESS =
52 DEFINED(ETHERNET_ADDRESS) ? ETHERNET_ADDRESS : 0xDEAD12;
53 /*
54 * The following defines the order in which the sections should go.
55 * It also defines a number of variables which can be used by the
56 * application program.
57 *
58 * NOTE: Each variable appears with 1 or 2 leading underscores to
59 * ensure that the variable is accessible from C code with a
60 * single underscore. Some object formats automatically add
61 * a leading underscore to all C global symbols.
62 */
63 SECTIONS {
64 /*
65 * Make the RomBase variable available to the application.
66 */
67 _RamSize = RamSize;
68 __RamSize = RamSize;
69 /*
70 * Boot PROM - Set the RomBase variable to the start of the ROM.
71 */
72 rom : {
73 _RomBase = .;
74 __RomBase = .;
75 } >rom
76 /*
77 * Dynamic RAM - set the RamBase variable to the start of the RAM.
78 */
79 ram : {
80 _RamBase = .;
81 __RamBase = .;
82 } >ram
83 /*
84 * Text (code) goes into ROM
85 */
86 .text : {
87 /*
88 * Create a symbol for each object (.o).
89 */
90 CREATE_OBJECT_SYMBOLS
91 /*
92 * Put all the object files code sections here.
93 */
94 *(.text)
95 . = ALIGN (16); /* go to a 16-byte boundary */
96 /*
97 * C++ constructors and destructors
98 *
99 * NOTE: See the CROSSGCC mailing-list FAQ for

100 * more details about the "\[......]".
101 */
102 __CTOR_LIST__ = .;
103 [......]
104 __DTOR_END__ = .;
105 /*

(continues on next page)

18 Chapter 3. Linker Script

Chapter 3 Section 3.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

(continued from previous page)

106 * Declares where the .text section ends.
107 */
108 etext = .;
109 _etext = .;
110 } >rom
111 /*
112 * Exception Handler Frame section
113 */
114 .eh_fram : {
115 . = ALIGN (16);
116 *(.eh_fram)
117 } >ram
118 /*
119 * GCC Exception section
120 */
121 .gcc_exc : {
122 . = ALIGN (16);
123 *(.gcc_exc)
124 } >ram
125 /*
126 * Special variable to let application get to the dual-ported
127 * memory.
128 */
129 dpram : {
130 m340 = .;
131 _m340 = .;
132 . += (8 * 1024);
133 } >ram
134 /*
135 * Initialized Data section goes in RAM
136 */
137 .data : {
138 copy_start = .;
139 *(.data)
140 . = ALIGN (16);
141 _edata = .;
142 copy_end = .;
143 } >ram
144 /*
145 * Uninitialized Data section goes in ROM
146 */
147 .bss : {
148 /*
149 * M68K specific: Reserve some room for the Vector Table
150 * (256 vectors of 4 bytes).
151 */
152 M68Kvec = .;
153 _M68Kvec = .;
154 . += (256 * 4);
155 /*
156 * Start of memory to zero out at initialization time.
157 */
158 clear_start = .;
159 /*
160 * Put all the object files uninitialized data sections
161 * here.

(continues on next page)

3.4. Example Linker Command Script 19

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 3 Section 3.4

(continued from previous page)

162 */
163 *(.bss)
164 *(COMMON)
165 . = ALIGN (16);
166 _end = .;
167 /*
168 * Start of the Application Heap
169 */
170 _HeapStart = .;
171 __HeapStart = .;
172 . += HeapSize;
173 /*
174 * The Starting Stack goes after the Application Heap.
175 * M68K stack grows down so start at high address.
176 */
177 . += StackSize;
178 . = ALIGN (16);
179 stack_init = .;
180 clear_end = .;
181 /*
182 * The RTEMS Executive Workspace goes here. RTEMS
183 * allocates tasks, stacks, semaphores, etc. from this
184 * memory.
185 */
186 _WorkspaceBase = .;
187 __WorkspaceBase = .;
188 } >ram

20 Chapter 3. Linker Script

Chapter 3 Section 3.5 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

3.5 Initialized Data

Now there’s a problem with the initialized data: the .data section has to be in RAM as this data
may be modified during the program execution. But how will the values be initialized at boot
time?

One approach is to place the entire program image in RAM and reload the image in its entirety
each time the program is run. This is fine for use in a debug environment where a high-speed
connection is available between the development host computer and the target. But even in
this environment, it is cumbersome.

The solution is to place a copy of the initialized data in a separate area of memory and copy it
into the proper location each time the program is started. It is common practice to place a copy
of the initialized .data section at the end of the code (.text) section in ROM when building a
PROM image. The GNU tool objcopy can be used for this purpose.

The following figure illustrates the steps a linked program goes through to become a download-
able image.

.data (RAM) .data (RAM)

.bss (RAM) .bss (RAM)

.text (ROM) .text (ROM) .text
copy of .data (ROM) copy of .data
Step 1 Step 2 Step 3

In Step 1, the program is linked together using the BSP linker script.

In Step 2, a copy is made of the .data section and placed after the .text section so it can be
placed in PROM. This step is done after the linking time. There is an example of doing this in
the file $RTEMS_ROOT/make/custom/gen68340.cfg:

1 # make a PROM image using objcopy
2 m68k-rtems-objcopy --adjust-section-vma \
3 .data=`m68k-rtems-objdump --section-headers $(basename $@).exe | awk '[...]'` \
4 $(basename $@).exe

Note: The address of the “copy of .data section” is created by extracting the last address in
the .text section with an awk script. The details of how this is done are not relevant.

Step 3 shows the final executable image as it logically appears in the target’s non-volatile pro-
gram memory. The board initialization code will copy the “”copy of .data section” (which are
stored in ROM) to their reserved location in RAM.

3.5. Initialized Data 21

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 3 Section 3.5

22 Chapter 3. Linker Script

CHAPTER

FOUR

MISCELLANEOUS SUPPORT FILES

Warning: This chapter contains outdated and confusing information.

23

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 4 Section 4.1

4.1 GCC Compiler Specifications File

The file bsp_specs defines the start files and libraries that are always used with this BSP. The
format of this file is admittedly cryptic and this document will make no attempt to explain it
completely. Below is the bsp_specs file from the PowerPC psim BSP:

1 %rename endfile old_endfile
2 %rename startfile old_startfile
3 %rename link old_link
4 *startfile:
5 %{!qrtems: %(old_startfile)} \
6 %{!nostdlib: %{qrtems: ecrti%O%s rtems_crti%O%s crtbegin.o%s start.o%s}}
7 *link:
8 %{!qrtems: %(old_link)} %{qrtems: -Qy -dp -Bstatic -e _start -u __vectors}
9 *endfile:

10 %{!qrtems: %(old_endfile)} %{qrtems: crtend.o%s ecrtn.o%s}

The first section of this file renames the built-in definition of some specification variables so
they can be augmented without embedded their original definition. The subsequent sections
specify what behavior is expected when the -qrtems option is specified.

The *startfile section specifies that the BSP specific file start.o will be used instead of crt0.
o. In addition, various EABI support files (ecrti.o etc.) will be linked in with the executable.

The *link section adds some arguments to the linker when it is invoked by GCC to link an
application for this BSP.

The format of this file is specific to the GNU Compiler Suite. The argument used to override and
extend the compiler built-in specifications is available in all recent GCC versions. The -specs
option is present in all egcs distributions and gcc distributions starting with version 2.8.0.

24 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

4.2 README Files

Most BSPs provide one or more README files. Generally, there is a README file at the top of
the BSP source. This file describes the board and its hardware configuration, provides vendor
information, local configuration information, information on downloading code to the board,
debugging, etc.. The intent of this file is to help someone begin to use the BSP faster.

A README file in a BSP subdirectory typically explains something about the contents of that sub-
directory in greater detail. For example, it may list the documentation available for a particular
peripheral controller and how to obtain that documentation. It may also explain some particu-
larly cryptic part of the software in that directory or provide rationale on the implementation.

4.2. README Files 25

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 4 Section 4.3

4.3 Times

This file contains the results of the RTEMS Timing Test Suite. It is in a standard format so that
results from one BSP can be easily compared with those of another target board.

If a BSP supports multiple variants, then there may be multiple times files. Usually these are
named times.VARIANTn.

26 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

4.4 Tools Subdirectory

Some BSPs provide additional tools that aid in using the target board. These tools run on the
development host and are built as part of building the BSP. Most common is a script to automate
running the RTEMS Test Suites on the BSP. Examples of this include:

• powerpc/psim includes scripts to ease use of the simulator

• m68k/mvme162 includes a utility to download across the VMEbus into target memory if the
host is a VMEbus board in the same chasis.

4.4. Tools Subdirectory 27

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 4 Section 4.5

4.5 bsp.h Include File

The file include/bsp.h contains prototypes and definitions specific to this board. Every BSP is
required to provide a bsp.h. The best approach to writing a bsp.h is copying an existing one as
a starting point.

Many bsp.h files provide prototypes of variables defined in the linker script (linkcmds).

28 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.6 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

4.6 tm27.h Include File

The tm27 test from the RTEMS Timing Test Suite is designed to measure the length of time
required to vector to and return from an interrupt handler. This test requires some help from
the BSP to know how to cause and manipulate the interrupt source used for this measurement.
The following is a list of these:

• MUST_WAIT_FOR_INTERRUPT - modifies behavior of tm27.

• Install_tm27_vector - installs the interrupt service routine for the Interrupt Benchmark
Test (tm27).

• Cause_tm27_intr - generates the interrupt source used in the Interrupt Benchmark Test
(tm27).

• Clear_tm27_intr - clears the interrupt source used in the Interrupt Benchmark Test
(tm27).

• Lower_tm27_intr - lowers the interrupt mask so the interrupt source used in the Interrupt
Benchmark Test (tm27) can generate a nested interrupt.

All members of the Timing Test Suite are designed to run WITHOUT the Clock Device Driver
installed. This increases the predictability of the tests’ execution as well as avoids occassionally
including the overhead of a clock tick interrupt in the time reported. Because of this it is
sometimes possible to use the clock tick interrupt source as the source of this test interrupt. On
other architectures, it is possible to directly force an interrupt to occur.

4.6. tm27.h Include File 29

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 4 Section 4.7

4.7 sbrk() Implementation

Although nearly all BSPs give all possible memory to the C Program Heap at initialization, it is
possible for a BSP to configure the initial size of the heap small and let it grow on demand. If
the BSP wants to dynamically extend the heap used by the C Library memory allocation routines
(i.e. malloc family), then the‘‘sbrk‘‘ routine must be functional. The following is the prototype
for this routine:

1 void * sbrk(ptrdiff_t increment)

The increment amount is based upon the sbrk_amount parameter passed to the bsp_libc_init
during system initialization.

If your BSP does not want to support dynamic heap extension, then you do not have to do
anything special. However, if you want to support sbrk, you must provide an implementation
of this method and define CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK in bsp.h. This informs rtems/
confdefs.h to configure the Malloc Family Extensions which support sbrk.

30 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.8 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

4.8 bsp_fatal_extension() - Cleanup the Hardware

The bsp_fatal_extension() is an optional BSP specific initial extension invoked once
a fatal system state is reached. Most of the BSPs use the same shared version of
bsp_fatal_extension() that does nothing or performs a system reset. This implementation
is located in the bsps/shared/start/bspfatal-default.c file.

The bsp_fatal_extension() routine can be used to return to a ROM monitor, insure that inter-
rupt sources are disabled, etc.. This routine is the last place to ensure a clean shutdown of the
hardware. The fatal source, internal error indicator, and the fatal code arguments are available
to evaluate the fatal condition. All of the non-fatal shutdown sequences ultimately pass their
exit status to rtems_shutdown_executive and this is what is passed to this routine in case the
fatal source is RTEMS_FATAL_SOURCE_EXIT.

On some BSPs, it prints a message indicating that the application completed execution and
waits for the user to press a key before resetting the board. The PowerPC/gen83xx and Pow-
erPC/gen5200 BSPs do this when they are built to support the FreeScale evaluation boards.
This is convenient when using the boards in a development environment and may be disabled
for production use.

4.8. bsp_fatal_extension() - Cleanup the Hardware 31

https://git.rtems.org/rtems/tree/bsps/shared/start/bspfatal-default.c

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 4 Section 4.9

4.9 Configuration Macros

Each BSP can define macros in bsp.h which alter some of the the default configuration parame-
ters in rtems/confdefs.h. This section describes those macros:

• CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK must be defined if the BSP has proper support for
sbrk. This is discussed in more detail in the previous section.

• BSP_IDLE_TASK_BODY may be defined to the entry point of a BSP specific IDLE thread
implementation. This may be overridden if the application provides its own IDLE task
implementation.

• BSP_IDLE_TASK_STACK_SIZE may be defined to the desired default stack size for the IDLE
task as recommended when using this BSP.

• BSP_INTERRUPT_STACK_SIZE may be defined to the desired default interrupt stack size as
recommended when using this BSP. This is sometimes required when the BSP developer
has knowledge of stack intensive interrupt handlers.

• BSP_DEFAULT_UNIFIED_WORK_AREAS is defined when the BSP recommends that the unified
work areas configuration should always be used. This is desirable when the BSP is known
to always have very little RAM and thus saving memory by any means is desirable.

32 Chapter 4. Miscellaneous Support Files

Chapter 4 Section 4.10 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

4.10 set_vector() - Install an Interrupt Vector

On targets with Simple Vectored Interrupts, the BSP must provide an implementation of the
set_vector routine. This routine is responsible for installing an interrupt vector. It invokes
the support routines necessary to install an interrupt handler as either a “raw” or an RTEMS
interrupt handler. Raw handlers bypass the RTEMS interrupt structure and are responsible for
saving and restoring all their own registers. Raw handlers are useful for handling traps, debug
vectors, etc.

The set_vector routine is a central place to perform interrupt controller manipulation and
encapsulate that information. It is usually implemented as follows:

1 rtems_isr_entry set_vector(/* returns old vector */
2 rtems_isr_entry handler, /* isr routine */
3 rtems_vector_number vector, /* vector number */
4 int type /* RTEMS or RAW intr */
5)
6 {
7 if the type is RAW
8 install the raw vector
9 else

10 use rtems_interrupt_catch to install the vector
11 perform any interrupt controller necessary to unmask the interrupt source
12 return the previous handler
13 }

Note: The i386, PowerPC and ARM ports use a Programmable Interrupt Controller model
which does not require the BSP to implement set_vector. BSPs for these architectures must
provide a different set of support routines.

4.10. set_vector() - Install an Interrupt Vector 33

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 4 Section 4.11

4.11 Interrupt Delay Profiling

The RTEMS profiling needs support by the BSP for the interrupt delay times. In
case profiling is enabled via the RTEMS build configuration option --enable-profiling
(in this case the pre-processor symbol RTEMS_PROFILING is defined) a BSP may provide
data for the interrupt delay times. The BSP can feed interrupt delay times with the
_Profiling_Update_max_interrupt_delay() function (#include <rtems/score/profiling.
h>). For an example please have a look at bsps/sparc/leon3/clock/ckinit.c.

34 Chapter 4. Miscellaneous Support Files

https://git.rtems.org/rtems/tree/bsps/sparc/leon3/clock/ckinit.c

Chapter 4 Section 4.12 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

4.12 Programmable Interrupt Controller API

A BSP can use the PIC API to install Interrupt Service Routines through a set of generic methods.
In order to do so, the header files <bsp/irq-generic.h> and <bsp/irq-info.h> must be included
by the bsp specific irq.h file present in the include/ directory. The irq.h acts as a BSP interrupt
support configuration file which is used to define some important MACROS. It contains the
declarations for any required global functions like bsp_interrupt_dispatch(). Thus later on,
every call to the PIC interface requires including <bsp/irq.h>

The generic interrupt handler table is intitalized by invoking the bsp_interrupt_initialize()
method from bsp_start() in the bspstart.c file which sets up this table to store the ISR ad-
dresses, whose size is based on the definition of macros, BSP_INTERRUPT_VECTOR_MIN and
BSP_INTERRUPT_VECTOR_MAX in include/bsp.h

For the generic handler table to properly function, some bsp specific code is required, that
should be present in irq/irq.c. The bsp-specific functions required to be writen by the BSP
developer are :

• bsp_interrupt_facility_initialize() contains bsp specific interrupt initialization
code(Clear Pending interrupts by modifying registers, etc.). This method is called from
bsp_interrupt_initialize() internally while setting up the table.

• bsp_interrupt_handler_default() acts as a fallback handler when no ISR address has
been provided corresponding to a vector in the table.

• bsp_interrupt_dispatch() services the ISR by handling any bsp specific code & calling
the generic method bsp_interrupt_handler_dispatch() which in turn services the inter-
rupt by running the ISR after looking it up in the table. It acts as an entry to the interrupt
switchboard, since the bsp branches to this function at the time of occurrence of an inter-
rupt.

• bsp_interrupt_vector_enable() enables interrupts and is called in irq-generic.c while
setting up the table.

• bsp_interrupt_vector_disable() disables interrupts and is called in irq-generic.c while
setting up the table & during other important parts.

An interrupt handler is installed or removed with the help of the following functions :

1 rtems_status_code rtems_interrupt_handler_install(/* returns status code */
2 rtems_vector_number vector, /* interrupt vector */
3 const char *info, /* custom identification text */
4 rtems_option options, /* Type of Interrupt */
5 rtems_interrupt_handler handler, /* interrupt handler */
6 void *arg /* parameter to be passed
7 to handler at the time of
8 invocation */
9)

10 rtems_status_code rtems_interrupt_handler_remove(/* returns status code */
11 rtems_vector_number vector, /* interrupt vector */
12 rtems_interrupt_handler handler, /* interrupt handler */
13 void *arg /* parameter to be passed to handler␣

→˓*/
14)

4.12. Programmable Interrupt Controller API 35

https://git.rtems.org/rtems/tree/bsps/include/bsp/irq-generic.h
https://git.rtems.org/rtems/tree/bsps/include/bsp/irq-info.h

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 4 Section 4.12

36 Chapter 4. Miscellaneous Support Files

CHAPTER

FIVE

SYSTEM INITIALIZATION

37

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 5 Section 5.1

5.1 Introduction

The system initialization consists of a low-level initialization performed by the start code in the
start file (start.o) and a high-level initialization carried out by boot_card(). The final step of
a successful high-level initialization is to switch to the initialization task and change into the
normal system mode with multi-threading enabled. Errors during system initialization are fatal
and end up in a call to _Terminate().

38 Chapter 5. System Initialization

Chapter 5 Section 5.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

5.2 Low-Level Initialization via Start Code in the Start File (start.o)

The start code in the start file (start.o) must be provided by the BSP. It is the first file presented
to the linker and starts the process to link an executable (application image). It should contain
the entry symbol of the executable. It is the responsibility of the linker script in conjunction with
the compiler specifications file or compiler options to put the start code in the correct location in
the executable. The start code is typically written in assembly language since it will tinker with
the stack pointer. The general rule of thumb is that the start code in assembly language should
do the minimum necessary to allow C code to execute to complete the initialization sequence.

The low-level system initialization may depend on a platform initialization carried out by a boot
loader. The low-level system initialization may perform the following steps:

• Initialize the initialization stack. The initialization stack should use the ISR stack area. The
symbols _ISR_Stack_area_begin, _ISR_Stack_area_end, and _ISR_Stack_size should be
used to do this.

• Initialize processor registers and modes.

• Initialize pins.

• Initialize clocks (PLLs).

• Initialize memory controllers.

• Initialize instruction, data, and unified caches.

• Initialize memory management or protection units (MMU).

• Initialize processor exceptions.

• Copy the data sections from a read-only section to the runtime location.

• Set the BSS (.bss) section to zero.

• Initialize the C runtime environment.

• Call boot_card() to hand over to the high-level initialization.

For examples of start file codes see:

• bsps/arm/shared/start/start.S

• bsps/riscv/shared/start/start.S

5.2. Low-Level Initialization via Start Code in the Start File (start.o) 39

https://git.rtems.org/rtems/tree/bsps/arm/shared/start/start.S
https://git.rtems.org/rtems/tree/bsps/riscv/shared/start/start.S

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 5 Section 5.3

5.3 High-Level Initialization via boot_card()

The high-level initialization is carried out by boot_card(). For the high-level initialization steps
see the Initialization Manager chapter in the RTEMS Classic API Guide. There are several system
initialization steps which must be implemented by the BSP.

5.3.1 Early BSP Initialization

The BSP may provide a system initialization handler (order RTEMS_SYSINIT_BSP_EARLY) to per-
form an early BSP initialization. This handler is invoked before the memory information and
high-level dynamic memory services (workspace and C program heap) are initialized.

5.3.2 Memory Information

The BSP must provide the memory information to the system with an implementation
of the _Memory_Get() function. The BSP should use the default implementation in
bsps/shared/shared/start/bspgetworkarea-default.c. The memory information is used by low-
level memory consumers such as the per-CPU data, the workspace, and the C program heap.
The BSP may use a system initialization handler (order RTEMS_SYSINIT_MEMORY) to set up the
infrastructure used by _Memory_Get().

5.3.3 BSP Initialization

The BSP must provide an implementation of the bsp_start() function. This function is regis-
tered as a system initialization handler (order RTEMS_SYSINIT_BSP_START) in the module imple-
menting boot_card(). The bsp_start() function should perform a general platform initializa-
tion. The interrupt controllers are usually initialized here. The C program heap may be used in
this handler. It is not allowed to create any operating system objects, e.g. RTEMS semaphores
or tasks. The BSP may register additional system initialization handlers in the module imple-
menting bsp_start().

40 Chapter 5. System Initialization

https://git.rtems.org/rtems/tree/bsps/shared/start/bspgetworkarea-default.c

Chapter 5 Section 5.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

5.4 Error Handling

Errors during system initialization are fatal and end up in a call to _Terminate(). See also the
Fatal Error Manager chapter in the RTEMS Classic API Guide.

The BSP may use BSP-specific fatal error codes, see <bsp/fatal.h>.

The BSP should provide an initial extension which implements a fatal error handler. It should
use the default implementation provided by <bsp/default-initial-extension.h> and bspfatal-
default.c. If the default implementation is used, the BSP must implement a bsp_reset() func-
tion which should reset the platform.

5.4. Error Handling 41

https://git.rtems.org/rtems/tree/bsps/include/bsp/fatal.h
https://git.rtems.org/rtems/tree/bsps/include/bsp/default-initial-extension.h
https://git.rtems.org/rtems/tree/bsps/shared/start/bspfatal-default.c
https://git.rtems.org/rtems/tree/bsps/shared/start/bspfatal-default.c

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 5 Section 5.4

42 Chapter 5. System Initialization

CHAPTER

SIX

CONSOLE DRIVER

Warning: The low-level driver API changed between RTEMS 4.10 and RTEMS 4.11. The
legacy callback API is still supported, but its use is discouraged. The following functions are
deprecated:

• rtems_termios_open()

• rtems_termios_close()

This manual describes the new API.

43

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 6 Section 6.1

6.1 Introduction

This chapter describes the operation of a console driver using the RTEMS POSIX Termios sup-
port. Traditionally, RTEMS has referred to all serial device drivers as console drivers. Termios is
defined by IEEE Std 1003.1-2008 (POSIX.1-2008). It supports various modes of operations at
application level. This chapter focuses on the low-level serial device driver. Additional Termios
information can be found in the Linux TERMIOS(3) manpage or the FreeBSD TERMIOS(4)
manpage.

There are the following software layers.

Application
Termios
Low-Level Device Driver

In the default application configuration RTEMS opens during system initialization a /dev/
console device file to create the file descriptors 0, 1 and 2 used for standard input, output and
error, respectively. The corresponding device driver is usually a Termios serial device driver de-
scribed here. The standard file descriptors are used by standard C library calls such as printf()
or scanf() or directly via the read() or write() system calls.

44 Chapter 6. Console Driver

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html
http://man7.org/linux/man-pages/man3/termios.3.html
https://www.freebsd.org/cgi/man.cgi?query=termios&sektion=4

Chapter 6 Section 6.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

6.2 Build System and Files

A new serial device driver should consist of three parts.

• A section in the BSPs Makefile.am:

1 [...]
2 libbsp_a_SOURCES += ../../shared/dev/serial/console-termios.c
3 libbsp_a_SOURCES += console/console.c
4 [...]

• A general serial device specific low-level driver providing the handler table and the device
context specialization for the Termios rtems_termios_device_install() function. This
low-level driver could be used for more than one BSP.

• A BSP-specific initialization routine console_initialize(), that calls
rtems_termios_device_install() providing a low-level driver context for each in-
stalled device. This is usually defined in the file console/console.c relative to the BSP
base directory.

The low-level driver should provide a specialization of the Termios device con-
text. The initialization routine must provide a context for each installed device via
rtems_termios_device_install(). Here is an example header file for a low-level serial device
driver.

1 #ifndef MY_DRIVER_H
2 #define MY_DRIVER_H
3

4 #include <some-chip/serial.h>
5

6 #include <rtems/termiostypes.h>
7

8 /* My low-level driver specialization of Termios device context */
9 typedef struct {

10 rtems_termios_device_context base;
11 const char *device_name;
12 volatile some_chip_registers *regs;
13 /* More stuff */
14 } my_driver_context;
15

16 extern const rtems_termios_device_handler my_driver_handler_polled;
17

18 extern const rtems_termios_device_handler my_driver_handler_interrupt;
19

20 #endif /* MY_DRIVER_H */

6.2. Build System and Files 45

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 6 Section 6.3

6.3 Driver Functioning Modes

There are four main functioning modes for a Termios serial device driver. The mode must be
set during device creation and cannot be changed afterwards.

Polled Mode (TERMIOS_POLLED)
In polled mode, the processor blocks on sending/receiving characters. This mode is not the
most efficient way to utilize the serial device. But polled mode is usually necessary when one
wants to print an error message in the event of a fatal error such as a fatal error in the BSP.
This is also the simplest mode to program. Polled mode is generally preferred if the serial
device is to be used primarily as a debug console. In a simple polled driver, the software will
continuously check the status of the serial device when it is reading or writing to the serial
device. Termios improves on this by delaying the caller for one clock tick between successive
checks of the serial device on a read operation.

Interrupt Driven Mode (TERMIOS_IRQ_DRIVEN)
In interrupt driven mode, the processor does not block on sending/receiving characters. Data
is buffered between the interrupt service routine and application code. Two buffers are used
to insulate the application from the relative slowness of the serial device. One of the buffers
is used for incoming characters, while the other is used for outgoing characters.

An interrupt is raised when a character is received by the serial device. The interrupt routine
places the incoming character at the end of the input buffer. When an application asks for
input, the characters at the front of the buffer are returned.

When the application prints to the serial device, the outgoing characters are placed at the end
of the output buffer. The driver will place one or more characters in the serial device (the
exact number depends on the serial device) An interrupt will be raised when all the characters
have been transmitted. The interrupt service routine has to send the characters remaining in
the output buffer the same way. When the transmitting side of the serial device is idle, it is
typically necessary to prime the transmitter before the first interrupt will occur.

Interrupt Server Driven Mode (TERMIOS_IRQ_SERVER_DRIVEN)
The interrupt server driven mode is identical to the interrupt driven mode, except that a
mutex is used to protect the low-level device state instead of an interrupt lock (disabled
interrupts). Use this mode in case the serial device is connected via I2C or SPI and the I2C or
SPI framework is used.

Task Driven Mode (TERMIOS_TASK_DRIVEN)
The task driven mode is similar to interrupt driven mode, but the actual data processing is
done in dedicated tasks instead of interrupt routines. This mode is not available in SMP
configurations. It has some implementation flaws and it is not well tested.

46 Chapter 6. Console Driver

Chapter 6 Section 6.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

6.4 Polled Mode

The handler table for the polled mode should look like the following.

1 const rtems_termios_device_handler my_driver_handler_polled = {
2 .first_open = my_driver_first_open,
3 .last_close = my_driver_last_close,
4 .poll_read = my_driver_poll_read,
5 .write = my_driver_poll_write,
6 .set_attributes = my_driver_set_attributes,
7 .ioctl = my_driver_ioctl, /* optional, may be NULL */
8 .mode = TERMIOS_POLLED
9 };

The my_driver_poll_write() routine is responsible for writing n characters from buf to the
serial device specified by base.

1 static void my_driver_poll_write(
2 rtems_termios_device_context *base,
3 const char *buf,
4 size_t n
5)
6 {
7 my_driver_context *ctx;
8 size_t i;
9

10 ctx = (my_driver_context *) base;
11

12 for (i = 0 ; i < n ; ++i) {
13 my_driver_write_char(ctx, buf[i]);
14 }
15 }

The my_driver_poll_read() routine is responsible for reading a single character from the serial
device specified by base. If no character is available, then the routine should immediately return
minus one.

1 static int my_driver_poll_read(rtems_termios_device_context *base)
2 {
3 my_driver_context *ctx;
4

5 ctx = (my_driver_context *) base;
6

7 if (my_driver_can_read_char(ctx)) {
8 /* Return the character (must be unsigned) */
9 return my_driver_read_char(ctx);

10 } else {
11 /* Return -1 to indicate that no character is available */
12 return -1;
13 }
14 }

6.4. Polled Mode 47

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 6 Section 6.5

6.5 Interrupt Driven Mode

The handler table for the interrupt driven mode should look like the following.

1 const rtems_termios_device_handler my_driver_handler_interrupt = {
2 .first_open = my_driver_first_open,
3 .last_close = my_driver_last_close,
4 .poll_read = NULL,
5 .write = my_driver_interrupt_write,
6 .set_attributes = my_driver_set_attributes,
7 .ioctl = my_driver_ioctl, /* optional, may be NULL */
8 .mode = TERMIOS_IRQ_DRIVEN
9 };

There is no device driver read handler to be passed to Termios. Indeed a read() call returns the
contents of Termios input buffer. This buffer is filled in the driver interrupt routine.

A serial device generally generates interrupts when it is ready to accept or to emit a number of
characters. In this mode, the interrupt routine is the core of the driver.

The my_driver_interrupt_handler() is responsible for processing asynchronous interrupts
from the serial device. There may be multiple interrupt handlers for a single serial device.
Some serial devices can generate a unique interrupt vector for each interrupt source such as a
character has been received or the transmitter is ready for another character.

In the simplest case, the my_driver_interrupt_handler() will have to check the status of the
serial device and determine what caused the interrupt. The following describes the operation
of an my_driver_interrupt_handler() which has to do this:

1 static void my_driver_interrupt_handler(void *arg)
2 {
3 rtems_termios_tty *tty;
4 my_driver_context *ctx;
5 char buf[N];
6 size_t n;
7

8 tty = arg;
9 ctx = rtems_termios_get_device_context(tty);

10

11 /*
12 * Check if we have received something. The function reads the
13 * received characters from the device and stores them in the
14 * buffer. It returns the number of read characters.
15 */
16 n = my_driver_read_received_chars(ctx, buf, N);
17 if (n > 0) {
18 /* Hand the data over to the Termios infrastructure */
19 rtems_termios_enqueue_raw_characters(tty, buf, n);
20 }
21

22 /*
23 * Check if we have something transmitted. The functions returns
24 * the number of transmitted characters since the last write to the
25 * device.
26 */
27 n = my_driver_transmitted_chars(ctx);

(continues on next page)

48 Chapter 6. Console Driver

Chapter 6 Section 6.5 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

(continued from previous page)

28 if (n > 0) {
29 /*
30 * Notify Termios that we have transmitted some characters. It
31 * will call now the interrupt write function if more characters
32 * are ready for transmission.
33 */
34 rtems_termios_dequeue_characters(tty, n);
35 }
36 }

The my_driver_interrupt_write() handler is responsible for telling the device that the n char-
acters at buf are to be transmitted. It the value n is zero to indicate that no more characters
are to send. The driver can disable the transmit interrupts now. This routine is invoked either
from task context with disabled interrupts to start a new transmission process with exactly one
character in case of an idle output state or from the interrupt handler to refill the transmitter.
If the routine is invoked to start the transmit process the output state will become busy and
Termios starts to fill the output buffer. If the transmit interrupt arises before Termios was able
to fill the transmit buffer you will end up with one interrupt per character.

1 static void my_driver_interrupt_write(
2 rtems_termios_device_context *base,
3 const char *buf,
4 size_t n
5)
6 {
7 my_driver_context *ctx;
8

9 ctx = (my_driver_context *) base;
10

11 if (n > 0) {
12 /*
13 * Tell the device to transmit some characters from buf (less than
14 * or equal to n). When the device is finished it should raise an
15 * interrupt. The interrupt handler will notify Termios that these
16 * characters have been transmitted and this may trigger this write
17 * function again. You may have to store the number of outstanding
18 * characters in the device data structure.
19 */
20 } else {
21 /*
22 * Termios will set n to zero to indicate that the transmitter is
23 * now inactive. The output buffer is empty in this case. The
24 * driver may disable the transmit interrupts now.
25 */
26 }
27 }

6.5. Interrupt Driven Mode 49

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 6 Section 6.6

6.6 First Open

Upon first open of the device, the my_driver_first_open() handler is called by Termios. The
device registered as /dev/console (or CONSOLE_DEVICE_NAME) is opened automatically during
RTEMS initialization.

1 static bool my_driver_first_open(
2 rtems_termios_tty *tty,
3 rtems_termios_device_context *base,
4 struct termios *term,
5 rtems_libio_open_close_args_t *args
6)
7 {
8 my_driver_context *ctx;
9 rtems_status_code sc;

10 bool ok;
11

12 ctx = (my_driver_context *) base;
13

14 /*
15 * You may add some initialization code here.
16 */
17

18 /*
19 * Sets the initial baud rate. This should be set to the value of
20 * the boot loader. This function accepts only exact Termios baud
21 * values.
22 */
23 sc = rtems_termios_set_initial_baud(tty, MY_DRIVER_BAUD_RATE);
24 if (sc != RTEMS_SUCCESSFUL) {
25 /* Not a valid Termios baud */
26 }
27

28 /*
29 * Alternatively you can set the best baud.
30 */
31 rtems_termios_set_best_baud(term, MY_DRIVER_BAUD_RATE);
32

33 /*
34 * To propagate the initial Termios attributes to the device use
35 * this.
36 */
37 ok = my_driver_set_attributes(base, term);
38 if (!ok) {
39 /* This is bad */
40 }
41

42 /*
43 * Return true to indicate a successful set attributes, and false
44 * otherwise.
45 */
46 return true;
47 }

50 Chapter 6. Console Driver

Chapter 6 Section 6.7 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

6.7 Last Close

Termios will call the my_driver_last_close() handler if the last close happens on the device.

1 static void my_driver_last_close(
2 rtems_termios_tty *tty,
3 rtems_termios_device_context *base,
4 rtems_libio_open_close_args_t *args
5)
6 {
7 my_driver_context *ctx;
8

9 ctx = (my_driver_context *) base;
10

11 /*
12 * The driver may do some cleanup here.
13 */
14 }

6.7. Last Close 51

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 6 Section 6.8

6.8 Set Attributes

Termios will call the my_driver_set_attributes() handler if a serial line configuration param-
eter changed, e.g. baud, character size, number of stop bits, parity, etc.

1 static bool my_driver_set_attributes(
2 rtems_termios_device_context *base,
3 const struct termios *term
4)
5 {
6 my_driver_context *ctx;
7

8 ctx = (my_driver_context *) base;
9

10 /*
11 * Inspect the termios data structure and configure the device
12 * appropriately. The driver should only be concerned with the
13 * parts of the structure that specify hardware setting for the
14 * communications channel such as baud, character size, etc.
15 */
16

17 /*
18 * Return true to indicate a successful set attributes, and false
19 * otherwise.
20 */
21 return true;
22 }

52 Chapter 6. Console Driver

Chapter 6 Section 6.9 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

6.9 IO Control

Optionally, the my_driver_ioctl() routine may be provided for arbitrary device-specific func-
tions.

1 static int my_driver_ioctl(
2 rtems_termios_device_context *base,
3 ioctl_command_t request,
4 void *buffer
5)
6 {
7 my_driver_context *ctx;
8

9 ctx = (my_driver_context *) base;
10

11 switch (request) {
12 case MY_DRIVER_DO_XYZ:
13 my_driver_do_xyz(ctx, buffer);
14 break;
15 default:
16 rtems_set_errno_and_return_minus_one(EINVAL);
17 }
18

19 return 0;
20 }

6.9. IO Control 53

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 6 Section 6.10

6.10 Flow Control

You can also provide handler for remote transmission control. This is not covered in this manual.

54 Chapter 6. Console Driver

Chapter 6 Section 6.11 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

6.11 General Initialization

The BSP-specific driver initialization is called once during the RTEMS initialization process.

The console_initialize() function may look like this:

1 #include <my-driver.h>
2

3 #include <rtems/console.h>
4

5 #include <bsp.h>
6 #include <bsp/fatal.h>
7

8 static my_driver_context driver_context_table[] = {
9 { /* Some values for device 0 */ },

10 { /* Some values for device 1 */ }
11 };
12

13 rtems_device_driver console_initialize(
14 rtems_device_major_number major,
15 rtems_device_minor_number minor,
16 void *arg
17)
18 {
19 const rtems_termios_device_handler *handler;
20 rtems_status_code sc;
21 size_t i;
22

23 #ifdef SOME_BSP_USE_INTERRUPTS
24 handler = &my_driver_handler_interrupt;
25 #else
26 handler = &my_driver_handler_polled;
27 #endif
28

29 /*
30 * Initialize the Termios infrastructure. If Termios has already
31 * been initialized by another device driver, then this call will
32 * have no effect.
33 */
34 rtems_termios_initialize();
35

36 /* Initialize each device */
37 for (i = 0; i < RTEMS_ARRAY_SIZE(driver_context_table) ; ++i) {
38 my_driver_context *ctx;
39

40 ctx = &driver_context_table[i];
41

42 /*
43 * Install this device in the file system and Termios. In order
44 * to use the console (i.e. being able to do printf, scanf etc.
45 * on stdin, stdout and stderr), one device must be registered as
46 * "/dev/console" (CONSOLE_DEVICE_NAME).
47 */
48 sc = rtems_termios_device_install(ctx->device_name, handler, NULL, ctx);
49 if (sc != RTEMS_SUCCESSFUL) {
50 bsp_fatal(SOME_BSP_FATAL_CONSOLE_DEVICE_INSTALL);
51 }

(continues on next page)

6.11. General Initialization 55

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 6 Section 6.11

(continued from previous page)

52 }
53

54 return RTEMS_SUCCESSFUL;
55 }

56 Chapter 6. Console Driver

CHAPTER

SEVEN

CLOCK DRIVER

57

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 7 Section 7.1

7.1 Introduction

The purpose of the clock driver is to provide two services for the operating system.

• A steady time basis to the kernel, so that the RTEMS primitives that need a clock tick work
properly. See the Clock Manager chapter of the RTEMS Application C User’s Guide for more
details.

• An optional timecounter to provide timestamps of the uptime and wall clock time with
higher resolution than the clock tick.

The clock driver is usually located in the clock directory of the BSP. Clock drivers
must use the Clock Driver Shell available via the clockimpl.h include file. This in-
clude file is not a normal header file and instead defines the clock driver functions
declared in #include <rtems/clockdrv.h> which are used by RTEMS configuration file
#include <rtems/confdefs.h>. In case the application configuration defines #define
CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER, then the clock driver is registered and should
provide its services to the operating system. The clock tick interval is determined by the appli-
cation configuration via #define CONFIGURE_MICROSECONDS_PER_TICK and can be obtained via
rtems_configuration_get_microseconds_per_tick().

A hardware-specific clock driver must provide some functions, defines and macros for the Clock
Driver Shell which are explained here step by step. A clock driver file looks in general like this.

1 /*
2 * A section with functions, defines and macros to provide hardware-specific
3 * functions for the Clock Driver Shell.
4 */
5

6 #include "../../../shared/dev/clock/clockimpl.h"

Depending on the hardware capabilities one out of three clock driver variants must be selected.

Timecounter
The variant which provides all features needs a free running hardware counter and a periodic
clock tick interrupt. This variant is mandatory in SMP configurations.

Simple Timecounter
A simple timecounter can be used if the hardware provides no free running hardware counter
and only a periodic hardware counter synchronous to the clock tick interrupt is available.

Clock Tick Only
The most basic clock driver provides only a periodic clock tick interrupt. The timestamp
resolution is limited to the clock tick interval.

58 Chapter 7. Clock Driver

http://www.freebsd.dk/pubs/timecounter.pdf
https://git.rtems.org/rtems/tree/bsps/shared/dev/clock/clockimpl.h

Chapter 7 Section 7.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

7.2 Initialization

The clock driver is initialized by a dedicated system initialization handler if requested by the ap-
plication configuration option CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER. The clock driver
does not use the legacy IO driver framework.

7.2.1 Timecounter Variant

This variant is preferred since it is the most efficient and yields the most accurate timestamps.
It is also mandatory in SMP configurations to obtain valid timestamps. The hardware must
provide a periodic interrupt to service the clock tick and a free running counter for the time-
counter. The free running counter must have a power of two period. The tc_counter_mask
must be initialized to the free running counter period minus one, e.g. for a 17-bit counter
this is 0x0001ffff. The tc_get_timecount function must return the current counter value (the
counter values must increase, so if the counter counts down, a conversion is necessary). Use
RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER for the tc_quality. Set tc_frequency to the fre-
quency of the free running counter in Hz. All other fields of the struct timecounter must be
zero initialized. Install the initialized timecounter via rtems_timecounter_install().

For an example see the QorIQ clock driver.

1 #include <rtems/timecounter.h>
2

3 static struct timecounter some_tc;
4

5 static uint32_t some_tc_get_timecount(struct timecounter *tc)
6 {
7 some.free_running_counter;
8 }
9

10 static void some_support_initialize_hardware(void)
11 {
12 uint64_t us_per_tick;
13 uint32_t counter_frequency_in_hz;
14 uint32_t counter_ticks_per_clock_tick;
15

16 us_per_tick = rtems_configuration_get_microseconds_per_tick();
17 counter_frequency_in_hz = some_tc_get_frequency();
18

19 /*
20 * The multiplication must be done in 64-bit arithmetic to avoid an integer
21 * overflow on targets with a high enough counter frequency.
22 */
23 counter_ticks_per_clock_tick =
24 (uint32_t) (counter_frequency_in_hz * us_per_tick) / 1000000;
25

26 /*
27 * Initialize hardware and set up a periodic interrupt for the configuration
28 * based counter ticks per clock tick.
29 */
30

31 some_tc.tc_get_timecount = some_tc_get_timecount;
32 some_tc.tc_counter_mask = 0xffffffff;
33 some_tc.tc_frequency = frequency;

(continues on next page)

7.2. Initialization 59

https://git.rtems.org/rtems/tree/bsps/powerpc/qoriq/clock/clock-config.c

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 7 Section 7.2

(continued from previous page)

34 some_tc.tc_quality = RTEMS_TIMECOUNTER_QUALITY_CLOCK_DRIVER;
35 rtems_timecounter_install(&some_tc);
36 }
37

38 #define Clock_driver_support_initialize_hardware() \
39 some_support_initialize_hardware()
40

41 #include "../../../shared/dev/clock/clockimpl.h"

7.2.2 Simple Timecounter Variant

For an example see the ERC32 clock driver.

1 #include <rtems/timecounter.h>
2

3 static rtems_timecounter_simple some_tc;
4

5 static uint32_t some_tc_get(rtems_timecounter_simple *tc)
6 {
7 return some.counter;
8 }
9

10 static bool some_tc_is_pending(rtems_timecounter_simple *tc)
11 {
12 return some.is_pending;
13 }
14

15 static uint32_t some_tc_get_timecount(struct timecounter *tc)
16 {
17 return rtems_timecounter_simple_downcounter_get(
18 tc,
19 some_tc_get,
20 some_tc_is_pending
21);
22 }
23

24 static void some_tc_tick(void)
25 {
26 rtems_timecounter_simple_downcounter_tick(&some_tc, some_tc_get);
27 }
28

29 static void some_support_initialize_hardware(void)
30 {
31 uint64_t us_per_tick;
32 uint32_t counter_frequency_in_hz;
33 uint32_t counter_ticks_per_clock_tick;
34

35 us_per_tick = rtems_configuration_get_microseconds_per_tick();
36 counter_frequency_in_hz = some_tc_get_frequency();
37 counter_ticks_per_clock_tick =
38 (uint32_t) (counter_frequency_in_hz * us_per_tick) / 1000000;
39

40 /* Initialize hardware */
41

(continues on next page)

60 Chapter 7. Clock Driver

https://git.rtems.org/rtems/tree/bsps/sparc/erc32/clock/ckinit.c

Chapter 7 Section 7.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

(continued from previous page)

42 rtems_timecounter_simple_install(
43 &some_tc,
44 counter_frequency_in_hz,
45 counter_ticks_per_clock_tick,
46 some_tc_get_timecount
47);
48 }
49

50 #define Clock_driver_support_initialize_hardware() \
51 some_support_initialize_hardware()
52 #define Clock_driver_timecounter_tick() \
53 some_tc_tick()
54

55 #include "../../../shared/dev/clock/clockimpl.h"

7.2.3 Clock Tick Only Variant

For an example see the Motrola 68360 clock driver.

1 static void some_support_initialize_hardware(void)
2 {
3 /* Initialize hardware */
4 }
5

6 #define Clock_driver_support_initialize_hardware() \
7 some_support_initialize_hardware()
8

9 /* Indicate that this clock driver lacks a proper timecounter in hardware */
10

11 #define CLOCK_DRIVER_USE_DUMMY_TIMECOUNTER
12

13 #include "../../../shared/dev/clock/clockimpl.h"

7.2. Initialization 61

https://git.rtems.org/rtems/tree/bsps/m68k/gen68360/clock/clock.c

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 7 Section 7.3

7.3 Install Clock Tick Interrupt Service Routine

The clock driver may provide a function to install the clock tick interrupt service routine via
Clock_driver_support_install_isr(). The clock tick interrupt service routine is passed as the
one and only parameter to this macro. The default implementation will do nothing.

1 #include <bsp/irq.h>
2 #include <bsp/fatal.h>
3

4 static void some_support_install_isr(rtems_interrupt_handler isr)
5 {
6 rtems_status_code sc;
7 sc = rtems_interrupt_handler_install(
8 SOME_IRQ,
9 "Clock",

10 RTEMS_INTERRUPT_UNIQUE,
11 isr,
12 NULL
13);
14 if (sc != RTEMS_SUCCESSFUL) {
15 bsp_fatal(SOME_FATAL_IRQ_INSTALL);
16 }
17 }
18

19 #define Clock_driver_support_install_isr(isr) \
20 some_support_install_isr(isr)
21

22 #include "../../../shared/dev/clock/clockimpl.h"

62 Chapter 7. Clock Driver

Chapter 7 Section 7.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

7.4 Support At Tick

The hardware-specific support at tick is specified by Clock_driver_support_at_tick().

1 static void some_support_at_tick(void)
2 {
3 /* Clear interrupt */
4 }
5

6 #define Clock_driver_support_at_tick() \
7 some_support_at_tick()
8

9 #include "../../../shared/dev/clock/clockimpl.h"

7.4. Support At Tick 63

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 7 Section 7.5

7.5 System Shutdown Support

The clock driver system shutdown support was removed in RTEMS 5.1.

64 Chapter 7. Clock Driver

Chapter 7 Section 7.6 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

7.6 SMP Support

In SMP configurations, the clock tick service must be executed for each processor used by
RTEMS. By default, the clock tick interrupt must be distributed to all processors used by RTEMS
and each processor invokes the clock tick service individually. A clock driver may delegate all
the work to the boot processor. It must define CLOCK_DRIVER_USE_ONLY_BOOT_PROCESSOR in this
case.

Clock drivers must define Clock_driver_support_set_interrupt_affinity(online_processors)
to set the interrupt affinity of the clock tick interrupt.

7.6. SMP Support 65

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 7 Section 7.7

7.7 Multiple Clock Driver Ticks Per Clock Tick

In case the hardware needs more than one clock driver tick per clock tick (e.g. due to a
limited range of the hardware timer), then this can be specified with the optional #define
CLOCK_DRIVER_ISRS_PER_TICK and #define CLOCK_DRIVER_ISRS_PER_TICK_VALUE defines. This
is currently used only for x86 and it hopefully remains that way.

1 /* Enable multiple clock driver ticks per clock tick */
2 #define CLOCK_DRIVER_ISRS_PER_TICK 1
3

4 /* Specifiy the clock driver ticks per clock tick value */
5 #define CLOCK_DRIVER_ISRS_PER_TICK_VALUE 123
6

7 #include "../../../shared/dev/clock/clockimpl.h"

66 Chapter 7. Clock Driver

Chapter 7 Section 7.8 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

7.8 Clock Driver Ticks Counter

The Clock Driver Shell provide a global variable that is simply a count of the number of clock
driver interrupt service routines that have occurred. This information is valuable when debug-
ging a system. This variable is declared as follows:

1 volatile uint32_t Clock_driver_ticks;

7.8. Clock Driver Ticks Counter 67

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 7 Section 7.8

68 Chapter 7. Clock Driver

CHAPTER

EIGHT

ENTROPY SOURCE

Each BSP must provide an implementation of the getentropy() system call. This system call
was introduced by OpenBSD and is also available in glibc since version 2.25. This system call
is used by the Newlib provided ARC4RANDOM(3) functions, which in turn are used by various
cryptographic functions.

Warning: A good entropy source is critical for (nearly) all cryptographic applications. The
default implementation based on the CPU counter is not suitable for such applications.

The getentropy() implementation must fill the specified memory region of the given
size with random numbers and return 0 on success. A non-zero return may cause the
INTERNAL_ERROR_ARC4RANDOM_GETENTROPY_FAIL internal error by one of the ARC4RANDOM(3)
functions.

In general, for embedded systems it is not easy to get some real entropy. Normally, that can only
be reached with some extra hardware support. Some microcontrollers integrate a true random
number generator or something similar for cryptographic applications. That is the preferred
source of entropy for most BSPs. For example the atsam BSP uses the TRNG for its entropy
source.

There is also a quite limited default implementation based on the CPU counter. Due to the fact
that it is a time based source, the values provided by getentropy() are quite predictable. This
implementation is not appropriate for any cryptographic applications but it is good enough for
some basic tasks. Use it only if you do not have any strong requirements on the entropy and if
there is no better source.

69

https://man.openbsd.org/getentropy.2
http://man7.org/linux/man-pages/man3/getentropy.3.html
https://man.openbsd.org/arc4random.3
https://man.openbsd.org/arc4random.3
https://git.rtems.org/rtems/tree/bsps/arm/atsam/start/getentropy-trng.c
https://git.rtems.org/rtems/tree/bsps/arm/atsam/start/getentropy-trng.c
https://git.rtems.org/rtems/tree/bsps/shared/dev/getentropy/getentropy-cpucounter.c

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 8 Section 8.0

70 Chapter 8. Entropy Source

CHAPTER

NINE

I2C DRIVER

The Inter-Integrated Circuit (I2C, I2C, IIC) bus drivers should use the I2C bus framework. The
user API is compatible to the Linux I2C user-space API.

For example I2C bus drivers see:

• Atmel SAM I2C driver

• Cadence I2C driver

• I2C framework test

• NXP i.MX I2C driver

• NXP LPC17XX/LPC24XX/LPC40XX I2C driver

For example I2C device drivers see:

• ADC

– TI ADS 16-Bit

• EEPROM

• GPIO

– NXP PCA9535

• Power Management

– NXP PCA9548A

– TI LM25066A

• Sensors

– NXP LM75A

– TI TMP112

71

https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/i2c.h
https://www.kernel.org/doc/Documentation/i2c/dev-interface
https://git.rtems.org/rtems/tree/bsps/arm/atsam/i2c/atsam_i2c_bus.c
https://git.rtems.org/rtems/tree/bsps/arm/xilinx-zynq/i2c/cadence-i2c.c
https://git.rtems.org/rtems/tree/testsuites/libtests/i2c01/init.c
https://git.rtems.org/rtems/tree/bsps/arm/imx/i2c/imx-i2c.c
https://git.rtems.org/rtems/tree/bsps/arm/lpc24xx/i2c/i2c.c
https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/ti-ads-16bit-adc.h
https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/eeprom.h
https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/gpio-nxp-pca9535.h
https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/switch-nxp-pca9548a.h
https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/ti-lm25066a.h
https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/sensor-lm75a.h
https://git.rtems.org/rtems/tree/cpukit/include/dev/i2c/ti-tmp112.h

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 9 Section 9.0

72 Chapter 9. I2C Driver

CHAPTER

TEN

SPI DRIVER

The Serial Peripheral Interface (SPI) bus drivers should use the SPI bus framework. The user
API is compatible to the Linux SPI user-space API.

For example SPI bus drivers see:

• Atmel SAM SPI driver

• NXP i.MX SPI driver

• NXP LPC17XX/LPC24XX/LPC40XX SSP driver

• SPI framework test

73

https://git.rtems.org/rtems/tree/cpukit/include/dev/spi/spi.h
https://www.kernel.org/doc/Documentation/spi/spidev
https://git.rtems.org/rtems/tree/bsps/arm/atsam/spi/atsam_spi_bus.c
https://git.rtems.org/rtems/tree/bsps/arm/imx/spi/imx-ecspi.c
https://git.rtems.org/rtems/tree/bsps/arm/lpc24xx/spi/ssp.c
https://git.rtems.org/rtems/tree/testsuites/libtests/spi01/init.c

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 10 Section 10.0

74 Chapter 10. SPI Driver

CHAPTER

ELEVEN

REAL-TIME CLOCK DRIVER

75

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 11 Section 11.1

11.1 Introduction

The Real-Time Clock (RTC) driver is responsible for providing an interface to an RTC device.
The capabilities provided by this driver are:

• Set the RTC TOD to RTEMS TOD

• Set the RTEMS TOD to the RTC TOD

• Get the RTC TOD

• Set the RTC TOD to the Specified TOD

• Get the Difference Between the RTEMS and RTC TOD

Note: In this chapter, the abbreviation TOD is used for Time of Day.

The reference implementation for a real-time clock driver can be found in
bsps/shared/dev/rtc/rtc-support.c. This driver is based on the libchip concept and can
be easily configured to work with any of the RTC chips supported by the RTC chip drivers in
the directory bsps/shared/dev/rtc. There is a README file in this directory for each supported
RTC chip. Each of these README explains how to configure the shared libchip implementation
of the RTC driver for that particular RTC chip.

The DY-4 DMV177 BSP used the shared libchip implementation of the RTC driver. There were no
DMV177 specific configuration routines. A BSP could use configuration routines to dynamically
determine what type of real-time clock is on a particular board. This would be useful for a BSP
supporting multiple board models. The relevant ports of the DMV177’s RTC_Table configuration
table is below:

1 #include <bsp.h>
2 #include <libchip/rtc.h>
3 #include <libchip/icm7170.h>
4

5 bool dmv177_icm7170_probe(int minor);
6

7 rtc_tbl RTC_Table[] = {
8 { "/dev/rtc0", /* sDeviceName */
9 RTC_ICM7170, /* deviceType */

10 &icm7170_fns, /* pDeviceFns */
11 dmv177_icm7170_probe, /* deviceProbe */
12 (void *) ICM7170_AT_1_MHZ, /* pDeviceParams */
13 DMV170_RTC_ADDRESS, /* ulCtrlPort1 */
14 0, /* ulDataPort */
15 icm7170_get_register_8, /* getRegister */
16 icm7170_set_register_8, /* setRegister */
17 }
18 };
19 unsigned long RTC_Count = (sizeof(RTC_Table)/sizeof(rtc_tbl));
20 rtems_device_minor_number RTC_Minor;
21

22 bool dmv177_icm7170_probe(int minor)
23 {
24 volatile uint16_t *card_resource_reg;
25 card_resource_reg = (volatile uint16_t *) DMV170_CARD_RESORCE_REG;

(continues on next page)

76 Chapter 11. Real-Time Clock Driver

https://git.rtems.org/rtems/tree/bsps/shared/dev/rtc/rtc-support.c
https://git.rtems.org/rtems/tree/bsps/shared/dev/rtc

Chapter 11 Section 11.1 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

(continued from previous page)

26 if ((*card_resource_reg & DMV170_RTC_INST_MASK) == DMV170_RTC_INSTALLED)
27 return TRUE;
28 return FALSE;
29 }

11.1. Introduction 77

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 11 Section 11.2

11.2 Initialization

The rtc_initialize routine is responsible for initializing the RTC chip so it can be used. The
shared libchip implementation of this driver supports multiple RTCs and bases its initialization
order on the order the chips are defined in the RTC_Table. Each chip defined in the table may
or may not be present on this particular board. It is the responsibility of the deviceProbe to
indicate the presence of a particular RTC chip. The first RTC found to be present is considered
the preferred RTC.

In the shared libchip based implementation of the driver, the following actions are performed:

1 rtems_device_driver rtc_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor_arg,
4 void *arg
5)
6 {
7 for each RTC configured in RTC_Table
8 if the deviceProbe for this RTC indicates it is present
9 set RTC_Minor to this device

10 set RTC_Present to TRUE
11 break out of this loop
12

13 if RTC_Present is not TRUE
14 return RTEMS_INVALID_NUMBER to indicate that no RTC is present
15

16 register this minor number as the "/dev/rtc"
17

18 perform the deviceInitialize routine for the preferred RTC chip
19

20 for RTCs past this one in the RTC_Table
21 if the deviceProbe for this RTC indicates it is present
22 perform the deviceInitialize routine for this RTC chip
23 register the configured name for this RTC
24 }

The deviceProbe routine returns TRUE if the device configured by this entry in the RTC_Table is
present. This configuration scheme allows one to support multiple versions of the same board
with a single BSP. For example, if the first generation of a board had Vendor A’s RTC chip and
the second generation had Vendor B’s RTC chip, RTC_Table could contain information for both.
The deviceProbe configured for Vendor A’s RTC chip would need to return TRUE if the board
was a first generation one. The deviceProbe routines are very board dependent and must be
provided by the BSP.

78 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.3 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

11.3 setRealTimeToRTEMS

The setRealTimeToRTEMS routine sets the current RTEMS TOD to that of the preferred RTC.

1 void setRealTimeToRTEMS(void)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceGetTime routine for the preferred RTC
7 set the RTEMS TOD using rtems_clock_set
8 }

11.3. setRealTimeToRTEMS 79

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 11 Section 11.4

11.4 setRealTimeFromRTEMS

The setRealTimeFromRTEMS routine sets the preferred RTC TOD to the current RTEMS TOD.

1 void setRealTimeFromRTEMS(void)
2 {
3 if no RTCs are present
4 return
5

6 obtain the RTEMS TOD using rtems_clock_get
7 invoke the deviceSetTime routine for the preferred RTC
8 }

80 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.5 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

11.5 getRealTime

The getRealTime returns the preferred RTC TOD to the caller.

1 void getRealTime(rtems_time_of_day *tod)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceGetTime routine for the preferred RTC
7 }

11.5. getRealTime 81

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 11 Section 11.6

11.6 setRealTime

The setRealTime routine sets the preferred RTC TOD to the TOD specified by the caller.

1 void setRealTime(rtems_time_of_day *tod)
2 {
3 if no RTCs are present
4 return
5

6 invoke the deviceSetTime routine for the preferred RTC
7 }

82 Chapter 11. Real-Time Clock Driver

Chapter 11 Section 11.7 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

11.7 checkRealTime

The checkRealTime routine returns the number of seconds difference between the RTC TOD
and the current RTEMS TOD.

1 int checkRealTime(void)
2 {
3 if no RTCs are present
4 return -1
5

6 obtain the RTEMS TOD using rtems_clock_get
7 get the TOD from the preferred RTC using the deviceGetTime routine
8 convert the RTEMS TOD to seconds
9 convert the RTC TOD to seconds

10

11 return the RTEMS TOD in seconds - RTC TOD in seconds
12 }

11.7. checkRealTime 83

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 11 Section 11.7

84 Chapter 11. Real-Time Clock Driver

CHAPTER

TWELVE

NETWORKING DRIVER

85

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 12 Section 12.1

12.1 Introduction

This chapter is intended to provide an introduction to the procedure for writing RTEMS network
device drivers. The example code is taken from the ‘Generic 68360’ network device driver. The
source code for this driver is located in the bsps/m68k/gen68360/net directory in the RTEMS
source code distribution. Having a copy of this driver at hand when reading the following notes
will help significantly.

Legacy Networking Stack

This docuemntation is for the legacy FreeBSD networking stack in the RTEMS source tree.

86 Chapter 12. Networking Driver

Chapter 12 Section 12.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

12.2 Learn about the network device

Before starting to write the network driver become completely familiar with the programmer’s
view of the device. The following points list some of the details of the device that must be
understood before a driver can be written.

• Does the device use DMA to transfer packets to and from memory or does the processor
have to copy packets to and from memory on the device?

• If the device uses DMA, is it capable of forming a single outgoing packet from multiple
fragments scattered in separate memory buffers?

• If the device uses DMA, is it capable of chaining multiple outgoing packets, or does each
outgoing packet require intervention by the driver?

• Does the device automatically pad short frames to the minimum 64 bytes or does the
driver have to supply the padding?

• Does the device automatically retry a transmission on detection of a collision?

• If the device uses DMA, is it capable of buffering multiple packets to memory, or does the
receiver have to be restarted after the arrival of each packet?

• How are packets that are too short, too long, or received with CRC errors handled? Does
the device automatically continue reception or does the driver have to intervene?

• How is the device Ethernet address set? How is the device programmed to accept or reject
broadcast and multicast packets?

• What interrupts does the device generate? Does it generate an interrupt for each incoming
packet, or only for packets received without error? Does it generate an interrupt for each
packet transmitted, or only when the transmit queue is empty? What happens when a
transmit error is detected?

In addition, some controllers have specific questions regarding board specific configuration. For
example, the SONIC Ethernet controller has a very configurable data bus interface. It can even
be configured for sixteen and thirty-two bit data buses. This type of information should be
obtained from the board vendor.

12.2. Learn about the network device 87

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 12 Section 12.3

12.3 Understand the network scheduling conventions

When writing code for the driver transmit and receive tasks, take care to follow the network
scheduling conventions. All tasks which are associated with networking share various data
structures and resources. To ensure the consistency of these structures the tasks execute only
when they hold the network semaphore (rtems_bsdnet_semaphore). The transmit and receive
tasks must abide by this protocol. Be very careful to avoid ‘deadly embraces’ with the other
network tasks. A number of routines are provided to make it easier for the network driver code
to conform to the network task scheduling conventions.

• void rtems_bsdnet_semaphore_release(void) This function releases the network
semaphore. The network driver tasks must call this function immediately before mak-
ing any blocking RTEMS request.

• void rtems_bsdnet_semaphore_obtain(void) This function obtains the network
semaphore. If a network driver task has released the network semaphore to allow other
network-related tasks to run while the task blocks, then this function must be called to
reobtain the semaphore immediately after the return from the blocking RTEMS request.

• rtems_bsdnet_event_receive(rtems_event_set, rtems_option, rtems_interval,
rtems_event_set *) The network driver task should call this function when it
wishes to wait for an event. This function releases the network semaphore, calls
rtems_event_receive to wait for the specified event or events and reobtains the
semaphore. The value returned is the value returned by the rtems_event_receive.

88 Chapter 12. Networking Driver

Chapter 12 Section 12.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

12.4 Network Driver Makefile

Network drivers are considered part of the BSD network package and as such are
to be compiled with the appropriate flags. This can be accomplished by adding
-D__INSIDE_RTEMS_BSD_TCPIP_STACK__ to the command line. If the driver is inside the RTEMS
source tree or is built using the RTEMS application Makefiles, then adding the following line
accomplishes this:

1 DEFINES += -D__INSIDE_RTEMS_BSD_TCPIP_STACK__

This is equivalent to the following list of definitions. Early versions of the RTEMS BSD network
stack required that all of these be defined.

1 -D_COMPILING_BSD_KERNEL_ -DKERNEL -DINET -DNFS -DDIAGNOSTIC -DBOOTP_COMPAT

Defining these macros tells the network header files that the driver is to be compiled with
extended visibility into the network stack. This is in sharp contrast to applications that simply
use the network stack. Applications do not require this level of visibility and should stick to the
portable application level API.

As a direct result of being logically internal to the network stack, network drivers use the BSD
memory allocation routines This means, for example, that malloc takes three arguments. See
the SONIC device driver (c/src/lib/libchip/network/sonic.c) for an example of this. Be-
cause of this, network drivers should not include <stdlib.h>. Doing so will result in conflicting
definitions of malloc().

Application level code including network servers such as the FTP daemon are not part of the
BSD kernel network code and should not be compiled with the BSD network flags. They should
include <stdlib.h> and not define the network stack visibility macros.

12.4. Network Driver Makefile 89

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 12 Section 12.5

12.5 Write the Driver Attach Function

The driver attach function is responsible for configuring the driver and making the connection
between the network stack and the driver.

Driver attach functions take a pointer to an rtems_bsdnet_ifconfig structure as their only
argument. and set the driver parameters based on the values in this structure. If an entry in the
configuration structure is zero the attach function chooses an appropriate default value for that
parameter.

The driver should then set up several fields in the ifnet structure in the device-dependent data
structure supplied and maintained by the driver:

ifp->if_softc
Pointer to the device-dependent data. The first entry in the device-dependent data structure
must be an arpcom structure.

ifp->if_name
The name of the device. The network stack uses this string and the device number for device
name lookups. The device name should be obtained from the name entry in the configuration
structure.

ifp->if_unit
The device number. The network stack uses this number and the device name for device name
lookups. For example, if ifp->if_name is scc and ifp->if_unit is 1, the full device name
would be scc1. The unit number should be obtained from the name entry in the configuration
structure.

ifp->if_mtu
The maximum transmission unit for the device. For Ethernet devices this value should almost
always be 1500.

ifp->if_flags
The device flags. Ethernet devices should set the flags to IFF_BROADCAST|IFF_SIMPLEX, indi-
cating that the device can broadcast packets to multiple destinations and does not receive and
transmit at the same time.

ifp->if_snd.ifq_maxlen
The maximum length of the queue of packets waiting to be sent to the driver. This is normally
set to ifqmaxlen.

ifp->if_init
The address of the driver initialization function.

ifp->if_start
The address of the driver start function.

ifp->if_ioctl
The address of the driver ioctl function.

ifp->if_output
The address of the output function. Ethernet devices should set this to ether_output.

RTEMS provides a function to parse the driver name in the configuration structure into a device
name and unit number.

90 Chapter 12. Networking Driver

Chapter 12 Section 12.5 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

1 int rtems_bsdnet_parse_driver_name (
2 const struct rtems_bsdnet_ifconfig *config,
3 char **namep
4);

The function takes two arguments; a pointer to the configuration structure and a pointer to a
pointer to a character. The function parses the configuration name entry, allocates memory for
the driver name, places the driver name in this memory, sets the second argument to point to
the name and returns the unit number. On error, a message is printed and -1 is returned.

Once the attach function has set up the above entries it must link the driver data structure onto
the list of devices by calling if_attach. Ethernet devices should then call ether_ifattach. Both
functions take a pointer to the device’s ifnet structure as their only argument.

The attach function should return a non-zero value to indicate that the driver has been success-
fully configured and attached.

12.5. Write the Driver Attach Function 91

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 12 Section 12.6

12.6 Write the Driver Start Function.

This function is called each time the network stack wants to start the transmitter. This occures
whenever the network stack adds a packet to a device’s send queue and the IFF_OACTIVE bit in
the device’s if_flags is not set.

For many devices this function need only set the IFF_OACTIVE bit in the if_flags and send an
event to the transmit task indicating that a packet is in the driver transmit queue.

92 Chapter 12. Networking Driver

Chapter 12 Section 12.7 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

12.7 Write the Driver Initialization Function.

This function should initialize the device, attach to interrupt handler, and start the driver trans-
mit and receive tasks. The function:

1 rtems_id rtems_bsdnet_newproc(
2 char *name,
3 int stacksize,
4 void (*entry)(void *),
5 void *arg
6);

should be used to start the driver tasks.

Note that the network stack may call the driver initialization function more than once. Make
sure multiple versions of the receive and transmit tasks are not accidentally started.

12.7. Write the Driver Initialization Function. 93

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 12 Section 12.8

12.8 Write the Driver Transmit Task

This task is reponsible for removing packets from the driver send queue and sending them to
the device. The task should block waiting for an event from the driver start function indicating
that packets are waiting to be transmitted. When the transmit task has drained the driver send
queue the task should clear the IFF_OACTIVE bit in if_flags and block until another outgoing
packet is queued.

94 Chapter 12. Networking Driver

Chapter 12 Section 12.9 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

12.9 Write the Driver Receive Task

This task should block until a packet arrives from the device. If the device is an Ethernet
interface the function ether_input should be called to forward the packet to the network stack.
The arguments to ether_input are a pointer to the interface data structure, a pointer to the
ethernet header and a pointer to an mbuf containing the packet itself.

12.9. Write the Driver Receive Task 95

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 12 Section 12.10

12.10 Write the Driver Interrupt Handler

A typical interrupt handler will do nothing more than the hardware manipulation required to
acknowledge the interrupt and send an RTEMS event to wake up the driver receive or transmit
task waiting for the event. Network interface interrupt handlers must not make any calls to
other network routines.

96 Chapter 12. Networking Driver

Chapter 12 Section 12.11 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

12.11 Write the Driver IOCTL Function

This function handles ioctl requests directed at the device. The ioctl commands which must be
handled are:

SIOCGIFADDR, SIOCSIFADDR
If the device is an Ethernet interface these commands should be passed on to ether_ioctl.

SIOCSIFFLAGS
This command should be used to start or stop the device, depending on the state of the
interface IFF_UP and‘‘IFF_RUNNING‘‘ bits in if_flags:

IFF_RUNNING
Stop the device.

IFF_UP
Start the device.

IFF_UP|IFF_RUNNING
Stop then start the device.

0
Do nothing.

12.11. Write the Driver IOCTL Function 97

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 12 Section 12.12

12.12 Write the Driver Statistic-Printing Function

This function should print the values of any statistic/diagnostic counters the network driver may
use. The driver ioctl function should call the statistic-printing function when the ioctl command
is SIO_RTEMS_SHOW_STATS.

98 Chapter 12. Networking Driver

CHAPTER

THIRTEEN

FRAME BUFFER DRIVER

In this chapter, we present the basic functionality implemented by a frame buffer driver:

• frame_buffer_initialize()

• frame_buffer_open()

• frame_buffer_close()

• frame_buffer_read()

• frame_buffer_write()

• frame_buffer_control()

99

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 13 Section 13.1

13.1 Introduction

The purpose of the frame buffer driver is to provide an abstraction for graphics hardware. By
using the frame buffer interface, an application can display graphics without knowing any-
thing about the low-level details of interfacing to a particular graphics adapter. The parameters
governing the mapping of memory to displayed pixels (planar or linear, bit depth, etc) is still
implementation-specific, but device-independent methods are provided to determine and po-
tentially modify these parameters.

The frame buffer driver is commonly located in the console directory of the BSP and registered
by the name /dev/fb0. Additional frame buffers (if available) are named /dev/fb1*,*/dev/fb2,
etc.

To work with the frame buffer, the following operation sequence is used:open(), ioctls() to
get the frame buffer info, read() and/or write(), and close().

100 Chapter 13. Frame Buffer Driver

Chapter 13 Section 13.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

13.2 Driver Function Overview

13.2.1 Initialization

The driver initialization is called once during the RTEMS initialization process and returns
RTEMS_SUCCESSFUL when the device driver is successfully initialized. During the initialization,
a name is assigned to the frame buffer device. If the graphics hardware supports console text
output, as is the case with the pc386 VGA hardware, initialization into graphics mode may be
deferred until the device is open() ed.

The frame_buffer_initialize() function may look like this:

1 rtems_device_driver frame_buffer_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg)
5 {
6 rtems_status_code status;
7

8 printk("frame buffer driver initializing..\n");
9

10 /*
11 * Register the device
12 */
13 status = rtems_io_register_name("/dev/fb0", major, 0);
14 if (status != RTEMS_SUCCESSFUL)
15 {
16 printk("Error registering frame buffer device!\n");
17 rtems_fatal_error_occurred(status);
18 }
19

20 /*
21 * graphics hardware initialization goes here for non-console
22 * devices
23 */
24

25 return RTEMS_SUCCESSFUL;
26 }

13.2.2 Opening the Frame Buffer Device

The frame_buffer_open() function is called whenever a frame buffer device is opened. If the
frame buffer is registered as /dev/fb0, the frame_buffer_open entry point will be called as the
result of an open("/dev/fb0", mode) in the application.

Thread safety of the frame buffer driver is implementation-dependent. The VGA driver shown
below uses a mutex to prevent multiple open() operations of the frame buffer device.

The frame_buffer_open() function returns RTEMS_SUCCESSFUL when the device driver is suc-
cessfully opened, and RTEMS_UNSATISFIED if the device is already open:

1 rtems_device_driver frame_buffer_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,

(continues on next page)

13.2. Driver Function Overview 101

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 13 Section 13.2

(continued from previous page)

4 void *arg
5)
6 {
7 if (pthread_mutex_unlock(&mutex) == 0) {
8 /* restore previous state. for VGA this means return to text mode.
9 * leave out if graphics hardware has been initialized in

10 * frame_buffer_initialize()
11 */
12 ega_hwterm();
13 printk("FBVGA close called.\n");
14 return RTEMS_SUCCESSFUL;
15 }
16 return RTEMS_UNSATISFIED;
17 }

In the previous example, the function ega_hwinit() takes care of hardware-specific initializa-
tion.

13.2.3 Closing the Frame Buffer Device

The frame_buffer_close() is invoked when the frame buffer device is closed. It frees up any
resources allocated in frame_buffer_open(), and should restore previous hardware state. The
entry point corresponds to the device driver close entry point.

Returns RTEMS_SUCCESSFUL when the device driver is successfully closed:

1 rtems_device_driver frame_buffer_close(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg)
5 {
6 pthread_mutex_unlock(&mutex);
7

8 /* TODO check mutex return value, RTEMS_UNSATISFIED if it failed. we
9 * don't want to unconditionally call ega_hwterm()... */

10 /* restore previous state. for VGA this means return to text mode.
11 * leave out if graphics hardware has been initialized in
12 * frame_buffer_initialize() */
13 ega_hwterm();
14 printk("frame buffer close called.\n");
15 return RTEMS_SUCCESSFUL;
16 }

13.2.4 Reading from the Frame Buffer Device

The frame_buffer_read() is invoked from a read() operation on the frame buffer device. Read
functions should allow normal and partial reading at the end of frame buffer memory. This
method returns RTEMS_SUCCESSFUL when the device is successfully read from:

1 rtems_device_driver frame_buffer_read(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,

(continues on next page)

102 Chapter 13. Frame Buffer Driver

Chapter 13 Section 13.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

(continued from previous page)

4 void *arg
5)
6 {
7 rtems_libio_rw_args_t *rw_args = (rtems_libio_rw_args_t *)arg;
8 rw_args->bytes_moved = ((rw_args->offset + rw_args->count) > fb_fix.smem_len) ?
9 (fb_fix.smem_len - rw_args->offset) : rw_args->count;

10 memcpy(rw_args->buffer,
11 (const void *) (fb_fix.smem_start + rw_args->offset),
12 rw_args->bytes_moved);
13 return RTEMS_SUCCESSFUL;
14 }

13.2.5 Writing to the Frame Buffer Device

The frame_buffer_write() is invoked from a write() operation on the frame buffer device.
The frame buffer write function is similar to the read function, and should handle similar cases
involving partial writes.

This method returns RTEMS_SUCCESSFUL when the device is successfully written to:

1 rtems_device_driver frame_buffer_write(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 rtems_libio_rw_args_t *rw_args = (rtems_libio_rw_args_t *)arg;
8 rw_args->bytes_moved = ((rw_args->offset + rw_args->count) > fb_fix.smem_len) ?
9 (fb_fix.smem_len - rw_args->offset) : rw_args->count;

10 memcpy((void *) (fb_fix.smem_start + rw_args->offset),
11 rw_args->buffer,
12 rw_args->bytes_moved);
13 return RTEMS_SUCCESSFUL;
14 }

13.2.6 Frame Buffer IO Control

The frame buffer driver allows several ioctls, partially compatible with the Linux kernel, to
obtain information about the hardware.

All ioctl() operations on the frame buffer device invoke frame_buffer_control().

Ioctls supported:

• ioctls to get the frame buffer screen info (fixed and variable).

• ioctl to set and get palette.

1 rtems_device_driver frame_buffer_control(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)

(continues on next page)

13.2. Driver Function Overview 103

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 13 Section 13.2

(continued from previous page)

6 {
7 rtems_libio_ioctl_args_t *args = arg;
8

9 printk("FBVGA ioctl called, cmd=%x\n", args->command);
10

11 switch(args->command) {
12 case FBIOGET_FSCREENINFO:
13 args->ioctl_return = get_fix_screen_info((struct fb_fix_screeninfo *) args->

→˓buffer);
14 break;
15 case FBIOGET_VSCREENINFO:
16 args->ioctl_return = get_var_screen_info((struct fb_var_screeninfo *) args->

→˓buffer);
17 break;
18 case FBIOPUT_VSCREENINFO:
19 /* not implemented yet*/
20 args->ioctl_return = -1;
21 return RTEMS_UNSATISFIED;
22 case FBIOGETCMAP:
23 args->ioctl_return = get_palette((struct fb_cmap *) args->buffer);
24 break;
25 case FBIOPUTCMAP:
26 args->ioctl_return = set_palette((struct fb_cmap *) args->buffer);
27 break;
28 default:
29 args->ioctl_return = 0;
30 break;
31 }
32

33 return RTEMS_SUCCESSFUL;
34 }

See rtems/fb.h for more information on the list of ioctls and data structures they work with.

104 Chapter 13. Frame Buffer Driver

CHAPTER

FOURTEEN

ADA95 INTERRUPT SUPPORT

105

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 14 Section 14.1

14.1 Introduction

This chapter describes what is required to enable Ada interrupt and error exception handling
when using GNAT over RTEMS.

The GNAT Ada95 interrupt support RTEMS was developed by Jiri Gaisler
<jgais@ws.estec.esa.nl> who also wrote this chapter.

106 Chapter 14. Ada95 Interrupt Support

mailto:jgais@ws.estec.esa.nl

Chapter 14 Section 14.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

14.2 Mapping Interrupts to POSIX Signals

In Ada95, interrupts can be attached with the interrupt_attach pragma. For most systems, the
gnat run-time will use POSIX signal to implement the interrupt handling, mapping one signal
per interrupt. For interrupts to be propagated to the attached Ada handler, the corresponding
signal must be raised when the interrupt occurs.

The same mechanism is used to generate Ada error exceptions. Three error exceptions are de-
fined: program, constraint and storage error. These are generated by raising the predefined
signals: SIGILL, SIGFPE and SIGSEGV. These signals should be raised when a spurious or erro-
neous trap occurs.

To enable gnat interrupt and error exception support for a particular BSP, the following has to
be done:

• Write an interrupt/trap handler that will raise the corresponding signal depending on the
interrupt/trap number.

• Install the interrupt handler for all interrupts/traps that will be handled by gnat (including
spurious).

• At startup, gnat calls __gnat_install_handler(). The BSP must provide this function
which installs the interrupt/trap handlers.

Which CPU-interrupt will generate which signal is implementation defined. There are 32 POSIX
signals (1 - 32), and all except the three error signals (SIGILL, SIGFPE and SIGSEGV) can be
used. I would suggest to use the upper 16 (17 - 32) which do not have an assigned POSIX
name.

Note that the pragma interrupt_attach will only bind a signal to a particular Ada handler - it will
not unmask the interrupt or do any other things to enable it. This have to be done separately,
typically by writing various device register.

14.2. Mapping Interrupts to POSIX Signals 107

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 14 Section 14.3

14.3 Example Ada95 Interrupt Program

An example program (irq_test) is included in the Ada examples package to show how inter-
rupts can be handled in Ada95. Note that generation of the test interrupt (irqforce.c) is BSP
specific and must be edited.

Note: The irq_test example was written for the SPARC/ERC32 BSP.

108 Chapter 14. Ada95 Interrupt Support

Chapter 14 Section 14.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

14.4 Version Requirements

With RTEMS 4.0, a patch was required to psignal.c in RTEMS sources (to correct a bug as-
sociated to the default action of signals 15-32). The SPARC/ERC32 RTEMS BSP includes
the‘‘gnatsupp‘‘ subdirectory that can be used as an example for other BSPs.

With GNAT 3.11p, a patch is required for a-init.c to invoke the BSP specific routine that
installs the exception handlers.

14.4. Version Requirements 109

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 14 Section 14.4

110 Chapter 14. Ada95 Interrupt Support

CHAPTER

FIFTEEN

SHARED MEMORY SUPPORT DRIVER

The Shared Memory Support Driver is responsible for providing glue routines and configuration
information required by the Shared Memory Multiprocessor Communications Interface (MPCI).
The Shared Memory Support Driver tailors the portable Shared Memory Driver to a particular
target platform.

This driver is only required in shared memory multiprocessing systems that use the RTEMS
mulitprocessing support. For more information on RTEMS multiprocessing capabilities and the
MPCI, refer to the Multiprocessing Manager chapter of the RTEMS Application C User’s Guide.

111

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 15 Section 15.1

15.1 Shared Memory Configuration Table

The Shared Memory Configuration Table is defined in the following structure:

1 typedef volatile uint32_t vol_u32;
2

3 typedef struct {
4 vol_u32 *address; /* write here for interrupt */
5 vol_u32 value; /* this value causes interrupt */
6 vol_u32 length; /* for this length (0,1,2,4) */
7 } Shm_Interrupt_information;
8

9 struct shm_config_info {
10 vol_u32 *base; /* base address of SHM */
11 vol_u32 length; /* length (in bytes) of SHM */
12 vol_u32 format; /* SHM is big or little endian */
13 vol_u32 (*convert)(); /* neutral conversion routine */
14 vol_u32 poll_intr; /* POLLED or INTR driven mode */
15 void (*cause_intr)(uint32_t);
16 Shm_Interrupt_information Intr; /* cause intr information */
17 };
18

19 typedef struct shm_config_info shm_config_table;

where the fields are defined as follows:

base
is the base address of the shared memory buffer used to pass messages between the nodes in
the system.

length
is the length (in bytes) of the shared memory buffer used to pass messages between the nodes
in the system.

format
is either SHM_BIG or SHM_LITTLE to indicate that the neutral format of the shared memory
area is big or little endian. The format of the memory should be chosen to match most of the
inter-node traffic.

convert
is the address of a routine which converts from native format to neutral format. Ideally, the
neutral format is the same as the native format so this routine is quite simple.

poll_intr, cause_intr
is either INTR_MODE or POLLED_MODE to indicate how the node will be informed of incoming
messages.

Intr
is the information required to cause an interrupt on a node. This structure contains the
following fields:

address
is the address to write at to cause an interrupt on that node. For a polled node, this should
be NULL.

value
is the value to write to cause an interrupt.

112 Chapter 15. Shared Memory Support Driver

Chapter 15 Section 15.1 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

length
is the length of the entity to write on the node to cause an interrupt. This can be 0 to
indicate polled operation, 1 to write a byte, 2 to write a sixteen-bit entity, and 4 to write a
thirty-two bit entity.

15.1. Shared Memory Configuration Table 113

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 15 Section 15.2

15.2 Primitives

15.2.1 Convert Address

The Shm_Convert_address is responsible for converting an address of an entity in the shared
memory area into the address that should be used from this node. Most targets will simply
return the address passed to this routine. However, some target boards will have a special
window onto the shared memory. For example, some VMEbus boards have special address
windows to access addresses that are normally reserved in the CPU’s address space.

1 void *Shm_Convert_address(void *address)
2 {
3 return the local address version of this bus address
4 }

15.2.2 Get Configuration

The Shm_Get_configuration routine is responsible for filling in the Shared Memory Configura-
tion Table passed to it.

1 void Shm_Get_configuration(
2 uint32_t localnode,
3 shm_config_table **shmcfg
4)
5 {
6 fill in the Shared Memory Configuration Table
7 }

15.2.3 Locking Primitives

This is a collection of routines that are invoked by the portable part of the Shared Memory
Driver to manage locks in the shared memory buffer area. Accesses to the shared memory must
be atomic. Two nodes in a multiprocessor system must not be manipulating the shared data
structures simultaneously. The locking primitives are used to insure this.

To avoid deadlock, local processor interrupts should be disabled the entire time the locked
queue is locked.

The locking primitives operate on the lock field of the Shm_Locked_queue_Control data struc-
ture. This structure is defined as follows:

1 typedef struct {
2 vol_u32 lock; /* lock field for this queue */
3 vol_u32 front; /* first envelope on queue */
4 vol_u32 rear; /* last envelope on queue */
5 vol_u32 owner; /* receiving (i.e. owning) node */
6 } Shm_Locked_queue_Control;

where each field is defined as follows:

lock
is the lock field. Every node in the system must agree on how this field will be used. Many

114 Chapter 15. Shared Memory Support Driver

Chapter 15 Section 15.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

processor families provide an atomic “test and set” instruction that is used to manage this
field.

front
is the index of the first message on this locked queue.

rear
is the index of the last message on this locked queue.

owner
is the node number of the node that currently has this structure locked.

15.2.3.1 Initializing a Shared Lock

The Shm_Initialize_lock routine is responsible for initializing the lock field. This routines
usually is implemented as follows:

1 void Shm_Initialize_lock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 lq_cb->lock = LQ_UNLOCKED;
6 }

15.2.3.2 Acquiring a Shared Lock

The Shm_Lock routine is responsible for acquiring the lock field. Interrupts should be disabled
while that lock is acquired. If the lock is currently unavailble, then the locking routine should
delay a few microseconds to allow the other node to release the lock. Doing this reduces bus
contention for the lock. This routines usually is implemented as follows:

1 void Shm_Lock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 disable processor interrupts
6 set Shm_isrstat to previous interrupt disable level
7

8 while (TRUE) {
9 atomically attempt to acquire the lock

10 if the lock was acquired
11 return
12 delay some small period of time
13 }
14 }

15.2.3.3 Releasing a Shared Lock

The Shm_Unlock routine is responsible for releasing the lock field and reenabling processor
interrupts. This routines usually is implemented as follows:

15.2. Primitives 115

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 15 Section 15.2

1 void Shm_Unlock(
2 Shm_Locked_queue_Control *lq_cb
3)
4 {
5 set the lock to the unlocked value
6 reenable processor interrupts to their level prior
7 to the lock being acquired. This value was saved
8 in the global variable Shm_isrstat
9 }

116 Chapter 15. Shared Memory Support Driver

Chapter 15 Section 15.3 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

15.3 Installing the MPCI ISR

The Shm_setvec is invoked by the portable portion of the shared memory to install the inter-
rupt service routine that is invoked when an incoming message is announced. Some target
boards support an interprocessor interrupt or mailbox scheme and this is where the ISR for that
interrupt would be installed.

On an interrupt driven node, this routine would be implemented as follows:

1 void Shm_setvec(void)
2 {
3 install the interprocessor communications ISR
4 }

On a polled node, this routine would be empty.

15.3. Installing the MPCI ISR 117

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 15 Section 15.3

118 Chapter 15. Shared Memory Support Driver

CHAPTER

SIXTEEN

TIMER DRIVER

Warning: The Timer Driver is superfluous and should be replaced by the RTEMS counter
support. Ask on the mailing list if you plan to write a Timer Driver.

The timer driver is primarily used by the RTEMS Timing Tests. This driver provides as accurate
a benchmark timer as possible. It typically reports its time in microseconds, CPU cycles, or
bus cycles. This information can be very useful for determining precisely what pieces of code
require optimization and to measure the impact of specific minor changes.

The gen68340 BSP also uses the Timer Driver to support a high performance mode of the on-
CPU UART.

119

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 16 Section 16.1

16.1 Benchmark Timer

The RTEMS Timing Test Suite requires a benchmark timer. The RTEMS Timing Test Suite is very
helpful for determining the performance of target hardware and comparing its performance to
that of other RTEMS targets.

This section describes the routines which are assumed to exist by the RTEMS Timing Test Suite.
The names used are EXACTLY what is used in the RTEMS Timing Test Suite so follow the naming
convention.

16.1.1 benchmark_timer_initialize

Initialize the timer source.

1 void benchmark_timer_initialize(void)
2 {
3 initialize the benchmark timer
4 }

16.1.2 Read_timer

The benchmark_timer_read routine returns the number of benchmark time units (typically mi-
croseconds) that have elapsed since the last call to benchmark_timer_initialize.

1 benchmark_timer_t benchmark_timer_read(void)
2 {
3 stop time = read the hardware timer
4 if the subtract overhead feature is enabled
5 subtract overhead from stop time
6 return the stop time
7 }

Many implementations of this routine subtract the overhead required to initialize and read the
benchmark timer. This makes the times reported more accurate.

Some implementations report 0 if the harware timer value change is sufficiently small. This is
intended to indicate that the execution time is below the resolution of the timer.

16.1.3 benchmark_timer_disable_subtracting_average_overhead

This routine is invoked by the “Check Timer” (tmck) test in the RTEMS Timing Test Suite. It
makes the benchmark_timer_read routine NOT subtract the overhead required to initialize and
read the benchmark timer. This is used by the tmoverhd test to determine the overhead required
to initialize and read the timer.

1 void benchmark_timer_disable_subtracting_average_overhead(bool find_flag)
2 {
3 disable the subtract overhead feature
4 }

The benchmark_timer_find_average_overhead variable is used to indicate the state of the “sub-
tract overhead feature”.

120 Chapter 16. Timer Driver

Chapter 16 Section 16.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

16.2 gen68340 UART FIFO Full Mode

The gen68340 BSP is an example of the use of the timer to support the UART input FIFO full
mode (FIFO means First In First Out and roughly means buffer). This mode consists in the
UART raising an interrupt when n characters have been received (n is the UART’s FIFO length).
It results in a lower interrupt processing time, but the problem is that a scanf primitive will block
on a receipt of less than n characters. The solution is to set a timer that will check whether there
are some characters waiting in the UART’s input FIFO. The delay time has to be set carefully
otherwise high rates will be broken:

• if no character was received last time the interrupt subroutine was entered, set a long
delay,

• otherwise set the delay to the delay needed for n characters receipt.

16.2. gen68340 UART FIFO Full Mode 121

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 16 Section 16.2

122 Chapter 16. Timer Driver

CHAPTER

SEVENTEEN

ATA DRIVER

Warning: The ATA/IDE Drivers are out of date and should not be used for new BSPs. The
preferred alternative is to port the ATA/SATA/SCSI/NVMe support from FreeBSD to RTEMS
using the libbsd. Ask on the mailing list if you plan to write a driver for an ATA/IDE device.

123

https://git.rtems.org/rtems-libbsd

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 17 Section 17.1

17.1 Terms

ATA device - physical device attached to an IDE controller

124 Chapter 17. ATA Driver

Chapter 17 Section 17.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

17.2 Introduction

ATA driver provides generic interface to an ATA device. ATA driver is hardware independent
implementation of ATA standard defined in working draft “AT Attachment Interface with Exten-
sions (ATA-2)” X3T10/0948D revision 4c, March 18, 1996. ATA Driver based on IDE Controller
Driver and may be used for computer systems with single IDE controller and with multiple
as well. Although current implementation has several restrictions detailed below ATA driver
architecture allows easily extend the driver. Current restrictions are:

• Only mandatory (see draft p.29) and two optional (READ/WRITE MULTIPLE) commands
are implemented

• Only PIO mode is supported but both poll and interrupt driven

The reference implementation for ATA driver can be found in cpukit/libblock/src/ata.c.

17.2. Introduction 125

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 17 Section 17.3

17.3 Initialization

The ata_initialize routine is responsible for ATA driver initialization. The main goal of the
initialization is to detect and register in the system all ATA devices attached to IDE controllers
successfully initialized by the IDE Controller driver.

In the implementation of the driver, the following actions are performed:

1 rtems_device_driver ata_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor,
4 void *arg
5)
6 {
7 initialize internal ATA driver data structure
8

9 for each IDE controller successfully initialized by the IDE Controller driver
10 if the controller is interrupt driven
11 set up interrupt handler
12

13 obtain information about ATA devices attached to the controller
14 with help of EXECUTE DEVICE DIAGNOSTIC command
15

16 for each ATA device detected on the controller
17 obtain device parameters with help of DEVICE IDENTIFY command
18

19 register new ATA device as new block device in the system
20 }

Special processing of ATA commands is required because of absence of multitasking environ-
ment during the driver initialization.

Detected ATA devices are registered in the system as physical block devices (see libblock library
description). Device names are formed based on IDE controller minor number device is attached
to and device number on the controller (0 - Master, 1 - Slave). In current implementation 64
minor numbers are reserved for each ATA device which allows to support up to 63 logical
partitions per device.

controller minor device number device name ata deviceminor
0 0 hda 0
0 1 hdb 64
1 0 hdc 128
1 1 hdd 172
.

126 Chapter 17. ATA Driver

Chapter 17 Section 17.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

17.4 ATA Driver Architecture

17.4.1 ATA Driver Main Internal Data Structures

ATA driver works with ATA requests. ATA request is described by the following structure:

1 /* ATA request */
2 typedef struct ata_req_s {
3 Chain_Node link; /* link in requests chain */
4 char type; /* request type */
5 ata_registers_t regs; /* ATA command */
6 uint32_t cnt; /* Number of sectors to be exchanged */
7 uint32_t cbuf; /* number of current buffer from breq in use */
8 uint32_t pos; /* current position in 'cbuf' */
9 blkdev_request *breq; /* blkdev_request which corresponds to the ata request */

10 rtems_id sema; /* semaphore which is used if synchronous
11 * processing of the ata request is required */
12 rtems_status_code status; /* status of ata request processing */
13 int error; /* error code */
14 } ata_req_t;

ATA driver supports separate ATA requests queues for each IDE controller (one queue per con-
troller). The following structure contains information about controller’s queue and devices
attached to the controller:

1 /*
2 * This structure describes controller state, devices configuration on the
3 * controller and chain of ATA requests to the controller.
4 */
5 typedef struct ata_ide_ctrl_s {
6 bool present; /* controller state */
7 ata_dev_t device[2]; /* ata devices description */
8 Chain_Control reqs; /* requests chain */
9 } ata_ide_ctrl_t;

Driver uses array of the structures indexed by the controllers minor number.

The following structure allows to map an ATA device to the pair (IDE controller minor number
device is attached to, device number on the controller):

1 /*
2 * Mapping of RTEMS ATA devices to the following pairs:
3 * (IDE controller number served the device, device number on the controller)
4 */
5 typedef struct ata_ide_dev_s {
6 int ctrl_minor;/* minor number of IDE controller serves RTEMS ATA device */
7 int device; /* device number on IDE controller (0 or 1) */
8 } ata_ide_dev_t;

Driver uses array of the structures indexed by the ATA devices minor number.

ATA driver defines the following internal events:

1 /* ATA driver events */
2 typedef enum ata_msg_type_s {
3 ATA_MSG_GEN_EVT = 1, /* general event */

(continues on next page)

17.4. ATA Driver Architecture 127

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 17 Section 17.4

(continued from previous page)

4 ATA_MSG_SUCCESS_EVT, /* success event */
5 ATA_MSG_ERROR_EVT, /* error event */
6 ATA_MSG_PROCESS_NEXT_EVT /* process next ata request event */
7 } ata_msg_type_t;

17.4.2 Brief ATA Driver Core Overview

All ATA driver functionality is available via ATA driver ioctl. Current implementation supports
only two ioctls: BLKIO_REQUEST and ATAIO_SET_MULTIPLE_MODE. Each ATA driver ioctl() call
generates an ATA request which is appended to the appropriate controller queue depending on
ATA device the request belongs to. If appended request is single request in the controller’s queue
then ATA driver event is generated.

ATA driver task which manages queue of ATA driver events is core of ATA driver. In current driver
version queue of ATA driver events implemented as RTEMS message queue. Each message
contains event type, IDE controller minor number on which event happened and error if an
error occurred. Events may be generated either by ATA driver ioctl call or by ATA driver task
itself. Each time ATA driver task receives an event it gets controller minor number from event,
takes first ATA request from controller queue and processes it depending on request and event
types. An ATA request processing may also includes sending of several events. If ATA request
processing is finished the ATA request is removed from the controller queue. Note, that in
current implementation maximum one event per controller may be queued at any moment of
the time.

(This part seems not very clear, hope I rewrite it soon)

128 Chapter 17. ATA Driver

CHAPTER

EIGHTEEN

IDE CONTROLLER DRIVER

Warning: The ATA/IDE Drivers are out of date and should not be used for new BSPs. The
preferred alternative is to port the ATA/SATA/SCSI/NVMe support from FreeBSD to RTEMS
using the libbsd. Ask on the mailing list if you plan to write a driver for an ATA/IDE device.

129

https://git.rtems.org/rtems-libbsd

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 18 Section 18.1

18.1 Introduction

The IDE Controller driver is responsible for providing an interface to an IDE Controller. The
capabilities provided by this driver are:

• Read IDE Controller register

• Write IDE Controller register

• Read data block through IDE Controller Data Register

• Write data block through IDE Controller Data Register

The reference implementation for an IDE Controller driver can be found in bsps/shared/dev/
ide. This driver is based on the libchip concept and allows to work with any of the IDE Con-
troller chips simply by appropriate configuration of BSP. Drivers for a particular IDE Controller
chips locate in the following directories: drivers for well-known IDE Controller chips locate into
bsps/shared/dev/ide and drivers for custom IDE Controller chips (for example, implemented
on FPGA) locate into bsps/${RTEMS_CPU}/${RTEMS_BSP/ata. There is a README file in these
directories for each supported IDE Controller chip. Each of these README explains how to
configure a BSP for that particular IDE Controller chip.

130 Chapter 18. IDE Controller Driver

Chapter 18 Section 18.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

18.2 Initialization

IDE Controller chips used by a BSP are statically configured into IDE_Controller_Table. The
ide_controller_initialize routine is responsible for initialization of all configured IDE con-
troller chips. Initialization order of the chips based on the order the chips are defined in the
IDE_Controller_Table.

The following actions are performed by the IDE Controller driver initialization routine:

1 rtems_device_driver ide_controller_initialize(
2 rtems_device_major_number major,
3 rtems_device_minor_number minor_arg,
4 void *arg
5)
6 {
7 for each IDE Controller chip configured in IDE_Controller_Table
8 if (BSP dependent probe(if exists) AND device probe for this IDE chip
9 indicates it is present)

10 perform initialization of the particular chip
11 register device with configured name for this chip
12 }

18.2. Initialization 131

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 18 Section 18.3

18.3 Read IDE Controller Register

The ide_controller_read_register routine reads the content of the IDE Controller chip reg-
ister. IDE Controller chip is selected via the minor number. This routine is not allowed to be
called from an application.

1 void ide_controller_read_register(
2 rtems_device_minor_number minor,
3 unsigned32 reg,
4 unsigned32 *value
5)
6 {
7 get IDE Controller chip configuration information from
8 IDE_Controller_Table by minor number
9

10 invoke read register routine for the chip
11 }

132 Chapter 18. IDE Controller Driver

Chapter 18 Section 18.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

18.4 Write IDE Controller Register

The ide_controller_write_register routine writes IDE Controller chip register with specified
value. IDE Controller chip is selected via the minor number. This routine is not allowed to be
called from an application.

1 void ide_controller_write_register(
2 rtems_device_minor_number minor,
3 unsigned32 reg,
4 unsigned32 value
5)
6 {
7 get IDE Controller chip configuration information from
8 IDE_Controller_Table by minor number
9

10 invoke write register routine for the chip
11 }

18.4. Write IDE Controller Register 133

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 18 Section 18.5

18.5 Read Data Block Through IDE Controller Data Register

The ide_controller_read_data_block provides multiple consequent read of the IDE Controller
Data Register. IDE Controller chip is selected via the minor number. The same functional-
ity may be achieved via separate multiple calls of ide_controller_read_register routine but
ide_controller_read_data_block allows to escape functions call overhead. This routine is not
allowed to be called from an application.

1 void ide_controller_read_data_block(
2 rtems_device_minor_number minor,
3 unsigned16 block_size,
4 blkdev_sg_buffer *bufs,
5 uint32_t *cbuf,
6 uint32_t *pos
7)
8 {
9 get IDE Controller chip configuration information from

10 IDE_Controller_Table by minor number
11

12 invoke read data block routine for the chip
13 }

134 Chapter 18. IDE Controller Driver

Chapter 18 Section 18.6 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

18.6 Write Data Block Through IDE Controller Data Register

The ide_controller_write_data_block provides multiple consequent write into the IDE Con-
troller Data Register. IDE Controller chip is selected via the minor number. The same function-
ality may be achieved via separate multiple calls of ide_controller_write_register routine
but ide_controller_write_data_block allows to escape functions call overhead. This routine
is not allowed to be called from an application.

1 void ide_controller_write_data_block(
2 rtems_device_minor_number minor,
3 unsigned16 block_size,
4 blkdev_sg_buffer *bufs,
5 uint32_t *cbuf,
6 uint32_t *pos
7)
8 {
9 get IDE Controller chip configuration information from

10 IDE_Controller_Table by minor number
11

12 invoke write data block routine for the chip
13 }

18.6. Write Data Block Through IDE Controller Data Register 135

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 18 Section 18.6

136 Chapter 18. IDE Controller Driver

CHAPTER

NINETEEN

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable Index entries.

137

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 19 Section 19.0

138 Chapter 19. Command and Variable Index

CHAPTER

TWENTY

DOXYGEN RECOMMENDATIONS FOR
BSPS

RTEMS contains well over a hundred Board Support Packages (BSPs). , across over 20 different
CPU Architectures. . What this means is that there is a lot of hardware dependent code that
gets written, and that adding Doxygen to properly document it all can be a very complicated
task.

The goal of this document is to attempt to simplify this process a bit, and to get you started
on adding Doxygen to the bsps/ directory in a way that is logical and has structure. Before we
move on to detailing the process of actually adding Doxygen to BSPs, you will be greatly served
by having at least a basic understanding of the purpose of a Board Support Package (it always
helps to know a bit about what you’re documenting), as well as of the existing structure of the
bsps/ directory.

Feel free to skip around and skim parts of this.

139

wiki:TBR/Website/Board_Support_Packages
wiki:TBR/UserManual/SupportedCPUs

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.1

20.1 BSP Basics

Embedded development is hard. Different CPUs have different instructions for doing the same
thing, and different boards will have all sorts of different hardware that require unique drivers
and interfaces. RTEMS handles this by having discrete packages, BSPs, to encapsulate code to
accommodate for unique hardware. BSPs seek to implement the Hardware-Software interface.
This, in a nutshell, is one of the core purposes. of RTEMS: To abstract (as much as is possible)
away from the physical hardware and provide a standards compliant real-time environment for
the embedded developer. If you think about it, the operating system on your normal computer
serves a very similar purpose.

140 Chapter 20. Doxygen Recommendations for BSPs

wiki:Mission_Statement

Chapter 20 Section 20.2 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.2 Common Features Found In BSPs

Although the actual implementation code will differ between BSPs, all BSPs will share some
degree of common functionality. This is because that no matter what exact hardware you have,
you need some basic features implemented in order to have a real time system you can develop
on. Some of the most common shared features across most boards include:

• console: is technically the serial driver for the BSP rather than

just a console driver, it deals with the board UART (i.e. serial devices) * clock:
support for the clock tick - a regular time basis for the kernel * timer: support of
timer devices, used for timing tests * rtc or tod: support for the hardware real time
clock * network: the Ethernet driver * shmsupp: support of shared memory driver
MPCI layer in a multiprocessor system * gnatsupp: BSP specific support for the GNU
Ada run-time * irq: support for how the processor handles interrupts (probably the
most common module shared by all boards) * tm27: specific routines for the tm27
timing test * start and startup: C and assembly used to initialize the board during
startups/resets/reboots

These are just some of the things you should be looking for when adding Doxygen to a BSP.

Note that there is no guarantee a particular BSP will implement all of these features, or even
some of them. These are just the most common ones to look for. RTEMS follows a standardized
naming convention for the BSP sub directories, so you should be able to tell in most cases what
has been implemented on the BSP level and what has not.

20.2. Common Features Found In BSPs 141

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.3

20.3 Shared Features

Some of the RTEMS executive is hardware independent and can be abstracted so that the same
piece of code can be shared across multiple CPU architectures, or across multiple boards on the
same architecture. This is done so that chunks of software can be reused, as well as aiding in
reducing the development and debugging time for implementing new BSPs. This greatly aids
the developer, but as someone seeking to document this code, this can make your life a little bit
harder. It is hard to tell by looking at the directory of a BSP which features have simply been
left out and which features are being implemented by using shared code from either from the
architecture (../shared) or the base bsps/ shared directory (../../shared). You may be looking
at the BSP headers and notice that you have an irq.h, but no irq.c implementing it, or you might
even be missing both. You know that the processor has interrupt support somehow, but where
is it? The easiest way to figure this out is by looking at the Makefile.am for a BSP. We’ll detail
this process more in a bit.

142 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.4 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.4 Rationale

As someone adding documentation and not doing actual development work, you might think it
is not necessary to know some of the in and outs of BSPs. In actuality, this information will prove
to be very useful. Doxygen documentation works by grouping things and their components (i.e.
functions and other definitions), and by having brief descriptions of what each group does. You
can’t know what to look for or know how to group it or know how to describe it without some
basic knowledge of what a BSP is. For more information on any of the above or BSPs in general,
check out the BSP Development Guide. .

20.4. Rationale 143

http://rtems.org/onlinedocs/doc-current/share/rtems/html/bsp_howto/index.html

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.5

20.5 The Structure of the bsps/ directory

All BSPs are found within the bsps/ directory, which is itself very well ordered. At the first level,
we find a directory for each CPU architecture RTEMS supports, as well as a directory for code
shared by all implementations.

1 $ cd bsps
2 $ ls
3 arm bsp.am lm32 m68k mips no_cpu README sparc
4 avr h8300 m32c Makefile.am moxie powerpc sh sparc64
5 bfin i386 m32r MERGE.PROCEDURE nios2 preinstall.am shared v850

If we cd into a specific architecture, we see that a similar structure is employed. bsps/arm/
contains directories for each Board Support Package for boards with an ARM cpu, along with a
folder for files and .h’s shared by all BSPs of that architecture.

1 $ cd arm
2 $ ls
3 acinclude.m4 edb7312 gumstix Makefile.am realview-pbx-a9 stm32f4
4 configure.ac gba lm3s69xx nds rtl22xx xilinx-zynq
5 csb336 lpc24xx preinstall.am shared csb337 gp32
6 lpc32xx raspberrypi smdk2410

Finally, if we cd into a specific BSP, we see the files and .h’s that compose the package for that
particular board. You may recognize the directory names as some of the [common features]
we outlined above, like ‘”irq”’, ‘”clock”’, ‘”console”’, and ‘”startup”’. These directories contain
implementations of these features.

1 $ cd raspberrypi
2 $ ls
3 bsp_specs configure.ac include make misc README
4 clock console irq Makefile.am preinstall.am startup

Another way to get an idea of the structure of bsps/ is to navigate to a directory and execute the
“tree -f” command. This outputs a nice graphic that conveys some of the hierarchical properties
of a particular directory.

1 $ pwd
2 ~/rtems/bsps/arm/raspberrypi
3 $ tree -f
4 .
5 |-- ./bsp_specs
6 |-- ./clock
7 | `-- ./clock/clockdrv.c
8 |-- ./configure.ac
9 |-- ./console

10 | |-- ./console/console-config.c
11 | `-- ./console/usart.c
12 |-- ./include
13 | |-- ./include/bsp.h
14 | |-- ./include/irq.h
15 | |-- ./include/mmu.h
16 | |-- ./include/raspberrypi.h
17 | `-- ./include/usart.h
18 |-- ./irq

(continues on next page)

144 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.5 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

(continued from previous page)

19 | `-- ./irq/irq.c
20 |-- ./make
21 | `-- ./make/custom
22 | `-- ./make/custom/raspberrypi.cfg
23 |-- ./Makefile.am
24 |-- ./misc
25 | `-- ./misc/timer.c
26 |-- ./preinstall.am
27 |-- ./README
28 `-- ./startup
29 |-- ./startup/bspreset.c
30 |-- ./startup/bspstart.c
31 |-- ./startup/bspstarthooks.c
32 |-- ./startup/linkcmds
33 `-- ./startup/mm_config_table.c

In short, BSPs will use the following directories:

• bsps/shared <- code used that is shared by all BSPs

• bsps/CPU/shared <- code used shared by all BSPs of a particular CPU architecture

• bsps/CPU/BSP <- code unique to this BSP

As you can see, the bsps/ directory has a very logical and easy to understand structure to it.
The documentation generated by Doxygen should attempt to match this structure as closely
as possible. We want an overarching parent group to serve the same purpose as the bsps/
directory. In it, we want groups for each CPU architecture and a group for the shared files. We
then want groups for each BSP. Breaking our documentation up into discrete groups like this
will greatly simplify the process and make the documentation much easier to go through. By
learning about the existing structure of the bsps/ directory, we get an idea of how we should
structure the Doxygen groups we create. More on this in the next section.

20.5. The Structure of the bsps/ directory 145

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.6

20.6 Doxygen

Now that we have covered some of the preliminaries, we can move on to what you are actually
reading this wiki page for: adding Doxygen to the bsps/ directory. Let’s start with some Doxygen
basics. Skip this if you are already comfortable with Doxygen.

In addition to this, check out the page on ‘Doxygen Recommendations
<wiki:Developer/Coding/Doxygen >‘_. , which also contains a fair amount of infor-
mation that will not be covered here.

146 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.7 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.7 Doxygen Basics

Doxygen is a documentation generator. It allows for documentation to be written right by
the source code, greatly easing the pains of keeping documentation relevant and up to date.
Doxygen has many commands, used for things like annotating functions with descriptions, pa-
rameter information, or return value information. You can reference other files or even other
documentation.

The core component of Doxygen (that we care about right now at least) is what’s called a group,
or module. These are used to add structure and associate groups of files that serve a similar
purpose or implement the same thing.

20.7. Doxygen Basics 147

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.8

20.8 Doxygen Headers

Doxygen is always found in a special Doxygen comment block, known as a Doxygen header.
In RTEMS, this block comes in the form of a multiline comment with some included Doxygen
commands, which are preceded by the ‘@’ tag. Take a look at this Doxygen header that declares
the arm_raspberrypi module, which houses the documentation in the BSP for the Raspberry Pi.

1 bsps/arm/raspberrypi/include/bsp.h:
2

3 /**
4 * @defgroup arm_raspberrypi Raspberry Pi Support
5 *
6 * @ingroup bsp_arm
7 *
8 * @brief Raspberry Pi support package
9 *

10 */

You see a few commands here that we’ll cover in the following sections. Briefly, the @defgroup
command declares a new group, the @ingroup command nests this group as a submodule of
some other group (in this case bsp_arm), and the @brief command provides a brief description
of what this group is.

148 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.9 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.9 The @defgroup Command

The @defgroup command is used to declare new groups or modules. Think “define group”. The
syntax of this command is as follows:

1 @defgroup <group name> <group description>

The group name is the name used by Doxygen elsewhere to reference this group. The group
description is what is displayed when the end user navigates to this module in the resulting
documentation. The group description is a couple words formatted as how it would be in a
table of contents. This part is what actually shows up in the documentation, when the user
navigates to this group’s module, this description will be the modules name.

Groups should only be declared (@defgroup) in .h files. This is because Doxygen is used pri-
marily to document interfaces, which are only found in .h files. Placing @defgroups in .h files
is the only real restriction. Which .h file you place the group declaration in surprisingly doesn’t
matter. There is no information in the resulting documentation that indicates where the group
was declared. You will see that we do have some rules for where you should place these decla-
rations, but we also use this fact that it doesn’t matter to our advantage, in order to standardize
things.

The @defgroup command is used only to define ‘’structure”. No actual documentation is gen-
erated as a result of its use. We must @ingroup things to the group we declare in order to
create documentation. Even though it does not generate visible documentation, the @defgroup
command is still very important. We use it in a way that seeks to emulate the structure of the
bsps/ directory itself. We do this by creating a hierarchy of groups for each CPU architecture
and each BSP.

20.9. The @defgroup Command 149

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.10

20.10 The @ingroup Command

The @ingroup command is used to add ‘things’ to already declared groups or modules. These
‘things’ can either be other groups, or files themselves. The syntax of the @ingroup command
is as follows:

1 @ingroup <group name>

The group name is the actual name, not description, of the group you want to add yourself to.
Remember that group name was the second argument passed to the @defgroup command.

Using the @ingroup command is how we add ‘’meaning” to the ‘’structure” created by using
@defgroup. @ingroup associates the file it is found in and all other Doxygen found within
(function annotations, prototypes, etc) with the group we declared with the @defgroup com-
mand. We add related files and headers to the same groups to create a logical and cohesive
body of documentation. If the end user wanted to read documentation about how the rasp-
berry pi handles interrupts, all they would have to do would be to navigate to the raspberry
pi’s interrupt support module (which we created with a @defgroup command), and read the
documentation contained within (which we added with @ingroup commands).

@ingroup is found within all Doxygen headers, along with an @brief statement. There are
two types of Doxygen headers, which we will go over after we see a description of the @brief
command.

150 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.11 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.11 The @brief Command

The @brief command is used to give either a) a brief description in the form of an entry as
you would see it in a table of contents (i.e. Capitalized, only a couple of words) or b) a brief
topic sentence giving a basic idea of what the group does. The reason you have two uses for
the brief command is that it is used differently in the two types of Doxygen headers, as we
will see shortly. The syntax of the brief command is self evident, but included for the sake of
completion:

1 @brief <Table of Contents entry '''or''' Topic Sentence>

20.11. The @brief Command 151

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.12

20.12 The Two Types of Doxygen Headers

There are two types of Doxygen Headers. The first type is found at the beginning of a file,
and contains an @file command. This type of header is used when @ingroup-ing the file into
another doxygen group. The form of the @brief command in this case is a topic sentence, often
very close to the file name or one of it’s major functions. An example of this type of header,
found in bsps/arm/raspberrypi/include/bsp.h is as follows:

1 Header type 1: used to add files to groups, always found at the beginning of a␣
→˓file

2 /**
3 * @file
4 *
5 * @ingroup raspberrypi
6 *
7 * @brief Global BSP definitions.
8 */
9

10 /*
11 * Copyright (c) YYYY NAME
12 *
13 * <LICENSE TERMS>
14 */

Notice the form and placement of this type of header. It is always found at the beginning of
a file, and is in its own multiline comment block, separated by one line white space from the
copyright. If you look at the header itself, you see a @file, @ingroup, and @brief command.
Consider the @file and the @ingroup together, what this says is that we are adding this file to
the raspberrypi group. There is actually a single argument to the @file command, but Doxygen
can infer it, so we leave it out. Any other Doxygen, function annotations, function prototypes,
#defines, and other code included in the file will now be visible and documented when the end
user navigates to the group you added it to in the resulting documentation.

Now let’s consider the second type of header. This type is syntactically very similar, but is used
not to add files to groups, but to add groups to other groups. We use this type of header to define
new groups and nest them within old groups. This is how we create hierarchy and structure
within Doxygen. The following is found, again, in bsps/arm/raspberrypi/include/bsp.h:

1 Header type 2: Used to nest groups, found anywhere within a file
2 /**
3 * @defgroup arm_raspberrypi Raspberry Pi Support
4 *
5 * @ingroup bsp_arm
6 *
7 * @brief Raspberry Pi Support Package
8 */

It looks very similar to the first type of header, but notice that the @file command is replaced
with the @defgroup command. You can think about it in the same way though. Here we are
creating a new group, the arm_raspberry pi group, and nesting it within the bsp_arm group.
The @brief in this case should be in the form of how you would see it in a table of contents.
Words should be capitalized and there should be no period. This type of header can be found
anywhere in a file, but it is typically found either in the middle before the file’s main function,
or at the tail end of a file. Recall that as we are using the @defgroup command and creating a
new group in this header, the actual .h we place this in does not matter.

152 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.12 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

The second type of header is the structure header, it’s how we create new groups and implement
hierarchy. The first type of header was the meaning header, it’s how we added information to
the groups we created.

For more examples of Doxygen structure and syntax, refer to BSPs found within the arm ar-
chitecture, the lpc32xx and raspberrypi BSPs are particularly well documented. A good way
to quickly learn more is by tweaking some Doxygen in a file, then regenerating the html, and
seeing what has changed.

20.12. The Two Types of Doxygen Headers 153

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.13

20.13 Generating Documentation

Doxygen is a documentation generator, and as such, we must generate the actual html docu-
mentation to see the results of our work. This is a very good way to check your work, and see
if the resulting structure and organization was what you had intended. The best way to do this
is to simply run the do_doxygen script. To use the script:

Make sure Doxygen is installed. Also, the environment needs to have the root directory of
RTEMS set in the variable r so that $r prints the path to RTEMS, and the script takes as argument
a relative directory from there to generate the doxygen, for example to generate the doxygen
for all of bsps/ you would do:

1 export r=~/rtems
2 ./do_doxygen bsps

154 Chapter 20. Doxygen Recommendations for BSPs

https://github.com/joelsherrill/gci_tasks/blob/master/2015/doxygen_c_header_tasks/validate/do_doxygen

Chapter 20 Section 20.14 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.14 Doxygen in bsps/

Now that we’ve covered the basics of Doxygen, the basics of BSPs and the structure of the bsps/
directory, actually adding new Doxygen to bsps/ will be much easier than it was before. We
will cover a set of rules and conventions that you should follow when adding Doxygen to this
directory, and include some tips and tricks.

20.14. Doxygen in bsps/ 155

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.15

20.15 Group Naming Conventions

This is an easy one. These are in place in order for you to quickly identify some of the structure
of the Doxygen groups and nested groups, without actually generating and looking at the doc-
umentation. The basic idea is this: when defining a new group (@defgroup), the form of the
name should be the super group, or the name of the group you are nesting this group within,
followed by an underscore, followed by the intended name of this new group. In command
form:

1 <----- This is your group name -------> <--usual description -->
2 @defgroup <super-group name>_<name of this group> <group description>

Some examples of this:

• bsp_arm: This is the group for the arm architecture. It is a

member of the all inclusive bsp-kit group (more on this in structure conventions), so we prefix
it with the “bsp” super group name. This is the group for the arm architecture, so the rest is
just “”’arm”’”

• arm_raspberrypi: This is the group for the Raspberry Pi BSP. It

is is an arm board, and as such, is nested within the bsp_arm group. We prefix the group
name with an “arm” (notice we drop the bsp prefix of the arm group - we only care about
the immediate super group), and the rest is a simple “”’raspberrypi”’”, indicating this is the
raspberrypi group, which is nested within the bsp_arm group.

• raspberrypi_interrupt This is the group for code handling

interrupts on the Raspberry Pi platform. Because this code and the group that envelops it is
Raspberry Pi dependent, we prefix our name with a “raspberrypi”, indicating this group is
nested within the raspberrypi group.= Structure Conventions =

This covers where, when, and why you should place the second type of Doxygen header. Re-
member that our goal is to have the structure of the documentation to match the organization
of the bsps/ directory as closely as possible. We accomplish this by creating groups for each
cpu architecture, each BSP, and each shared directory. These groups are nested as appropriate
in order to achieve a hierarchy similar to that of bsps/. The arm_raspberrypi group would be
nested within the bsp_arm group, for example.

156 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.16 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.16 Where to place @defgroup

Remember how I said it really doesn’t matter where you place the @defgroup? Well, it does
and it doesn’t. It would be chaotic to place these anywhere, and almost impossible to tell when
you have a @defgroup and when you don’t, so we do have some rules in place to guide where
you should place these.

20.16. Where to place @defgroup 157

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.17

20.17 @defgroups for CPU Architectures and Shared Directories

The standardized place for these is within a special doxygen.h file placed within the particular
architectures shared directory. This doxygen.h file exists solely for this purpose, to provide a
standard place to house the group definitions for CPU architectures and the shared directory for
that architecture. This is done because there is no single file that all architectures share, so it
would be impossible to declare a standardized location for architecture declarations without the
creation of a new file. This also allows others to quickly determine if the group for a particular
architecture has already been defined or not. Lets look at the doxygen.h for the arm architecture
as an example, found at arm/shared/doxygen.h:

1 /**
2 * @defgroup bsp_arm ARM
3 *
4 * @ingroup bsp_kit
5 *
6 * @brief ARM Board Support Packages
7 */
8

9 /**
10 * @defgroup arm_shared ARM Shared Modules
11 *
12 * @ingroup bsp_arm
13 *
14 * @brief ARM Shared Modules
15 */

The doxygen.h contains only 2 Doxygen headers, both of which are of the second type. One
header is used to create the groups for the arm architecture bsp_arm, nesting it as part of
the bsp_kit group, and the other creates an arm_shared group to house the code that is shared
across all BSPs of this architecture. Because these are the second type of Doxygen header, where
we place them does not matter. This allows us to place them in a standard doxygen.h file, and
the end user is non the wiser. Note that this .h file should never be included by a .c file, and
that the only group declarations that should be placed here are the declarations for the CPU
Architecture group and the shared group.

There is also a doxygen.h file that exists at the root bsps/shared directory, to @defgroup the
the parent bsp_kit group (the only group to not be nested within any other groups) and to
@defgroup the bsp_shared group, to serve as the holder for the bsps/shared directory.

If the architecture in which the BSP you are tasked with does not have one of these files already,
you will need to copy the format of the file here, replacing the arm with whatever the CPU
Architecture you are working with is. Name this file doxygen.h, and place it in the shared
directory for that architecture.

The only groups you should ever add to this CPU group would be groups for specific BSPs and
a group for the shared directory.

158 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.18 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.18 @defgroups for BSPs

These are much easier than placing @defgroups for CPU Architectures. The overwhelm-
ing majority of the time, the @defgroup for a BSP is found within the bsp.h file found at
‘””bsp””’/include/bsp.h. It is usually placed midway through or towards the end of the file.
In the event that your board lacks a bsp.h file, include this group declaration within the most
standard or commonly included header for that BSP.

The group for a BSP should always be nested within the group for the CPU architecture it uses.
This means that the Doxygen header for defining a BSP group should always look something
like this:

1 /**
2 * @defgroup *architecture*_*BSP* *name*
3 *
4 * @ingroup bsp_*architecture*
5 *
6 * @brief *BSP* Support Package
7 */

20.18. @defgroups for BSPs 159

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.19

20.19 @defgroups for Everything Else

Never be afraid to add more structure! Once the basic CPU and BSP group hierarchy is es-
tablished, what we’re left with is all the sub directories and implementation code. Whether
working within a shared directory for a CPU architecture, or within a BSP directory, you should
always be looking for associations you can make to group files together by. Your goal should be
to avoid @ingroup-ing files directly to the cpu_shared group and the cpu_bsp group as much as
possible, you want to find more groups you can nest within these groups, and then @ingroup
files to those groups. Here are some things to look for:

160 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.20 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.20 Look Common Features Implemented

Remember that list of common features outlined in the BSP Basics section? Find the .h’s that are
responsible for providing the interface for these features, and @defgroup a group to @ingroup
the files responsible for implementing this feature.

RTEMS has a naming convention for its BSP sub directories, so it should be a really quick and
easy process to determine what features are there and what is missing.

Examples of this are found within the arm_raspberrypi group, which contains nested sub-
groups like raspberry_interrupt to group files responsible for handling interrupts, raspber-
rypi_usart to group files responsible for implementing USART support, and many other sub-
groups.

20.20. Look Common Features Implemented 161

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.21

20.21 Check out the Makefile

When working within a BSP, take a look at the Makefile.am. Often times, you will find that the
original developer of the code has outlined the groups nicely for you already, with comments
and titles before including source files to be built. Also, this is often the only way to tell which
features a BSP simply does not implement, and which features a BSP borrows from either the
architecture’s shared group, or the bsps/ shared group.

162 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.22 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.22 Start with a .h, and look for files that include it

You should end up with a @defgroup for ‘’most” .h files. Some .h files are related and will not
have independent groups, but most provide interfaces for different features and should have
their own group defined. Declare a group for the header, then use cscope to find the files that
include this header, and try to determine where the implementation code for prototypes are
found. These are the files you should @ingroup.

20.22. Start with a .h, and look for files that include it 163

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.23

20.23 Files with similar names

If you see that a few files have similar names, like they are all prefixed with the same characters,
then these files should most likely be part of the same group.

Remember, your goal is to @defgroup as much as you can. The only files you should be
@ingroup-ing directly to the BSP group or the shared group are files that don’t cleanly fit into
any other group.

164 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.24 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.24 Where to place @ingroup

The @ingroups you add should make sense.

• If you are working within an architecture’s shared directory, @ingroup should be adding
things either to the *architecture*_shared group, or some sub group of it.

• If you are working within a BSP directory, @ingroup should be adding things to either the
architecture_*bsp group, or some sub group of it.

20.24. Where to place @ingroup 165

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.25

20.25 @ingroup in the first type of Doxygen Header

Remember that in the first type of Doxygen header, we are adding files to groups. This type of
header should always be at the top of the file. You should be adding files that are associated
in some way to the same groups. That is to say, if three different .h files provide an interface
allowing interrupt support, they should be a part of the same group. Some good ways to
associate files were outlined above.

166 Chapter 20. Doxygen Recommendations for BSPs

Chapter 20 Section 20.26 RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020)

20.26 @ingroup in the second type of Doxygen Header

Here we are using the @ingroup command to add groups to other groups, creating a hierarchy.
The goal for bsps/ is to have one single group that holds all other groups. This root group is the
bsp_kit group. All groups should be added either directly to this group (if you are creating an
architecture group) or added to one of its sub groups.

When nesting groups, try to match the structure of bsps/ as closely as possible. For example,
if a group is defined to associate all files that provide for a real time clock for the raspberrypi,
nest it within the arm_raspberrypi group.

20.26. @ingroup in the second type of Doxygen Header 167

RTEMS BSP and Driver Guide, Release 5.db971a6 (2nd April 2020) Chapter 20 Section 20.27

20.27 @ingroup for shared code

This is tricky. You may end up in a situation where your BSP uses code found in either the
architecture shared directory, or the bsps/shared directory. Even though this code is logically
associated with the BSP, as stated above: all files in the shared directory should be added to
either the *architecture*_shared group, or some subgroup of it ‘’not” the BSP group. You could
make a note under the @brief line in the header (which shows up in the resulting documenta-
tion) that a particular BSP uses this code.

When working with shared code, you should be careful and add notes to @brief to indicate that
it is a shared code or interface. Prefixing things with “Generic” is a good idea here. You will still
be able to form groups and associate things when working on the shared level, but sometimes
you will find that you have the interface (.h) to @defgroup, but not many files to add to the
group as it may be hardware dependent. This is okay.

168 Chapter 20. Doxygen Recommendations for BSPs

INDEX

B
BSP_DEFAULT_UNIFIED_WORK_AREAS, 32
BSP_IDLE_TASK_BODY, 32
BSP_IDLE_TASK_STACK_SIZE, 32
bsp_interrupt_dispatch(), 35
bsp_interrupt_facility_initialize(), 35
bsp_interrupt_handler_default(), 35
BSP_INTERRUPT_STACK_SIZE, 32
bsp_interrupt_vector_disable(), 35
bsp_interrupt_vector_enable(), 35

C
CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK, 30, 32

169

	Introduction
	Target Dependent Files
	CPU Dependent
	Board Dependent
	Peripheral Dependent
	Questions to Ask
	CPU Dependent Executive Files
	Board Support Package Structure

	Linker Script
	What is a “linkcmds” file?
	Program Sections
	Image of an Executable
	Example Linker Command Script
	Initialized Data

	Miscellaneous Support Files
	GCC Compiler Specifications File
	README Files
	Times
	Tools Subdirectory
	bsp.h Include File
	tm27.h Include File
	sbrk() Implementation
	bsp_fatal_extension() - Cleanup the Hardware
	Configuration Macros
	set_vector() - Install an Interrupt Vector
	Interrupt Delay Profiling
	Programmable Interrupt Controller API

	System Initialization
	Introduction
	Low-Level Initialization via Start Code in the Start File (start.o)
	High-Level Initialization via boot_card()
	Early BSP Initialization
	Memory Information
	BSP Initialization

	Error Handling

	Console Driver
	Introduction
	Build System and Files
	Driver Functioning Modes
	Polled Mode
	Interrupt Driven Mode
	First Open
	Last Close
	Set Attributes
	IO Control
	Flow Control
	General Initialization

	Clock Driver
	Introduction
	Initialization
	Timecounter Variant
	Simple Timecounter Variant
	Clock Tick Only Variant

	Install Clock Tick Interrupt Service Routine
	Support At Tick
	System Shutdown Support
	SMP Support
	Multiple Clock Driver Ticks Per Clock Tick
	Clock Driver Ticks Counter

	Entropy Source
	I2C Driver
	SPI Driver
	Real-Time Clock Driver
	Introduction
	Initialization
	setRealTimeToRTEMS
	setRealTimeFromRTEMS
	getRealTime
	setRealTime
	checkRealTime

	Networking Driver
	Introduction
	Learn about the network device
	Understand the network scheduling conventions
	Network Driver Makefile
	Write the Driver Attach Function
	Write the Driver Start Function.
	Write the Driver Initialization Function.
	Write the Driver Transmit Task
	Write the Driver Receive Task
	Write the Driver Interrupt Handler
	Write the Driver IOCTL Function
	Write the Driver Statistic-Printing Function

	Frame Buffer Driver
	Introduction
	Driver Function Overview
	Initialization
	Opening the Frame Buffer Device
	Closing the Frame Buffer Device
	Reading from the Frame Buffer Device
	Writing to the Frame Buffer Device
	Frame Buffer IO Control

	Ada95 Interrupt Support
	Introduction
	Mapping Interrupts to POSIX Signals
	Example Ada95 Interrupt Program
	Version Requirements

	Shared Memory Support Driver
	Shared Memory Configuration Table
	Primitives
	Convert Address
	Get Configuration
	Locking Primitives
	Initializing a Shared Lock
	Acquiring a Shared Lock
	Releasing a Shared Lock

	Installing the MPCI ISR

	Timer Driver
	Benchmark Timer
	benchmark_timer_initialize
	Read_timer
	benchmark_timer_disable_subtracting_average_overhead

	gen68340 UART FIFO Full Mode

	ATA Driver
	Terms
	Introduction
	Initialization
	ATA Driver Architecture
	ATA Driver Main Internal Data Structures
	Brief ATA Driver Core Overview

	IDE Controller Driver
	Introduction
	Initialization
	Read IDE Controller Register
	Write IDE Controller Register
	Read Data Block Through IDE Controller Data Register
	Write Data Block Through IDE Controller Data Register

	Command and Variable Index
	Doxygen Recommendations for BSPs
	BSP Basics
	Common Features Found In BSPs
	Shared Features
	Rationale
	The Structure of the bsps/ directory
	Doxygen
	Doxygen Basics
	Doxygen Headers
	The @defgroup Command
	The @ingroup Command
	The @brief Command
	The Two Types of Doxygen Headers
	Generating Documentation
	Doxygen in bsps/
	Group Naming Conventions
	Where to place @defgroup
	@defgroups for CPU Architectures and Shared Directories
	@defgroups for BSPs
	@defgroups for Everything Else
	Look Common Features Implemented
	Check out the Makefile
	Start with a .h, and look for files that include it
	Files with similar names
	Where to place @ingroup
	@ingroup in the first type of Doxygen Header
	@ingroup in the second type of Doxygen Header
	@ingroup for shared code

	Index

