Real Time Executive Interface Definition ~ January 22, 1988

. If mm_ptereate successfully created the partition, the ptid and dnum are filled in and 0 is
returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Too many partitions.

NOTES

Not callable from ISR.

Will not cause a preempt.

D.__. An

January 22, 1988 - Real Time Executive Interface Definition

3.9 Dual-ported Memory

bDual-ported memory is commonly found in multiprocessor systems. The executive provides a

method for converting internal addresses to external, and external addresses to internal, to

accommodate the use of dual-ported memory and allow tasks to exchange addresses between pro-
cessors.

The snternal address will be defined as the address of a memory resource, relative to the local
node which needs to access the memory resource.

The ezternal address will be defined as the address of a memory resource, relative to a remote
node which needs to access the memory resource.

The directives provided for dual-ported memory are:

Directive Function

m_ext2int | Convert external address
m-int2ext | Convert internal address

Page 94

e

_ Real Time Executive Interface Definition - ' January 22, 1988

3.9.1 M_EXT2ZINT

NAME

m_ext2int — "Convert external address to internal address”
SYNOPSIS

uint m_ext2int (external, &internal)

char *external; /* external address */
char *internal; /* internal address - returned by this call */

DESCRIPTION

The m_ezt2int call is used to convert the physical address contained in ezternal into an internal
address, so it can be used by the local node. The internal address is returned to the caller in
internal.

The external (VMEbus) address is normally an address received by the local node, and the reques-
ter may not know whether its internal (local) or not. If the address contained in ezternal is ir‘er-

nal, the returned address will be same as the address in ezternal.

RETURN VALUE"

The m_ezt2int directive always succeeds, the internal address is returned in internal, and 0 is

returned. p

ERROR CONDITIONS

None.

NOTES

Can be called from within an ISR.
Will not cause a preempt.

In a MMU system, a task will need to execute mm_p2! following this call to oﬁtain a logical inter-
nal address.

Page 95

~ January 22, 1988 - Real Time Executive Interface Definition

3.9.2 M_INT2EXT

NAME
m_int2ext — "Convert internal address to external address”
SYNOPSIS
uint m_int2ext (internal, &external)
char *internal; /* internal address */
char *external; /* external address - returned by this call */
DESCRIPTION
The m_int2ezt call is used to convert the physical address contained in internal into an external
address, so it can pass the address to a remote node within the system. The external address is

returned to the requester in ezternal.

The internal address is a physical address accessible by the local node within its dual-ported
memory, and the external (VMEbus) address will be different.

RETURN VALUE

The m_sint2ezt directive always succeeds, the external address is returned in ezternal, and 0 is
returned.

ERROR CONDITIONS !
None.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

In a MMU system, a task will need to execute mm.J2p preceding this call to obtain a physical
address.

Page 98

Real Time Executive Interface Definition January 22, 1988

4. VO INTERFACE

This section describes a set of I/O Interface services for the RTEID. These services provide a well
defined mechanism for installing and calling device drivers. They provide a structured methodol-
ogy for writing drivers which both simplifies and assists in the development of drivers and
enhances their portability between RTEID based ﬁﬁéﬁ‘g The RTEID does not make any
assumptions about the construction or operation of a driver itself.

The directives provided by the I/O Interface are:

Directive | Description

de_init Initialize a device driver
de_open Open a device for I/O
de_close Close a device

de_read Read from a device
de_write Write to a device
de_cntrl Special device services

4.1 Driver Properties
Device drivers shall have the following properties:

1. A driver is always called by a task and is considered to run on behalf of the task which
called it. ‘

2. A driver can make any and all RTEID calls, including additional I/O calls. I/O calls may
not be called from within the driver’s ISR.

3. If the driver makes a blocking service call, (e.g. g_receive), the calling task blocks.

4. Drivers always execute in supervisor mode regardless of the mode of the caller. Designers
should account for driver stack usage when determining supervisor stack sizes for new tasks.

5. A driver may temporarily enter user mode but must return to supervisor mode prior to
exiting.

8. Other than item (4) above, drivers retain the mode of the calling task. Thus on entry they
have the same interrupt mask level, preemption, asr and time-slicing status as the caller.
The driver may change any or all of these but is responsible for restoring them prior to
exiting.

4.2 Data Structures
The data structures used by drivers which are supported by the I/O Interface are:

e Driver Address Table

- Used by the I/O Interface to locate the driver’s INIT, OPEN, CLOSE, READ, WRITE, and
CNTRL routines.

Page 97

