Invalid register number.
Task not created from local node.
NOTES
Can be called from within an ISR, except when the task was not created on the local node.
Will not cause a preempt.

1.1.15 DB_SETREG
NAME
db_setreg – “Set a task’s register”
SYNOPSIS
uint db_setreg (tid, regnum, ®ptr)
uint tid;	/* task id as returned from t_create ot t_ident */
uint regnum;	/*register number */
union regval *regptr;	/* pointer to register value */
union regval {
	uint i;
	float f;
}
The regnum field values are:
D_REG0	Task’s Processor Register D0
D_REG1	Task’s Processor Register D1
D_REG2	Task’s Processor Register D2
D_REG3	Task’s Processor Register D3
D_REG4	Task’s Processor Register D4
D_REG5	Task’s Processor Register D5
D_REG6	Task’s Processor Register D6
D_REG7	Task’s Processor Register D7
A_REG0	Task’s Processor Register A0
A_REG1	Task’s Processor Register A1
A_REG2	Task’s Processor Register A2
A_REG3	Task’s Processor Register A3
A_REG4	Task’s Processor Register A4
A_REG5	Task’s Processor Register A5
A_REG6	Task’s Processor Register A6
A_REG7	Task’s Processor Register A7
H_SR	Status Register
H_PC	Program Counter
H_VOR	Vector Offset Register
H_USP	User Stack Pointer

H_ISP	Interrupt Stack Pointer
H_MSP	Master Stack Pointer
H_VBR	Vector Base Register
H_CACR	Cache Control Register
H_CAAR	Cache Address Register
H_VBR	Vector Base Register
H_CACR	Cache Control Register
H_CAAR	Cache Address Register
FP_REG0	Task’s Processor Register FP0
FP_REG1	Task’s Processor Register FP1
FP_REG2	Task’s Processor Register FP2
FP_REG3	Task’s Processor Register FP3
FP_REG4	Task’s Processor Register FP4
FP_REG5	Task’s Processor Register FP5
FP_REG6	Task’s Processor Register FP6
FP_REG7	Task’s Processor Register FP7
FPCR	Task’s Coprocessor Control Register
FPSR	Task’s Coprocessor Status Register
FPIAR	Task’s Coprocessor Instruction Address Register
DESCRIPTION
The executive sets the register identified in the regnum field for the task identified by the tid with the value in the regptr field.
The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flags value set (see t_create).
RETURN VALUE
If db_setreg successfully set the register value, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid register number.
Task not created from local node.

NOTES
Can be called from within an ISR, except when the task was not created on the local node.
Will not cause a preempt.

1.2 Debugging systems
Debugging a system is much more complex than debugging a task or collection of tasks. In order to debug a system, it should be possible to debug the interrupt service routines (ISR’s) which are part of the system. This causes several problems. The interrupt mask must not be lowered outside of an ISR. Additionally, an exception in an ISR may come at any time, and may occur when any task (with a low enough interrupt mask) is executing. Since the ISR must be blocked from further execution, the current task is also blocked.
1.2.1 Controlling Systems
The control over a system is established through the use of the db_system directive. This will assert debug control over the entire system of tasks and ISR’s executing on that particular cpu board. In order to issue this command, the debugger must not be a task on the cpu board being debugged1.
When control is established, the type of control is specified by the mode parameter. If all is specified, then all activity, except for processing directives, is suspended when an exception occurs in an ISR. If level is specified, then the executive will block further dispatching at the current level and below (see the db_level command) and continue dispatching tasks whose interrupt mask is greater than the current level.
1.2.2 Exceptions in ISR’s
When a controlled ISR issues an exception, such as a bus error, the execution of the entire system must be examined. Further activity of the ISR is suspended and further task dispatching on the system is performed based on the mode specified in the db_system directive. The executive on the controlled system will format a message containing information about the exception and place it on a message queue associated with the debug of the cpu. Note that even if the execution of a system is blocked, the execution of the directives must still be processed. Since the execution of directive continues, the debug task may issue a db_remote directive which will permit further execution of the controlled system.

1 Alternatively, the debugger could be a “higher order” entity, such as the resident debug monitor, on a single cpu system. This “higher order” entity would perform as a system debugger and be able to issue requests to the executive as if it were a remote task.

1.2.3 Directives
The following directives are used for system debugging:
	Directive
	Function

	db_system
db_level
	Control a system
Set minimum Processor mask level

1.2.4 DB_SYSTEM
NAME
db_system – “Control a System During Debug”
SYNOPSIS
uint db_system (cpu, mode)
uint cpu;	/* Designates a cpu in the system */
uint mode;	/* new mode */
DESCRIPTION
The cpu parameter uniquely identifies a cpu in the system.
The mode parameter indicates what processing may continue in the system after an exception occurs at some point within the system. Valid mode settings are:
DB_SYSTEM_CONTROL	to establish control over system
DB_SYSTEM_RELEASE	to remove control over system
DB_LEVEL	block tasking at level of ISR
DB_ALL	block all task dispatching
DB_CONTINUE	continue execution on the system
If an exception occurs while a task is executing, then that task is blocked and a message is sent to the debug task. If DB_LEVEL was specified as the mode, then only this task will be blocked. If DB_ALL was specified as the mode, then all dispatching will be suspended until a db_system command is specified with the mode set to DB_CONTINUE.
If an exception occurs while an ISR is executing, further system activity is indicated by the mode parameter. If DB_LEVEL is specified for the mode parameter, then when an exception occurs in an ISR, the executive will issue a db_level directive with the level set to that of the current interrupt priority mask. This will keep the executive from dispatching task whose interrupt priority mask is less than this value, and will also block interrupts at this level or less. Interrupts and tasks whose level is greater will occur normally.
If the mode parameter is DB_ALL and an exception occurs within an ISR, then all further activity on this system will be blocked. The only exception to this is that remote requests for RTEID directives (including debug extensions) will be services by the executive. The executive will become unblocked when the debug task (remotely) issues a db_unblock for the cpu_id corresponding to the system. At this point, the ISR that caused the exception will continue execution.

Issuing a db_system directive with mode set to DB_CONTINUE will cause the execution of the system to continue.
RETURN VALUE
If db_system is successful, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid cpu.
Invalid mode.
NOTES
When first establishing control over a system, the mode parameter must include DB_SYSTEM_CONTROL and may also include either DB_ALL or DB_LEVEL.
Once control has been established, the type of control may be changed by specifying a different mode.

1.2.5 DB_LEVEL
NAME
db_level – “Set the Minimum Mask Level”
SYNOPSIS
uint db_level (level, &plevel)
uint level;	/* Minimum Processor Interrupt mask level */
uint plevel;	/* Previous level – returned by this call */
DESCRIPTION
The db_level directive specifies a minimum interrupt priority mask level for further execution of the tasks and ISR’s executing on the local cpu.
The level value is the minimum interrupt level for all tasks in the system. The executive will never set the status register’s interrupt mask to a value less than level. Furthermore, the executive will never dispatch a task whose status register’s interrupt mask is less than level.
RETURN VALUE
If db_level is successful, then the previous minimum level is returned in plevel and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Level is not in a valid range (0..7).
The interrupt mask of the current task is less than level.
NOTES
May cause a preempt.

1.3 SYSTEM Monitoring
Debugging a system involves more than debugging a collection of tasks; the performance of the entire system needs to be monitored and tuned. The db_get_id directive will return a unique identifier for items of particular types, or items in particular queues. The db_get_item directive will get information about items specified by the identifier. The information block will contain data about the system as well as some history (such as total number of calls to a directive) about the execution of the system. It is important to note that gathering statistics about the system will add a small amount of overhead to all of the calls.
The db_get_id directive requires an item_id as an input parameter. If the value of item_id is zero, then the first item of the specified class would be returned. If the item is non-zero, then the next item past the specified item_id will be returned. This can be used to loop through all items in a particular class. For example, to examine all tasks in the system, the following C code could be used:
for(item_id==0; item_id==get_item(item_id, TASK, 0);)
{
	process(item_id);
}
The class parameter specifies what type of item id to return and the third parameter is used to specify additional information (such as which message queue).
1.3.1 Directives
The directives provided by the system monitoring are:
	Directive
	Function

	db_get_id
db_get_item
	Get identifier for an item
Get information about an item

