Rul Time Executive Interfai:e Definition - - January 22, 1988

3.3.5 SM_V

NAME

sm_v — "Release Semaphore"
SYNOPSIS

#include <semaphore.h>
uint sm_v (smid)

uint smid; /* semaphore id as returned by sm_create or sm_ident */

DESCRIPTION

The current semaphore count of the semaphore identified in the smid field is incremented by one.

If the count is sero or negative, the first task in the waiting list is removed from the list and is

made ready to await execution. If the task is of higher priority than the running task, it will

cause a preempt.

RETURN VALUE i
" If sm_v succeeded, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid smid.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the semaphore was not created on the local node.

May cause a preempt if a task waiting on the semapﬁore has a higher priority than the running

task, and the preempt mode is in effect. A preempt will not occur if the task waiting exists on a
remote processor in a multiprocessor configuration.

Page 53

January 22, 1988 | “"Real Time Executive Interface Definition

3.4 Time Management

The executive time manager supports two concepts of time: calendar time and elapsed time.
These functions depend on periodic timer interrupts, and will not work without timer hardware.

The tm_set directive allows a task to inform the time manager of the current date and time (e.g.,
March 21, 1985; 12:04). The tm_get directive allows a task to request the current date and time
from the time manager (e.g., March 27, 1986; 09:24).

The tm_wkafter directive allows a task to remove itself from the running state and enter into a
wait state for a specified number of ticks. After the elapsed time expires, the task is made ready.

The tm_wkwhen directive allows a task to remove itself from the running state and enter into a
wait state until a specific date and time is reached. When the date and time is reached, the task
is made ready.

The tm_evafter directive allows a task to receive a timer event after the specified number of sys-
tem clock ticks have occurred. The requesting task fis not blocked by this call. To receive the
event, the ev_receive directive must be used.

The tm_evwhen directive allows a task to receive a timer event when the specified date and time
is reached. The requesting task is not blocked by this call. To receive the event, the cv_receive
directive must be used.

The tm_cancel directive allows a task to cancel a timer event scheduled by- the tm_evafter or
tm_evwhen directives. . .

The tm_tick directive allows a task or an interrupt service routine to inform the system of the
occurrence of a system clock tick. This information is used to maintain correct calendar time,
execute timeslicing, and decrement ticks from tasks which are currently being delayed or timing
out. 4

Tick and timeslice are configuration parameters. A tick is defined to be some integral number of
milliseconds. A timeslice is defined to be some integral number of ticks.

The directives provided by the time manager are:

| Directive Function

tm_set Set date and time

tm_get Get date and time
tm_wkafter | Wake after interval
tm_wkwhen | Wake when date and time

tm_evafter Send event after interval
tm_evwhen Send event when date and time
tm_cancel Cancel timer event

tm_tick Announce tick

Page 54

Real Time Executive Interface Deﬁiition“;a_

3.4.1 Timebuf Structure

January 22, 1988

The time and date buffer structure is defined as follows:

struct time_ds {
struct t_date date;
struct t_time time;
uint ticks;

)
Date is defined as follows:

struct t_date
short
char
char

b
Time is defined as follows:

struct t_time
short
char
char

| £

/* date */
/* time */
/* current elapsed ticks between seconds */

{

year;
month;
day;

{

hour;
minute;
second;

/* year, AD.*/
/* month, 1->12 */
/* day, 1->31 %/

/* hour, 0->23 */
/* oinute, 0-> 59 */
/* second, 0-> 59 */

Page 55

January 22, 1988 ' ~ Real Time Executive Interface Definition

3.4.2 TM_SET - - i

NAME

tm_set — "Set System Time and Date"
SYNOPSIS

#include <time.h>

uint tm_set (timebuf)

struct time_ds *timebuf; /* pointer to time and date structure */

DESCRIPTION

The tm_set directive sets or resets the date and time of all nodes within the system. The parame-
ters within the time and date structure are validated, and an error will be returned if they are
out of range.

After this call is successfully completed, the system maintains the date and time based upon the
frequency of system clock ticks. The current ‘date and time may be obtained by using the tm_get
directive. :

RETURN VALUE

If tm_set successfully set the date and time, then 0 is returned.

If the date and time were not successfully set, an error code is returned.

ERROR CONDITIONS ‘
Date input parameter error.

Time input parameter error.

Ticks input parameter error.

NOTES

Callable from ISR.

May cause a preempt if setting the time causes a task on the timeout list to become ready, and
that task has a higher priority than the running task, and the preempt mode is in effect.

Page 58

Real Time Executive Interface Definition - January 22, 1988

3.4.3 TM_GET

NAME

tm_get — "Get System Time and Date”
SYNOPSIS

#include <time.h>

uint tm_get (timebuf)

struct time_ds *timebuf; /* pointer to time and date structure */

DESCRIPTION
The requester is allowed to get the current date and time as maintained by the system. If the

date and time have not been set via the tm_set directive, then an error is returned, and the buffer
contents will be meaningless.

RETURN VALUE

If tm_get successfully got the date and tim ., timebuf will be filled in, and 0 is returned.
If the d;te and time have not been set, an error code is returned.

ERROR CONDITIONS

Date and time have not been set.

NOTES

Callable from ISR.

Will not cause a preempt.

Page 57

