Real Time Executive Interface Definition

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Too many tasks.

No more memory for stack(s) segment.
Superstk too small.

Invalid priority.

NOTES

Not callable from ISR.

Will not cause a preempt.

January 22, 1988

Page 9

January 22, 1988 Real Time Executive Interface Definition

3.1.2 TIDENT

NAME
t_ident — "Obtain id of a task"
SYNOPSIS
uint t_ident (name, node, &tid)
uint name; /* user defined 4-byte task name */
/* 0 indicates requesting task */
uint node; /* node identifier */
/* 0 indicates any node */
uint tid; /* task id - returned by this call */

DESCRIPTION

This directive allows a task to obtain the tid of itself or another task in the system. The tid must
_ then be used in all calls to the executive requiring a tid.

If the task name is not unique, the tid returned may not correspond to the task named in this
call.)

The task identified by its name may exist on the local processor or any remote processor in a
multiprocessor configuration, as long as the task was created with the GLOBAL flags value set

(see t_create). If the task name is not unique within the multiprocessor configuration, a non-gero
node identifier must be specified in the node field.

RETURN VALUE

If t_ident succeeded, the #d is filled in, and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS

Task with this name does not exist.

Invalid node identifier.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

Page 10

Real Time Executive Interface Definition January 22, 1988

3.1.3 T_START

NAME
t_start -« "Start a Task"
SYNOPSIS

uint t_start (tid, saddr, mode, argp)

uint tid; /* task id as returned from t_create or t_ident */
ptf saddr; /* start execution address of task */
uint mode; /* initial mode value of task */

long (*argp)[(4]; /* pointer to argument list */

The mode value is defined as follows:

o NOPREEMPT set to disable preempting
clear to enable preempting
TSLICE set to enable timeslicing
clear to disable timeslicing
NOASR set to disable asynchronous signal processing
clear to enable asynchronous signal processing
SUPV set to execute in supervisor mode
clear to execute in user mode
LEVEL interrupt level when SUPV is set
DESCRIPTION

The task identified by the tid is made ready, based on its current priority, to await execution. A
task can be started only from the dormant state.

Saddr is the logical address where the task wants to start execution. Mode contains the flag
values to enable/disable preempting, timeslicing, asynchronous processing, supervisor mode and
an optional interrupt level when the task starts execution.

Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack of the
task being started. A fifth argument, the executive’s fatal error handler, is also pushed onto the
task’s stack. Should the task attempt to exit the procedure (which normally causes unpredictable
behavior), the executive’s fatal error handler will be executed. The user must take this frame into
consideration when calculating the size of a task’s stack(s).

fatal

January 22, 1988 Real Time Executive Interface Definition
The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create).

RETURN VALUE

If ¢ start successfully started the task, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid #d.

Task not in dormant state.

Task not created from local node.

NOTES

Not c'alhble from ISR.

May cause a preempt if the task being started has a higher priority than the running task, and
the preempt mode is in effect.

Page 12

_If the call was not successful, an error code is returned.

Real Time Executive Interface Definition January 22, 1988

3.1.4 T_RESTART

NAME
t_restart — "Restart a Task"
SYNOPSIS

uint t_restart (tid, argp)

uint tid; /* task id as returned from t_create or t_ident */
long argp[4]; /* pointer to argument list */

DESCRIPTION

The task identified by the ¢id is made ready. If the task was blocked, the executive unblocks it.
The task’s superstk, userstk, and priority are set to their original values established when the task
was created using t.create. The task’s start address saddr and mode are set to their original
values established when the task was started using t_start. A task can be restarted from any
state.

Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack-of the
task being ~estarted. This argument list may be different from the original argument list. A fifth
argument, the executive’s fatal error handler, is also pushed onto the task’s stack. Should the
task attempt to exit the procedure (which normally causes unpredictable behavior), the
executive’s fatal error handler will be executed.

Tasks which anticipate being restarted can use the arguments to distinguish between initial
startup and a restart.

Due to the capability of this call to unblock a task, this call is useful to delete a task in the sys-
tem. Tasks which anticipate being deleted can use the arguments to distinguish between initial
startup and deletion.

fatal

L
=[S

The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create). .

RETURN VALUE

If t_restart successfully restarted the task, then 0 is returned.

Page 13

