

CRITICAL SOFTWARE, SA
EN1/IC2, KM 185,6
BANHOS SECOS, SANTA CLARA
3040-032 COIMBRA, PORTUGAL
TEL. +351.239.801300, FAX. +351.239.801319
WWW.CRITICALSOFTWARE.COM

CRITICAL SOFTWARE, LIMITED
111 NORTH MARKET STREET, SUITE 670
SAN JOSE, CALIFORNIA, USA, 95113
TEL. +1(408) 9711231,
FAX: +1(408) 3513330

Quality Department
CRITICAL-2000-TPL-0134-critical-report-us.dot

RTEMS 4.5.0 Evaluation Report

RAMS Call-off Order 2
Contract Ref.: CSW-RAMS-2003-CTR-1306

 ESTEC/Contract Nº 16582/02/NL/PA

DISCLAIMER
European Space Agency Contract Report

The work described in this report was performed under ESA
contract. Responsibility for the contents resides in the author

or organization that prepared it.
No conclusions on the quality of case studies used in this work

shall be taken from this report. The only results that can be
considered are the ones related with the techniques and

methodologies applied.

Date:
Pages:
State:
Access:
Reference:

25/11/2003
57
Approved
See Access List
DL-RAMS02-01-05
CSW-RAMS-2003-RPT-1334-05

Partners / Clients:

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

RTEMS 4.5.0 Evaluation Report
RAMS Call-off Order 2

Approved Version: 1.31
Name Function Signature Date

Ricardo Maia Project Manager 25-11-2003

José Silva SQA Engineer 25-11-2003

Authors and Contributors:
Name Contact Description Date

Ricardo Barbosa rbarbosa@criticalsoftware.com Project Engineer 09/09/2003

Ricardo Maia rmaia@criticalsoftware.com Project Manager 25/11/2003

João Esteves jesteves@criticalsoftware.com Senior Engineer 26/06/2003

Luís Henriques lhenriques@criticalsoftware.com Senior Engineer 03/10/2003

Diamantino Costa dcosta@criticalsoftware.com Review Inspector 16/09/2003

Access List:
Internal Access

Project Team Members

External Access

ESA-ESTEC

Revision History:
Version Date Description Author

0.1 27/6/2003 First Draft Ricardo Barbosa

0.2 07/07/2003 Update document structure, introduction and revision of
the contents.

Ricardo Maia

1.0 11/07/2003 Update after internal review Ricardo Barbosa

1.1 14/07/2003 Added the Fault Model chapter. Luís Henriques

1.2 9/9/2003 Changes made after scope redefinition Ricardo Barbosa

1.3 15/09/2003 Changed according to review. Luís Henriques

1.4 16/09/2003 Changes imported from the review of DL-RAMS02-02,
Issue 2

D Costa

1.5 03/11/2003 Added the metrics chapter and moved the annexes to a
separate document

Luís Henriques

1.6 05/11/2003 Added the summary of the results of the robustness and
stress testing, list of problems found and the
methodology feedback.

Ricardo Maia

2.0 07/11/2003 Updated after internal review. Ricardo Maia

2.1 25/11/2003 Updated Results Summary chapter after the Final
Presentation at ESTEC

Ricardo Maia

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 3 / 57 CSW-RAMS-2003-RPT-1334-05

Table of Contents
1. INTRODUCTION... 6

1.1 OBJECTIVE.. 6
1.2 SCOPE ... 6
1.3 AUDIENCE .. 6
1.4 ACRONYMS... 7
1.5 DOCUMENT STRUCTURE.. 7
1.6 REFERENCES... 7

2. RTEMS DESCRIPTION... 9
2.1 RTEMS OVERVIEW... 9
2.2 RTEMS FOUNDATIONS ... 9
2.3 ARCHITECTURE ..10

2.3.1 RTEMS External Architecture...10
2.3.2 RTEMS Internal Architecture..10

2.4 RTEMS EXECUTIVE CORE..14
2.5 API DESCRIPTION ..14

2.5.1 Classic API ...15
2.6 PRODUCT DEPLOYMENT..22

2.6.1 Top Level Directory Structure...23
2.6.2 Source Code Directory - c ...24

3. SCOPE DEFINITION..28
3.1 RTEMS EXECUTIVE CORE..28
3.2 RTEMS CLASSIC API..29
3.3 POSIX API...30
3.4 ROBUSTNESS TESTING SCOPE ...31
3.5 STRESS TESTING SCOPE ...31

4. FAULT MODEL AND TEST METHODOLOGY...32
4.1 INTRODUCTION...32
4.2 ROBUSTNESS TESTING..32

4.2.1 Test methodology..32
4.2.2 Data types...33
4.2.3 RTEMS API functions as fault placeholders...36
4.2.4 Remarks ..37

4.3 STRESS TESTING ...38
4.3.1 Test methodology..38
4.3.2 Workloads definition ..39
4.3.3 Stress Model ...40

5. TEST SET-UP AND EXECUTION ENVIRONMENT DESCRIPTION...42
5.1 INTRODUCTION...42
5.2 TEST EXECUTION PROCESS OVERVIEW ..42
5.3 TEST LOG ANALYSIS..44

6. RESULTS SUMMARY..45
6.1 ROBUSTNESS TESTING RESULTS ...45

6.1.1 Classic API ...45
6.1.2 POSIX API..46
6.1.3 Overall Results ...46

6.2 STRESS TESTING RESULTS...47
6.2.1 Classic API ...47

6.3 PROBLEMS FOUND ...48
6.3.1 Classic API ...49
6.3.2 POSIX API..49

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 4 / 57 CSW-RAMS-2003-RPT-1334-05

7. METRICS...51
7.1 METHODOLOGY ...51
7.2 RESULTS ...52

8. METHODOLOGY FEEDBACK...56
8.1 ROBUSTNESS TESTING ...56

8.1.1 Possible Improvements ..56
8.2 STRESS TESTING...56

8.2.1 Possible Improvements ..57

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 5 / 57 CSW-RAMS-2003-RPT-1334-05

List of Figures
FIGURE 1. RTEMS APPLICATION ARCHITECTURE .. 10
FIGURE 2. RTEMS CLASSIC API INTERNAL ARCHITECTURE ... 11
FIGURE 3. RTEMS POSIX API INTERNAL ARCHITECTURE ... 12
FIGURE 4. TASK STATE TRANSITIONS DIAGRAM.. 17
FIGURE 5. TOP LEVEL DIRECTORY STRUCTURE... 23
FIGURE 6. SRC SUBDIRECTORY... 24
FIGURE 7. LIB AND LIBBSP SUBDIRECTORIES... 25
FIGURE 8. RTEMS SAMPLES DIRECTORY.. 26
FIGURE 9. C EXECUTIVE DIRECTORY... 27
FIGURE 10 - ROBUSTNESS TESTING METHODOLOGY .. 33
FIGURE 11 - EXAMPLE C FUNCTIONS SIGNATURES.. 37
FIGURE 12 - XML CONTAINING FUNCTIONS SIGNATURES ... 37
FIGURE 13 – STRESS TESTING METHODOLOGY .. 39
FIGURE 14 - SOFTWARE FAULT INJECTION PROCESS... 42
FIGURE 15: XML CONTAINING DATA TYPES DEFINITION.. 43

List of Tables
TABLE 1. SELECTED CORE FEATURES.. 29
TABLE 2. SELECTED MANAGERS AND DIRECTIVES FROM THE RTEMS CLASSIC API.. 30
TABLE 3. SELECTED MANAGERS AND DIRECTIVES FROM THE RTEMS POSIX API .. 31
TABLE 4 – RTEMS BASIC DATA TYPES AND ASSOCIATED TEST VALUES .. 36
TABLE 5 - WORKLOAD GENERIC PARAMETERS... 40
TABLE 6 - PARAMETERS TEST VALUES.. 41
TABLE 7 – CLASSIC API ROBUSTNESS TESTING: TEST CASES/RAISED ISSUES PER MANAGER..................................... 45
TABLE 8 – CLASSIC API ROBUSTNESS TESTING: RAISED ISSUES CRITICALITY PER MANAGER.................................... 46
TABLE 9 – POSIX API ROBUSTNESS TESTING: TEST CASES/RAISED ISSUES PER MANAGER....................................... 46
TABLE 10 – POSIX API ROBUSTNESS TESTING: POTENTIAL FAULTS CRITICALITY PER MANAGER............................ 46
TABLE 11 - OVERALL RESULTS .. 47
TABLE 12 - NUMBER OF PASSED/FAILED TEST CASES .. 47
TABLE 13 - TEST CASES FAILURE DISTRIBUTION .. 48
TABLE 14 - RTEMS INITIALISATION FAILURES .. 48
TABLE 15- IDENTIFIED ISSUES IN RTEMS 4.5.0 BY CRITICALITY... 48
TABLE 16- RTEMS MESSAGE MANAGER FILES ... 52
TABLE 17 - MESSAGE MANAGER COVERAGE.. 53
TABLE 18 - TOTAL CODE COVERAGE... 55
TABLE 19 - SOME METRICS ON THE ROBUSTNESS TESTING METHODOLOGY USED ... 56

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 6 / 57 CSW-RAMS-2003-RPT-1334-05

1. Introduction

1.1 Objective

This document presents the results of the evaluation of the Real Time Executive for
Multiprocessor Systems (RTEMS) version 4.5.0. This evaluation, performed in the scope of
the Call-off Order number 02 under project Software Dependability and Safety Evaluations,
ESTEC/Contract Nº 16582/02/NL/PA, consists mainly in trial out of robustness and stress
testing techniques.

This document provides an overview of the main activities conducted through out this Call-
off Order. It gives an inside view of the RTEMS architecture and some aspects of its design,
as well as a description of its main functionalities, presents the methodologies used in
robustness and stress testing of the RTEMS and corresponding results and provides some
feedback on the methodologies used.

1.2 Scope

This report is the deliverable DL-RAMS02-01-05 of the Call-off Order number 02 under
project Software Dependability and Safety Evaluations, ESTEC/Contract Nº
16582/02/NL/PA and presents the results of WP210, WP220, WP230, WP240 and WP500.

1.3 Audience

This document targets several groups of readers, namely:

• “Software Dependability and Safety Evaluations” team members and in particular the
Call-off Order 2 team members.

• Space software staff involved in the development of on-board software.

• Staff involved in the development of RTEMS related software.

• Space software product assurance staff.

• Management and technical ESA/ESTEC staff.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 7 / 57 CSW-RAMS-2003-RPT-1334-05

1.4 Acronyms

Acronyms Description

API Application Programming Interface

ASR Asynchronous Signal Routine

BSP Board Support Package

CSW Critical Software, S.A.

COO2 Call-off Order 2

FIFO First In First Out

ISR Interrupt Service Routine

ITRON Industrial The Real time Operating system Nucleus

LIFO Last In First Out

TCB Task Control Block

POSIX Portable Operating System Interface

RAMS Reliability, Availability, Maintainability and Safety

RTEMS Real Time Executive for Multiprocessor Systems

RTOS Real Time Operating System

1.5 Document Structure

This document has the following structure:

Chapter 1 introduces the document, as well as the document scope, intended audience
and a list of acronyms and references used through out the document.

Chapter 2 provides an overview of RTEMS 4.5.0, the product deployment structure, and
the architecture.

Chapter 3 defines the scope of the current evaluation, listing all the RTEMS features
subject of test.

Chapter 4 describes the test methodology and in particular the fault/stress model used
for defining the robustness and stress test cases.

Chapter 5 presents the test set-up and execution environment.

Chapter 6 summarizes the results obtained in the evaluation, highlighting the main
problems found on RTEMS and some potential improvements.

Chapter 7 presents the metrics collected regarding to the coverage of the robustness
testing.

Chapter 8 provides some feedback concerning the robustness and stress testing
methodologies applied.

1.6 References

[1] RTEMS 4.5.0 Robustness Testing Report, DL-RAMS02-02-02, CSW-RAMS-2003-
RPT-1335, September 19, 2003, Critical Software, SA

[2] RTEMS 4.5.0 Stress Testing Report, DL-RAMS02-04-02, CSW-RAMS-2003-RPT-
1338, October 30, 2003, Critical Software, SA

[3] ESA PSS-05-02 Issue 1 Revision 1, Guide to the user requirements definition phase,
March 1995.

[4] RTEMS Real Time Executive for Multiprocessor Systems, www.rtems.com, OAR

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 8 / 57 CSW-RAMS-2003-RPT-1334-05

[5] RTEMS Development Environment Guide, September 2000, OAR

[6] RTEMS C User’s Guide, September 2000, OAR

[7] RTEMS POSIX 1003.1 Compliance Guide, September 2000, OAR

[8] RTEMS Release Notes, May 2000, OAR

[9] RTEMS SPARC Applications Supplement, September 2000, OAR

[10] ORK-ERC32-SW Technical Specification, Software Requirement Specification,
STADY-D2.2-2002, November 11, 2002, ESTEC Contract nr. 15751/02/NL/LvH,
Critical Software, SA

[11] Automated Robustness Testing of Off-the-Shelf Software Components, June 1998, 28th
Fault Tolerant Computing Symposium, in press, Kropp, N., Koopman, P. & Siewiorek,
D.

[12] SLOCCount, http://www.dwheeler.com/sloccount

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 9 / 57 CSW-RAMS-2003-RPT-1334-05

2. RTEMS Description

2.1 RTEMS Overview

A study was completed in 1988, within the Research, Development and Engineering
Center, U.S Army Missile Command, which compared the various aspects of the Ada83
programming language as they relate to the application of Ada code in distributed and/or
multiple processing systems. The conclusions driven from that study had a major impact on
the way the Army developed since then application software for embedded applications.
One of the conclusions of this study was that the Ada83 programming language does not
adequately support multiprocessor environments, although it provides multi-tasking
mechanisms.

The Guidance and Control Directorate began a software development effort to address this
and some other problems driven from this study. A project to develop an experimental real-
time kernel begun in order to eliminate these major drawbacks of the Ada83 programming
language mentioned above.

The Real Time Executive for Multiprocessor Systems (RTEMS) (at the time called Real
Time Executive for Missile Systems) is a real time executive that provides a high
performance environment for embedded critical and military applications including the
following features:

� Multitasking capabilities;

� Homogeneous and heterogeneous multiprocessor systems support;

� Event-driven, priority based, preemptive scheduling;

� Optional rate monotonic scheduling;

� Intertask communication and synchronisation;

� Priority Inheritance mechanisms;

� Responsive interrupt management;

� Dynamic memory allocation;

� High level of user configurability.

RTEMS is free software and most of its source code can be redistributed and/or modified
under the terms of the GNU General Public License (version 2 or later) as published by the
Free Software Foundation. RTEMS has been implemented in both Ada and C programming
languages. Since the release implemented in Ada seams to be unavailable, the scope of
this report is limited to the release implemented in C, although, throughout the
documentation, it can be observed that both releases are similar in terms of functionalities.

2.2 RTEMS Foundations

RTEMS was developed based on strong concepts in order to make a self contained, highly
versatile software component. In order to make an evaluation on RTEMS and since no
documentation regarding requirements or detailed design is available, some assumptions
were made regarding these topics after performing an analysis on the source code and
available documentation. These assumptions are presented next:

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 10 / 57 CSW-RAMS-2003-RPT-1334-05

� Reusability - RTEMS is designed as a reusable software component;

� Portability – RTEMS is designed to minimize the use of non-portable code. It isolates all
hardware dependencies (processor and target dependent code) from the rest of the
source code, allowing as much common source code as possible to be shared across
multiple processors and targets;

� Modularity – RTEMS is designed to encourage the development of modular
components;

� Reliability – Although is not documented, RTEMS is intended to be used in systems
with high integrity requirements, in this particular case, it is intended to be used as on-
board software in ESA space missions. As a consequence, requirements from ESA
standards, namely ECSS-Q-80 are considered in this evaluation.

2.3 Architecture

This section describes the architecture of RTEMS. As a reference, the RTEMS API is used
to explain the RTEMS architecture. A more detailed description of the RTEMS API itself is
given in the following section.

2.3.1 RTEMS External Architecture

One of the goals of RTEMS was to provide a bridge between two critical layers of real time
systems, namely, the project dependent application and the target hardware. Figure 1
shows the application architecture of RTEMS.

RTEMS Executive

Target System

Low-Level Device Drivers

Itron
API

POSIX
API

Classic
API

Real-Time Application

��������	�
� � � �� � � ��� � ��� � �� �� � ���� �����

The directory structure presented before can directly be mapped into the presented
architecture. The score and sapi are the directories that contain the code for the “RTEMS
Executive” layer. The ITRON API implementation is located in the itron directory, the
Classic API implementation is located in the rtems and the POSIX API is divided in two
directories, namely the posix and libc, in the Cygnus NEWLIB and in gcc.

This release also provides some applications for testing some features of the executive.
These applications are mainly located in the tests directory. A web server is also made
available in this release and is located in the libnetworking directory.

2.3.2 RTEMS Internal Architecture

The internal architecture for RTEMS can be viewed as a set of layers that work closely with
each other to provide the set of services to the real time applications. The executive
interface presented to the application is formed by grouping directives (API calls) into logical
sets called resource managers. Scheduling, dispatching and object management is

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 11 / 57 CSW-RAMS-2003-RPT-1334-05

provided by the executive core, which depends only on a small set of CPU dependent
routines.

Next sections provide and overview of the two APIs that were evaluated in the scope of this
Call-off Order.

2.3.2.1 RTEMS Classic API

Figure 2 illustrates this organization for the RTEMS Classic API.

��������	�
� � � �� �� � � �� �� � ���� ���� � ��� �� � ���� �����

The Classic API provides seventeen resource managers. Next, a short description of
each manager is presented. In section 6 a more detailed description is provided since
each one of these managers provides an interface to be used by the real time
applications:

� Initialization: This manager is responsible for initiating and shutting down RTEMS;

� Task: This manager provides a comprehensive set of directives to create, delete and
administer tasks;

� Clock: This manager provides support for time of day and other related capabilities;

� Timer: This manager provides support for timer facilities;

� Interrupt: This manager provides support for connecting functions to hardware interrupt
vectors;

� Dual ported memory: This manager provides a mechanism for converting addresses
between internal and external representations for multiple dual-ported memory areas;

� Partition: This manager provides facilities to dynamically allocate memory in fixed-size
units;

� Region: This manager provides facilities to dynamically allocate memory in variable-size
units;

� Multiprocessing: This manager provides the facilities for supporting multiprocessor
environments composed of both homogeneous and heterogeneous mixtures of
processors and target boards;

� Rate monotonic: This manager provides facilities to implement tasks which execute in
a periodic fashion (Provides facilities to manage the execution of periodic tasks);

RTEMS
Core

Event

Message

Semaphore

Signal
I/O

Interrupt

Task

Multiprocessing

Partition

Fatal Error Clock
Timer

Dual Ported Memory

Region Rate
Monotonic

Initialization

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 12 / 57 CSW-RAMS-2003-RPT-1334-05

� I/O: This manager provides a well defined mechanism for accessing device drivers and
structured methodology for organizing device drivers;

� Signal: This manager provides the capabilities required for asynchronous
communication;

� Semaphore: This manager utilizes the standard Dijkstra counting semaphores to
provide synchronization and mutual exclusion capabilities;

� Message: This manager provides communication and synchronization capabilities using
RTEMS message queues;

� Event: This manager provides a high performance method of intertask communication
and synchronization: an event flag is used by a task (or ISR) to inform another task of
the occurrence of a significant situation;

� Fatal error: This manager processes all fatal or irrecoverable errors;

� User extensions: This manager allows the application developer to augment the
executive by allowing them to supply extension routines which are invoked at critical
system events;

2.3.2.2 POSIX API

The RTEMS POSIX API presents nineteen managers. Figure 3 show an overview of the
RTEMS POSIX API based architecture.

RTEMS
Core

Scheduler
Signal

Mutex

Cond. Var.

Timer

Clock

Key

Process Creation

Process Environment

Thread
Thread

Cancelation

Semaphores

Memory
Messages

Files and Directories Input and Output Primitives
Device and Class
Specific Functions

System Databases Language Spec. Serv. For C

��������	�
� � � �� � � �� �� � ���� ���� � ��� �� � ���� �����

All managers provide their functionalities according to the IEEE 1003.1b standard.

� Process Creation and Execution Manager1: This manager provides functionalities for
process creation and termination;

� Process Environment Manager1: This manager provides functionalities for process
management;

1 RTEMS implements a single process, multithreaded environment. Because of this, some of these functionalities
regarding process management are not supported by RTEMS, more specifically, all process management related
functions are not implemented by RTEMS, with the exception of one, the _exit() function;

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 13 / 57 CSW-RAMS-2003-RPT-1334-05

� Files and Directories Manager: This manager provides functionalities for file
management;

� Input and Output Primitives Manager: This manager provides functionalities for I/O
management;

� Device and Class Specific functions Manager: This manager provides functionalities
for device management;

� Language Specific Services for the C Programming Language Manager: this
manager provides functionalities for specific features present on the C programming
language like acquiring or releasing ownership of file streams;

� System Databases Manager: This manager provides functionalities for system
database management;

� Memory Manager: This provides functionalities for memory management;

� Message Passing Manager: This manager provides functionalities for communication
and synchronisation using message queues;

� Semaphores Manager: This manager provides functionalities for semaphore
management;

� Thread Manager: This manager provides the functionalities for thread management;

� Thread Cancellation Manager: This manager provides functionalities for thread
cancellation;

� Clock Manager: This manager provides the functionalities for clock management like
getting time or setting time;

� Timer Manager: This manager provides functionalities for timer management;

� Key Manager: This manager provides the functionalities for key management like key
creation or deletion. Key values are opaque objects used to locate thread-specific data;

� Condition Variable Manager: This manager provides functionalities for conditional
variables management like condition variable initialisation or signalling;

� Mutex Manager: This manager provides functionalities for mutex variables management
like mutex priority setting or initialisation;

� Signal Manager: This manager provides functionalities for signal management like
signal clearing or sending;

� Scheduler Manager: This manager provides functionalities for managing the scheduling
options of the executive;

The implementation of the POSIX API is divided into three parts: RTEMS core, namely the
files available in the posix and libc directories; Cygnus NEWLIB and gcc.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 14 / 57 CSW-RAMS-2003-RPT-1334-05

2.4 RTEMS Executive Core

The executive core is responsible for the low level system management. It implements
several handlers to be used by the API’s to perform each specific function. These handlers
are presented next:

� Message Handler – this handler is responsible for message passing inside the core;

� Mutex Handler – this handler is responsible for mutex objects management inside the
core;

� Semaphore Handler – this handler is responsible for semaphore management inside
the core;

� Time of Day Handler - this handler is responsible for time management inside the core;

� Heap Handler - this handler is responsible for heap memory management inside the
core;

� Internal Error Handler - this handler is responsible for managing internal errors that
occur inside the core;

� ISR Handler - this handler is responsible for ISR management inside the core;

� Multiprocessing Communications Interface Handler - this handler is responsible for
multiprocessing environment management inside the core;

� Object Handler - this handler is responsible for object management inside the core;

� Thread Handler - this handler is responsible for thread management inside the core;

� Thread Queue Handler - this handler is responsible for thread queues management
inside the core;

� Watchdog Handler - this handler is responsible for software watchdog management
inside the core;

� Workspace Handler - this handler is responsible for workspace management inside the
core.

The core was not designed to be used directly by the user’s application, although no
restrictions are imposed, at either compilation or linking time.

As shown in Figure 1, the executive core manages all CPU specific features and low level
device drivers. In this particular case, the CPU specific features belong to the
SPARC/ERC32 processor. Features like low power mode or number of register windows
are defined at this level.

The executive core also contains configuration structures. RTEMS system configuration is
made through a file that contains all of the configuration tables required by an RTEMS
application, including the CPU specific table.

2.5 API Description

Depending on the API (e.g. RTEMS Classic API is compliant with Real Time Executive
Interface Definition (RTEID) and POSIX API is based on the standard IEEE 1003.1b)
RTEMS provides specific managers. This section provides a relatively detailed description
of the Classic RTEMS API manager’s functionalities.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 15 / 57 CSW-RAMS-2003-RPT-1334-05

In this release, RTEMS presents three distinct API’s. The first API was developed with
compliance with the RTEID, by Motorola with technical input from Software Components
Group. This is also mentioned on the documentation as the Classic RTEMS API. The
second is a POSIX 1003.1b based API, whose implementation is based on a single process
multithreaded environment. The third one is an Industrial The Real Time Operating System
Nucleus2 (ITRON) based API. All of these interfaces are mainly implemented in C
programming language, with some Assembly code used in some CPU dependent files.
Only Classic and POSIX APIs were subjected to this evaluation. The next section presents
some details of the Classic RTEMS API (For an API directive description, refer to [6]).
Description of the POSIX API can be found on POSIX and Cygnus NEWLIB
documentation.

2.5.1 Classic API

As stated in section 2.3.2.1 and shown in Figure 2, Classic API is divided in seventeen
resource managers, logically organised, each one with a group of specific directives
according to their characteristics. One particular aspect regarding this API is that RTEMS
excludes all unused managers from the run time environment. This way no unused code is
placed in the run time.

These managers are described in the following subsections.

2.5.1.1 Initialisation Manager

This manager is responsible for initiating and shutting down RTEMS. Initiating RTEMS
involves creating and starting all configured initialisation tasks, and for invoking the
initialisation routine for each user-supplied device driver. For multiprocessor environments,
this manager is responsible for the initialisation of the inter-processor communications layer.

Initialisation tasks are the mechanism by which RTEMS transfers initial control to the user’s
application. A typical initialisation task will create and start the static set of application tasks.
Initialisation tasks which only perform initialisation should delete themselves upon
completion to free resources for other tasks. RTEMS does not automatically delete the
initialisation tasks. These tasks are defined in the User Initialisation Tasks Table and are
automatically created and started by RTEMS as part of its initialisation sequence.

System Initialisation Task is responsible for initialising all device drivers. After device driver
initialisation in a single processor system, this task will delete itself. In multiprocessor
environments, the system initialisation task does not delete itself after initialising the device
drivers. Instead, it transforms itself into the Multiprocessor Server which initialises the
Multiprocessor Communications Interface Layer, verifies multiprocessor system consistency
and processes all requests from the remote nodes.

The Idle Task is a task that consists in an infinite loop and will be pre-empted when any
other task is made ready to execute. This happens because this task has the lowest priority
in the system.

If a fatal error occurs during the initialisation, a Fatal Error Manager directive will be called to
deal with the situation.

After the BSP completes its initialisation, the following sequence is performed by the
Initialisation Manager:

� Initialise internal RTEMS variables;

2 The ITRON specification defines a highly flexible operating system architecture designed specifically for application
in embedded systems, see http://tron.um.u-tokyo.ac.jp/TRON/ITRON/ for more details.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 16 / 57 CSW-RAMS-2003-RPT-1334-05

� Allocate system resources;

� Create and start the System Initialisation Task;

� Create and start the Idle Task;

� Create and start the User Initialisation Task;

� Initialise Multitasking.

The RTEMS shutting down directive is called by the application when multitasking is to be
ended and control is to be returned to the BSP. RTEMS will resume its execution when the
RTEMS initialisation directive is called again by the BSP.

2.5.1.2 Task Manager

The task manager provides a comprehensive set of directives to manage and administer
tasks.

A task in RTEMS is the smallest thread of execution which can compete on its own for
system resources.

RTEMS defines a data structure called Task Control Block (TCB) which is used to keep all
the information that is important to the execution of a task. RTEMS reserves a TCB for each
configured task. This structure contains the task’s name, ID, current priority, current and
starting states, execution mode, set of notepad locations, TCB user extensions pointer,
scheduling control structures and all the data required by a blocked task. The TCB is
allocated upon creation of the task and released to the TCB free list upon task deletion.

In RTEMS, a task may exist in the following states:

� Executing – Currently scheduled to the CPU;

� Ready – May be scheduled to the CPU;

� Blocked – Unable to be scheduled to the CPU;

� Dormant – Created task that is not started;

� Non-Existent – Uncreated or deleted task.

The following figure presents a diagram that shows how the states relate themselves.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 17 / 57 CSW-RAMS-2003-RPT-1334-05

������� 	�� � � ! �� �� ���� �� � � ���� � � �" �� ��� # �

Normally, the task scheduling is based on its current state and priority.

A task’s priority determines its importance regarding to the remaining tasks executing in the
system, more specifically, in the processor. RTEMS supports 255 level of priority, being the
highest priority 1 and the lowest 255. Also, tasks in RTEMS can have equal priorities.

Task execution mode is a combination of four components:

� Preemption: preemption allows a task to determine when control of the processor is
relinquished. If a higher priority task than the one currently using the processor is
made ready, then the processor will be taken away from the currently running task
and given to the higher priority task;

� ASR processing: Asynchronous Signal Routine (ASR) is used to determine when
signals are to be processed by the corresponding task. When a signal arrives, it will
be processed by the responsible task when it is scheduled to execute. If this feature
is disabled, the signal is posted for execution when it becomes enabled;

� Timeslicing: timeslicing is used by RTEMS scheduler to determine how the
processor is allocated when tasks of equal priority are made ready to execute. In this
case, RTEMS will limit the amount of time each task executes, equally. The length of
the time slice is application dependent and specified in the Configuration Table;

� Interrupt Level: interrupt level is used to determine which interrupts will be enabled
when a task is executing, more specifically, it specifies the interrupt level at which
the task will be executed.

Creation of a task which performs floating point operations in RTEMS results in additional
memory being allocated for the TCB to store the state of the coprocessor during task
switches. If the target processor does not support this feature, an emulation software library
should be used for floating point operation, if needed.

In some processors it is possible to dynamically enable and disable the floating point unit.
When this occurs, RTEMS will use this feature enabling only the floating point unit when the
task currently executing needs it.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 18 / 57 CSW-RAMS-2003-RPT-1334-05

RTEMS implements a feature called Per Task Variables, which are used to support global
variables whose value may be unique to a task. This feature can be used when a routine is
to be spawned repeatedly as several independent tasks.

2.5.1.3 Interrupt Manager

The interrupt manager allows the application to connect a function to a hardware interrupt
vector. RTEMS saves and restores all registers which are not preserved by normal C calling
convention for the target processor and invokes the user’s Interrupt Service Routine (ISR).

The RTEMS Interrupt Manager guarantees that proper task scheduling and dispatching is
performed at the conclusion of an ISR. If proper task scheduling and dispatching is to be
performed, the application must use the Interrupt manager for all ISR’s which may be
interrupted by the highest priority ISR which invokes an RTEMS directive.

RTEMS internally supports 256 interrupt levels which are mapped to the processor’s
interrupt levels.

During the execution of directive calls, critical sections of code may be executed. In this
situation, all maskable interrupts are disabled before the execution of these sections. Non
maskable interrupts cannot be disabled. If a directive is invoked during the execution of an
ISR, unpredictable results may occur due to the inability of RTEMS to protect its critical
sections.

Only some directives can be used in ISR. A relatively detailed list is available in [6], but in a
nutshell, the managers that are available for use in ISR are:

� Task Management;

� Clock Management;

� Message, Event and Signal Management;

� Semaphore Management;

� Dual-Ported Memory Management;

� IO Management;

� Fatal Error Management;

� Multiprocessing Management.

2.5.1.4 Clock Manager

The Clock Manager provides support for time of day related capabilities. This manager
requires a real time clock or hardware timer to create the timer interrupts. It operates based
upon calendar time. The fields that compose the native format of the data structure that
stores time are the following: year; month; day; hour; minute; second and tick3.

This manager provides the directive needed for Timeslicing scheduling scheme. Basically,
this directive decrements the running task’s time-remaining counter. If the task’s timeslice
has expired, then the task will be pre-empted.

2.5.1.5 Timer Manager

The Timer Manager provides support for timer facilities. A timer is an RTEMS object which
allows the application to schedule specific operations to occur at specific times in the future.

3 Tick is defined to be an integral number of microseconds which is specified by the user in the Configuration Table.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 19 / 57 CSW-RAMS-2003-RPT-1334-05

As an example of this RTEMS feature, a timer can be used to implement software
Watchdog routines, which only fires to denote that an application error has occurred.

2.5.1.6 Semaphore Manager

The Semaphore Manager provides support for synchronisation and mutual exclusion
capabilities.

RTEMS allows that a task holding the binary semaphore to obtain the same binary multiple
times in a nested manner. Simple binary semaphores do not allow nested access and so
can be used for task synchronization.

RTEMS supports the priority inheritance and priority ceiling protocols for local, binary
semaphores that use the priority task wait queue blocking policy. The implementation of the
priority inheritance and priority ceiling algorithms take into account the scenario in which a
task holds more than one binary semaphore.

2.5.1.7 Message Manager

This manager provides communication and synchronisation facilities using RTEMS
message queues.

A message is a variable length buffer where information can be stored to support
communication.

A message queue permits the passing of messages among tasks and ISR’s. Normally,
messages are sent and received from the queue in a FIFO order, but RTEMS provides a
directive to pass to LIFO order for urgent messages.

2.5.1.8 Event Manager

This manager provides a high performance method for intertask communication and
synchronisation.

Each task contains thirty-two event flags that inform the task of the occurrence of a
significant situation. A collection of one or more event flags is referred to as an event set.
This manager provides facilities to manage these event sets. RTEMS provides two
algorithms for testing if the condition flagged by the event is satisfied or not. The first
algorithm states that an event condition is satisfied when at least a single request event is
posted4. The second states that an event condition is satisfied when every requested event
is posted.

2.5.1.9 Signal Manager

This manager provides the features required for asynchronous communication.

This manager allows a task to optionally define an asynchronous signal routine. This
mechanism works the same way as an ISR. When a signal is sent to a task, that task’s
execution path will be interrupted by the ASR. A signal is sent to a task to inform that task of
the occurrence of a significant situation. ASRs are scheduled by the RTEMS and executed
in the context of a task, consequently being able to execute any directive. A ASR has a task
mode which can be different from that of the task.

4 An event set is posted when is directed (or sent) to a task

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 20 / 57 CSW-RAMS-2003-RPT-1334-05

2.5.1.10 Partition Manager

This manager provides facilities to dynamically allocate memory in fixed-size units.

A partition is a physically contiguous memory area divided into fixed-size buffers that can be
dynamically allocated or deallocated. Partitions are managed and maintained as a list of
buffers.

2.5.1.11 Region Manager

This manager provides facilities to dynamically allocate memory in variable sized units.

A region makes up a physically contiguous memory space with user-defined boundaries
from which variable-sized segments are dynamically allocated and deallocated. This
manager provides facilities similar to the Partition Manager.

2.5.1.12 Dual Ported Memory Manager

This manager provides facilities for converting addresses between internal and external
representations for multiple dual-ported memory areas (DPMA).

The dual-ported memory area is a contiguous block of RAM memory owned by a particular
processor but which can be accessed by other processors in the system. The owner
accesses the memory using internal addresses, while other processors must use external
addresses. RTEMS defines ports for particular mapping of internal and external addresses.

2.5.1.13 I/O Manager

This manager provides a well defined mechanism for accessing device drivers and a
structured methodology for organising device drivers.

If an application uses the I/O Manager, it must specify the address of the Device Driver
Table in its Configuration Table. This table contains the entry points for each specific device
driver. Each device driver may contain the following entry points:

� Initialisation;

� Open;

� Close;

� Read;

� Write;

� Control.

Each call to this manager must provide a device’s major and minor number as arguments.
The major number is the number of the index of the requested driver’s entry point in the
Device Driver Table, and is used to select a specific device driver. The minor number usage
is driver specific, but is commonly used to distinguish between a number of devices
controlled by the same driver.

This manager also provides facilities for associating names to particular devices. It provides
directives to register names and look up the major/minor number pair for the specific device
name.

There are some considerations to be taken when using this manager:

� The device driver routines execute on the context of the invoking task. Thus, if the
device driver blocks, the task blocks;

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 21 / 57 CSW-RAMS-2003-RPT-1334-05

� The device driver is free to change the mode of the invoking task, although the
device driver routine should restore the original values when it finishes the
execution;

� Device drivers may be invoked from ISRs;

� Only local device drivers are accessible through the I/O manager;

� A device driver routine may invoke all other RTEMS directives, including I/O
directives on both local and global objects.

The manager does not make any assumptions regarding the construction or operation of
any device driver.

The information passed by the application to RTEMS is then passed to the correct device
driver entry point.

RTEMS automatically initialises all device drivers when multitasking is initiated.

2.5.1.14 Fatal Error Manager

This manager provides facilities to process all fatal and irrecoverable errors.

This manager is called when an irrecoverable error condition is detected, either by the
kernel or by the application software. Regarding to fatal errors, these can be detected from
three sources:

� The executive (RTEMS);

� User system code;

� User application code.

RTEMS automatically invokes this manager upon detection of an error it considers to be
fatal. Although the precise behaviour of the default fatal error handler is processor specific,
in general, it will disable all maskable interrupts, place the error in a known processor
dependent place (generally, either on the stack or in a register) and halt the processor. In
this particular case, the SPARC/ERC32, the default error handler disables processor
interrupts to level 15, places the code in the g1 register and goes into infinite loop to
simulate a halt processor instruction.

2.5.1.15 Rate Monotonic Manager

This manager provides facilities to manage the execution of periodic tasks. It was designed
to support application designers who use the Rate Monotonic Scheduling Algorithm to
insure that their periodic tasks will meet their deadlines even under transient overload
conditions.

The rate monotonic manager makes the following assumptions:

� A periodic task is one which must be executed in a regular interval;

� The intervals between successive iterations of the task is referred to as its period;

� Periodic tasks can be characterised by the length of their period and execution time;

� The period and execution time of a task can be used to determine the processor
utilization for that task;

� Processor utilization is the percentage of processor time used and can be calculated
on a per-task or system-wide basis.

� An aperiodic task executes at irregular intervals and has only a soft deadline;

� A sporadic task is an aperiodic task with a hard dealine and minimum interarrival
time;

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 22 / 57 CSW-RAMS-2003-RPT-1334-05

� The minimum interarrival time is the minimum period of time which exists between
successive iterations of the task.

2.5.1.16 User Extensions Manager

This manager provides the applications developer facilities to augment the executive by
allowing them to supply extension routines which are invoked at critical system events.
These events can be the following system events:

� Task creation, initiation, reinitiation, deletion, context switch, begin and end;

� Post task context switch;

� Fatal error detection.

An extension set is defined as a set of routines which are invoked at each of the previously
mentioned events, and at which user extensions routines are invoked.

RTEMS provides a pointer to a user-defined data area for each extension set to be linked to
each task’s control block. This set of pointers is an extension of the TCB and can be used to
store additional data required by the user’s extension functions.

2.5.1.17 Multiprocessing Manager

This manager provides facilities for implementing multiprocessor environments.

A major goal design of the executive was to transcend the physical boundaries of the target
hardware configuration. This is achieved by presenting the application software with a
logical view of the target system where the boundaries between processor nodes are
transparent.

This executive supports heterogeneous and homogeneous environments, regarding
processors. By having this kind of support, RTEMS allows systems designers to select the
most efficient processor for each subsystem of the application. Moreover, configuring a
heterogeneous environment is no more difficult than configuring a homogeneous
environment.

With these features, the entire system, both hardware and software, can be viewed logically
as a single system.

RTEMS implements proxies which are data structures that reside on every node and
represent a remote task. The goal of this is to block remote tasks as though they were
blocking on a message queue or semaphore. It also implements global objects and two
types of tables; a Local Object Table, which contains the information concerning all objects
created in that specific node; and a Global Object Table, which contains information
regarding all global objects in the system and, consequently, is the same on every node

It also implements a Multiprocessor Communications Interface Layer. This is a set of user-
provided procedures which enable the nodes in a multiprocessor system to communicate
with one another. This layer is responsible for managing a pool of buffers called packets and
for sending these packets between the nodes.

2.6 Product Deployment

The RTEMS version 4.5.0 is distributed via anonymous ftp. This release can be found in
ftp://ftp.oarcorp.com/pub/rtems/releases/4.5.0 . The complete source code and
documentation can be found in www.rtems.com . Almost all components of this RTEMS
release are compressed files and have the .tar.gz or .tgz extension. The GNU Zip package
is required to uncompress these files. The cross-development environment is based on
GNU tools and can also be obtained from the web.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 23 / 57 CSW-RAMS-2003-RPT-1334-05

The following sections describe the directory structure of this release. The RTEMS directory
structure is designed to meet the following requirements:

� Encourage the development of modular components;

� Isolate processor and target dependent code;

� Allow multiple RTEMS users to perform simultaneous compilation of RTEMS.

The documentation that describes the directory structure of RTEMS is not updated, so the
following description is based on direct observation of contents.

2.6.1 Top Level Directory Structure

The top level directory for this release has the following contents:

rtems-4.5.0

aclocal

automake

c

doc

make

scripts

scripts-ada

exec

�������$	�� � � �% �& ���' ���� �� �(�� ���� �����

aclocal: This directory contains the macros used by the GNU Autoconf tool for configure
RTEMS compilation environment.

automake: This directory contains information regarding the GNU Automake tool.

c: This directory contains the source code for the C implementation of RTEMS as well as
the test suites, sample applications, Board Support Packages, Device Drivers, and support
libraries. (This directory will be described in more detail in the next sections).

doc: This directory contains the language independent documentation. It is not currently
supported (not used).

make: This directory contains the make files for RTEMS building. It contains three
subdirectories: template, custom and compilers that support the building operations.

scripts: This directory contains the RedHat Package Manager (RPM) support for Board
Support Packages (BSP). It also contains four subdirectories to support the building.

scripts-ada: This directory contains the scripts used to build RPMs for GNAT/RTEMS. It
contains three subdirectories to support the building.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 24 / 57 CSW-RAMS-2003-RPT-1334-05

tools: This directory contains three subdirectories: update, cpu and build. The update
directory contains tools which were used to aid the upgrade from RTEMS 3.1.0 to RTEMS
3.2.0. The cpu directory contains some tools developed by different persons for particular
target systems, but with no significant practical use. The build directory contains
miscellaneous support tools for RTEMS workspaces.

2.6.2 Source Code Directory - c

This directory contains two subdirectories: the src directory, which contains the source
code for this version of the executive, and the make subdirectory, which contains files to aid
the GNU Make tool.

The c directory also contains some files that are also used by the GNU Make tool and some
text files containing information regarding the status of the current implementation.

The src subdirectory has the following structure:

src

wrapup

tests

make

lirpc

libdbg

libnetworking

libmisc

libchip

lib

exec

�������)	�� �� �� �* " ���� �� �(�

The lib, exec and tests subdirectories are important directories and are presented in
some detail on the following subsections. The rest of the subdirectories are described next.

wrapup: This directory is practically empty. It only contains some files to aid the GNU Make
tool;

make: This directory contains the make files for RTEMS building. It contains two
subdirectories: custom and compilers that support the building operations;

librpc: This directory contains the necessary source files for using Remote Procedure
Call / External Data Representation (RPC/XDR) routines on RTEMS;

libdbg: This directory contains source code for some remote debugging features to be
used with RTEMS for the i386 and PowerPc processors;

libnetworking: This directory contains several subdirectories with source code of
servers like FTP and TFTP and some others. All these servers are still under development.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 25 / 57 CSW-RAMS-2003-RPT-1334-05

It also contains some source code to implement virtual machines for RTEMS, an
implementation of PPP (Point to Point Protocol) for RTEMS, as well as some other web
based applications for RTEMS;

libmisc: This directory contains some monitoring tools, like a Task Stack Overflow
Checker, Workspace Consistency Checker, Task Execution Time Monitor, Period Statistics
Monitor or a Debug Monitor. It also contains a file compression utility called Untar.

libchip: This directory contains some specific drivers for serial connections and network
connections.

2.6.2.1 Support Library Source directory – lib

This directory contains the support libraries and BSPs. The following figure shows its
structure:

lib

include

libbsp

libcpu

libc

shmdr

no_cpu

bare

...

�������+	�% �* �� � " �% �* * � � �� �* " ���� �� ���� �

The lib contains four subdirectories:

include: This directory contains several specification for generic drivers, common to all
target systems.

libbsp: contains a subdirectory for each CPU family supported by RTEMS. In this
subdirectory is another directory for each BSP for that processor family. This directory also
contains three important subdirectories worth to mentioning:

shmdr: This directory provides an implementation of a shared memory driver. This
driver is only required to execute the multiprocessor test suite;

no_cpu: This directory provides a template BSP which can be used to develop a
specific BSP for an unsupported target board;

bare: This directory provides some definition to build RTEMS without using any
specific BSP for any CPU type;

libcpu: contains libraries which are CPU dependent but not target board dependent;

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 26 / 57 CSW-RAMS-2003-RPT-1334-05

libc: contains the support for the Cygnus NEWLIB C Library that was specifically designed
for real-time embedded systems;

As stated before, together with these directories, there are CPU dependent subdirectories.
Each BSP provides the modules which comprises a RTEMS BSP. These modules are
separated into several directories. The number of directories changes with the target
processor.

2.6.2.2 Test Suite Source directory – test

This directory contains the following subdirectories:

samples: This directory contains a set of simple sample applications which can be used
either to test a board support package or as the starting point for a custom application. This
directory has the following structure:

samples

base_mp

base_sp

cdtest

hello

paranoia

ticker

�������,	�
� � � �� � # � ��� �" ���� �� �(

The base_mp and base_sp provide sample implementation of multiprocessor and single
processor environment respectively, the cdtest provides a simple C++ application using
constructors and destructors, the hello provides the well know “Hello World” test
application, the paranoia provides public domain floating point and math library toolset test
and finally the ticker provides a test for the verification of clock chip device drivers of
BSPs.

mptests: This directory contains the RTEMS Multiprocessor Test Suite.

psxtests: This directory contains the RTEMS POSIX API Test Suite.

sptests: This directory contains the RTEMS Single Processor Test Suite.

tmtests: This directory contains the RTEMS Timing Test Suite.

libtests: This directory contains tests for some of the items in the lib directories.

tmitrontests: This directory contains timing tests for the ITRON 3.0 implementation

itrontests: This directory contains functionality tests for the ITRON 3.0 API
implementation.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 27 / 57 CSW-RAMS-2003-RPT-1334-05

2.6.2.3 Executive Source directory – exec

This directory contains the source code files of this RTEMS release. Its structure is
presented next:

exec

score

sapi

rtems

posix

itron

wrapup

�������-	�� �� . �� ���& ��' ���� �� �(�

At this point the API specific and core source code are separated into different directory
trees. The rtems , posix and itron subdirectories contain the C language source files
for each module comprising the respective API. The rtems directory contains the source
code for the Classic API, the posix directory contains a part of the implementation of the
POSIX compliant API and the itron directory contains the implementation of the ITRON
3.0 compliant API. The other subdirectories score and sapi contain the super core
modules. The sapi directory contains the files required to support initialisation and the
score directory contains the CPU dependent modules.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 28 / 57 CSW-RAMS-2003-RPT-1334-05

3. Scope Definition

For efficiency and effectiveness, the scope of the robustness and stress testing activities
was limited but yet covering a very significant part of all implemented functionalities in
RTEMS. The rationale was to focus on the more critical components of the system.

This section presents the parts of RTEMS that were selected (from the architectural view)
for robustness and stress testing. These parts are:

� Executive Core;

� Classic API (including Interface with the Low-Level Device Drivers);

� POSIX API;

These parts were chosen since they include at least one of the following:

� Directives that, in case of failure, can compromise the system integrity;

� Directives that, if misused, can compromise the system integrity;

� Directives that are frequently used to process important information to the system
(synchronisation, scheduling, etc), and as consequence, can compromise the system
integrity;

3.1 RTEMS Executive Core

This section presents the features of the executive core selected to be tested. Since all
features present in the core are used by the APIs, all will be tested. The following table
shows these features:

��� ����� �� �* /�� ��� 0�� �� ��

 �� � � ���1 � � " ���2�

 ���. �1 � � " ���2�

� �# � � � � ���1 � � " ���2�

� �# ��� 0�' � (�1 � � " ���2�

1 �� � �1 � � " ���2�

�� ���� � ��� ��� ��1 � � " ���2�

��
�1 � � " ���2�

� * /�� ��1 � � " ���2�

� � ��� " �1 � � " ���2�

� � ��� " �3 �����1 � � " ���2�

4 � �! � � � � ��1 � � " ���2�

� ��� # � ��� �5 �� ��� ��� � �� 0�� (� ��# �� � � 0����� ��� � �6� 5 � � 78�# � ���� � �� �0�� � ��(8��� ��� � � 0" �0� 	� �0����� � " �

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 29 / 57 CSW-RAMS-2003-RPT-1334-05

�� ��# � � �� � ��� � ���� ���� �� �0����0� ��� ��� # � ��� ���� ��� ��� � �� 0�� (� ��# ��� * ��� 2�

� � � 0����� ��� � � ��� * ��� ���� ��� ��" �* (��� ��� ��& �� �� �� (� ��# �6� 5 � � 72��

� � � �� � ��� � � 0����� ��� � �� � * ��2�

� � 9 �' �� �� " �� ���� 0� �# � ��� � �� � * ��2��

�� ���� ��� � ��� � �� � � ! �� � * ��2��

' ��& ���� " " ��� � �� � * ��2�

9 � ���� . ��� � �� � � �� � * ��2	�

� � * ����	�� ���� ��" �� � ������ ����� ��

3.2 RTEMS Classic API

This subsection presents the resource managers chosen from the 17 managers provided in
the RTEMS Classic API that were considered to be a critical part of the executive. Dual
ported memory and Multiprocessing resources managers were excluded from the scope of
the tests since the SPARC/ERC32 flavour of RTEMS does not implement the latter and
there was no simulation/hardware facility to test the former.

The chosen resource managers and corresponding directives are shown in Table 2. All
directives of the candidate resource managers were included with a few exceptions:
directives without parameters and directives associated with handling ‘per task global
variables’ since they are only relevant for multi-processing systems. The same rationale
also applied to the POSIX API.

��� ����� �� �* /�� ��� 0�� �� ��

 � � � ���� ' ���� ��& �� �

� � � ! � � � � ����

���# � : �� � ! : � ��� ���

���# � : �� � ! : � �� ���

���# � : �� � ! : ��� �� ���

���# � : �� � ! : " ������

���# � : �� � ! : ��� �# ��

���# � : �� � ! : � ��: � ��� ���(�

���# � : �� � ! : # � " ��

�� ������� �� � � � ���� ���# � : �� ������ �: � � �� � �

� �� � ! � � � � ���$�
���# � : � �� � ! : � ���

���# � : � �� � ! : ��� ! �

� �# ��� � � � ���$�

���# � : ��# ��: � ��� ���

���# � : ��# ��: " ������

���# � : ��# ��: 0���: � 0����

���# � : ��# ��: 0���: ; � �� �

���# � : ��# ��: � � � � ���

���# � : ��# ��: ��� ���

� �# � � � � ��� � � � ����

���# � : � �# � � � � ��: � ��� ���

���# � : � �# � � � � ��: " ������

���# � : � �# � � � � ��: � * �� �� �

���# � : � �# � � � � ��: ����� � ��

���# � : � �# � � � � ��: 0��� � �

5 This manager must be tested because it is used in critical parts of other managers

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 30 / 57 CSW-RAMS-2003-RPT-1334-05

 �� � � ��� � � � ����

���# � : # �� � � ��: < ����: � ��� ���

���# � : # �� � � ��: < ����: " ������

���# � : # �� � � ��: < ����: � �� " �

���# � : # �� � � ��: < ����: ����� ��

���# � : # �� � � ��: < ����: * �� � " � � � ��

���# � : # �� � � ��: < ����: ��� ��& ��

���# � : # �� � � ��: < ����: 0��� � �

���# � : # �� � � ��: < ����: ���: � �# * ��: � �� " �� ��

� & �� �� � � � ����
���# � : �& �� �: � �� " �

���# � : �& �� �: ��� ��& ��

� ��� � �� � � � ����
���# � : � ��� � �: � � �� � �

���# � : �& �� �: � �� " �

� � ������ � � � � � ����

���# � : � � ������ � : � ��� ���

���# � : � � ������ � : " ������

���# � : � � ������ � : ���: * �00���

���# � : � � ������ � : ������ : * �00���

���� � � � � � ����

���# � : ����� � : � ��� ���

���# � : ����� � : " ������

���# � : ����� � : �. ��� " �

���# � : ����� � : ���: � ��# �� �: � �= ��

���# � : ����� � : ���: � ��# �� ��

���# � : ����� � : ������ : � ��# �� ��

�>� � � � � ����

���# � : �� : �� ���� � ��= ��

���# � : �� : ����� ���: � � # ��

���# � : �� : � � �� �

���# � : �� : � �� � ��

���# � : �� : ��� " �

���# � : �� : ; �����

���# � : �� : � � � ��� ��

�� �� ��� ��� �� � � � ���� ���# � : 0� �� �: ���� �: � � � ���" �

� ��� � � � �� � �� � � � � ����

���# � : �� ��: # � � � �� � �� : � ��� ���

���# � : �� ��: # � � � �� � �� : " ������

���# � : �� ��: # � � � �� � �� : � � � � ���

���# � : �� ��: # � � � �� � �� : � ���� " �

9 � ���� . ��� � �� � � � � � � ����
���# � : �. ��� � �� � : � ��� ���

���# � : �. ��� � �� � : " ������

� � * ����	�� ���� ��" � � � � ���� �� � " �' ���� ��& �� �0�� # ��� ��
� � � �� �� � � �� �� � ��

3.3 POSIX API

This subsection presents the managers chosen from the 7 managers provided in the
RTEMS POSIX API that were considered to be a critical part of the executive.

The chosen managers and corresponding directives are the following:

��� ����� �� �* /�� ��� 0�� �� ��

 � � � ���� ' ���� ��& �� �

� ��� � �� � � � ����

� ��� " " � ���

� ��" ��� ���

� ��0���� ���

� ���# � �(� ���

� ��� � ��� � �

� �� ��� " : ! ����

! ����

� ��� �� � # � � ! �

� ��� �� � �� " �

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 31 / 57 CSW-RAMS-2003-RPT-1334-05

� ��; � ���� 0� �

� ����# �" ; � ���

 ���. �

� �� ��� " : # ���. � ���: �� ���

� �� ��� " : # ���. � ���: " �� ��� (�

� �� ��� " : # ���. � ���: � ��� �� �� � � ��

� �� ��� " : # ���. � ���: � ��� ��� � ����� ��

� �� ��� " : # ���. � ���: � ��� � � � ��" �

� �� ��� " : # ���. : �� ���

� �� ��� " : # ���. : " �� ��� (�

� �� ��� " : # ���. : �� � ! �

� �� ��� " : # ���. : ��(�� � ! �

� �� ��� " : # ���. : ��# �" �� � ! �

� �� ��� " : # ���. : �� �� � ! �

� �� ��� " : # ���. : � ��� ��� � ����� ��

� �� � ! � � � � ����

� �� � ! : � ����# ��

� ���� �

� � � � � ���� �

� �� � ! : �����# ��

� �# ��� � � � ����

��# ��: � ��� ���

��# ��: " ������

��# ��: � ����# ��

 �� � � ��� � � � ����

< : � � �� �

< : � �� � ��

< : �� ��� ! �

< : � �� " �

< : ��� ��& ��

< : � � ��0(�

< : � ��� ����

� � * ����	�� ���� ��" � � � � ���� �� � " �' ���� ��& �� �0�� # ��� ��
� � � �� � � �� �� � ��

3.4 Robustness Testing Scope

The previously listed managers and its directives, both for the Classic and POSIX RTEMS
APIs, were used during the robustness testing. They were all subject of test cases
definitions according to the fault model defined for robustness testing.

3.5 Stress Testing Scope

For the stress testing, the scope defined was reduced: only the Classic API was tested. The
selected managers were:

• Task Manager;

• Semaphore Manager;

• Event Manager;

• Interrupt Manager;

• Signal Manager;

• Message Manager;

• Partition Manager.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 32 / 57 CSW-RAMS-2003-RPT-1334-05

4. Fault Model and Test Methodology

4.1 Introduction

This chapter encloses the main findings of the work package WP-RAMS02-220 – “Fault
Model Definition”. It describes the test methodology and associated fault model to be used
in the robustness and stress testing of the RTEMS operating system.

4.2 Robustness testing

4.2.1 Test methodology

The methodology used in this robustness testing of the RTEMS real-time kernel, consists in
testing the RTEMS API calls using out-of-bound parameters.

This methodology is composed by several phases (see Figure 10):

• Preparation: Includes all the tasks needed to define the test cases.

• Test Execution: Execution of the defined test cases.

• Log Analysis: Analysis of the results of the test cases and identification of the
RTEMS faults.

Preparation phase comprises the following tasks:

• Product Analysis and Scope Definition: Analysis of the product under evaluation
(i.e. the RTEMS 4.5.0) and selection of the API calls that will be subjected to the
evaluation.

• Fault Model Definition: Definition of the in-bound and out-of-bound values that will
be used for each of the RTEMS data types.

• Construction of the Workloads: Definition and implementation of the applications
that will exercise the RTEMS APIs.

• Definition of the Test Campaigns and Test Suites: definition of the test suites
that will be used to automatically generate the test cases. Test suites are grouped
logically in test campaigns.

The Test Execution phase follows the Preparation. During this phase test cases are
executed and the results are collected in a database. This task is performed in unattended
mode the by Xception.

The final phase of the robustness testing is the Log Analysis. In this phase detailed analysis
of the log of each test case is performed comparing the obtained results against the
expected values. This phase can be time consuming. For this reason it is important to have
a concise workload output that enables the analyst to quickly find out if the result of the test
case is consistent with the input parameters or not.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 33 / 57 CSW-RAMS-2003-RPT-1334-05

Product Analysis
and Scope
Definition

API Calls to
Test Data Types

Construction
of Workloads

Fault Model
Definition

Test ValuesWorkloads

Define Test
Campaigns and

Test Suites

Test Suites

Automatic
Generation of Test

Cases

Test Cases

Execute Test
Cases

Test Log

Log Analysis

Product Faults

Test
Campaigns

Preparation

Test Execution

Log Analysis

��������? �@�
� * �� �� �� � �� �� ��� �� ��� � " � �� �(�

4.2.2 Data types

For each data type, a class of test values was defined in order to build the mutants (a
mutant is the source code file that results from the application of a single mutation on a data
parameter). These values differ from typical data values fed to functional tests (or unit tests)
since they should exercise the error handling/robustness features of the part of the software
that they are exercising. These values typically reflect boundary or “magic” values in the
data type range, or values that are semantic out-of-bounds in the scope of usage in a
function call.

The test values for the basic data types were defined taking into account previous
experience from the application of robustness testing techniques at Critical Software SA and
elsewhere, namely from Ballista project [11]. The initial candidate of test values was as
follows:

• Integers data types: 0, 1, -1, MAX_INTEGER, MIN_INTEGER, selected powers of
two, powers of two minus one, powers of two plus one;

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 34 / 57 CSW-RAMS-2003-RPT-1334-05

• Pointers data types: NULL, -1 (cast to a pointer), pointers to free()’ed memory,
pointers to malloc()’ed buffers of various powers of two in size.

• Floats data types: 0.0, 1.0, -1.0, ±MAX_FLOAT, ±MIN_FLOAT, PI and e;

As the test cases were to be executed over the RTEMS kernel, the floating point data
types were discarded. Concerning the other types, in order to prevent an explosion in
the count of test cases but on the other hand, keeping good test coverage, only a
subset of the specified test values were selected. Still, some rules apply. If the type to
be used in a mutation is a pointer to a function, then the only possible value that will be used
to create mutants is the NULL pointer. This decision is based on the fact that it is not
interesting to pass invalid function pointers as parameters (e.g., to register a device driver
with functions that have invalid signature).

These test values are not supposed to represent all the values that may be interesting to
test with the given data types – they were chosen to provide a reasonable range of
exceptional (non-nominal) input conditions to the software under test.

Table 4 lists the main basic RTEMS data types and the selected set of candidate test
values.

Table 4 shows RTEMS structured types which will also be candidate placeholders for
mutations on its data members.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 35 / 57 CSW-RAMS-2003-RPT-1334-05

Data Type Aliases Basic Type Test Values
__uint32_t __ULong unsigned long

int
0, 1, 18446744073709551615 (i.e.
MAX_UINT)

Char unsigned char 0, 255
clockid_t _CLOCKID_T_ unsigned long

int
0, 1, 18446744073709551615

Int signed int, test 0, 1, -1, 2147483647, -2147483648

Long 0, 1, -1, 9223372036854775807, -
9223372036854775808

mode_t int 0, 1, -1, 2147483647, -2147483648
mqd_t Objects_Id unsigned int 0, 1, 4294967295
pid_t int 0, 1, -1, 2147483647, -2147483648

pthread_conbild_t unsigned long
int

0, 1, 18446744073709551615

pthread_key_t unsigned long
int

0, 1, 18446744073709551615

pthread_mutex_t unsigned long
int

0, 1, 18446744073709551615

pthread_t unsigned long
int

0, 1, 18446744073709551615

rtems_asr_entry void NULL
rtems_attribute unsigned int 0, 1, 4294967295

rtems_device_major_number unsigned int 0, 1, 4294967295
rtems_device_minor_number unsigned int 0, 1, 4294967295

rtems_event_set unsigned int 0, 1, 4294967295
rtems_id Objects_Id unsigned int 0, 1, 4294967295
rtems_interval Watchdog_Interval unsigned int 0, 1, 4294967295
rtems_isr_entry void NULL

rtems_mode Modes_Control unsigned int 0, 1, 4294967295
rtems_name unsigned32 unsigned int 0, 1, 4294967295
rtems_option unsigned int 0, 1, 4294967295

rtems_signal_set unsigned int 0, 1, 4294967295
rtems_signed16 signed16 signed short

int
-32768, 0, 1, 32767

rtems_signed32 signed32 signed int 0, 1, -1, 2147483647, -2147483648
rtems_signed8 signed8 signed char 0, -128, 127
rtems_status_code int 0, 1, -1, 2147483647, -2147483648
rtems_task_entry void NULL

rtems_task_priority Priority_Control unsigned int 0, 1, 4294967295
rtems_timer_service_routine_entry void NULL

rtems_unsigned16 unsigned16 unsigned
short int

0, 1, 65535

rtems_unsigned32 unsigned32 unsigned int 0, 1, 4294967295
rtems_unsigned8 unsigned8 unsigned char 0, 1, 255
rtems_vector_number ISR_Vector_number unsigned int 0, 1, 4294967295
sem_t int 0, 1, -1, 2147483647, -2147483648

signed char 0, -128, 127

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 36 / 57 CSW-RAMS-2003-RPT-1334-05

Data Type Aliases Basic Type Test Values
signed short int short, short int -32768, 0, 1, 32767
sigset_t unsigned long

int
0, 1, 18446744073709551615

sigval union sigval void NULL
size_t int 0, 1, -1, 2147483647, -2147483648

ssize_t int 0, 1, -1, 2147483647, -2147483648

time_t _TIME_T_ long 0, 1, -1, 9223372036854775807, -
9223372036854775808

timer_t _TIMER_T_ unsigned long
int

0, 1, 18446744073709551615

unsigned int 0, 1, 4294967295

unsigned long int 0, 1, 18446744073709551615

unsigned short int unsigned short 0, 1, 65535
User_extensions_fatal_extension void NULL

User_extensions_thread_begin_extension void NULL
User_extensions_thread_create_extension void NULL

User_extensions_thread_delete_extension void NULL
User_extensions_thread_exitted_extension void NULL

User_extensions_thread_restart_extension void NULL

User_extensions_thread_start_extension void NULL
User_extensions_thread_switch_extension void NULL

Void NULL

� � * ��� �A�
� � � �B � � �� �' � �� �� (� �� �� � " �� � � � � �� ��" �� �� ��C � ���� �

4.2.3 RTEMS API functions as fault placeholders

Once eligible data types are selected and a set of associated test values is defined, the next
step in the methodology points us to the identification of the candidate locations for data
mutation.

The target set of functions (or directives as RTEMS documentation calls them) were already
defined and listed in chapter 3. This step applies then for the location of actual function calls
in the set of application programs (workload files) applicable for a particular test suite. This
step is performed in an automated way with full support from the test tool, which parses the
selected files. This parsing will result in a list of functions (with its signatures, as in Figure
12). For details on how theses features are supported in the tool please check chapter 5.

For example, if we had the following two C functions:

rtems_status_code rtems_task_create(
 rtems_name name,
 rtems_task_priority initial_priority,
 unsigned32 stack_size,
 rtems_mode initial_modes,
 rtems_attribute attribute_set,
 Objects_Id *id
);

rtems_status_code rtems_task_delete(

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 37 / 57 CSW-RAMS-2003-RPT-1334-05

 Objects_Id id;
);

����������@�� . � # � ���� �0�� � ��� � � �� ��� � �����

The signatures for them are as shown in Figure 12.

<?xml version="1.0" encoding="UTF-8"?>
<Message type="RTEMSFunctionsConfig">
 <Function Name="rtems_task_create" ReturnType="rtems_status_code"

IsPointer="NO">
 <ParametersList>
 <Parameter Name="name" Type="rtems_name" IsPointer="NO"/>
 <Parameter Name="initial_priority" Type="rtems_task_priority"

IsPointer="NO" />
 <Parameter Name="stack_size" Type="unsigned32" IsPointer="NO" />
 <Parameter Name="initial_modes" Type="rtems_mode" IsPointer="NO" />
 <Parameter Name="attribute_set" Type="rtems_attribute" IsPointer="NO" />
 <Parameter Name="id" Type="Objects_Id" IsPointer="YES" />
 </ParametersList>
 </Function>
 <Function Name="rtems_task_delete" ReturnType="rtems_status_code"

IsPointer="NO">
 <ParametersList>
 <Parameter Name="id" Type="Objects_Id" IsPointer="NO" />
 </ParametersList>
 </Function>
</Message>

����������@�� % �� � � �� �� �� ����� � ��� � � �� ��� � ����� �

Note: The “IsPointer” attributes in the “Function” and “Parameter” elements must have one
of two values: “NO” or “YES”. If the “IsPointer” is “YES”, then the parameter (or the function
return type, in the case of the “Function” element) is a pointer.

Besides setting the ground for the next stage – automated test procedure generation – the
output of this step enables comparison of the actual set of functions (covered within a test
campaign) with the candidate set.

Automated test cases generation

Once program files (workloads), candidate functions and test values (classed by data types)
are defined, the algorithm to automatically generate the test cases is straightforward.

A test case is generated by defining one mutant of the original application file. This mutant
differs from the original application on a single source code instruction (in this specific case,
a function call) where a single parameter at a time is mutated with a test value, according
with its basic type. Files are parsed sequentially and for each parameter of a call, a count of
X tests is generated where X is the size of the set of the test values for that data type.

The tool provides support for the tester to select a subset of the total set of test procedures
possible.

4.2.4 Remarks

While tuned for the specific test campaigns of RTEMS the methodology herein described is
completely generic and can be applied to other products.

The same reasoning applies to the test facility, with the following remarks:

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 38 / 57 CSW-RAMS-2003-RPT-1334-05

1. The product is coded in the C programming language.

2. The functions to be tested can be any function for which the source code is
available or, at least, the signature is known.

4.3 Stress testing

4.3.1 Test methodology

The approach used in the stress testing of the RTEMS 4.5.0 consisted in the execution
of several workloads that makes extremely high usage of system resources. Two types
of resources were evaluated:

• Physical resources – CPU time and memory;

• Logical resources – task, semaphores, message queues, etc.

Stressing of these resources was accomplished by:

• Creating a large number of resources (only for logical resources);

• Making intensive use of the created resources using different entities (e.g. a large
number of tasks accessing the same message queue).

The usage of the resources was gradually increased until it gets to a value which the
system could not stand. This is possible because RTEMS 4.5.0 has no hard-coded
limits to the several types of objects that can be created (task, message queues, etc),
being this limit defined by the applications at compile time and by the available physical
resources (mainly, the memory).

The methodology used consists of three phases (see Figure 13):

• Preparation: Includes all the activities needed to define the test cases.

• Test Execution: Execution of the defined test cases.

• Log Analysis: Analysis of the results of the test cases execution and identification
of the RTEMS 4.5.0 faults.

The Preparation phase comprises four tasks:

• Product Analysis and Scope Definition: Analysis of the product under evaluation
(i.e. the RTEMS 4.5.0) and selection of system resources that will be subjected to
stress testing evaluation.

• Construction of Workloads: definition and implementation of applications that will
exercise the system resources.

• Stress Model Definition: Definition of the desired level of usage for the resources
under evaluation (e.g. define the number of tasks to be created).

• Definition of Test Campaigns and Test Suites: definition of the test campaigns,
test suites and test cases. Test cases are logically grouped in test suites which in
turn are logically grouped in test campaigns.

During the Test Execution phase the test cases are executed with support of Xception.
The results are collected into a database to be analysed in the following phase. This
task is performed in a fully automated mode by Xception.

The final phase of this methodology is the Log Analysis. In this phase a detailed
analysis of the log of each test case is performed and the results are reported.
Typically a list of product faults is compiled at this time. For this phase it is important to

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 39 / 57 CSW-RAMS-2003-RPT-1334-05

have clear and well structured log outputs from tests, so that the analysis is performed
quickly and correctly.

Product Analysis
and Scope
Definition

Resources to
be Tested

Construction of
Workloads

Stress Model
Definition

Test ValuesWorkloads

Define Test
Campaigns and

Test Suites

Test Suites

Generation of
Test Cases

Test Cases

Execute Test
Cases

Test Log

Log Analysis

Product Faults

Test
Campaigns

Preparation

Test Execution

Log Analysis

����������A�� ���� � ��� �� ��� �� ��� � " � �� �(�

4.3.2 Workloads definition

In order to perform the evaluation some applications that exercise the RTEMS
directives under test are required. In this evaluation, a set of such applications, called
workloads, are used.

Each selected RTEMS resource manager will be stress tested with a different
workload. However, every workload follows a similar approach: they all implement a
scalable producer/consumer algorithm that uses the selected manager resources.

There are several parameters that can be modified in the workload in order to adjust
the degree of load of an RTEMS resource manager. Although there are several
workload specific parameters (e.g., the maximum size of a message in a message

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 40 / 57 CSW-RAMS-2003-RPT-1334-05

queue for the Message Manager workload), some generic parameters are common to
all the workloads. These generic parameters are listed in Table 5.

Data Type Parameter Name Description

rtems_unsigned32 NUMBER_OF_PRODUCERS Number of producer tasks

rtems_unsigned32 PRODUCERS_TASK_STACK_SIZE Producers tasks stack size

rtems_task_priority PRODUCERS_PRIORITY Producers priority

rtems_mode PRODUCERS_TASK_MODE Producers tasks mode

rtems_attribute PRODUCERS_TASK_ATTR Producers tasks attributes

rtems_unsigned32 NUMBER_OF_CONSUMERS Number of consumers tasks

rtems_unsigned32 CONSUMERS_TASK_STACK_SIZE Consumers tasks stack size

rtems_mode CONSUMERS_TASK_MODE Consumers tasks mode

rtems_attribute CONSUMERS_TASK_ATTR Consumers tasks attributes

rtems_task_priority CONSUMERS_PRIORITY Consumers priority

rtems_unsigned32 NUMBER_OF_SYSTEMS Number of systems (producers/consumers
systems)

rtems_interval TEST_TIMEOUT Number of ticks to wait until workload finishes

� � * ���$�@�4 � �! �� � " �5 �� ���� �� � �� # ����� �

A very important generic parameter is NUMBER_OF_SYSTEMS. This parameter
controls the scalability of the workload. If, for instance, we have only one producer
(NUMBER_OF_PRODUCERS with value 1) and two consumers
(NUMBER_OF_CONSUMERS with value 2), but the number of systems is set to ten,
this means that ten (1 x 10) producers will produce (workload specific) items that will
be consumed by twenty (2 x 10) consumers.

All the parameters are defined at workload compilation time through the C pre-
processor #define directives in the workload header files.

The source code of the defined workloads can be found in Annex B.

4.3.3 Stress Model

A systematic approach was defined to stress the RTEMS resource managers through
the definition of set of values to the different workload parameters. These sets of
values were defined in the entire range of possible values for each parameter, taking
into account their data type.

When more than one parameter is being modified at the same time within a workload,
a combination of all the workload parameters values will be used, obtaining a
representative sampling of the parameters interconnection.

To generate the values of the workload parameters, the following formula was used:

{ }
�
�

�
�

�

�
�

�
�

�

∈∀=
�
�
�

	

�
�
�

�

 �
	

�
�

+

nivaluestest

n
i

m

,1,2_

1

� < �� ��� � ���@�� �� ��C � ���� ��� �# ��� �

where m is the size of the data type (e.g., 32 for the rtems_unsigned32 type) and n is
the desired number of values.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 41 / 57 CSW-RAMS-2003-RPT-1334-05

The main goal of this equation was to generate non-linear distribution of test values, in
a way that most of the values are small values and only a small percentage of them
are large values. The reason for using this type of distribution is that most of the larger
values will result in an invalid parameter. For instance, the number of producers tasks
is given by an unsigned 32 bits data type. However, with the available resources on the
target system (mainly, the RAM memory), it is not possible to create 232 tasks along
with the consumers and all the other resources needed by a workload. With this
equation, we reduce the number of invalid parameters that would have no meaning in
stress tests.

As all the workload parameters are unsigned 32 bits data types, the m was defined
with 32. The n variable was set to 4, i.e., 4 test values were defined for each workload
parameter. The reason for setting a low value to n was that the number of test cases
explodes with the increase of this variable. For instance, if a test suite mutates 3
workload parameters, with 4 test values, 64 test cases would be generated; if the
number of test values was 5, then 125 test cases would be generated. The following
table presents the test values to the workload parameters as provided by Equation 1.

n Test values for 32 bits types

1 4

2 16

3 256

4 65536

� � * ���)�@�� � �� # ����� �� �� ��C � ���� �

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 42 / 57 CSW-RAMS-2003-RPT-1334-05

5. Test Set-up and Execution Environment Description

5.1 Introduction

The Xception toolset was selected to execute the test cases defined in WP-RAMS02-310 –
“Define Robustness Test Cases” and WP-RAMS02-410 – “Define Stress Test Cases”.

The reason of selecting Xception to execute these test cases is the ability that this product
has to generate source code level mutants in a workload application that interfaces with the
operating system. Apart from the creation of mutants, Xception gives the user the chance to
automatically compile and load them into the target system (simulator or board) and execute
them, collecting its outputs.

Xception RTEMS-ERC32-SW provides an environment where a user can quickly
generate, in a systematic and easy way, mutated versions of an RTEMS application.
These mutations will then be executed in an unattended mode in the target system,
performing robustness/stress test on specific function calls, namely on the RTEMS
Classic API and on the RTEMS POSIX API.

5.2 Test Execution Process Overview

The test execution process is accomplished by the following steps

• Introduction of the defined test campaigns and test suits in the Xception and
automatic generation of the test cases.

• Execution of the test cases

• Test Log collection

Figure 14 illustrates the test execution process using the Xception environment when
configured for the ERC32/RTEMS target system.

�������� �@�� � 0�; � ����� ������ /�� ��� � �� �� � �� �

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 43 / 57 CSW-RAMS-2003-RPT-1334-05

All operations carried out by the user during the test execution process are performed
using the Xception Experiment Management Environment (EME). The EME will run on
a workstation in which a cross-compilation system (CCS) shall be available. In the
Xception terminology, this workstation is called the Host.

The introduction of the test campaigns and test suites related data is performed using
a wizard. After this step test cases are automatically generated accordingly the test
values defined for each of the data types and accordingly the set of selected API
function defined as fault placeholders.

The test values are defined in an external XML file that describes all the known basic types,
its aliases (typedef’ed data types) and their test values. This file may be edited by the user to
add some more data types or test values. Data structures are also defined in this XML file.
The user may also add some data structures to the file. However, the mutations on data
structures are performed taking into account it's basic types.

Listing in Figure 15 shows an example of the XML file containing the type’s definition.

<?xml version="1.0" encoding="UTF-8"?>
<Message type="RTEMSTypesConfig">
 <DataType Name="rtems_unsigned8">
 <Aliases>
 <Alias>unsigned8</Alias>
 </Aliases>
 <BasicType>unsigned char</BasicType>
 <TestValues>
 <!-- UCHAR_MIN -->
 <Value>0</Value>
 <Value>1</Value>
 <!-- UCHAR_MAX -->
 <Value>255</Value>
 </TestValues>
 </DataType>
 <DataStructure Name="siginfo_t">
 <Aliases>
 <Alias>struct siginfo_t</Alias>
 </Aliases>
 <AttributesList>
 <Attribute Name="si_signo" Type="int" />
 <Attribute Name="si_code" Type="int" />
 <Attribute Name="si_value" Type="sigval" />
 </AttributesList>
 </DataStructure>
</Message>

��������$D�� % �� � � �� �� �� ��' � �� �� (� �� �' �0�� ���� � �

The Xception RTEMS-ERC32-SW already has a pre-defined set of functions
definitions from RTEMS APIs that will be searched in the source code during the
parsing (those listed in Table 2 and Table 3). However, the user can add (or remove)
new functions to this set by either using the fault definition wizard or by manually
editing the XML configuration file in the EME configuration directory.

During the execution of the test cases, Xception creates the mutants following the test
case definition. Then, the executable binary is built using the CCS. The faulty
application (mutant) is finally uploaded to the target system and executed. Data related
to the execution can be logged in order to ease the result analysis process.

All the experiments will be executed on a target system simulator, as it is much more
efficient than using the actual board with the ERC32 processor. The simulator that will
be used is the GNU GDB embedded SiS.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 44 / 57 CSW-RAMS-2003-RPT-1334-05

All data collected during the experiment is transferred to the host and stored on the Xception
database.

5.3 Test Log Analysis

A convention was defined for the output of the robustness testing workload
applications. The goal was to get a homogeneous output for every different
workload in order to easy the result analysis. It was defined that each workload
shall send to the standard output every return value of the functions being tested
and, eventually, every error code. These values shall be printed in a single line and
with the following format:

• <Function Name>(): <Return Value>;

where <Function Name> is the name of the function called and <Return
Value> is the value that was returned by the function (or an error code). For each
tested function, an assertion shall also be printed, indicating whether the function
call did what it was supposed to do or not.

By using this very simple convention, results analysis can be simplified by the use
of scripts to parse the output.

The result analysis is supported by a relational database system where test cases
definition and test log are stored.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 45 / 57 CSW-RAMS-2003-RPT-1334-05

6. Results Summary

6.1 Robustness Testing Results

Two different APIs of the RTEMS 4.5.0 were subject to robustness testing:

• RTEMS Classic API and

• RTEMS POSIX API.

6.1.1 Classic API

During the robustness testing of the Classic API 527 test cases were defined. The
execution of these test cases raised 34 issues that shall be analysed as potential
RTEMS faults. Table 7 shows the distribution of the test cases and faults among the
several RTEMS managers.

Manager Test Cases Raised Issues

Clock 68 0

Event 18 0

Fatal Error 3 0

Interrupt 5 0

IO 50 6

Message 83 8

Partition 27 2

Rate Monotonic 24 1

Region 67 7

Semaphore 33 1

Signal 10 1

Task 55 4

Timer 67 3

User Extensions 17 1

Total 527 34

� � * ���+�A�� �� � � �� �� � ��
� * �� �� �� � �� �� ��� �D�� �� ��� � � �� >
� �� �" ��� � ��� �� ��� � � � ����

Table 8 shows the criticality of the raised issues per RTEMS resource manager.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 46 / 57 CSW-RAMS-2003-RPT-1334-05

Manager Critical Minor Total

Clock 0 0 0

Event 0 0 0

Fatal Error 0 0 0

Interrupt 0 0 0

IO 5 1 6

Message 2 6 8

Partition 0 2 2

Rate Monotonic 0 1 1

Region 4 3 7

Semaphore 0 1 1

Signal 0 1 1

Task 2 2 4

Timer 2 1 3

User Extensions 0 1 1

Total 15 19 34

� � * ���,�A�� �� � � �� �� � ��
� * �� �� �� � �� �� ��� �D�
� �� �" ��� � ��� �� ����� � ���(�� ��� � � � ����

6.1.2 POSIX API

During the robustness testing of the POSIX API 528 test cases were defined. The
execution of these test cases raised 15 issues that shall be analysed as potential
RTEMS faults. Table 9 shows the distribution of the test cases and faults among the
several RTEMS managers.

Manager Test Cases Raised Issues

Clock 32 0

Message 122 3

Mutex 223 4

Signal 122 5

Timer 29 3

Total 528 15

� � * ���-�A�� � � �� �� � ��
� * �� �� �� � �� �� ��� �D�� �� ��� � � �� >
� �� �" ��� � ��� �� ��� � � � ����

Table 10 shows the criticality of the raised issues per RTEMS resource manager.

Manager Critical Minor Total

Clock 0 0 0

Message 2 1 3

Mutex 1 3 4

Signal 1 4 5

Timer 0 3 3

Total 4 11 15

� � * ����? �A�� � � �� �� � ��
� * �� �� �� � �� �� ��� �D�� � ��� ��� ���� ���� �� ����� � ���(�� ��� � � � ����

6.1.3 Overall Results

The overall number of test cases and raised issues during the robustness testing is shown
in Table 11.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 47 / 57 CSW-RAMS-2003-RPT-1334-05

API Test Cases Raised Issues

Classic 527 34

POSIX 528 15

Total 1055 49

� � * ������@�� & ��� ���
�� ���� �

6.2 Stress Testing Results

6.2.1 Classic API

During the stress testing of the RTEMS 4.5.0 Classic API, 452 test cases were defined.
The execution of these test cases resulted in 74 pass and 378 fails. Table 12 shows the
distribution of the test cases and faults among the several RTEMS managers.

RTEMS Manager Number of Test Cases Number of Test Cases
failed

Task Manager 20 16

Semaphore Manager 68 51

Message Manager 80 74

Signal Manager 68 56

Interrupt Manager 20 14

Event Manager 68 56

Partition Manager 128 111

Total 452 378

� � * ������@�E �# * ���� 0�� � � � �" >�� ���" �� �� ��� � � �� �

During the test cases execution, three different situations lead to a test case failure:

• Application linkage failure: when the linker fails to create a binary image to execute.
The ld command issues an error message saying that the region ram is full for a
specified binary section (the .bss section).

• RTEMS initialisation failure: RTEMS fails to initialise. During the test cases
execution, RTEMS failed the initialisation in two different ways. In the first one, it
failed after detecting that there was not enough RAM memory to initialise the
application. This failure is detected and the initialisation is aborted. In the second,
RTEMS fails after trying to initialise the application accessing an invalid (inexistent)
memory address. In this case, the error is not detected.

• RTEMS objects initialisation failure: the application starts running but fails on the
creation of the specified resources due to lack of memory. These resources, e.g.
message queues or new tasks, are dynamically created by the workload according
to the workload parameters.

The following table provides a synthesis of the distribution of these situations by the
different managers.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 48 / 57 CSW-RAMS-2003-RPT-1334-05

RTEMS
Manager

Application
Linkage

RTEMS
Initialisation

RTEMS Objects
Initialisation

Total

Task Manager 0 16 0 16

Semaphore Manager 19 32 0 51

Message Manager 19 37 18 74

Signal Manager 31 25 0 56

Interrupt Manager 3 11 0 14

Event Manager 31 25 0 56

Partition Manager 19 40 52 111

Total 122 186 74 378

� � * ������@�� �� ��� � � �� ��� ������' �� ���* ���� � �

As stated above, the RTEMS initialisation failures may be separated in two categories:
detected and not detected. Detected are those where the RTEMS initialisation process
aborts and exits with an error; not detected lead to an invalid memory access. Table 14
presents the distribution of these two kinds of initialisation failures.

RTEMS Manager Detected Not Detected Total

Task Manager 8 8 12

Semaphore Manager 12 20 32

Message Manager 12 25 37

Signal Manager 12 13 25

Interrupt Manager 4 7 11

Event Manager 12 13 25

Partition Manager 12 28 40

Total 72 114 182

� � * ���� �@�
� � � ��� ���� ��� � ��� � ��� ������ �

All the not detected failures were considered to be critical and although the high number of
these failures, they seem to be all related with the same single problem: an invalid memory
access during the RTEMS initialisation.

Another issue is related with an incorrect error code that is returned by a partition manager
directive was found. This issue was detected by 16 of the test cases. It was classified as
minor

Table 15 presents the identified issues in RTEMS according to its criticality.

RTEMS Manager Critical Minor Total

All 1 0 1

Partition Manager 0 1 1

Total 1 1 2

� � * ����$@��" �� ��0��" ��� � ��� ��� �
� � � � 	$? �* (�� ����� � ���(�

6.3 Problems Found

This section highlights some of the potential problems RTEMS found during the robustness
and stress testing. For the complete list of raised issues please refer to [1] and [2].

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 49 / 57 CSW-RAMS-2003-RPT-1334-05

6.3.1 Classic API

6.3.1.1 Unexpected Change of the Control Flow

When the task identifier is set to 0 on the rtems_task_start call an unexpected change of the
control flow of the application occurs: the control flow came back to the rtems_task_create
directive call (see test case result RTEMS-TCR-TSKSTR-021 in annex A of [1]).

6.3.1.2 Data Access / Memory not Aligned / Illegal Instruction Exceptions

In several situations the test cases end up with unhandled traps. The criticality assigned to
the potential fault by these test cases was Critical in some cases and Low on the other.

In the following situations a Data Access or Memory Not Aligned exception was generated
and criticality Critical was assign to the potential fault:

• When a segment of size 0 is requested using the rtems_region_get_segment
directive

• Every time an invalid segment is provided either to
rtems_region_set_segment_size or to rtems_region_return_segment

• Every time a RTEMS IO directive is called with the device major number set to 0.

Every time a variable addressed is requested by the RTEMS directive to return some value
but instead of that the NULL pointer was provided a Data Access or Memory Not Aligned
exception was generated. Criticality minor was assigned to these faults.

There are some RTEMS directives that request a pointer to a user function to be called later
by the kernel in case of a specific event occurs. There were two test cases where the NULL
pointer was provided to this functions resulting in an Illegal Instruction exception.

6.3.1.3 No Error Code

In some test cases, although providing an invalid parameter to the RTEMS directive under
test, no error code was returned. These test cases sometimes succeed and other failed. For
instance, when attempting to create a task with stack size 0, 1 or 4Gb the
rtems_task_create returned RTEMS_ SUCCESSFUL instead of RTEMS_INVALID_SIZE
(for 0 and 1 stack size) and RTEMS_UNSATISFIED (for 4Gb stack size).

The same behaviour can be observed when attempting to send the signal 0 or trying to
register a device driver with a major number set to MAX_UNSIGNED32. On the first case
the rtems_signal_send directive returns RTEMS_ SUCCESSFUL but no signal is ever
received. On the second case the rtems_io_register_name returns RTEMS_
SUCCESSFUL instead of RTEMS_INVALID_NUMBER.

6.3.1.4 Wrong Error Code

When attempting to create a message queue for MAX_UNSIGNED32 messages,
rtems_message_queue_create directive returned RTEMS_INVALID_NUMBER instead of
RTEMS_TOO_MANY as stated in the documentation.

6.3.2 POSIX API

6.3.2.1 POSIX Compliance

During the evaluation of the POSIX API of the RTEMS 4.5.0 several compliance issues
were raised. Some of these are described below.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 50 / 57 CSW-RAMS-2003-RPT-1334-05

When creating a timer using the POSIX timer_create call, the identifier of the clock to be
used by the timer must me provided as a parameter. POSIX specification defines only the
CLOCK_REALTIME clock identifier, leaving the possibility to the existence of other clocks in
a specific system. RTEMS does not define any other clock. For this reason, it should return -
1 when timer_create is called with clockid parameter set to a value different from
CLOCK_REALTIME and set the errno to EINVAL. What RTEMS is doing is to return an
error only when this parameter is 0 (zero), accepting any positive integer value as a clockid
(see test case result RTEMS-TCR-PX-TMRCRT-003 in annex A of [1] for further details).

No error is returned by the mq_open function when called to create a message queue with
parameter attr.mq_maxmsg (maximum number of messages) set to 0. According to the
POSIX specification mq_open should return EINVAL in case mq_attr structure has the
mq_maxmsg attribute set with a value less than or equal to 0. As a result of this, the
application will block whenever mq_send is called to send a message to a message queue.
The same behaviour was observed when attr.mq_maxsize (maximum size of a message) is
set to 0.

6.3.2.2 Kernel Crash

When creating a mutex with the attr.process_shared parameter set to a value different from
PTHREAD_PROCESS_PRIVATE, the application ends its execution and the following
message is outputted by the kernel:

assertion "the_attr->process_shared == PTHREAD_PROCESS_PRIVATE"
failed: file "../../../../../../../rtems-
4.5.0/c/src/exec/posix/src/mutexinit.c", line 96

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 51 / 57 CSW-RAMS-2003-RPT-1334-05

7. Metrics

7.1 Methodology

The metrics collected during the RTEMS test cases execution were based on the code
coverage. However, and due to the fact that the GNU gcov tool has not been ported to the
RTEMS/ERC32 architecture, there was no way to automate this task.

The solution found for this problem was to use the GNU gdb debugger with the embedded
simulator. By executing the workloads in step-by-step mode, it was possible to count the
how many times a line of code was executed. After the collection of these values, the
RTEMS executed code can be manually analysed. From this activity, several outputs were
gathered to obtain some interesting metrics, e.g. the percentage of error handling code lines
that were executed during the RTEMS tests.

This manual approach is, however, very time consuming and, for this reason, only one
manager was selected for collection of metrics. The test cases corresponding to the RTEMS
Classic API Message Manager, were executed and coverage values were collected and
processed with the help of Perl scripts.

The files that were considered in the RTEMS code analysis for this manager are listed in
Table 16. These files were selected by building the call graph of the following RTEMS
directives:

• rtems_message_queue_create;

• rtems_message_queue_delete;

• rtems_message_queue_send;

• rtems_message_queue_receive;

• rtems_message_queue_get_number_pending;

• rtems_message_queue_ident;

• rtems_message_queue_urgent;

• rtems_message_queue_flush;

• rtems_message_queue_broadcast.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 52 / 57 CSW-RAMS-2003-RPT-1334-05

Filenames

address.inl msgqdelete.c sysstates.inl

attr.inl msgqflush.c thread.inl

chain.c msgqgetnumberpending.c threadclearstate.c

chain.inl msgqident.c threaddispatch.c

coremsg.c msgqreceive.c threadq.c

coremsg.inl msgqsend.c threadqdequeue.c

coremsgbroadcast.c msgqsubmit.c threadqdequeuefifo.c

coremsgclose.c msgqtranslatereturncode.c threadqdequeuepriority.c

coremsgflush.c msgqurgent.c threadqenqueue.c

coremsgflushsupp.c object.inl threadqenqueuefifo.c

coremsginsert.c objectallocate.c threadqflush.c

coremsgseize.c objectclearname.c threadsetstate.c

coremsgsubmit.c objectcomparenameraw.c tqdata.inl

heap.inl objectcopynameraw.c userext.c

heapallocate.c objectfree.c userext.inl

heapfree.c objectget.c watchdog.inl

message.inl objectnametoid.c watchdoginsert.c

msgqallocate.c options.inl wkspace.inl

msgqbroadcast.c priority.inl

msgqcreate.c states.inl

� � * ����)@�
� � � � �� � � ��� � � � ��������� �

7.2 Results

After collecting the files from GNU gdb containing the number of times each code line has
been executed (these files can be found in Annex B), and after an analysis of the RTEMS
code, Table 17 and Table 18 were built.

The RTEMS source code analysis activity was aimed to distinguish between:

• Error handling code from non error handling code;

• Unreachable/Dead code from executable code.

The unreachable/dead code that was found was mainly related with code related with the
multiprocessing. As the tested version did not include this functionality, this code was
considered to be unreachable/dead.

The tables have the following information:

• File Name: name of the file.

• LOC: number of lines of code in the file. These values were collected by using the
SLOCCount tool [12].

• Unreachable/Dead Lines: Number of lines in the file that are never executed or
that are not even compiled. An example of code that would not be compiled is the
code for multiprocessing support: it is inside of an ifdef pre-processor directive that
always return false. The values in this column include lines for error handling.

• Total Number of Error Handling Lines: number of lines inside a file whose aim is
the error handling. Note that the values in this column include the
unreachable/dead code lines that are for error handling. This means that this

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 53 / 57 CSW-RAMS-2003-RPT-1334-05

column is the sum of the next three columns (unreachable/dead error handling
lines, executed error handling lines and unexecuted error handling lines).

• Unreachable/Dead Error Handling Lines: number of error handling lines of code
that are unreachable.

• Executed Error Handling Lines: number of error handling lines of code that were
executed at least once.

• Unexecuted Error Handling Lines: number of error handling lines of code that
were never executed. Note that the values in this column do not include the
unreachable/dead error handling lines.

File Name LOC Unreachable/Dead
Lines

Total number of
error handling

lines

Unreachable/Dead
Error Handling Lines

Executed
Error

Handling
Lines

Unexecuted
Error Handling

Lines

coremsg.c 55 3 2 0 2 0

coremsg.inl 129 8 0 0 0 0

coremsgbroadcast.c 49 7 0 0 0 0

coremsgclose.c 26 3 0 0 0 0

coremsgflush.c 20 3 0 0 0 0

coremsgflushsupp.c 35 3 0 0 0 0

coremsginsert.c 49 3 0 0 0 0

coremsgseize.c 66 3 5 0 5 0

coremsgsubmit.c 87 7 14 0 9 5

message.inl 24 0 0 0 0 0

msgqallocate.c 25 3 0 0 0 0

msgqbroadcast.c 63 20 3 1 2 0

msgqcreate.c 106 43 46 25 17 4

msgqdelete.c 64 26 6 4 2 0

msgqflush.c 48 15 3 1 2 0

msgqgetnumberpending.c 47 14 3 1 2 0

msgqident.c 32 3 0 0 0 0

msgqreceive.c 63 14 3 1 2 0

msgqsend.c 25 3 0 0 0 0

msgqsubmit.c 97 35 5 3 2 0

msgqtranslatereturncode.c 46 3 20 8 4 8

msgqurgent.c 25 3 0 0 0 0

total 1181 222 110 44 49 17

� � * ����+�@� �� � � ��� � � � ����� � & ��� ���

Table 17 contains only the code coverage for the source files that are directly related with
the Message Manager. The code contained in these files is the core of the message queue
manager.

As this table shows, the total number of error handling code lines executed during the test
cases execution is 49. This value represents 75% of the total executable error handling
code (total number of error handling code minus unreachable/dead error handling code).

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 54 / 57 CSW-RAMS-2003-RPT-1334-05

File Name LOC Unreachable/Dead
Lines

Total
number of

error
handling

lines

Unreachable/Dead
Error Handling

Lines

Executed
Error

Handling
Lines

Unexecuted
Error

Handling
Lines

address.inl 38 0 0 0 0 0

attr.inl 74 8 0 0 0 0

chain.c 84 14 0 0 0 0

chain.inl 150 0 2 0 0 2

coremsg.c 55 3 2 0 2 0

coremsg.inl 129 8 0 0 0 0

coremsgbroadcast.c 49 7 0 0 0 0

coremsgclose.c 26 3 0 0 0 0

coremsgflush.c 20 3 0 0 0 0

coremsgflushsupp.c 35 3 0 0 0 0

coremsginsert.c 49 3 0 0 0 0

coremsgseize.c 66 3 5 0 5 0

coremsgsubmit.c 87 7 14 0 9 5

heap.inl 100 0 0 0 0 0

heapallocate.c 61 8 2 0 0 2

heapfree.c 63 0 11 0 0 11

message.inl 24 0 0 0 0 0

msgqallocate.c 25 3 0 0 0 0

msgqbroadcast.c 63 20 3 1 2 0

msgqcreate.c 106 43 46 25 17 4

msgqdelete.c 64 26 6 4 2 0

msgqflush.c 48 15 3 1 2 0

msgqgetnumberpending.c 47 14 3 1 2 0

msgqident.c 32 3 0 0 0 0

msgqreceive.c 63 14 3 1 2 0

msgqsend.c 25 3 0 0 0 0

msgqsubmit.c 97 35 5 3 2 0

msgqtranslatereturncode.c 46 3 20 8 4 8

msgqurgent.c 25 3 0 0 0 0

object.inl 116 0 5 0 1 4

objectallocate.c 33 3 0 0 0 0

objectclearname.c 22 3 0 0 0 0

objectcomparenameraw.c 25 3 0 0 0 0

objectcopynameraw.c 23 3 0 0 0 0

objectfree.c 30 3 0 0 0 0

objectget.c 43 13 5 0 2 3

objectnametoid.c 52 7 5 0 3 2

options.inl 15 0 0 0 0 0

priority.inl 92 0 0 0 0 0

states.inl 132 0 0 0 0 0

sysstates.inl 50 0 0 0 0 0

thread.inl 130 3 8 0 0 8

threadclearstate.c 39 0 0 0 0 0

threaddispatch.c 67 23 0 0 0 0

threadq.c 35 0 0 0 0 0

threadqdequeue.c 26 3 3 3 0 0

threadqdequeuefifo.c 48 5 5 1 4 0

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 55 / 57 CSW-RAMS-2003-RPT-1334-05

File Name LOC Unreachable/Dead
Lines

Total
number of

error
handling

lines

Unreachable/Dead
Error Handling

Lines

Executed
Error

Handling
Lines

Unexecuted
Error

Handling
Lines

threadqdequeuepriority.c 146 4 4 0 4 0

threadqenqueue.c 39 5 0 0 0 0

threadqenqueuefifo.c 48 6 0 0 0 0

threadqflush.c 24 5 0 0 0 0

threadsetstate.c 41 0 0 0 0 0

tqdata.inl 21 0 0 0 0 0

userext.c 119 0 2 0 0 2

userext.inl 56 0 0 0 0 0

watchdog.inl 102 0 0 0 0 0

watchdoginsert.c 47 0 0 0 0 0

wkspace.inl 15 0 0 0 0 0

Total 3387 341 162 48 63 51

� � * ����,�@�� � �� ��� � " ��� � & ��� ���

Table 18 presents the total coverage code for the referred RTEMS directives. This code
includes several functions not directly related with the RTEMS manager under test, e.g.
watchdog timer functions.

With these vales, the percentage of error handling code lines executed during the test cases
execution is now 56%.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 56 / 57 CSW-RAMS-2003-RPT-1334-05

8. Methodology Feedback

8.1 Robustness Testing

One of the most evident advantages of the robustness testing methodology used is that it
allows the definition and execution of a large number of test cases with a reduced effort. The
effectiveness of the method is also promising. A considerable number of potential
robustness problems were identified given the effort spent. The following table shows a
comparison of the number of test cases defined and executed, number of raised issues and
effort required concerning the robustness testing of each of the RTEMS APIs.

API Test Cases Raised
Issues

Effort
(hours)

Effort per
Test Case

(hours)

Effort per
Raised Issue

(hours)

Classic 527 34 160 0,30 4,7

POSIX 528 15 80 0,15 5

Total 1055 49 240 0,23 4,8

� � * ����-�@�� � # ��# ����� � �� � ��� ���� * �� �� �� � ���� ��� ��# ��� � " � �� �(��� �" �

Another interesting point worth mention is the coverage achieved with this methodology.
According to the results obtained for the message queue RTEMS resource manager (see
Table 17), 75% of the total executable error handling code at API level was exercised by the
test cases.

The application of this methodology is very straightforward concerning the robustness
testing of system calls or libraries APIs.

8.1.1 Possible Improvements

Although there are several indicators that the applied methodology is valuable there are also
some points that might be improved.

One of the major drawbacks of the automation of the robustness testing used is that the
results analysis could not be performed in an automated way. This is due to the fact that in
opposition to the invalid parameters generation, the results analysis requires information on
the semantics of the directives called and on the internal state of the Kernel. For instance, it
is not possible to tell the result of an rtems_task_start without knowing if the task is created
or not. This could be achieved using some logical model of the system. This logical model
could be constructed in a formal language, having as an input the requirements of the
product under evaluation. It could be used to compute the specified behaviour of the product
and in this way automate the result analysis. Of course this requires an extra effort in the
preparation phase of the evaluation if this logical model of the system does not exists. If
available this logical model could also be used to generate sets of system calls input
parameters in a more clever way.

It is known that the inputs of a given system call are not only its parameters but also the
state in which the system is in. This leads to another possible improvement of the
methodology. This improvement would be achieved by not only providing invalid parameters
to the system calls but also performing the system calls in the several different kernel states.

8.2 Stress Testing

Like the methodology used in the robustness testing, the stress testing methodology used
allowed the definition and execution a considerable number of test cases with a reduced
effort.

RAMS CALL-OFF ORDER 2 RTEMS 4.5.0 EVALUATION REPORT

27/6/2003 57 / 57 CSW-RAMS-2003-RPT-1334-05

The number of resources created was gradually increased until it reached a value that the
system could not stand, typically due to lack of memory. The number of tasks accessing
each resource was also pushed to the limit. However the results achieved by the stress
testing were not as promising as the results of the robustness testing at least considering
the number of potential faults uncovered by each of the methodologies. This might be due to
one or both of the following reasons:

• Characteristics of the product under evaluation. It may stand better the stressing of
its resources than tolerating invalid parameters on the APIs.

• The methodology defined for the stress testing was not the most appropriated.

8.2.1 Possible Improvements

In future to analyse better the effectiveness of this stress methodology, monitoring of the
level of stress could also be performed. For instance, the number of accesses per time unit
to a given resource could be measured. The execution time of the test cases can also be
increased in order to uncover problems related with cumulative faults.

Stress testing would also benefit from the knowledge of internal RTEMS architecture. This
knowledge could be used to identify sensitive resources of the kernel and to figure out ways
of stressing them.

