Embedded With

RTEMS

www.rtems.org

RTEMS Networking User Manual

Release 5.715da01 (5th December 2019)
© 1988, 2019 RTEMS Project and contributors

CONTENTS

1 Preface 3
2 Network Task Structure and Data Flow 5
3 Networking Driver 7
3.1 Introduction e e e e e e 8
3.2 Learn about the networkdevice, 9
3.3 Understand the network scheduling conventions 10
3.4 Network Driver Makefile 11
3.5 Write the Driver Attach Function 12
3.6 Write the Driver Start Function. 14
3.7 Write the Driver Initialization Function. 15
3.8 Write the Driver Transmit Task 16
3.9 Write the Driver Receive Task 17
3.10 Write the Driver Interrupt Handler 18
3.11 Write the Driver IOCTL Function v v, 19
3.12 Write the Driver Statistic-Printing Function 20

4 Using Networking in an RTEMS Application 21
4.1 Makefilechanges. e 22
4.1.1 Including the required managers 22

4.1.2 Increasing the sizeoftheheap 22

4.2 System Configuration 23
4.3 Initialization e e e e e e e 24
4.3.1 Additional includefiles o 24

4.3.2 Network Configuration 24

4.3.3 Network device configuration 27

4.3.4 Network initialization, 28

4.4 Application Programming Interface. 29
4.4.1 Network StatiStiCS v v v i e e e e e e e e e e 29

4.4.2 TappingIntoanlInterface. 29

4.4.3 Socket OptionS o v i it 30

4.4.4 AddinganIPAlias e 31

4.4.5 AddingaDefaultRoute. 32

4.4.6 Time Synchronization Using NTP 37

5 Testing the Driver 39
5.1 Preliminary Setup e e e e 40

6

7

5.2
5.3
5.4
5.5
5.6

Debug Output e e e e
Monitor Commands e e e e e e e e e e e e
Driver basicoperation e
BOOTP/DHCP operation« . v v v v i vttt ettt it e e e
StressTests oL e e
5.6.1 Giantpackets
5.6.2 Resource Exhaustion
5.6.3 CableFaults e e
5.6.4 Throughput

Network Servers

6.1

RTEMS FTPDaemon. oo i it ittt i e e e
6.1.1 Configuration Parameters
6.1.2 Initializing FTPD (Starting the daemon)
6.1.3 UsingHooks e

DEC 21140 Driver

7.1
7.2
7.3
7.4

7.5
7.6
7.7

DEC 21240 Driver Introduction v v v vt it et e e
Document Revision History
DEC21140 PCI Board Generalities v i v v i it it it e
RTEMS Driver Software Architecture
7.4.1 Initialization phase e
7.4.2 MemoryBuffer
74.3 ReceiverThread e
7.4.4 Transmitter Thread
Encountered Problems
Netboot DEC ArivVer o v i i i e e e e e e e e e e e e e e e
List of Ethernet cards using the DECchip

8 Command and Variable Index

ii

RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

Copyrights and License

© 2018 Marcal Comajoan Cara
© 1988, 2015 On-Line Applications Research Corporation (OAR)

This document is available under the

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at . Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the RTEMS Project
community.

RTEMS Online Resources

Home
Documentation
Mailing Lists
Bug Reporting
Git Repositories
Developers

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://www.rtems.org
https://www.rtems.org
https://docs.rtems.org
https://lists.rtems.org
https://devel.rtems.org/wiki/Developer/Bug_Reporting
https://git.rtems.org
https://devel.rtems.org

RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

2 CONTENTS

CHAPTER
ONE

PREFACE

This document describes the RTEMS specific parts of the FreeBSD TCP/IP stack. Much of this
documentation was written by Eric Norum () of the Saskatchewan Accel-
erator Laboratory who also ported the FreeBSD TCP/IP stack to RTEMS.

The following is a list of resources which should be useful in trying to understand Ethernet:

* Charles Spurgeon’s Ethernet Web Site “This site provides extensive information about Ether-
net (IEEE 802.3) local area network (LAN) technology. Including the original 10 Megabit
per second (Mbps) system, the 100 Mbps Fast Ethernet system (802.3u), and the Gi-
gabit Ethernet system (802.3z).” The URL is: (

)

* TCP/IP Illustrated, Volume 1 : The Protocols by W. Richard Stevens (ISBN: 0201633469)
This book provides detailed introduction to TCP/IP and includes diagnostic programs
which are publicly available.

* TCP/IP Illustrated, Volume 2 : The Implementation by W. Richard Stevens and Gary Wright
(ISBN: 020163354X) This book focuses on implementation issues regarding TCP/IP. The
treat for RTEMS users is that the implementation covered is the BSD stack with most of
the source code described in detail.

* UNIX Network Programming, Volume 1 : 2nd Edition by W. Richard Stevens (ISBN: 0-13-
490012-X) This book describes how to write basic TCP/IP applications, again with primary
focus on the BSD stack.

mailto:eric@skatter.usask.ca
http://www.ethermanage.com/ethernet/ethernet.html
http://www.ethermanage.com/ethernet/ethernet.html

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 1 Section 1.0

4 Chapter 1. Preface

CHAPTER
TWO

NETWORK TASK STRUCTURE AND DATA

FLOW

A schematic diagram of the tasks and message mbuf queues in a simple RTEMS networking

application is shown in the following figure:

User

Application

Task

Network
Code

Socket
Receive
Queue

Interface
Output
Queue

Routing
Table

Interface
Receive
Daemon

Interface
Transmit
Daemon

4

[

Network
Daemon

Receive
Interrupt
Handler

Transmit
Interrupt
Handler

The transmit task for each network interface is normally blocked waiting for a packet to arrive
in the transmit queue. Once a packet arrives, the transmit task may block waiting for an event
from the transmit interrupt handler. The transmit interrupt handler sends an RTEMS event to
the transmit task to indicate that transmit hardware resources have become available.

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 2 Section 2.0

The receive task for each network interface is normally blocked waiting for an event from the
receive interrupt handler. When this event is received the receive task reads the packet and
forwards it to the network stack for subsequent processing by the network task.

The network task processes incoming packets and takes care of timed operations such as han-
dling TCP timeouts and aging and removing routing table entries.

The ‘Network code’ contains routines which may run in the context of the user application
tasks, the interface receive task or the network task. A network semaphore ensures that the
data structures manipulated by the network code remain consistent.

6 Chapter 2. Network Task Structure and Data Flow

CHAPTER
THREE

NETWORKING DRIVER

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 3 Section 3.1

3.1 Introduction

This chapter is intended to provide an introduction to the procedure for writing RTEMS network
device drivers. The example code is taken from the ‘Generic 68360’ network device driver. The
source code for this driver is located in the bsps/m68k/gen68360/net directory in the RTEMS
source code distribution. Having a copy of this driver at hand when reading the following notes
will help significantly.

8 Chapter 3. Networking Driver

Chapter 3 Section 3RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

3.2

Learn about the network device

Before starting to write the network driver become completely familiar with the programmer’s
view of the device. The following points list some of the details of the device that must be
understood before a driver can be written.

Does the device use DMA to transfer packets to and from memory or does the processor
have to copy packets to and from memory on the device?

If the device uses DMA, is it capable of forming a single outgoing packet from multiple
fragments scattered in separate memory buffers?

If the device uses DMA, is it capable of chaining multiple outgoing packets, or does each
outgoing packet require intervention by the driver?

Does the device automatically pad short frames to the minimum 64 bytes or does the
driver have to supply the padding?

Does the device automatically retry a transmission on detection of a collision?

If the device uses DMA, is it capable of buffering multiple packets to memory, or does the
receiver have to be restarted after the arrival of each packet?

How are packets that are too short, too long, or received with CRC errors handled? Does
the device automatically continue reception or does the driver have to intervene?

How is the device Ethernet address set? How is the device programmed to accept or reject
broadcast and multicast packets?

What interrupts does the device generate? Does it generate an interrupt for each incoming
packet, or only for packets received without error? Does it generate an interrupt for each
packet transmitted, or only when the transmit queue is empty? What happens when a
transmit error is detected?

In addition, some controllers have specific questions regarding board specific configuration. For
example, the SONIC Ethernet controller has a very configurable data bus interface. It can even
be configured for sixteen and thirty-two bit data buses. This type of information should be
obtained from the board vendor.

3.2. Learn about the network device 9

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 3 Section 3.3

3.3 Understand the network scheduling conventions

When writing code for the driver transmit and receive tasks, take care to follow the network
scheduling conventions. All tasks which are associated with networking share various data
structures and resources. To ensure the consistency of these structures the tasks execute only
when they hold the network semaphore (rtems_bsdnet_semaphore). The transmit and receive
tasks must abide by this protocol. Be very careful to avoid ‘deadly embraces’ with the other
network tasks. A number of routines are provided to make it easier for the network driver code
to conform to the network task scheduling conventions.

* void rtems_bsdnet_semaphore_release(void) This function releases the network

semaphore. The network driver tasks must call this function immediately before mak-
ing any blocking RTEMS request.

void rtems_bsdnet_semaphore_obtain(void) This function obtains the network
semaphore. If a network driver task has released the network semaphore to allow other
network-related tasks to run while the task blocks, then this function must be called to
reobtain the semaphore immediately after the return from the blocking RTEMS request.

rtems_bsdnet_event_receive(rtems_event_set, rtems_option, rtems_interval,
rtems_event_set *) The network driver task should call this function when it
wishes to wait for an event. This function releases the network semaphore, calls
rtems_event_receive to wait for the specified event or events and reobtains the
semaphore. The value returned is the value returned by the rtems_event_receive.

10

Chapter 3. Networking Driver

-

N o=

Chapter 3 Section 3RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

3.4 Network Driver Makefile

Network drivers are considered part of the BSD network package and as such are
to be compiled with the appropriate flags. This can be accomplished by adding
-D__INSIDE_RTEMS_BSD_TCPIP_STACK__ to the command line. If the driver is inside the RTEMS
source tree or is built using the RTEMS application Makefiles, then adding the following line
accomplishes this:

DEFINES += -D__INSIDE_RTEMS_BSD_TCPIP_STACK__

This is equivalent to the following list of definitions. Early versions of the RTEMS BSD network
stack required that all of these be defined.

-D_COMPILING_BSD_KERNEL_ -DKERNEL -DINET -DNFS \
-DDIAGNOSTIC -DBOOTP_COMPAT

Defining these macros tells the network header files that the driver is to be compiled with
extended visibility into the network stack. This is in sharp contrast to applications that simply
use the network stack. Applications do not require this level of visibility and should stick to the
portable application level API.

As a direct result of being logically internal to the network stack, network drivers use the BSD
memory allocation routines This means, for example, that malloc takes three arguments. See
the SONIC device driver (c/src/lib/libchip/network/sonic.c) for an example of this. Be-
cause of this, network drivers should not include <stdlib.h>. Doing so will result in conflicting
definitions of malloc().

Application level code including network servers such as the FTP daemon are not part of the
BSD kernel network code and should not be compiled with the BSD network flags. They should
include <stdlib.h> and not define the network stack visibility macros.

3.4. Network Driver Makefile 11

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 3 Section 3.5

3.5 Write the Driver Attach Function

The driver attach function is responsible for configuring the driver and making the connection
between the network stack and the driver.

Driver attach functions take a pointer to an rtems_bsdnet_ifconfig structure as their only
argument. and set the driver parameters based on the values in this structure. If an entry in the
configuration structure is zero the attach function chooses an appropriate default value for that
parameter.

The driver should then set up several fields in the ifnet structure in the device-dependent data
structure supplied and maintained by the driver:

ifp->if_softc
Pointer to the device-dependent data. The first entry in the device-dependent data structure
must be an arpcom structure.

ifp->if_name
The name of the device. The network stack uses this string and the device number for device
name lookups. The device name should be obtained from the name entry in the configuration
structure.

ifp—>if_unit
The device number. The network stack uses this number and the device name for device
name lookups. For example, if ifp->if_name is scc and ifp->if_unit is 1, the full device
name would be scc1. The unit number should be obtained from the ‘name’ entry in the
configuration structure.

ifp->if_mtu
The maximum transmission unit for the device. For Ethernet devices this value should almost
always be 1500.

ifp—>if_flags
The device flags. Ethernet devices should set the flags to IFF_BROADCAST | IFF_SIMPLEX, indi-
cating that the device can broadcast packets to multiple destinations and does not receive and
transmit at the same time.

ifp->if_snd.ifq_maxlen
The maximum length of the queue of packets waiting to be sent to the driver. This is normally
set to ifgmaxlen.

ifp->if_init
The address of the driver initialization function.

ifp->if_start
The address of the driver start function.

ifp->if_ioctl
The address of the driver ioctl function.

ifp—>if_output
The address of the output function. Ethernet devices should set this to ether_output.

RTEMS provides a function to parse the driver name in the configuration structure into a device
name and unit number.

int rtems_bsdnet_parse_driver_name (
const struct rtems_bsdnet_ifconfig *config,

12 Chapter 3. Networking Driver

Chapter 3 Section 3BTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

char **namep

s

The function takes two arguments; a pointer to the configuration structure and a pointer to a
pointer to a character. The function parses the configuration name entry, allocates memory for
the driver name, places the driver name in this memory, sets the second argument to point to
the name and returns the unit number. On error, a message is printed and -1 is returned.

Once the attach function has set up the above entries it must link the driver data structure onto
the list of devices by calling if_attach. Ethernet devices should then call ether_ifattach. Both
functions take a pointer to the device’s ifnet structure as their only argument.

The attach function should return a non-zero value to indicate that the driver has been success-
fully configured and attached.

3.5. Write the Driver Attach Function 13

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 3 Section 3.6

3.6 Write the Driver Start Function.

This function is called each time the network stack wants to start the transmitter. This occures
whenever the network stack adds a packet to a device’s send queue and the IFF_OACTIVE bit in
the device’s if_flags is not set.

For many devices this function need only set the IFF_OACTIVE bit in the if_flags and send an
event to the transmit task indicating that a packet is in the driver transmit queue.

14 Chapter 3. Networking Driver

L Y

Chapter 3 Section 3RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

3.7 Write the Driver Initialization Function.

This function should initialize the device, attach to interrupt handler, and start the driver trans-
mit and receive tasks. The function

rtems_id

rtems_bsdnet_newproc (char *name,
int stacksize,
void(*entry) (void *),
void *arg);

should be used to start the driver tasks.

Note that the network stack may call the driver initialization function more than once. Make
sure multiple versions of the receive and transmit tasks are not accidentally started.

3.7. Write the Driver Initialization Function. 15

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 3 Section 3.8

3.8 Write the Driver Transmit Task

This task is reponsible for removing packets from the driver send queue and sending them to
the device. The task should block waiting for an event from the driver start function indicating
that packets are waiting to be transmitted. When the transmit task has drained the driver send
queue the task should clear the IFF_OACTIVE bit in if_flags and block until another outgoing
packet is queued.

16 Chapter 3. Networking Driver

Chapter 3 Section 3BTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

3.9 Write the Driver Receive Task

This task should block until a packet arrives from the device. If the device is an Ethernet
interface the function ether_input should be called to forward the packet to the network stack.
The arguments to ether_input are a pointer to the interface data structure, a pointer to the
ethernet header and a pointer to an mbuf containing the packet itself.

3.9. Write the Driver Receive Task 17

RTEMS Networking User Manual, Release 5.715da01 (5th December 20 Gapter 3 Section 3.10

3.10 Write the Driver Interrupt Handler

A typical interrupt handler will do nothing more than the hardware manipulation required to
acknowledge the interrupt and send an RTEMS event to wake up the driver receive or transmit
task waiting for the event. Network interface interrupt handlers must not make any calls to
other network routines.

18 Chapter 3. Networking Driver

Chapter 3 Section 3RMEMS Networking User Manual, Release 5.715da01 (5th December 2019)

3.11 Write the Driver IOCTL Function

This function handles ioctl requests directed at the device. The ioctl commands which must be
handled are:

SIOCGIFADDR

SIOCSIFADDR
If the device is an Ethernet interface these commands should be passed on to ether_ioctl.

SIOCSIFFLAGS
This command should be used to start or stop the device, depending on the state of the
interface IFF_UP and IFF_RUNNING bits in if_flags:

IFF_RUNNING
Stop the device.

IFF_UP
Start the device.

IFF_UP|IFF_RUNNING
Stop then start the device.

0
Do nothing.

3.11. Write the Driver IOCTL Function 19

RTEMS Networking User Manual, Release 5.715da01 (5th December 20 Gapter 3 Section 3.12

3.12 Write the Driver Statistic-Printing Function

This function should print the values of any statistic/diagnostic counters the network driver may
use. The driver ioctl function should call the statistic-printing function when the ioctl command
is STO_RTEMS_SHOW_STATS.

20 Chapter 3. Networking Driver

CHAPTER
FOUR

USING NETWORKING IN AN RTEMS
APPLICATION

21

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.1

4.1 Makefile changes

4.1.1 Including the required managers

The FreeBSD networking code requires several RTEMS managers in the application:

MANAGERS = io event semaphore

4.1.2 Increasing the size of the heap

The networking tasks allocate a lot of memory. For most applications the heap should be at
least 256 kbytes. The amount of memory set aside for the heap can be adjusted by setting the
CFLAGS_LD definition as shown below:

CFLAGS_LD += -W1,--defsym -W1,HeapSize=0x80000

This sets aside 512 kbytes of memory for the heap.

22 Chapter 4. Using Networking in an RTEMS Application

Chapter 4 Section 4RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

4.2 System Configuration

The networking tasks allocate some RTEMS objects. These must be accounted for in the appli-
cation configuration table. The following lists the requirements.

TASKS
One network task plus a receive and transmit task for each device.

SEMAPHORES
One network semaphore plus one syslog mutex semaphore if the application uses open-
log/syslog.

EVENTS
The network stack uses RTEMS_EVENT_24 and RTEMS_EVENT_25. This has no effect on the ap-
plication configuration, but application tasks which call the network functions should not use
these events for other purposes.

4.2. System Configuration 23

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.3

4.3 Initialization

4.3.1 Additional include files

The source file which declares the network configuration structures and calls the network ini-

tialization function must include

#include <rtems/rtems_bsdnet.h>

4.3.2 Network Configuration

The network configuration is specified by declaring and initializing the rtems_bsdnet_config

structure.
struct rtems_bsdnet_config {
/*
* This entry points to the head of the ifconfig chain.
*/
struct rtems_bsdnet_ifconfig *ifconfig;
/*
* This entry should be rtems_bsdnet_do_bootp if BOOTP
* is being used to configure the network, and NULL
* if BOOTP is not being used.
*/
void (*bootp) (void);
/*
* The remaining items can be initialized to 0, in
* which case the default value will be used.
*/
rtems_task_priority network_task_priority; /* 100 */
unsigned long mbuf_bytecount; /* 64 kbytes =/
unsigned long mbuf_cluster_bytecount; /* 128 kbytes */
char *hostname; /* BOOTP */
char *domainname; /* BOOTP */
char *gateway; /* BOOTP */
char *log_host; /* BOOTP */
char *name_server[3]; /* BOOTP *x/
char *ntp_server[3]; /* BOOTP */
unsigned long sb_efficiency; /* 2 */
/% UDP TX: 9216 bytes */
unsigned long udp_tx_buf_size;
/* UDP RX: 40 % (1024 + sizeof(struct sockaddr_in)) =/
unsigned long udp_rx_buf_size;
/* TCP TX: 16 * 1024 bytes */
unsigned long tcp_tx_buf_size;
/* TCP TX: 16 * 1024 bytes */
unsigned long tcp_rx_buf_size;
/* Default Network Tasks CPU Affinity =%/
#ifdef RTEMS_SMP
const cpu_set_t *network_task_cpuset;
size_t network_task_cpuset_size;
#tendif
b
24 Chapter 4. Using Networking in an RTEMS Application

Chapter 4 Section 4BTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

The structure entries are described in the following table. If your application uses BOOTP/DHCP
to obtain network configuration information and if you are happy with the default values de-
scribed below, you need to provide only the first two entries in this structure.

struct rtems_bsdnet_ifconfig *ifconfig
A pointer to the first configuration structure of the first network device. This structure is
described in the following section. You must provide a value for this entry since there is no
default value for it.

void (*bootp)(void)

This entry should be set to rtems_bsdnet_do_bootp if your application by default uses
the BOOTP/DHCP client protocol to obtain network configuration information. It should
be set to NULL if your application does not use BOOTP/DHCP. You can also use
rtems_bsdnet_do_bootp_rootfs to have a set of standard files created with the information
return by the BOOTP/DHCP protocol. The IP address is added to /etc/hosts with the host
name and domain returned. If no host name or domain is returned me.mydomain is used.
The BOOTP/DHCP server’s address is also added to /etc/hosts. The domain name server
listed in the BOOTP/DHCP information are added to /etc/resolv.conf. A“search” record
is also added if a domain is returned. The files are created if they do not exist. The de-
fault rtems_bsdnet_do_bootp and rtems_bsdnet_do_bootp_rootfs handlers will loop for-ever
waiting for a BOOTP/DHCP server to respond. If an error is detected such as not valid inter-
face or valid hardware address the target will reboot allowing any hardware reset to correct
itself. You can provide your own custom handler which allows you to perform an initializa-
tion that meets your specific system requirements. For example you could try BOOTP/DHCP
then enter a configuration tool if no server is found allowing the user to switch to a static
configuration.

int network_task_priority
The priority at which the network task and network device receive and transmit tasks will
run. If a value of 0 is specified the tasks will run at priority 100.

unsigned long mbuf_bytecount
The number of bytes to allocate from the heap for use as mbufs. If a value of 0 is specified,
64 kbytes will be allocated.

unsigned long mbuf_cluster_bytecount
The number of bytes to allocate from the heap for use as mbuf clusters. If a value of O is
specified, 128 kbytes will be allocated.

char *hostname
The host name of the system. If this, or any of the following, entries are NULL the value may
be obtained from a BOOTP/DHCP server.

char *domainname
The name of the Internet domain to which the system belongs.

char *gateway
The Internet host number of the network gateway machine, specified in ‘dotted decimal’
(129.128.4.1) form.

char *log_host
The Internet host number of the machine to which syslog messages will be sent.

char *name_server[3]
The Internet host numbers of up to three machines to be used as Internet Domain Name
Servers.

4.3. Initialization 25

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.3

char *ntp_server[3]
The Internet host numbers of up to three machines to be used as Network Time Protocol
(NTP) Servers.

unsigned long sb_efficiency

This is the first of five configuration parameters related to the amount of memory each socket
may consume for buffers. The TCP/IP stack reserves buffers (e.g. mbufs) for each open
socket. The TCP/IP stack has different limits for the transmit and receive buffers associated
with each TCP and UDP socket. By tuning these parameters, the application developer can
make trade-offs between memory consumption and performance. The default parameters
favor performance over memory consumption. See

for more details but note that after the RTEMS 4.8 release
series, the sb_efficiency default was changed from 8 to 2. The user should also be aware
of the SO_SNDBUF and SO_RCVBUF IO control operations. These can be used to specify the
send and receive buffer sizes for a specific socket. There is no standard IO control to change
the sb_efficiency factor. The sb_efficiency parameter is a buffering factor used in the
implementation of the TCP/IP stack. The default is 2 which indicates double buffering. When
allocating memory for each socket, this number is multiplied by the buffer sizes for that
socket.

unsigned long udp_tx_buf_size
This configuration parameter specifies the maximum amount of buffer memory which may be
used for UDP sockets to transmit with. The default size is 9216 bytes which corresponds to
the maximum datagram size.

unsigned long udp_rx_buf_size
This configuration parameter specifies the maximum amount of buffer memory which may be
used for UDP sockets to receive into. The default size is the following length in bytes:

40 = (1024 + sizeof(struct sockaddr_in))

[un

unsigned long tcp_tx_buf_size
This configuration parameter specifies the maximum amount of buffer memory which may be
used for TCP sockets to transmit with. The default size is sixteen kilobytes.

unsigned long tcp_rx_buf_size
This configuration parameter specifies the maximum amount of buffer memory which may be
used for TCP sockets to receive into. The default size is sixteen kilobytes.

const cpu_set_t *network_task_cpuset
This configuration parameter specifies the CPU affinity of the network task. If set to @ the
network task can be scheduled on any CPU. Only available in SMP configurations.

size_t network_task_cpuset_size
This configuration parameter specifies the size of the network_task_cpuset used. Only avail-
able in SMP configurations.

In addition, the following fields in the rtems_bsdnet_ifconfig are of interest.

int port

The I/0 port number (ex: 0x240) on which the external Ethernet can be accessed.
int irno

The interrupt number of the external Ethernet controller.

int bpar
The address of the shared memory on the external Ethernet controller.

26 Chapter 4. Using Networking in an RTEMS Application

http://www.rtems.org/ml/rtems-users/2004/february/msg00200.html
http://www.rtems.org/ml/rtems-users/2004/february/msg00200.html

Chapter 4 Section 4BTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

4.3.3 Network device configuration

Network devices are specified and configured by declaring and initializing a struct
rtems_bsdnet_ifconfig structure for each network device.

The structure entries are described in the following table. An application which uses a single
network interface, gets network configuration information from a BOOTP/DHCP server, and
uses the default values for all driver parameters needs to initialize only the first two entries in
the structure.

char *name
The full name of the network device. This name consists of the driver name and the unit num-
ber (e.g. "scc1"). The bsp.h include file usually defines RTEMS_BSP_NETWORK_DRIVER_NAME as
the name of the primary (or only) network driver.

int (*attach)(struct rtems_bsdnet_ifconfig *conf)

The address of the driver attach function. The network initialization function calls
this function to configure the driver and attach it to the network stack. The bsp.h
include file usually defines RTEMS_BSP_NETWORK_DRIVER_ATTACH as the name of the
attach function of the primary (or only) network driver.

struct rtems_bsdnet_ifconfig *next
A pointer to the network device configuration structure for the next network interface, or
NULL if this is the configuration structure of the last network interface.

char *ip_address
The Internet address of the device, specified in ‘dotted decimal’ (129.128.4.2) form, or NULL
if the device configuration information is being obtained from a BOOTP/DHCP server.

char *ip_netmask
The Internet inetwork mask of the device, specified in ‘dotted decimal’ (255.255.255.90) form,
or NULL if the device configuration information is being obtained from a BOOTP/DHCP server.

void *hardware_address
The hardware address of the device, or NULL if the driver is to obtain the hardware address in
some other way (usually by reading it from the device or from the bootstrap ROM).

int ignore_broadcast
Zero if the device is to accept broadcast packets, non-zero if the device is to ignore broadcast
packets.

int mtu
The maximum transmission unit of the device, or zero if the driver is to choose a default value
(typically 1500 for Ethernet devices).

int rbuf_count
The number of receive buffers to use, or zero if the driver is to choose a default value

int xbuf_count
The number of transmit buffers to use, or zero if the driver is to choose a default value Keep in

mind that some network devices may use 4 or more transmit descriptors for a single transmit
buffer.

A complete network configuration specification can be as simple as the one shown in the fol-
lowing example. This configuration uses a single network interface, gets network configuration
information from a BOOTP/DHCP server, and uses the default values for all driver parameters.

4.3. Initialization 27

0w N o AW N =

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.3

static struct rtems_bsdnet_ifconfig netdriver_config = {
RTEMS_BSP_NETWORK_DRIVER_NAME,
RTEMS_BSP_NETWORK_DRIVER_ATTACH

b

struct rtems_bsdnet_config rtems_bsdnet_config = {
&netdriver_config,
rtems_bsdnet_do_bootp,

3

4.3.4 Network initialization

The networking tasks must be started before any network I/O operations can be performed.
This is done by calling:

rtems_bsdnet_initialize_network ();

This function is declared in rtems/rtems_bsdnet.h. t returns O on success and -1 on failure with
an error code in errno. It is not possible to undo the effects of a partial initialization, though,
so the function can be called only once irregardless of the return code. Consequently, if the
condition for the failure can be corrected, the system must be reset to permit another network
initialization attempt.

28 Chapter 4. Using Networking in an RTEMS Application

Chapter 4 Section 4RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

4.4

Application Programming Interface

The RTEMS network package provides almost a complete set of BSD network services. The
network functions work like their BSD counterparts with the following exceptions:

A given socket can be read or written by only one task at a time.
The select function only works for file descriptors associated with sockets.
You must call openlog before calling any of the syslog functions.

Some of the network functions are not thread-safe. For example the following functions
return a pointer to a static buffer which remains valid only until the next call:

gethostbyaddr gethostbyname inet_ntoa (inet_ntop is thread-safe, though).
The RTEMS network package gathers statistics.

Addition of a mechanism to “tap onto” an interface and monitor every packet received
and transmitted.

Addition of SO_SNDWAKEUP and SO_RCVWAKEUP socket options.

Some of the new features are discussed in more detail in the following sections.

4.4.1 Network Statistics

There are a number of functions to print statistics gathered by the network stack. These function
are declared in rtems/rtems_bsdnet.h.

rtems_bsdnet_show_if_stats
Display statistics gathered by network interfaces.

rtems_bsdnet_show_ip_stats
Display IP packet statistics.

rtems_bsdnet_show_icmp_stats
Display ICMP packet statistics.

rtems_bsdnet_show_tcp_stats
Display TCP packet statistics.

rtems_bsdnet_show_udp_stats
Display UDP packet statistics.

rtems_bsdnet_show_mbuf_stats
Display mbuf statistics.

rtems_bsdnet_show_inet_routes
Display the routing table.

4.4.2 Tapping Into an Interface

RTEMS add two new ioctls to the BSD networking code, SIOCSIFTAP and SIOCGIFTAP. These
may be used to set and get a tap function. The tap function will be called for every Ethernet
packet received by the interface.

4.4. Application Programming Interface 29

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.4

These are called like other interface ioctls, such as SIOCSIFADDR. When setting the tap function
with SIOCSIFTAP, set the ifr_tap field of the ifreq struct to the tap function. When retrieving the
tap function with SIOCGIFTAP, the current tap function will be returned in the ifr_tap field. To
stop tapping packets, call SIOCSIFTAP with a ifr_tap field of .

The tap function is called like this:

int tap (struct ifnet %, struct ether_header *, struct mbuf x)

The tap function should return 1 if the packet was fully handled, in which case the caller will
simply discard the mbuf. The tap function should return 9 if the packet should be passed up to
the higher networking layers.

The tap function is called with the network semaphore locked. It must not make any calls on the
application levels of the networking level itself. It is safe to call other non-networking RTEMS
functions.

4.4.3 Socket Options

RTEMS adds two new SOL_SOCKET level options for setsockopt and getsockopt: SO_SNDWAKEUP
and SO_RCVWAKEUP. For both, the option value should point to a sockwakeup structure. The
sockwakeup structure has the following fields:

void (*sw_pfn) (struct socket *, caddr_t);
caddr_t sw_arg;

These options are used to set a callback function to be called when, for example, there is data
available from the socket (SO_RCVWAKEUP) and when there is space available to accept data
written to the socket (SO_SNDWAKEUP).

If setsockopt is called with the SO_RCVWAKEUP option, and the sw_pfn field is not zero, then
when there is data available to be read from the socket, the function pointed to by the sw_pfn
field will be called. A pointer to the socket structure will be passed as the first argument to the
function. The sw_arg field set by the SO_RCVWAKEUP call will be passed as the second argument
to the function.

If setsockopt is called with the SO_SNDWAKEUP function, and the sw_pfn field is not zero, then
when there is space available to accept data written to the socket, the function pointed to by the
sw_pfn field will be called. The arguments passed to the function will be as with SO_SNDWAKEUP.

When the function is called, the network semaphore will be locked and the callback function
runs in the context of the networking task. The function must be careful not to call any net-
working functions. It is OK to call an RTEMS function; for example, it is OK to send an RTEMS
event.

The purpose of these callback functions is to permit a more efficient alternative to the select call
when dealing with a large number of sockets.

The callbacks are called by the same criteria that the select function uses for indicating “ready”
sockets. In Stevens Unix Network Programming on page 153-154 in the section “Under what
Conditions Is a Descriptor Ready?” you will find the definitive list of conditions for readable
and writable that also determine when the functions are called.

When the number of received bytes equals or exceeds the socket receive buffer “low water
mark” (default 1 byte) you get a readable callback. If there are 100 bytes in the receive buffer

30 Chapter 4. Using Networking in an RTEMS Application

Chapter 4 Section 4RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

and you only read 1, you will not immediately get another callback. However, you will get
another callback after you read the remaining 99 bytes and at least 1 more byte arrives. Using
a non-blocking socket you should probably read until it produces error ENOULDBLOCK and then
allow the readable callback to tell you when more data has arrived. (Condition 1.a.)

For sending, when the socket is connected and the free space becomes at or above the “low
water mark” for the send buffer (default 4096 bytes) you will receive a writable callback. You
don’t get continuous callbacks if you don’t write anything. Using a non-blocking write socket,
you can then call write until it returns a value less than the amount of data requested to be
sent or it produces error EWOULDBLOCK (indicating buffer full and no longer writable). When
this happens you can try the write again, but it is often better to go do other things and let the
writable callback tell you when space is available to send again. You only get a writable callback
when the free space transitions to above the “low water mark” and not every time you write to
a non-full send buffer. (Condition 2.a.)

The remaining conditions enumerated by Stevens handle the fact that sockets become readable
and/or writable when connects, disconnects and errors occur, not just when data is received or
sent. For example, when a server “listening” socket becomes readable it indicates that a client
has connected and accept can be called without blocking, not that network data was received
(Condition 1.c).

4.4.4 Adding an IP Alias

The following code snippet adds an IP alias:

void addAlias(const char *pName, const char *pAddr, const char *pMask)

{
struct ifaliasreq aliasreq;
struct sockaddr_in xin;

/* initialize alias request */
memset(&aliasreq, 0, sizeof(aliasreq));
sprintf(aliasreq.ifra_name, pName);

/* initialize alias address */

in = (struct sockaddr_in *)&aliasreq.ifra_addr;
in->sin_family = AF_INET;

in->sin_len = sizeof(aliasreq.ifra_addr);
in->sin_addr.s_addr = inet_addr(pAddr);

/* initialize alias mask x/

in = (struct sockaddr_in x)&aliasreq.ifra_mask;
in->sin_family = AF_INET;

in->sin_len = sizeof(aliasreq.ifra_mask);
in->sin_addr.s_addr = inet_addr(pMask);

/* call to setup the alias */
rtems_bsdnet_ifconfig(pName, SIOCAIFADDR, &aliasreq);

Thanks to Mike Seirs < > for this example code.

4.4. Application Programming Interface 31

mailto:mikes@poliac.com

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.4

4.4.5 Adding a Default Route

The function provided in this section is functionally equivalent to the command route add

default gw yyy.yyy.yyy.yyy:

void mon_ifconfig(int argc, char =*argv[],

unsigned32 command_arg, bool verbose)

{
struct sockaddr_in ipaddr;
struct sockaddr_in dstaddr;
struct sockaddr_in netmask;
struct sockaddr_in broadcast;
char *iface;
int f_ip = 0;
int f_ptp = 0;
int f_netmask = 0;
int f_up = 0;
int f_down = 0;
int f_bcast = 0;
int cur_idx;
int rc;
int flags;
bzero((void*) &ipaddr, sizeof(ipaddr));
bzero((void*) &dstaddr, sizeof(dstaddr));
bzero((void*) &netmask, sizeof(netmask));
bzero((void*) &broadcast, sizeof(broadcast));
ipaddr.sin_len = sizeof(ipaddr);
ipaddr.sin_family = AF_INET;
dstaddr.sin_len = sizeof(dstaddr);
dstaddr.sin_family = AF_INET;
netmask.sin_len = sizeof(netmask);
netmask.sin_family = AF_INET;
broadcast.sin_len = sizeof(broadcast);
broadcast.sin_family = AF_INET;
cur_idx = 0;
if (argc <= 1) {
/* display all interfaces */
iface = NULL;
cur_idx += 1;
} else {
iface = argv[1];
if (isdigit(*argv[2])) {
if (inet_pton(AF_INET, argv[2], &ipaddr.sin_addr) < @) {
printf("bad ip address: %s\n", argv[2]);
return;
3
f_ip = 1;
cur_idx += 3;
} else {
cur_idx += 2;
3
}
if ((f_down !=0) && (f_ip != 0)) {
f_up = 1;
3
32 Chapter 4. Using Networking in an RTEMS Application

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
3
97
98
99

100

101

102

103

104

105

106

107

108

109

Chapter 4 Section 4RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

while(argc > cur_idx) {
if (strcmp(argvlcur_idx], "up”) == 0) {
f_up = 1;
if (f_down != 0) {
printf(”"Can't make interface up and down\n");

3
} else if(strcmp(argvlicur_idx], "down") == 0) {
f_down = 1;

if (f_up !'=0) {
printf(”"Can't make interface up and down\n");
3
} else if(strcmp(argvlcur_idx], "netmask”) == 0) {
if ((cur_idx + 1) >= argc) {
printf(”"No netmask address\n");
return;
3
if (inet_pton(AF_INET, argv[cur_idx+1], &netmask.sin_addr) < 0) {
printf(”bad netmask: %s\n”, argv[cur_idx]);
return;
3
f_netmask = 1;
cur_idx += 1;
} else if(strcmp(argvlcur_idx], "broadcast”) == 0) {
if ((cur_idx + 1) >= argc) {
printf(”"No broadcast address\n");
return;
3
if (inet_pton(AF_INET, argv[cur_idx+1], &broadcast.sin_addr) < 0) {
printf(”"bad broadcast: %s\n", argv[cur_idx]);
return;
3
f_bcast = 1;
cur_idx += 1;
} else if(strcmp(argvlcur_idx], "pointopoint”) == 0) {
if ((cur_idx + 1) >= argc) {
printf(”"No pointopoint address\n");
return;
3
if (inet_pton(AF_INET, argv[cur_idx+1], &dstaddr.sin_addr) < 0) {
printf(”"bad pointopoint: %s\n", argv[cur_idx]);
return;
3
fptp = 1;
cur_idx += 1;
} else {
printf(”"Bad parameter: %s\n", argv[cur_idx]);
return;
3
cur_idx += 1;

1
printf("ifconfig ");
if (iface !'= NULL) {

printf("%s ", iface);
if (f_ip !=0) {

4.4. Application Programming Interface

33

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.4

char str[256];
inet_ntop(AF_INET, &ipaddr.sin_addr, str, 256);
printf("%s ", str);

3

if (f_netmask != 0) {
char str[2561];
inet_ntop(AF_INET, &netmask.sin_addr, str, 256);
printf("netmask %s ", str);

}

if (f_bcast != 0) {
char str[256];
inet_ntop(AF_INET, &broadcast.sin_addr, str, 256);
printf("broadcast %s ", str);

}

if (f_ptp != 0) {
char str[25617;
inet_ntop(AF_INET, &dstaddr.sin_addr, str, 256);
printf("pointopoint %s ", str);

1

if (f_up !'=0) {
printf("up\n");

} else if (f_down != 0) {
printf("down\n");

} else {
printf(”"\n");

3

3

if ((iface == NULL) || ((f_ip == 0) && (f_down == Q) && (f_up == 0))) {
rtems_bsdnet_show_if_stats();
return;

}

flags = 0;
if (f_netmask) {
rc = rtems_bsdnet_ifconfig(iface, SIOCSIFNETMASK, &netmask);

if (rc < 0) {
printf(”"Could not set netmask: %s\n", strerror(errno));
return;

3

}
if (f_bcast) {
rc = rtems_bsdnet_ifconfig(iface, SIOCSIFBRDADDR, &broadcast);
if (rc < 0) {
printf(”"Could not set broadcast: %s\n", strerror(errno));
return;
3
3
if (f_ptp) {
rc = rtems_bsdnet_ifconfig(iface, SIOCSIFDSTADDR, &dstaddr);
if (rc <0) {
printf(”"Could not set destination address: %s\n", strerror(errno));
return;

}
flags |= IFF_POINTOPOINT;

34 Chapter 4. Using Networking in an RTEMS Application

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Chapter 4 Section 4RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

}

/* This must come _after_ setting the netmask, broadcast addresses */

if (f_ip) {
rc = rtems_bsdnet_ifconfig(iface, SIOCSIFADDR, &ipaddr);
if (rc < 0) {
printf(”"Could not set IP address: %s\n", strerror(errno));
return;
3
3

if (f_up '=0) {
flags |= IFF_UP;

if (f_down != @) {
printf("Warning: taking interfaces down is not supported\n”);

rc = rtems_bsdnet_ifconfig(iface, SIOCSIFFLAGS, &flags);

if (rc <0) {
printf(”"Could not set interface flags: %s\n", strerror(errno));
return;

void mon_route(int argc, char *argv[], unsigned32 command_arg, bool verbose)

{

int cmd;
struct sockaddr_in dst;
struct sockaddr_in gw;
struct sockaddr_in netmask;

int f_host;

int f_gw = Q;
int cur_idx;

int flags;

int rc;

memset(&dst, 0, sizeof(dst));

memset(&gw, 0, sizeof(gw));
memset(&netmask, 0, sizeof(netmask));
dst.sin_len = sizeof(dst);

dst.sin_family = AF_INET;
dst.sin_addr.s_addr = inet_addr("0.0.0.0");
gw.sin_len = sizeof(gw);

gw.sin_family = AF_INET;

gw.sin_addr.s_addr = inet_addr("0.0.0.0");
netmask.sin_len = sizeof(netmask);
netmask.sin_family = AF_INET;
netmask.sin_addr.s_addr = inet_addr(”255.255.255.0");

if (argc < 2) {
rtems_bsdnet_show_inet_routes();
return;

b

if (strcmp(argv[1], "add") == 0) {
cmd = RTM_ADD;

} else if (strcmp(argv[1], "del”) == 0) {
cmd = RTM_DELETE;

} else {

4.4. Application Programming Interface

35

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

247
248

250
251
252
253
254
255

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

280

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.4

printf(”"invalid command: %s\n", argv[1]);
printf(”"\tit should be 'add' or 'del'\n");

return;
3
if (argc < 3) {
printf("not enough arguments\n");
return;
}
if (strcmp(argv[2], "-host"”) == 0) {
f_host = 1;
} else if (strcmp(argv[2], "-net”) == 0) {
f_host = 0;
} else {
printf("Invalid type: %s\n", argv[1]);
printf("\tit should be '-host' or '-net'\n");
return;
1
if (argc < 4) {
printf(”"not enough arguments\n");
return;
1
inet_pton(AF_INET, argv[3], &dst.sin_addr);
cur_idx = 4;
while(cur_idx < argc) {
if (strcmp(argvlcur_idx], "gw") == 0) {
if ((cur_idx +1) >= argc) {
printf(”"no gateway address\n");
return;
3
f_gw = 1;
inet_pton(AF_INET, argv[cur_idx + 1], &gw.sin_addr);
cur_idx += 1;
} else if(strcmp(argvlcur_idx], "netmask”) == 0) {
if ((cur_idx +1) >= argc) {
printf(”"no netmask address\n");
return;
3
f_gw = 1;
inet_pton(AF_INET, argv[cur_idx + 1], &netmask.sin_addr);
cur_idx += 1;
} else {
printf(”"Unknown argument\n");
return;
3
cur_idx += 1;
1
flags = RTF_STATIC;
if (f_gw !'=0) {
flags |= RTF_GATEWAY;
1
if (f_host != 0) {
36 Chapter 4. Using Networking in an RTEMS Application

281
282
283
284
285
286
287

Chapter 4 Section 4RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

flags |= RTF_HOST;

rc = rtems_bsdnet_rtrequest(cmd, &dst, &gw, &netmask, flags, NULL);
if (rc <0) {

printf("Error adding route\n");
3

Thanks to Jay Monkman < > for this example code.

4.4.6 Time Synchronization Using NTP

int rtems_bsdnet_synchronize_ntp (int interval, rtems_task_priority priority);

If the interval argument is @ the routine synchronizes the RTEMS time-of-day clock with the first
NTP server in the rtems_bsdnet_ntpserve array and returns. The priority argument is ignored.

If the interval argument is greater than 0, the routine also starts an RTEMS task at the specified
priority and polls the NTP server every ‘interval’ seconds. NOTE: This mode of operation has
not yet been implemented.

On successful synchronization of the RTEMS time-of-day clock the routine returns 0. If an error
occurs a message is printed and the routine returns -1 with an error code in errno. There is no
timeout - if there is no response from an NTP server the routine will wait forever.

4.4. Application Programming Interface 37

mailto:jtm@smoothmsmoothie.com

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 4 Section 4.4

38 Chapter 4. Using Networking in an RTEMS Application

CHAPTER
FIVE

TESTING THE DRIVER

39

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 5 Section 5.1

5.1 Preliminary Setup

The network used to test the driver should include at least:

* The hardware on which the driver is to run. It makes testing much easier if you can run a
debugger to control the operation of the target machine.

* An Ethernet network analyzer or a workstation with an ‘Ethernet snoop’ program such as
ethersnoop or tcpdump.

e A workstation.

During early debug, you should consider putting the target, workstation, and snooper on a
small network by themselves. This offers a few advantages:

* There is less traffic to look at on the snooper and for the target to process while bringing
the driver up.

* Any serious errors will impact only your small network not a building or campus network.
You want to avoid causing any unnecessary problems.

 Test traffic is easier to repeatably generate.

* Performance measurements are not impacted by other systems on the network.

40 Chapter 5. Testing the Driver

Chapter 5 Section SRTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

5.2 Debug Output

There are a number of sources of debug output that can be enabled to aid in tracing the behavior
of the network stack. The following is a list of them:

* mbuf activity There are commented out calls to printf in the file sys/mbuf.h in the net-
work stack code. Uncommenting these lines results in output when mbuf’s are allocated
and freed. This is very useful for finding memory leaks.

* TX and RX queuing There are commented out calls to printf in the file net/if.h in the
network stack code. Uncommenting these lines results in output when packets are placed
on or removed from one of the transmit or receive packet queues. These queues can be
viewed as the boundary line between a device driver and the network stack. If the network
stack is enqueuing packets to be transmitted that the device driver is not dequeuing, then
that is indicative of a problem in the transmit side of the device driver. Conversely, if the
device driver is enqueueing packets as it receives them (via a call to ether_input) and
they are not being dequeued by the network stack, then there is a problem. This situation
would likely indicate that the network server task is not running.

e TCP state transitions

In the unlikely event that one would actually want to see TCP state transitions, the
TCPDEBUG macro can be defined in the file opt_tcpdebug.h. This results in the routine
tcp_trace() being called by the network stack and the state transitions logged into the
tcp_debug data structure. If the variable tcpconsdebug in the file netinet/tcp_debug.c is
set to 1, then the state transitions will also be printed to the console.

5.2. Debug Output 41

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 5 Section 5.3

5.3 Monitor Commands

There are a number of command available in the shell / monitor to aid in tracing the behavior
of the network stack. The following is a list of them:

[

N o A WD =

inet This command shows the current routing information for the TCP/IP stack. Follow-
ing is an example showing the output of this command.

Destination Gateway/Mask/Hw Flags Refs Use Expire Interface
10.0.9.0 255.0.0.0 u Q Q 17 smcl
127.0.0.1 127.0.0.1 UH Q Q 0 100

In this example, there is only one network interface with an IP address of 10.8.1.1. This
link is currently not up. Two routes that are shown are the default routes for the Eth-
ernet interface (10.0.0.0) and the loopback interface (127.0.0.1). Since the stack comes
from BSD, this command is very similar to the netstat command. For more details on
the network routing please look the following URL: (
) For a quick reference to the flags,
see the table below:
tu’
Up: The route is active.
(H’
Host: The route destination is a single host.
(G’
Gateway: Send anything for this destination on to this remote system, which will figure
out from there where to send it.
‘S,
Static: This route was configured manually, not automatically generated by the system.
tc’
Clone: Generates a new route based upon this route for machines we connect to. This
type of route is normally used for local networks.
‘w)
WasCloned: Indicated a route that was auto-configured based upon a local area network
(Clone) route.
(L’
Link: Route involves references to Ethernet hardware.

mbuf This command shows the current MBUF statistics. An example of the command is
shown below:

*kkxkkkxkkkx MBUF STATISTICS **kkxkkkkkkx

mbufs: 4096 clusters: 256 free: 241

drops: 0 waits: © drains: 0

free:4080 data:16 header:@ socket:@
pcb:0@ rtable: o htable:@ atable: 0
soname: @ soopts: 0@ ftable: 0 rights:o
ifaddr:e control: @ oobdata: 0@

if This command shows the current statistics for your Ethernet driver as long as the ioctl
hook SIO_RTEMS_SHOW_STATS has been implemented. Below is an example:

42

Chapter 5. Testing the Driver

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-routing.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/network-routing.html

Chapter 5 Section SRBTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

O 0 N o LA~ Ww N =

e e e O e T e = T
®©® N o 1 A W N = O

kkkkkxxkkxkxk% INTERFACE STATISTICS **xkxkkk*kkkxkk%k

*kkkk SMCT **kkk

Ethernet Address: 00:12:76:43:34:25

Address:10.8.1.1 Broadcast Address:10.255.255.255 Net mask:255.0.0.0
Flags: Up Broadcast Running Simplex

Send queue limit:5@0 length:0 Dropped: @

SMC91C111 RTEMS driver A@.01 11/03/2002 Ian Caddy (ianc@microsol.iinet.net.au)

Rx Interrupts:@ Not First:0 Not Last:0
Giant:0 Runt: 9@ Non-octet: 9@
Bad CRC:0 Overrun:0Q Collision:@
Tx Interrupts:2 Deferred: @ Missed Hearbeat:0
No Carrier:0 Retransmit Limit: @ Late Collision:®@
Underrun:@ Raw output wait:0 Coalesced:0
Coalesce failed:©0 Retries:0

*xkk k% 100 *kkk%x

Address:127.0.0.1 Net mask:255.0.0.0

Flags: Up Loopback Running Multicast
Send queue 1imit:50 length:0 Dropped: @

ip This command show the IP statistics for the currently configured interfaces.

icmp This command show the ICMP statistics for the currently configured interfaces.

tcp This command show the TCP statistics for the currently configured interfaces.

udp This command show the UDP statistics for the currently configured interfaces.

5.3. Monitor Commands

43

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 5 Section 5.4

5.4 Driver basic operation

The network demonstration program netdemo may be used for these tests.

Edit networkconfig.h to reflect the values for your network.
Start with RTEMS_USE_BOOTP not defined.

Edit networkconfig.h to configure the driver with an explicit Ethernet and Internet ad-
dress and with reception of broadcast packets disabled: Verify that the program continues
to run once the driver has been attached.

Issue a ‘v’ command to send UDP packets to the ‘discard’ port. Verify that the packets
appear on the network.

Issue a ‘s’ command to print the network and driver statistics.
On a workstation, add a static route to the target system.

On that same workstation try to ‘ping’ the target system. Verify that the ICMP echo request
and reply packets appear on the net.

Remove the static route to the target system. Modify networkconfig.h to attach the driver
with reception of broadcast packets enabled. Try to ‘ping’ the target system again. Verify
that ARP request/reply and ICMP echo request/reply packets appear on the net.

Issue a ‘t’ command to send TCP packets to the ‘discard’ port. Verify that the packets
appear on the network.

Issue a ‘s’ command to print the network and driver statistics.

Verify that you can telnet to ports 24742 and 24743 on the target system from one or
more workstations on your network.

44

Chapter 5. Testing the Driver

Chapter 5 Section SBTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

5.5 BOOTP/DHCP operation

Set up a BOOTP/DHCP server on the network. Set define RTEMS USE_BOOT in networkconfig.
h. Run the netdemo test program. Verify that the target system configures itself from the
BOOTP/DHCP server and that all the above tests succeed.

5.5. BOOTP/DHCP operation 45

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 5 Section 5.6

5.6 Stress Tests

Once the driver passes the tests described in the previous section it should be subjected to
conditions which exercise it more thoroughly and which test its error handling routines.

5.6.1 Giant packets

* Recompile the driver with MAXIMUM_FRAME_SIZE set to a smaller value, say 514.

* ‘Ping’ the driver from another workstation and verify that frames larger than 514 bytes
are correctly rejected.

* Recompile the driver with MAXIMUM_FRAME_SIZE restored to 1518.

5.6.2 Resource Exhaustion
* Edit networkconfig.h so that the driver is configured with just two receive and transmit
descriptors.
* Compile and run the netdemo program.
* Verify that the program operates properly and that you can still telnet to both the ports.

* Display the driver statistics (Console ‘s’ command or telnet ‘control-G’ character) and
verify that:

1. The number of transmit interrupts is non-zero. This indicates that all transmit de-
scriptors have been in use at some time.

2. The number of missed packets is non-zero. This indicates that all receive descriptors
have been in use at some time.

5.6.3 Cable Faults

Run the netdemo program.

* Issue a ‘u’ console command to make the target machine transmit a bunch of UDP packets.

While the packets are being transmitted, disconnect and reconnect the network cable.

Display the network statistics and verify that the driver has detected the loss of carrier.

Verify that you can still telnet to both ports on the target machine.

5.6.4 Throughput
Run the ttcp network benchmark program. Transfer large amounts of data (100’s of megabytes)
to and from the target system.
The procedure for testing throughput from a host to an RTEMS target is as follows:
1. Download and start the ttcp program on the Target.

2. In response to the ttcp prompt, enter -s -r. The meaning of these flags is described in
the ttcp.1 manual page found in the ttcp_orig subdirectory.

46 Chapter 5. Testing the Driver

Chapter 5 Section SRTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

3. On the host run ttcp -s -t <<insert the hostname or IP address of the Target
here>>

The procedure for testing throughput from an RTEMS target to a Host is as follows:
1. On the host run ttcp -s -r.
2. Download and start the ttcp program on the Target.

3. In response to the ttcp prompt, enter -s -t <<insert the hostname or IP address
of the Target here>>. You need to type the IP address of the host unless your Target is
talking to your Domain Name Server.

To change the number of buffers, the buffer size, etc. you just add the extra flags to the -t
machine as specified in the ttcp.1 manual page found in the ttcp_orig subdirectory.

5.6. Stress Tests 47

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 5 Section 5.6

48 Chapter 5. Testing the Driver

CHAPTER
SIX

NETWORK SERVERS

49

0w N o A W N =

O 0 N o 1 AW N =

e e e e O e v =
O 0 N oy 1AW N = O

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 6 Section 6.1

6.1 RTEMS FTP Daemon

The RTEMS FTPD is a complete file transfer protocol (FTP) daemon which can store, retrieve,
and manipulate files on the local filesystem. In addition, the RTEMS FTPD provides “hooks”
which are actions performed on received data. Hooks are useful in situations where a destina-
tion file is not necessarily appropriate or in cases when a formal device driver has not yet been
implemented.

This server was implemented and documented by Jake Janovetz

().

6.1.1 Configuration Parameters

The configuration structure for FTPD is as follows:

struct rtems_ftpd_configuration
{
rtems_task_priority priority; /* FTPD task priority =/
unsigned long max_hook_filesize; /* Maximum buffersize =*/
/% for hooks */
int port; /* Well-known port */
struct rtems_ftpd_hook =*hooks; /* List of hooks */
b

The FTPD task priority is specified with priority. Because hooks are not saved as files, the
received data is placed in an allocated buffer. max_hook_filesize specifies the maximum size
of this buffer. Finally, hooks is a pointer to the configured hooks structure.

6.1.2 Initializing FTPD (Starting the daemon)

Starting FTPD is done with a call to rtems_initialize_ftpd(). The configuration structure
must be provided in the application source code. Example hooks structure and configuration
structure folllow.

struct rtems_ftpd_hook ftp_hooks[] =
{
{"untar”, Untar_FromMemory},
{NULL, NULL}
b
struct rtems_ftpd_configuration rtems_ftpd_configuration =
{
40, /* FTPD task priority =*/
512%1024, /* Maximum hook 'file' size */
Q, /* Use default port */
ftp_hooks, /* Local ftp hooks */
0, /* Use / as root */
1, /* Max. connections *x/
Q, /* Infinite idle timeout */
Q, /* Read-write access */
Q, /* Ignore login check =%/
true /* Say hello %/
b

50 Chapter 6. Network Servers

mailto:janovetz@tempest.ece.uiuc.edu

Chapter 6 Section 6RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

Specifying 0 for the well-known port causes FTPD to use the UNIX standard FTPD port (21).

6.1.3 Using Hooks

In the example above, one hook was installed. The hook causes FTPD to call the function
Untar_FromMemory when the user sends data to the file untar. The prototype for the untar hook

O 0 N oy 1 AW N =

NONONON NN NN R R R 2 s e s
N 0 1R W N =B O 0V ® N O Ul A W N = O

(and hooks, in general) is:

int Untar_FromMemory(void *tar_buf, size_t size);

An example FTP transcript which exercises this hook is:

220 RTEMS FTP server (Version 1.0-JWJ) ready.
Name (dcomm@:janovetz): John Galt

230 User logged in.

Remote system type is RTEMS.

ftp> bin

200 Type set to I.

ftp> dir

200 PORT command successful.

150 ASCII data connection for LIST.
drwxrwx--x Q 0 268 dev
drwxrwx--x 0 0 o TFTP
226 Transfer complete.

ftp> put html.tar untar

local: html.tar remote: untar

200 PORT command successful.

150 BINARY data connection.

210 File transferred successfully.

471040 bytes sent in 0.48 secs (9.6e+02 Kbytes/sec)
ftp> dir

200 PORT command successful.

150 ASCII data connection for LIST.

drwxrwx--x 0 0 268 dev
drwxrwx--x 0 0 o TFTP
drwxrwx--x 0 0 3484 public_html
226 Transfer complete.

ftp> quit

221 Goodbye.

6.1. RTEMS FTP Daemon

51

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 6 Section 6.1

52 Chapter 6. Network Servers

CHAPTER
SEVEN

DEC 21140 DRIVER

53

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 7 Section 7.1

7.1 DEC 21240 Driver Introduction

One aim of our project is to port RTEMS on a standard PowerPC platform. To achieve it, we
have chosen a Motorola MCP750 board. This board includes an Ethernet controller based on a
DEC21140 chip. Because RTEMS has a TCP/IP stack, we will have to develop the DEC21140
related ethernet driver for the PowerPC port of RTEMS. As this controller is able to support
100Mbps network and as there is a lot of PCI card using this DEC chip, we have decided to first
implement this driver on an Intel PC386 target to provide a solution for using RTEMS on PC
with the 100Mbps network and then to port this code on PowerPC in a second phase.

The aim of this document is to give some PCI board generalities and to explain the software
architecture of the RTEMS driver. Finally, we will see what will be done for ChorusOs and
Netboot environment .

54 Chapter 7. DEC 21140 Driver

Chapter 7 Section 7RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

7.2 Document Revision History

Current release:
* Current applicable release is 1.0.

Existing releases:
* 1.0 : Released the 10/02/98. First version of this document.
* 0.1 : First draft of this document

Planned releases:

* None planned today.

7.2. Document Revision History

55

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 7 Section 7.3

7.3 DEC21140 PCI Board Generalities

This chapter describes rapidely the PCI interface of this Ethernet controller. The board we have
chosen for our PC386 implementation is a D-Link DFE-500TX. This is a dual-speed 10/100Mbps
Ethernet PCI adapter with a DEC21140AF chip. Like other PCI devices, this board has a PCI
device’s header containing some required configuration registers, as shown in the PCI Register
Figure. By reading or writing these registers, a driver can obtain information about the type of
the board, the interrupt it uses, the mapping of the chip specific registers, ...

On Intel target, the chip specific registers can be accessed via 2 methods : 1/O port access or
PCI address mapped access. We have chosen to implement the PCI address access to obtain
compatible source code to the port the driver on a PowerPC target.

On RTEMS, a PCI API exists. We have used it to configure the board. After initializing this
PCI module via the pci_initialize() function, we try to detect the DEC21140 based ethernet
board. This board is characterized by its Vendor ID (0x1011) and its Device ID (0x0009).
We give these arguments to the“pcib_find by deviceid“ function which returns , if the device
is present, a pointer to the configuration header space (see PCI Registers Fgure). Once this
operation performed, the driver is able to extract the information it needs to configure the board
internal registers, like the interrupt line, the base address,... The board internal registers will
not be detailled here. You can find them in DIGITAL Semiconductor 21140A PCI Fast Ethernet
LAN Controller - Hardware Reference Manual.

56 Chapter 7. DEC 21140 Driver

Chapter 7 Section 7RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

7.4 RTEMS Driver Software Architecture

In this chapter will see the initialization phase, how the controller uses the host memory and
the 2 threads launched at the initialization time.

7.4.1 Initialization phase

The DEC21140 Ethernet driver keeps the same software architecture than the
other RTEMS ethernet drivers. The only API the programmer can use is the
rtems_dec21140_driver_attach(struct rtems_bsdnet_ifconfig =*config) function which
detects the board and initializes the associated data structure (with registers base address,
entry points to low-level initialization function,...), if the board is found.

Once the attach function executed, the driver initializes the DEC chip. Then the driver connects
an interrupt handler to the interrupt line driven by the Ethernet controller (the only interrupt
which will be treated is the receive interrupt) and launches 2 threads : a receiver thread and
a transmitter thread. Then the driver waits for incoming frame to give to the protocol stack or
outcoming frame to send on the physical link.

7.4.2 Memory Buffer

This DEC chip uses the host memory to store the incoming Ethernet frames and the descriptor of
these frames. We have chosen to use 7 receive buffers and 1 transmit buffer to optimize memory
allocation due to cache and paging problem that will be explained in the section Encountered
Problems.

To reference these buffers to the DEC chip we use a buffer descriptors ring. The descriptor
structure is defined in the Buffer Descriptor Figure. Each descriptor can reference one or two
memory buffers. We choose to use only one buffer of 1520 bytes per descriptor.

The difference between a receive and a transmit buffer descriptor is located in the status and
control bits fields. We do not give details here, please refer to the DEC21140 Hardware Manual.

O
W Status
N

Byte-Count Byte-Count

Control bits Buffer 2 Buffer 1

Buffer address 1

Buffer address 2

7.4. RTEMS Driver Software Architecture 57

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 7 Section 7.4

7.4.3 Receiver Thread

This thread is event driven. Each time a DEC PCI board interrupt occurs, the handler checks
if this is a receive interrupt and send an event “reception” to the receiver thread which looks
into the entire buffer descriptors ring the ones that contain a valid incoming frame (bit OWN=0
means descriptor belongs to host processor). Each valid incoming ethernet frame is sent to the
protocol stack and the buffer descriptor is given back to the DEC board (the host processor reset
bit OWN, which means descriptor belongs to 21140).

7.4.4 Transmitter Thread

This thread is also event driven. Each time an Ethernet frame is put in the transmit queue, an
event is sent to the transmit thread, which empty the queue by sending each outcoming frame.
Because we use only one transmit buffer, we are sure that the frame is well-sent before sending
the next.

58 Chapter 7. DEC 21140 Driver

Chapter 7 Section 7BTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

7.5 Encountered Problems

On Intel PC386 target, we were faced with a problem of memory cache management. Because
the DEC chip uses the host memory to store the incoming frame and because the DEC21140
configuration registers are mapped into the PCI address space, we must ensure that the data
read (or written) by the host processor are the ones written (or read) by the DEC21140 device in
the host memory and not old data stored in the cache memory. Therefore, we had to provide a
way to manage the cache. This module is described in the document RTEMS Cache Management
For Intel. On Intel, the memory region cache management is available only if the paging unit is
enabled. We have used this paging mechanism, with 4Kb page. All the buffers allocated to store
the incoming or outcoming frames, buffer descriptor and also the PCI address space of the DEC
board are located in a memory space with cache disable.

Concerning the buffers and their descriptors, we have tried to optimize the memory space in
term of allocated page. One buffer has 1520 bytes, one descriptor has 16 bytes. We have 7
receive buffers and 1 transmit buffer, and for each, 1 descriptor : (7+1)*(1520+16) = 12288
bytes = 12Kb = 3 entire pages. This allows not to lose too much memory or not to disable cache
memory for a page which contains other data than buffer, which could decrease performance.

7.5. Encountered Problems 59

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 7 Section 7.6

7.6 Netboot DEC driver

We use Netboot tool to load our development from a server to the target via an ethernet net-
work. Currently, this tool does not support the DEC board. We plan to port the DEC driver for
the Netboot tool.

But concerning the port of the DEC driver into Netboot, we are faced with a problem: in RTEMS
environment, the DEC driver is interrupt or event driven, in Netboot environment, it must be
used in polling mode. It means that we will have to re-write some mechanisms of this driver.

60 Chapter 7. DEC 21140 Driver

Chapter 7 Section 7RTEMS Networking User Manual, Release 5.715da01 (5th December 2019)

7.7

List of Ethernet cards using the DEC chip

Many Ethernet adapter cards use the Tulip chip. Here is a non exhaustive list of adapters which
support this driver :

Accton EtherDuo PCI.

Accton EN1207 All three media types supported.

Adaptec ANA6911/TX 21140-AC.

Cogent EM110 21140-A with DP83840 N-Way MII transceiver.

Cogent EM400 EM100 with 4 21140 100mbps-only ports + PCI Bridge.
Danpex EN-9400P3.

D-Link DFE500-Tx 21140-A with DP83840 transceiver.

Kingston EtherX KNE100TX 21140AE.

Netgear FX310 TX 10/100 21140AE.

SMC EtherPower10/100 With DEC21140 and 68836 SYM transceiver.

SMC EtherPower10/100 With DEC21140-AC and DP83840 MII transceiver. Note: The
EtherPower II uses the EPIC chip, which requires a different driver.

Surecom EP-320X DEC 21140.
Thomas Conrad TC5048.

Znyx ZX345 21140-A, usually with the DP83840 N-Way MII transciever. Some ZX345
cards made in 1996 have an ICS 1890 transciver instead.

ZNYX ZX348 Two 21140-A chips using ICS 1890 transcievers and either a 21052 or 21152
bridge. Early versions used National 83840 transcievers, but later versions are depopu-
lated ZX346 boards.

ZNYX ZX351 21140 chip with a Broadcom 100BaseT4 transciever.

Our DEC driver has not been tested with all these cards, only with the D-Link DFE500-TX.

DEC21140 Hardware Manual DIGITAL, DIGITAL Semiconductor 21140A PCI Fast Ethernet
LAN Controller - Hardware Reference Manual**.

[99.TA.0021.M.ER]Emmanuel Raguet, *RTEMS Cache Management For Intel*.

7.7. List of Ethernet cards using the DEC chip 61

RTEMS Networking User Manual, Release 5.715da01 (5th December 201@hapter 7 Section 7.7

62 Chapter 7. DEC 21140 Driver

CHAPTER
EIGHT

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable Index entries.

63

	Preface
	Network Task Structure and Data Flow
	Networking Driver
	Introduction
	Learn about the network device
	Understand the network scheduling conventions
	Network Driver Makefile
	Write the Driver Attach Function
	Write the Driver Start Function.
	Write the Driver Initialization Function.
	Write the Driver Transmit Task
	Write the Driver Receive Task
	Write the Driver Interrupt Handler
	Write the Driver IOCTL Function
	Write the Driver Statistic-Printing Function

	Using Networking in an RTEMS Application
	Makefile changes
	Including the required managers
	Increasing the size of the heap

	System Configuration
	Initialization
	Additional include files
	Network Configuration
	Network device configuration
	Network initialization

	Application Programming Interface
	Network Statistics
	Tapping Into an Interface
	Socket Options
	Adding an IP Alias
	Adding a Default Route
	Time Synchronization Using NTP

	Testing the Driver
	Preliminary Setup
	Debug Output
	Monitor Commands
	Driver basic operation
	BOOTP/DHCP operation
	Stress Tests
	Giant packets
	Resource Exhaustion
	Cable Faults
	Throughput

	Network Servers
	RTEMS FTP Daemon
	Configuration Parameters
	Initializing FTPD (Starting the daemon)
	Using Hooks

	DEC 21140 Driver
	DEC 21240 Driver Introduction
	Document Revision History
	DEC21140 PCI Board Generalities
	RTEMS Driver Software Architecture
	Initialization phase
	Memory Buffer
	Receiver Thread
	Transmitter Thread

	Encountered Problems
	Netboot DEC driver
	List of Ethernet cards using the DEC chip

	Command and Variable Index

