January 22, 1988 Real Time Executive Interface Definition

ERROR CONDITIONS

Invalid tid.

Invalid register number.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 24



Real Time Executive Interface Definition January 22, 1988

3.2 Message, Event, and Signal Management

The executive supports communication and synchronisation between tasks using messages and
events. Asynchronous communication is supported using signals.

3.2.1 Message Manager

The message queue is the data structure supporting inter-task communication and synchroniza-
tion. One or more tasks may send mesugea to the message queue, and one or more tasks may
request messages from the queue.

Message queues are created at run time using the g_create directive. The creator assigns a 4-byte
name and attributes to the queue. The attributes define whether tasks waiting on messages from
the queue will wait first-in, first-out (FIFO), or by task priority, and whether the queue will limit
the number of messages queued to a specified maximum, or allow an unlimited number of mes-
sages.

A message queue is identified by both a name, assigned by the creator, and a message queue id (
qld), assigned by the executive at g_create time. The g¢id is returned to the caller by the g_create
directive, and must be used by tasks to send and receive messages from the message queue. Tasks
other than the task which created the message queue can obtain the gid by using the g¢_ident
directive.

Messages are sent to the message queue from any tack which knows the gid, using the g¢_send,
" g-urgent, and ¢_broadcast directives. :

When a message arrives at the queue, it will be copied into one of two places. If there is one or
more tasks waiting at the queue, then the message is copied into the message buffer belonging to
the waiting task. The task is removed from the wait list and is made ready. If there are no tasks
waiting at the queue, then the message is copied into a system message buffer (the executive main-
tains a pool of system message buffers for this purpose). This system message buffer is entered
into the message queue. If the message was sent using g_send, the message is entered at the tail
of the queue. If the message was sent using g_urgent, the message is entered at the head of the
queue. The ¢_broadcast directive sends a message to all tasks waiting at the queue, so they
become ready to run. The count of readied tasks is returned to the caller.

Messages are received from the message queue using the g_receive directive. When this directive

is called, and a message is in the queue, the message is copied to the task’s message buffer, and

the directive is complete. When no message is in the queue, there are several ways to proceed. If

the calling task asked to wait, the task will be entered into the queue’s wait list according the

quene’s attributes (FIFO or priority). If the calling task asked to wait with timeout, the task will

be entered into a timeout list. If the calling task asked not to wait, the task will be returned to
with an error code for no message available.

Message queues can be deleted by tasks knowing the gid using the g_delete directive. If any mes-
sages are queued, the executive will claim and return the system message buffers to the system
message buffer pool. If any tasks are waiting on the queue, then the executive will remove them
from the wait list and make them ready. Waiting tasks will return from the g¢_receive directive
with the message queue deleted error.

The message manager defines a ﬁxeuage as being fixed length, 18-bytes. The content o_f the mes-
sage is user defined. It may be used to carry data, pointers to data, or nothing at all.

Page 25



January 22, 1988 o Real Time Executive Interface Definition

The directives provided by the message manager are:

Directive Function

—_—
q-create Create queue
q-ident Obtain id of a queue
q-delete Delete queue
q-send Send message
q-urgent Urgent message
q-broadcast | Broadcast message
g_receive Receive message

3.2.2 Event Manager

Although inter-task synchronisation can be accomplished using the message queue, the executive
also provides a second, higher performance method of inter-task synchronization, using events.

Events are different from messages in that they are directed at other tasks. They are also
different from messages in that they carry no information, and they cannot be queued. The final
difference is tasks can wait for several events at one time, but cannot wait on multiple message
queues at one time.

Every task in the system has the ability to send and receive events. Events are simply bits
encoded into’s event mask. Thirty-two events are available; sixteen will be available as system
events and sixteen will be available as user events. A task can send one or more events to another
task using the ew_send directive. The tid of the destination task is required as input, along with
the event set. ‘

A task can receive events using the ev_receive directive. The events to receive are input to the
directive, along with an option to wait on all of the events, or just one of them. If the events are
already pending, then the event mask is cleared before returning to the calling task. If the event
condition cannot be satisfied, and the calling task asked to wait, the task will be blocked. If the
calling task asked to wait with timeout, the task will be entered into a timeout list. Tasks that
do not want to wait for the event condition must specify this as an option. If the event condition
was not pending, then an error code for event condition not met is returned.

The directives provided by the event manager are:

Directive Function

ev_send Send event
ev_receive | Receive event

Page 28



Real Time Executive Interface Definition  January 22, 1988

3.2.3 Signal Manager -

Asyiichronou communication is supported through the use of signals.

Signals, like events, are simply bits encoded into a signal mask. Thirty-two signals are available;
sixteen will be available as system signals and sixteen will be available as user signals.

A task can send one or more signals to another task tum; the aa_send directive. If the receiving
task has set up an asynchronous signal routine (ur) using the as_cateh directive, the task will be
dispatched to the signal routine.

A task may asynchronously receive signals by establishing an asynchronous signal routine (asr) to
catch them using the asa_cateh directive. When a signal is caught, the task will be dispatched to
the asr address when it becomes the running task. The signal condition will be passed to the task
to enable it to determine what signals occurred.

The as_return directive must be executed to return the task to its previous dispatch address.

The directives provided by the signal manager are:

Directive | Function

as_catch Catch signal
as_send Send signal
as_return | Return from signal

Page 27



January 22, 1988 Real Time Executive Interface Definition

3.2.4 Data Structures for Messige Management

Definitions for events and asynchronous signals are as follows:

Sy

S EXECO  System Software defined
S_EXEC1 System Software defined
S_EXEC2 System Software defined
S_EXEC3 System Software defined
S_EXEC4 System Software defined
S_EXECS System Software defined
S_EXECS8 System Software defined
S_EXEC7 System Software defined
S_EXECS System Software defined
S_EXEC9 System Software defined
S_EXEC10 System Software defined
S_EXEC11 System Software defined
S_EXEC12 System Software defined
S_EXEC13 System Software defined
S_EXEC14 System Software defined
S_EXEC15 System Software defined
S_USERO User defined
S_USER1. User defined
S_USER2 User defined
S_USER3 User defined
S_USER4 User defined
S_USERS User defined
S_USERS User defined
S_USER7 User defined
S_USERS User defined
S_USERSY User defined
S_USER10  User defined
S_USER11  User defined
S_USER12  User defined
S_USER13 User defined
S_USER14  User defined
S_USER15  User defined

Page 28



