
__ PROCEEDINGS OF

__ Technology Showcase

7-9 AUGUST 1990

Sponsored By

THE RESEARCH, DEVELOPMENT, AND
ENGINEERING CENTER

~ ~ edato4ervmxa, AIbm 35898-5000

CLEARED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

91-17276

SM! FORM 1o1, 1 AUG 86 PREVIOUS EDITION IS OISOLETE

REAL TIME EXECUTIVE FOR MISSILE SYSTEMS
(RTEMS)

Wanda M. Hughes and Phillip R. Acuff
Guidance & Control Directorate

Research, Development & Engineering Center
Redstone Arsenal, Alabama

ABSTRACT

A study was completed in 1988 which compared the various aspects of the
Ada programming language as they relate to the application of Ada code in dis-
tributed and/or multiple processing systems. Several critical conclusions, which
have a major impact on the way the Government develops software, were
derived from the study. The two major conclusions were that the Ada program-
ming language does not fully sup ort multiprocessing and the run time execu-
tives being delivered with t e Aa compilers were too slow and inefficient to be
used in modern missile systems. Because of these shortfalls in the implementa-
tion of the Ada programming language for embedded systems, software
developers in Army Research and Development and missile system prime con-
tractors are purchasing and utilizing specialized third party kernel code to fill
the void where Ada is lacking. The contractor, and eventually the Government,
must pay a licensing fee for each copy of the kernel code used in an embedded
system. The main drawback to this development environment is that the
Government does not own, nor has the right to modify code contained within the
kernel. Techniques for Verification and Validation (V&V) of software in this
situation are more difficult than if the complete source code were readily avail-
able and could be modified.

245

INTRODUCTION

In 1974, the United States Department of Defense (DoD) realized that far
too much money was being expende on software development and maintenance
activities. As a result, a study was performed to determine how software costs
were distributed over the various application areas. The study indicated that
over half of all software expenditures were directly attributed to embedded sys-
tems [1]. In addition, the study concluded that two key factors were primiarily
responsible for these costs: an overabundance of programming languages and
the "primitive" nature of those languages.

A proliferation of languages (more than 450) emerged as defense agencies
and system project offices repeatedly spawned new languages from existing ones
in an attempt to meet new project requirements. With numerous languages
came numerous problems. For instance, languages were largely incompatible;
They could not easily "talk' to each other. This computer "Tower of Babel"
resulted in many costly mistakes. In one situation, an attempt was made to
develop a tactical operations system that would use computers to assist bat-
tlefield commanders in making decisions. When this system was interfaced to
other tactical systems (using different computer languages), translation was slow
and error prone. The entire development program was halted after $100 million
were expended. Another problem with numerous languages was that the
software being developed was not portable. It could not be easily transported to
different computers or projects. Similarly, software engineers could not transfer
their skills across a broad spectrum of projects; rather, they had to become high-
ly specialized. The use of so many languages also resulted in restricted competi-
tion in the maintenance and enhancement phases of projects as well as
producing a minimal amount of software available in each language. Competi-
tion was restricted as competitors had to bear the initial investment associated
with a new language, including the development and acquisition of both program-
mer training and support software. Obviously, the original developer of the
software system would not incur these costs.

In addition to the overabundance of computer languages, the existing lan-
guages were inadequate because they were obsolete (they did not support
modern software engineering principles). As a result, code generated in these
languages was difficult to read and understand. In turn, these characteristics in-
creased both design complexity and maintenance difficulty. The code lacked
clear structure and contained low-level details that would have been hidden by a
more modern language. These obsolete languages also resulted in software that
was hard to reuse, because units of code were so interdependent. Modules often
could not be extracted and used in different programs. This interdependency
also made it difficult to modify code without introducing unwelcome and often
"fatal" side effects.

All of these problems were especially severe in embedded systems. An em-
bedded system is one in which a computer is part of a larger system, such as com-
puterized radar used in aircraft. Embedded systems are typically complex
real-time systems that contain many lines of code, are long lived, and are con-
tinually being modified. Because of the size, complexity, life-span, and volatility
of these systems, they were responsible for 56% of DoD software costs in 1973.

0
246

The software issue, then, included such problems as software being exces-
sively expensive, not portable, difficult to maintain, and not reusable. All of

* these problems were intensified in embedded systems. Clearly, something had
to be done to help address this growing problem. The solution was the creation
of a new standard software development language, Ada [2].

Ada was designed primarily for programming embedded computer sys-
tems. It is a real-time language and execution environment in that it not only
contains a complete set of general purpose language features, but also provides
facilities for multi-tasking, real-time synchronization, and direct programming of
low level device hardware[3]. Ada offers many advantages over other program-
ming languages. For instance, since no subsets or supersets are allowed, Ada
source code may beported between different Ada compiler systems, with mini-
mal changes. In addition to code portability, people portability is enhanced.
Programmers can move from project to project without having to learn new lan-
guages. Ada also helps manage the complexity and improve the maintainability
of software by supporting modern software engineering principles [2]. This is ac-
complished by enforcing a strict programming discipline designed to make
programs more readable, reliable, portable, modular, maintainable, and efficient
- all qualities of good software [4].

It should be pointed out, however, that Ada is a large and complex lan-
guage. The difficulties involved in learning how to use it effectively should not
be underestimated [3]. In fact, the virtues of this language are still being tested
within both the Government and in the private sector. In accordance with this,
the study that was completed in 1988, comparing the various aspects of the Ada
programming language as they related to the application of Ada code in dis-
tributed and/or multiple processing systems, brought to the forefront several
critical conclusions which have a major impact on the way the Army develops ap-
plication software for embedded systems. This impact applies to both in-house
software development activities as well as contractor developed software. The
MICOM/RDEC programs which have immediate impacts in this area include
Non-Line Of Sight (NLOS/FOG-M), Army Unmanned Aerial Vehicle (AUAV),
Multiple Launch Rocket System (MLRS), and Advanced Kinetic Energy Missile
(AdKEM).

A conclusion of the analysis, which has been previously recognized by
other agencies attempting to utilize Ada in a distributed or multiprocessing en-
vironment, is that the Ada programming language does not fully support multi-
processing (systems with more than 1 processor). Ada does provide a
mechanism for multi-tasking, but this capability exists only for single processor
systems. The language also does not have an inherent capability to access global
named variables, flags or program code. These critical features are essential in
order for data to be shared between processors. Although these drawbacks do
have workarounds, they are sometimes awkward and defeat the real intent of a
"self documenting" programming language, such as Ada.

However, the feature most essential for a distributed system is the
capability to spawn tasks on another processor. This capability does not exist
within the Ada language. Furthermore, there appears to be no suitable
workaround within the language itself for this critical capability.

247

Another conclusion drawn from the analysis, was that the run time execu-
tives being delivered with the Ada compilers were too slow and inefficient to be
used in modern missile systems. These run time executives are the core part of
the Ada run time environment that provide operating systems functions such as
task scheduling, input/output management and memory management.

REAL TIME SOFTWARE DEVELOPMENT

To properly evaluate the impact of these problems with the Ada language
a thorough understanding of the "art" of developing effective real-time software
is essential. Real-time embedded software development differs from other
software development in that two computers, one for development and one for
fielding, are typically used instead of one. Because embedded systems perform
clearly defined, limited sets of functions, they often lack features needed for
software development. They frequently have limited memory and disk storage,
and often have a specialized interface to the external world, such as buttons,
gauges, sensors, or actuators. Developing software for them usually requires a
different computer with the necessary software development tools. This
software development computer is called the host, while the embedded com-
puter is called the target.

The implementation phase for embedded systems software consists of
developing software on the host, and then downloading the software to the tar-
get for testing. When software errors are found, they are corrected on the host

efore downloading again to the target for more testing. This cycle continues
until all the bugs are worked out. The software may then be burned into
PROMS, if desired, and installed on the target system. Figure 1 illustrates this
process.

Although Ada was designed with real-time embedded applications in
mind, such implementations depend heavily on the interaction between the com-
piler, interface library, and the embedded system's kernel, or executive.

REAL-TIME EXECUTIVES

Real-time software development also differs from other software develop-
ment by its very nature: in real-time, the right answer late is wrong. The sys-
tem must respond to the unexpected events in the outside world rapidly enough
to control ongoing processes. Special needs exist for an extensive set of support
tools and technology to properly design and implement real-time software. Real-
time design requires determinism, preemptive scheduling capabilities, real-time
interrupt response with low interrupt latency, explicit tasking control, time-slic-
ing, and prioritization of tasks to ensure reliability and predictability in a
system's behavior [5].

Another key requirement is multitasking. Multitasking is the ability of
the software to handle many tasks concurrently, because events in the real
world usually overlap rather than occur in strict sequence.

The multitasking capability of a real-time operating system provides a
framework that allows the design of very complex real-time software which has
well-defined and controlled interactions among its various components. In addi-

0
248

Write Ada
O Ada Application Sourc FIl

Compile Object File

Module, to
Adia Application Library

B~fin ='-d Elaborated

ObetModule Code to

Object r ry

Unk
~Absolute File

Elaborated Module

Download Target has

Absolute file rgaExecutable

Program on target

Prga no, revise it and try again

Works?

Figure 1: Real Time Software Development Procedure.

249

tion, the operating system supplies a number of prewritten and debugged
software facilities such as interrupt handlers, data-transfer functions, real-time
clocks, and I/O device drivers.

At the heart of a real-time executive is the concept of a task, or process. A
task is an activity carried out by the computer. It consists of a program, data as-
sociated with the program, and computer resources such as memory space or
I/O devices required to execute the program [6].

Programmers and designers of real-time systems frequently spend more
time developing basic mechanisms such as intertask communications,
svnchronization, and memory management, than on the application program it-
self. In embedded applications, this set of mechanisms is called a real-time
operating system or a real-time executive. Programmers build their applications
using the real-time executive as the foundation.

It is important to note the difference between real-time multitasking
operating systems and real-time executives. A real-time executive does not offer
operating system commands and is not a replacement for an operating system
such as UNIX. A real-time executive is used to create a single application on a
target machine. Its sole purpose it to integrate a series of small programs into
one real-time application [7]. A fullfledged real-time operating system adds a
disk file system to the capabilities provided by a real-time executive.

A real-time operating system is distinguished from a normal multitasking
operating system by its ability to schedule tasks on the basis of external events
which are signaled to the computer by interrupts. Operating systems which are
not intended for real-time applications usually do not give the user mechanisms
to control how interrupt requests are handled and may actually disable inter-
rupts for substantial periods while the operating system nucleus is executing. As
a result, response to interrupts may be slow or interrupt requests may be missed
entirely. Real-time operating systems are designed to provide fast response to in-
terrupt requests. An interrupt latency time is often given in the specifications
for a real-time operating system. This is the maximum amount of time it will
take the operating system to recognize an interrupt request and begin servicing
it.

Another distinguishing feature of real-time operating systems, or execu-
tives, is that their command interpreters are usually rather simple and they do
not include many utility programs. The goal of a real-time executive is usually
to serve the system it controls rather than human users.

The centralized multitasking capability offered by a real-time executive is
not always required. In very simple real-time systems the application program
can often be configured as a combination of a main program which executes se-
quentially and a set of interrupt service routines which respond to external
events. However, as the system gets more complex and additional processors
are added, it becomes more difficult to coordinate the interactions between the
interrupt service routines and the main program. At some point, some well-or-
ganized means of coordination is required and multitasking becomes a necessity.
This is the case for almost all DoD/military applications.

250

Highest Address in Operating System
Memory stack area

Task 1
stack area

Task 2
stack area

Task 3
stack area Must be

RAM

Free memory
pol

Global (external)
variables

I t May be

Program RAM or
code ROM

Interrupt and

execution vector

Lowest Address . table

Figure 2: Memory Map for a Multitasking System.

A memory map for a multitasking system is shown in Figure 2. Each task
and the operating system is assigned its own stack area in memory. This is used
to store private data. A free memory pool is used by the operating system to cre-
ate message channels or common data areas which allow tasks to exchange data.
A certain number of global variables, accessible to all tasks and to the operating
system, may also be required.

Two tasks can execute the same program but be distinct because they use
different stack areas, message channels, and resources. For example, if a com-
puter system contains three identical Analog/Digital (A/D) converters which pro-
vide input to the computer, three distinct tasks could be created to service the
three devices. Each task will run the same code but will be assigned a different
resource (A/D convertor), a different stack area, and a different message channel
to transfer the incoming data to other tasks. The tasks will run independently
(asynchronously) depending on when their A/D converter has data available.
Since tasks can share program code, it is very important to use only reentrant
programs in a real-time multitasking system.

251

Task is at top of

Need to Running ready list and
waito currently running
wait for task is suspended,
evetfinished or preempted.resources.

Task finished

or preempted
by scheduler

SuspndedEvent occurs
or resource
becomes
available / /

Task
Task no needed Task no
longer needed lOnger

needed

Dormant

Figure 3: Task State Transistion Diagram.

Most real-time executives are designed so that a task can be in one of four
states, as shown in the state transition diagram in Figure 3. If a task is in the
running state, the computer is executing that task. If the task is ready to be ex-
ecuted but not actually executing, it is in the ready state. A task that is unable
to execute because it is wting for an event or a resnurce is in the suspended
state or is said to be blocked. For instance, if a task is an interrupt service task,
it must await the interrupt signal from the external device (an event) before it
can execute. Similarly, a task which wishes to use a printer (a resource) may
have to wait until another task has finished using the printer. Finally, if the
task is not needed by the real-time system, it is in the dormant state.

The scheduler in a real-time operating system is responsible for control-
ling the transitions of the tasks among these states. The elements of a simple
task scheduler are shown in Figure 4. The scheduler program receives interrupt
requests from the computer's interrupt system. In addition, it receives mes-
sages from the running task in the form of system calls to the operating system.
The scheduler maintains lists of ready, suspended, and dormant tasks. It also
carries out the task switching function where the execution of the currently run-
ning task is stopped and a task on the ready list is started.

252

Task X Running Task

* TaskW Tas k L Top of Queue

Task D Task R
Message

Task S Channel Task A
(System

Task 0 Calls) Task C

List of Task K
Suspended
Tasks Scheduler Task M

Program
_ _ _

sTask ZTask E "

Task F Interrupts Ready List

Task B Interrupt

TaskG
[System

Task H

Ust of
Dormant
Tasks

Figure 4: Elements of a Task Scheduler.

The scheduler's ability to control the execution of tasks is the key to the
efficiency and speed of response of a real-time executive. A task which is waiting
for an event to occur or a resource to become available does not execute and
therefore does not take up any CPU time. When the event occurs or the
resource becomes avaable (usually signaled by an interrupt or a message from
the running task), the scheduler ows the task to continue execution. The
amount of time that elapses between the occurence of an event and the execu-
tion of the task which was blocked on that event depends on the scheduling
strategy used by the scheduler [6].

The actual scheduling method used to select the next task to run varies.
In real-time operating systems, round-robin or priority-based preemptive
scheduling techniques are typically implemented. In round-robin scheduling, all
tasks have equal priority and the ready list is configured as a simple first-in-first-
out (FIFO) queue. In priority-based preemptive scheduling, tasks are assigned
different priorities. The highest priority task that is not in the suspended, or
dormant, state is always running. In practice, a mixture of round-robin andp priority-based scheduling is often used.

253

Pointer to TCS Task Status

Task Priort

Event or resource number

Stmrting Address

Initial St ck pointer contents

Program Counter contents

St ck Pointer register contents

Status Register contents

Task
Contest

General CPU
Regiter
conteonts

Figure 5: Task Control Block.

In order to carry out its scheduling functions, the scheduler makes use of
task control blocks (TCB), or process descriptors. Each task is assigned one of
these blocks, which is simply an array of data about the task. An example of a
task control block is shown in Figure 5. The TCB contains data on the state of
the task (i.e., dormant, suspended, ready, or running), the priority of the task,
and events or resources for which the task is waiting. The starting address for
the task's program code and the initial pointer value for the task's stack are also
stored in the TCB. This information is used by the scheduler when a task is
first activated and when a task is reactivated by moving it from the dormant to
the ready state.

In addition, the task control block is used to store the task's context. The
task context represents all the information that must be saved when the execu-
tion of a task is stopped and restored when task execution is resumed. In most
real-time executives, this information is the contents of the computer's registers
just prior to the moment when execution of the task was stopped. Note that
this is the same information (the machine state) which must be saved and res-
tored when the system responds to an interrupt.

In a simple system with more than one task, there is no inherent
synchronization between the execution of tasks; each task executes inde-
pendently. However, in most real-time systems, tasks must work closely
together and may also have to perform their functions at defined times. Some
synchronization mechanisms must be provided.

254

A common technique, used in real-time operating systems to synchronize
two or more tasks, is to use the semaphore variable, s, and two system calls,
Wait(s) and Signal(s), which act on the semaphore. A semaphore consists of a
counter for signals that have not been received, and a queue for tasks that are
waiting to receive the signals [6].

In addition, semaphores are used in the exchange of data between tasks.
They prove quite useful in solving problems associated with the use of common
data areas to transfer data between tasks. This process is also known as mutual-
exclusion.

Most real-time operating systems provide a complete real-time clock
facility. A task can make a system call to suspend itself for a time interval or
until a certain time of day occurs. The scheduler suspends the task and places it
back on the ready list only when the requested time interval has elapsed or the
requested time of day has arrived. Thus, a task can ensure that it performs its
functions at defined times [6].

To date, real-time executives have had their limitations. They must be
custom designed for a given microprocessor. Therefore, the designer needs to
choose a specific processor and hardware configuration before he/she can select
an executive. Any executive chosen must meet certain performance criteria. It
must be fast enough to allow the tasks under it to operate in real time. An
executive's code should be small enough so that a large amount of program space
does not have to be dedicated to it. Finally, the executive should not add a lot of
unnecessary overhead to a task when that task needs to use executive utilities.

The ability to modify an executive can be important. Features can be
modified or added to an executive as they are needed through the use of source
code. Without the source code for an executive it is difficult, if not impossible, to
alter it. Source code for some real-time executives cannot always be purchased.
The cost of this code, when available, can easily cost up to $50,000 or more [7].

MICOM CASE HISTORY

Traditionally, whenever efficient executive code was required by the ap-
plication, the user developed in-house custom code, sometimes written in as-
sembler language. The FOG-M gunner station code is an example of an in-house
custom executive.

In 1982 the Research and Development Center (then known as Army Mis-
sile Laboratory), MICOM, began a technology demonstration program to prove
out the use of fiber optic cable control in missiles. This successful program is
now known by all in the MICOM community as the Fiber Optic Guided Missile
(FOG-M) program. Personnel in the Guidance and Control organization were
directly responsible for the computer hardware and software designs for FOG-M.
The FOG-M multiprocessor configuration uses several microprocessors, com-
municating with each other on a common MultiBus. These processors are tight-
ly coupled under software control to distribute the processor load. Since the
hardware configuration contained global memory, this configuration was not dis-
tributed processing in the strictest since, but was a multiprocessing configura-S tion.

255

At the initial development stage, the FOG-M computer software and
hardware was the most complex multiprocessing architecture using the Intel
8086 family of processors in existence. This complexity was mandated by the
complex functions required of the system. Due to this complexity the software
had to be very efficient, thus the choice of a higher order language to develop
the code, was a critical design decision. Since the requirements of the Gunner
Station software dictated the software operate under a multitasking software ar-
chitecture, engineers began looking at commercial off the shelf software to fulfill
the needs of a real time executive.

After several trade studies were completed, an initial design choice was
made. After the initial code development, debug and testing were completed, it
was determined that this commercial real time executive was not suitable for
the speeds required of the software (e.g.; trigonometric functions were derived
by table lookup versus a math coprocessor because of the timing constraints.)
Engineers working on the FOG-M software program began studying the
feasibility of developing a custom in-house executive which met the needs of the
FOG-M program, and only the FOG-M program.

As a result, a minimal executive was developed which contained specific
functions required for the executive (i.e.; task scheduler, interrupt handler,
global memory handler, exception handler, etc.). This executive was not con-
tained in a single section of program code, but was distributed around the
software as the need arose. Since the code was developed for the specific applica-
tion, it is highly unlikely much of the code could be used in applications other
than follow on work to FOG-M using the same processor family.

Although the FOG-M program was a success on most every front, the
above example illustrates the way real time executives have been developed and
used at MICOM in the past. Individual software developers "re-invent the
wheel" each time an executive is needed for an application. With the primary
push for software reusability in the Ada programming language, the software
developers within the G&C Directorate realized that this programming practice
must end. The development of RTEMS is an attempt to alleviate this redevelop-
ment cycle.

STANDARDS

The advent of Ada has created the need for efficient Ada-based develop-
ment tools to augment the standard Ada runtime environment. This support
must provide for efficient and flexible concurrent program execution that meets
demanding real-time constraints. As we move from single to tightly-coupled to
loosely-coupled multiple-CPU architectures, this support must be standardized
to the extent practical. (Tightly-coupled system are generally characterized by
the ability to communicate over a backplane. Loosely-coupled systems generally
use some external communications media such as RS232 or network connection.)
Existing Ada compiler runtime systems do not meet these needs.

Many real-time embedded computer systems require efficient, determinis-
tic, and adaptable software concurrency, communication, and synchronization
support. This support is needed for single processor systems and for distributed
computer systems. The tasking model in Ada provides for concurrency, com-

256

munication, and synchronization and applies in principle to all computer architec-
tures and applications. However, existing Ada compilers and their runtime sup-
port do not meet industry demands for efficiency, determinism, and adaptability
in real-time embedded applications, and Ada implementations for distributed tar-
gets are only now becoming available.

The Ada language addresses a large application domain and offers many
design features needed to promote reliable software; however, its intrinsic
capability has not as yet been implemented with the efficiency and adaptability
required to support many real-time computer system requirements. The needis
the same for other languages used in real-time applications, but the power and
formality of Ada dictate special emphasis on well-engineered execution environ-
ments that are integrated with Ada compilers.

Runtime support must be provided that allows embedded computer sys-
tems to be implemented with inherent runtime efficiency and with designed-in
determinism. And, to increase reliability and reduce development cost and
schedules, implementors must be able to tailor proven, available runtime sup-
port capabilities to their specific program needs. The Ada standard does not
preclude any of those needs, nor does it overtly support them. Available im-
plementations of the Ada tasking model do not meet either efficiency or deter-
minism needs, and compiler vendor products and third-party products do not
meet the system tailoring requirements of many DoD systems.

We have established that the run time executives being delivered with
the Ada compilers are too slow and inefficient to be used in the increasingly com-

* plex modern missile systems of today. This code is purchased from compiler ven-
dors who are not in the business of writing and properly testing and debugging
real-time executive code. Indeed, their primary concern is in providing the cus-
tomer (the Government) with a good compiler. The real-time executive is in-
cluded as part of the run time environment in order to satisfy the underlying
requirements of a run time support system and to attempt to overcome some of
the shortfalls of the Ada programming language.

To date, software developers are purchasing and utilizing specialized third
party kernel code. Problems imposed from purchasing third party kernel (execu-
tive) code is that the contractor, and eventually the Government, must pay a
licensing (royality) fee for every copy of the kernel code used in an embedded sys-
tem. This concept is similar to purchasing multiple copies of word processing
software. In both cases, the original manufacturer of the software is the sole
owner, while the end user pays a licensing fee for the right to use the code in a
system design. This obligates the government on a per copy basis, every time
the code is being utilized.

Another drawback to this development scenario is that the Government
does not own, nor has the right to modify any code contained within the kernel.
Techniques for Validation and Verification (V&V) of software in this situation
are more difficult than if the complete source code were available. Most commer-
cially available real-time executive manufacturers do not offer source code to the
licensee. If they do, it is usually very expensive. Responsibility for system
failures due to faulty software is yet another area to be resolved under this en-

257

vironment. The vendor will not accept any responsibility for a failure of any sys-
tem containing its' code.

Typically, real-time software has been ignored by standardization and
software engineering groups. Each system is almost an original, free-form ex-
pression of the development team. Unfortunately, real-time design is still in its
infan.y. This results in schedule overruns and maintenance problems. As a
result, the cost of software continues to accelerate, even as the cost of hardware
continues to decline [8].

To meet these challenges, the software industry must develop new and
better tools for the design, analysis, development, and verification of real-time
systems. Although research is constantly advancing the techniques of software
development, the benefits of this research often take time to become available to
the real-time software development community. As the results of real-time
operating system research become accessible, the number of real-time operating
systems and executives available to software developers will continue to grow.
This fact makes it imperative that system developers recognize the common fea-
tures and capabilities required to provide the needed support environment and
incorporate them into an industry standard interface environment. This stand-
ard interface should allow the so tware developer to concentrate on the
hardware dependencies and unique requirements of the application system
being developed instead of learning to use yet another real-time executive.

RTEID

One such standard interface, the Real Time Executive Interface Defini-
tion (RTEID) has been developed by Motorola, Inc. with technical input from
Software Components Group. It has been submitted to the VMEbus Internation-
al Trade Association (VITA) for adoption as a standard multiprocessor, real-time
executive interface. RTEID defines a standard interface fp'r the development of
real-time software to facilitate the writing of real-time applications programs
that are directly portable across multiple real-time executive implementations.
This interface includes both the source code user interface and the run-time be-
havior as seen by a real-time application. It does not include the details of how a
kernel implements these functions. Simply stated, the RTEID goal is to serve as
a complete definition of external interfaces so that application code which con-
forms to these interfaces will execute properly in all real-time executive environ-
ments. With the use of an RTEID compliant executive, routines that acquire
memory blocks, create and manage message queues, establish and use
semaphores, and send and receive signals need not be redeveloped for a different
real-time environment as long as the new environment is also RTEID compliant.
Programmers need only concentrate on the hardware dependencies of the real-
time system. Furthermore, most hardware dependencies for real-time applica-
tions can be localized to the device drivers [9,10].

An RTEID compliant executive provides simple and flexible real-time em-
bedded multiprocessing. It easily lends itself to both tightly-coupled and loosely-
coupled configurations (depending on the system hardware configuration). Both
forms of multiprocessing, tightly-coupled and loosely-coupled, have unique ad-
vantages, disadvantages, and suitability for a specific application. RTEID does
not favor one form over the other, but leaves this decision to the developer of an

258

RTEID compliant executive. Objects such as tasks, queues, events, signals,
semaphores, and memory blocks can be designated as global objects and accessed
by any task regardless on which processors the object and the accessing task
reside. Each object may exist on a single processor configuration; or in a multi-
processor system. The system is defined as the collection of interconnected
processors; including processors connected by network or other communications
media [9].

RTEMS

The Guidance and Control Directorate began a software development ef-
fort in 1989 to alleviate many of the problems discussed in this paper. A project
to develop an experimental run time kernel was begun that will eliminate the
two major drawbacks of the Ada programming language mentioned previously:
that the Ada programming language does not fully support multiprocessing and
that the run time executives being delivered with the Ada compilers are too slow
and inefficient to be used in modern missile systems. The Real Time Executive
for Missile Systems (RTEMS) is an implementation based on Draft 2.1 of the
RTEID specification. RTEMS provides full capabilities for task management, in-
terrupt management, time management, multiprocessing, and other managers
typical of generic operating systems. The code will be Government owned, so no
licensing fees need be paid. The executive was designed as a linkable, ROMable
library with the Ada programming language. Initially the library code is being
developed on the Motorola 68000 family of processors using the 'C' programming
language as the development language. The 'C' programming language was
chosen because of its portability and efficiency. However, other language and
processor family interfaces are planned in the future.

The final RTEMS product will be capable of handling either homogeneous
(processors of the same family type) or heterogeneous systems. The kernel will
automatically compensate for architectural differences (byte swapping, etc.) be-
tween processors. This will allow a much easier transition from one processor
family to another without a major system redesign.

RTEMS was designed to fulfill three fundamental design objectives: per-
formance, reliability, and ease of integration. It provides a multitasking environ-
ment for single or multiprocessor real-time application systems. The RTEMS
executive was developed by contractors for MICOM to perform research for mul-
tiprocessor based weapons systems. RTEMS is currently implemented on the
Motorola MC68020 microprocessor [101.

The RTEMS executive provides a high performance real-time environ-

ment which include the following features: [10,11]

" multitasking capabilities

" event-driven, priority-base4 preemptive scheduling

" intertask communication

" semaphore, signal, and event synchronization mechanisms

* dynamic memory allocation

259

Application Dependent SoftwareO

Standard Application Components

" 'l, .. .,,.,,, ,........e RTEMS Executive

Figure 6: Real-Time System Architecture.

* real-time clock managementO

* user-specified configurations

* user-extendable directives

These features provide a robust set of cababilities that allow system desig-
ners the flexibility to efficiently and cost effectively solve the complex problems
associated wtih real-time systems.

Another important design goal of the RTEMS executive was to provide a
bridge between two critical layers of typical real-time systems. It serves as a
buffer between the project dependent application code and the target hardware.
Standard software routines that acquire memory blocks, create and manage mes-
sage queues, establish and use semaphores, and send and receive signals need
not be redeveloped for a different real-time environment as long as the new en-
vironment is RTEMS/RTEID compliant. RTEMS provides efficient tools for in-
corporating these hardware dependencies into the system while simultaneously
providing a general mechanism to the application code required to access them.
A well designed real-time system, such as RTEMS should maximize these two
concepts to build a rich library of standard application components which can be
used repeatedly in other real-time projects [9,10,111.

The executive can be viewed as a set of components that work in harmony
to provide a collection of services to a real-time application system. These com-

260

Task Initialization

Time Rgo

Event Dal

RTEMS Ported Memory

Core -

Semaphore I/0

r-' j - Board Support Package ! _

Figure 7: Real Time Executive Board Support Package.

* ponents consist of a board support package, an executive core and a set of
resource managers. Figure 7 shows this concept.

RTEMS makes minimal assumptions about its hardware environment. It
does not depend on any particular implementation of interrupts, timers, buses,
or I/O devices. This concept is necessary to allow the executive to be truly port-
able. To achieve this portability, the user must supply a small amount of code to
interface RTEMS to those aspects of the surrounding hardware that it needs to
know about. The board support package is a single piece of code that sets up
the environment and controls the initialization process for the remainder of the
software.

In every executive there exists a set of basic functions that must be per-
formed, but do not naturally align themselves with any of the logical sets or
groups of directives. Such things as scheduling, error processing, and data struc-
ture manipulation are very critical to insure the proper functioning of a real-
time executive. The RTEMS design groups these functions together forming a
component called the executive core.

The RTEMS core consists of the following components:

" scheduler

" dispatcher

e chain handler

261

BASIC SYSTEM SERVICES PACKAGE (BSSP)

, , : EXTENDED SYSTEM
, M EXECUTIVE KERNEL HANDLERS SERVICE PACKAGE,I FACILITYfMANAGER 1, I,,, (..)

(ESP)

TM SCHEDULER DISPATCHER , EMMU

MANAGER

, IO DEICE
*SUPERVISORS

SEMAt4ZFE IMANAGER

-- - - -- - -- - - -- - -j , L -- -- -- - --- - - -- - - -- - -- -- - - -

DEVICE DRyVERS BOARD SUPPORT PACKAGE
MULTIPROCESSOR

COMMUNICATION

TTY HSHARD IIINTERFACEI. S R INIT I

- , L - - -

PRM RAM MICROPROCESSOR CHRV I O CTLO

,
, PEPHEALS

.. . ----- -

Figure 8: Basic System Services Package of RTEMS.

" queue handler

* heap handier

" utilities

Although no requirement exists for the RTEMS user to understand the
details of the executive's implementation, it is important to be familiar with the
basic concepts aL~d algorithms used to control the real-time environment.

The RTEMS interface presented to the application is formed by grouping
the RTEID specified directives into logical sets called resource managers.
Together these components provide a powerful run time environment that
promotes the development of efficient real-time application systems.

The following managers are included in an RTEMS compliant executive:

" task manager

* message manager

" event manager

262

" signal manager

* semaphore manager

" time manager

" interrupt handler

* fatal error handler

" region manager

" partition manager

* initialization manager

" dual ported RAM manager

" I/0 manager

" debug manager

The task manager provides control features that act upon a task or a set
of tasks as defined by the eleven task manager directives specified by the RTEID
specification. A task is simply a sequence of closely related computations. A task
may execute concurrently with or independent of other tasks.

In real-time multitasking applications, the ability for cooperating tasks/In-
terrupt Service Routines (ISRs) to communicate and synchronize with each
other is imperative. A real-time executive should provide an application with
the following capabilities:

" Data transfer between cooperating tasks

" Data transfer between tasks and ISRs

" Synchronization of cooperating tasks

" Synchronization or tasks and ISRs

RTEMS provides for communication and synchronization between tasks
and between tasks and ISRs with the message, event, signal, and semaphore
managers. The message manager supports one type of inter-task communica-
tion and synchronization as defined by the seven message manager RTEID direc-
tives. The message manager supports communication and synchronization
between multiple tasks as well as tasks and ISRs using a basic support
mechanism called a message queue. Messages are defined to be fixed length (16
bytes) blocks of information. The event manager provides a second, higher per-
formance method of inter-task communication and synchronization as defined by
the two event manager directives. The event manager will support communica-
tion and synchronization using a basic support mechanism called an event set.
Event sets may only be directed at other tasks instead of queues. Events are
defined to be bits encoded into an event mask. The signal manager supports a
third type of inter-task communication and synchronization as defined by the
three signal manager directives. The signal manager provides directives that

* allow asynchronous communication between tasks. The semaphore manager

263

supports a type of inter-task synchronization as defined by the five semaphore
manager directives. These directives provide the ability to arbitrate access to a
shared resource.

The time manager provides timing features based on both calendar and
elapsed time as defined by the eight time manager directives. This manager re-
quires a periodic timer interrupt to perform its required functions. The board
support package will inform this manager that a clock tick has occured.

The interrupt handler provides the ability to preempt from an interrupt
service routine while still maintaining a fast interrupt response and satisfies the
basic design goals to provide a zero latency time to enter an interrupt and to in-
sure that the highest priority ready task always executes. The fatal error hand-
ler also provides the ability to preempt from an interrupt service routine while
still maintaining a fast interrupt response. Fatal errors can be detected from
three sources: the executive (RTEMS), user system code, or user application
code.

RTEMS provides two types of memory management: region management
and partition management. The region manager deals with the allocation and
deallocation of variable size segments in a specified region. Whereas, the parti-
tion manager deals with the allocation and deallocation of fixed (equal) size buf-
fers in a specified partition.

The RTEID specification allows executive developers to define their own
initialization mechanism. The RTEMS initialization manager provides for the
initialization of RTEMS and the initiation of multitasking.

The dual ported memory manager provides a mechanism for converting
addresses from internal to external representations. Dual ported memory can
be accessed at two different address ranges. Typically, one of these ranges, the
internal addresses, is used exclusively by the node which owns the memory. All
other nodes in the system must use the external addresses to access the memory.

The I/O device manager provides a standard interface for accessing
device drivers. This standard interface encourages the development of well-
structured RTEID compliant device drivers.

The debug manager provides an interface between the executive and a
debugger. This allows the development of debuggers that work efficiently and
correctly with any implementation of an RTEID compliant executive. The
debug manager provides three groups of features for: debugging tasks, debug-
ging entire systems, and monitoring a running system.

To realize the goal of hardware independence, RTEMS makes no assump-
tions about the physical media connecting the nodes, or the topology of the con-
nection. To perform interprocessor communication, RTEMS calls a user
provided communication layer known as the Multiprocessor Communications In-
terface (MPCI). This MPCI routines enable the nodes in a multiprocessor sys-
tem to communicate with one another.

264

Remote procedure calls (RPC) are used in RTEMS to transcend the physi-
cal boundaries of the set of processors included in the system. Conceptually an
RPC can be viewed as a simple call to a procedure. The called procedure just
happens to reside on another processor.

The software developer uses the set of directives provided by RTEMS to
be free from the problems of controlling and synchronizing multiple tasks and
processors. This freedom allows the programmer to concentrate all creative ef-
forts on the application system.

The system calls, including optional managers provided by the executive
are shown in the following figure [10,11].

Task Manager Region Manager
t-create Create a task rnicreate Create a region
t.jdent Get id of task rnjdent Get id of region
t.start Start a task r-delete Delete region
t.restart Restart a task rn.getseg Get segment from region
tdelete Delete a task rn.retseg Return segment from region
t.suspend Suspend a task Partition Manager
t.resume Resume a task C a r
t.setpri Set task priority pLcreate Gate a partition

tjnode Change task mode ptident Get id of partition

t.getreg Get value in tasks's register pLdelete Delete a partition

t.setreg Set task's register to value pt.gctbuf Get buffer from partitionptjretbuf Retrun buffer to partition

Message ManagerI
q.create Create a message queue Initialization Manager

qident Get id of message queue extan Initiate muits

q-delete Delete a message queue ex-start Initiate multasking
q.send Send message to message queue Dual Ported RAM Manager
q..urgent Put message at front of message queue m.ext2int Convert external address to internal address
q-broadcast Broadcast N messages to queue mjnt2ext Convert internal addres to external address
q.receive Receive message from message queue 1O Manager

Event Manager deinit Initialize device driver
evjsend Send an event to a task de-open Open device for 1/0
ev.receive Receive an event de-close Oose device

Signal Man deead Read from device
as.catch Establish ASR deyrtie Write to device

as.send Send a signal to a task de.cntrl Special device services

as.return Return from ASR Debug Manager
db.control Control a taskSemaphore Manager db.remote Perform directive on remote cpu

sin eate Create a semaphore db block Prevent a task from runningsmident Get ad of semaphore db~unblock Run a task under control
sm.delete Delete a semaphore db.getmem Get a task's memory
sm. Get a Semaphore db.setmem Set a task's memory
smy Release a semaphore db.getreg Get a task's register

Time Manager db.setreg Set a task's register
tn.set Set system date and time db.,system Control a system
tm.get Get system date and time dbJevel Set minimum proecssor mask level
tm.wkafter Wake up after specified interval db.get.id Get identifier for an item
tmwkwhen Wake up at specified date and time db.get.jtem Get information about an item
tmevafter Send event after specified interval
tm.evwhen Send event at specified date and time MPCItm.cancel Cancel timer event mcanit Initialize the MPC!
min~c l anetier clvkt mcgetpkt Obtain a packet bufferti~tick Announce clock tick mc.retpkrt Return a packet buffer

Interrupt Processing me-send Send a packet to another node
i-return Return (exit) from interrupt mcbroadcast Send a packet to all other nodes

Fatal Error Processuig tmc..reeive Called to get an arrived packet
kVatal Invoke the fatal error handier

Figure 9: RTEMS Directives.

265

CONCLUSION

The primary purpose of this paper is to summarize the impacts of Ada
software development on current MICOM software development philosophies.
The limitations of Ada in a distributed processing architecture and what the
software development community was doing to complement the shortfalls of Ada
was discussed. A brief discussion was given outlining how real-time software
development is accomplished on Army missile systems. A detailed explanation of
real-time executives in general was provided to give the reader an idea of the
complexity of the task involved with developing an environment where Ada
could be used in real-time systems. An example was then described showing
how embedded computer software has been developed in the past at MICOM.

Many of the same events that lead to the development of the Ada
programming language are also the same events that are mandating the develop-
ment of a standardized real-time executive such as RTEMS. The need for
developing a standard executive for use in embedded missile systems was then
described. The Real Time Executive Interface Definition (RTEID) was intro-
duced as the first attempt to develop a standard executive. And finally, the Real
Time Executive for Missile Systems (RTEMS) was described as the MICOM solu-
tion for all the Ada shortfalls and standardization thrusts described in the pre-
vious sections.

It is hoped that this paper will spawn interests in real-time executives and
standardization within the Army community.

266

REFERENCES

[1] J.G.P. Barnes. Programming in Ada. Addison-Wesley Publishing Company.
London, England. 1984.

[2] David Naiditch. Rendezvous With Ada: A Programmers Introduction. John
Wiley & Sons. New York, NY. 1989.

[31 Stephen J. Young. An Introduction to Ada. Ellis Horwood Limited. Halsted
Press. New York, NY. 1983.

[41 Narain Gehani. Ada: An Advanced Introduction. Prentice-Hall, Inc. Englewood
Cliffs, NJ. 1983.

[5] Ready Systems, RTAda Real-Time Ada User's Guide for VAX/VMS-to-68020.
Ready Systems. Sunnyvale, CA. 1989.

[61 Peter D. Lawrence and Konrad Mauch. Real-Time Microcomputer System
Design: An Introduction. pages 482-489. McGraw-Hill Book Company. 1987.

[7] Gary Elfring. A Guide to Real-Time Executives. Computer Language. pages
65-70. June 1986.

[8] Transforming Software Design, From Art into Science. Software Components
Group. Santa Clara, CA.

[9] R. Vanderlin, P. Raynoha, B. Hansche, and L. Dion, "RTIED: The Quest for

Real Time Standards." Motorola Microcomputer Division. Tempe, AZ.

[10] RTEMS-68020/C User's Manual. G&C Internal Report. Redstone Arsenal, AL.

[11] Real Time Executive Interface Definitiaon, Motorola Microcomputer Division.
Tempe, AZ. 22 January 1988.

267/(268 Blank)

