Debug Extension
to the
Real Time Executive Interface Definition

DRAFT 2.0
Prepared by:
MOTOROLA Microcomputer Division

Abstract:
This specification defines a basic set of functions that constitute the Debug Extension to the Real Time Executive Interface Definition. Draft 2.0 is for public review. MOTOROLA retains the right to modify this definition as appropriate during implementation. Draft 2.0 will be submitted to the VITA technical committee no later than 01/25/88.

 PRELIMINARY

DISCLAIMER

This Debug Extension to the Real Time Executive Interface Definition specification is being proposed to be used as the basis for formal standardization by the VME International Trade Association (VITA). However, since the standardization process has just begun, any standard resulting from this document might be different from this document. Any Product designed to this document might not be compatible with the final standard. No responsibility is assumed for such incompatibilities and no liability is assumed for any product built to conform to this document.

While considerable effort has been expended to make this document comprehensive, reliable, and unambiguous, it is still being published in preliminary form for public study and comment.
This document is prepared by Motorola Inc., Microcomputer Division. Interest in the Debug Extension to the RTEID is welcome and encouraged. Any technical questions, suggestions or comments may be directed to:
Motorola, Inc.
Microcomputer Division
Dept.: RTEID
2900 South Diablo Way
Tempe, Arizona 85282
Tel: (602)438-3500
Fax: (602)438-3581
Tlx: 4998071 (MOTPHE)

 TABLE OF CONTENTS

 1. DEBUG EXTENSIONS...
 1.1 Debugging Tasks...
 1.1.1 Controlling Tasks..
 1.1.2 Read/Write Memory...
 1.1.3 Read/Write Registers...
 1.1.4 Exceptions in Tasks..
 1.1.5 The debug_msg message queue..
 1.1.6 Trace and Breakpoìnt..
 1.1.6 Trace and Breakpoint..
1.1.6.1 Trace..
1.1.6.2 Breakpoints..
 1.1.7 Directives..
1.1.8 DB_CONTROL..
 NAME 5
 SYNOPSIS 5
 DESCRIPTION 5
 RETURN VALUE 5
 ERROR CONDITIONS 5
 NOTES 6
1.1.9 DB_REMOTE...
 NAME 7
 SYNOPSIS 7
 DESCRIPTION 7
 RETURN VALUE 7
 ERROR CONDITIONS 7
 NOTES 8
[bookmark: _GoBack]1.1.10 DB_BLOCK...
 NAME 9
 SYNOPSIS 9
 DESCRIPTION 9
 RETURN VALUE 9
 ERROR CONDITIONS 9
 NOTES 9
1.1.11 DB_UNLOCK..
 NAME 10
 SYNOPSIS 10
 DESCRIPTION 10
 RETURN VALUE 10
 ERROR CONDITIONS 10
 NOTES 10
1.1.12 DB_GETMEM..
 NAME 11
 SYNOPSIS 11
 DESCRIPTION 11

LIST OF FIGURES
 FIGURE 1. General Info Block...30
 FIGURE 2. Task Info Block..30
 FIGURE 3. Message Queue Info Block..30
 FIGURE 4. Message Info Block...30
 FIGURE 5. Semaphore Info Block...31
FIGURE 6. Region Info Block...31
FIGURE 7. Segment Info Block...31
FIGURE 8. Partition Info Block...31
FIGURE 9. Buffer Info Block..32	

	
	REVISION RECORD
	

	Issue
	Revision Description
	Date

	1
	Initial version. Internal Only.
	06/01/87

	2
	Draft 2.0, limited distribution.
	01/25/88

	3
	
	

	
	
	

1. DEBUG EXTENSIONS
The debug extensions to the RTEID support several features targeted for use in debugging tasks and interrupt service routines (ISR’s). Since debugging is inherently non-real time, systems running under debug control may not exhibit true real time performance.

1.1 Debugging Tasks
Most debugging can be performed by debugging a task or a collection of tasks. In this type of debugging, the actual debug task can reside on the local cpu, or it can be remote if the appropriate GLOBAL flags are set.

1.1.1 Controlling Tasks
The relationship between the debug task and the task being debugged is established using the db_control directive in the “set” mode. The task issuing the db_control directive in the set mode must provide a message queue. This message queue is used to communicate between the executive and the task that issued the db_control directive. After completion of the db_control directive, the task being debugged becomes controlled, and cannot compete for processor time unless directed to execute by the debug task using the db_unblock directive. The db_block directive is used to block execution of the controlled task. The db_control directive in the "clear" mode is used to terminate the relationship between the debug task and the controlled task.

1.1.2 Read/Write Memory
To read and write memory belonging to the controlled task the pair of directives db_getmem and db_setmem are provided. Db_getmem reads memory from an address of the controlled task and copies it to a buffer provided by the debug task for a length specified by the debug task. Db_setmem writes memory to an address of the controlled task copying it from a buffer provided by the debug task for a length specified by the debug task.

1.1.3 Read/Write Registers
To read and write the processor registers belonging to the controlled task the pair of directives db_getreg and db_setreg are provided. Db_getreg reads a register belonging to the controlled task and copies it to a buffer provided by the debug task. Db_setreg writes to a register belonging to the controlled task by copying it from a buffer provided by the debug task.

1.1.4 Exceptions in Tasks
When a controlled task issues an exception, such as a bus error, the executive will prevent further execution by placing the controlled task in a blocked state. The executive will also format a message containing information about the exception and place it on the message queue identified by the debug task in the db_control directive.

1.1.5 The debug_msg message queue
The executive requires the ability to inform the debug task about abnormal activity that occurs when a controlled task executes. This is done by using a message queue specified by the debug task when the db_control directive is issued. This message queue is used to pass information from the executive to the debug task. When a controlled task is running and suffers an exception, the

executive will block further execution of the task, and inform the debug task of the exception by posting a message on the debug_msg queue. The format of the message is:
	Bytes
	Meaning

	0..3
	Task id of task causing exception.

	4..7
	Exceptions vector offset.

	8..11
	Address of the Exception Stack Frame

	12..15
	Program counter at the point of the exception

1.1.6 Trace and Breakpoint
A fundamental feature in debugging a task or ISR is the ability to control its execution. This is typically done either by causing the controlled task to single step one instruction, or by having the controlled task execute up to a particular breakpoint. With the debug extensions to the RTEID, a debugger can provide these features.

1.1.6.1 Trace
In order to single step, or trace, a controlled task, the debugger must manipulate the status register of the controlled task, cause it to resume execution, and then process the resulting exception.

Tracing can be accomplished by the following steps:
1. The debug task prevents further execution of the controlled task by issuing a db_block directive.
2. The controlled task’s status register is read using the db_getreg directive.
3. The debug task sets the trace bit in the status register, and writes it back using the db_setreg directive.
4. The debug task then permits execution of the controlled task by issuing the db_unblock directive.
5. Since the trace bit is set, when the controlled task executes it will take a trace exception.
6. When the trace exception occurs, the executive will block further execution of the controlled task and send a message to the debug task using the debug_msg message queue specified in the db_control directive.
7. The debug task can then receive the message, process it, and continue debugging the task.

1.1.6.2 Breakpoints
Breakpoints are accomplished in a similar fashion.
1. Execution of the controlled task is stopped using the db_block directive.
2. The instruction at the breakpoint locations is read and saved using the db_getmem directive.
3. The instruction is replaced with the breakpoint code using the directive.

4. The debug task then executes the controlled task with the db_unblock directive.
5. The controlled task will execute until it reaches the breakpoint code. At this point it will take an exception.
6. The executive will block further execution of the debug task and post a message to the debug_msg message queue specified in the db_control directive.
7. The debugger will receive the message and perform the appropriate action.

1.1.7 Directives
The directives provided by the debug manager are:

	Directive
	Function

	db_control
	Control a task

	db_remote
	Perform directive on remote cpu

	db_block
	Prevent a task from running

	db_unblock
	Run a task under control

	db_getmem
	Get a task’s memory

	db_setmem
	Set a task’s memory

	db_getreg
	Get a task’s register

	db_setreg
	Set a task’s register

1.1.8 DB_CONTROL

NAME
db_control - “Control a Task During Debug"
SYNOPSIS
unit db_control (tid, mode, qid)

 uint tid; /* task id as returned from t_create or t_ident */
 uint mode; /* new mode */
 uint qid; /* debug_msg qid */

DESCRIPTION

Db_control is used to establish or remove debug control over a task.
The tid parameter specifies the task to be controlled. This task may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL Bag set (see t_create).

The mode specifies what type of action is to be performed when an exception occurs.

 DB_TASK_CONTROL set to establish control over task
 clear to remove control over task
These values are mutually exclusive.
The message queue identified by the qid parameter is used by the executive to report exceptions to the debug task. This queue must exist and if debugging is to be done on multiple cpu’s, then this queue must have been created with the GLOBAL flag set.

RETURN VALUE
If db_control successfully completes, 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS
Invalid tid.

Task already under debug control.

NOTES
Not callable from ISR.
Asserting control over a task will place it in the blocked state.
Removing debug control from a task will unblock the task if it was blocked.
Will not cause a preempt when mode is set.
May cause a preempt when mode is clear by unblocking a higher priority task.

