
RTEMS CPU Supplement Documentation
Release 4.11.3

©Copyright 2016, RTEMS Project (built 15th February 2018)

CONTENTS

I RTEMS CPU Architecture Supplement 1

1 Preface 5

2 Port Specific Information 7
2.1 CPU Model Dependent Features . 8

2.1.1 CPU Model Name . 8
2.1.2 Floating Point Unit . 8

2.2 Multilibs . 9
2.3 Calling Conventions . 10

2.3.1 Calling Mechanism . 10
2.3.2 Register Usage . 10
2.3.3 Parameter Passing . 10
2.3.4 User-Provided Routines . 10

2.4 Memory Model . 11
2.4.1 Flat Memory Model . 11

2.5 Interrupt Processing . 12
2.5.1 Vectoring of an Interrupt Handler . 12
2.5.2 Interrupt Levels . 12
2.5.3 Disabling of Interrupts by RTEMS . 12

2.6 Default Fatal Error Processing . 14
2.7 Symmetric Multiprocessing . 15
2.8 Thread-Local Storage . 16
2.9 CPU counter . 17
2.10 Interrupt Profiling . 18
2.11 Board Support Packages . 19

2.11.1 System Reset . 19

3 ARM Specific Information 21
3.1 CPU Model Dependent Features . 22

3.1.1 CPU Model Name . 22
3.1.2 Count Leading Zeroes Instruction . 22
3.1.3 Floating Point Unit . 22

3.2 Multilibs . 23
3.3 Calling Conventions . 24
3.4 Memory Model . 25
3.5 Interrupt Processing . 26

3.5.1 Interrupt Levels . 26
3.5.2 Interrupt Stack . 26

i

3.6 Default Fatal Error Processing . 27
3.7 Symmetric Multiprocessing . 28
3.8 Thread-Local Storage . 29

4 Atmel AVR Specific Information 31
4.1 CPU Model Dependent Features . 32

4.1.1 Count Leading Zeroes Instruction . 32
4.2 Calling Conventions . 33

4.2.1 Processor Background . 33
4.2.2 Register Usage . 33
4.2.3 Parameter Passing . 33

4.3 Memory Model . 34
4.4 Interrupt Processing . 35

4.4.1 Vectoring of an Interrupt Handler . 35
4.4.2 Disabling of Interrupts by RTEMS . 35
4.4.3 Interrupt Stack . 35

4.5 Default Fatal Error Processing . 36
4.6 Symmetric Multiprocessing . 37
4.7 Thread-Local Storage . 38
4.8 Board Support Packages . 39

4.8.1 System Reset . 39

5 Blackfin Specific Information 41
5.1 CPU Model Dependent Features . 42

5.1.1 Count Leading Zeroes Instruction . 42
5.2 Calling Conventions . 43

5.2.1 Processor Background . 43
5.2.2 Register Usage . 43
5.2.3 Parameter Passing . 43

5.3 Memory Model . 44
5.4 Interrupt Processing . 45

5.4.1 Vectoring of an Interrupt Handler . 45
5.4.2 Disabling of Interrupts by RTEMS . 45
5.4.3 Interrupt Stack . 45

5.5 Default Fatal Error Processing . 46
5.6 Symmetric Multiprocessing . 47
5.7 Thread-Local Storage . 48
5.8 Board Support Packages . 49

5.8.1 System Reset . 49

6 Epiphany Specific Information 51
6.1 Calling Conventions . 52

6.1.1 Floating Point Unit . 52
6.2 Memory Model . 53
6.3 Interrupt Processing . 54

6.3.1 Interrupt Levels . 54
6.3.2 Interrupt Stack . 54

6.4 Default Fatal Error Processing . 55
6.5 Symmetric Multiprocessing . 56

7 Intel/AMD x86 Specific Information 57
7.1 CPU Model Dependent Features . 58

ii

7.1.1 bswap Instruction . 58
7.2 Calling Conventions . 59

7.2.1 Processor Background . 59
7.2.2 Calling Mechanism . 59
7.2.3 Register Usage . 59
7.2.4 Parameter Passing . 59

7.3 Memory Model . 60
7.3.1 Flat Memory Model . 60

7.4 Interrupt Processing . 61
7.4.1 Vectoring of Interrupt Handler . 61
7.4.2 Interrupt Stack Frame . 61
7.4.3 Interrupt Levels . 61
7.4.4 Interrupt Stack . 61

7.5 Default Fatal Error Processing . 62
7.6 Symmetric Multiprocessing . 63
7.7 Thread-Local Storage . 64
7.8 Board Support Packages . 65

7.8.1 System Reset . 65
7.8.2 Processor Initialization . 65

8 Lattice Mico32 Specific Information 67
8.1 CPU Model Dependent Features . 68
8.2 Register Architecture . 69
8.3 Calling Conventions . 70

8.3.1 Calling Mechanism . 70
8.3.2 Register Usage . 70
8.3.3 Parameter Passing . 70

8.4 Memory Model . 71
8.5 Interrupt Processing . 72
8.6 Default Fatal Error Processing . 73
8.7 Symmetric Multiprocessing . 74
8.8 Thread-Local Storage . 75
8.9 Board Support Packages . 76

8.9.1 System Reset . 76

9 Renesas M32C Specific Information 77
9.1 Symmetric Multiprocessing . 78
9.2 Thread-Local Storage . 79

10 M68xxx and Coldfire Specific Information 81
10.1 CPU Model Dependent Features . 82

10.1.1 BFFFO Instruction . 82
10.1.2 Vector Base Register . 82
10.1.3 Separate Stacks . 82
10.1.4 Pre-Indexing Address Mode . 82
10.1.5 Extend Byte to Long Instruction . 82

10.2 Calling Conventions . 83
10.2.1 Calling Mechanism . 83
10.2.2 Register Usage . 83
10.2.3 Parameter Passing . 83

10.3 Memory Model . 84
10.4 Interrupt Processing . 85

iii

10.4.1 Vectoring of an Interrupt Handler . 85
10.4.1.1 Models Without Separate Interrupt Stacks 85
10.4.1.2 Models With Separate Interrupt Stacks 85

10.4.2 CPU Models Without VBR and RAM at 0 85
10.4.3 Interrupt Levels . 86

10.5 Default Fatal Error Processing . 87
10.6 Symmetric Multiprocessing . 88
10.7 Thread-Local Storage . 89
10.8 Board Support Packages . 90

10.8.1 System Reset . 90
10.8.2 Processor Initialization . 90

11 Xilinx MicroBlaze Specific Information 91
11.1 Symmetric Multiprocessing . 92
11.2 Thread-Local Storage . 93

12 MIPS Specific Information 95
12.1 CPU Model Dependent Features . 96

12.1.1 Another Optional Feature . 96
12.2 Calling Conventions . 97

12.2.1 Processor Background . 97
12.2.2 Calling Mechanism . 97
12.2.3 Register Usage . 97
12.2.4 Parameter Passing . 97

12.3 Memory Model . 98
12.3.1 Flat Memory Model . 98

12.4 Interrupt Processing . 99
12.4.1 Vectoring of an Interrupt Handler . 99
12.4.2 Interrupt Levels . 99

12.5 Default Fatal Error Processing . 100
12.6 Symmetric Multiprocessing . 101
12.7 Thread-Local Storage . 102
12.8 Board Support Packages . 103

12.8.1 System Reset . 103
12.8.2 Processor Initialization . 103

13 Altera Nios II Specific Information 105
13.1 Symmetric Multiprocessing . 106
13.2 Thread-Local Storage . 107

14 OpenRISC 1000 Specific Information 109
14.1 Calling Conventions . 110

14.1.1 Floating Point Unit . 110
14.2 Memory Model . 111
14.3 Interrupt Processing . 112

14.3.1 Interrupt Levels . 112
14.3.2 Interrupt Stack . 112

14.4 Default Fatal Error Processing . 113
14.5 Symmetric Multiprocessing . 114

15 PowerPC Specific Information 115
15.1 CPU Model Dependent Features . 116

iv

15.1.1 Alignment . 116
15.1.2 Cache Alignment . 116
15.1.3 Maximum Interrupts . 116
15.1.4 Has Double Precision Floating Point . 116
15.1.5 Critical Interrupts . 116
15.1.6 Use Multiword Load/Store Instructions 116
15.1.7 Instruction Cache Size . 116
15.1.8 Data Cache Size . 116
15.1.9 Debug Model . 116

15.1.9.1 Low Power Model . 117
15.2 Multilibs . 118
15.3 Calling Conventions . 119

15.3.1 Programming Model . 119
15.3.1.1 Non-Floating Point Registers . 119
15.3.1.2 Floating Point Registers . 119
15.3.1.3 Special Registers . 119

15.3.2 Call and Return Mechanism . 119
15.3.3 Calling Mechanism . 120
15.3.4 Register Usage . 120
15.3.5 Parameter Passing . 120

15.4 Memory Model . 121
15.4.1 Flat Memory Model . 121

15.5 Interrupt Processing . 122
15.5.1 Synchronous Versus Asynchronous Exceptions 122
15.5.2 Vectoring of Interrupt Handler . 122
15.5.3 Interrupt Levels . 123

15.6 Default Fatal Error Processing . 124
15.7 Symmetric Multiprocessing . 125
15.8 Thread-Local Storage . 126
15.9 Board Support Packages . 127

15.9.1 System Reset . 127
15.9.2 Processor Initialization . 127

16 SuperH Specific Information 129
16.1 CPU Model Dependent Features . 130

16.1.1 Another Optional Feature . 130
16.2 Calling Conventions . 131

16.2.1 Calling Mechanism . 131
16.2.2 Register Usage . 131
16.2.3 Parameter Passing . 131

16.3 Memory Model . 132
16.3.1 Flat Memory Model . 132

16.4 Interrupt Processing . 133
16.4.1 Vectoring of an Interrupt Handler . 133
16.4.2 Interrupt Levels . 133

16.5 Default Fatal Error Processing . 134
16.6 Symmetric Multiprocessing . 135
16.7 Thread-Local Storage . 136
16.8 Board Support Packages . 137

16.8.1 System Reset . 137
16.8.2 Processor Initialization . 137

v

17 SPARC Specific Information 139
17.1 CPU Model Dependent Features . 140

17.1.1 CPU Model Feature Flags . 140
17.1.1.1 CPU Model Name . 140
17.1.1.2 Floating Point Unit . 140
17.1.1.3 Bitscan Instruction . 140
17.1.1.4 Number of Register Windows . 140
17.1.1.5 Low Power Mode . 140

17.1.2 CPU Model Implementation Notes . 141
17.2 Calling Conventions . 142

17.2.1 Programming Model . 142
17.2.1.1 Non-Floating Point Registers . 142
17.2.1.2 Floating Point Registers . 142
17.2.1.3 Special Registers . 143

17.2.2 Register Windows . 143
17.2.3 Call and Return Mechanism . 144
17.2.4 Calling Mechanism . 144
17.2.5 Register Usage . 144
17.2.6 Parameter Passing . 145
17.2.7 User-Provided Routines . 145

17.3 Memory Model . 146
17.3.1 Flat Memory Model . 146

17.4 Interrupt Processing . 147
17.4.1 Synchronous Versus Asynchronous Traps 147
17.4.2 Vectoring of Interrupt Handler . 147
17.4.3 Traps and Register Windows . 148
17.4.4 Interrupt Levels . 148
17.4.5 Disabling of Interrupts by RTEMS . 148
17.4.6 Interrupt Stack . 149

17.5 Default Fatal Error Processing . 150
17.5.1 Default Fatal Error Handler Operations 150

17.6 Symmetric Multiprocessing . 151
17.7 Thread-Local Storage . 152
17.8 Board Support Packages . 153

17.8.1 System Reset . 153
17.8.2 Processor Initialization . 153

18 SPARC-64 Specific Information 155
18.1 CPU Model Dependent Features . 156

18.1.1 CPU Model Feature Flags . 156
18.1.1.1 CPU Model Name . 156
18.1.1.2 Floating Point Unit . 156
18.1.1.3 Number of Register Windows . 156

18.1.2 CPU Model Implementation Notes . 156
18.1.2.1 sun4u Notes . 156

18.1.3 sun4v Notes . 156
18.2 Calling Conventions . 157

18.2.1 Programming Model . 157
18.2.1.1 Non-Floating Point Registers . 157
18.2.1.2 Floating Point Registers . 157
18.2.1.3 Special Registers . 158

vi

18.2.2 Register Windows . 158
18.2.3 Call and Return Mechanism . 159
18.2.4 Calling Mechanism . 159
18.2.5 Register Usage . 159
18.2.6 Parameter Passing . 159
18.2.7 User-Provided Routines . 160

18.3 Memory Model . 161
18.3.1 Flat Memory Model . 161

18.4 Interrupt Processing . 162
18.4.1 Synchronous Versus Asynchronous Traps 162
18.4.2 Vectoring of Interrupt Handler . 162
18.4.3 Traps and Register Windows . 163
18.4.4 Interrupt Levels . 163
18.4.5 Disabling of Interrupts by RTEMS . 163
18.4.6 Interrupt Stack . 163

18.5 Default Fatal Error Processing . 164
18.5.1 Default Fatal Error Handler Operations 164

18.6 Symmetric Multiprocessing . 165
18.7 Thread-Local Storage . 166
18.8 Board Support Packages . 167

18.8.1 HelenOS and Open Firmware . 167

19 Command and Variable Index 169

vii

viii

Chapter 0 Section 0.0 RTEMS CPU Supplement Documentation, Release 4.11.3

Part I

RTEMS CPU Architecture Supplement

1

Chapter 0 Section 0.0 RTEMS CPU Supplement Documentation, Release 4.11.3

COPYRIGHT (c) 1988 - 2015.
On-Line Applications Research
Corporation (OAR).

The authors have used their best efforts in
preparing this material. These efforts include
the development, research, and testing of the
theories and programs to determine their ef-
fectiveness. No warranty of any kind, ex-
pressed or implied, with regard to the soft-
ware or the material contained in this docu-
ment is provided. No liability arising out of
the application or use of any product described
in this document is assumed. The authors re-
serve the right to revise this material and to
make changes from time to time in the content
hereof without obligation to notify anyone of
such revision or changes.

The RTEMS Project is hosted at http://www.
rtems.org/. Any inquiries concerning RTEMS,
its related support components, or its docu-
mentation should be directed to the Commu-
nity Project hosted at http://www.rtems.org/.

RTEMS Online Resources

Home https://www.rtems.org/
Developers https://devel.rtems.org/
Documenta-
tion

https://docs.rtems.org/

Bug
Reporting

https:
//devel.rtems.org/query

Mailing Lists https://lists.rtems.org/
Git
Repositories

https://git.rtems.org/

3

http://www.rtems.org/
http://www.rtems.org/
http://www.rtems.org/
https://www.rtems.org/
https://devel.rtems.org/
https://docs.rtems.org/
https://devel.rtems.org/query
https://devel.rtems.org/query
https://lists.rtems.org/
https://git.rtems.org/

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 0 Section 0.0

4

CHAPTER

ONE

PREFACE

The Real Time Executive for Multiprocessor
Systems (RTEMS) is designed to be portable
across multiple processor architectures. How-
ever, the nature of real-time systems makes
it essential that the application designer un-
derstand certain processor dependent imple-
mentation details. These processor dependen-
cies include calling convention, board support
package issues, interrupt processing, exact
RTEMS memory requirements, performance
data, header files, and the assembly language
interface to the executive.

Each architecture represents a CPU family and
usually there are a wide variety of CPU mod-
els within it. These models share a common
Instruction Set Architecture (ISA) which of-
ten varies based upon some well-defined rules.
There are often multiple implementations of
the ISA and these may be from one or multi-
ple vendors.

On top of variations in the ISA, there may also
be variations which occur when a CPU core im-
plementation is combined with a set of periph-
erals to form a system on chip. For example,
there are many ARM CPU models from numer-
ous semiconductor vendors and a wide variety
of peripherals. But at the ISA level, they share
a common compatibility.

RTEMS depends upon this core similarity
across the CPU models and leverages that to
minimize the source code that is specific to any
particular CPU core implementation or CPU
model.

This manual is separate and distinct from the
RTEMS Porting Guide. That manual is a guide
on porting RTEMS to a new architecture. This
manual is focused on the more mundane CPU
architecture specific issues that may impact ap-
plication development. For example, if you
need to write a subroutine in assembly lan-

guage, it is critical to understand the calling
conventions for the target architecture.

The first chapter in this manual describes these
issues in general terms. In a sense, it is posing
the questions one should be aware may need
to be answered and understood when porting
an RTEMS application to a new architecture.
Each subsequent chapter gives the answers to
those questions for a particular CPU architec-
ture.

5

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 1 Section 1.0

6 Chapter 1. Preface

CHAPTER

TWO

PORT SPECIFIC INFORMATION

This chaper provides a general description of
the type of architecture specific information
which is in each of the architecture specific
chapters that follow. The outline of this chap-
ter is identical to that of the architecture spe-
cific chapters.

In each of the architecture specific chap-
ters, this introductory section will provide an
overview of the architecture:

Architecture Documents

In each of the architecture specific chapters,
this section will provide pointers on where to
obtain documentation.

7

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 2 Section 2.1

2.1 CPU Model Dependent Fea-
tures

Microprocessors are generally classified into
families with a variety of CPU models or im-
plementations within that family. Within a
processor family, there is a high level of bi-
nary compatibility. This family may be based
on either an architectural specification or on
maintaining compatibility with a popular pro-
cessor. Recent microprocessor families such as
the SPARC or PowerPC are based on an archi-
tectural specification which is independent or
any particular CPU model or implementation.
Older families such as the Motorola 68000
and the Intel x86 evolved as the manufacturer
strived to produce higher performance proces-
sor models which maintained binary compati-
bility with older models.

RTEMS takes advantage of the similarity of the
various models within a CPU family. Although
the models do vary in significant ways, the
high level of compatibility makes it possible to
share the bulk of the CPU dependent executive
code across the entire family. Each processor
family supported by RTEMS has a list of fea-
tures which vary between CPU models within a
family. For example, the most common model
dependent feature regardless of CPU family is
the presence or absence of a floating point unit
or coprocessor. When defining the list of fea-
tures present on a particular CPU model, one
simply notes that floating point hardware is
or is not present and defines a single constant
appropriately. Conditional compilation is uti-
lized to include the appropriate source code
for this CPU model’s feature set. It is impor-
tant to note that this means that RTEMS is thus
compiled using the appropriate feature set and
compilation flags optimal for this CPU model
used. The alternative would be to generate
a binary which would execute on all family
members using only the features which were
always present.

The set of CPU model fea-
ture macros are defined in the
cpukit/score/cpu/CPU/rtems/score/cpu.h
based upon the GNU tools multilib variant that
is appropriate for the particular CPU model

defined on the compilation command line.

In each of the architecture specific chapters,
this section presents the set of features which
vary across various implementations of the
architecture that may be of importance to
RTEMS application developers.

The subsections will vary amongst the target
architecture chapters as the specific features
may vary. However, each port will include a
few common features such as the CPU Model
Name and presence of a hardware Floating
Point Unit. The common features are described
here.

2.1.1 CPU Model Name

The macro CPU_MODEL_NAME is a string which
designates the name of this CPU model. For ex-
ample, for the MC68020 processor model from
the m68k architecture, this macro is set to the
string “mc68020”.

2.1.2 Floating Point Unit

In most architectures, the presence of a float-
ing point unit is an option. It does not matter
whether the hardware floating point support
is incorporated on-chip or is an external copro-
cessor as long as it appears an FPU per the ISA.
However, if a hardware FPU is not present, it
is possible that the floating point emulation li-
brary for this CPU is not reentrant and thus
context switched by RTEMS.

RTEMS provides two feature macros to indi-
cate the FPU configuration:

• CPU_HARDWARE_FP is set to TRUE to
indicate that a hardware FPU is present.

• CPU_SOFTWARE_FP is set to TRUE to in-
dicate that a hardware FPU is not present
and that the FP software emulation will
be context switched.

8 Chapter 2. Port Specific Information

Chapter 2 Section 2.2 RTEMS CPU Supplement Documentation, Release 4.11.3

2.2 Multilibs

Newlib and GCC provide several target li-
braries like the libc.a, libm.a and libgcc.a.
These libraries are artifacts of the GCC build
process. Newlib is built together with GCC.
To provide optimal support for various chip
derivatives and instruction set revisions mul-
tiple variants of these libraries are available
for each architecture. For example one set
may use software floating point support and
another set may use hardware floating point
instructions. These sets of libraries are called
multilibs. Each library set corresponds to an
application binary interface (ABI) and instruc-
tion set.

A multilib variant can be usually detected via
built-in compiler defines at compile-time. This
mechanism is used by RTEMS to select for ex-
ample the context switch support for a partic-
ular BSP. The built-in compiler defines corre-
sponding to multilibs are the only architecture
specific defines allowed in the cpukit area of
the RTEMS sources.

Invoking the GCC with the -print-multi-lib
option lists the available multilibs. Each line of
the output describes one multilib variant. The
default variant is denoted by . which is se-
lected when no or contradicting GCC machine
options are selected. The multilib selection
for a target is specified by target makefile
fragments (see file t-rtems in the GCC sources
and section The Target Makefile Fragment
(https://gcc.gnu.org/onlinedocs/gccint/
Target-Fragment.html#Target-Fragment)
in the GCC Internals Manual (https:
//gcc.gnu.org/onlinedocs/gccint/).

2.2. Multilibs 9

https://gcc.gnu.org/onlinedocs/gccint/Target-Fragment.html#Target-Fragment
https://gcc.gnu.org/onlinedocs/gccint/Target-Fragment.html#Target-Fragment
https://gcc.gnu.org/onlinedocs/gccint/
https://gcc.gnu.org/onlinedocs/gccint/

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 2 Section 2.3

2.3 Calling Conventions

Each high-level language compiler generates
subroutine entry and exit code based upon a
set of rules known as the compiler’s calling
convention. These rules address the following
issues:

• register preservation and usage

• parameter passing

• call and return mechanism

A compiler’s calling convention is of impor-
tance when interfacing to subroutines written
in another language either assembly or high-
level. Even when the high-level language and
target processor are the same, different com-
pilers may use different calling conventions.
As a result, calling conventions are both pro-
cessor and compiler dependent.

2.3.1 Calling Mechanism

In each of the architecture specific chapters,
this subsection will describe the instruction(s)
used to perform a normal subroutine invoca-
tion. All RTEMS directives are invoked as nor-
mal C language functions so it is important to
the user application to understand the call and
return mechanism.

2.3.2 Register Usage

In each of the architecture specific chapters,
this subsection will detail the set of registers
which are NOT preserved across subroutine in-
vocations. The registers which are not pre-
served are assumed to be available for use as
scratch registers. Therefore, the contents of
these registers should not be assumed upon re-
turn from any RTEMS directive.

In some architectures, there may be a set of
registers made available automatically as a
side-effect of the subroutine invocation mech-
anism.

2.3.3 Parameter Passing

In each of the architecture specific chapters,
this subsection will describe the mechanism by
which the parameters or arguments are passed
by the caller to a subroutine. In some architec-
tures, all parameters are passed on the stack
while in others some are passed in registers.

2.3.4 User-Provided Routines

All user-provided routines invoked by RTEMS,
such as user extensions, device drivers, and
MPCI routines, must also adhere to these call-
ing conventions.

10 Chapter 2. Port Specific Information

Chapter 2 Section 2.4 RTEMS CPU Supplement Documentation, Release 4.11.3

2.4 Memory Model

A processor may support any combination of
memory models ranging from pure physical
addressing to complex demand paged virtual
memory systems. RTEMS supports a flat mem-
ory model which ranges contiguously over the
processor’s allowable address space. RTEMS
does not support segmentation or virtual mem-
ory of any kind. The appropriate memory
model for RTEMS provided by the targeted
processor and related characteristics of that
model are described in this chapter.

2.4.1 Flat Memory Model

Most RTEMS target processors can be initial-
ized to support a flat address space. Although
the size of addresses varies between archi-
tectures, on most RTEMS targets, an address
is 32-bits wide which defines addresses rang-
ing from 0x00000000 to 0xFFFFFFFF (4 giga-
bytes). Each address is represented by a 32-
bit value and is byte addressable. The address
may be used to reference a single byte, word
(2-bytes), or long word (4 bytes). Memory ac-
cesses within this address space may be per-
formed in little or big endian fashion.

On smaller CPU architectures supported by
RTEMS, the address space may only be 20 or
24 bits wide.

If the CPU model has support for virtual mem-
ory or segmentation, it is the responsibility
of the Board Support Package (BSP) to ini-
tialize the MMU hardware to perform address
translations which correspond to flat memory
model.

In each of the architecture specific chapters,
this subsection will describe any architecture
characteristics that differ from this general de-
scription.

2.4. Memory Model 11

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 2 Section 2.5

2.5 Interrupt Processing

Different types of processors respond to the oc-
currence of an interrupt in its own unique fash-
ion. In addition, each processor type provides
a control mechanism to allow for the proper
handling of an interrupt. The processor de-
pendent response to the interrupt modifies the
current execution state and results in a change
in the execution stream. Most processors re-
quire that an interrupt handler utilize some
special control mechanisms to return to the
normal processing stream. Although RTEMS
hides many of the processor dependent details
of interrupt processing, it is important to un-
derstand how the RTEMS interrupt manager is
mapped onto the processor’s unique architec-
ture.

RTEMS supports a dedicated interrupt stack
for all architectures. On architectures with
hardware support for a dedicated interrupt
stack, it will be initialized such that when an
interrupt occurs, the processor automatically
switches to this dedicated stack. On archi-
tectures without hardware support for a ded-
icated interrupt stack which is separate from
those of the tasks, RTEMS will support switch-
ing to a dedicated stack for interrupt process-
ing.

Without a dedicated interrupt stack, every task
in the system MUST have enough stack space
to accommodate the worst case stack usage of
that particular task and the interrupt service
routines COMBINED. By supporting a dedi-
cated interrupt stack, RTEMS significantly low-
ers the stack requirements for each task.

A nested interrupt is processed similarly with
the exception that since the CPU is already ex-
ecuting on the interrupt stack, there is no need
to switch to the interrupt stack.

In some configurations, RTEMS allocates
the interrupt stack from the Workspace
Area. The amount of memory allocated
for the interrupt stack is user configured
and based upon the confdefs.h parameter
CONFIGURE_INTERRUPT_STACK_SIZE. This pa-
rameter is described in detail in the Configur-
ing a System chapter of the User’s Guide. On
configurations in which RTEMS allocates the

interrupt stack, during the initialization pro-
cess, RTEMS will also install its interrupt stack.
In other configurations, the interrupt stack is
allocated and installed by the Board Support
Package (BSP).

In each of the architecture specific chapters,
this section discesses the interrupt response
and control mechanisms of the architecture as
they pertain to RTEMS.

2.5.1 Vectoring of an Interrupt Handler

In each of the architecture specific chapters,
this subsection will describe the architecture
specific details of the interrupt vectoring pro-
cess. In particular, it should include a descrip-
tion of the Interrupt Stack Frame (ISF).

2.5.2 Interrupt Levels

In each of the architecture specific chapters,
this subsection will describe how the interrupt
levels available on this particular architecture
are mapped onto the 255 reserved in the task
mode. The interrupt level value of zero (0)
should always mean that interrupts are en-
abled.

Any use of an interrupt level that is is not un-
defined on a particular architecture may result
in behavior that is unpredictable.

2.5.3 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical
sections of code may be executed. When these
sections are encountered, RTEMS disables all
external interrupts before the execution of this
section and restores them to the previous level
upon completion of the section. RTEMS has
been optimized to ensure that interrupts are
disabled for the shortest number of instruc-
tions possible. Since the precise number of
instructions and their execution time varies
based upon target CPU family, CPU model,
board memory speed, compiler version, and
optimization level, it is not practical to provide
the precise number for all possible RTEMS con-
figurations.

12 Chapter 2. Port Specific Information

Chapter 2 Section 2.5 RTEMS CPU Supplement Documentation, Release 4.11.3

Historically, the measurements were made by
hand analyzing and counting the execution
time of instruction sequences during interrupt
disable critical sections. For reference pur-
poses, on a 16 Mhz Motorola MC68020, the
maximum interrupt disable period was typi-
cally approximately ten (10) to thirteen (13)
microseconds. This architecture was memory
bound and had a slow bit scan instruction. In
contrast, during the same period a 14 Mhz
SPARC would have a worst case disable time of
approximately two (2) to three (3) microsec-
onds because it had a single cycle bit scan in-
struction and used fewer cycles for memory ac-
cesses.

If you are interested in knowing the worst
case execution time for a particular version of
RTEMS, please contact OAR Corporation and
we will be happy to product the results as a
consulting service.

Non-maskable interrupts (NMI) cannot be dis-
abled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a
directive is invoked, unpredictable results may
occur due to the inability of RTEMS to pro-
tect its critical sections. However, ISRs that
make no system calls may safely execute as
non-maskable interrupts.

2.5. Interrupt Processing 13

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 2 Section 2.6

2.6 Default Fatal Error Processing

Upon detection of a fatal error by either
the application or RTEMS during initializa-
tion the rtems_fatal_error_occurred direc-
tive supplied by the Fatal Error Manager is in-
voked. The Fatal Error Manager will invoke the
user-supplied fatal error handlers. If no user-
supplied handlers are configured or all of them
return without taking action to shutdown the
processor or reset, a default fatal error handler
is invoked.

Most of the action performed as part of pro-
cessing the fatal error are described in detail
in the Fatal Error Manager chapter in the User’s
Guide. However, the if no user provided exten-
sion or BSP specific fatal error handler takes
action, the final default action is to invoke a
CPU architecture specific function. Typically
this function disables interrupts and halts the
processor.

In each of the architecture specific chapters,
this describes the precise operations of the de-
fault CPU specific fatal error handler.

14 Chapter 2. Port Specific Information

Chapter 2 Section 2.7 RTEMS CPU Supplement Documentation, Release 4.11.3

2.7 Symmetric Multiprocessing

This section contains information about the
Symmetric Multiprocessing (SMP) status of a
particular architecture.

2.7. Symmetric Multiprocessing 15

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 2 Section 2.8

2.8 Thread-Local Storage

In order to support thread-local storage (TLS)
the CPU port must implement the facilities
mandated by the application binary inter-
face (ABI) of the CPU architecture. The
CPU port must initialize the TLS area in the
_CPU_Context_Initialize() function. There
are support functions available via #include
<rtems/score/tls.h> which implement Vari-
ants I and II according to Ulrich Drepper, ELF
Handling For Thread-Local Storage.

_TLS_TCB_at_area_begin_initialize()
Uses Variant I, TLS offsets emitted by
linker takes the TCB into account.
For a reference implementation see
cpukit/score/cpu/arm/cpu.c.

_TLS_TCB_before_TLS_block_initialize()
Uses Variant I, TLS offsets emit-
ted by linker neglects the TCB.
For a reference implementation see
c/src/lib/libcpu/powerpc/new-exceptions/cpu.c.

_TLS_TCB_after_TLS_block_initialize()
Uses Variant II. For a reference implementa-
tion see cpukit/score/cpu/sparc/cpu.c.

The board support package (BSP) must pro-
vide the following sections and symbols in its
linker command file:

1 .tdata : {
2 _TLS_Data_begin = .;
3 *(.tdata .tdata.* .gnu.linkonce.td.*)
4 _TLS_Data_end = .;
5 }
6 .tbss : {
7 _TLS_BSS_begin = .;
8 *(.tbss .tbss.* .gnu.linkonce.tb.*) *(.

→˓tcommon)
9 _TLS_BSS_end = .;

10 }
11 _TLS_Data_size = _TLS_Data_end - _TLS_Data_

→˓begin;
12 _TLS_Data_begin = _TLS_Data_size != 0 ? _TLS_

→˓Data_begin : _TLS_BSS_begin;
13 _TLS_Data_end = _TLS_Data_size != 0 ? _TLS_

→˓Data_end : _TLS_BSS_begin;
14 _TLS_BSS_size = _TLS_BSS_end - _TLS_BSS_

→˓begin;
15 _TLS_Size = _TLS_BSS_end - _TLS_Data_begin;
16 _TLS_Alignment = MAX (ALIGNOF (.tdata), ␣

→˓ALIGNOF (.tbss));

16 Chapter 2. Port Specific Information

Chapter 2 Section 2.9 RTEMS CPU Supplement Documentation, Release 4.11.3

2.9 CPU counter

The CPU support must implement the CPU
counter interface. A CPU counter is some
free-running counter. It ticks usually with
a frequency close to the CPU or system bus
clock. On some architectures the actual
implementation is board support package
dependent. The CPU counter is used for
profiling of low-level functions. It is also
used to implement two busy wait func-
tions rtems_counter_delay_ticks() and
rtems_counter_delay_nanoseconds() which
may be used in device drivers. It may be also
used as an entropy source for random number
generators.

The CPU counter interface uses a CPU port spe-
cific unsigned integer type CPU_Counter_ticks
to represent CPU counter values. The CPU port
must provide the following two functions

• _CPU_Counter_read() to read the current
CPU counter value, and

• _CPU_Counter_difference() to get the
difference between two CPU counter val-
ues.

2.9. CPU counter 17

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 2 Section 2.10

2.10 Interrupt Profiling

The RTEMS profiling needs support by
the CPU port for the interrupt entry and
exit times. In case profiling is enabled
via the RTEMS build configuration op-
tion --enable-profiling (in this case the
pre-processor symbol RTEMS_PROFILING is
defined) the CPU port may provide data
for the interrupt entry and exit times of
the outer-most interrupt. The CPU port can
feed interrupt entry and exit times with the
_Profiling_Outer_most_interrupt_entry_and_exit()
function (#include
<rtems/score/profiling.h>). For
an example please have a look at
cpukit/score/cpu/arm/arm_exc_interrupt.S.

18 Chapter 2. Port Specific Information

Chapter 2 Section 2.11 RTEMS CPU Supplement Documentation, Release 4.11.3

2.11 Board Support Packages

An RTEMS Board Support Package (BSP) must
be designed to support a particular processor
model and target board combination.

In each of the architecture specific chapters,
this section will present a discussion of ar-
chitecture specific BSP issues. For more in-
formation on developing a BSP, refer to BSP
and Device Driver Development Guide and the
chapter titled Board Support Packages in the
RTEMS Applications User’s Guide.

2.11.1 System Reset

An RTEMS based application is initiated or re-
initiated when the processor is reset or transfer
is passed to it from a boot monitor or ROM
monitor.

In each of the architecture specific chapters,
this subsection describes the actions that the
BSP must tak assuming the application gets
control when the microprocessor is reset.

2.11. Board Support Packages 19

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 2 Section 2.11

20 Chapter 2. Port Specific Information

CHAPTER

THREE

ARM SPECIFIC INFORMATION

This chapter discusses the ARM architec-
ture (http://en.wikipedia.org/wiki/ARM_
architecture) dependencies in this port of
RTEMS. The ARMv4T (and compatible),
ARMv7-A, ARMv7-R and ARMv7-M archi-
tecture versions are supported by RTEMS.
Processors with a MMU use a static configura-
tion which is set up during system start. SMP
is supported.

Architecture Documents

For information on the ARM architecture refer
to the ARM Infocenter (http://infocenter.arm.
com/).

21

http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/ARM_architecture
http://infocenter.arm.com/
http://infocenter.arm.com/

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 3 Section 3.1

3.1 CPU Model Dependent Fea-
tures

This section presents the set of features which
vary across ARM implementations and are
of importance to RTEMS. The set of CPU
model feature macros are defined in the file
cpukit/score/cpu/arm/rtems/score/arm.h
based upon the particular CPU model flags
specified on the compilation command line.

3.1.1 CPU Model Name

The macro CPU_MODEL_NAME is a string
which designates the architectural
level of this CPU model. See in
cpukit/score/cpu/arm/rtems/score/arm.h
for the values.

3.1.2 Count Leading Zeroes Instruction

The ARMv5 and later has the count leading
zeroes clz instruction which could be used to
speed up the find first bit operation. The use
of this instruction should significantly speed up
the scheduling associated with a thread block-
ing. This is currently not used.

3.1.3 Floating Point Unit

The following floating point units are sup-
ported.

• VFPv3-D32/NEON (for example avail-
able on Cortex-A processors)

• VFPv3-D16 (for example available on
Cortex-R processors)

• FPv4-SP-D16 (for example available on
Cortex-M processors)

22 Chapter 3. ARM Specific Information

Chapter 3 Section 3.2 RTEMS CPU Supplement Documentation, Release 4.11.3

3.2 Multilibs

The following multilibs are available:

1. .: ARMv4T, ARM instruction set

2. thumb: ARMv4T, Thumb-1 instruction set

3. thumb/armv6-m: ARMv6M, subset of
Thumb-2 instruction set

4. thumb/armv7-a: ARMv7-A, Thumb-2 in-
struction set

5. thumb/armv7-a/neon/hard: ARMv7-A,
Thumb-2 instruction set with hard-float
ABI Neon and VFP-D32 support

6. thumb/armv7-r: ARMv7-R, Thumb-2 in-
struction set

7. thumb/armv7-r/vfpv3-d16/hard:
ARMv7-R, Thumb-2 instruction set
with hard-float ABI VFP-D16 support

8. thumb/armv7-m: ARMv7-M, Thumb-2 in-
struction set with hardware integer divi-
sion (SDIV/UDIV)

9. thumb/armv7-m/fpv4-sp-d16: ARMv7-
M, Thumb-2 instruction set with hard-
ware integer division (SDIV/UDIV) and
hard-float ABI FPv4-SP support

10. eb/thumb/armv7-r: ARMv7-R, Big-
endian Thumb-2 instruction set

11. eb/thumb/armv7-r/vfpv3-d16/hard:
ARMv7-R, Big-endian Thumb-2 instruc-
tion set with hard-float ABI VFP-D16
support

Multilib 1. and 2. support the standard
ARM7TDMI and ARM926EJ-S targets.

Multilib 3. supports the Cortex-M0 and Cortex-
M1 cores.

Multilib 8. supports the Cortex-M3 and Cortex-
M4 cores, which have a special hardware inte-
ger division instruction (this is not present in
the A and R profiles).

Multilib 9. supports the Cortex-M4 cores with
a floating point unit.

Multilib 4. and 5. support the Cortex-A pro-
cessors.

Multilib 6., 7., 10. and 11. support the Cortex-
R processors. Here also big-endian variants are
available.

Use for example the following GCC options:

1 -mthumb -march=armv7-a -mfpu=neon -mfloat-
→˓abi=hard -mtune=cortex-a9

to build an application or BSP for the ARMv7-A
architecture and tune the code for a Cortex-A9
processor. It is important to select the options
used for the multilibs. For example:

1 -mthumb -mcpu=cortex-a9

alone will not select the ARMv7-A multilib.

3.2. Multilibs 23

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 3 Section 3.3

3.3 Calling Conventions

Please refer to the Procedure Call
Standard for the ARM Architecture
(http://infocenter.arm.com/help/topic/
com.arm.doc.ihi0042c/IHI0042C_aapcs.pdf).

24 Chapter 3. ARM Specific Information

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042c/IHI0042C_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042c/IHI0042C_aapcs.pdf

Chapter 3 Section 3.4 RTEMS CPU Supplement Documentation, Release 4.11.3

3.4 Memory Model

A flat 32-bit memory model is supported. The
board support package must take care about
the MMU if necessary.

3.4. Memory Model 25

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 3 Section 3.5

3.5 Interrupt Processing

The ARMv4T (and compatible) architecture
has seven exception types:

• Reset

• Undefined

• Software Interrupt (SWI)

• Prefetch Abort

• Data Abort

• Interrupt (IRQ)

• Fast Interrupt (FIQ)

Of these types only the IRQ has explicit oper-
ating system support. It is intentional that the
FIQ is not supported by the operating system.
Without operating system support for the FIQ
it is not necessary to disable them during criti-
cal sections of the system.

The ARMv7-M architecture has a completely
different exception model. Here interrupts
are disabled with a write of 0x80 to the
basepri_max register. This means that all ex-
ceptions and interrupts with a priority value
of greater than or equal to 0x80 are disabled.
Thus exceptions and interrupts with a priority
value of less than 0x80 are non-maskable with
respect to the operating system and therefore
must not use operating system services. Sev-
eral support libraries of chip vendors implic-
itly shift the priority value somehow before the
value is written to the NVIC IPR register. This
can easily lead to confusion.

3.5.1 Interrupt Levels

There are exactly two interrupt levels on ARM
with respect to RTEMS. Level zero corresponds
to interrupts enabled. Level one corresponds
to interrupts disabled.

3.5.2 Interrupt Stack

The board support package must initialize the
interrupt stack. The memory for the stacks is
usually reserved in the linker script.

26 Chapter 3. ARM Specific Information

Chapter 3 Section 3.6 RTEMS CPU Supplement Documentation, Release 4.11.3

3.6 Default Fatal Error Processing

The default fatal error handler for this archi-
tecture performs the following actions:

• disables operating system supported in-
terrupts (IRQ),

• places the error code in r0, and

• executes an infinite loop to simulate a
halt processor instruction.

3.6. Default Fatal Error Processing 27

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 3 Section 3.7

3.7 Symmetric Multiprocessing

SMP is supported on ARMv7-A. Available plat-
forms are the Altera Cyclone V and the Xilinx
Zynq.

28 Chapter 3. ARM Specific Information

Chapter 3 Section 3.8 RTEMS CPU Supplement Documentation, Release 4.11.3

3.8 Thread-Local Storage

Thread-local storage is supported.

3.8. Thread-Local Storage 29

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 3 Section 3.8

30 Chapter 3. ARM Specific Information

CHAPTER

FOUR

ATMEL AVR SPECIFIC INFORMATION

This chapter discusses the AVR architecture de-
pendencies in this port of RTEMS.

Architecture Documents

For information on the AVR architecture, refer
to the following documents available from At-
mel.

TBD

• See other CPUs for documentation refer-
ence formatting examples.

31

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 4 Section 4.1

4.1 CPU Model Dependent Fea-
tures

CPUs of the AVR 53X only differ in the periph-
erals and thus in the device drivers. This port
does not yet support the 56X dual core vari-
ants.

4.1.1 Count Leading Zeroes Instruction

The AVR CPU has the XXX instruction which
could be used to speed up the find first bit op-
eration. The use of this instruction should sig-
nificantly speed up the scheduling associated
with a thread blocking.

32 Chapter 4. Atmel AVR Specific Information

Chapter 4 Section 4.2 RTEMS CPU Supplement Documentation, Release 4.11.3

4.2 Calling Conventions

4.2.1 Processor Background

The AVR architecture supports a simple call
and return mechanism. A subroutine is in-
voked via the call (call) instruction. This
instruction saves the return address in the
RETS register and transfers the execution to the
given address.

It is the called funcions responsability to use
the link instruction to reserve space on the
stack for the local variables. Returning from
a subroutine is done by using the RTS (RTS)
instruction which loads the PC with the adress
stored in RETS.

It is is important to note that the call instruc-
tion does not automatically save or restore any
registers. It is the responsibility of the high-
level language compiler to define the register
preservation and usage convention.

4.2.2 Register Usage

A called function may clobber all registers, ex-
cept RETS, R4-R7, P3-P5, FP and SP. It may
also modify the first 12 bytes in the caller’s
stack frame which is used as an argument area
for the first three arguments (which are passed
in R0...R3 but may be placed on the stack by
the called function).

4.2.3 Parameter Passing

RTEMS assumes that the AVR GCC calling con-
vention is followed. The first three parame-
ters are stored in registers R0, R1, and R2. All
other parameters are put pushed on the stack.
The result is returned through register R0.

4.2. Calling Conventions 33

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 4 Section 4.3

4.3 Memory Model

The AVR family architecutre support a single
unified 4 GB byte address space using 32-bit
addresses. It maps all resources like internal
and external memory and IO registers into sep-
arate sections of this common address space.

The AVR architcture supports some form of
memory protection via its Memory Manage-
ment Unit. Since the AVR port runs in supervi-
sior mode this memory protection mechanisms
are not used.

34 Chapter 4. Atmel AVR Specific Information

Chapter 4 Section 4.4 RTEMS CPU Supplement Documentation, Release 4.11.3

4.4 Interrupt Processing

Discussed in this chapter are the AVR’s inter-
rupt response and control mechanisms as they
pertain to RTEMS.

4.4.1 Vectoring of an Interrupt Handler

TBD

4.4.2 Disabling of Interrupts by RTEMS

During interrupt disable critical sections,
RTEMS disables interrupts to level N (N) be-
fore the execution of this section and restores
them to the previous level upon completion of
the section. RTEMS uses the instructions CLI
and STI to enable and disable Interrupts. Em-
ulation, Reset, NMI and Exception Interrupts
are never disabled.

4.4.3 Interrupt Stack

The AVR Architecture works with two differ-
ent kind of stacks, User and Supervisor Stack.
Since RTEMS and its Application run in super-
visor mode, all interrupts will use the inter-
rupted tasks stack for execution.

4.4. Interrupt Processing 35

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 4 Section 4.5

4.5 Default Fatal Error Processing

The default fatal error handler for the AVR per-
forms the following actions:

• disables processor interrupts,

• places the error code in r0, and

• executes an infinite loop (while(0); to
simulate a halt processor instruction.

36 Chapter 4. Atmel AVR Specific Information

Chapter 4 Section 4.6 RTEMS CPU Supplement Documentation, Release 4.11.3

4.6 Symmetric Multiprocessing

SMP is not supported.

4.6. Symmetric Multiprocessing 37

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 4 Section 4.7

4.7 Thread-Local Storage

Thread-local storage is not supported due to a
broken tool chain.

38 Chapter 4. Atmel AVR Specific Information

Chapter 4 Section 4.8 RTEMS CPU Supplement Documentation, Release 4.11.3

4.8 Board Support Packages

4.8.1 System Reset

TBD

4.8. Board Support Packages 39

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 4 Section 4.8

40 Chapter 4. Atmel AVR Specific Information

CHAPTER

FIVE

BLACKFIN SPECIFIC INFORMATION

This chapter discusses the Blackfin architec-
ture dependencies in this port of RTEMS.

Architecture Documents

For information on the Blackfin architecture,
refer to the following documents available
from Analog Devices.

TBD

• “ADSP-BF533 Blackfin Processor Hard-
ware Reference.” http://www.analog.
com/UploadedFiles/Associated_Docs/
892485982bf533_hwr.pdf

41

http://www.analog.com/UploadedFiles/Associated_Docs/892485982bf533_hwr.pdf
http://www.analog.com/UploadedFiles/Associated_Docs/892485982bf533_hwr.pdf
http://www.analog.com/UploadedFiles/Associated_Docs/892485982bf533_hwr.pdf

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 5 Section 5.1

5.1 CPU Model Dependent Fea-
tures

CPUs of the Blackfin 53X only differ in the pe-
ripherals and thus in the device drivers. This
port does not yet support the 56X dual core
variants.

5.1.1 Count Leading Zeroes Instruction

The Blackfin CPU has the BITTST instruction
which could be used to speed up the find
first bit operation. The use of this instruction
should significantly speed up the scheduling
associated with a thread blocking.

42 Chapter 5. Blackfin Specific Information

Chapter 5 Section 5.2 RTEMS CPU Supplement Documentation, Release 4.11.3

5.2 Calling Conventions

This section is heavily based on content taken
from the Blackfin uCLinux documentation wiki
which is edited by Analog Devices and Arc-
turus Networks. http://docs.blackfin.uclinux.
org/

5.2.1 Processor Background

The Blackfin architecture supports a simple
call and return mechanism. A subroutine is
invoked via the call (call) instruction. This
instruction saves the return address in the
RETS register and transfers the execution to the
given address.

It is the called funcions responsability to use
the link instruction to reserve space on the
stack for the local variables. Returning from
a subroutine is done by using the RTS (RTS)
instruction which loads the PC with the adress
stored in RETS.

It is is important to note that the call instruc-
tion does not automatically save or restore any
registers. It is the responsibility of the high-
level language compiler to define the register
preservation and usage convention.

5.2.2 Register Usage

A called function may clobber all registers, ex-
cept RETS, R4-R7, P3-P5, FP and SP. It may
also modify the first 12 bytes in the caller’s
stack frame which is used as an argument area
for the first three arguments (which are passed
in R0...R3 but may be placed on the stack by
the called function).

5.2.3 Parameter Passing

RTEMS assumes that the Blackfin GCC calling
convention is followed. The first three param-
eters are stored in registers R0, R1, and R2. All
other parameters are put pushed on the stack.
The result is returned through register R0.

5.2. Calling Conventions 43

http://docs.blackfin.uclinux.org/
http://docs.blackfin.uclinux.org/

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 5 Section 5.3

5.3 Memory Model

The Blackfin family architecutre support a sin-
gle unified 4 GB byte address space using 32-
bit addresses. It maps all resources like in-
ternal and external memory and IO registers
into separate sections of this common address
space.

The Blackfin architcture supports some form
of memory protection via its Memory Manage-
ment Unit. Since the Blackfin port runs in su-
pervisior mode this memory protection mech-
anisms are not used.

44 Chapter 5. Blackfin Specific Information

Chapter 5 Section 5.4 RTEMS CPU Supplement Documentation, Release 4.11.3

5.4 Interrupt Processing

Discussed in this chapter are the Blackfin’s in-
terrupt response and control mechanisms as
they pertain to RTEMS. The Blackfin archi-
tecture support 16 kinds of interrupts bro-
ken down into Core and general-purpose in-
terrupts.

5.4.1 Vectoring of an Interrupt Handler

RTEMS maps levels 0 -15 directly to Blackfins
event vectors EVT0 - EVT15. Since EVT0 -
EVT6 are core events and it is suggested to use
EVT15 and EVT15 for Software interrupts, 7
Interrupts (EVT7-EVT13) are left for periferi-
cal use.

When installing an RTEMS interrupt handler
RTEMS installs a generic Interrupt Handler
which saves some context and enables nested
interrupt servicing and then vectors to the
users interrupt handler.

5.4.2 Disabling of Interrupts by RTEMS

During interrupt disable critical sections,
RTEMS disables interrupts to level four (4) be-
fore the execution of this section and restores
them to the previous level upon completion of
the section. RTEMS uses the instructions CLI
and STI to enable and disable Interrupts. Em-
ulation, Reset, NMI and Exception Interrupts
are never disabled.

5.4.3 Interrupt Stack

The Blackfin Architecture works with two dif-
ferent kind of stacks, User and Supervisor
Stack. Since RTEMS and its Application run
in supervisor mode, all interrupts will use the
interrupted tasks stack for execution.

5.4. Interrupt Processing 45

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 5 Section 5.5

5.5 Default Fatal Error Processing

The default fatal error handler for the Blackfin
performs the following actions:

• disables processor interrupts,

• places the error code in r0, and

• executes an infinite loop (while(0); to
simulate a halt processor instruction.

46 Chapter 5. Blackfin Specific Information

Chapter 5 Section 5.6 RTEMS CPU Supplement Documentation, Release 4.11.3

5.6 Symmetric Multiprocessing

SMP is not supported.

5.6. Symmetric Multiprocessing 47

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 5 Section 5.7

5.7 Thread-Local Storage

Thread-local storage is not implemented.

48 Chapter 5. Blackfin Specific Information

Chapter 5 Section 5.8 RTEMS CPU Supplement Documentation, Release 4.11.3

5.8 Board Support Packages

5.8.1 System Reset

TBD

5.8. Board Support Packages 49

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 5 Section 5.8

50 Chapter 5. Blackfin Specific Information

CHAPTER

SIX

EPIPHANY SPECIFIC INFORMATION

This chapter discusses the‘Epiphany Archi-
tecture http://adapteva.com/docs/epiphany_
sdk_ref.pdf dependencies in this port of
RTEMS. Epiphany is a chip that can come with
16 and 64 cores, each of which can run RTEMS
separately or they can work together to run a
SMP RTEMS application.

Architecture Documents

For information on the Epiphany architecture
refer to the Epiphany Architecture Reference
http://adapteva.com/docs/epiphany_arch_
ref.pdf.

51

http://adapteva.com/docs/epiphany_sdk_ref.pdf
http://adapteva.com/docs/epiphany_sdk_ref.pdf
http://adapteva.com/docs/epiphany_arch_ref.pdf
http://adapteva.com/docs/epiphany_arch_ref.pdf

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 6 Section 6.1

6.1 Calling Conventions

Please refer to the Epiphany SDK http://
adapteva.com/docs/epiphany_sdk_ref.pdf Ap-
pendix A: Application Binary Interface

6.1.1 Floating Point Unit

A floating point unit is currently not supported.

52 Chapter 6. Epiphany Specific Information

http://adapteva.com/docs/epiphany_sdk_ref.pdf
http://adapteva.com/docs/epiphany_sdk_ref.pdf

Chapter 6 Section 6.2 RTEMS CPU Supplement Documentation, Release 4.11.3

6.2 Memory Model

A flat 32-bit memory model is supported, no
caches. Each core has its own 32 KiB strictly
ordered local memory along with an access to
a shared 32 MiB external DRAM.

6.2. Memory Model 53

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 6 Section 6.3

6.3 Interrupt Processing

Every Epiphany core has 10 exception types:

• Reset

• Software Exception

• Data Page Fault

• Timer 0

• Timer 1

• Message Interrupt

• DMA0 Interrupt

• DMA1 Interrupt

• WANT Interrupt

• User Interrupt

6.3.1 Interrupt Levels

There are only two levels: interrupts enabled
and interrupts disabled.

6.3.2 Interrupt Stack

The Epiphany RTEMS port uses a dedicated
software interrupt stack. The stack for in-
terrupts is allocated during interrupt driver
initialization. When an interrupt is entered,
the _ISR_Handler routine is responsible for
switching from the interrupted task stack to
RTEMS software interrupt stack.

54 Chapter 6. Epiphany Specific Information

Chapter 6 Section 6.4 RTEMS CPU Supplement Documentation, Release 4.11.3

6.4 Default Fatal Error Processing

The default fatal error handler for this archi-
tecture performs the following actions:

• disables operating system supported in-
terrupts (IRQ),

• places the error code in r0, and

• executes an infinite loop to simulate a
halt processor instruction.

6.4. Default Fatal Error Processing 55

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 6 Section 6.5

6.5 Symmetric Multiprocessing

SMP is not supported.

56 Chapter 6. Epiphany Specific Information

CHAPTER

SEVEN

INTEL/AMD X86 SPECIFIC
INFORMATION

This chapter discusses the Intel x86 archi-
tecture dependencies in this port of RTEMS.
This family has multiple implementations from
multiple vendors and suffers more from having
evolved rather than being designed for growth.

For information on the i386 processor, refer to
the following documents:

• 386 Programmer’s Reference Manual, In-
tel, Order No. 230985-002.

• 386 Microprocessor Hardware Reference
Manual, Intel, Order No. 231732-003.

• 80386 System Software Writer’s Guide, In-
tel, Order No. 231499-001.

• 80387 Programmer’s Reference Manual,
Intel, Order No. 231917-001.

57

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 7 Section 7.1

7.1 CPU Model Dependent Fea-
tures

This section presents the set of features which
vary across i386 implementations and are
of importance to RTEMS. The set of CPU
model feature macros are defined in the
cpukit/score/cpu/i386/i386.h based upon
the particular CPU model specified on the com-
pilation command line.

7.1.1 bswap Instruction

The macro I386_HAS_BSWAP is set to 1 to indi-
cate that this CPU model has the bswap instruc-
tion which endian swaps a thirty-two bit quan-
tity. This instruction appears to be present in
all CPU models i486’s and above.

58 Chapter 7. Intel/AMD x86 Specific Information

Chapter 7 Section 7.2 RTEMS CPU Supplement Documentation, Release 4.11.3

7.2 Calling Conventions

7.2.1 Processor Background

The i386 architecture supports a simple yet ef-
fective call and return mechanism. A subrou-
tine is invoked via the call (call) instruction.
This instruction pushes the return address on
the stack. The return from subroutine (ret)
instruction pops the return address off the cur-
rent stack and transfers control to that instruc-
tion. It is is important to note that the i386 call
and return mechanism does not automatically
save or restore any registers. It is the respon-
sibility of the high-level language compiler to
define the register preservation and usage con-
vention.

7.2.2 Calling Mechanism

All RTEMS directives are invoked using a call
instruction and return to the user application
via the ret instruction.

7.2.3 Register Usage

As discussed above, the call instruction does
not automatically save any registers. RTEMS
uses the registers EAX, ECX, and EDX as
scratch registers. These registers are not pre-
served by RTEMS directives therefore, the con-
tents of these registers should not be assumed
upon return from any RTEMS directive.

7.2.4 Parameter Passing

RTEMS assumes that arguments are placed on
the current stack before the directive is in-
voked via the call instruction. The first argu-
ment is assumed to be closest to the return ad-
dress on the stack. This means that the first
argument of the C calling sequence is pushed
last. The following pseudo-code illustrates the
typical sequence used to call a RTEMS direc-
tive with three (3) arguments:

1 push third argument
2 push second argument
3 push first argument

4 invoke directive
5 remove arguments from the stack

The arguments to RTEMS are typically pushed
onto the stack using a push instruction. These
arguments must be removed from the stack af-
ter control is returned to the caller. This re-
moval is typically accomplished by adding the
size of the argument list in bytes to the stack
pointer.

7.2. Calling Conventions 59

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 7 Section 7.3

7.3 Memory Model

7.3.1 Flat Memory Model

RTEMS supports the i386 protected mode, flat
memory model with paging disabled. In this
mode, the i386 automatically converts every
address from a logical to a physical address
each time it is used. The i386 uses informa-
tion provided in the segment registers and the
Global Descriptor Table to convert these ad-
dresses. RTEMS assumes the existence of the
following segments:

• a single code segment at protection level
(0) which contains all application and
executive code.

• a single data segment at protection level
zero (0) which contains all application
and executive data.

The i386 segment registers and associated se-
lectors must be initialized when the initial-
ize_executive directive is invoked. RTEMS
treats the segment registers as system registers
and does not modify or context switch them.

This i386 memory model supports a flat 32-
bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes).
Each address is represented by a 32-bit value
and is byte addressable. The address may be
used to reference a single byte, half-word (2-
bytes), or word (4 bytes).

60 Chapter 7. Intel/AMD x86 Specific Information

Chapter 7 Section 7.4 RTEMS CPU Supplement Documentation, Release 4.11.3

7.4 Interrupt Processing

Although RTEMS hides many of the processor
dependent details of interrupt processing, it is
important to understand how the RTEMS in-
terrupt manager is mapped onto the proces-
sor’s unique architecture. Discussed in this
chapter are the the processor’s response and
control mechanisms as they pertain to RTEMS.

7.4.1 Vectoring of Interrupt Handler

Although the i386 supports multiple privilege
levels, RTEMS and all user software executes
at privilege level 0. This decision was made
by the RTEMS designers to enhance compat-
ibility with processors which do not provide
sophisticated protection facilities like those of
the i386. This decision greatly simplifies the
discussion of i386 processing, as one need
only consider interrupts without privilege tran-
sitions.

Upon receipt of an interrupt the i386 automat-
ically performs the following actions:

• pushes the EFLAGS register

• pushes the far address of the interrupted
instruction

• vectors to the interrupt service routine
(ISR).

A nested interrupt is processed similarly by the
i386.

7.4.2 Interrupt Stack Frame

The structure of the Interrupt Stack Frame for
the i386 which is placed on the interrupt stack
by the processor in response to an interrupt is
as follows:

Old EFLAGS Register ESP+8
UNUSED Old CS ESP+4
Old EIP ESP

7.4.3 Interrupt Levels

Although RTEMS supports 256 interrupt lev-
els, the i386 only supports two - enabled and

disabled. Interrupts are enabled when the
interrupt-enable flag (IF) in the extended flags
(EFLAGS) is set. Conversely, interrupt process-
ing is inhibited when the IF is cleared. During
a non-maskable interrupt, all other interrupts,
including other non-maskable ones, are inhib-
ited.

RTEMS interrupt levels 0 and 1 such that level
zero (0) indicates that interrupts are fully en-
abled and level one that interrupts are dis-
abled. All other RTEMS interrupt levels are
undefined and their behavior is unpredictable.

7.4.4 Interrupt Stack

The i386 family does not support a dedicated
hardware interrupt stack. On this proces-
sor, RTEMS allocates and manages a dedi-
cated interrupt stack. As part of vectoring a
non-nested interrupt service routine, RTEMS
switches from the stack of the interrupted task
to a dedicated interrupt stack. When a non-
nested interrupt returns, RTEMS switches back
to the stack of the interrupted stack. The cur-
rent stack pointer is not altered by RTEMS on
nested interrupt.

7.4. Interrupt Processing 61

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 7 Section 7.5

7.5 Default Fatal Error Processing

The default fatal error handler for this archi-
tecture disables processor interrupts, places
the error code in EAX, and executes a HLT in-
struction to halt the processor.

62 Chapter 7. Intel/AMD x86 Specific Information

Chapter 7 Section 7.6 RTEMS CPU Supplement Documentation, Release 4.11.3

7.6 Symmetric Multiprocessing

SMP is not supported.

7.6. Symmetric Multiprocessing 63

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 7 Section 7.7

7.7 Thread-Local Storage

Thread-local storage is not implemented.

64 Chapter 7. Intel/AMD x86 Specific Information

Chapter 7 Section 7.8 RTEMS CPU Supplement Documentation, Release 4.11.3

7.8 Board Support Packages

7.8.1 System Reset

An RTEMS based application is initiated when
the i386 processor is reset. When the i386 is
reset,

• The EAX register is set to indicate the
results of the processor’s power-up self
test. If the self-test was not executed,
the contents of this register are unde-
fined. Otherwise, a non-zero value in-
dicates the processor is faulty and a zero
value indicates a successful self-test.

• The DX register holds a component iden-
tifier and revision level. DH contains 3 to
indicate an i386 component and DL con-
tains a unique revision level indicator.

• Control register zero (CR0) is set such
that the processor is in real mode with
paging disabled. Other portions of CR0
are used to indicate the presence of a nu-
meric coprocessor.

• All bits in the extended flags register
(EFLAG) which are not permanently set
are cleared. This inhibits all maskable in-
terrupts.

• The Interrupt Descriptor Register (IDTR)
is set to point at address zero.

• All segment registers are set to zero.

• The instruction pointer is set to
0x0000FFF0. The first instruction
executed after a reset is actually at
0xFFFFFFF0 because the i386 asserts the
upper twelve address until the first inter-
segment (FAR) JMP or CALL instruction.
When a JMP or CALL is executed, the
upper twelve address lines are lowered
and the processor begins executing in
the first megabyte of memory.

Typically, an intersegment JMP to the applica-
tion’s initialization code is placed at address
0xFFFFFFF0.

7.8.2 Processor Initialization

This initialization code is responsible for ini-
tializing all data structures required by the
i386 in protected mode and for actually en-
tering protected mode. The i386 must be
placed in protected mode and the segment reg-
isters and associated selectors must be initial-
ized before the initialize_executive directive is
invoked.

The initialization code is responsible for ini-
tializing the Global Descriptor Table such that
the i386 is in the thirty-two bit flat memory
model with paging disabled. In this mode,
the i386 automatically converts every address
from a logical to a physical address each time
it is used. For more information on the mem-
ory model used by RTEMS, please refer to the
Memory Model chapter in this document.

Since the processor is in real mode upon re-
set, the processor must be switched to pro-
tected mode before RTEMS can execute. Be-
fore switching to protected mode, at least one
descriptor table and two descriptors must be
created. Descriptors are needed for a code
segment and a data segment. (This will give
you the flat memory model.) The stack can be
placed in a normal read/write data segment,
so no descriptor for the stack is needed. Be-
fore the GDT can be used, the base address
and limit must be loaded into the GDTR reg-
ister using an LGDT instruction.

If the hardware allows an NMI to be gener-
ated, you need to create the IDT and a gate
for the NMI interrupt handler. Before the IDT
can be used, the base address and limit for the
idt must be loaded into the IDTR register using
an LIDT instruction.

Protected mode is entered by setting thye PE
bit in the CR0 register. Either a LMSW or MOV
CR0 instruction may be used to set this bit.
Because the processor overlaps the interpreta-
tion of several instructions, it is necessary to
discard the instructions from the read-ahead
cache. A JMP instruction immediately after
the LMSW changes the flow and empties the
processor if intructions which have been pre-
fetched and/or decoded. At this point, the pro-
cessor is in protected mode and begins to per-

7.8. Board Support Packages 65

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 7 Section 7.8

form protected mode application initialization.

If the application requires that the IDTR be
some value besides zero, then it should set it to
the required value at this point. All tasks share
the same i386 IDTR value. Because interrupts
are enabled automatically by RTEMS as part
of the initialize_executive directive, the IDTR
MUST be set properly before this directive is
invoked to insure correct interrupt vectoring.
If processor caching is to be utilized, then it
should be enabled during the reset application
initialization code. The reset code which is
executed before the call to initialize_executive
has the following requirements:

For more information regarding the i386 data
structures and their contents, refer to Intel’s
386 Programmer’s Reference Manual.

66 Chapter 7. Intel/AMD x86 Specific Information

CHAPTER

EIGHT

LATTICE MICO32 SPECIFIC
INFORMATION

This chaper discusses the Lattice Mico32 archi-
tecture dependencies in this port of RTEMS.
The Lattice Mico32 is a 32-bit Harvard, RISC
architecture “soft” microprocessor, available
for free with an open IP core licensing agree-
ment. Although mainly targeted for Lattice
FPGA devices the microprocessor can be im-
plemented on other vendors’ FPGAs, too.

Architecture Documents

For information on the Lattice Mico32 archi-
tecture, refer to the following documents avail-
able from Lattice Semiconductor http://www.
latticesemi.com/.

• “LatticeMico32 Processor Reference
Manual” http://www.latticesemi.
com/dynamic/view_document.cfm?
document_id=20890

67

http://www.latticesemi.com/
http://www.latticesemi.com/
http://www.latticesemi.com/dynamic/view_document.cfm?document_id=20890
http://www.latticesemi.com/dynamic/view_document.cfm?document_id=20890
http://www.latticesemi.com/dynamic/view_document.cfm?document_id=20890

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 8 Section 8.1

8.1 CPU Model Dependent Fea-
tures

The Lattice Mico32 architecture allows for dif-
ferent configurations of the processor. This
port is based on the assumption that the fol-
lowing options are implemented:

• hardware multiplier

• hardware divider

• hardware barrel shifter

• sign extension instructions

• instruction cache

• data cache

• debug

68 Chapter 8. Lattice Mico32 Specific Information

Chapter 8 Section 8.2 RTEMS CPU Supplement Documentation, Release 4.11.3

8.2 Register Architecture

This section gives a brief introduction to the
register architecture of the Lattice Mico32 pro-
cessor.

The Lattice Mico32 is a RISC archictecture pro-
cessor with a 32-register file of 32-bit registers.

Register Name

Function

r0

holds value zero

r1-r25

general purpose

r26/gp

general pupose / global pointer

r27/fp

general pupose / frame pointer

r28/sp

stack pointer

r29/ra

return address

r30/ea

exception address

r31/ba

breakpoint address

Note that on processor startup all register val-
ues are undefined including r0, thus r0 has to
be initialized to zero.

8.2. Register Architecture 69

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 8 Section 8.3

8.3 Calling Conventions

8.3.1 Calling Mechanism

A call instruction places the return address to
register r29 and a return from subroutine (ret)
is actually a branch to r29/ra.

8.3.2 Register Usage

A subroutine may freely use registers r1 to r10
which are not preserved across subroutine in-
vocations.

8.3.3 Parameter Passing

When calling a C function the first eight argu-
ments are stored in registers r1 to r8. Registers
r1 and r2 hold the return value.

70 Chapter 8. Lattice Mico32 Specific Information

Chapter 8 Section 8.4 RTEMS CPU Supplement Documentation, Release 4.11.3

8.4 Memory Model

The Lattice Mico32 processor supports a flat
memory model with a 4 Gbyte address space
with 32-bit addresses.

The following data types are supported:

Type Bits C Compiler Type
unsigned byte 8 unsigned char
signed byte 8 char
unsigned
half-word

16 unsigned short

signed
half-word

16 short

unsigned
word

32 unsigned int /
unsigned long

signed word 32 int / long

Data accesses need to be aligned, with un-
aligned accesses result are undefined.

8.4. Memory Model 71

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 8 Section 8.5

8.5 Interrupt Processing

The Lattice Mico32 has 32 interrupt lines
which are however served by only one excep-
tion vector. When an interrupt occurs follow-
ing happens:

• address of next instruction placed in
r30/ea

• IE field of IE CSR saved to EIE field and
IE field cleared preventing further excep-
tions from occuring.

• branch to interrupt exception address
EBA CSR + 0xC0

The interrupt exception handler determines
from the state of the interrupt pending regis-
ters (IP CSR) and interrupt enable register (IE
CSR) which interrupt to serve and jumps to the
interrupt routine pointed to by the correspond-
ing interrupt vector.

For now there is no dedicated interrupt stack
so every task in the system MUST have enough
stack space to accommodate the worst case
stack usage of that particular task and the in-
terrupt service routines COMBINED.

Nested interrupts are not supported.

72 Chapter 8. Lattice Mico32 Specific Information

Chapter 8 Section 8.6 RTEMS CPU Supplement Documentation, Release 4.11.3

8.6 Default Fatal Error Processing

Upon detection of a fatal error by either
the application or RTEMS during initializa-
tion the rtems_fatal_error_occurred direc-
tive supplied by the Fatal Error Manager is in-
voked. The Fatal Error Manager will invoke the
user-supplied fatal error handlers. If no user-
supplied handlers are configured or all of them
return without taking action to shutdown the
processor or reset, a default fatal error handler
is invoked.

Most of the action performed as part of pro-
cessing the fatal error are described in detail
in the Fatal Error Manager chapter in the User’s
Guide. However, the if no user provided exten-
sion or BSP specific fatal error handler takes
action, the final default action is to invoke a
CPU architecture specific function. Typically
this function disables interrupts and halts the
processor.

In each of the architecture specific chapters,
this describes the precise operations of the de-
fault CPU specific fatal error handler.

8.6. Default Fatal Error Processing 73

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 8 Section 8.7

8.7 Symmetric Multiprocessing

SMP is not supported.

74 Chapter 8. Lattice Mico32 Specific Information

Chapter 8 Section 8.8 RTEMS CPU Supplement Documentation, Release 4.11.3

8.8 Thread-Local Storage

Thread-local storage is not implemented.

8.8. Thread-Local Storage 75

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 8 Section 8.9

8.9 Board Support Packages

An RTEMS Board Support Package (BSP) must
be designed to support a particular processor
model and target board combination.

In each of the architecture specific chapters,
this section will present a discussion of ar-
chitecture specific BSP issues. For more in-
formation on developing a BSP, refer to BSP
and Device Driver Development Guide and the
chapter titled Board Support Packages in the
RTEMS Applications User’s Guide.

8.9.1 System Reset

An RTEMS based application is initiated or re-
initiated when the processor is reset.

76 Chapter 8. Lattice Mico32 Specific Information

CHAPTER

NINE

RENESAS M32C SPECIFIC
INFORMATION

77

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 9 Section 9.1

9.1 Symmetric Multiprocessing

SMP is not supported.

78 Chapter 9. Renesas M32C Specific Information

Chapter 9 Section 9.2 RTEMS CPU Supplement Documentation, Release 4.11.3

9.2 Thread-Local Storage

Thread-local storage is not implemented.

9.2. Thread-Local Storage 79

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 9 Section 9.2

80 Chapter 9. Renesas M32C Specific Information

CHAPTER

TEN

M68XXX AND COLDFIRE SPECIFIC
INFORMATION

This chapter discusses the Freescale (formerly
Motorola) MC68xxx and Coldfire architectural
dependencies. The MC68xxx family has a wide
variety of CPU models within it based upon
different CPU core implementations. Ignoring
the Coldfire parts, the part numbers for these
models are generally divided into MC680xx
and MC683xx. The MC680xx models are more
general purpose processors with no integrated
peripherals. The MC683xx models, on the
other hand, are more specialized and have a
variety of peripherals on chip including sophis-
ticated timers and serial communications con-
trollers.

Architecture Documents

For information on the MC68xxx and Cold-
fire architecture, refer to the following doc-
uments available from Freescale website
(http//www.freescale.com/):

• M68000 Family Reference, Motorola,
FR68K/D.

• MC68020 User’s Manual, Motorola,
MC68020UM/AD.

• MC68881/MC68882 Floating-Point
Coprocessor User’s Manual, Motorola,
MC68881UM/AD.

81

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 10 Section 10.1

10.1 CPU Model Dependent Fea-
tures

This section presents the set of features which
vary across m68k/Coldfire implementations
that are of importance to RTEMS. The set
of CPU model feature macros are defined in
the file cpukit/score/cpu/m68k/m68k.h based
upon the particular CPU model selected on the
compilation command line.

10.1.1 BFFFO Instruction

The macro M68K_HAS_BFFFO is set to 1 to indi-
cate that this CPU model has the bfffo instruc-
tion.

10.1.2 Vector Base Register

The macro M68K_HAS_VBR is set to 1 to indicate
that this CPU model has a vector base register
(vbr).

10.1.3 Separate Stacks

The macro M68K_HAS_SEPARATE_STACKS is set to
1 to indicate that this CPU model has separate
interrupt, user, and supervisor mode stacks.

10.1.4 Pre-Indexing Address Mode

The macro M68K_HAS_PREINDEXING is set to 1
to indicate that this CPU model has the pre-
indexing address mode.

10.1.5 Extend Byte to Long Instruction

The macro M68K_HAS_EXTB_L is set to 1 to indi-
cate that this CPU model has the extb.l instruc-
tion. This instruction is supposed to be avail-
able in all models based on the cpu32 core as
well as mc68020 and up models.

82 Chapter 10. M68xxx and Coldfire Specific Information

Chapter 10 Section 10.2 RTEMS CPU Supplement Documentation, Release 4.11.3

10.2 Calling Conventions

The MC68xxx architecture supports a simple
yet effective call and return mechanism. A
subroutine is invoked via the branch to sub-
routine (bsr) or the jump to subroutine (jsr)
instructions. These instructions push the re-
turn address on the current stack. The return
from subroutine (rts) instruction pops the re-
turn address off the current stack and trans-
fers control to that instruction. It is is impor-
tant to note that the MC68xxx call and return
mechanism does not automatically save or re-
store any registers. It is the responsibility of
the high-level language compiler to define the
register preservation and usage convention.

10.2.1 Calling Mechanism

All RTEMS directives are invoked using either
a bsr or jsr instruction and return to the user
application via the rts instruction.

10.2.2 Register Usage

As discussed above, the bsr and jsr instruc-
tions do not automatically save any registers.
RTEMS uses the registers D0, D1, A0, and A1
as scratch registers. These registers are not
preserved by RTEMS directives therefore, the
contents of these registers should not be as-
sumed upon return from any RTEMS directive.

10.2.3 Parameter Passing

RTEMS assumes that arguments are placed on
the current stack before the directive is in-
voked via the bsr or jsr instruction. The first
argument is assumed to be closest to the return
address on the stack. This means that the first
argument of the C calling sequence is pushed
last. The following pseudo-code illustrates the
typical sequence used to call a RTEMS direc-
tive with three (3) arguments:

1 push third argument
2 push second argument
3 push first argument
4 invoke directive
5 remove arguments from the stack

The arguments to RTEMS are typically pushed
onto the stack using a move instruction with
a pre-decremented stack pointer as the des-
tination. These arguments must be removed
from the stack after control is returned to the
caller. This removal is typically accomplished
by adding the size of the argument list in bytes
to the current stack pointer.

10.2. Calling Conventions 83

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 10 Section 10.3

10.3 Memory Model

The MC68xxx family supports a flat 32-bit
address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes).
Each address is represented by a 32-bit value
and is byte addressable. The address may
be used to reference a single byte, word (2-
bytes), or long word (4 bytes). Memory ac-
cesses within this address space are performed
in big endian fashion by the processors in this
family.

Some of the MC68xxx family members such as
the MC68020, MC68030, and MC68040 sup-
port virtual memory and segmentation. The
MC68020 requires external hardware support
such as the MC68851 Paged Memory Manage-
ment Unit coprocessor which is typically used
to perform address translations for these sys-
tems. RTEMS does not support virtual memory
or segmentation on any of the MC68xxx family
members.

84 Chapter 10. M68xxx and Coldfire Specific Information

Chapter 10 Section 10.4 RTEMS CPU Supplement Documentation, Release 4.11.3

10.4 Interrupt Processing

Discussed in this section are the MC68xxx’s in-
terrupt response and control mechanisms as
they pertain to RTEMS.

10.4.1 Vectoring of an Interrupt Handler

Depending on whether or not the particular
CPU supports a separate interrupt stack, the
MC68xxx family has two different interrupt
handling models.

10.4.1.1 Models Without Separate Interrupt
Stacks

Upon receipt of an interrupt the MC68xxx fam-
ily members without separate interrupt stacks
automatically use software to switch stacks.

10.4.1.2 Models With Separate Interrupt
Stacks

Upon receipt of an interrupt the MC68xxx fam-
ily members with separate interrupt stacks au-
tomatically perform the following actions:

• saves the current status register (SR),

• clears the master/interrupt (M) bit of the
SR to indicate the switch from master
state to interrupt state,

• sets the privilege mode to supervisor,

• suppresses tracing,

• sets the interrupt mask level equal to the
level of the interrupt being serviced,

• pushes an interrupt stack frame (ISF),
which includes the program counter
(PC), the status register (SR), and the
format/exception vector offset (FVO)
word, onto the supervisor and interrupt
stacks,

• switches the current stack to the inter-
rupt stack and vectors to an interrupt
service routine (ISR). If the ISR was in-
stalled with the interrupt_catch direc-
tive, then the RTEMS interrupt handler

will begin execution. The RTEMS in-
terrupt handler saves all registers which
are not preserved according to the call-
ing conventions and invokes the applica-
tion’s ISR.

A nested interrupt is processed similarly by
these CPU models with the exception that only
a single ISF is placed on the interrupt stack and
the current stack need not be switched.

The FVO word in the Interrupt Stack Frame
is examined by RTEMS to determine when an
outer most interrupt is being exited. Since the
FVO is used by RTEMS for this purpose, the
user application code MUST NOT modify this
field.

The following shows the Interrupt Stack Frame
for MC68xxx CPU models with separate inter-
rupt stacks:

Status Register 0x0
Program Counter High 0x2
Program Counter Low 0x4
Format/Vector Offset 0x6

10.4.2 CPU Models Without VBR and
RAM at 0

This is from a post by Zoltan Kocsi
<zoltan@bendor.com.au> and is a nice
trick in certain situations. In his words:

I think somebody on this list asked about the
interupt vector handling w/o VBR and RAM at
0. The usual trick is to initialise the vector ta-
ble (except the first 2 two entries, of course)
to point to the same location BUT you also add
the vector number times 0x1000000 to them.
That is, bits 31-24 contain the vector number
and 23-0 the address of the common handler.
Since the PC is 32 bit wide but the actual ad-
dress bus is only 24, the top byte will be in
the PC but will be ignored when jumping onto
your routine.

Then your common interrupt routine gets this
info by loading the PC into some register and
based on that info, you can jump to a vector in
a vector table pointed by a virtual VBR:

1 //
2 // Real vector table at 0

10.4. Interrupt Processing 85

mailto:zoltan@bendor.com.au

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 10 Section 10.4

3 //
4 .long initial_sp
5 .long initial_pc
6 .long myhandler+0x02000000
7 .long myhandler+0x03000000
8 .long myhandler+0x04000000
9 ...

10 .long myhandler+0xff000000
11 //
12 // This handler will jump to the interrupt␣

→˓routine of which
13 // the address is stored at VBR[vector_no]
14 // The registers and stackframe will be ␣

→˓intact, the interrupt
15 // routine will see exactly what it would␣

→˓see if it was called
16 // directly from the HW vector table at 0.
17 //
18 .comm VBR,4,2 // This defines␣

→˓the 'virtual' VBR
19 // From C: extern void *VBR;
20 myhandler: // At entry, PC␣

→˓contains the full vector
21 move.l %d0,-(%sp) // Save d0
22 move.l %a0,-(%sp) // Save a0
23 lea 0(%pc),%a0 // Get the value␣

→˓of the PC
24 move.l %a0,%d0 // Copy it to a␣

→˓data reg, d0 is VV??????
25 swap %d0 // Now d0 is ????

→˓VV??
26 and.w #0xff00,%d0 // Now d0 is ???

→˓?VV00 (1)
27 lsr.w #6,%d0 // Now d0.w␣

→˓contains the VBR table offset
28 move.l VBR,%a0 // Get the␣

→˓address from VBR to a0
29 move.l (%a0,%d0.w),%a0 // Fetch the␣

→˓vector
30 move.l 4(%sp),%d0 // Restore d0
31 move.l %a0,4(%sp) // Place target␣

→˓address to the stack
32 move.l (%sp)+,%a0 // Restore a0,␣

→˓target address is on TOS
33 ret // This will␣

→˓jump to the handler and
34 // restore the stack

1. If ‘myhandler’ is guaranteed to be in the
first 64K, e.g. just after the vector table
then that insn is not needed.

There are probably shorter ways to do this, but
it I believe is enough to illustrate the trick. Op-
timisation is left as an exercise to the reader
:-)

10.4.3 Interrupt Levels

Eight levels (0-7) of interrupt priorities are
supported by MC68xxx family members with
level seven (7) being the highest priority. Level
zero (0) indicates that interrupts are fully en-
abled. Interrupt requests for interrupts with
priorities less than or equal to the current in-
terrupt mask level are ignored.

Although RTEMS supports 256 interrupt lev-
els, the MC68xxx family only supports eight.
RTEMS interrupt levels 0 through 7 directly
correspond to MC68xxx interrupt levels. All
other RTEMS interrupt levels are undefined
and their behavior is unpredictable.

86 Chapter 10. M68xxx and Coldfire Specific Information

Chapter 10 Section 10.5 RTEMS CPU Supplement Documentation, Release 4.11.3

10.5 Default Fatal Error Processing

The default fatal error handler for this archi-
tecture disables processor interrupts to level
7, places the error code in D0, and executes
a stop instruction to simulate a halt processor
instruction.

10.5. Default Fatal Error Processing 87

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 10 Section 10.6

10.6 Symmetric Multiprocessing

SMP is not supported.

88 Chapter 10. M68xxx and Coldfire Specific Information

Chapter 10 Section 10.7 RTEMS CPU Supplement Documentation, Release 4.11.3

10.7 Thread-Local Storage

Thread-local storage is supported.

10.7. Thread-Local Storage 89

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 10 Section 10.8

10.8 Board Support Packages

10.8.1 System Reset

An RTEMS based application is initiated or re-
initiated when the MC68020 processor is reset.
When the MC68020 is reset, the processor per-
forms the following actions:

• The tracing bits of the status register are
cleared to disable tracing.

• The supervisor interrupt state is entered
by setting the supervisor (S) bit and
clearing the master/interrupt (M) bit of
the status register.

• The interrupt mask of the status register
is set to level 7 to effectively disable all
maskable interrupts.

• The vector base register (VBR) is set to
zero.

• The cache control register (CACR) is set
to zero to disable and freeze the proces-
sor cache.

• The interrupt stack pointer (ISP) is set to
the value stored at vector 0 (bytes 0-3)
of the exception vector table (EVT).

• The program counter (PC) is set to the
value stored at vector 1 (bytes 4-7) of the
EVT.

• The processor begins execution at the ad-
dress stored in the PC.

10.8.2 Processor Initialization

The address of the application’s initialization
code should be stored in the first vector of
the EVT which will allow the immediate vec-
toring to the application code. If the appli-
cation requires that the VBR be some value
besides zero, then it should be set to the re-
quired value at this point. All tasks share the
same MC68020’s VBR value. Because inter-
rupts are enabled automatically by RTEMS as
part of the context switch to the first task, the
VBR MUST be set by either RTEMS of the BSP
before this occurs ensure correct interrupt vec-
toring. If processor caching is to be utilized,

then it should be enabled during the reset ap-
plication initialization code.

In addition to the requirements described in
the Board Support Packages chapter of the
Applications User’s Manual for the reset code
which is executed before the call to initialize
executive, the MC68020 version has the fol-
lowing specific requirements:

• Must leave the S bit of the status register
set so that the MC68020 remains in the
supervisor state.

• Must set the M bit of the status register to
remove the MC68020 from the interrupt
state.

• Must set the master stack pointer (MSP)
such that a minimum stack size of MINI-
MUM_STACK_SIZE bytes is provided for
the initialize executive directive.

• Must initialize the MC68020’s vector ta-
ble.

90 Chapter 10. M68xxx and Coldfire Specific Information

CHAPTER

ELEVEN

XILINX MICROBLAZE SPECIFIC
INFORMATION

91

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 11 Section 11.1

11.1 Symmetric Multiprocessing

SMP is not supported.

92 Chapter 11. Xilinx MicroBlaze Specific Information

Chapter 11 Section 11.2 RTEMS CPU Supplement Documentation, Release 4.11.3

11.2 Thread-Local Storage

Thread-local storage is not implemented.

11.2. Thread-Local Storage 93

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 11 Section 11.2

94 Chapter 11. Xilinx MicroBlaze Specific Information

CHAPTER

TWELVE

MIPS SPECIFIC INFORMATION

This chapter discusses the MIPS architecture
dependencies in this port of RTEMS. The MIPS
family has a wide variety of implementations
by a wide range of vendors. Consequently,
there are many, many CPU models within it.

Architecture Documents

IDT docs are online at http://www.idt.com/
products/risc/Welcome.html

95

http://www.idt.com/products/risc/Welcome.html
http://www.idt.com/products/risc/Welcome.html

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 12 Section 12.1

12.1 CPU Model Dependent Fea-
tures

This section presents the set of features which
vary across MIPS implementations and are
of importance to RTEMS. The set of CPU
model feature macros are defined in the file
cpukit/score/cpu/mips/mips.h based upon
the particular CPU model specified on the com-
pilation command line.

12.1.1 Another Optional Feature

The macro XXX

96 Chapter 12. MIPS Specific Information

Chapter 12 Section 12.2 RTEMS CPU Supplement Documentation, Release 4.11.3

12.2 Calling Conventions

12.2.1 Processor Background

TBD

12.2.2 Calling Mechanism

TBD

12.2.3 Register Usage

TBD

12.2.4 Parameter Passing

TBD

12.2. Calling Conventions 97

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 12 Section 12.3

12.3 Memory Model

12.3.1 Flat Memory Model

The MIPS family supports a flat 32-bit ad-
dress space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes).
Each address is represented by a 32-bit value
and is byte addressable. The address may
be used to reference a single byte, word (2-
bytes), or long word (4 bytes). Memory ac-
cesses within this address space are performed
in big endian fashion by the processors in this
family.

Some of the MIPS family members such as
the support virtual memory and segmentation.
RTEMS does not support virtual memory or
segmentation on any of these family members.

98 Chapter 12. MIPS Specific Information

Chapter 12 Section 12.4 RTEMS CPU Supplement Documentation, Release 4.11.3

12.4 Interrupt Processing

Although RTEMS hides many of the processor
dependent details of interrupt processing, it is
important to understand how the RTEMS in-
terrupt manager is mapped onto the proces-
sor’s unique architecture. Discussed in this
chapter are the MIPS’s interrupt response and
control mechanisms as they pertain to RTEMS.

12.4.1 Vectoring of an Interrupt Handler

Upon receipt of an interrupt the XXX family
members with separate interrupt stacks auto-
matically perform the following actions:

• TBD

A nested interrupt is processed similarly by
these CPU models with the exception that only
a single ISF is placed on the interrupt stack and
the current stack need not be switched.

12.4.2 Interrupt Levels

TBD

12.4. Interrupt Processing 99

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 12 Section 12.5

12.5 Default Fatal Error Processing

The default fatal error handler for this tar-
get architecture disables processor interrupts,
places the error code in XXX, and executes
a‘‘XXX‘‘ instruction to simulate a halt processor
instruction.

100 Chapter 12. MIPS Specific Information

Chapter 12 Section 12.6 RTEMS CPU Supplement Documentation, Release 4.11.3

12.6 Symmetric Multiprocessing

SMP is not supported.

12.6. Symmetric Multiprocessing 101

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 12 Section 12.7

12.7 Thread-Local Storage

Thread-local storage is not implemented.

102 Chapter 12. MIPS Specific Information

Chapter 12 Section 12.8 RTEMS CPU Supplement Documentation, Release 4.11.3

12.8 Board Support Packages

12.8.1 System Reset

An RTEMS based application is initiated or re-
initiated when the processor is reset. When
the processor is reset, it performs the following
actions:

• TBD

12.8.2 Processor Initialization

TBD

12.8. Board Support Packages 103

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 12 Section 12.8

104 Chapter 12. MIPS Specific Information

CHAPTER

THIRTEEN

ALTERA NIOS II SPECIFIC
INFORMATION

105

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 13 Section 13.1

13.1 Symmetric Multiprocessing

SMP is not supported.

106 Chapter 13. Altera Nios II Specific Information

Chapter 13 Section 13.2 RTEMS CPU Supplement Documentation, Release 4.11.3

13.2 Thread-Local Storage

Thread-local storage is not implemented.

13.2. Thread-Local Storage 107

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 13 Section 13.2

108 Chapter 13. Altera Nios II Specific Information

CHAPTER

FOURTEEN

OPENRISC 1000 SPECIFIC
INFORMATION

This chapter discusses the‘OpenRISC 1000
architecture http://opencores.org/or1k/
Main_Page dependencies in this port of
RTEMS. There are many implementations
for OpenRISC like or1200 and mor1kx. Cur-
rently RTEMS supports basic features that all
implementations should have.

Architecture Documents

For information on the OpenRISC 1000 ar-
chitecture refer to the‘OpenRISC 1000 ar-
chitecture manual http://openrisc.github.io/
or1k.html.

109

http://opencores.org/or1k/Main_Page
http://opencores.org/or1k/Main_Page
http://openrisc.github.io/or1k.html
http://openrisc.github.io/or1k.html

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 14 Section 14.1

14.1 Calling Conventions

Please refer to the‘Function Calling Se-
quence http://openrisc.github.io/or1k.html#
__RefHeading__504887_595890882.

14.1.1 Floating Point Unit

A floating point unit is currently not supported.

110 Chapter 14. OpenRISC 1000 Specific Information

http://openrisc.github.io/or1k.html#__RefHeading__504887_595890882
http://openrisc.github.io/or1k.html#__RefHeading__504887_595890882

Chapter 14 Section 14.2 RTEMS CPU Supplement Documentation, Release 4.11.3

14.2 Memory Model

A flat 32-bit memory model is supported.

14.2. Memory Model 111

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 14 Section 14.3

14.3 Interrupt Processing

OpenRISC 1000 architecture has 13 exception
types:

• Reset

• Bus Error

• Data Page Fault

• Instruction Page Fault

• Tick Timer

• Alignment

• Illegal Instruction

• External Interrupt

• D-TLB Miss

• I-TLB Miss

• Range

• System Call

• Floating Point

• Trap

14.3.1 Interrupt Levels

There are only two levels: interrupts enabled
and interrupts disabled.

14.3.2 Interrupt Stack

The OpenRISC RTEMS port uses a dedicated
software interrupt stack. The stack for in-
terrupts is allocated during interrupt driver
initialization. When an interrupt is entered,
the _ISR_Handler routine is responsible for
switching from the interrupted task stack to
RTEMS software interrupt stack.

112 Chapter 14. OpenRISC 1000 Specific Information

Chapter 14 Section 14.4 RTEMS CPU Supplement Documentation, Release 4.11.3

14.4 Default Fatal Error Processing

The default fatal error handler for this archi-
tecture performs the following actions:

• disables operating system supported in-
terrupts (IRQ),

• places the error code in r0, and

• executes an infinite loop to simulate a
halt processor instruction.

14.4. Default Fatal Error Processing 113

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 14 Section 14.5

14.5 Symmetric Multiprocessing

SMP is not supported.

114 Chapter 14. OpenRISC 1000 Specific Information

CHAPTER

FIFTEEN

POWERPC SPECIFIC INFORMATION

This chapter discusses the PowerPC architec-
ture dependencies in this port of RTEMS. The
PowerPC family has a wide variety of imple-
mentations by a range of vendors. Conse-
quently, there are many, many CPU models
within it.

It is highly recommended that the PowerPC
RTEMS application developer obtain and be-
come familiar with the documentation for the
processor being used as well as the specifica-
tion for the revision of the PowerPC architec-
ture which corresponds to that processor.

PowerPC Architecture Documents

For information on the PowerPC architecture,
refer to the following documents available
from Motorola and IBM:

• PowerPC Microprocessor Family: The Pro-
gramming Environment (Motorola Docu-
ment MPRPPCFPE-01).

• IBM PPC403GB Embedded Controller
User’s Manual.

• PoweRisControl MPC500 Family RCPU
RISC Central Processing Unit Reference
Manual (Motorola Document RCPU-
URM/AD).

• PowerPC 601 RISC Microprocessor
User’s Manual (Motorola Document
MPR601UM/AD).

• PowerPC 603 RISC Microprocessor
User’s Manual (Motorola Document
MPR603UM/AD).

• PowerPC 603e RISC Microprocessor
User’s Manual (Motorola Document
MPR603EUM/AD).

• PowerPC 604 RISC Microprocessor
User’s Manual (Motorola Document
MPR604UM/AD).

• PowerPC MPC821 Portable Systems Micro-
processor User’s Manual (Motorola Docu-
ment MPC821UM/AD).

• PowerQUICC MPC860 User’s Manual
(Motorola Document MPC860UM/AD).

Motorola maintains an on-line electronic li-
brary for the PowerPC at the following URL:

• http://www.mot.com/powerpc/library/
library.html

This site has a a wealth of information and ex-
amples. Many of the manuals are available
from that site in electronic format.

PowerPC Processor Simulator Information

PSIM is a program which emulates the Instruc-
tion Set Architecture of the PowerPC micropro-
cessor family. It is reely available in source
code form under the terms of the GNU General
Public License (version 2 or later). PSIM can
be integrated with the GNU Debugger (gdb)
to execute and debug PowerPC executables on
non-PowerPC hosts. PSIM supports the addi-
tion of user provided device models which can
be used to allow one to develop and debug em-
bedded applications using the simulator.

The latest version of PSIM is included in GDB
and enabled on pre-built binaries provided by
the RTEMS Project.

115

http://www.mot.com/powerpc/library/library.html
http://www.mot.com/powerpc/library/library.html

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 15 Section 15.1

15.1 CPU Model Dependent Fea-
tures

This section presents the set of features which
vary across PowerPC implementations and are
of importance to RTEMS. The set of CPU
model feature macros are defined in the file
cpukit/score/cpu/powerpc/powerpc.h based
upon the particular CPU model specified on the
compilation command line.

15.1.1 Alignment

The macro PPC_ALIGNMENT is set to the Pow-
erPC model’s worst case alignment require-
ment for data types on a byte boundary. This
value is used to derive the alignment restric-
tions for memory allocated from regions and
partitions.

15.1.2 Cache Alignment

The macro PPC_CACHE_ALIGNMENT is set to
the line size of the cache. It is used to align
the entry point of critical routines so that as
much code as possible can be retrieved with
the initial read into cache. This is done for the
interrupt handler as well as the context switch
routines.

In addition, the “shortcut” data structure used
by the PowerPC implementation to ease ac-
cess to data elements frequently accessed by
RTEMS routines implemented in assembly lan-
guage is aligned using this value.

15.1.3 Maximum Interrupts

The macro PPC_INTERRUPT_MAX is set to the
number of exception sources supported by this
PowerPC model.

15.1.4 Has Double Precision Floating
Point

The macro PPC_HAS_DOUBLE is set to 1 to in-
dicate that the PowerPC model has support for
double precision floating point numbers. This

is important because the floating point regis-
ters need only be four bytes wide (not eight) if
double precision is not supported.

15.1.5 Critical Interrupts

The macro PPC_HAS_RFCI is set to 1 to indi-
cate that the PowerPC model has the Critical
Interrupt capability as defined by the IBM 403
models.

15.1.6 Use Multiword Load/Store Instruc-
tions

The macro PPC_USE_MULTIPLE is set to 1
to indicate that multiword load and store in-
structions should be used to perform context
switch operations. The relative efficiency of
multiword load and store instructions versus
an equivalent set of single word load and store
instructions varies based upon the PowerPC
model.

15.1.7 Instruction Cache Size

The macro PPC_I_CACHE is set to the size in
bytes of the instruction cache.

15.1.8 Data Cache Size

The macro PPC_D_CACHE is set to the size in
bytes of the data cache.

15.1.9 Debug Model

The macro PPC_DEBUG_MODEL is set to indi-
cate the debug support features present in this
CPU model. The following debug support fea-
ture sets are currently supported:

‘‘PPC_DEBUG_MODEL_STANDARD‘‘
indicates that the single-step trace enable
(SE) and branch trace enable (BE) bits in the
MSR are supported by this CPU model.

‘‘PPC_DEBUG_MODEL_SINGLE_STEP_ONLY‘‘
indicates that only the single-step trace en-
able (SE) bit in the MSR is supported by this
CPU model.

116 Chapter 15. PowerPC Specific Information

Chapter 15 Section 15.1 RTEMS CPU Supplement Documentation, Release 4.11.3

‘‘PPC_DEBUG_MODEL_IBM4xx‘‘
indicates that the debug exception enable
(DE) bit in the MSR is supported by this CPU
model. At this time, this particular debug
feature set has only been seen in the IBM 4xx
series.

15.1.9.1 Low Power Model

The macro PPC_LOW_POWER_MODE is set to
indicate the low power model supported by
this CPU model. The following low power
modes are currently supported.

‘‘PPC_LOW_POWER_MODE_NONE‘‘
indicates that this CPU model has no low
power mode support.

‘‘PPC_LOW_POWER_MODE_STANDARD‘‘
indicates that this CPU model follows the
low power model defined for the PPC603e.

15.1. CPU Model Dependent Features 117

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 15 Section 15.2

15.2 Multilibs

The following multilibs are available:

1. .: 32-bit PowerPC with FPU

2. nof: 32-bit PowerPC with software float-
ing point support

3. m403: Instruction set for PPC403 with
FPU

4. m505: Instruction set for MPC505 with
FPU

5. m603e: Instruction set for MPC603e with
FPU

6. m603e/nof: Instruction set for MPC603e
with software floating point support

7. m604: Instruction set for MPC604 with
FPU

8. m604/nof: Instruction set for MPC604
with software floating point support

9. m860: Instruction set for MPC860 with
FPU

10. m7400: Instruction set for MPC7500 with
FPU

11. m7400/nof: Instruction set for MPC7500
with software floating point support

12. m8540: Instruction set for e200, e500 and
e500v2 cores with single-precision FPU
and SPE

13. m8540/gprsdouble: Instruction set for
e200, e500 and e500v2 cores with
double-precision FPU and SPE

14. m8540/nof/nospe: Instruction set for
e200, e500 and e500v2 cores with soft-
ware floating point support and no SPE

15. me6500/m32: 32-bit instruction set for
e6500 core with FPU and AltiVec

16. me6500/m32/nof/noaltivec: 32-bit in-
struction set for e6500 core with soft-
ware floating point support and no Al-
tiVec

118 Chapter 15. PowerPC Specific Information

Chapter 15 Section 15.3 RTEMS CPU Supplement Documentation, Release 4.11.3

15.3 Calling Conventions

RTEMS supports the Embedded Application Bi-
nary Interface (EABI) calling convention. Doc-
umentation for EABI is available by sending
a message with a subject line of “EABI” to
eabi@goth.sis.mot.com.

15.3.1 Programming Model

This section discusses the programming model
for the PowerPC architecture.

15.3.1.1 Non-Floating Point Registers

The PowerPC architecture defines thirty-two
non-floating point registers directly visible to
the programmer. In thirty-two bit implementa-
tions, each register is thirty-two bits wide. In
sixty-four bit implementations, each register is
sixty-four bits wide.

These registers are referred to as gpr0 to
gpr31.

Some of the registers serve defined roles in the
EABI programming model. The following table
describes the role of each of these registers:

Register Name Alternate
Name

Description

r1 sp stack pointer
r2 na

global
pointer
to the
Small
Constant
Area (SDA2)

r3 - r12 na parameter and
result passing

r13 na
global

pointer
to the
Small
Data Area
(SDA)

15.3.1.2 Floating Point Registers

The PowerPC architecture includes thirty-two,
sixty-four bit floating point registers. All Pow-
erPC floating point instructions interpret these
registers as 32 double precision floating point
registers, regardless of whether the processor
has 64-bit or 32-bit implementation.

The floating point status and control regis-
ter (fpscr) records exceptions and the type of
result generated by floating-point operations.
Additionally, it controls the rounding mode of
operations and allows the reporting of floating
exceptions to be enabled or disabled.

15.3.1.3 Special Registers

The PowerPC architecture includes a number
of special registers which are critical to the pro-
gramming model:

Machine State Register
The MSR contains the processor mode,
power management mode, endian mode, ex-
ception information, privilege level, floating
point available and floating point excepiton
mode, address translation information and
the exception prefix.

Link Register
The LR contains the return address after a
function call. This register must be saved
before a subsequent subroutine call can be
made. The use of this register is discussed
further in the Call and Return Mechanism sec-
tion below.

Count Register
The CTR contains the iteration variable for
some loops. It may also be used for indirect
function calls and jumps.

15.3.2 Call and Return Mechanism

The PowerPC architecture supports a simple
yet effective call and return mechanism. A sub-
routine is invoked via the “branch and link”
(bl) and “brank and link absolute” (bla) in-
structions. This instructions place the return
address in the Link Register (LR). The callee

15.3. Calling Conventions 119

mailto:eabi@goth.sis.mot.com

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 15 Section 15.3

returns to the caller by executing a “branch un-
conditional to the link register” (blr) instruc-
tion. Thus the callee returns to the caller via a
jump to the return address which is stored in
the LR.

The previous contents of the LR are not auto-
matically saved by either the bl or bla. It is
the responsibility of the callee to save the con-
tents of the LR before invoking another sub-
routine. If the callee invokes another subrou-
tine, it must restore the LR before executing
the blr instruction to return to the caller.

It is important to note that the PowerPC sub-
routine call and return mechanism does not
automatically save and restore any registers.

The LR may be accessed as special purpose reg-
ister 8 (SPR8) using the “move from special reg-
ister” (mfspr) and “move to special register”
(mtspr) instructions.

15.3.3 Calling Mechanism

All RTEMS directives are invoked using the
regular PowerPC EABI calling convention via
the bl or‘‘bla‘‘ instructions.

15.3.4 Register Usage

As discussed above, the call instruction does
not automatically save any registers. It is the
responsibility of the callee to save and restore
any registers which must be preserved across
subroutine calls. The callee is responsible for
saving callee-preserved registers to the pro-
gram stack and restoring them before return-
ing to the caller.

15.3.5 Parameter Passing

RTEMS assumes that arguments are placed in
the general purpose registers with the first ar-
gument in register 3 (r3), the second argu-
ment in general purpose register 4 (r4), and
so forth until the seventh argument is in gen-
eral purpose register 10 (r10). If there are
more than seven arguments, then subsequent
arguments are placed on the program stack.

The following pseudo-code illustrates the typ-
ical sequence used to call a RTEMS directive
with three (3) arguments:

1 load third argument into r5
2 load second argument into r4
3 load first argument into r3
4 invoke directive

120 Chapter 15. PowerPC Specific Information

Chapter 15 Section 15.4 RTEMS CPU Supplement Documentation, Release 4.11.3

15.4 Memory Model

15.4.1 Flat Memory Model

The PowerPC architecture supports a variety
of memory models. RTEMS supports the Pow-
erPC using a flat memory model with paging
disabled. In this mode, the PowerPC automati-
cally converts every address from a logical to a
physical address each time it is used. The Pow-
erPC uses information provided in the Block
Address Translation (BAT) to convert these ad-
dresses.

Implementations of the PowerPC architecture
may be thirty-two or sixty-four bit. The Pow-
erPC architecture supports a flat thirty-two
or sixty-four bit address space with addresses
ranging from 0x00000000 to 0xFFFFFFFF (4
gigabytes) in thirty-two bit implementations or
to 0xFFFFFFFFFFFFFFFF in sixty-four bit im-
plementations. Each address is represented by
either a thirty-two bit or sixty-four bit value
and is byte addressable. The address may be
used to reference a single byte, half-word (2-
bytes), word (4 bytes), or in sixty-four bit im-
plementations a doubleword (8 bytes). Mem-
ory accesses within the address space are per-
formed in big or little endian fashion by the
PowerPC based upon the current setting of the
Little-endian mode enable bit (LE) in the Ma-
chine State Register (MSR). While the pro-
cessor is in big endian mode, memory ac-
cesses which are not properly aligned gen-
erate an “alignment exception” (vector offset
0x00600). In little endian mode, the PowerPC
architecture does not require the processor to
generate alignment exceptions.

The following table lists the alignment require-
ments for a variety of data accesses:

Data Type Alignment Requirement
byte 1
half-word 2
word 4
doubleword 8

Doubleword load and store operations are only
available in PowerPC CPU models which are
sixty-four bit implementations.

RTEMS does not directly support any Pow-

erPC Memory Management Units, therefore,
virtual memory or segmentation systems in-
volving the PowerPC are not supported.

15.4. Memory Model 121

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 15 Section 15.5

15.5 Interrupt Processing

Although RTEMS hides many of the processor
dependent details of interrupt processing, it is
important to understand how the RTEMS in-
terrupt manager is mapped onto the proces-
sor’s unique architecture. Discussed in this
chapter are the PowerPC’s interrupt response
and control mechanisms as they pertain to
RTEMS.

RTEMS and associated documentation uses the
terms interrupt and vector. In the PowerPC
architecture, these terms correspond to ex-
ception and exception handler, respectively.
The terms will be used interchangeably in this
manual.

15.5.1 Synchronous Versus Asynchronous
Exceptions

In the PowerPC architecture exceptions can
be either precise or imprecise and either syn-
chronous or asynchronous. Asynchronous ex-
ceptions occur when an external event inter-
rupts the processor. Synchronous exceptions
are caused by the actions of an instruction.
During an exception SRR0 is used to calculate
where instruction processing should resume.
All instructions prior to the resume instruction
will have completed execution. SRR1 is used
to store the machine status.

There are two asynchronous nonmaskable,
highest-priority exceptions system reset and
machine check. There are two asyn-
chrononous maskable low-priority exceptions
external interrupt and decrementer. Nonmask-
able execptions are never delayed, therefore
if two nonmaskable, asynchronous exceptions
occur in immediate succession, the state in-
formation saved by the first exception may
be overwritten when the subsequent exception
occurs.

The PowerPC arcitecure defines one imprecise
exception, the imprecise floating point enabled
exception. All other synchronous exceptions
are precise. The synchronization occuring dur-
ing asynchronous precise exceptions conforms
to the requirements for context synchroniza-
tion.

15.5.2 Vectoring of Interrupt Handler

Upon determining that an exception can be
taken the PowerPC automatically performs the
following actions:

• an instruction address is loaded into
SRR0

• bits 33-36 and 42-47 of SRR1 are loaded
with information specific to the excep-
tion.

• bits 0-32, 37-41, and 48-63 of SRR1 are
loaded with corresponding bits from the
MSR.

• the MSR is set based upon the exception
type.

• instruction fetch and execution resumes,
using the new MSR value, at a location
specific to the execption type.

If the interrupt handler was installed as an
RTEMS interrupt handler, then upon receipt of
the interrupt, the processor passes control to
the RTEMS interrupt handler which performs
the following actions:

• saves the state of the interrupted task on
it’s stack,

• saves all registers which are not normally
preserved by the calling sequence so the
user’s interrupt service routine can be
written in a high-level language.

• if this is the outermost (i.e. non-nested)
interrupt, then the RTEMS interrupt han-
dler switches from the current stack to
the interrupt stack,

• enables exceptions,

• invokes the vectors to a user interrupt
service routine (ISR).

Asynchronous interrupts are ignored while ex-
ceptions are disabled. Synchronous interrupts
which occur while are disabled result in the
CPU being forced into an error mode.

A nested interrupt is processed similarly with
the exception that the current stack need not
be switched to the interrupt stack.

122 Chapter 15. PowerPC Specific Information

Chapter 15 Section 15.5 RTEMS CPU Supplement Documentation, Release 4.11.3

15.5.3 Interrupt Levels

The PowerPC architecture supports only a sin-
gle external asynchronous interrupt source.
This interrupt source may be enabled and dis-
abled via the External Interrupt Enable (EE)
bit in the Machine State Register (MSR). Thus
only two level (enabled and disabled) of exter-
nal device interrupt priorities are directly sup-
ported by the PowerPC architecture.

Some PowerPC implementations include a
Critical Interrupt capability which is often used
to receive interrupts from high priority exter-
nal devices.

The RTEMS interrupt level mapping scheme
for the PowerPC is not a numeric level as on
most RTEMS ports. It is a bit mapping in which
the least three significiant bits of the interrupt
level are mapped directly to the enabling of
specific interrupt sources as follows:

Critical Interrupt
Setting bit 0 (the least significant bit) of the
interrupt level enables the Critical Interrupt
source, if it is available on this CPU model.

Machine Check
Setting bit 1 of the interrupt level enables
Machine Check execptions.

External Interrupt
Setting bit 2 of the interrupt level enables
External Interrupt execptions.

All other bits in the RTEMS task interrupt level
are ignored.

15.5. Interrupt Processing 123

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 15 Section 15.6

15.6 Default Fatal Error Processing

The default fatal error handler for this archi-
tecture performs the following actions:

• places the error code in r3, and

• executes a trap instruction which results
in a Program Exception.

If the Program Exception returns, then the fol-
lowing actions are performed:

• disables all processor exceptions by load-
ing a 0 into the MSR, and

• goes into an infinite loop to simulate a
halt processor instruction.

124 Chapter 15. PowerPC Specific Information

Chapter 15 Section 15.7 RTEMS CPU Supplement Documentation, Release 4.11.3

15.7 Symmetric Multiprocessing

SMP is supported. Available platforms are the
Freescale QorIQ P series (e.g. P1020) and T
series (e.g. T2080, T4240).

15.7. Symmetric Multiprocessing 125

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 15 Section 15.8

15.8 Thread-Local Storage

Thread-local storage is supported.

126 Chapter 15. PowerPC Specific Information

Chapter 15 Section 15.9 RTEMS CPU Supplement Documentation, Release 4.11.3

15.9 Board Support Packages

15.9.1 System Reset

An RTEMS based application is initiated or re-
initiated when the PowerPC processor is reset.
The PowerPC architecture defines a Reset Ex-
ception, but leaves the details of the CPU state
as implementation specific. Please refer to the
User’s Manual for the CPU model in question.

In general, at power-up the PowerPC begin ex-
ecution at address 0xFFF00100 in supervisor
mode with all exceptions disabled. For soft re-
sets, the CPU will vector to either 0xFFF00100
or 0x00000100 depending upon the setting of
the Exception Prefix bit in the MSR. If during a
soft reset, a Machine Check Exception occurs,
then the CPU may execute a hard reset.

15.9.2 Processor Initialization

If this PowerPC implementation supports on-
chip caching and this is to be utilized, then
it should be enabled during the reset applica-
tion initialization code. On-chip caching has
been observed to prevent some emulators from
working properly, so it may be necessary to run
with caching disabled to use these emulators.

In addition to the requirements described in
the*Board Support Packages* chapter of the
RTEMS C Applications User’s Manual for the
reset code which is executed before the call
to rtems_initialize_executive, the PowrePC
version has the following specific require-
ments:

• Must leave the PR bit of the Machine
State Register (MSR) set to 0 so the Pow-
erPC remains in the supervisor state.

• Must set stack pointer (sp or r1) such
that a minimum stack size of MINI-
MUM_STACK_SIZE bytes is provided for
the RTEMS initialization sequence.

• Must disable all external interrupts (i.e.
clear the EI (EE) bit of the machine state
register).

• Must enable traps so window overflow

and underflow conditions can be prop-
erly handled.

• Must initialize the PowerPC’s initial Ex-
ception Table with default handlers.

15.9. Board Support Packages 127

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 15 Section 15.9

128 Chapter 15. PowerPC Specific Information

CHAPTER

SIXTEEN

SUPERH SPECIFIC INFORMATION

This chapter discusses the SuperH architecture
dependencies in this port of RTEMS. The Su-
perH family has a wide variety of implemen-
tations by a wide range of vendors. Conse-
quently, there are many, many CPU models
within it.

Architecture Documents

For information on the SuperH architecture,
refer to the following documents available
from VENDOR (http://www.XXX.com/):

• SuperH Family Reference, VENDOR, PART
NUMBER.

129

http://www.XXX.com/

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 16 Section 16.1

16.1 CPU Model Dependent Fea-
tures

This chapter presents the set of features which
vary across SuperH implementations and are
of importance to RTEMS. The set of CPU
model feature macros are defined in the file
cpukit/score/cpu/sh/sh.h based upon the
particular CPU model specified on the compi-
lation command line.

16.1.1 Another Optional Feature

The macro XXX

130 Chapter 16. SuperH Specific Information

Chapter 16 Section 16.2 RTEMS CPU Supplement Documentation, Release 4.11.3

16.2 Calling Conventions

16.2.1 Calling Mechanism

All RTEMS directives are invoked using a XXX
instruction and return to the user application
via the XXX instruction.

16.2.2 Register Usage

The SH1 has 16 general registers (r0..r15).

• r0..r3 used as general volatile registers

• r4..r7 used to pass up to 4 arguments to
functions, arguments above 4 are passed
via the stack)

• r8..13 caller saved registers (i.e. push
them to the stack if you need them inside
of a function)

• r14 frame pointer

• r15 stack pointer

16.2.3 Parameter Passing

XXX

16.2. Calling Conventions 131

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 16 Section 16.3

16.3 Memory Model

16.3.1 Flat Memory Model

The SuperH family supports a flat 32-bit
address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes).
Each address is represented by a 32-bit value
and is byte addressable. The address may
be used to reference a single byte, word (2-
bytes), or long word (4 bytes). Memory ac-
cesses within this address space are performed
in big endian fashion by the processors in this
family.

Some of the SuperH family members support
virtual memory and segmentation. RTEMS
does not support virtual memory or segmen-
tation on any of the SuperH family members.
It is the responsibility of the BSP to initialize
the mapping for a flat memory model.

132 Chapter 16. SuperH Specific Information

Chapter 16 Section 16.4 RTEMS CPU Supplement Documentation, Release 4.11.3

16.4 Interrupt Processing

Although RTEMS hides many of the processor
dependent details of interrupt processing, it is
important to understand how the RTEMS in-
terrupt manager is mapped onto the proces-
sor’s unique architecture. Discussed in this
chapter are the MIPS’s interrupt response and
control mechanisms as they pertain to RTEMS.

16.4.1 Vectoring of an Interrupt Handler

Upon receipt of an interrupt the XXX family
members with separate interrupt stacks auto-
matically perform the following actions:

• TBD

A nested interrupt is processed similarly by
these CPU models with the exception that only
a single ISF is placed on the interrupt stack and
the current stack need not be switched.

16.4.2 Interrupt Levels

TBD

16.4. Interrupt Processing 133

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 16 Section 16.5

16.5 Default Fatal Error Processing

The default fatal error handler for this archi-
tecture disables processor interrupts, places
the error code in XXX, and executes a XXX in-
struction to simulate a halt processor instruc-
tion.

134 Chapter 16. SuperH Specific Information

Chapter 16 Section 16.6 RTEMS CPU Supplement Documentation, Release 4.11.3

16.6 Symmetric Multiprocessing

SMP is not supported.

16.6. Symmetric Multiprocessing 135

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 16 Section 16.7

16.7 Thread-Local Storage

Thread-local storage is not implemented.

136 Chapter 16. SuperH Specific Information

Chapter 16 Section 16.8 RTEMS CPU Supplement Documentation, Release 4.11.3

16.8 Board Support Packages

16.8.1 System Reset

An RTEMS based application is initiated or re-
initiated when the processor is reset. When
the processor is reset, it performs the following
actions:

• TBD

16.8.2 Processor Initialization

TBD

16.8. Board Support Packages 137

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 16 Section 16.8

138 Chapter 16. SuperH Specific Information

CHAPTER

SEVENTEEN

SPARC SPECIFIC INFORMATION

The Real Time Executive for Multiprocessor
Systems (RTEMS) is designed to be portable
across multiple processor architectures. How-
ever, the nature of real-time systems makes
it essential that the application designer un-
derstand certain processor dependent imple-
mentation details. These processor dependen-
cies include calling convention, board support
package issues, interrupt processing, exact
RTEMS memory requirements, performance
data, header files, and the assembly language
interface to the executive.

This document discusses the SPARC architec-
ture dependencies in this port of RTEMS. This
architectural port is for SPARC Version 7 and
8. Implementations for SPARC V9 are in the
sparc64 target.

It is highly recommended that the SPARC
RTEMS application developer obtain and be-
come familiar with the documentation for the
processor being used as well as the specifica-
tion for the revision of the SPARC architecture
which corresponds to that processor.

SPARC Architecture Documents

For information on the SPARC architecture, re-
fer to the following documents available from
SPARC International, Inc. (http://www.sparc.
com):

• SPARC Standard Version 7.

• SPARC Standard Version 8.

ERC32 Specific Information

The European Space Agency’s ERC32 is a three
chip computing core implementing a SPARC
V7 processor and associated support circuitry
for embedded space applications. The in-
teger and floating-point units (90C601E &
90C602E) are based on the Cypress 7C601 and
7C602, with additional error-detection and

recovery functions. The memory controller
(MEC) implements system support functions
such as address decoding, memory interface,
DMA interface, UARTs, timers, interrupt con-
trol, write-protection, memory reconfiguration
and error-detection. The core is designed
to work at 25MHz, but using space quali-
fied memories limits the system frequency to
around 15 MHz, resulting in a performance of
10 MIPS and 2 MFLOPS.

Information on the ERC32 and a number of de-
velopment support tools, such as the SPARC In-
struction Simulator (SIS), are freely available
on the Internet. The following documents and
SIS are available via anonymous ftp or point-
ing your web browser at ftp://ftp.estec.esa.nl/
pub/ws/wsd/erc32.

• ERC32 System Design Document

• MEC Device Specification

Additionally, the SPARC RISC User’s Guide
from Matra MHS documents the functionality
of the integer and floating point units includ-
ing the instruction set information. To obtain
this document as well as ERC32 components
and VHDL models contact:

Matra MHS SA 3 Avenue du
Centre, BP 309, 78054 St-Quentin-
en-Yvelines, Cedex, France VOICE:
+31-1-30607087 FAX: +31-1-
30640693

Amar Guennon (amar.guennon@matramhs.fr)
is familiar with the ERC32.

139

http://www.sparc.com
http://www.sparc.com
ftp://ftp.estec.esa.nl/pub/ws/wsd/erc32
ftp://ftp.estec.esa.nl/pub/ws/wsd/erc32
mailto:amar.guennon@matramhs.fr

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.1

17.1 CPU Model Dependent Fea-
tures

Microprocessors are generally classified into
families with a variety of CPU models or im-
plementations within that family. Within a
processor family, there is a high level of bi-
nary compatibility. This family may be based
on either an architectural specification or on
maintaining compatibility with a popular pro-
cessor. Recent microprocessor families such as
the SPARC or PowerPC are based on an ar-
chitectural specification which is independent
or any particular CPU model or implementa-
tion. Older families such as the M68xxx and
the iX86 evolved as the manufacturer strived
to produce higher performance processor mod-
els which maintained binary compatibility with
older models.

RTEMS takes advantage of the similarity of the
various models within a CPU family. Although
the models do vary in significant ways, the
high level of compatibility makes it possible to
share the bulk of the CPU dependent executive
code across the entire family.

17.1.1 CPU Model Feature Flags

Each processor family supported by RTEMS
has a list of features which vary between CPU
models within a family. For example, the most
common model dependent feature regardless
of CPU family is the presence or absence of a
floating point unit or coprocessor. When defin-
ing the list of features present on a particu-
lar CPU model, one simply notes that floating
point hardware is or is not present and defines
a single constant appropriately. Conditional
compilation is utilized to include the appropri-
ate source code for this CPU model’s feature
set. It is important to note that this means that
RTEMS is thus compiled using the appropriate
feature set and compilation flags optimal for
this CPU model used. The alternative would
be to generate a binary which would execute
on all family members using only the features
which were always present.

This section presents the set of features
which vary across SPARC implementations

and are of importance to RTEMS. The set
of CPU model feature macros are defined in
the file cpukit/score/cpu/sparc/sparc.h based
upon the particular CPU model defined on the
compilation command line.

17.1.1.1 CPU Model Name

The macro CPU_MODEL_NAME is a string
which designates the name of this CPU model.
For example, for the European Space Agency’s
ERC32 SPARC model, this macro is set to the
string “erc32”.

17.1.1.2 Floating Point Unit

The macro SPARC_HAS_FPU is set to 1 to indi-
cate that this CPU model has a hardware float-
ing point unit and 0 otherwise.

17.1.1.3 Bitscan Instruction

The macro SPARC_HAS_BITSCAN is set to 1 to
indicate that this CPU model has the bitscan in-
struction. For example, this instruction is sup-
ported by the Fujitsu SPARClite family.

17.1.1.4 Number of Register Windows

The macro SPARC_NUMBER_OF_REGISTER_WINDOWS
is set to indicate the number of register win-
dow sets implemented by this CPU model. The
SPARC architecture allows a for a maximum
of thirty-two register window sets although
most implementations only include eight.

17.1.1.5 Low Power Mode

The macro SPARC_HAS_LOW_POWER_MODE
is set to one to indicate that this CPU model
has a low power mode. If low power is
enabled, then there must be CPU model
specific implementation of the IDLE task in
cpukit/score/cpu/sparc/cpu.c. The low power
mode IDLE task should be of the form:

1 while (TRUE) {
2 enter low power mode
3 }

140 Chapter 17. SPARC Specific Information

Chapter 17 Section 17.1 RTEMS CPU Supplement Documentation, Release 4.11.3

The code required to enter low power mode is
CPU model specific.

17.1.2 CPU Model Implementation Notes

The ERC32 is a custom SPARC V7 implemen-
tation based on the Cypress 601/602 chipset.
This CPU has a number of on-board peripher-
als and was developed by the European Space
Agency to target space applications. RTEMS
currently provides support for the following
peripherals:

• UART Channels A and B

• General Purpose Timer

• Real Time Clock

• Watchdog Timer (so it can be disabled)

• Control Register (so powerdown mode
can be enabled)

• Memory Control Register

• Interrupt Control

The General Purpose Timer and Real Time
Clock Timer provided with the ERC32 share
the Timer Control Register. Because the Timer
Control Register is write only, we must mir-
ror it in software and insure that writes to
one timer do not alter the current settings and
status of the other timer. Routines are pro-
vided in erc32.h which promote the view that
the two timers are completely independent.
By exclusively using these routines to access
the Timer Control Register, the application can
view the system as having a General Purpose
Timer Control Register and a Real Time Clock
Timer Control Register rather than the single
shared value.

The RTEMS Idle thread take advantage of the
low power mode provided by the ERC32. Low
power mode is entered during idle loops and
is enabled at initialization time.

17.1. CPU Model Dependent Features 141

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.2

17.2 Calling Conventions

Each high-level language compiler generates
subroutine entry and exit code based upon a
set of rules known as the application binary in-
terface (ABI) calling convention. These rules
address the following issues:

• register preservation and usage

• parameter passing

• call and return mechanism

An ABI calling convention is of importance
when interfacing to subroutines written in an-
other language either assembly or high-level.
It determines also the set of registers to be
saved or restored during a context switch and
interrupt processing.

The ABI relevant for RTEMS on SPARC is de-
fined by SYSTEM V APPLICATION BINARY IN-
TERFACE, SPARC Processor Supplement, Third
Edition.

17.2.1 Programming Model

This section discusses the programming model
for the SPARC architecture.

17.2.1.1 Non-Floating Point Registers

The SPARC architecture defines thirty-two
non-floating point registers directly visible to
the programmer. These are divided into four
sets:

• input registers

• local registers

• output registers

• global registers

Each register is referred to by either two or
three names in the SPARC reference manuals.
First, the registers are referred to as r0 through
r31 or with the alternate notation r[0] through
r[31]. Second, each register is a member of
one of the four sets listed above. Finally, some
registers have an architecturally defined role
in the programming model which provides an
alternate name. The following table describes

the mapping between the 32 registers and the
register sets:

Register
Number

Register
Names

Description

0 - 7 g0 - g7 Global
Registers

8 - 15 o0 - o7 Output
Registers

16 - 23 l0 - l7 Local
Registers

24 - 31 i0 - i7 Input
Registers

As mentioned above, some of the registers
serve defined roles in the programming model.
The following table describes the role of each
of these registers:

Register
Name

Alter-
nate
Name

Description

g0 na reads return 0,
writes are ignored

o6 sp stack pointer
i6 fp frame pointer
i7 na return address

The registers g2 through g4 are reserved for
applications. GCC uses them as volatile regis-
ters by default. So they are treated like volatile
registers in RTEMS as well.

The register g6 is reserved for the operat-
ing system and contains the address of the
per-CPU control block of the current proces-
sor. This register is initialized during system
start and then remains unchanged. It is not
saved/restored by the context switch or inter-
rupt processing code.

The register g7 is reserved for the operating
system and contains the thread pointer used
for thread-local storage (TLS) as mandated by
the SPARC ABI.

17.2.1.2 Floating Point Registers

The SPARC V7 architecture includes thirty-
two, thirty-two bit registers. These registers
may be viewed as follows:

• 32 single precision floating point or inte-
ger registers (f0, f1, ... f31)

142 Chapter 17. SPARC Specific Information

Chapter 17 Section 17.2 RTEMS CPU Supplement Documentation, Release 4.11.3

• 16 double precision floating point regis-
ters (f0, f2, f4, ... f30)

• 8 extended precision floating point regis-
ters (f0, f4, f8, ... f28)

The floating point status register (FSR) speci-
fies the behavior of the floating point unit for
rounding, contains its condition codes, version
specification, and trap information.

According to the ABI all floating point registers
and the floating point status register (FSR) are
volatile. Thus the floating point context of a
thread is the empty set. The rounding direc-
tion is a system global state and must not be
modified by threads.

A queue of the floating point instructions
which have started execution but not yet com-
pleted is maintained. This queue is needed to
support the multiple cycle nature of floating
point operations and to aid floating point ex-
ception trap handlers. Once a floating point
exception has been encountered, the queue is
frozen until it is emptied by the trap handler.
The floating point queue is loaded by launch-
ing instructions. It is emptied normally when
the floating point completes all outstanding
instructions and by floating point exception
handlers with the store double floating point
queue (stdfq) instruction.

17.2.1.3 Special Registers

The SPARC architecture includes two special
registers which are critical to the program-
ming model: the Processor State Register (psr)
and the Window Invalid Mask (wim). The psr
contains the condition codes, processor inter-
rupt level, trap enable bit, supervisor mode
and previous supervisor mode bits, version in-
formation, floating point unit and coprocessor
enable bits, and the current window pointer
(cwp). The cwp field of the psr and wim regis-
ter are used to manage the register windows in
the SPARC architecture. The register windows
are discussed in more detail below.

17.2.2 Register Windows

The SPARC architecture includes the concept
of register windows. An overly simplistic way
to think of these windows is to imagine them
as being an infinite supply of “fresh” register
sets available for each subroutine to use. In
reality, they are much more complicated.

The save instruction is used to obtain a new
register window. This instruction decrements
the current window pointer, thus providing a
new set of registers for use. This register set
includes eight fresh local registers for use ex-
clusively by this subroutine. When done with a
register set, the restore instruction increments
the current window pointer and the previous
register set is once again available.

The two primary issues complicating the use of
register windows are that (1) the set of register
windows is finite, and (2) some registers are
shared between adjacent registers windows.

Because the set of register windows is finite,
it is possible to execute enough save instruc-
tions without corresponding restore’s to con-
sume all of the register windows. This is easily
accomplished in a high level language because
each subroutine typically performs a save in-
struction upon entry. Thus having a subroutine
call depth greater than the number of register
windows will result in a window overflow con-
dition. The window overflow condition gener-
ates a trap which must be handled in software.
The window overflow trap handler is responsi-
ble for saving the contents of the oldest register
window on the program stack.

Similarly, the subroutines will eventually com-
plete and begin to perform restore’s. If the re-
store results in the need for a register window
which has previously been written to mem-
ory as part of an overflow, then a window un-
derflow condition results. Just like the win-
dow overflow, the window underflow condi-
tion must be handled in software by a trap
handler. The window underflow trap handler
is responsible for reloading the contents of the
register window requested by the restore in-
struction from the program stack.

The Window Invalid Mask (wim) and the Cur-
rent Window Pointer (cwp) field in the psr are

17.2. Calling Conventions 143

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.2

used in conjunction to manage the finite set
of register windows and detect the window
overflow and underflow conditions. The cwp
contains the index of the register window cur-
rently in use. The save instruction decrements
the cwp modulo the number of register win-
dows. Similarly, the restore instruction incre-
ments the cwp modulo the number of regis-
ter windows. Each bit in the wim represents
represents whether a register window contains
valid information. The value of 0 indicates the
register window is valid and 1 indicates it is in-
valid. When a save instruction causes the cwp
to point to a register window which is marked
as invalid, a window overflow condition re-
sults. Conversely, the restore instruction may
result in a window underflow condition.

Other than the assumption that a register win-
dow is always available for trap (i.e. inter-
rupt) handlers, the SPARC architecture places
no limits on the number of register windows
simultaneously marked as invalid (i.e. number
of bits set in the wim). However, RTEMS as-
sumes that only one register window is marked
invalid at a time (i.e. only one bit set in the
wim). This makes the maximum possible num-
ber of register windows available to the user
while still meeting the requirement that win-
dow overflow and underflow conditions can be
detected.

The window overflow and window underflow
trap handlers are a critical part of the run-
time environment for a SPARC application.
The SPARC architectural specification allows
for the number of register windows to be any
power of two less than or equal to 32. The
most common choice for SPARC implementa-
tions appears to be 8 register windows. This
results in the cwp ranging in value from 0 to 7
on most implementations.

The second complicating factor is the shar-
ing of registers between adjacent register win-
dows. While each register window has its own
set of local registers, the input and output reg-
isters are shared between adjacent windows.
The output registers for register window N are
the same as the input registers for register win-
dow ((N - 1) modulo RW) where RW is the
number of register windows. An alternative
way to think of this is to remember how pa-

rameters are passed to a subroutine on the
SPARC. The caller loads values into what are
its output registers. Then after the callee exe-
cutes a save instruction, those parameters are
available in its input registers. This is a very
efficient way to pass parameters as no data is
actually moved by the save or restore instruc-
tions.

17.2.3 Call and Return Mechanism

The SPARC architecture supports a simple yet
effective call and return mechanism. A sub-
routine is invoked via the call (call) instruc-
tion. This instruction places the return address
in the caller’s output register 7 (o7). After the
callee executes a save instruction, this value is
available in input register 7 (i7) until the cor-
responding restore instruction is executed.

The callee returns to the caller via a jmp to the
return address. There is a delay slot follow-
ing this instruction which is commonly used to
execute a restore instruction - if a register win-
dow was allocated by this subroutine.

It is important to note that the SPARC subrou-
tine call and return mechanism does not auto-
matically save and restore any registers. This is
accomplished via the save and restore instruc-
tions which manage the set of registers win-
dows.

In case a floating-point unit is supported,
then floating-point return values appear in the
floating-point registers. Single-precision val-
ues occupy %f0; double-precision values oc-
cupy %f0 and %f1. Otherwise, these are
scratch registers. Due to this the hardware and
software floating-point ABIs are incompatible.

17.2.4 Calling Mechanism

All RTEMS directives are invoked using the
regular SPARC calling convention via the call
instruction.

17.2.5 Register Usage

As discussed above, the call instruction does
not automatically save any registers. The save

144 Chapter 17. SPARC Specific Information

Chapter 17 Section 17.2 RTEMS CPU Supplement Documentation, Release 4.11.3

and restore instructions are used to allocate
and deallocate register windows. When a reg-
ister window is allocated, the new set of lo-
cal registers are available for the exclusive use
of the subroutine which allocated this register
set.

17.2.6 Parameter Passing

RTEMS assumes that arguments are placed in
the caller’s output registers with the first ar-
gument in output register 0 (o0), the second
argument in output register 1 (o1), and so
forth. Until the callee executes a save instruc-
tion, the parameters are still visible in the out-
put registers. After the callee executes a save
instruction, the parameters are visible in the
corresponding input registers. The following
pseudo-code illustrates the typical sequence
used to call a RTEMS directive with three (3)
arguments:

1 load third argument into o2
2 load second argument into o1
3 load first argument into o0
4 invoke directive

17.2.7 User-Provided Routines

All user-provided routines invoked by RTEMS,
such as user extensions, device drivers, and
MPCI routines, must also adhere to these call-
ing conventions.

17.2. Calling Conventions 145

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.3

17.3 Memory Model

A processor may support any combination of
memory models ranging from pure physical
addressing to complex demand paged virtual
memory systems. RTEMS supports a flat mem-
ory model which ranges contiguously over the
processor’s allowable address space. RTEMS
does not support segmentation or virtual mem-
ory of any kind. The appropriate memory
model for RTEMS provided by the targeted
processor and related characteristics of that
model are described in this chapter.

17.3.1 Flat Memory Model

The SPARC architecture supports a flat 32-
bit address space with addresses ranging from
0x00000000 to 0xFFFFFFFF (4 gigabytes).
Each address is represented by a 32-bit value
and is byte addressable. The address may
be used to reference a single byte, half-word
(2-bytes), word (4 bytes), or doubleword (8
bytes). Memory accesses within this address
space are performed in big endian fashion by
the SPARC. Memory accesses which are not
properly aligned generate a “memory address
not aligned” trap (type number 7). The follow-
ing table lists the alignment requirements for a
variety of data accesses:

Data Type Alignment Requirement
byte 1
half-word 2
word 4
doubleword 8

Doubleword load and store operations must
use a pair of registers as their source or des-
tination. This pair of registers must be an ad-
jacent pair of registers with the first of the pair
being even numbered. For example, a valid
destination for a doubleword load might be
input registers 0 and 1 (i0 and i1). The pair
i1 and i2 would be invalid. [NOTE: Some as-
semblers for the SPARC do not generate an er-
ror if an odd numbered register is specified as
the beginning register of the pair. In this case,
the assembler assumes that what the program-
mer meant was to use the even-odd pair which
ends at the specified register. This may or may

not have been a correct assumption.]

RTEMS does not support any SPARC Memory
Management Units, therefore, virtual memory
or segmentation systems involving the SPARC
are not supported.

146 Chapter 17. SPARC Specific Information

Chapter 17 Section 17.4 RTEMS CPU Supplement Documentation, Release 4.11.3

17.4 Interrupt Processing

Different types of processors respond to the oc-
currence of an interrupt in its own unique fash-
ion. In addition, each processor type provides
a control mechanism to allow for the proper
handling of an interrupt. The processor de-
pendent response to the interrupt modifies the
current execution state and results in a change
in the execution stream. Most processors re-
quire that an interrupt handler utilize some
special control mechanisms to return to the
normal processing stream. Although RTEMS
hides many of the processor dependent details
of interrupt processing, it is important to un-
derstand how the RTEMS interrupt manager is
mapped onto the processor’s unique architec-
ture. Discussed in this chapter are the SPARC’s
interrupt response and control mechanisms as
they pertain to RTEMS.

RTEMS and associated documentation uses the
terms interrupt and vector. In the SPARC archi-
tecture, these terms correspond to traps and
trap type, respectively. The terms will be used
interchangeably in this manual.

17.4.1 Synchronous Versus Asynchronous
Traps

The SPARC architecture includes two classes of
traps: synchronous and asynchronous. Asyn-
chronous traps occur when an external event
interrupts the processor. These traps are not
associated with any instruction executed by
the processor and logically occur between in-
structions. The instruction currently in the ex-
ecute stage of the processor is allowed to com-
plete although subsequent instructions are an-
nulled. The return address reported by the
processor for asynchronous traps is the pair of
instructions following the current instruction.

Synchronous traps are caused by the actions of
an instruction. The trap stimulus in this case
either occurs internally to the processor or is
from an external signal that was provoked by
the instruction. These traps are taken immedi-
ately and the instruction that caused the trap is
aborted before any state changes occur in the
processor itself. The return address reported

by the processor for synchronous traps is the
instruction which caused the trap and the fol-
lowing instruction.

17.4.2 Vectoring of Interrupt Handler

Upon receipt of an interrupt the SPARC auto-
matically performs the following actions:

• disables traps (sets the ET bit of the psr
to 0),

• the S bit of the psr is copied into the Pre-
vious Supervisor Mode (PS) bit of the psr,

• the cwp is decremented by one (modulo
the number of register windows) to acti-
vate a trap window,

• the PC and nPC are loaded into local reg-
ister 1 and 2 (l0 and l1),

• the trap type (tt) field of the Trap Base
Register (TBR) is set to the appropriate
value, and

• if the trap is not a reset, then the PC is
written with the contents of the TBR and
the nPC is written with TBR + 4. If the
trap is a reset, then the PC is set to zero
and the nPC is set to 4.

Trap processing on the SPARC has two features
which are noticeably different than interrupt
processing on other architectures. First, the
value of psr register in effect immediately be-
fore the trap occurred is not explicitly saved.
Instead only reversible alterations are made to
it. Second, the Processor Interrupt Level (pil)
is not set to correspond to that of the inter-
rupt being processed. When a trap occurs,
ALL subsequent traps are disabled. In order
to safely invoke a subroutine during trap han-
dling, traps must be enabled to allow for the
possibility of register window overflow and un-
derflow traps.

If the interrupt handler was installed as an
RTEMS interrupt handler, then upon receipt of
the interrupt, the processor passes control to
the RTEMS interrupt handler which performs
the following actions:

• saves the state of the interrupted task on
it’s stack,

17.4. Interrupt Processing 147

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.4

• insures that a register window is avail-
able for subsequent traps,

• if this is the outermost (i.e. non-nested)
interrupt, then the RTEMS interrupt han-
dler switches from the current stack to
the interrupt stack,

• enables traps,

• invokes the vectors to a user interrupt
service routine (ISR).

Asynchronous interrupts are ignored while
traps are disabled. Synchronous traps which
occur while traps are disabled result in the CPU
being forced into an error mode.

A nested interrupt is processed similarly with
the exception that the current stack need not
be switched to the interrupt stack.

17.4.3 Traps and Register Windows

One of the register windows must be reserved
at all times for trap processing. This is critical
to the proper operation of the trap mechanism
in the SPARC architecture. It is the responsi-
bility of the trap handler to insure that there
is a register window available for a subse-
quent trap before re-enabling traps. It is likely
that any high level language routines invoked
by the trap handler (such as a user-provided
RTEMS interrupt handler) will allocate a new
register window. The save operation could re-
sult in a window overflow trap. This trap can-
not be correctly processed unless (1) traps are
enabled and (2) a register window is reserved
for traps. Thus, the RTEMS interrupt handler
insures that a register window is available for
subsequent traps before enabling traps and in-
voking the user’s interrupt handler.

17.4.4 Interrupt Levels

Sixteen levels (0-15) of interrupt priorities are
supported by the SPARC architecture with level
fifteen (15) being the highest priority. Level
zero (0) indicates that interrupts are fully en-
abled. Interrupt requests for interrupts with
priorities less than or equal to the current in-
terrupt mask level are ignored. Level fifteen

(15) is a non-maskable interrupt (NMI), which
makes it unsuitable for standard usage since it
can affect the real-time behaviour by interrupt-
ing critical sections and spinlocks. Disabling
traps stops also the NMI interrupt from hap-
pening. It can however be used for power-
down or other critical events.

Although RTEMS supports 256 interrupt lev-
els, the SPARC only supports sixteen. RTEMS
interrupt levels 0 through 15 directly corre-
spond to SPARC processor interrupt levels. All
other RTEMS interrupt levels are undefined
and their behavior is unpredictable.

Many LEON SPARC v7/v8 systems features an
extended interrupt controller which adds an
extra step of interrupt decoding to allow han-
dling of interrupt 16-31. When such an ex-
tended interrupt is generated the CPU traps
into a specific interrupt trap level 1-14 and
software reads out from the interrupt con-
troller which extended interrupt source actu-
ally caused the interrupt.

17.4.5 Disabling of Interrupts by RTEMS

During the execution of directive calls, critical
sections of code may be executed. When these
sections are encountered, RTEMS disables
interrupts to level fifteen (15) before the
execution of the section and restores them
to the previous level upon completion of
the section. RTEMS has been optimized to
ensure that interrupts are disabled for less
than RTEMS_MAXIMUM_DISABLE_PERIOD
microseconds on a
RTEMS_MAXIMUM_DISABLE_PERIOD_MHZ
Mhz ERC32 with zero wait states. These
numbers will vary based the number of wait
states and processor speed present on the
target board. [NOTE: The maximum period
with interrupts disabled is hand calculated.
This calculation was last performed for Release
RTEMS_RELEASE_FOR_MAXIMUM_DISABLE_PERIOD.]

[NOTE: It is thought that the length of time at
which the processor interrupt level is elevated
to fifteen by RTEMS is not anywhere near as
long as the length of time ALL traps are dis-
abled as part of the “flush all register windows”
operation.]

148 Chapter 17. SPARC Specific Information

Chapter 17 Section 17.4 RTEMS CPU Supplement Documentation, Release 4.11.3

Non-maskable interrupts (NMI) cannot be dis-
abled, and ISRs which execute at this level
MUST NEVER issue RTEMS system calls. If a
directive is invoked, unpredictable results may
occur due to the inability of RTEMS to pro-
tect its critical sections. However, ISRs that
make no system calls may safely execute as
non-maskable interrupts.

Interrupts are disabled or enabled by
performing a system call to the Oper-
ating System reserved software traps
9 (SPARC_SWTRAP_IRQDIS) or 10
(SPARC_SWTRAP_IRQDIS). The trap is gener-
ated by the software trap (Ticc) instruction or
indirectly by calling sparc_disable_interrupts()
or sparc_enable_interrupts() functions. Dis-
abling interrupts return the previous interrupt
level (on trap entry) in register G1 and sets
PSR.PIL to 15 to disable all maskable inter-
rupts. The interrupt level can be restored by
trapping into the enable interrupt handler
with G1 containing the new interrupt level.

17.4.6 Interrupt Stack

The SPARC architecture does not provide for
a dedicated interrupt stack. Thus by default,
trap handlers would execute on the stack of the
RTEMS task which they interrupted. This arti-
ficially inflates the stack requirements for each
task since EVERY task stack would have to in-
clude enough space to account for the worst
case interrupt stack requirements in addition
to it’s own worst case usage. RTEMS addresses
this problem on the SPARC by providing a ded-
icated interrupt stack managed by software.

During system initialization, RTEMS allocates
the interrupt stack from the Workspace Area.
The amount of memory allocated for the
interrupt stack is determined by the inter-
rupt_stack_size field in the CPU Configuration
Table. As part of processing a non-nested inter-
rupt, RTEMS will switch to the interrupt stack
before invoking the installed handler.

17.4. Interrupt Processing 149

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.5

17.5 Default Fatal Error Processing

Upon detection of a fatal error by either the
application or RTEMS the fatal error manager
is invoked. The fatal error manager will in-
voke the user-supplied fatal error handlers. If
no user-supplied handlers are configured, the
RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error han-
dlers return to the executive the default fatal
error handler is then invoked. This chapter de-
scribes the precise operations of the default fa-
tal error handler.

17.5.1 Default Fatal Error Handler Opera-
tions

The default fatal error handler which is in-
voked by the fatal_error_occurred directive
when there is no user handler configured or
the user handler returns control to RTEMS.

If the BSP has been configured with
BSP_POWER_DOWN_AT_FATAL_HALT set to true,
the default handler will disable interrupts and
enter power down mode. If power down mode
is not available, it goes into an infinite loop to
simulate a halt processor instruction.

If BSP_POWER_DOWN_AT_FATAL_HALT is set to
false, the default handler will place the value
1 in register g1, the error source in register g2,
and the error code in register‘‘g3‘‘. It will then
generate a system error which will hand over
control to the debugger, simulator, etc.

150 Chapter 17. SPARC Specific Information

Chapter 17 Section 17.6 RTEMS CPU Supplement Documentation, Release 4.11.3

17.6 Symmetric Multiprocessing

SMP is supported. Available platforms are the
Cobham Gaisler GR712RC and GR740.

17.6. Symmetric Multiprocessing 151

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.7

17.7 Thread-Local Storage

Thread-local storage is supported.

152 Chapter 17. SPARC Specific Information

Chapter 17 Section 17.8 RTEMS CPU Supplement Documentation, Release 4.11.3

17.8 Board Support Packages

An RTEMS Board Support Package (BSP) must
be designed to support a particular processor
and target board combination. This chapter
presents a discussion of SPARC specific BSP is-
sues. For more information on developing a
BSP, refer to the chapter titled Board Support
Packages in the RTEMS Applications User’s
Guide.

17.8.1 System Reset

An RTEMS based application is initiated or re-
initiated when the SPARC processor is reset.
When the SPARC is reset, the processor per-
forms the following actions:

• the enable trap (ET) of the psr is set to 0
to disable traps,

• the supervisor bit (S) of the psr is set to
1 to enter supervisor mode, and

• the PC is set 0 and the nPC is set to 4.

The processor then begins to execute the code
at location 0. It is important to note that all
fields in the psr are not explicitly set by the
above steps and all other registers retain their
value from the previous execution mode. This
is true even of the Trap Base Register (TBR)
whose contents reflect the last trap which oc-
curred before the reset.

17.8.2 Processor Initialization

It is the responsibility of the application’s ini-
tialization code to initialize the TBR and in-
stall trap handlers for at least the register
window overflow and register window under-
flow conditions. Traps should be enabled be-
fore invoking any subroutines to allow for reg-
ister window management. However, inter-
rupts should be disabled by setting the Pro-
cessor Interrupt Level (pil) field of the psr
to 15. RTEMS installs it’s own Trap Table
as part of initialization which is initialized
with the contents of the Trap Table in place
when the rtems_initialize_executive direc-
tive was invoked. Upon completion of execu-
tive initialization, interrupts are enabled.

If this SPARC implementation supports on-chip
caching and this is to be utilized, then it should
be enabled during the reset application initial-
ization code.

In addition to the requirements described
in the Board Support Packages chapter of
the C Applications Users Manual for the re-
set code which is executed before the call
to‘‘rtems_initialize_executive‘‘, the SPARC ver-
sion has the following specific requirements:

• Must leave the S bit of the status regis-
ter set so that the SPARC remains in the
supervisor state.

• Must set stack pointer (sp) such
that a minimum stack size of MINI-
MUM_STACK_SIZE bytes is provided
for the‘‘rtems_initialize_executive‘‘
directive.

• Must disable all external interrupts (i.e.
set the pil to 15).

• Must enable traps so window overflow
and underflow conditions can be prop-
erly handled.

• Must initialize the SPARC’s initial trap ta-
ble with at least trap handlers for reg-
ister window overflow and register win-
dow underflow.

17.8. Board Support Packages 153

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 17 Section 17.8

154 Chapter 17. SPARC Specific Information

CHAPTER

EIGHTEEN

SPARC-64 SPECIFIC INFORMATION

This document discusses the SPARC Version 9
(aka SPARC-64, SPARC64 or SPARC V9) archi-
tecture dependencies in this port of RTEMS.

The SPARC V9 architecture leaves a lot of
undefined implemenation dependencies which
are defined by the processor models. Consult
the specific CPU model section in this docu-
ment for additional documents covering the
implementation dependent architectural fea-
tures.

sun4u Specific Information

sun4u is the subset of the SPARC V9 implemen-
tations comprising the UltraSPARC I through
UltraSPARC IV processors.

The following documents were used in devel-
oping the SPARC-64 sun4u port:

• UltraSPARC User’s Manual (http:
//www.sun.com/microelectronics/
manuals/ultrasparc/802-7220-02.pdf)

• UltraSPARC IIIi Processor (http:
//datasheets.chipdb.org/Sun/
UltraSparc-IIIi.pdf)

sun4v Specific Information

sun4v is the subset of the SPARC V9 imple-
mentations comprising the UltraSPARC T1 or
T2 processors.

The following documents were used in devel-
oping the SPARC-64 sun4v port:

• UltraSPARC Architecture 2005 Specifi-
cation (http://opensparc-t1.sunsource.
net/specs/UA2005-current-draft-P-EXT.
pdf)

• UltraSPARC T1 supplement
to UltraSPARC Architecture
2005 Specification (http://

opensparc-t1.sunsource.net/specs/
UST1-UASuppl-current-draft-P-EXT.pdf)

The defining feature that separates the sun4v
architecture from its predecessor is the exis-
tence of a super-privileged hypervisor that is
responsible for providing virtualized execution
environments. The impact of the hypervisor on
the real-time guarantees available with sun4v
has not yet been determined.

155

http://www.sun.com/microelectronics/manuals/ultrasparc/802-7220-02.pdf
http://www.sun.com/microelectronics/manuals/ultrasparc/802-7220-02.pdf
http://www.sun.com/microelectronics/manuals/ultrasparc/802-7220-02.pdf
http://datasheets.chipdb.org/Sun/UltraSparc-IIIi.pdf
http://datasheets.chipdb.org/Sun/UltraSparc-IIIi.pdf
http://datasheets.chipdb.org/Sun/UltraSparc-IIIi.pdf
http://opensparc-t1.sunsource.net/specs/UA2005-current-draft-P-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UA2005-current-draft-P-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UA2005-current-draft-P-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-P-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-P-EXT.pdf
http://opensparc-t1.sunsource.net/specs/UST1-UASuppl-current-draft-P-EXT.pdf

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 18 Section 18.1

18.1 CPU Model Dependent Fea-
tures

18.1.1 CPU Model Feature Flags

This section presents the set of features which
vary across SPARC-64 implementations and
are of importance to RTEMS. The set of
CPU model feature macros are defined in
the file cpukit/score/cpu/sparc64/sparc64.h
based upon the particular CPU model defined
on the compilation command line.

18.1.1.1 CPU Model Name

The macro CPU MODEL NAME is a string
which designates the name of this CPU model.
For example, for the UltraSPARC T1 SPARC V9
model, this macro is set to the string “sun4v”.

18.1.1.2 Floating Point Unit

The macro SPARC_HAS_FPU is set to 1 to indi-
cate that this CPU model has a hardware float-
ing point unit and 0 otherwise.

18.1.1.3 Number of Register Windows

The macro SPARC_NUMBER_OF_REGISTER_WINDOWS
is set to indicate the number of register win-
dow sets implemented by this CPU model. The
SPARC architecture allows for a maximum of
thirty-two register window sets although most
implementations only include eight.

18.1.2 CPU Model Implementation Notes

This section describes the implemenation de-
pendencies of the CPU Models sun4u and
sun4v of the SPARC V9 architecture.

18.1.2.1 sun4u Notes

XXX

18.1.3 sun4v Notes

XXX

156 Chapter 18. SPARC-64 Specific Information

Chapter 18 Section 18.2 RTEMS CPU Supplement Documentation, Release 4.11.3

18.2 Calling Conventions

Each high-level language compiler generates
subroutine entry and exit code based upon a
set of rules known as the compiler’s calling
convention. These rules address the following
issues:

• register preservation and usage

• parameter passing

• call and return mechanism

A compiler’s calling convention is of impor-
tance when interfacing to subroutines written
in another language either assembly or high-
level. Even when the high-level language and
target processor are the same, different com-
pilers may use different calling conventions.
As a result, calling conventions are both pro-
cessor and compiler dependent.

The following document also provides some
conventions on the global register usage
in SPARC V9: http://developers.sun.com/
solaris/articles/sparcv9abi.html

18.2.1 Programming Model

This section discusses the programming model
for the SPARC architecture.

18.2.1.1 Non-Floating Point Registers

The SPARC architecture defines thirty-two
non-floating point registers directly visible to
the programmer. These are divided into four
sets:

• input registers

• local registers

• output registers

• global registers

Each register is referred to by either two or
three names in the SPARC reference manuals.
First, the registers are referred to as r0 through
r31 or with the alternate notation r[0] through
r[31]. Second, each register is a member of
one of the four sets listed above. Finally, some
registers have an architecturally defined role

in the programming model which provides an
alternate name. The following table describes
the mapping between the 32 registers and the
register sets:

Register
Number

Register
Names

Description

0 - 7 g0 - g7 Global
Registers

8 - 15 o0 - o7 Output
Registers

16 - 23 l0 - l7 Local
Registers

24 - 31 i0 - i7 Input
Registers

As mentioned above, some of the registers
serve defined roles in the programming model.
The following table describes the role of each
of these registers:

Register
Name

Alter-
nate
Name

Description

g0 na reads return 0,
writes are ignored

o6 sp stack pointer
i6 fp frame pointer
i7 na return address

18.2.1.2 Floating Point Registers

The SPARC V9 architecture includes sixty-four,
thirty-two bit registers. These registers may be
viewed as follows:

• 32 32-bit single precision floating point
or integer registers (f0, f1, ... f31)

• 32 64-bit double precision floating point
registers (f0, f2, f4, ... f62)

• 16 128-bit extended precision floating
point registers (f0, f4, f8, ... f60)

The floating point state register (fsr) speci-
fies the behavior of the floating point unit for
rounding, contains its condition codes, version
specification, and trap information.

18.2. Calling Conventions 157

http://developers.sun.com/solaris/articles/sparcv9abi.html
http://developers.sun.com/solaris/articles/sparcv9abi.html

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 18 Section 18.2

18.2.1.3 Special Registers

The SPARC architecture includes a number of
special registers:

‘‘Ancillary State Registers (ASRs)‘‘
The ancillary state registers (ASRs) are op-
tional state registers that may be privi-
leged or nonprivileged. ASRs 16-31 are
implementation- dependent. The SPARC V9
ASRs include: y, ccr, asi, tick, pc, fprs. The
sun4u ASRs include: pcr, pic, dcr, gsr, soft-
int set, softint clr, softint, and tick cmpr. The
sun4v ASRs include: pcr, pic, gsr, soft- int
set, softint clr, softint, tick cmpr, stick, and
stick cmpr.

‘‘Processor State Register (pstate)‘‘
The privileged pstate register contains con-
trol fields for the proces- sor’s current state.
Its flag fields include the interrupt enable,
privi- leged mode, and enable FPU.

‘‘Processor Interrupt Level (pil)‘‘
The PIL specifies the interrupt level above
which interrupts will be accepted.

‘‘Trap Registers‘‘
The trap handling mechanism of the SPARC
V9 includes a number of registers, includ-
ing: trap program counter (tpc), trap next
pc (tnpc), trap state (tstate), trap type (tt),
trap base address (tba), and trap level (tl).

‘‘Alternate Globals‘‘
The AG bit of the pstate register provides
access to an alternate set of global regis-
ters. On sun4v, the AG bit is replaced by the
global level (gl) register, providing access to
at least two and at most eight alternate sets
of globals.

‘‘Register Window registers‘‘
A number of registers assist in register win-
dow management. These include the current
window pointer (cwp), savable windows
(cansave), restorable windows (canrestore),
clean windows (clean- win), other windows
(otherwin), and window state (wstate).

18.2.2 Register Windows

The SPARC architecture includes the concept
of register windows. An overly simplistic way

to think of these windows is to imagine them
as being an infinite supply of “fresh” register
sets available for each subroutine to use. In
reality, they are much more complicated.

The save instruction is used to obtain a new
register window. This instruction increments
the current window pointer, thus providing a
new set of registers for use. This register set
includes eight fresh local registers for use ex-
clusively by this subroutine. When done with a
register set, the restore instruction decrements
the current window pointer and the previous
register set is once again available.

The two primary issues complicating the use of
register windows are that (1) the set of register
windows is finite, and (2) some registers are
shared between adjacent registers windows.

Because the set of register windows is finite,
it is possible to execute enough save instruc-
tions without corresponding restore’s to con-
sume all of the register windows. This is easily
accomplished in a high level language because
each subroutine typically performs a save in-
struction upon entry. Thus having a subroutine
call depth greater than the number of register
windows will result in a window overflow con-
dition. The window overflow condition gener-
ates a trap which must be handled in software.
The window overflow trap handler is responsi-
ble for saving the contents of the oldest register
window on the program stack.

Similarly, the subroutines will eventually com-
plete and begin to perform restore’s. If the re-
store results in the need for a register window
which has previously been written to mem-
ory as part of an overflow, then a window un-
derflow condition results. Just like the win-
dow overflow, the window underflow condi-
tion must be handled in software by a trap
handler. The window underflow trap handler
is responsible for reloading the contents of the
register window requested by the restore in-
struction from the program stack.

The cansave, canrestore, otherwin, and cwp
are used in conjunction to manage the finite
set of register windows and detect the window
overflow and underflow conditions. The first
three of these registers must satisfy the invari-
ant cansave + canrestore + otherwin = nwin-

158 Chapter 18. SPARC-64 Specific Information

Chapter 18 Section 18.2 RTEMS CPU Supplement Documentation, Release 4.11.3

dow - 2, where nwindow is the number of reg-
ister windows. The cwp contains the index of
the register window currently in use. RTEMS
does not use the cleanwin and otherwin regis-
ters.

The save instruction increments the cwp mod-
ulo the number of register windows, and if
cansave is 0 then it also generates a win-
dow overflow. Similarly, the restore instruc-
tion decrements the cwp modulo the number
of register windows, and if canrestore is 0 then
it also generates a window underflow.

Unlike with the SPARC model, the SPARC-64
port does not assume that a register window is
available for a trap. The window overflow and
underflow conditions are not detected without
hardware generating the trap. (These condi-
tions can be detected by reading the register
window registers and doing some simple arith-
metic.)

The window overflow and window underflow
trap handlers are a critical part of the run-
time environment for a SPARC application.
The SPARC architectural specification allows
for the number of register windows to be any
power of two less than or equal to 32. The
most common choice for SPARC implementa-
tions appears to be 8 register windows. This
results in the cwp ranging in value from 0 to 7
on most implementations.

The second complicating factor is the shar-
ing of registers between adjacent register win-
dows. While each register window has its own
set of local registers, the input and output reg-
isters are shared between adjacent windows.
The output registers for register window N are
the same as the input registers for register win-
dow ((N + 1) modulo RW) where RW is the
number of register windows. An alternative
way to think of this is to remember how pa-
rameters are passed to a subroutine on the
SPARC. The caller loads values into what are
its output registers. Then after the callee exe-
cutes a save instruction, those parameters are
available in its input registers. This is a very
efficient way to pass parameters as no data is
actually moved by the save or restore instruc-
tions.

18.2.3 Call and Return Mechanism

The SPARC architecture supports a simple yet
effective call and return mechanism. A sub-
routine is invoked via the call (call) instruc-
tion. This instruction places the return address
in the caller’s output register 7 (o7). After the
callee executes a save instruction, this value is
available in input register 7 (i7) until the cor-
responding restore instruction is executed.

The callee returns to the caller via a jmp to the
return address. There is a delay slot follow-
ing this instruction which is commonly used to
execute a restore instruction - if a register win-
dow was allocated by this subroutine.

It is important to note that the SPARC subrou-
tine call and return mechanism does not auto-
matically save and restore any registers. This
is accomplished via the save and restore in-
structions which manage the set of registers
windows. This allows for the compiler to gen-
erate leaf-optimized functions that utilize the
caller’s output registers without using save and
restore.

18.2.4 Calling Mechanism

All RTEMS directives are invoked using the
regular SPARC calling convention via the call
instruction.

18.2.5 Register Usage

As discussed above, the call instruction does
not automatically save any registers. The save
and restore instructions are used to allocate
and deallocate register windows. When a reg-
ister window is allocated, the new set of lo-
cal registers are available for the exclusive use
of the subroutine which allocated this register
set.

18.2.6 Parameter Passing

RTEMS assumes that arguments are placed in
the caller’s output registers with the first ar-
gument in output register 0 (o0), the second
argument in output register 1 (o1), and so

18.2. Calling Conventions 159

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 18 Section 18.2

forth. Until the callee executes a save instruc-
tion, the parameters are still visible in the out-
put registers. After the callee executes a save
instruction, the parameters are visible in the
corresponding input registers. The following
pseudo-code illustrates the typical sequence
used to call a RTEMS directive with three (3)
arguments:

1 load third argument into o2
2 load second argument into o1
3 load first argument into o0
4 invoke directive

18.2.7 User-Provided Routines

All user-provided routines invoked by RTEMS,
such as user extensions, device drivers, and
MPCI routines, must also adhere to these call-
ing conventions.

160 Chapter 18. SPARC-64 Specific Information

Chapter 18 Section 18.3 RTEMS CPU Supplement Documentation, Release 4.11.3

18.3 Memory Model

A processor may support any combination of
memory models ranging from pure physical
addressing to complex demand paged virtual
memory systems. RTEMS supports a flat mem-
ory model which ranges contiguously over the
processor’s allowable address space. RTEMS
does not support segmentation or virtual mem-
ory of any kind. The appropriate memory
model for RTEMS provided by the targeted
processor and related characteristics of that
model are described in this chapter.

18.3.1 Flat Memory Model

The SPARC-64 architecture supports a
flat 64-bit address space with addresses
ranging from 0x0000000000000000 to
0xFFFFFFFFFFFFFFFF. Each address is repre-
sented by a 64-bit value (and an 8-bit address
space identifider or ASI) and is byte address-
able. The address may be used to reference
a single byte, half-word (2-bytes), word (4
bytes), doubleword (8 bytes), or quad-word
(16 bytes). Memory accesses within this
address space are performed in big endian
fashion by the SPARC. Memory accesses which
are not properly aligned generate a “mem-
ory address not aligned” trap (type number
0x34). The following table lists the alignment
requirements for a variety of data accesses:

Data Type Alignment Requirement
byte 1
half-word 2
word 4
doubleword 8
quadword 16

RTEMS currently does not support any SPARC
Memory Management Units, therefore, virtual
memory or segmentation systems involving
the SPARC are not supported.

18.3. Memory Model 161

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 18 Section 18.4

18.4 Interrupt Processing

RTEMS and associated documentation uses the
terms interrupt and vector. In the SPARC archi-
tecture, these terms correspond to traps and
trap type, respectively. The terms will be used
interchangeably in this manual. Note that in
the SPARC manuals, interrupts are a subset of
the traps that are delivered to software inter-
rupt handlers.

18.4.1 Synchronous Versus Asynchronous
Traps

The SPARC architecture includes two classes
of traps: synchronous (precise) and asyn-
chronous (deferred). Asynchronous traps oc-
cur when an external event interrupts the pro-
cessor. These traps are not associated with any
instruction executed by the processor and log-
ically occur between instructions. The instruc-
tion currently in the execute stage of the pro-
cessor is allowed to complete although subse-
quent instructions are annulled. The return
address reported by the processor for asyn-
chronous traps is the pair of instructions fol-
lowing the current instruction.

Synchronous traps are caused by the actions of
an instruction. The trap stimulus in this case
either occurs internally to the processor or is
from an external signal that was provoked by
the instruction. These traps are taken immedi-
ately and the instruction that caused the trap is
aborted before any state changes occur in the
processor itself. The return address reported
by the processor for synchronous traps is the
instruction which caused the trap and the fol-
lowing instruction.

18.4.2 Vectoring of Interrupt Handler

Upon receipt of an interrupt the SPARC auto-
matically performs the following actions:

• The trap level is set. This provides access
to a fresh set of privileged trap-state reg-
isters used to save the current state, in
effect, pushing a frame on the trap stack.
TL <- TL + 1

• Existing state is preserved
- TSTATE[TL].CCR <- CCR
- TSTATE[TL].ASI <- ASI -
TSTATE[TL].PSTATE <- PSTATE -
TSTATE[TL].CWP <- CWP - TPC[TL] <-
PC - TNPC[TL] <- nPC

• The trap type is preserved. TT[TL] <-
the trap type

• The PSTATE register is updated to a pre-
defined state - PSTATE.MM is unchanged
- PSTATE.RED <- 0 - PSTATE.PEF <- 1 if
FPU is present, 0 otherwise - PSTATE.AM
<- 0 (address masking is turned off) -
PSTATE.PRIV <- 1 (the processor enters
privileged mode) - PSTATE.IE <- 0 (in-
terrupts are disabled) - PSTATE.AG <- 1
(global regs are replaced with alternate
globals) - PSTATE.CLE <- PSTATE.TLE
(set endian mode for traps)

• For a register-window trap only, CWP is
set to point to the register window that
must be accessed by the trap-handler
software, that is:

– If TT[TL] = 0x24 (a clean window
trap), then CWP <- CWP + 1.

– If (0x80 <= TT[TL] <= 0xBF)
(window spill trap), then CWP <-
CWP + CANSAVE + 2.

– If (0xC0 <= TT[TL] <= 0xFF)
(window fill trap), then CWP <-
CWP1.

– For non-register-window traps,
CWP is not changed.

• Control is transferred into the trap table:

– PC <- TBA<63:15> (TL>0)
TT[TL] 0 0000

– nPC <- TBA<63:15> (TL>0)
TT[TL] 0 0100

– where (TL>0) is 0 if TL = 0, and 1
if TL > 0.

In order to safely invoke a subroutine during
trap handling, traps must be enabled to allow
for the possibility of register window overflow
and underflow traps.

162 Chapter 18. SPARC-64 Specific Information

Chapter 18 Section 18.4 RTEMS CPU Supplement Documentation, Release 4.11.3

If the interrupt handler was installed as an
RTEMS interrupt handler, then upon receipt of
the interrupt, the processor passes control to
the RTEMS interrupt handler which performs
the following actions:

• saves the state of the interrupted task on
it’s stack,

• switches the processor to trap level 0,

• if this is the outermost (i.e. non-nested)
interrupt, then the RTEMS interrupt han-
dler switches from the current stack to
the interrupt stack,

• enables traps,

• invokes the vectors to a user interrupt
service routine (ISR).

Asynchronous interrupts are ignored while
traps are disabled. Synchronous traps which
occur while traps are disabled may result in the
CPU being forced into an error mode.

A nested interrupt is processed similarly with
the exception that the current stack need not
be switched to the interrupt stack.

18.4.3 Traps and Register Windows

XXX

18.4.4 Interrupt Levels

Sixteen levels (0-15) of interrupt priorities are
supported by the SPARC architecture with level
fifteen (15) being the highest priority. Level
zero (0) indicates that interrupts are fully en-
abled. Interrupt requests for interrupts with
priorities less than or equal to the current in-
terrupt mask level are ignored.

Although RTEMS supports 256 interrupt lev-
els, the SPARC only supports sixteen. RTEMS
interrupt levels 0 through 15 directly corre-
spond to SPARC processor interrupt levels. All
other RTEMS interrupt levels are undefined
and their behavior is unpredictable.

18.4.5 Disabling of Interrupts by RTEMS

XXX

18.4.6 Interrupt Stack

The SPARC architecture does not provide for
a dedicated interrupt stack. Thus by default,
trap handlers would execute on the stack of the
RTEMS task which they interrupted. This arti-
ficially inflates the stack requirements for each
task since EVERY task stack would have to in-
clude enough space to account for the worst
case interrupt stack requirements in addition
to it’s own worst case usage. RTEMS addresses
this problem on the SPARC by providing a ded-
icated interrupt stack managed by software.

During system initialization, RTEMS allocates
the interrupt stack from the Workspace Area.
The amount of memory allocated for the
interrupt stack is determined by the inter-
rupt_stack_size field in the CPU Configuration
Table. As part of processing a non-nested inter-
rupt, RTEMS will switch to the interrupt stack
before invoking the installed handler.

18.4. Interrupt Processing 163

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 18 Section 18.5

18.5 Default Fatal Error Processing

Upon detection of a fatal error by either the
application or RTEMS the fatal error manager
is invoked. The fatal error manager will in-
voke the user-supplied fatal error handlers. If
no user-supplied handlers are configured, the
RTEMS provided default fatal error handler is
invoked. If the user-supplied fatal error han-
dlers return to the executive the default fatal
error handler is then invoked. This chapter de-
scribes the precise operations of the default fa-
tal error handler.

18.5.1 Default Fatal Error Handler Opera-
tions

The default fatal error handler which is in-
voked by the fatal_error_occurred directive
when there is no user handler configured or
the user handler returns control to RTEMS.
The default fatal error handler disables proces-
sor interrupts to level 15, places the error code
in g1, and goes into an infinite loop to simulate
a halt processor instruction.

164 Chapter 18. SPARC-64 Specific Information

Chapter 18 Section 18.6 RTEMS CPU Supplement Documentation, Release 4.11.3

18.6 Symmetric Multiprocessing

SMP is not supported.

18.6. Symmetric Multiprocessing 165

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 18 Section 18.7

18.7 Thread-Local Storage

Thread-local storage is supported.

166 Chapter 18. SPARC-64 Specific Information

Chapter 18 Section 18.8 RTEMS CPU Supplement Documentation, Release 4.11.3

18.8 Board Support Packages

An RTEMS Board Support Package (BSP) must
be designed to support a particular processor
and target board combination. This chapter
presents a discussion of SPARC specific BSP is-
sues. For more information on developing a
BSP, refer to the chapter titled Board Support
Packages in the RTEMS Applications User’s
Guide.

18.8.1 HelenOS and Open Firmware

The provided BSPs make use of some bootstrap
and low-level hardware code of the HelenOS
operating system. These files can be found
in the shared/helenos directory of the sparc64
bsp directory. Consult the sources for more de-
tailed information.

The shared BSP code also uses the Open
Firmware interface to re-use firmware code,
primarily for console support and default trap
handlers.

18.8. Board Support Packages 167

RTEMS CPU Supplement Documentation, Release 4.11.3 Chapter 18 Section 18.8

168 Chapter 18. SPARC-64 Specific Information

CHAPTER

NINETEEN

COMMAND AND VARIABLE INDEX

There are currently no Command and Variable
Index entries.

• genindex

• search

169

	I RTEMS CPU Architecture Supplement
	Preface
	Port Specific Information
	CPU Model Dependent Features
	CPU Model Name
	Floating Point Unit

	Multilibs
	Calling Conventions
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of an Interrupt Handler
	Interrupt Levels
	Disabling of Interrupts by RTEMS

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	CPU counter
	Interrupt Profiling
	Board Support Packages
	System Reset

	ARM Specific Information
	CPU Model Dependent Features
	CPU Model Name
	Count Leading Zeroes Instruction
	Floating Point Unit

	Multilibs
	Calling Conventions
	Memory Model
	Interrupt Processing
	Interrupt Levels
	Interrupt Stack

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage

	Atmel AVR Specific Information
	CPU Model Dependent Features
	Count Leading Zeroes Instruction

	Calling Conventions
	Processor Background
	Register Usage
	Parameter Passing

	Memory Model
	Interrupt Processing
	Vectoring of an Interrupt Handler
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset

	Blackfin Specific Information
	CPU Model Dependent Features
	Count Leading Zeroes Instruction

	Calling Conventions
	Processor Background
	Register Usage
	Parameter Passing

	Memory Model
	Interrupt Processing
	Vectoring of an Interrupt Handler
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset

	Epiphany Specific Information
	Calling Conventions
	Floating Point Unit

	Memory Model
	Interrupt Processing
	Interrupt Levels
	Interrupt Stack

	Default Fatal Error Processing
	Symmetric Multiprocessing

	Intel/AMD x86 Specific Information
	CPU Model Dependent Features
	bswap Instruction

	Calling Conventions
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of Interrupt Handler
	Interrupt Stack Frame
	Interrupt Levels
	Interrupt Stack

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset
	Processor Initialization

	Lattice Mico32 Specific Information
	CPU Model Dependent Features
	Register Architecture
	Calling Conventions
	Calling Mechanism
	Register Usage
	Parameter Passing

	Memory Model
	Interrupt Processing
	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset

	Renesas M32C Specific Information
	Symmetric Multiprocessing
	Thread-Local Storage

	M68xxx and Coldfire Specific Information
	CPU Model Dependent Features
	BFFFO Instruction
	Vector Base Register
	Separate Stacks
	Pre-Indexing Address Mode
	Extend Byte to Long Instruction

	Calling Conventions
	Calling Mechanism
	Register Usage
	Parameter Passing

	Memory Model
	Interrupt Processing
	Vectoring of an Interrupt Handler
	Models Without Separate Interrupt Stacks
	Models With Separate Interrupt Stacks

	CPU Models Without VBR and RAM at 0
	Interrupt Levels

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset
	Processor Initialization

	Xilinx MicroBlaze Specific Information
	Symmetric Multiprocessing
	Thread-Local Storage

	MIPS Specific Information
	CPU Model Dependent Features
	Another Optional Feature

	Calling Conventions
	Processor Background
	Calling Mechanism
	Register Usage
	Parameter Passing

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of an Interrupt Handler
	Interrupt Levels

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset
	Processor Initialization

	Altera Nios II Specific Information
	Symmetric Multiprocessing
	Thread-Local Storage

	OpenRISC 1000 Specific Information
	Calling Conventions
	Floating Point Unit

	Memory Model
	Interrupt Processing
	Interrupt Levels
	Interrupt Stack

	Default Fatal Error Processing
	Symmetric Multiprocessing

	PowerPC Specific Information
	CPU Model Dependent Features
	Alignment
	Cache Alignment
	Maximum Interrupts
	Has Double Precision Floating Point
	Critical Interrupts
	Use Multiword Load/Store Instructions
	Instruction Cache Size
	Data Cache Size
	Debug Model
	Low Power Model

	Multilibs
	Calling Conventions
	Programming Model
	Non-Floating Point Registers
	Floating Point Registers
	Special Registers

	Call and Return Mechanism
	Calling Mechanism
	Register Usage
	Parameter Passing

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Synchronous Versus Asynchronous Exceptions
	Vectoring of Interrupt Handler
	Interrupt Levels

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset
	Processor Initialization

	SuperH Specific Information
	CPU Model Dependent Features
	Another Optional Feature

	Calling Conventions
	Calling Mechanism
	Register Usage
	Parameter Passing

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Vectoring of an Interrupt Handler
	Interrupt Levels

	Default Fatal Error Processing
	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset
	Processor Initialization

	SPARC Specific Information
	CPU Model Dependent Features
	CPU Model Feature Flags
	CPU Model Name
	Floating Point Unit
	Bitscan Instruction
	Number of Register Windows
	Low Power Mode

	CPU Model Implementation Notes

	Calling Conventions
	Programming Model
	Non-Floating Point Registers
	Floating Point Registers
	Special Registers

	Register Windows
	Call and Return Mechanism
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Synchronous Versus Asynchronous Traps
	Vectoring of Interrupt Handler
	Traps and Register Windows
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	System Reset
	Processor Initialization

	SPARC-64 Specific Information
	CPU Model Dependent Features
	CPU Model Feature Flags
	CPU Model Name
	Floating Point Unit
	Number of Register Windows

	CPU Model Implementation Notes
	sun4u Notes

	sun4v Notes

	Calling Conventions
	Programming Model
	Non-Floating Point Registers
	Floating Point Registers
	Special Registers

	Register Windows
	Call and Return Mechanism
	Calling Mechanism
	Register Usage
	Parameter Passing
	User-Provided Routines

	Memory Model
	Flat Memory Model

	Interrupt Processing
	Synchronous Versus Asynchronous Traps
	Vectoring of Interrupt Handler
	Traps and Register Windows
	Interrupt Levels
	Disabling of Interrupts by RTEMS
	Interrupt Stack

	Default Fatal Error Processing
	Default Fatal Error Handler Operations

	Symmetric Multiprocessing
	Thread-Local Storage
	Board Support Packages
	HelenOS and Open Firmware

	Command and Variable Index

