January 22, 1988 - _ - Real Time Executive Interface Definition

3.4.4 TM_WKAFTER =
'NAME

tm_wkafter — "Wake After Interval®

SYNOPSIS

#include <time.h>

uint tm_wkafter (ticks)

uint ticks; /* number of ticks to wait */

DESCRIPTION

The executive stops the execution of the requesting task until the specified number of system
clock ticks have occurred. Execution resumes at the location following the tm_wkafter directive.

If the system clock frequency is 100 ticks per second, and the requester wants to wait for 2
seconds, then the input parameter will be 100*2, or 200 ticks.

The relative scheduling priority of the task will influence when the task .actually gets to run
again. A manual round-robin may be performed by executing tm_wkafter(0). This causes the

requesting task to yield the processor to other tasks at the same priority, if any exist.

The number of ticks remaining until the task is awakened will not be modified by the executive if
the system date and time are reset via the tm_set directive.

The maximum duration is 2**32 - 1 ticks. 4
RETURN VALUE

Tm_wkafter always succeeds and returns 0.

ERROR CONDITIONS

None.

NOTES

Not callable from ISR.

The requesting task will be blocked until the interval is expired.

Page 58

Real Time Executive Int&face Definition = . S — January 22, 1988

3.4.5 TM_WKWHEN

NAME

#include <time.h>
tm_wkwhen — "Wake When Date and Time"

SYNOPSIS
#include <time.h>
uint tm_wkwhen (timebuf)

struct time_ds *timebuf; /* pointer to time and date structure */

DESCRIPTION

The executive stops execution of the requesting task until the specified date and time is reached.
Execution resumes at the location following the tm_wkwhen directive.

If the system date and time are reset via the tm_set directive, the requested date and time when
the task will be awakened will be modified by the executive. Therefore, if the date and time are

resei ahead of the requested time, the task may be awakened late.

The relative scheduling priority -of fhe task will influence when the task actually gets to run
again.

The current elapsed ticks in the ticks field within the timebuf structure are ignored.
RETURN VALUE
If tm_wkwhen is successful, then 0 is returned.
If the date and time are invalid, an error code is returned.
ERROR CONDITIONS
Date and time have not been set.
Date input parameter error.
Time input parameter error.
NOTES
Not callable from ISR

The requesting task will be blocked until the date and time is reached.

Page 59

January 22, 1988 : Real Time Executive Interface i)eﬁnitionﬂj

3.4.8 TM_EVAFTER

NAME

tm_evafter — "Send Event After Interval®
SYNOPSIS

#include <time.h>

uint tm_evafter (ticks, event, &tmid)

uint ticks; /* number of ticks until event */

uint event; /* event condition */

uint tmid; /* timer id - returned by this call */
DESCRIPTION
The tm_evafter directive allows a task to receive a timer event after the specified number of sys-
tem clock ticks have occurred. The requesting task is not blocked by this call. To receive the

event, the ev_receive directive must be used.

If the system clock frequency is 100 ticks per second, and the requester wants to receive an event
after 2 seconds, then the input parameter will be 100*2, or 200 ticks. ’

The number of ticks remaining until the timer event is sent will not be modified by the executive
if the system date and time are reset via the tm_set directive.

The maximum duration is 2**32 - 1 ticks.

RETURN VALUE

Tm_evafter always succeeds, the tmid is filled in, and 0 is returned.
ERROR CONDITIONS

Too many timers.

NOTES

Not callable from ISR.

Will not cause a preempt.

The requesting task will not be blocked.

Page 60

Real Time Executive Interface Deﬁpitiori: S 7 January 22, 1988

3.4.7 TM_EVWHEN

NAME
tm_evwhen — "Send Event When Date and Time"
SYNOPSIS

#include <time.h>
uint tm_evwhen (timebuf, event, &tmid)

struct time_ds *timebuf; /* pointer to time and date structure */

uint event; /* event condition */
uint tmid; /* timer id - returned by this call */
DESCRIPTION

The tm_cvwhen directive allows a task to receive a timer event when the specified date and time
is reached. The requesting task is not blocked by this call. To receive the event, the ev_receive
directive must be used.

If the system date and time are reset via the tm_set directive, the requested date and time of the
timer event will be modified by the executive. Therefore,-if the date and time are reset aghead of
the requested time, the task may receive the timer event late. :
The current elapsed ticks in the ticks field within the timebuf structure are ignored.

RETURN VALUE ‘
If tm_evwhen is successful, the tmid is filled in, and 0 is returned.

If the date and time are invalid, an error code is returned.

ERROR CONDITIONS

Too many timers.

Date and time have not been set.

Date input parameter error.

Time input parameter error.

NOTES

Not callable from ISR.

Will not cause a preempt.

The requesting task will not be blocked.

Page 81

January 22, 1988 - Real Time Executive Interface Definition

3.4.8 TM_CANCEL

NAME

tm_cancel —~ "Cancel Timer Event®
SYNOPSIS

#include <time.h>

uint tm_cancel (tmid)

uint tmid; /* timer id - as returned from tm_evafter or tm_evwhen */

DESCRIPTION

The tm_cancel directive allows a task to cancel the timer event identified by the tmid. The timer
event may have been scheduled by the tm_cvafter or tm_evwhen directives.

RETURN VALUE

If tm_cancel successfully canceled the timer event, then 0 is returned.
If the call was not successful an error code is returned.

ERROR CONDITIONS

Invalid tmid.

Timer event not set.

NOTES

Not callable from ISR.

Will not cause a preempt.

The timer event not set error may occur if the specified ¢tmid has expired. The caller may need to
clear the event condition associated with the tmid.

Page 82

