New Chapters

Edition 4.7.0, for RTEMS 4.7.0

19 January 2006

On-Line Applications Research Corporation

On-Line Applications Research Corporation
TEXinfo 2006-10-04.17

COPYRIGHT (© 1988 - 2006.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include
the development, research, and testing of the theories and programs to determine their
effectiveness. No warranty of any kind, expressed or implied, with regard to the software
or the material contained in this document is provided. No liability arising out of the
application or use of any product described in this document is assumed. The authors
reserve the right to revise this material and to make changes from time to time in the
content hereof without obligation to notify anyone of such revision or changes.

The RTEMS Project is hosted at http://www.rtems.com. Any inquiries concerning
RTEMS, its related support components, its documentation, or any custom services for
RTEMS should be directed to the contacts listed on that site. A current list of RTEMS
Support Providers is at http://www.rtems.com/support.html.

http://www.rtems.com
http://www.rtems.com/support.html

Table of Contents

1 Stack Bounds Checker.......................... 1
1.1 Introduction 1
1.2 Background........ ... 1

1.2.1 Task Stack ... 1
1.2.2 Execution..........ccooiiiiiiii 1
1.3 OpPerationsottt 1
1.3.1 Initializing the Stack Bounds Checker...................... 2
1.3.2 Reporting Task Stack Usage..................ooiiiiiii.n. 2
1.3.3 When a Task Overflows the Stack 2
1.4 ROUINeS ..ot 2
1.4.1 Stack_check_Initialize - Initialize the Stack Bounds Checker
... 3
1.4.2 Stack_check_Dump_usage - Report Task Stack Usage....... 4

2 Rate Monotonic Period Statistics............. 5
2.1 Introductionc.cooiiiiiii 5
2.2 Background....... ... 5
2.3 Period Statistics ...ttt 5

2.3.1 Analysis of the Reported Information...................... 5
2.4 OPerationsttt e 6
2.4.1 Initializing the Period Statistics 6
2.4.2 Updating Period Statistics..........o, 6
2.4.3 Reporting Period Statistics............ ..., 7
2.5 Routineso 8
2.5.1 Period_usage_Initialize - Initialize the Period Statistics..... 9
2.5.2 Period_usage_Reset - Reset the Period Statistics.......... 10
2.5.3 Period_usage_Update - Update the Statistics for this Period
.. 11
2.5.4 Period_usage_Dump - Report Period Statistics Usage..... 12

3 CPU Usage Statistics......................... 13
3.1 Introductionccoo oo 13
3.2 Background....... ... 13
3.3 Operations.ttt 13
3.4 Report CPU Usage Statistics..........cooiiiiiiiiiiiiii.. 13

3.4.1 Reporting Period Statistics................. ..o il 13
3.5 Reset CPU Usage Statisticsoviiiiiiiiiiieann.. 14
3.6 Directives.o 14

3.6.1 CPU_usage_Dump - Report CPU Usage Statistics 15

3.6.2 CPU_usage_Reset - Reset CPU Usage Statistics 16

i

4 FError Reporting Support 17
4.1 Introductiont 17
4.2 Background........ ... 17
4.2.1 Error Handling in an Embedded System.................. 17
4.3 OPerations.ottt 17
4.3.1 Reporting an Error........ i 17
4.4 ROUBIIES .« oottt e e e e 17
4.4.1 rtems_status_text - ASCII Version of RTEMS Status...... 18
4.4.2 rtems_error - Report an Error............................ 19
4.4.3 rtems_panic - Report an Error and Panic................. 20
5 Monitor Task 21
5.1 Introduction 21
5.2 Background.......... . 21
5.3 OPerations. 21
5.3.1 Initializing the Momnitor......... i 21
5.4 Routines.o 21
5.4.1 rtems_monitor_init - Initialize the Monitor Task 22
5.4.2 rtems_monitor_wakeup - Wakeup the Monitor Task....... 23
5.5 Monitor Interactive Commands...............cco ... 24
5.5.1 help-Obtain Help, 24
5.5.2 pause - Pause Monitor for a Specified Number of Ticks ... 24
5.5.3 exit - Invoke a Fatal RTEMS Error....................... 24
5.5.4 symbol - Show Entries from Symbol Table................ 24
5.5.5 continue - Put Monitor to Sleep Waiting for Explicit Wakeup
.. 24
5.5.6 config - Show System Configuration 24
5.5.7 itask - List Init Tasks ... 25
5.5.8 mpci - List MPCI Config ..., 25
5.5.9 task - Show Task Information 25
5.5.10 queue - Show Message Queue Information 25
5.5.11 extension - User Extensionsc.ooviii. .. 25
5.5.12 driver - Show Information About Named Drivers 25
5.5.13 dname - Show Information About Named Drivers........ 25
5.5.14 object - Generic Object Information..................... 25

5.5.15 mnode - Specify Default Node for Commands That Take IDs
.. 25
Command and Variable Index.................... 27

New Chapters

Chapter 1: Stack Bounds Checker 1

1 Stack Bounds Checker

1.1 Introduction

The stack bounds checker is an RTEMS support component that determines if a task has
overflowed its run-time stack. The routines provided by the stack bounds checker manager
are:

e Stack_check_Initialize - Initialize the Stack Bounds Checker
e Stack_check_Dump_usage - Report Task Stack Usage

1.2 Background
1.2.1 Task Stack

Each task in a system has a fixed size stack associated with it. This stack is allocated when
the task is created. As the task executes, the stack is used to contain parameters, return
addresses, saved registers, and local variables. The amount of stack space required by a
task is dependent on the exact set of routines used. The peak stack usage reflects the worst
case of subroutine pushing information on the stack. For example, if a subroutine allocates
a local buffer of 1024 bytes, then this data must be accounted for in the stack of every task
that invokes that routine.

Recursive routines make calculating peak stack usage difficult, if not impossible. Each call
to the recursive routine consumes n bytes of stack space. If the routine recursives 1000
times, then 1000 * n bytes of stack space are required.

1.2.2 Execution

The stack bounds checker operates as a set of task extensions. At task creation time, the
task’s stack is filled with a pattern to indicate the stack is unused. As the task executes,
it will overwrite this pattern in memory. At each task switch, the stack bounds checker’s
task switch extension is executed. This extension checks that the last n bytes of the task’s
stack have not been overwritten. If they have, then a blown stack error is reported.

The number of bytes checked for an overwrite is processor family dependent. The minimum
stack frame per subroutine call varies widely between processor families. On CISC families
like the Motorola MC68xxx and Intel ix86, all that is needed is a return address. On more
complex RISC processors, the minimum stack frame per subroutine call may include space
to save a significant number of registers.

Another processor dependent feature that must be taken into account by the stack bounds
checker is the direction that the stack grows. On some processor families, the stack grows
up or to higher addresses as the task executes. On other families, it grows down to lower
addresses. The stack bounds checker implementation uses the stack description definitions
provided by every RTEMS port to get for this information.

1.3 Operations

2 New Chapters

1.3.1 Initializing the Stack Bounds Checker

The stack checker is initialized automatically when its task create extension runs for the
first time. When this occurs, the Stack_check_Initialize is invoked.

The application must include the stack bounds checker extension set in its set of Initial
Extensions. This set of extensions is defined as STACK_CHECKER_EXTENSION. If using
<confdefs.h> for Configuration Table generation, then all that is necessary is to define
the macro STACK_CHECKER_ON before including <confdefs.h> as shown below:

#define STACK_CHECKER_ON

#include <confdefs.h>

1.3.2 Reporting Task Stack Usage

The application may dynamically report the stack usage for every task in the system by
calling the Stack_check_Dump_usage routine. This routine prints a table with the peak
usage and stack size of every task in the system. The following is an example of the report
generated:

ID NAME LOwW HIGH AVATLABLE USED
0x04010001 1IDLE 0x003e8a60 0x003e9667 2952 200
0x08010002 TA1 0x003e5750 0x003e7b57 9096 1168
0x08010003 TA2 0x003e31c8 0x003ebbct 9096 1168
0x08010004 TA3 0x003e0c40 0x003e3047 9096 1104
Oxffffffff INTR 0x003ecfcO 0x003effbf 12160 128

Notice the last time. The task id is OxfHfffff and its name is "INTR". This is not actually
a task, it is the interrupt stack.

1.3.3 When a Task Overflows the Stack

When the stack bounds checker determines that a stack overflow has occurred, it will
attempt to print a message identifying the task and then shut the system down. If the stack
overflow has caused corruption, then it is possible that the message can not be printed.

The following is an example of the output generated:

BLOWN STACK!!! Offending task(0x3eb360): id=0x08010002; name=0x54413120
stack covers range 0x003e5750 - 0x003e7b57 (9224 bytes)
Damaged pattern begins at 0x003e5758 and is 128 bytes long

The above includes the task id and a pointer to the task control block as well as enough
information so one can look at the task’s stack and see what was happening.

1.4 Routines

This section details the stack bounds checker’s routines. A subsection is dedicated to each
of routines and describes the calling sequence, related constants, usage, and status codes.

Chapter 1: Stack Bounds Checker 3

1.4.1 Stack_check_Initialize - Initialize the Stack Bounds Checker
CALLING SEQUENCE:

void Stack_check_Initialize(void);

STATUS CODES: NONE
DESCRIPTION:

Initialize the stack bounds checker.

NOTES:

This is performed automatically the first time the stack bounds checker task create extension
executes.

4 New Chapters

1.4.2 Stack_check_Dump_usage - Report Task Stack Usage
CALLING SEQUENCE:
void Stack_check_Dump_usage(void);
STATUS CODES: NONE
DESCRIPTION:

This routine prints a table with the peak stack usage and stack space allocation of every
task in the system.

NOTES:
NONE

Chapter 2: Rate Monotonic Period Statistics 5)

2 Rate Monotonic Period Statistics

2.1 Introduction

The rate monotonic period statistics manager is an RTEMS support component that main-
tains statistics on the execution characteristics of each task using a period. The routines
provided by the rate monotonic period statistics manager are:

e Period_usage_Initialize - Initialize the Period Statistics

e Period_usage_Reset - Reset the Period Statistics

e Period_usage_Update - Update the Statistics for this Period

e Period_usage_Dump - Report Period Statistics Usage

2.2 Background
2.3 Period Statistics

This manager maintains a set of statistics on each period. The following is a list of the
information kept:

e id is the id of the period.
e count is the total number of periods executed.
e missed_count is the number of periods that were missed.

e min_cpu_time is the minimum amount of CPU execution time consumed on any
execution of the periodic loop.

e max_cpu_time is the maximum amount of CPU execution time consumed on any
execution of the periodic loop.

e total_cpu_time is the total amount of CPU execution time consumed by executions
of the periodic loop.

e min_wall_time is the minimum amount of wall time that passed on any execution
of the periodic loop.

e max_wall_time is the maximum amount of wall time that passed on any execution
of the periodic loop.

e total_wall_time is the total amount of wall time that passed during executions of
the periodic loop.

The above information is inexpensive to maintain and can provide very useful insights into
the execution characteristics of a periodic task loop.

2.3.1 Analysis of the Reported Information

The period statistics reported must be analyzed by the user in terms of what the applications
is. For example, in an application where priorities are assigned by the Rate Monotonic
Algorithm, it would be very undesirable for high priority (i.e. frequency) tasks to miss their
period. Similarly, in nearly any application, if a task were supposed to execute its periodic
loop every 10 milliseconds and it averaged 11 milliseconds, then application requirements
are not being met.

6 New Chapters

The information reported can be used to determine the "hot spots" in the application.
Given a period’s id, the user can determine the length of that period. From that information
and the CPU usage, the user can calculate the percentage of CPU time consumed by that
periodic task. For example, a task executing for 20 milliseconds every 200 milliseconds is
consuming 10 percent of the processor’s execution time. This is usually enough to make it
a good candidate for optimization.

However, execution time alone is not enough to gauge the value of optimizing a particular
task. It is more important to optimize a task executing 2 millisecond every 10 milliseconds
(20 percent of the CPU) than one executing 10 milliseconds every 100 (10 percent of the
CPU). As a general rule of thumb, the higher frequency at which a task executes, the more
important it is to optimize that task.

2.4 Operations
2.4.1 Initializing the Period Statistics

The period statistics manager must be explicitly initialized before any calls to this manager.
This is done by calling the Period_usage_Initialize service.

2.4.2 Updating Period Statistics

It is the responsibility of each period task loop to update the statistics on each execution of
its loop. The following is an example of a simple periodic task that uses the period statistics
manager:

Chapter 2: Rate Monotonic Period Statistics 7

rtems_task Periodic_task()
{
rtems_name name;
rtems_id period;
rtems_status_code status;

name = rtems_build_name(’P’, ’E’, ’R’, ’D’);
(void) rate_monotonic_create(name, &period);

while (1) {
if (rate_monotonic_period(period, 100) == TIMEOUT)
break;

/* Perform some periodic actions */

/* Report statistics */
Period_usage_Update(period_id);
}

/* missed period so delete period and SELF */

(void) rate_monotonic_delete(period);
(void) task_delete(SELF);
}

2.4.3 Reporting Period Statistics

The application may dynamically report the period usage for every period in the system
by calling the Period_usage_Dump routine. This routine prints a table with the following
information per period:

e period id

e id of the task that owns the period

e number of periods executed

e number of periods missed

e minimum/maximum/average cpu use per period

e minimum/maximum/average wall time per period

The following is an example of the report generated:

Period information by period

ID OWNER PERIODS MISSED CPU TIME WALL TIME
0x28010001 TA1 502 0 0/1/ 1.00 0/0/0.00
0x28010002 TA2 502 0 0/1/ 1.00 0/0/0.00
0x28010003 TA3 502 0 0/1/ 1.00 0/0/0.00
0x28010004 TA4 502 0 0/1/ 1.00 0/0/0.00
0x28010005 TA5 10 0 0/1/ 0.90 0/0/0.00

8 New Chapters

2.5 Routines

This section details the rate monotonic period statistics manager’s routines. A subsection
is dedicated to each of this manager’s routines and describes the calling sequence, related
constants, usage, and status codes.

Chapter 2: Rate Monotonic Period Statistics 9

2.5.1 Period_usage_Initialize - Initialize the Period Statistics
CALLING SEQUENCE:
void Period_usage_Initialize(void);
STATUS CODES: NONE
DESCRIPTION:

This routine allocates the table used to contain the period statistics. This table is then
initialized by calling the Period_usage_Reset service.

NOTES:

This routine invokes the malloc routine to dynamically allocate memory.

10 New Chapters

2.5.2 Period_usage_Reset - Reset the Period Statistics
CALLING SEQUENCE:

void Period_usage_Reset(void);
STATUS CODES: NONE
DESCRIPTION:

This routine re-initializes the period statistics table to its default state which is when zero
period executions have occurred.

NOTES:
NONE

Chapter 2: Rate Monotonic Period Statistics 11

2.5.3 Period_usage_Update - Update the Statistics for this Period

CALLING SEQUENCE:

void Period_usage_Update(
rtems_id id

)
STATUS CODES: NONE
DESCRIPTION:

The Period_usage_Update routine must be invoked at the "bottom" of each periodic loop
iteration to update the statistics.

NOTES:
NONE

12 New Chapters

2.5.4 Period_usage_Dump - Report Period Statistics Usage
CALLING SEQUENCE:

void Period_usage_Dump(void);
STATUS CODES: NONE
DESCRIPTION:

This routine prints out a table detailing the period statistics for all periods in the system.

NOTES:
NONE

Chapter 3: CPU Usage Statistics 13

3 CPU Usage Statistics

3.1 Introduction

The CPU usage statistics manager is an RT'EMS support component that provides a conve-
nient way to manipulate the CPU usage information associated with each task The routines
provided by the CPU usage statistics manager are:

e CPU_usage_Dump - Report CPU Usage Statistics
e CPU_usage_Reset - Reset CPU Usage Statistics

3.2 Background
3.3 Operations

3.4 Report CPU Usage Statistics

3.4.1 Reporting Period Statistics

The application may dynamically report the CPU usage for every task in the system by call-
ing the CPU_usage_Dump routine. This routine prints a table with the following information
per task:

o task id

e task name

e number of clock ticks executed

e percentage of time consumed by this task

The following is an example of the report generated:

CPU Usage by thread

ID NAME TICKS PERCENT
0x04010001 IDLE 0 0.000
0x08010002 TA1 1203 0.748
0x08010003 TA2 203 0.126
0x08010004 TA3 202 0.126

Ticks since last reset = 1600

Total Units = 1608

Notice that the "Total Units" is greater than the ticks per reset. This is an artifact of the
way in which RTEMS keeps track of CPU usage. When a task is context switched into the
CPU, the number of clock ticks it has executed is incremented. While the task is executing,
this number is incremented on each clock tick. Otherwise, if a task begins and completes
execution between successive clock ticks, there would be no way to tell that it executed at
all.

Another thing to keep in mind when looking at idle time, is that many systems — especially
during debug — have a task providing some type of debug interface. It is usually fine to

14 New Chapters

think of the total idle time as being the sum of the IDLE task and a debug task that will
not be included in a production build of an application.

3.5 Reset CPU Usage Statistics

Invoking the CPU_usage_Reset routine resets the CPU usage statistics for all tasks in the
system.

3.6 Directives

This section details the CPU usage statistics manager’s directives. A subsection is dedicated
to each of this manager’s directives and describes the calling sequence, related constants,
usage, and status codes.

Chapter 3: CPU Usage Statistics 15

3.6.1 CPU_usage_Dump - Report CPU Usage Statistics
CALLING SEQUENCE:

void CPU_usage_Dump(void);
STATUS CODES: NONE
DESCRIPTION:

This routine prints out a table detailing the CPU usage statistics for all tasks in the system.

NOTES:
NONE

16 New Chapters

3.6.2 CPU_usage_Reset - Reset CPU Usage Statistics

CALLING SEQUENCE:
void CPU_usage_Reset(void);

STATUS CODES: NONE
DESCRIPTION:

This routine re-initializes the CPU usage statistics for all tasks in the system to their initial
state. The initial state is that a task has not executed and thus has consumed no CPU
time. default state which is when zero period executions have occurred.

NOTES:
NONE

Chapter 4: Error Reporting Support 17

4 Error Reporting Support

4.1 Introduction

These error reporting facilities are an RTEMS support component that provide convenient
facilities for handling error conditions in an RT'EMS application. of each task using a period.
The services provided by the error reporting support component are:

e rtems_error - Report an Error
e rtems_panic - Report an Error and Panic
e rtems_status_text - ASCII Version of RTEMS Status

4.2 Background
4.2.1 Error Handling in an Embedded System

Error handling in an embedded system is a difficult problem. If the error is severe, then the
only recourse is to shut the system down in a safe manner. Other errors can be detected and
compensated for. The error reporting routines in this support component — rtems_error
and rtems_panic assume that if the error is severe enough, then the system should be
shutdown. If a simple shutdown with some basic diagnostic information is not sufficient,
then these routines should not be used in that particular system. In this case, use the
rtems_status_text routine to construct an application specific error reporting routine.

4.3 Operations
4.3.1 Reporting an Error

The rtems_error and rtems_panic routines can be used to print some diagnostic informa-
tion and shut the system down. The rtems_error routine is invoked with a user specified
error level indicator. This error indicator is used to determine if the system should be
shutdown after reporting this error.

4.4 Routines

This section details the error reporting support compenent’s routine. A subsection is ded-
icated to each of this manager’s routines and describes the calling sequence, related con-
stants, usage, and status codes.

18 New Chapters

4.4.1 rtems_status_text - ASCII Version of RTEMS Status
CALLING SEQUENCE:

const char *rtems_status_text(
rtems_status_code status

)
STATUS CODES:

Returns a pointer to a constant string that describes the given RTEMS status code.

DESCRIPTION:

This routine returns a pointer to a string that describes the RTEMS status code specified
by status.

NOTES:
NONE

Chapter 4: Error Reporting Support 19

4.4.2 rtems_error - Report an Error

CALLING SEQUENCE:

int rtems_error(
int error_code,
const char *printf_format,

y e
STATUS CODES:

Returns the number of characters written.

DESCRIPTION:

This routine prints the requested information as specified by the printf_format parame-
ter and the zero or more optional arguments following that parameter. The error_code
parameter is an error number with either RTEMS_ERROR_PANIC or RTEMS_ERROR_ABORT bit-
wise or’ed with it. If the RTEMS_ERROR_PANIC bit is set, then then the system is system is
shutdown via a call to _exit. If the RTEMS_ERROR_ABORT bit is set, then then the system
is system is shutdown via a call to abort.

NOTES:
NONE

20 New Chapters

4.4.3 rtems_panic - Report an Error and Panic

CALLING SEQUENCE:

int rtems_panic(
const char *printf_format,

)
STATUS CODES:

Returns the number of characters written.

DESCRIPTION:

This routine is a wrapper for the rtems_error routine with an implied error level of RTEMS_
ERROR_PANIC. See rtems_error for more information.

NOTES:
NONE

Chapter 5: Monitor Task 21

5 Monitor Task

5.1 Introduction

The monitor task is a simple interactive shell that allows the user to make inquries about
he state of various system objects. The routines provided by the monitor task manager are:

e rtems_monitor_init - Initialize the Monitor Task

e rtems_monitor_wakeup - Wakeup the Monitor Task

5.2 Background

There is no background information.

5.3 Operations
5.3.1 Initializing the Monitor

The monitor is initialized by calling rtems_monitor_init. When initialized, the monitor
is created as an independent task. An example of initializing the monitor is shown below:

#include <rtems/monitor.h>

rtems_monitor_init(0);

The "0" parameter to the rtems_monitor_init routine causes the monitor to immediately
enter command mode. This parameter is a bitfield. If the monitor is to suspend itself on
startup, then the RTEMS_MONITOR_SUSPEND bit should be set.

5.4 Routines

This section details the monitor task manager’s routines. A subsection is dedicated to each
of this manager’s routines and describes the calling sequence, related constants, usage, and
status codes.

22 New Chapters

5.4.1 rtems_monitor_init - Initialize the Monitor Task

CALLING SEQUENCE:

void rtems_monitor_init(
unsigned32 monitor_flags

)
STATUS CODES: NONE
DESCRIPTION:

This routine initializes the RTEMS monitor task. The monitor_flags parameter indicates
how the server task is to start. This parameter is a bitfield and has the following constants
associated with it:

e RTEMS_MONITOR_SUSPEND - suspend monitor on startup

e RTEMS_MONITOR_GLOBAL - monitor should be global

If the RTEMS_MONITOR_SUSPEND bit is set, then the monitor task will suspend itself after it
is initialized. A subsequent call to rtems_monitor_wakeup will be required to activate it.

NOTES:

The monitor task is created with priority 1. If there are application tasks at priority 1, then
there may be times when the monitor task is not executing.

Chapter 5: Monitor Task

5.4.2 rtems_monitor_wakeup - Wakeup the Monitor Task
CALLING SEQUENCE:

void rtems_monitor_wakeup(void);

STATUS CODES: NONE
DESCRIPTION:

This routine is used to activate the monitor task if it is suspended.

NOTES:
NONE

23

24 New Chapters

5.5 Monitor Interactive Commands
The following commands are supported by the monitor task:

e help - Obtain Help

e pause - Pause Monitor for a Specified Number of Ticks

e exit - Invoke a Fatal RTEMS Error

e symbol - Show Entries from Symbol Table

e continue - Put Monitor to Sleep Waiting for Explicit Wakeup
e config - Show System Configuration

e itask - List Init Tasks

e mpci - List MPCI Config

e task - Show Task Information

e queue - Show Message Queue Information

e extension - User Extensions

e driver - Show Information About Named Drivers

e dname - Show Information About Named Drivers

e object - Generic Object Information

e node - Specify Default Node for Commands That Take IDs

5.5.1 help - Obtain Help

The help command prints out the list of commands. If invoked with a command name as
the first argument, detailed help information on that command is printed.

5.5.2 pause - Pause Monitor for a Specified Number of Ticks

The pause command cause the monitor task to suspend itself for the specified number of
ticks. If this command is invoked with no arguments, then the task is suspended for 1 clock
tick.

5.5.3 exit - Invoke a Fatal RTEMS Error

The exit command invokes rtems_error_occurred directive with the specified error code.
If this command is invoked with no arguments, then the rtems_error_occurred directive
is invoked with an arbitrary error code.

5.5.4 symbol - Show Entries from Symbol Table

The symbol command lists the specified entries in the symbol table. If this command is
invoked with no arguments, then all the symbols in the symbol table are printed.

5.5.5 continue - Put Monitor to Sleep Waiting for Explicit
Wakeup

The continue command suspends the monitor task with no timeout.

5.5.6 config - Show System Configuration

The config command prints the system configuration.

Chapter 5: Monitor Task 25

5.5.7 itask - List Init Tasks

The itask command lists the tasks in the initialization tasks table.

5.5.8 mpci - List MPCI Config

The mpci command shows the MPCI configuration information

5.5.9 task - Show Task Information

The task command prints out information about one or more tasks in the system. If
invoked with no arguments, then information on all the tasks in the system is printed.

5.5.10 queue - Show Message Queue Information

The queue command prints out information about one or more message queues in the
system. If invoked with no arguments, then information on all the message queues in the
system is printed.

5.5.11 extension - User Extensions

The extension command prints out information about the user extensions.

5.5.12 driver - Show Information About Named Drivers

The driver command prints information about the device driver table.

5.5.13 dname - Show Information About Named Drivers

The dname command prints information about the named device drivers.

5.5.14 object - Generic Object Information
The object command prints information about RTEMS objects.

5.5.15 node - Specify Default Node for Commands That Take IDs

The node command sets the default node for commands that look at object ID ranges.

26

New Chapters

Command and Variable Index

Command and Variable Index

There are currently no Command and Variable Index entries.

27

28

New Chapters

Concept Index

Concept Index

There are currently no Concept Index entries.

29

30

New Chapters

	Stack Bounds Checker
	Introduction
	Background
	Task Stack
	Execution

	Operations
	Initializing the Stack Bounds Checker
	Reporting Task Stack Usage
	When a Task Overflows the Stack

	Routines
	Stack_check_Initialize - Initialize the Stack Bounds Checker
	Stack_check_Dump_usage - Report Task Stack Usage

	Rate Monotonic Period Statistics
	Introduction
	Background
	Period Statistics
	Analysis of the Reported Information

	Operations
	Initializing the Period Statistics
	Updating Period Statistics
	Reporting Period Statistics

	Routines
	Period_usage_Initialize - Initialize the Period Statistics
	Period_usage_Reset - Reset the Period Statistics
	Period_usage_Update - Update the Statistics for this Period
	Period_usage_Dump - Report Period Statistics Usage

	CPU Usage Statistics
	Introduction
	Background
	Operations
	Report CPU Usage Statistics
	Reporting Period Statistics

	Reset CPU Usage Statistics
	Directives
	CPU_usage_Dump - Report CPU Usage Statistics
	CPU_usage_Reset - Reset CPU Usage Statistics

	Error Reporting Support
	Introduction
	Background
	Error Handling in an Embedded System

	Operations
	Reporting an Error

	Routines
	rtems_status_text - ASCII Version of RTEMS Status
	rtems_error - Report an Error
	rtems_panic - Report an Error and Panic

	Monitor Task
	Introduction
	Background
	Operations
	Initializing the Monitor

	Routines
	rtems_monitor_init - Initialize the Monitor Task
	rtems_monitor_wakeup - Wakeup the Monitor Task

	Monitor Interactive Commands
	help - Obtain Help
	pause - Pause Monitor for a Specified Number of Ticks
	exit - Invoke a Fatal RTEMS Error
	symbol - Show Entries from Symbol Table
	continue - Put Monitor to Sleep Waiting for Explicit Wakeup
	config - Show System Configuration
	itask - List Init Tasks
	mpci - List MPCI Config
	task - Show Task Information
	queue - Show Message Queue Information
	extension - User Extensions
	driver - Show Information About Named Drivers
	dname - Show Information About Named Drivers
	object - Generic Object Information
	node - Specify Default Node for Commands That Take IDs

	Command and Variable Index
	Concept Index

