Embedded With

RTEMS

www.rtems.org

RTEMS POSIX API User’s Guide

Release 4.11.2-rc5
©Copyright 2016, RTEMS Project (built 4th July 2017)

RTEMS POSIX API User’s Guide

Preface

1.1 Acknowledgements

Process Creation and Execution Manager

2.1 Introduction
2.2 Background.
2.3 Operationsc.......
24 Directives it i e e e e

Signal Manager

3.1 Introduction
3.2 Background.
3.3 Operations
3.4 Directiveso

Process Environment Manager

4.1 Introduction
4.2 Background.
4.3 Operations v v vt v e e
44 Directives e

Files and Directories Manager

5.1 Introduction
5.2 Background.
53 Operationsoouou.n...
54 Directivest e

Input and Output Primitives Manager

6.1 Introduction
6.2 Background.
6.3 Operations
6.4 Directives e

Device- and Class- Specific Functions Manager

7.1 Introduction
7.2 Background.
7.3 Operations
74 Directives e e e

CONTENTS

8 Language-Specific Services for the C Programming Language Manager
8.1 Introduction e e e
8.2 Background. e e e
8.3 0perations e e e e e e e e e
8.4 DIrectives o v v i i e e e

9 System Databases Manager
9.1 Introduction i i i i i e e e e e e
9.2 Background. e e e
9.3 Operations v i it e e e e e e e e e
9.4 DIrectives« o i i e e e e e e e e e e e e e

10 Semaphore Manager
10.1 IntroducCtion o i v e e e e e e e e e e e e e e
10.2 Background e e e e
10.3 Operations v v v v v e
10.4 DIrecCtives o v v i i e

11 Mutex Manager
11.1 IntroducCtion o i v i i e e e e e e e e e e e e
11.2 Background e e e e e e
11.3 Operations v v v v i e e e e e e e e e e e e e e e e e e e
11.4 ServiCes v v v i i i e e e e e e e e e e e e e e

12 Condition Variable Manager
12.1 Introduction i i e e e e e e e e e e
12.2 Background e e e e e e e
12.3 Operations v v vt i e e e e e e e e e
12.4 Directives o o v it e e e e e e e e e e e e e e e

13 Memory Management Manager
13.1 IntroducCtion o it e e e e e e e e e e e e e
13.2 Background e e e e e e e
13.3 Operations o i i e e e e e e e e e e e e e e e e
13.4 DIreCtives o v v v i e

14 Scheduler Manager
14.1 IntroducCtion o i v i i e e e e e e e e e e e e
14.2 Background
14.3 Operations v v v v i e
14.4 DIrectives o i i i e e e e e e e e e e e e e e e e e e e

15 Clock Manager
15.1 Introduction i e e e e e e e e e e
15.2 Background e e e e e
15.3 Operations o v v v i e e e e e e e e e e e e
15.4 Directives o o i e e e e e e e e e e e e

16 Timer Manager
16.1 Introduction ot v i e e e e e e e e e e e e e
16.2 Background e e e e e e e
16.3 Operations ¢ v v v v v vt i e e e e e e e e e e e e e e
16.4 System Calls e e e e e

ii

17 Message Passing Manager 175

17.1 IntroduCtion v v v v e e e e e e e e e e e e e e e e e e 176
17.2 Background 177
17.3 Operations v v v v it e e e e e e e e e e e 179
17.4 Directives o i i e e e e e e e e e e e e e e e 181
18 Thread Manager 187
18.1 Introduction v v i e e e e e e e e 188
18.2 Background e e e e e e e 190
18.3 Operations o v it e e e e e 191
18.4 Services e e e 192
19 Key Manager 209
19.1 Introduction @ i i e e e e 210
19.2 Background e e e e 211
19.3 Operations v v vttt e e e e e e e e e e e e e e e e 212
19.4 DIrecCtives v v i i e 213
20 Thread Cancellation Manager 217
20.1 IntroducCtiont i i i e e e e e e e 218
20.2 Background e e e e 219
20.3 OpEerations v v v v vt e e e e e e e e e e e e e e e e e e 220
20.4 DIrectives ot i i e e e e e e e e e e e e e e 221
21 Services Provided by C Library (libc) 223
21.1 Introduction o i i e e e e e e e e e e 224
21.2 Standard Utility Functions (stdlib.h) 225
21.3 Character Type Macros and Functions (ctype.h) 226
21.4 Input and Output (stdio.h), 227
21.5 Strings and Memory (string.h) 229
21.6 Signal Handling (signal.h) 230
21.7 Time Functions (time.h) e 231
21.8 Locale (locale.h) o e e 232
21.9 Reentrant Versions of Functions o i i i i 233
21.10Miscellaneous Macros and Functions v v v v v v v v 236
21.11Variable Argument Lists L e 237
21.12Reentrant System Calls L 238
22 Services Provided by the Math Library (libm) 239
22.1 IntroducCtiont i i e e e e e e e e e e 240
22.2 Standard Math Functions (math.h) 241
23 Status of Implementation 243
24 Command and Variable Index 245
Index 247

iii

iv

Chapter 0 Section 0.0 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

Part I

RTEMS POSIX API USER’S GUIDE

COPYRIGHT (c) 1988 - 2015.
On-Line Applications Research Corporation (OAR).

The authors have used their best efforts in preparing this material. These efforts include the
development, research, and testing of the theories and programs to determine their effective-
ness. No warranty of any kind, expressed or implied, with regard to the software or the material
contained in this document is provided. No liability arising out of the application or use of any
product described in this document is assumed. The authors reserve the right to revise this
material and to make changes from time to time in the content hereof without obligation to
notify anyone of such revision or changes.

The RTEMS Project is hosted at . Any inquiries concerning RTEMS, its
related support components, or its documentation should be directed to the Community Project
hosted at

RTEMS Online Resources

Home
Developers
Documentation
Bug Reporting
Mailing Lists
Git Repositories

http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 0 Section 0.0

CHAPTER

ONE

PREFACE

This is the User’s Guide for the POSIX API support provided in RTEMS.

The functionality described in this document is based on the following standards:
* POSIX 1003.1b-1993.
* POSIX 1003.1h/D3.
* Open Group Single UNIX Specification.

Much of the POSIX API standard is actually implemented in the Cygnus Newlib ANSI C Library.
Please refer to documentation on Newlib for more information on the functionality it supplies.

This manual is still under construction and improvements are welcomed from users.

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 1 Section 1.1

1.1 Acknowledgements

The RTEMS Project has been granted permission from The Open Group IEEE to excerpt and
use portions of the POSIX standards documents in the RTEMS POSIX API User’s Guide and
RTEMS Shell User’s Guide. We have to include a specific acknowledgement paragraph in these
documents (e.g. preface or copyright page) and another slightly different paragraph for each
manual page that excerpts and uses text from the standards.

This file should help ensure that the paragraphs are consistent and not duplicated

The Institute of Electrical and Electronics Engineers, Inc and The Open Group,
have given us permission to reprint portions of their documentation. Portions of
this text are reprinted and reproduced in electronic form from IEEE Std 1003.1,
2004 Edition, Standard for Information Technology Operating System Interface
(POSIX), The Open Group Base Specifications Issue 6, Copyright (c) 2001-2004
by the Institute of Electrical and Electronics Engineers, Inc and The Open Group.
In the event of any discrepancy between this version and the original IEEE and
The Open Group Standard, the original IEEE and The Open Group Standard is
the referee document. The original Standard can be obtained online at

. This notice shall appear on any product
containing this material.

4 Chapter 1. Preface

http://www.opengroup.org/unix/online.html
http://www.opengroup.org/unix/online.html

CHAPTER
TWO

PROCESS CREATION AND EXECUTION
MANAGER

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 2 Section 2.1

2.1 Introduction

The process creation and execution manager provides the functionality associated with the
creation and termination of processes.

The directives provided by the process creation and execution manager are:
* fork (page 9) - Create a Process
* execl (page 9) - Execute a File
* execv (page 9) - Execute a File
* execle (page 10) - Execute a File
* execve (page 10) - Execute a File
* execlp (page 11) - Execute a File
* execvp (page 11) - Execute a File
* pthread_atfork (page 11) - Register Fork Handlers
* wait (page 12) - Wait for Process Termination
* waitpid (page 12) - Wait for Process Termination

* exit (page 12) - Terminate a Process

6 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.2 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

2.2 Background

POSIX process functionality can not be completely supported by RTEMS. This is because RTEMS
provides no memory protection and implements a single process, multi-threaded execution model.
In this light, RTEMS provides none of the routines that are associated with the creation of new
processes. However, since the entire RTEMS application (e.g. executable) is logically a single
POSIX process, RTEMS is able to provide implementations of many operations on processes.
The rule of thumb is that those routines provide a meaningful result. For example, getpid()
returns the node number.

2.2. Background 7

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 2 Section 2.3

2.3 Operations

The only functionality method defined by this manager which is supported by RTEMS is the
_exit service. The implementation of _exit shuts the application down and is equivalent to
invoking either exit or rtems_shutdown_executive.

8 Chapter 2. Process Creation and Execution Manager

L I

[N I

Chapter 2 Section 2.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

2.4 Directives

This section details the process creation and execution manager’s directives. A subsection is
dedicated to each of this manager’s directives and describes the calling sequence, related con-
stants, usage, and status codes.

2.4.1 fork - Create a Process

CALLING SEQUENCE:

#include <sys/types.h>
int fork(void);

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.2 execl - Execute a File

CALLING SEQUENCE:

int execl(
const char *path,
const char =*arg,
);

STATUS CODES:

] ENOSYS \ This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.3 execv - Execute a File

CALLING SEQUENCE:

int execv(
const char xpath,
char const *xargv[],
);

2.4. Directives 9

L

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 2 Section 2.4

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.4 execle - Execute a File

CALLING SEQUENCE:

int execle(
const char *path,
const char xarg,

s

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.5 execve - Execute a File

CALLING SEQUENCE:

int execve(
const char #*path,
char *const argv[],
char *const envp[]

);

STATUS CODES:

] ENOSYS \ This routine is not supported by RTEMS.

DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:

NONE

10 Chapter 2. Process Creation and Execution Manager

A W N =

L Y

a1 AW N =

Chapter 2 Section 2.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

2.4.6 execlp - Execute a File

CALLING SEQUENCE:

int execlp(
const char *file,
const char xarg,
J;

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.7 execvp - Execute a File

CALLING SEQUENCE:

int execvp(
const char xfile,
char *const argv[],
);

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.8 pthread _atfork - Register Fork Handlers

CALLING SEQUENCE:

#include <sys/types.h>

int pthread_atfork(
void (*prepare)(void),
void (*parent)(void),
void (*child) (void)

);

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.

2.4. Directives 11

AW N =

u AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 2 Section 2.4

DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:

NONE

2.4.9 wait - Wait for Process Termination

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/wait.h>
int wait(

int *stat_loc

s

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.10 waitpid - Wait for Process Termination

CALLING SEQUENCE:

int wait(
pid_t pid,
int *stat_loc,
int options
);

STATUS CODES:

| ENOSYS | This routine is not supported by RTEMS.
DESCRIPTION:

This routine is not supported by RTEMS.
NOTES:
NONE

2.4.11 _exit - Terminate a Process

CALLING SEQUENCE:

12 Chapter 2. Process Creation and Execution Manager

Chapter 2 Section 2.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

void _exit(
int status

s

STATUS CODES:

NONE

DESCRIPTION:

The _exit() function terminates the calling process.
NOTES:

In RTEMS, a process is equivalent to the entire application on a single processor. Invoking this
service terminates the application.

2.4. Directives 13

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 2 Section 2.4

14 Chapter 2. Process Creation and Execution Manager

CHAPTER

THREE

SIGNAL MANAGER

15

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 3 Section 3.1

3.1 Introduction

The signal manager provides the functionality associated with the generation, delivery, and
management of process-oriented signals.

The directives provided by the signal manager are:

sigaddset (page 19) - Add a Signal to a Signal Set

sigdelset (page 19) - Delete a Signal from a Signal Set

sigfillset (page 20) - Fill a Signal Set

sigismember (page 20) - Is Signal a Member of a Signal Set
sigemptyset (page 20) - Empty a Signal Set

sigaction (page 21) - Examine and Change Signal Action

pthread_kill (page 22) - Send a Signal to a Thread

sigprocmask (page 22) - Examine and Change Process Blocked Signals
pthread_sigmask (page 23) - Examine and Change Thread Blocked Signals
kill (page 24) - Send a Signal to a Process

sigpending (page 24) - Examine Pending Signals

sigsuspend (page 25) - Wait for a Signal

pause (page 25) - Suspend Process Execution

sigwait (page 25) - Synchronously Accept a Signal

sigwaitinfo (page 26) - Synchronously Accept a Signal

sigtimedwait (page 26) - Synchronously Accept a Signal with Timeout
sigqueue (page 27) - Queue a Signal to a Process

alarm (page 28) - Schedule Alarm

ualarm (page 28) - Schedule Alarm in Microseconds

16

Chapter 3. Signal Manager

Chapter 3 Section 3.2 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

3.2 Background

3.2.1 Signals

POSIX signals are an asynchronous event mechanism. Each process and thread has a set of
signals associated with it. Individual signals may be enabled (e.g. unmasked) or blocked (e.g.
ignored) on both a per-thread and process level. Signals which are enabled have a signal
handler associated with them. When the signal is generated and conditions are met, then the
signal handler is invoked in the proper process or thread context asynchronous relative to the
logical thread of execution.

If a signal has been blocked when it is generated, then it is queued and kept pending until
the thread or process unblocks the signal or explicitly checks for it. Traditional, non-real-time
POSIX signals do not queue. Thus if a process or thread has blocked a particular signal, then
multiple occurrences of that signal are recorded as a single occurrence of that signal.

One can check for the set of outstanding signals that have been blocked. Services are provided
to check for outstanding process or thread directed signals.

3.2.2 Signal Delivery

Signals which are directed at a thread are delivered to the specified thread.

Signals which are directed at a process are delivered to a thread which is selected based on the
following algorithm:

1. If the action for this signal is currently SIG_IGN, then the signal is simply ignored.

2. If the currently executing thread has the signal unblocked, then the signal is delivered to
it.

3. If any threads are currently blocked waiting for this signal (sigwait()), then the signal is
delivered to the highest priority thread waiting for this signal.

4. If any other threads are willing to accept delivery of the signal, then the signal is delivered
to the highest priority thread of this set. In the event, multiple threads of the same
priority are willing to accept this signal, then priority is given first to ready threads, then
to threads blocked on calls which may be interrupted, and finally to threads blocked on
non-interruptible calls.

5. In the event the signal still can not be delivered, then it is left pending. The first thread to
unblock the signal (sigprocmask() or pthread_sigprocmask()) or to wait for this signal
(sigwait()) will be the recipient of the signal.

3.2. Background 17

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 3 Section 3.3

3.3 Operations

3.3.1 Signal Set Management

Each process and each thread within that process has a set of individual signals and handlers
associated with it. Services are provided to construct signal sets for the purposes of building
signal sets - type sigset_t - that are used to provide arguments to the services that mask,
unmask, and check on pending signals.

3.3.2 Blocking Until Signal Generation

A thread may block until receipt of a signal. The “sigwait” and “pause” families of functions
block until the requested signal is received or if using sigtimedwait () until the specified timeout
period has elapsed.

3.3.3 Sending a Signal

This is accomplished via one of a number of services that sends a signal to either a process or
thread. Signals may be directed at a process by the service kill() or at a thread by the service
pthread_kill()

18 Chapter 3. Signal Manager

u AW N =

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

3.4 Directives

This section details the signal manager’s directives. A subsection is dedicated to each of this
manager’s directives and describes the calling sequence, related constants, usage, and status
codes.

3.4.1 sigaddset - Add a Signal to a Signal Set

CALLING SEQUENCE:

#include <signal.h>

int sigaddset(
sigset_t *set,
int signo

s

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

| EINVAL | Invalid argument passed. |
DESCRIPTION:

This function adds the signal signo to the specified signal set.
NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4.2 sigdelset - Delete a Signal from a Signal Set

CALLING SEQUENCE:

#include <signal.h>

int sigdelset(
sigset_t *set,
int signo

s

STATUS CODES:

The function returns O on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

] EINVAL \ Invalid argument passed. ‘
DESCRIPTION:

This function deletes the signal specified by signo from the specified signal set.
NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4. Directives 19

BwW N =

ua AW N =

pwW N e

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 3 Section 3.4

3.4.3 sigfillset - Fill a Signal Set

CALLING SEQUENCE:

#include <signal.h>
int sigfillset(
sigset_t =*set

s

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

| EINVAL | Invalid argument passed. |
DESCRIPTION:

This function fills the specified signal set such that all signals are set.

3.4.4 sigismember - Is Signal a Member of a Signal Set

CALLING SEQUENCE:

#include <signal.h>

int sigismember(
const sigset_t *set,
int signo

s

STATUS CODES:

The function returns either 1 or O if completed successfully, otherwise it returns -1 and sets
errno to indicate the error. errno may be set to:

| EINVAL | Invalid argument passed. |
DESCRIPTION:

This function returns returns 1 if signo is a member of set and 0 otherwise.
NOTES:

The set must be initialized using either sigemptyset or sigfillset before using this function.

3.4.5 sigemptyset - Empty a Signal Set

CALLING SEQUENCE:

#include <signal.h>
int sigemptyset(
sigset_t =*set

s

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

20 Chapter 3. Signal Manager

R I

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

| EINVAL | Invalid argument passed. |
DESCRIPTION:

This function initializes an empty signal set pointed to by set.

3.4.6 sigaction - Examine and Change Signal Action

CALLING SEQUENCE:

#include <signal.h>

int sigaction(
int sig,
const struct sigaction =*act,
struct sigaction *oact

)5

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL | Invalid argument passed.
ENOTSUP | Realtime Signals Extension option not supported.

DESCRIPTION:

If the argument act is not a null pointer, it points to a structure specifying the action to be asso-
ciated with the specified signal. If the argument oact is not a null pointer, the action previously
associated with the signal is stored in the location pointed to by the argument oact. If the ar-
gument act is a null pointer, signal handling is unchanged; thus, the call can be used to enquire
about the current handling of a given signal.

The structure sigaction has the following members:

void(*)(int) sa_handler Pointer to a signal-catching function or one of the
macros SIG_IGN or SIG_DFL.

sigset_t sa_mask Additional set of signals to be blocked during execution
of signal-catching function.

int sa_flags Special flags to affect behavior of signal.

void(*)(int,siginfo_ Alternative pointer to a signal-catching function.

tx,voidx)

sa_sigaction

sa_handler and sa_sigaction should never be used at the same time as their storage may
overlap.

If the SA_SIGINFO flag (see below) is set in sa_flags, the sa_sigaction field specifies a signal-
catching function, otherwise“sa_handler” specifies the action to be associated with the signal,
which may be a signal-catching function or one of the macros SIG_IGN or SIG_DFN.

The following flags can be set in the sa_flags field:

SA_ If not set, the signal-catching function should be declared as void func(int
SIGINFQ signo) and the address of the function should be set in“sa_handler“. If set, the
signal-catching function should be declared as void func(int signo,siginfo_tx
info,void* context) and the address of the function should be set in
sa_sigaction.

3.4. Directives 21

O 0 N o 1 AW N =

I
2 W N = O

v A W N =

A 1AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

Chapter 3 Section 3.4

The prototype of the siginfo_t structure is the following:

typedef struct

{
int si_signo; /* Signal number */
int si_code; /* Cause of the signal x/
pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process *x/
void* si_addr; /* Address of faulting instruction */
int si_status; /* Exit value or signal */
union sigval
{
int sival_int; /* Integer signal value x/
voidx sival_ptr; /x Pointer signal value x/
} si_value; /* Signal value */
}
NOTES:

The signal number cannot be SIGKILL.

3.4.7 pthread kill - Send a Signal to a Thread

CALLING SEQUENCE:

#include <signal.h>

int pthread_kill(
pthread_t thread,
int sig

);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.

errno may be set to:

ESRCH | The thread indicated by the parameter thread is invalid.

EINVAL | Invalid argument passed.

DESCRIPTION:

This functions sends the specified signal sig to a thread referenced to by thread.

If the signal code is 0, arguments are validated and no signal is sent.

3.4.8 sigprocmask - Examine and Change Process Blocked Signals

CALLING SEQUENCE:

#include <signal.h>

int sigprocmask(
int how,
const sigset_t *set,
sigset_t *oset

22

Chapter 3. Signal Manager

R N S

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

| EINVAL | Invalid argument passed. |
DESCRIPTION:

This function is used to alter the set of currently blocked signals on a process wide basis. A
blocked signal will not be received by the process. The behavior of this function is dependent
on the value of how which may be one of the following:

SIG_BLOCK | The set of blocked signals is set to the union of set and those signals currently
blocked.

SIG_ The signals specific in set are removed from the currently blocked set.

UNBLOCK

SIG_ The set of currently blocked signals is set to set.

SETMASK

If oset is not NULL, then the set of blocked signals prior to this call is returned in oset. If set is
NULL, no change is done, allowing to examine the set of currently blocked signals.

NOTES:
It is not an error to unblock a signal which is not blocked.

In the current implementation of RTEMS POSIX API sigprocmask() is technically mapped to
pthread_sigmask().

3.4.9 pthread sigmask - Examine and Change Thread Blocked Signals

CALLING SEQUENCE:

#include <signal.h>
int pthread_sigmask(
int how,
const sigset_t *set,
sigset_t *oset
)5

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL
Invalid argument passed.

DESCRIPTION:

This function is used to alter the set of currently blocked signals for the calling thread. A blocked
signal will not be received by the process. The behavior of this function is dependent on the
value of how which may be one of the following:

3.4. Directives 23

Lo T e

W N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 3 Section 3.4

SIG_BLOCK | The set of blocked signals is set to the union of set and those signals currently
blocked.

SIG_ The signals specific in set are removed from the currently blocked set.

UNBLOCK

SIG_ The set of currently blocked signals is set to set.

SETMASK

If oset is not NULL, then the set of blocked signals prior to this call is returned in oset. If set is
NULL, no change is done, allowing to examine the set of currently blocked signals.

NOTES:
It is not an error to unblock a signal which is not blocked.

3.4.10 Kkill - Send a Signal to a Process

CALLING SEQUENCE:

#include <sys/types.h>
#include <signal.h>
int kill(

pid_t pid,

int sig

s

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL | Invalid argument passed.
EPERM | Process does not have permission to send the signal to any receiving process.
ESRCH | The process indicated by the parameter pid is invalid.

DESCRIPTION:

This function sends the signal sig to the process pid.
NOTES:

Since RTEMS is a single-process system, a signal can only be sent to the calling process (i.e. the
current node).

3.4.11 sigpending - Examine Pending Signals

CALLING SEQUENCE:

#include <signal.h>
int sigpending(
const sigset_t *set
);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

24 Chapter 3. Signal Manager

AW N -

L

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

] EFAULT \ Invalid address for set. \
DESCRIPTION:

This function allows the caller to examine the set of currently pending signals. A pending signal
is one which has been raised but is currently blocked. The set of pending signals is returned in
set.

3.4.12 sigsuspend - Wait for a Signal

CALLING SEQUENCE:

#include <signal.h>

int sigsuspend(

const sigset_t *sigmask
)5

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

| EINTR | Signal interrupted this function. |
DESCRIPTION:

This function temporarily replaces the signal mask for the process with that specified by sigmask
and blocks the calling thread until a signal is raised.

3.4.13 pause - Suspend Process Execution

CALLING SEQUENCE:

#include <signal.h>
int pause(void);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

] EINTR \ Signal interrupted this function. ‘
DESCRIPTION:

This function causes the calling thread to be blocked until an unblocked signal is received.

3.4.14 sigwait - Synchronously Accept a Signal

CALLING SEQUENCE:

#include <signal.h>

int sigwait(
const sigset_t *set,
int *sig

s

3.4. Directives 25

L

O O N AW N -

= om ok ks
A& W N R~ O

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 3 Section 3.4

STATUS CODES:

The function returns O on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINVAL | Invalid argument passed.
EINTR | Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns the signal number for that signal in sig.

3.4.15 sigwaitinfo - Synchronously Accept a Signal

CALLING SEQUENCE:

#include <signal.h>

int sigwaitinfo(
const sigset_t *set,
siginfo_t *info

s

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EINTR
Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns information about that signal in info.

The prototype of the siginfo_t structure is the following:

typedef struct
{
int si_signo; /* Signal number */
int si_code; /* Cause of the signal %/
pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
void* si_addr; /* Address of faulting instruction */
int si_status; /* Exit value or signal x/
union sigval
{
int sival_int; /* Integer signal value */
voidx sival_ptr; /% Pointer signal value */
} si_value; /* Signal value =%/
}

3.4.16 sigtimedwait - Synchronously Accept a Signal with Timeout

CALLING SEQUENCE:

26 Chapter 3. Signal Manager

A W N =

A 1AW N =

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

#include <signal.h>

int sigtimedwait(
const sigset_t *set,
siginfo_t *info,
const struct timespec *timeout

);

STATUS CODES:

The function returns O on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EAGAIN | Timed out while waiting for the specified signal set.
EINVAL | Nanoseconds field of the timeout argument is invalid.
EINTR | Signal interrupted this function.

DESCRIPTION:

This function selects a pending signal based on the set specified in set, atomically clears it from
the set of pending signals, and returns information about that signal in info. The calling thread
will block up to timeout waiting for the signal to arrive.

The timespec structure is defined as follows:

struct timespec
{
time_t tv_sec; /x Seconds x/
long tv_nsec; /* Nanoseconds */
3
NOTES:

If timeout is NULL, then the calling thread will wait forever for the specified signal set.

3.4.17 sigqueue - Queue a Signal to a Process

CALLING SEQUENCE:

#include <signal.h>

int sigqueue(
pid_t pid,
int signo,
const union sigval value

);

STATUS CODES:

The function returns 0 on success, otherwise it returns -1 and sets errno to indicate the error.
errno may be set to:

EAGAINNo resources available to queue the signal. The process has already queued
SIGQUEUE_MAX signals that are still pending at the receiver or the systemwide resource
limit has been exceeded.

EINVALThe value of the signo argument is an invalid or unsupported signal number.

EPERM The process does not have the appropriate privilege to send the signal to the
receiving process.

ESRCH The process pid does not exist.

3.4. Directives 27

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 3 Section 3.4

DESCRIPTION:
This function sends the signal specified by signo to the process pid

The sigval union is specified as:

union sigval
{
int sival_int; /* Integer signal value */
voidx sival_ptr; /* Pointer signal value x/
b
NOTES:

Since RTEMS is a single-process system, a signal can only be sent to the calling process (i.e. the
current node).

3.4.18 alarm - Schedule Alarm

CALLING SEQUENCE:

#include <unistd.h>
unsigned int alarm(
unsigned int seconds

);

STATUS CODES:
This call always succeeds.

If there was a previous alarm() request with time remaining, then this routine returns the num-
ber of seconds until that outstanding alarm would have fired. If no previous alarm() request
was outstanding, then zero is returned.

DESCRIPTION:

The alarm() service causes the SIGALRM signal to be generated after the number of seconds
specified by seconds has elapsed.

NOTES:

Alarm requests do not queue. If alarm is called while a previous request is outstanding, the call
will result in rescheduling the time at which the SIGALRM signal will be generated.

If the notification signal, SIGALRM, is not caught or ignored, the calling process is terminated.

3.4.19 ualarm - Schedule Alarm in Microseconds

CALLING SEQUENCE:

#include <unistd.h>

useconds_t ualarm(
useconds_t useconds,
useconds_t interval

s

28 Chapter 3. Signal Manager

Chapter 3 Section 3.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

STATUS CODES:
This call always succeeds.

If there was a previous ualarm() request with time remaining, then this routine returns the
number of seconds until that outstanding alarm would have fired. If no previous alarm() re-
quest was outstanding, then zero is returned.

DESCRIPTION:

The ualarm() service causes the SIGALRM signal to be generated after the number of microsec-
onds specified by useconds has elapsed.

When interval is non-zero, repeated timeout notification occurs with a period in microseconds
specified by interval.

NOTES:

Alarm requests do not queue. If alarm is called while a previous request is outstanding, the call
will result in rescheduling the time at which the SIGALRM signal will be generated.

If the notification signal, SIGALRM, is not caught or ignored, the calling process is terminated.

3.4. Directives 29

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 3 Section 3.4

30 Chapter 3. Signal Manager

CHAPTER

FOUR

PROCESS ENVIRONMENT MANAGER

31

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 4 Section 4.1

4.1 Introduction

The process environment manager is responsible for providing the functions related to user and
group Id management.

The directives provided by the process environment manager are:
* getpid (page 35) - Get Process ID
* getppid (page 35) - Get Parent Process ID
* getuid (page 35) - Get User ID
* geteuid (page 36) - Get Effective User ID
» getgid (page 36) - Get Real Group ID
* getegid (page 36) - Get Effective Group ID
* setuid (page 37) - Set User ID
* setgid (page 37) - Set Group ID
 getgroups (page 37) - Get Supplementary Group IDs
* getlogin (page 38) - Get User Name
* getlogin r (page 38) - Reentrant Get User Name
» getpgrp (page 38) - Get Process Group ID
* setsid (page 39) - Create Session and Set Process Group ID
* setpgid (page 39) - Set Process Group ID for Job Control
* uname (page 39) - Get System Name
* times (page 40) - Get Process Times
* getenv (page 40) - Get Environment Variables
* setenv (page 40) - Set Environment Variables
» ctermid (page 41) - Generate Terminal Pathname
* ttyname (page 41) - Determine Terminal Device Name
* ttyname_r (page 42) - Reentrant Determine Terminal Device Name
* isatty (page 42) - Determine if File Descriptor is Terminal

* sysconf (page 42) - Get Configurable System Variables

32 Chapter 4. Process Environment Manager

Chapter 4 Section 4.2 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

4.2 Background

4.2.1 Users and Groups

RTEMS provides a single process, multi-threaded execution environment. In this light, the no-
tion of user and group is somewhat without meaning. But RTEMS does provide services to
provide a synthetic version of user and group. By default, a single user and group is associ-
ated with the application. Thus unless special actions are taken, every thread in the application
shares the same user and group Id. The initial rationale for providing user and group Id func-
tionality in RTEMS was for the filesystem infrastructure to implement file permission checks.
The effective user/group Id capability has since been used to implement permissions checking
by the ftpd server.

In addition to the “real” user and group Ids, a process may have an effective user/group Id. This
allows a process to function using a more limited permission set for certain operations.

4.2.2 User and Group Names

POSIX considers user and group Ids to be a unique integer that may be associated with a name.
This is usually accomplished via a file named /etc/passwd for user Id mapping and /etc/groups
for group Id mapping. Again, although RTEMS is effectively a single process and thus single
user system, it provides limited support for user and group names. When configured with an
appropriate filesystem, RTEMS will access the appropriate files to map user and group Ids to
names.

If these files do not exist, then RTEMS will synthesize a minimal version so this family of services
return without error. It is important to remember that a design goal of the RTEMS POSIX
services is to provide useable and meaningful results even though a full process model is not
available.

4.2.3 Environment Variables

POSIX allows for variables in the run-time environment. These are name/value pairs that make
be dynamically set and obtained by programs. In a full POSIX environment with command line
shell and multiple processes, environment variables may be set in one process - such as the shell
- and inherited by child processes. In RTEMS, there is only one process and thus only one set of
environment variables across all processes.

4.2. Background 33

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 4 Section 4.3

4.3 Operations

4.3.1 Accessing User and Group Ids

The user Id associated with the current thread may be obtain using the getuid() service. Simi-
larly, the group Id may be obtained using the getgid() service.

4.3.2 Accessing Environment Variables

The value associated with an environment variable may be obtained using the getenv() service
and set using the putenv() service.

34 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

4.4 Directives

This section details the process environment manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,

and status codes.

4.4.1 getpid - Get Process ID

CALLING SEQUENCE:

int getpid(void);

STATUS CODES:

The process Id is returned.
DESCRIPTION:

This service returns the process Id.
NOTES:

NONE

4.4.2 getppid - Get Parent Process ID

CALLING SEQUENCE:

int getppid(void);

STATUS CODES:
The parent process Id is returned.

DESCRIPTION:

This service returns the parent process Id.

NOTES:
NONE

4.4.3 getuid - Get User ID

CALLING SEQUENCE:

int getuid(void);

STATUS CODES:

The effective user Id is returned.
DESCRIPTION:

This service returns the effective user Id.

NOTES:

4.4, Directives

35

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

Chapter 4 Section 4.4

NONE

4.4.4 geteuid - Get Effective User ID

CALLING SEQUENCE:

int geteuid(void);

STATUS CODES:

The effective group Id is returned.
DESCRIPTION:

This service returns the effective group Id.
NOTES:

NONE

4.4.5 getgid - Get Real Group ID

CALLING SEQUENCE:

int getgid(void);

STATUS CODES:

The group Id is returned.
DESCRIPTION:

This service returns the group Id.
NOTES:

NONE

4.4.6 getegid - Get Effective Group ID

CALLING SEQUENCE:

int getegid(void);

STATUS CODES:

The effective group Id is returned.
DESCRIPTION:

This service returns the effective group Id.
NOTES:

NONE

36

Chapter 4. Process Environment Manager

PN

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

4.4.7 setuid - Set User ID

CALLING SEQUENCE:

int setuid(
uid_t uid
);

STATUS CODES:

This service returns 0.
DESCRIPTION:

This service sets the user Id to uid.
NOTES:

NONE

4.4.8 setgid - Set Group ID

CALLING SEQUENCE:

int setgid(
gid_t gid
);

STATUS CODES:

This service returns 0.
DESCRIPTION:

This service sets the group Id to gid.
NOTES:

NONE

4.4.9 getgroups - Get Supplementary Group IDs

CALLING SEQUENCE:

int getgroups(
int gidsetsize,
gid_t grouplist[]
)

STATUS CODES:

NA

DESCRIPTION:

This service is not implemented as RTEMS has no notion of supplemental groups.
NOTES:

If supported, this routine would only be allowed for the super-user.

4.4, Directives 37

NS

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 4 Section 4.4

4.4.10 getlogin - Get User Name

CALLING SEQUENCE:

char *getlogin(void);

STATUS CODES:

Returns a pointer to a string containing the name of the current user.
DESCRIPTION:

This routine returns the name of the current user.

NOTES:

This routine is not reentrant and subsequent calls to getlogin() will overwrite the same buffer.

4.4.11 getlogin_r - Reentrant Get User Name

CALLING SEQUENCE:

int getlogin_r(
char *name,
size_t namesize
);

STATUS CODES:

| EINVAL | The arguments were invalid. |

DESCRIPTION:

This is a reentrant version of the getlogin() service. The caller specified their own buffer, name,
as well as the length of this buffer, namesize.

NOTES:
NONE

4.4.12 getpgrp - Get Process Group ID

CALLING SEQUENCE:

pid_t getpgrp(void);

STATUS CODES:

The procress group Id is returned.
DESCRIPTION:

This service returns the current progress group Id.
NOTES:

This routine is implemented in a somewhat meaningful way for RTEMS but is truly not func-
tional.

38 Chapter 4. Process Environment Manager

PN

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

4.4.13 setsid - Create Session and Set Process Group ID

CALLING SEQUENCE:

pid_t setsid(void);

STATUS CODES:

] EPERM \ The application does not have permission to create a process group. ‘

DESCRIPTION:

This routine always returns EPERM as RTEMS has no way to create new processes and thus no
way to create a new process group.

NOTES:
NONE

4.4.14 setpgid - Set Process Group ID for Job Control

CALLING SEQUENCE:

int setpgid(
pid_t pid,
pid_t pgid
);

STATUS CODES:

] ENOSYS \ The routine is not implemented. ‘

DESCRIPTION:

This service is not implemented for RTEMS as process groups are not supported.
NOTES:
NONE

4.4.15 uname - Get System Name

CALLING SEQUENCE:

int uname(
struct utsname *name

s

STATUS CODES:

| EPERM | The provided structure pointer is invalid. |

DESCRIPTION:

This service returns system information to the caller. It does this by filling in the struct utsname
format structure for the caller.

NOTES:

4.4, Directives 39

pwW N e

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 4 Section 4.4

The information provided includes the operating system (RTEMS in all configurations), the
node number, the release as the RTEMS version, and the CPU family and model. The CPU
model name will indicate the multilib executive variant being used.

4.4.16 times - Get process times

CALLING SEQUENCE:

#include <sys/time.h>
clock_t times(
struct tms *ptms

s

STATUS CODES:

This routine returns the number of clock ticks that have elapsed since the system was initialized
(e.g. the application was started).

DESCRIPTION:

times stores the current process times in ptms. The format of struct tms is as defined in
<sys/times.h>. RTEMS fills in the field tms_utime with the number of ticks that the calling
thread has executed and the field tms_stime with the number of clock ticks since system boot
(also returned). All other fields in the ptms are left zero.

NOTES:

RTEMS has no way to distinguish between user and system time so this routine returns the most
meaningful information possible.

4.4.17 getenv - Get Environment Variables

CALLING SEQUENCE:

char *getenv(
const char *name

s

STATUS CODES:

NULL when no match
pointer to value | when successful
DESCRIPTION:

This service searches the set of environment variables for a string that matches the specified
name. If found, it returns the associated value.

NOTES:

The environment list consists of name value pairs that are of the form name = value.

4.4.18 setenv - Set Environment Variables

CALLING SEQUENCE:

40 Chapter 4. Process Environment Manager

u A W N =

—

—

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

int setenv(
const char *name,
const char xvalue,
int overwrite

)5

STATUS CODES:
Returns O if successful and -1 otherwise.
DESCRIPTION:

This service adds the variable name to the environment with value. If name is not already exist,
then it is created. If name exists and overwrite is zero, then the previous value is not overwritten.

NOTES:
NONE

4.4.19 ctermid - Generate Terminal Pathname

CALLING SEQUENCE:

char xctermid(
char *s

s

STATUS CODES:
Returns a pointer to a string indicating the pathname for the controlling terminal.
DESCRIPTION:

This service returns the name of the terminal device associated with this process. If s is NULL,
then a pointer to a static buffer is returned. Otherwise, s is assumed to have a buffer of sufficient
size to contain the name of the controlling terminal.

NOTES:

By default on RTEMS systems, the controlling terminal is /dev/console. Again this implemen-
tation is of limited meaning, but it provides true and useful results which should be sufficient
to ease porting applications from a full POSIX implementation to the reduced profile supported
by RTEMS.

4.4.20 ttyname - Determine Terminal Device Name

CALLING SEQUENCE:

char *ttyname(
int fd
)5

STATUS CODES:
Pointer to a string containing the terminal device name or NULL is returned on any error.

DESCRIPTION:

4.4, Directives 41

N I

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 4 Section 4.4

This service returns a pointer to the pathname of the terminal device that is open on the file
descriptor fd. If fd is not a valid descriptor for a terminal device, then NULL is returned.

NOTES:

This routine uses a static buffer.

4.4.21 ttyname r - Reentrant Determine Terminal Device Name

CALLING SEQUENCE:

int ttyname_r(
int fd,
char *name,
int namesize
);

STATUS CODES:

This routine returns -1 and sets errno as follows:

EBADF | If not a valid descriptor for a terminal device.
EINVAL | If name is NULL or namesize are insufficient.

DESCRIPTION:

This service the pathname of the terminal device that is open on the file descriptor fd.
NOTES:
NONE

4.4.22 isatty - Determine if File Descriptor is Terminal

CALLING SEQUENCE:

int isatty(
int fd

s

STATUS CODES:

Returns 1 if fd is a terminal device and O otherwise.

DESCRIPTION:

This service returns 1 if fd is an open file descriptor connected to a terminal and 0 otherwise.

NOTES:

4.4.23 sysconf - Get Configurable System Variables

CALLING SEQUENCE:

long sysconf(
int name

s

42 Chapter 4. Process Environment Manager

Chapter 4 Section 4.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

STATUS CODES:

The value returned is the actual value of the system resource. If the requested configuration
name is a feature flag, then 1 is returned if the available and O if it is not. On any other error
condition, -1 is returned.

DESCRIPTION:

This service is the mechanism by which an application determines values for system limits or
options at runtime.

NOTES:

Much of the information that may be obtained via sysconf has equivalent macros in unistd.h.
However, those macros reflect conservative limits which may have been altered by application
configuration.

4.4, Directives 43

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 4 Section 4.4

44 Chapter 4. Process Environment Manager

CHAPTER

FIVE

FILES AND DIRECTORIES MANAGER

45

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.1

5.1 Introduction

The files and directories manager is ...

The directives provided by the files and directories manager are:

opendir (page 50) - Open a Directory

readdir (page 50) - Reads a directory

rewinddir (page 51) - Resets the readdir() pointer

scandir (page 51) - Scan a directory for matching entries
telldir (page 52) - Return current location in directory stream
closedir (page 52) - Ends directory read operation

getdents (page 66) - Get directory entries

chdir (page 53) - Changes the current working directory
fchdir (page 53) - Changes the current working directory
getcwd (page 54) - Gets current working directory

open (page 54) - Opens a file

creat (page 55) - Create a new file or rewrite an existing one
umask (page 56) - Sets a file creation mask

link (page 57) - Creates a link to a file

symlink (page 57) - Creates a symbolic link to a file

readlink (page 58) - Obtain the name of the link destination
mkdir (page 59) - Makes a directory

mkfifo (page 59) - Makes a FIFO special file

unlink (page 60) - Removes a directory entry

rmdir (page 60) - Delete a directory

rename (page 61) - Renames a file

stat (page 62) - Gets information about a file.

fstat (page 63) - Gets file status

[stat (page 63) - Gets file status

access (page 64) - Check permissions for a file.

chmod (page 64) - Changes file mode

fchmod (page 65) - Changes permissions of a file

chown (page 66) - Changes the owner and/ or group of a file
utime (page 67) - Change access and/or modification times of an inode
ftruncate (page 67) - Truncate a file to a specified length

truncate (page 68) - Truncate a file to a specified length

46

Chapter 5. Files and Directories Manager

Chapter 5 Section 5.1 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

* pathconf (page 69) - Gets configuration values for files
* fpathconf (page 70) - Get configuration values for files

* mknod (page 70) - Create a directory

5.1. Introduction 47

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.2

5.2 Background

5.2.1 Path Name Evaluation

A pathname is a string that consists of no more than PATH_MAX bytes, including the terminating
null character. A pathname has an optional beginning slash, followed by zero or more filenames
separated by slashes. If the pathname refers to a directory, it may also have one or more trailing
slashes. Multiple successive slahes are considered to be the same as one slash.

POSIX allows a pathname that begins with precisely two successive slashes to be interpreted
in an implementation-defined manner. RTEMS does not currently recognize this as a special
condition. Any number of successive slashes is treated the same as a single slash. POSIX
requires that an implementation treat more than two leading slashes as a single slash.

48 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.3 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

5.3 Operations

There is currently no text in this section.

5.3. Operations 49

u AW N =

L

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

5.4 Directives

This section details the files and directories manager’s directives. A subsection is dedicated to
each of this manager’s directives and describes the calling sequence, related constants, usage,
and status codes.

5.4.1 opendir - Open a Directory

CALLING SEQUENCE:

#include <sys/types.h>
#include <dirent.h>
int opendir(

const char *dirname

s

STATUS CODES:

EACCES | Search permission was denied on a component of the path prefix of dirname, or
read permission is denied

EMFILE | Too many file descriptors in use by process

ENFILE | Too many files are currently open in the system.

ENOENT | Directory does not exist, or name is an empty string.

ENOMEM | Insufficient memory to complete the operation.

ENOTDIR name is not a directory.

DESCRIPTION:

This routine opens a directory stream corresponding to the directory specified by the dirname
argument. The directory stream is positioned at the first entry.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.2 readdir - Reads a directory

CALLING SEQUENCE:

#include <sys/types.h>
#include <dirent.h>
int readdir(
DIR *dirp
);

STATUS CODES:

] EBADF \ Invalid file descriptor
DESCRIPTION:

The readdir() function returns a pointer to a structure dirent representing the next directory
entry from the directory stream pointed to by dirp. On end-of-file, NULL is returned.

The readdir() function may (or may not) return entries for . or .. Your program should
tolerate reading dot and dot-dot but not require them.

50 Chapter 5. Files and Directories Manager

Ny AW N =

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

The data pointed to be readdir () may be overwritten by another call to readdir () for the same
directory stream. It will not be overwritten by a call for another directory.

NOTES:

If ptr is not a pointer returned by malloc(), calloc(), or realloc() or has been deallocated
with free() or realloc(), the results are not portable and are probably disastrous.

The routine is implemented in Cygnus newlib.

5.4.3 rewinddir - Resets the readdir() pointer

CALLING SEQUENCE:

#include <sys/types.h>
#include <dirent.h>
void rewinddir(

DIR *dirp
);

STATUS CODES:
No value is returned.
DESCRIPTION:

The rewinddir() function resets the position associated with the directory stream pointed to by
dirp. It also causes the directory stream to refer to the current state of the directory.

NOTES:
NONE
If dirp is not a pointer by opendir(), the results are undefined.

The routine is implemented in Cygnus newlib.

5.4.4 scandir - Scan a directory for matching entries

CALLING SEQUENCE:

#include <dirent.h>
int scandir(

const char *dir,

struct dirent ***namelist,

int (*select)(const struct dirent =*),

int (*compar)(const struct dirent **, const struct dirent =*x)
);

STATUS CODES:

] ENOMEM \ Insufficient memory to complete the operation. ‘

DESCRIPTION:

The scandir() function scans the directory dir, calling select() on each directory entry. En-
tries for which select() returns non-zero are stored in strings allocated via malloc(), sorted

5.4. Directives 51

BW N e

u AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

using gsort() with the comparison function compar(), and collected in array namelist which
is allocated via malloc(). If select is NULL, all entries are selected.

NOTES:

The routine is implemented in Cygnus newlib.

5.4.5 telldir - Return current location in directory stream

CALLING SEQUENCE:

#include <dirent.h>
off_t telldir(

DIR *dir
)5

STATUS CODES:

| EBADF | Invalid directory stream descriptor dir. |
DESCRIPTION:

The telldir() function returns the current location associated with the directory stream dir.
NOTES:

The routine is implemented in Cygnus newlib.

5.4.6 closedir - Ends directory read operation

CALLING SEQUENCE:

#include <sys/types.h>
#include <dirent.h>
int closedir(

DIR *dirp
)5

STATUS CODES:

| EBADF | Invalid file descriptor |
DESCRIPTION:

The directory stream associated with dirp is closed. The value in dirp may not be usable after
a call to closedir().

NOTES:
NONE

The argument to closedir() must be a pointer returned by opendir(). If it is not, the results
are not portable and most likely unpleasant.

The routine is implemented in Cygnus newlib.

52 Chapter 5. Files and Directories Manager

BwW N =

P

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

5.4.7 chdir - Changes the current working directory

CALLING SEQUENCE:

#include <unistd.h>
int chdir(
const char *path

s

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EACCES Search permission is denied for a directory in a file’s path prefix.

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist.

ENOTDIR A component of the specified pathname was not a directory when directory
was expected.

DESCRIPTION:

The chdir() function causes the directory named by path to become the current working direc-
tory; that is, the starting point for searches of pathnames not beginning with a slash.

If chdir() detects an error, the current working directory is not changed.
NOTES:
NONE

5.4.8 fchdir - Changes the current working directory

CALLING SEQUENCE:

#include <unistd.h>
int fchdir(

int fd
);

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EACCES Search permission is denied for a directory in a file’s path prefix.

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist.

ENOTDIR A component of the specified pathname was not a directory when directory
was expected.

DESCRIPTION:

The fchdir() function causes the directory named by fd to become the current working direc-
tory; that is, the starting point for searches of pathnames not beginning with a slash.

If fchdir() detects an error, the current working directory is not changed.

5.4. Directives 53

0w N o A W N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

NOTES:
NONE

5.4.9 getcwd - Gets current working directory

CALLING SEQUENCE:

#include <unistd.h>
int getcwd(void);

STATUS CODES:

EINVAL | Invalid argument
ERANGE | Result is too large
EACCES | Search permission is denied for a directory in a file’s path prefix.

DESCRIPTION:

The getcwd() function copies the absolute pathname of the current working directory to the
character array pointed to by buf. The size argument is the number of bytes available in buf

NOTES:

There is no way to determine the maximum string length that fetcwd() may need to return.
Applications should tolerate getting ERANGE and allocate a larger buffer.

It is possible for getcwd() to return EACCES if, say, login puts the process into a directory
without read access.

The 1988 standard uses int instead of size_t for the second parameter.

5.4.10 open - Opens a file

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(
const char xpath,
int oflag,
mode_t mode

s

STATUS CODES:

54 Chapter 5. Files and Directories Manager

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

EACCES Search permission is denied for a directory in a file’s path prefix.

EEXIST The named file already exists.

EINTR Function was interrupted by a signal.

EISDIR Attempt to open a directory for writing or to rename a file to be a directory.

EMFILE Too many file descriptors are in use by this process.

ENAMETOOLONGength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.

ENFILE Too many files are currently open in the system.

ENOENT A file or directory does not exist.

ENOSPC No space left on disk.

ENOTDIR A component of the specified pathname was not a directory when a directory
was expected.

ENXIO No such device. This error may also occur when a device is not ready, for
example, a tape drive is off-line.

EROFS Read-only file system.

DESCRIPTION:

The open function establishes a connection between a file and a file descriptor. The file descrip-
tor is a small integer that is used by I/O functions to reference the file. The path argument
points to the pathname for the file.

The oflag argument is the bitwise inclusive OR of the values of symbolic constants. The pro-
grammer must specify exactly one of the following three symbols:

O_RDONLY | Open for reading only.
O_WRONLY | Open for writing only.
O_RDWR Open for reading and writing.

Any combination of the following symbols may also be used.

0_ Set the file offset to the end-of-file prior to each write.

APPEND

0_ If the file does not exist, allow it to be created. This flag indicates that the mode

CREAT | argument is present in the call to open.

0_ This flag may be used only if 0_CREAT is also set. It causes the call to open to fail if

EXCL the file already exists.

0_ Do not assign controlling terminal.

NOCTTY

0_ Do no wait for the device or file to be ready or available. After the file is open, the

NONBLOCKread and write calls return immediately. If the process would be delayed in the
read or write opermation, -1 is returned and“errno“ is set to EAGAIN instead of
blocking the caller.

0_ This flag should be used only on ordinary files opened for writing. It causes the file

TRUNC | to be tuncated to zero length..

Upon successful completion, open returns a non-negative file descriptor.
NOTES:
NONE

5.4.11 creat - Create a new file or rewrite an existing one

CALLING SEQUENCE:

5.4. Directives 55

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

Ny v AW N =

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat(
const char #*path,
mode_t mode
)5

STATUS CODES:

EEXIST path already exists and O_CREAT and O_EXCL were used.

EISDIR path refers to a directory and the access requested involved writing

ETXTBSY | path refers to an executable image which is currently being executed and write
access was requested

EFAULT path points outside your accessible address space

EACCES The requested access to the file is not allowed, or one of the directories in path
did not allow search (execute) permission.

ENAMETOOLOMG@th was too long.

ENOENT A directory component in path does not exist or is a dangling symbolic link.

ENOTDIR | A component used as a directory in path is not, in fact, a directory.

EMFILE The process alreadyh has the maximum number of files open.

ENFILE The limit on the total number of files open on the system has been reached.

ENOMEM Insufficient kernel memory was available.

EROFS path refers to a file on a read-only filesystem and write access was requested
DESCRIPTION:

creat attempts to create a file and return a file descriptor for use in read, write, etc.
NOTES:
NONE

The routine is implemented in Cygnus newlib.

5.4.12 umask - Sets a file creation mask.

CALLING SEQUENCE:

L

#include <sys/types.h>
#include <sys/stat.h>
mode_t umask(

mode_t cmask

s

STATUS CODES:
DESCRIPTION:

The umask() function sets the process file creation mask to cmask. The file creation mask is
used during open(), creat(), mkdir(), mkfifo() calls to turn off permission bits in the mode
argument. Bit positions that are set in cmask are cleared in the mode of the created file.

NOTES:
NONE

56 Chapter 5. Files and Directories Manager

L

u AW N =

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

The cmask argument should have only permission bits set. All other bits should be zero.

In a system which supports multiple processes, the file creation mask is inherited across fork()
and exec() calls. This makes it possible to alter the default permission bits of created files.
RTEMS does not support multiple processes so this behavior is not possible.

5.4.13 link - Creates a link to a file

CALLING SEQUENCE:

#include <unistd.h>

int link(
const char xexisting,
const char *new

s

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix

EEXIST The named file already exists.

EMLINK The number of links would exceed LINK_MAX.

ENAMETOOLONEéngth of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.

ENOENT | A file or directory does not exist.

ENOSPC No space left on disk.

ENOTDIR | A component of the specified pathname was not a directory when a directory
was expected.

EPERM Operation is not permitted. Process does not have the appropriate priviledges or
permissions to perform the requested operations.

EROFS Read-only file system.

EXDEV Attempt to link a file to another file system.

DESCRIPTION:

The 1link() function atomically creates a new link for an existing file and increments the link
count for the file.

If the 1ink() function fails, no directories are modified.

The existing argument should not be a directory.

The caller may (or may not) need permission to access the existing file.
NOTES:

NONE

5.4.14 symlink - Creates a symbolic link to a file

CALLING SEQUENCE:

#include <unistd.h>

int symlink(
const char xtopath,
const char *frompath

s

5.4. Directives 57

A v AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix

EEXIST | The named file already exists.

ENAMETOOLONéngth of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.

ENOENT | A file or directory does not exist.

ENOSPC No space left on disk.

ENOTDIR | A component of the specified pathname was not a directory when a directory
was expected.

EPERM Operation is not permitted. Process does not have the appropriate priviledges or
permissions to perform the requested operations.

EROFS Read-only file system.

DESCRIPTION:

The symlink() function creates a symbolic link from the frombath to the topath. The symbolic
link will be interpreted at run-time.

If the symlink() function fails, no directories are modified.

The caller may (or may not) need permission to access the existing file.
NOTES:

NONE

5.4.15 readlink - Obtain the name of a symbolic link destination

CALLING SEQUENCE:

#include <unistd.h>

int readlink(
const char xpath,
char *buf,
size_t bufsize

s

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist.

ENOTDIR A component of the prefix pathname was not a directory when a directory
was expected.

ELOOP Too many symbolic links were encountered in the pathname.

EINVAL The pathname does not refer to a symbolic link

EFAULT An invalid pointer was passed into the readlink() routine.

DESCRIPTION:

The readlink() function places the symbolic link destination into buf argument and returns
the number of characters copied.

If the symbolic link destination is longer than bufsize characters the name will be truncated.

NOTES:

58 Chapter 5. Files and Directories Manager

A v A W N =

R N

Chapter 5 Section 5.4

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

NONE

5.4.16 mkdir - Makes a directory

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
int mkdir(
const char #*path,
mode_t mode

);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix

EEXIST The name file already exist.

EMLINK The number of links would exceed LINK_MAX

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist.

ENOSPC No space left on disk.

ENOTDIR A component of the specified pathname was not a directory when a directory
was expected.

EROFS Read-only file system.

DESCRIPTION:

The mkdir () function creates a new diectory named path. The permission bits (modified by the
file creation mask) are set from mode. The owner and group IDs for the directory are set from

the effective user ID and group ID.

The new directory may (or may not) contain entries for . and .. but is otherwise empty.

NOTES:
NONE

5.4.17 mkfifo - Makes a FIFO special file

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(
const char *path,
mode_t mode

s

STATUS CODES:

5.4. Directives

59

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

EACCES | Search permission is denied for a directory in a file’s path prefix

EEXIST | The named file already exists.

ENOENT | A file or directory does not exist.

ENOSPC | No space left on disk.

ENOTDIR | A component of the specified path was not a directory when a directory was

expected.
EROFS Read-only file system.
DESCRIPTION:

The mkfifo() function creates a new FIFO special file named path. The permission bits (modi-
fied by the file creation mask) are set from mode. The owner and group IDs for the FIFO are set
from the efective user ID and group ID.

NOTES:
NONE

5.4.18 unlink - Removes a directory entry

CALLING SEQUENCE:

#include <unistd.h>
int unlink(
const char path

);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix

EBUSY The directory is in use.

ENAMETOOLONéngth of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.

ENOENT | A file or directory does not exist.

ENOTDIR | A component of the specified path was not a directory when a directory was
expected.

EPERM Operation is not permitted. Process does not have the appropriate priviledges or
permissions to perform the requested operations.

EROFS Read-only file system.

DESCRIPTION:

The unlink function removes the link named by path and decrements the link count of the file
referenced by the link. When the link count goes to zero and no process has the file open, the
space occupied by the file is freed and the file is no longer accessible.

NOTES:
NONE

5.4.19 rmdir - Delete a directory

CALLING SEQUENCE:

#include <unistd.h>
int rmdir(

60 Chapter 5. Files and Directories Manager

w

R Y

Chapter 5 Section 5.4

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

const char *pathname

s

STATUS CODES:

EPERM The filesystem containing pathname does not support the removal of directories.

EFAULT | pathname points ouside your accessible address space.

EACCES | Write access to the directory containing pathname was not allowed for the
process’s effective uid, or one of the directories in“pathname* did not allow
search (execute) permission.

EPERM The directory containing pathname has the stickybit (S_ISVTX) set and the
process’s effective uid is neither the uid of the file to be delected nor that of the
director containing it.

ENAMETOQLPNEhname was too long.

ENOENT | A dirctory component in pathname does not exist or is a dangling symbolic link.

ENOTDIR | pathname, or a component used as a directory in pathname, is not, in fact, a
directory.

ENOTEMPTYpathname contains entries other than . and .. .

EBUSY pathname is the current working directory or root directory of some process

EBUSY pathname is the current directory or root directory of some process.

ENOMEM | Insufficient kernel memory was available

EROGS pathname refers to a file on a read-only filesystem.

ELOOP pathname contains a reference to a circular symbolic link

DESCRIPTION:

rmdir deletes a directory, which must be empty

NOTES:
NONE

5.4.20 rename - Renames a file

CALLING SEQUENCE:

#include <unistd.h>
int rename(
const char *old,
const char *new

s

STATUS CODES:

5.4. Directives

61

a1 AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

Chapter 5 Section 5.4

EACCES Search permission is denied for a directory in a file’s path prefix.

EBUSY The directory is in use.

EEXIST The named file already exists.

EINVAL Invalid argument.

EISDIR Attempt to open a directory for writing or to rename a file to be a directory.

EMLINK The number of links would exceed LINK_MAX.

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does no exist.

ENOSPC No space left on disk.

ENOTDIR A component of the specified pathname was not a directory when a directory
was expected.

ENOTEMPTY | Attempt to delete or rename a non-empty directory.

EROFS Read-only file system

EXDEV Attempt to link a file to another file system.

DESCRIPTION:

The rename () function causes the file known bo old to now be known as new.

Ordinary files may be renamed to ordinary files, and directories may be renamed to directories;
however, files cannot be converted using rename(). The new pathname may not contain a path
prefix of old.

NOTES:

If a file already exists by the name new, it is removed. The rename() function is atomic. If the
rename () detects an error, no files are removed. This guarantees that the rename(”x","x") does
not remove x.

You may not rename dot or dot-dot.

The routine is implemented in Cygnus newlib using 1ink() and unlink().

5.4.21 stat - Gets information about a file

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
int stat(
const char =*path,
struct stat *buf

s

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix.

EBADF Invalid file descriptor.

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist.
ENOTDIR A component of the specified pathname was not a directory when a directory
was expected.
DESCRIPTION:
62 Chapter 5. Files and Directories Manager

R N S

A 1AW N =

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

The path argument points to a pathname for a file. Read, write, or execute permission for the
file is not required, but all directories listed in path must be searchable. The stat() function
obtains information about the named file and writes it to the area pointed to by buf.

NOTES:
NONE

5.4.22 fstat - Gets file status

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
int fstat(
int fildes,
struct stat *buf

s

STATUS CODES:

| EBADF | Invalid file descriptor |
DESCRIPTION:

The fstat() function obtains information about the file associated with fildes and writes it to
the area pointed to by the buf argument.

NOTES:

If the filesystem object referred to by fildes is a link, then the information returned in buf
refers to the destination of that link. This is in contrast to 1stat() which does not follow the
link.

5.4.23 Istat - Gets file status

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
int Istat(
int fildes,
struct stat *buf

s

STATUS CODES:

| EBADF | Invalid file descriptor |
DESCRIPTION:

The 1stat () function obtains information about the file associated with fildes and writes it to
the area pointed to by the buf argument.

NOTES:

If the filesystem object referred to by fildes is a link, then the information returned in buf
refers to the link itself. This is in contrast to fstat() which follows the link.

5.4. Directives 63

R N S

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

The 1stat() routine is defined by BSD 4.3 and SVR4 and not included in POSIX 1003.1b-1996.

5.4.24 access - Check permissions for a file

CALLING SEQUENCE:

#include <unistd.h>

int access(
const char *pathname,
int mode

);

STATUS CODES:

EACCES The requested access would be denied, either to the file itself or one of the
directories in pathname.

EFAULT pathname points outside your accessible address space.

EINVAL Mode was incorrectly specified.

ENAMETOOLONgathname is too long.

ENOENT A directory component in pathname would have been accessible but does not
exist or was a dangling symbolic link.

ENOTDIR | A component used as a directory in pathname is not, in fact, a directory.

ENOMEM Insufficient kernel memory was available.

DESCRIPTION:

Access checks whether the process would be allowed to read, write or test for existence of
the file (or other file system object) whose name is pathname. If pathname is a symbolic link
permissions of the file referred by this symbolic link are tested.

Mode is a mask consisting of one or more of R_OK, W_OK, X_OK and F_OK.
NOTES:
NONE

5.4.25 chmod - Changes file mode.

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
int chmod(
const char xpath,
mode_t mode

s

STATUS CODES:

64 Chapter 5. Files and Directories Manager

. A W N =

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

EACCES Search permission is denied for a directory in a file’s path prefix

ENAMETOOLONength of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.

ENOENT A file or directory does not exist.

ENOTDIR | A component of the specified pathname was not a directory when a directory
was expected.

EPERM Operation is not permitted. Process does not have the appropriate priviledges or
permissions to perform the requested operations.

EROFS Read-only file system.

DESCRIPTION:

Set the file permission bits, the set user ID bit, and the set group ID bit for the file named by
path to mode. If the effective user ID does not match the owner of the file and the calling process
does not have the appropriate privileges, chmod() returns -1 and sets errno to EPERM.

NOTES:
NONE

5.4.26 fchmod - Changes permissions of a file

CALLING SEQUENCE:

#include <sys/types.h>
#include <sys/stat.h>
int fchmod(
int fildes,
mode_t mode

);

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix.

EBADF The descriptor is not valid.

EFAULT path points outside your accessible address space.

EIO A low-level I/0 error occurred while modifying the inode.

ELOOP path contains a circular reference

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does no exist.

ENOMEM Insufficient kernel memory was avaliable.

ENOTDIR A component of the specified pathname was not a directory when a directory
was expected.

EPERM The effective UID does not match the owner of the file, and is not zero

EROFS Read-only file system

DESCRIPTION:

The mode of the file given by path or referenced by filedes is changed.
NOTES:
NONE

5.4. Directives 65

0w N o A W N =

N O v AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

5.4.27 getdents - Get directory entries

CALLING SEQUENCE:

#include <unistd.h>
#include <linux/dirent.h>
#include <linux/unistd.h>
long getdents(

int dd_fd,

char *dd_buf,

int dd_len
);

STATUS CODES:

A successful call to getdents returns th the number of bytes read. On end of directory, O is
returned. When an error occurs, -1 is returned, and errno is set appropriately.

EBADF Invalid file descriptor fd.

EFAULT | Argument points outside the calling process’s address space.
EINVAL | Result buffer is too small.

ENOENT | No such directory.

ENOTDIR | File descriptor does not refer to a directory.

DESCRIPTION:

getdents reads several dirent structures from the directory pointed by fd into the memory area
pointed to by dirp. The parameter count is the size of the memory area.

NOTES:
NONE

5.4.28 chown - Changes the owner and/or group of a file.

CALLING SEQUENCE:

#include <sys/types.h>
#include <unistd.h>
int chown(
const char xpath,
uid_t owner,
gid_t group
)5

STATUS CODES:

EACCES Search permission is denied for a directory in a file’s path prefix

EINVAL Invalid argument

ENAMETOOLONéngth of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in effect.

ENOENT A file or directory does not exist.

ENOTDIR | A component of the specified pathname was not a directory when a directory
was expected.

EPERM Operation is not permitted. Process does not have the appropriate priviledges or
permissions to perform the requested operations.

EROFS Read-only file system.

66 Chapter 5. Files and Directories Manager

au A W N =

u AW N =

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

DESCRIPTION:
The user ID and group ID of the file named by path are set to owner and path, respectively.
For regular files, the set group ID (S_ISGID) and set user ID (S_ISUID) bits are cleared.

Some systems consider it a security violation to allow the owner of a file to be changed, If users
are billed for disk space usage, loaning a file to another user could result in incorrect billing.
The chown() function may be restricted to privileged users for some or all files. The group ID
can still be changed to one of the supplementary group IDs.

NOTES:

This function may be restricted for some file. The pathconf function can be used to test the
_PC_CHOWN_RESTRICTED flag.

5.4.29 utime - Change access and/or modification times of an inode

CALLING SEQUENCE:

#include <sys/types.h>

int utime(
const char *filename,
struct utimbuf xbuf

s

STATUS CODES:

EACCES | Permission to write the file is denied
ENOENT | Filename does not exist

DESCRIPTION:

Utime changes the access and modification times of the inode specified by filename to the
actime and modtime fields of buf respectively. If buf is NULL, then the access and modification
times of the file are set to the current time.

NOTES:
NONE

5.4.30 ftruncate - truncate a file to a specified length

CALLING SEQUENCE:

#include <unistd.h>
int ftrunctate(
int fd,
size_t length
)5

STATUS CODES:

5.4. Directives 67

R Y

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

ENOTDIR | A component of the path prefix is not a directory.

EINVAL | The pathname contains a character with the high-order bit set.

ENAMETOOLORNGe length of the specified pathname exceeds PATH_MAX bytes, or the length of a
component of the pathname exceeds NAME_MAX bytes.

ENOENT The named file does not exist.

EACCES The named file is not writable by the user.

EACCES | Search permission is denied for a component of the path prefix.

ELOOP Too many symbolic links were encountered in translating the pathname
EISDIR | The named file is a directory.

EROFS The named file resides on a read-only file system

ETXTBSY | The file is a pure procedure (shared text) file that is being executed

EIO An I/0 error occurred updating the inode.

EFAULT | Path points outside the process’s allocated address space.

EBADF The fd is not a valid descriptor.

DESCRIPTION:

truncate() causes the file named by path or referenced by fd to be truncated to at most
length bytes in size. If the file previously was larger than this size, the extra data is lost.
With ftruncate(), the file must be open for writing.

NOTES:
NONE

5.4.31 truncate - truncate a file to a specified length

CALLING SEQUENCE:

#include <unistd.h>
int trunctate(
const char x*path,
size_t length
)

STATUS CODES:

ENOTDIR | A component of the path prefix is not a directory.

EINVAL | The pathname contains a character with the high-order bit set.

ENAMETOOLOREe length of the specified pathname exceeds PATH_MAX bytes, or the length of a
component of the pathname exceeds NAME_MAX bytes.

ENOENT The named file does not exist.

EACCES | The named file is not writable by the user.

EACCES | Search permission is denied for a component of the path prefix.

ELOOP Too many symbolic links were encountered in translating the pathname
EISDIR | The named file is a directory.

EROFS The named file resides on a read-only file system

ETXTBSY | The file is a pure procedure (shared text) file that is being executed

EIO An I/0 error occurred updating the inode.

EFAULT | Path points outside the process’s allocated address space.

EBADF The fd is not a valid descriptor.

DESCRIPTION:

68 Chapter 5. Files and Directories Manager

u AW N =

Chapter 5 Section 5.4

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

truncate() causes the file named by path or referenced by“fd“ to be truncated to at most
length bytes in size. If the file previously was larger than this size, the extra data is lost. With
ftruncate(), the file must be open for writing.

NOTES:
NONE

5.4.32 pathconf - Gets configuration values for files

CALLING SEQUENCE:

#include <unistd.h>

int pathconf(

const char xpath,

int

s

name

STATUS CODES:

EINVAL Invalid argument

EACCES Permission to write the file is denied

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist

ENOTDIR A component of the specified path was not a directory whan a directory was
expected.

DESCRIPTION:

pathconf () gets a value for the configuration option name for the open file descriptor filedes.

The possible values for name are:

_PC_LINK_ Returns the maximum number of links to the file. If filedes or“path® refer to
MAX a directory, then the value applies to the whole directory. The corresponding
macro is _POSIX_LINK_MAX.
_PC_MAX_ Returns the maximum length of a formatted input line, where filedes or
CANON path must refer to a terminal. The corresponding macro is _POSIX_MAX_CANON.
_PC_MAX_ Returns the maximum length of an input line, where filedes or path must
INPUT refer to a terminal. The corresponding macro is“ POSIX MAX INPUT*“.
_PC_NAME_ Returns the maximum length of a filename in the directory path or filedes.
MAX The process is allowed to create. The corresponding macro is
_POSIX_NAME_MAX.
_PC_PATH_ returns the maximum length of a relative pathname when path or“filedes” is
MAX the current working directory. The corresponding macro is _POSIX_PATH_MAX.
_PC_PIPE_ returns the size of the pipe buffer, where filedes must refer to a pipe or FIFO
BUF and path must refer to a FIFO. The corresponding macro is _POSIX_PIPE_BUF.
_PC_CHOWN_ | Returns nonzero if the chown(2) call may not be used on this file. If“filedes”
RESTRICTED | or path refer to a directory, then this applies to all files in that directory. The
corresponding macro is _POSIX_CHOWN_RESTRICTED.
NOTES:

Files with name lengths longer than the value returned for name equal _PC_NAME_MAX may exist
in the given directory.

5.4. Directives

69

A W N =

N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

Chapter 5 Section 5.4

5.4.33 fpathconf - Gets configuration values for files

CALLING SEQUENCE:

#include <unistd.h>

int fpathconf(
int filedes,
int name

);

STATUS CODES:

EINVAL Invalid argument

EACCES Permission to write the file is denied

ENAMETOOLONG Length of a filename string exceeds PATH_MAX and _POSIX_NO_TRUNC is in
effect.

ENOENT A file or directory does not exist

ENOTDIR A component of the specified path was not a directory whan a directory was
expected.

DESCRIPTION:

pathconf () gets a value for the configuration option name for the open file descriptor filedes.

The possible values for name are:

_PC_LINK_ Returns the maximum number of links to the file. If filedes or path refer to

MAX a directory, then the value applies to the whole directory. The corresponding
macro is _POSIX_LINK_MAX.

_PC_MAX_ returns the maximum length of a formatted input line, where filedes or path

CANON must refer to a terminal. The corresponding macro is _POSIX_MAX_CANON.

_PC_MAX_ Returns the maximum length of an input line, where filedes or path must

INPUT refer to a terminal. The corresponding macro is _POSIX_MAX_INPUT.

_PC_NAME_ Returns the maximum length of a filename in the directory path or filedes.

MAX The process is allowed to create. The corresponding macro is
_POSIX_NAME_MAX.

_PC_PATH_ Returns the maximum length of a relative pathname when path or filedes is

MAX the current working directory. The corresponding macro is _POSIX_PATH_MAX.

_PC_PIPE_ Returns the size of the pipe buffer, where filedes must refer to a pipe or

BUF FIFO and path must refer to a FIFO. The corresponding macro is
_POSIX_PIPE_BUF.

_PC_CHOWN_ | Returns nonzero if the chown() call may not be used on this file. If filedes or

RESTRICTED | path refer to a directory, then this applies to all files in that directory. The
corresponding macro is _POSIX_CHOWN_RESTRICTED.

NOTES:
NONE

5.4.34 mknod - create a directory

CALLING SEQUENCE:

#include <unistd.h>
#include <fcntl.h>

70

Chapter 5. Files and Directories Manager

O O N O AW

Chapter 5 Section 5.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

#include <sys/types.h>
#include <sys/stat.h>
long mknod(
const char *pathname,
mode_t mode,
dev_t dev

s

STATUS CODES:

mknod returns zero on success, or -1 if an error occurred (in which case, errno is set appropri-
ately).

ENAMETOOLOMG@thname was too long.
ENOENT A directory component in pathname does not exist or is a dangling symbolic link.
ENOTDIR | A component used in the directory pathname is not, in fact, a directory.
ENOMEM Insufficient kernel memory was available
EROFS pathname refers to a file on a read-only filesystem.
ELOOP pathname contains a reference to a circular symbolic link, ie a symbolic link
whose expansion contains a reference to itself.
ENOSPC The device containing pathname has no room for the new node.
DESCRIPTION:

mknod attempts to create a filesystem node (file, device special file or named pipe) named
pathname, specified by mode and dev.

mode specifies both the permissions to use and the type of node to be created.

It should be a combination (using bitwise OR) of one of the file types listed below and the
permissions for the new node.

The permissions are modified by the process’s umask in the usual way: the permissions of the
created node are (mode & ~umask).

The file type should be one of S_IFREG, S_IFCHR, S_IFBLK and S_IFIFO to specify a normal file
(which will be created empty), character special file, block special file or FIFO (named pipe),
respectively, or zero, which will create a normal file.

If the file type is S_IFCHR or S_IFBLK then dev specifies the major and minor numbers of the
newly created device special file; otherwise it is ignored.

The newly created node will be owned by the effective uid of the process. If the directory
containing the node has the set group id bit set, or if the filesystem is mounted with BSD group
semantics, the new node will inherit the group ownership from its parent directory; otherwise
it will be owned by the effective gid of the process.

NOTES:
NONE

5.4. Directives 71

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 5 Section 5.4

72 Chapter 5. Files and Directories Manager

CHAPTER

SIX

INPUT AND OUTPUT PRIMITIVES
MANAGER

73

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.1

6.1 Introduction

The input and output primitives manager is ...
The directives provided by the input and output primitives manager are:
* pipe (page 77) - Create an Inter-Process Channel
* dup (page 77) - Duplicates an open file descriptor
* dup2 (page 77) - Duplicates an open file descriptor
* close (page 78) - Closes a file
* read (page 78) - Reads from a file
* write (page 79) - Writes to a file
* fentl (page 80) - Manipulates an open file descriptor
* [seek (page 81) - Reposition read/write file offset
* fsync (page 82) - Synchronize file complete in-core state with that on disk
* fdatasync (page 83) - Synchronize file in-core data with that on disk
* sync (page 83) - Schedule file system updates
* mount (page 83) - Mount a file system
* unmount (page 84) - Unmount file systems
* readv (page 84) - Vectored read from a file
* writev (page 85) - Vectored write to a file
* aio_read (page 86) - Asynchronous Read
* aio_write (page 86) - Asynchronous Write
* lio_listio (page 86) - List Directed I/0O
* aio_error (page 87) - Retrieve Error Status of Asynchronous I/0 Operation
* aio_return (page 87) - Retrieve Return Status Asynchronous I/O Operation
* aio_cancel (page 87) - Cancel Asynchronous I/0 Request
* aio_suspend (page 87) - Wait for Asynchronous I/O Request

* aio_fsync (page 88) - Asynchronous File Synchronization

74 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.2 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

6.2 Background

There is currently no text in this section.

6.2. Background 75

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.3

6.3 Operations

There is currently no text in this section.

76 Chapter 6. Input and Output Primitives Manager

F

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

6.4 Directives

This section details the input and output primitives manager’s directives. A subsection is dedi-
cated to each of this manager’s directives and describes the calling sequence, related constants,
usage, and status codes.

6.4.1 pipe - Create an Inter-Process Channel

CALLING SEQUENCE:

int pipe(
)

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.2 dup - Duplicates an open file descriptor

CALLING SEQUENCE:

#include <unistd.h>
int dup(
int fildes

);

STATUS CODES:

EBADF | Invalid file descriptor.

EINTR | Function was interrupted by a signal.

EMFILE| The process already has the maximum number of file descriptors open and tried to
open a new one.

DESCRIPTION:

The dup function returns the lowest numbered available file descriptor. This new desciptor
refers to the same open file as the original descriptor and shares any locks.

NOTES:
NONE

6.4.3 dup2 - Duplicates an open file descriptor

CALLING SEQUENCE:

#include <unistd.h>
int dup2(
int fildes,

6.4. Directives 77

BwW N =

R N

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.4

int fildes2
);

STATUS CODES:

EBADF | Invalid file descriptor.

EINTR | Function was interrupted by a signal.

EMFILE| The process already has the maximum number of file descriptors open and tried to
open a new one.

DESCRIPTION:
dup2 creates a copy of the file descriptor oldfd.

The old and new descriptors may be used interchangeably. They share locks, file position point-
ers and flags; for example, if the file position is modified by using 1seek on one of the descrip-
tors, the position is also changed for the other.

NOTES:
NONE

6.4.4 close - Closes a file

CALLING SEQUENCE:

#include <unistd.h>
int close(

int fildes
);

STATUS CODES:

EBADF | Invalid file descriptor
EINTR | Function was interrupted by a signal.

DESCRIPTION:

The close() function deallocates the file descriptor named by fildes and makes it available for
reuse. All outstanding record locks owned by this process for the file are unlocked.

NOTES:

A signal can interrupt the close() function. In that case, close() returns -1 with errno set to
EINTR. The file may or may not be closed.

6.4.5 read - Reads from a file

CALLING SEQUENCE:

#include <unistd.h>

int read(
int fildes,
void *buf,
unsigned int nbyte

78 Chapter 6. Input and Output Primitives Manager

R N

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

STATUS CODES:

On error, this routine returns -1 and sets errno to one of the following:

EAGAIN The O NONBLOCK flag is set for a file descriptor and the process would be delayed
in the I/0 operation.

EBADF | Invalid file descriptor

EINTR | Function was interrupted by a signal.

EIO Input or output error

EINVAL| Bad buffer pointer

DESCRIPTION:

The read() function reads nbyte bytes from the file associated with fildes into the buffer
pointed to by buf.

The read() function returns the number of bytes actually read and placed in the buffer. This
will be less than nbyte if:

* The number of bytes left in the file is less than nbyte.
* The read() request was interrupted by a signal.

* The file is a pipe or FIFO or special file with less than nbytes immediately available for
reading.

When attempting to read from any empty pipe or FIFO:
* If no process has the pipe open for writing, zero is returned to indicate end-of-file.

* If some process has the pipe open for writing and O_NONBLOCK is set, -1 is returned and
errno is set to EAGAIN.

* If some process has the pipe open for writing and O_NONBLOCK is clear, read() waits for
some data to be written or the pipe to be closed.

When attempting to read from a file other than a pipe or FIFO and no data is available.
* If O_ NONBLOCK is set, -1 is returned and errno is set to EAGAIN.
* If O NONBLOCK is clear, read() waits for some data to become available.
* The O NONBLOCK flag is ignored if data is available.

NOTES:

NONE

6.4.6 write - Writes to a file

CALLING SEQUENCE:

#include <unistd.h>

int write(

int fildes,
const void *buf,
unsigned int nbytes

s

6.4. Directives 79

Ny v AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.4

STATUS CODES:

EAGAIN The O NONBLOCK flag is set for a file descriptor and the process would be delayed
in the I/0 operation.

EBADF | Invalid file descriptor

EFBIG | An attempt was made to write to a file that exceeds the maximum file size

EINTR | The function was interrupted by a signal.

EIO Input or output error.

ENOSPC| No space left on disk.

EPIPE | Attempt to write to a pope or FIFO with no reader.

EINVAL Bad buffer pointer

DESCRIPTION:

The write() function writes nbyte from the array pointed to by buf into the file associated with
fildes.

If nybte is zero and the file is a regular file, the write() function returns zero and has no other
effect. If nbyte is zero and the file is a special file, te results are not portable.

The write() function returns the number of bytes written. This number will be less than nbytes
if there is an error. It will never be greater than nbytes.

NOTES:
NONE

6.4.7 fentl - Manipulates an open file descriptor

CALLING SEQUENCE:

#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
int fentl(

int fildes,

int cmd

);

STATUS CODES:

EACCESS Search permission is denied for a direcotry in a file’s path prefix.

EAGAIN | The O NONBLOCK flag is set for a file descriptor and the process would be delayed
in the I/0 operation.

EBADF | Invalid file descriptor

EDEADLK An fcntl with function F_SETLKW would cause a deadlock.

EINTR | The functioin was interrupted by a signal.

EINVAL | Invalid argument

EMFILE | Too many file descriptor or in use by the process.

ENOLCK | No locks available

DESCRIPTION:

fentl () performs one of various miscellaneous operations on“fd“. The operation in question is
determined by cmd:

80 Chapter 6. Input and Output Primitives Manager

Ny v AW N =

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

F_DUPFD Makes arg be a copy of fd, closing fd first if necessary. The same
functionality can be more easily achieved by using dup2(). The old and
new descriptors may be used interchangeably. They share locks, file
position pointers and flags; for example, if the file position is modified by
using 1seek() on one of the descriptors, the position is also changed for
the other. The two descriptors do not share the close-on-exec flag,
however. The close-on-exec flag of the copy is off, meaning that it will be
closed on exec. On success, the new descriptor is returned.

F_GETFD Read the close-on-exec flag. If the low-order bit is O, the file will remain
open across exec, otherwise it will be closed.

F_SETFD Set the close-on-exec flag to the value specified by arg (only the least
significant bit is used).

F_GETFL Read the descriptor’s flags (all flags (as set by open()) are returned).

F_SETFL Set the descriptor’s flags to the value specified by arg. Only“O_APPEND*
and O_NONBLOCK may be set. The flags are shared between copies (made
with dup() etc.) of the same file descriptor. The flags and their semantics
are described in open().

F_GETLK, Manage discretionary file locks. The third argument arg is a pointer to a

F_SETLK and struct flock (that may be overwritten by this call).

F_SETLKW

F_GETLK Return the flock structure that prevents us from obtaining the lock, or set
the“l type“ field of the lock to F_UNLCK if there is no obstruction.

F_SETLK The lock is set (when 1_type is F_RDLCK or F_WRLCK) or cleared (when it is
F_UNLCK. If lock is held by someone else, this call returns -1 and sets
errno to EACCES or EAGAIN.

F_SETLKW Like F_SETLK, but instead of returning an error we wait for the lock to be
released.

F_GETOWN Get the process ID (or process group) of the owner of a socket. Process
groups are returned as negative values.

F_SETOWN Set the process or process group that owns a socket. For these commands,
ownership means receiving SIGIO or SIGURG signals. Process groups are
specified using negative values.

NOTES:

The errors returned by dup2 are different from those returned by F_DUPFD.

6.4.8 lIseek - Reposition read/write file offset

CALLING SEQUENCE:

#include <sys/types.h>

#include <unistd.h>

int lseek(
int fildes,
off_t offset,
int whence

s

STATUS CODES:

6.4. Directives

81

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.4

EBADF | fildes is not an open file descriptor.
ESPIPE | fildes is associated with a pipe, socket or FIFO.
EINVAL | whence is not a proper value.

DESCRIPTION:

The 1seek function repositions the offset of the file descriptor fildes to the argument offset
according to the directive whence. The argument fildes must be an open file descriptor. Lseek
repositions the file pointer fildes as follows:

* If whence is SEEK SET, the offset is set to of fset bytes.
* If whence is SEEK _CUR, the offset is set to its current location plus offset bytes.
* If whence is SEEK_END, the offset is set to the size of the file plus of fset bytes.

The 1seek function allows the file offset to be set beyond the end of the existing end-of-file of
the file. If data is later written at this point, subsequent reads of the data in the gap return bytes
of zeros (until data is actually written into the gap).

Some devices are incapable of seeking. The value of the pointer associated with such a device
is undefined.

NOTES:
NONE

6.4.9 fsync - Synchronize file complete in-core state with that on disk

CALLING SEQUENCE:

int fsync(
int fd
)5

STATUS CODES:

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

EBADF fd is not a valid descriptor open for writing

EINVAL
fd is bound to a special file which does not

support support

synchronization
EROFS . . 1 g .
fd is bound to a special file which does not
support support
synchronization
EIO An error occurred during synchronization
DESCRIPTION:

fsync copies all in-core parts of a file to disk.
NOTES:
NONE

82 Chapter 6. Input and Output Primitives Manager

—

—

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

6.4.10 fdatasync - Synchronize file in-core data with that on disk

CALLING SEQUENCE:

int fdatasync(
int fd

s

STATUS CODES:

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

EBADF | fd is not a valid file descriptor open for writing.

EINVAL | fdis bound to a special file which does not support synchronization.
EIO An error occurred during synchronization.

EROFS | fdis bound to a special file which dows not support synchronization.

DESCRIPTION:

fdatasync flushes all data buffers of a file to disk (before the system call returns). It resembles
fsync but is not required to update the metadata such as access time.

Applications that access databases or log files often write a tiny data fragment (e.g., one line in
a log file) and then call fsync immediately in order to ensure that the written data is physically
stored on the harddisk. Unfortunately, fsync will always initiate two write operations: one for
the newly written data and another one in order to update the modification time stored in the
inode. If the modification time is not a part of the transaction concept fdatasync can be used
to avoid unnecessary inode disk write operations.

NOTES:
NONE

6.4.11 sync - Schedule file system updates

CALLING SEQUENCE:

void sync(void);

STATUS CODES:
NONE
DESCRIPTION:

The sync service causes all information in memory that updates file systems to be scheduled for
writing out to all file systems.

NOTES:

The writing of data to the file systems is only guaranteed to be scheduled upon return. It is not
necessarily complete upon return from sync.

6.4.12 mount - Mount a file system

CALLING SEQUENCE:

6.4. Directives 83

0w N o A W N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.4

#include <libio.h>

int mount(
rtems_filesystem_mount_table_entry_t *xmt_entry,
rtems_filesystem_operations_table *fs_ops,
rtems_filesystem_options_t fsoptions,
char *device,
char *mount_point

);

STATUS CODES:
EXXX
DESCRIPTION:

The mount routines mounts the filesystem class which uses the filesystem operations specified by
fs_ops and fsoptions. The filesystem is mounted at the directory mount_point and the mode
of the mounted filesystem is specified by fsoptions. If this filesystem class requires a device,
then the name of the device must be specified by device.

If this operation succeeds, the mount table entry for the mounted filesystem is returned in

mt_entry.
NOTES:
NONE

6.4.13 unmount - Unmount file systems

CALLING SEQUENCE:

#include <libio.h>
int unmount(

const char *mount_path
);

STATUS CODES:
EXXX
DESCRIPTION:

The unmount routine removes the attachment of the filesystem specified by mount_path.

NOTES:
NONE

6.4.14 readv - Vectored read from a file

CALLING SEQUENCE:

#include <sys/uio.h>
ssize_t readv(
int fd,
const struct iovec *iov,
84 Chapter 6. Input and Output Primitives Manager

=)

R S

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

int iovent

s

STATUS CODES:

In addition to the errors detected by Input and Output Primitives Manager read - Reads from a
file, read(), this routine may return -1 and sets errno based upon the following errors:

EINVAL | The sum of the iov_len values in the iov array overflowed an ssize_t.
EINVAL | The iovent argument was less than or equal to O, or greater than IOV_MAX.

DESCRIPTION:

The readv() function is equivalent to read() except as described here. The readv() function
shall place the input data into the iovcnt buffers specified by the members of the iov array:
iov[@],iov[1],...,iov[iovent-1].

Each iovec entry specifies the base address and length of an area in memory where data should
be placed. The readv() function always fills an area completely before proceeding to the next.

NOTES:
NONE

6.4.15 writev - Vectored write to a file

CALLING SEQUENCE:

#include <sys/uio.h>

ssize_t writev(
int fd,
const struct iovec *iov,
int iovent

);

STATUS CODES:

In addition to the errors detected by Input and Output Primitives Manager write - Write to a file,
write(), this routine may return -1 and sets errno based upon the following errors:

EINVAL | The sum of the iov_len values in the iov array overflowed an ssize_t.
EINVAL | The iovent argument was less than or equal to 0, or greater than IOV_MAX.

DESCRIPTION:

The writev() function is equivalent to write(), except as noted here. The writev() func-
tion gathers output data from the iovcnt buffers specified by the members of the iov array:
iov[@],iov[1],...,iov[iovent-1]. The iovcnt argument is valid if greater than O and less
than or equal to IOV_MAX.

Each iovec entry specifies the base address and length of an area in memory from which data
should be written. The writev() function always writes a complete area before proceeding to
the next.

If fd refers to a regular file and all of the iov_len members in the array pointed to by iov are
0, writev() returns O and has no other effect. For other file types, the behavior is unspecified
by POSIX.

6.4. Directives 85

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.4

NOTES:
NONE

6.4.16 aio_read - Asynchronous Read

CALLING SEQUENCE:

int aio_read(

s

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.17 aio_write - Asynchronous Write

CALLING SEQUENCE:

int aio_write(

s

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.18 lio_listio - List Directed I/0O

CALLING SEQUENCE:

int lio_listio(

s

STATUS CODES:
DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

86 Chapter 6. Input and Output Primitives Manager

Chapter 6 Section 6.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

6.4.19 aio_error - Retrieve Error Status of Asynchronous I/0 Operation

CALLING SEQUENCE:

int aio_error(

s

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.20 aio_return - Retrieve Return Status Asynchronous I/0 Operation

CALLING SEQUENCE:

int aio_return(

s

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.21 aio_cancel - Cancel Asynchronous I/0 Request

CALLING SEQUENCE:

int aio_cancel(

s

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.22 aio_suspend - Wait for Asynchronous I/0 Request

CALLING SEQUENCE:

int aio_suspend(

);

6.4. Directives

87

-

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 6 Section 6.4

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

6.4.23 aio_fsync - Asynchronous File Synchronization

CALLING SEQUENCE:

int aio_fsync(

s

STATUS CODES:
DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

88

Chapter 6. Input and Output Primitives Manager

CHAPTER

SEVEN

DEVICE- AND CLASS- SPECIFIC
FUNCTIONS MANAGER

89

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 7 Section 7.1

7.1 Introduction

The device- and class- specific functions manager is ...
The directives provided by the device- and class- specific functions manager are:
* cfgetispeed (page 93) - Reads terminal input baud rate
* cfgetospeed (page 93) - Reads terminal output baud rate
* cfsetispeed (page 94) - Sets terminal input baud rate
* (fsetospeed (page 94) - Set terminal output baud rate
* tcgetattr (page 95) - Gets terminal attributes
* tcsetattr (page 95) - Set terminal attributes
* tcsendbreak (page 95) - Sends a break to a terminal
* tcdrain (page 96) - Waits for all output to be transmitted to the terminal
* tcflush (page 96) - Discards terminal data
* tcflow (page 96) - Suspends/restarts terminal output
* tcgetpgrp (page 97) - Gets foreground process group ID
* tcsetpgrp (page 97) - Sets foreground process group ID

90 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.2 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

7.2 Background

There is currently no text in this section.

7.2. Background 91

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 7 Section 7.3

7.3 Operations

There is currently no text in this section.

92 Chapter 7. Device- and Class- Specific Functions Manager

AW N —

Chapter 7 Section 7.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

7.4 Directives

This section details the device- and class- specific functions manager’s directives. A subsection
is dedicated to each of this manager’s directives and describes the calling sequence, related
constants, usage, and status codes.

7.4.1 cfgetispeed - Reads terminal input baud rate

CALLING SEQUENCE:

#include <termios.h>
int cfgetispeed(
const struct termios *p

s

STATUS CODES:
The cfgetispeed() function returns a code for baud rate.
DESCRIPTION:

The cfsetispeed() function stores a code for the terminal speed stored in a struct termios. The
codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300, B600,
B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfsetispeed() function does not do anything to the hardware. It merely stores a value for
use by tcsetattr().

NOTES:

Baud rates are defined by symbols, such as B110, B1200, B2400. The actual number returned for
any given speed may change from system to system.

7.4.2 cfgetospeed - Reads terminal output baud rate

CALLING SEQUENCE:

#include <termios.h>

int cfgetospeed(

const struct termios *p
);

STATUS CODES:
The cfgetospeed() function returns the termios code for the baud rate.
DESCRIPTION:

The cfgetospeed() function returns a code for the terminal speed stored in a struct termios.
The codes are defined in <termios.h> by the macros B0, B50, B75, B110, B134, B150, B200, B300,
B600, B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfgetospeed() function does not do anything to the hardware. It merely returns the value
stored by a previous call to tcgetattr().

NOTES:

7.4. Directives 93

R Y

AW N =

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 7 Section 7.4

Baud rates are defined by symbols, such as B110, B1200, B2400. The actual number returned for
any given speed may change from system to system.

7.4.3 cfsetispeed - Sets terminal input baud rate

CALLING SEQUENCE:

#include <termios.h>
int cfsetispeed(
struct termios *p,
speed_t speed
);

STATUS CODES:
The cfsetispeed() function returns a zero when successful and returns -1 when an error occurs.
DESCRIPTION:

The cfsetispeed() function stores a code for the terminal speed stored in a struct termios. The
codes are defined in <termios.h> by the macros BO, B50, B75, B110, B134, B150, B200, B300, B600,
B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

NOTES:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

7.4.4 cfsetospeed - Sets terminal output baud rate

CALLING SEQUENCE:

#include <termios.h>
int cfsetospeed(
struct termios *p,
speed_t speed
)5

STATUS CODES:
The cfsetospeed() function returns a zero when successful and returns -1 when an error occurs.
DESCRIPTION:

The cfsetospeed() function stores a code for the terminal speed stored in a struct termios.
The codes are defiined in <termios.h> by the macros B0, B50, B75, B110, B134, B150, B200, B300,
B600, B1200, B1800, B2400, B4800, B9600, B19200, and B38400.

The cfsetospeed() function does not do anything to the hardware. It merely stores a value for
use by tcsetattr().

NOTES:

This function merely stores a value in the termios structure. It does not change the terminal
speed until a tcsetattr() is done. It does not detect impossible terminal speeds.

94 Chapter 7. Device- and Class- Specific Functions Manager

Chapter 7 Section 7.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

7.4.5 tcgetattr - Gets terminal attributes

CALLING SEQUENCE:

a1 A W N =

#include <termios.h>
#include <unistd.h>
int tcgetattr(
int fildes,
struct termios #p

);

STATUS CODES:

EBADF | Invalid file descriptor
ENOOTY | Terminal control function attempted for a file that is not a terminal.

DESCRIPTION:

The tcgetattr() gets the parameters associated with the terminal referred to by fildes and
stores them into the termios() structure pointed to by termios_p.

NOTES:
NONE

7.4.6 tcsetattr - Set terminal attributes

CALLING SEQUENCE:

N o v AW -

#include <termios.h>

#include <unistd.h>

int tcsetattr(
int fildes,
int options,
const struct termios *tp

)5

STATUS CODES:

DESCRIPTION:
NOTES:

7.4.7 tcsendbreak - Sends a break to a terminal

CALLING SEQUENCE:

int tcsendbreak(
int fd

s

STATUS CODES:

DESCRIPTION:

7.4. Directives 95

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 7 Section 7.4

NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.8 tcdrain - Waits for all output to be transmitted to the terminal.

CALLING SEQUENCE:

L

#include <termios.h>
#include <unistd.h>
int tcdrain(

int fildes

s

STATUS CODES:

EBADF | Invalid file descriptor
EINTR | Function was interrupted by a signal
ENOTTY | Terminal control function attempted for a file that is not a terminal.

DESCRIPTION:

The tcdrain() function waits until all output written to fildes has been transmitted.
NOTES:
NONE

7.4.9 tcflush - Discards terminal data

CALLING SEQUENCE:

int tcflush(
int fd

s

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.10 tcflow - Suspends/restarts terminal output.

CALLING SEQUENCE:

int tcflow(
int fd

s

STATUS CODES:

96 Chapter 7. Device- and Class- Specific Functions Manager

-

Chapter 7 Section 7.4 RTEMS POSIX API User’s Guide, Release 4.11.2-rc5

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.11 tcgetpgrp - Gets foreground process group ID

CALLING SEQUENCE:

int tcgetpgrp(
);

STATUS CODES:

DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4.12 tcsetpgrp - Sets foreground process group ID

CALLING SEQUENCE:

int tcsetpgrp(
);

STATUS CODES:
DESCRIPTION:
NOTES:

This routine is not currently supported by RTEMS but could be in a future version.

7.4. Directives

97

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 7 Section 7.4

98 Chapter 7. Device- and Class- Specific Functions Manager

CHAPTER

EIGHT

LANGUAGE-SPECIFIC SERVICES FOR
THE C PROGRAMMING LANGUAGE
MANAGER

99

RTEMS POSIX API User’s Guide, Release 4.11.2-rc5 Chapter 8 Section 8.1

8.1

Introduction

The language-specific services for the C programming language manager is ...

The directives provided by the language-specific services for the C programming language man-
ager are:

setlocale (page 103) - Set the Current Locale

fileno (page 103) - Obtain File Descriptor Number for this File

fdopen (page 103) - Associate Stream with File Descriptor

flockfile (page 104) - Acquire Ownership of File Stream

ftrylockfile (page 104) - Poll to Acquire Ownership of File Stream
funlockfile (page 104) - Release Ownership of File Stream

getc_unlocked (page 104) - Get Character without Locking
getchar_unlocked (page 105) - Get Character from stdin without Locking
putc_unlocked (page 105) - Put Character without Locking
putchar_unlocked (page 105) - Put Character to stdin without Locking
setjmp (page 105) - Save Context for Non-Local Goto

longimp (page 106) - Non-Local Jump to a Saved Context

sigsetimp (page 106) - Save Context with Signal Status for Non-Local Goto
siglongimp (page 106) - Non-Local Jump with Signal Status to a Saved Context
tzset (page 107) - Initialize Time Conversion Information

strt