3.3.5 SM_V
NAME
sm_v – “Release Semaphore”
SYNOPSIS
#include <semaphore.h>
uint sm_v (smid)

uint smid;	/* semaphore id as returned by srn_create or sm_ident */

DESCRIPTION
The current semaphore count of the semaphore identified in the smid field is incremented by one.
If the count is zero or negative, the first task in the waiting list is removed from the list and is made ready to await execution. If the task is of higher priority than the running task, it will cause a preempt.
RETURN VALUE
If sm_v succeeded, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid smid.
ISR cannot reference remote node.
NOTES
Can be called from within an ISR, except when the semaphore was not created on the local node.
May cause a preempt if a task waiting on the semaphore has a higher priority than the running task, and the preempt mode is in effect. A preempt will not occur if the task waiting exists on a remote processor in a multiprocessor configuration.

3.4 Time Management
The executive time manager supports two concepts of time: calendar time and elapsed time. These functions depend on periodic timer interrupts, and will not work without timer hardware.
The tm_set directive allows a task to inform the time manager of the current date and time (e.g., March 21, 1985; 12:04). The tm_get directive allows a task to request the current date and time from the time manager (e.g., March 27, 1986; 09:24).
The tm_wkafter directive allows a task to remove itself from the running state and enter into a wait state for a specified number of ticks. After the elapsed time expires, the task is made ready.
The tm_wkwhen directive allows a task to remove itself from the running state and enter into a wait state until a specific date and time is reached. When the date and time is reached, the task is made ready.
The tm_evafter directive allows a task to receive a timer event after the specified number of system clock ticks have occurred. The requesting task is not blocked by this call. To receive the event, the ev_receive directive must be used.
The tm_evwhen directive allows a task to receive a timer event when the specified date and time is reached. The requesting task is not blocked by this call. To receive the event, the ev_receive directive must be used.
The tm_cancel directive allows a task to cancel a timer event scheduled by the tm_evafter or tm_evwhen directives.
The tm_tick directive allows a task or an interrupt service routine to inform the system of the occurrence of a system clock tick. This information is used to maintain correct calendar time, execute timeslicing, and decrement ticks from tasks which are currently being delayed or timing out.
Tick and timeslice are configuration parameters. A tick is defined to be some integral number of milliseconds. A timeslice is defined to be some integral number of ticks.
The directives provided by the time manager are:
	Directive
	Function

	tm_set
	Set date and time

	tm_get
	Get date and time

	tm_wkafter
	Wake after interval

	tm_wkwhen
	Wake when date and time

	tm_evafter
	Send event after interval

	tm_evwhen
	Send event when data and time

	tm_cancel
	Cancel timer event

	tm_tick
	Announce tick

3.4.1 Timebuf Structure
The time and date buffer structure is defined as follows:
struct	time_ds		{
		struct t_date	date;	/* date */
		struct t_time	time;	/* time */
		uint		ticks;	/* current elapsed ticks between seconds */
	};
Date is defined as follows:
	struct	t_date	{
		short	year;	/* year, A.D. */
		char	month;	/* month, 1->12 */
		char	day;	/* day, 1-> 31 */
	};
Time is defined as follows:

	struct	t_time	{
		short	hour;		/* hour, 0-> 23 */
		char	minute;		/* minute, 0-> 59 */
		char	second;		/* second, 0-> 59 */
	};

3.4.2 TM_SET
NAME
tm_set – “Set System Time and Date”
SYNOPSIS
#include <time.h >
uint tm_set (timebuf)

struct time_ds *timebuf;		/* pointer to time and date structure */

DESCRIPTION
The tm_set directive sets or resets the date and time of all nodes within the system. The parameters within the time and date structure are validated, and an error will be returned if they are out of range.
After this call is successfully completed, the system maintains the date and time based upon the frequency of system clock ticks. The current date and time may be obtained by using the tm_get directive.
RETURN VALUE
If tm_set successfully set the date and time, then 0 is returned.
If the date and time were not successfully set, an error code is returned.
ERROR CONDITIONS
Date input parameter error.
Time input parameter error.
Ticks input parameter error.
NOTES
Callable from ISR.
May cause a preempt if setting the time causes a task on the timeout list to become ready, and that task has a higher priority than the running task, and the preempt mode is in effect.

3.4.3 TM_GET
NAME
tm_get – “Get System Time and Date”
SYNOPSIS
#include <time.h >
uint tm_get (timebuf)

struct time_ds *timebuf;		/* pointer to time and date structure */

DESCRIPTION
The requester is allowed to get the current date and time as maintained by the system. If the date and time have not been set via the tm_set directive, then an error is returned, and the buffer contents will be meaningless.
RETURN VALUE
If tm_get successfully got the date and time, timebuf will be filled in, and 0 is returned.
If the date and time have not been set, an error code is returned.
ERROR CONDITIONS
Date and time have not been set.
NOTES
Callable from ISR.
Will not cause a preempt.

3.4.4 TM_WKAFTER
NAME
tm_wkafter – “Wake After Interval”
SYNOPSIS
#include <time.h>
uint tm_wkafter (ticks)

		uint ticks;	/* number of ticks to wait */

DESCRIPTION
The executive stops the execution of the requesting task until the specified number of system clock ticks have occurred. Execution resumes at the location following the tm_wkafter directive.
If the system clock frequency is 100 ticks per second, and the requester wants to wait for 2 seconds, then the input parameter will be 100*2, or 200 ticks.
The relative scheduling priority of the task will influence when the task actually gets to run again. A manual round-robin may be performed by executing tm_wkafter(0). This causes the requesting task to yield the processor to other tasks at the same priority, if any exist.
The number of ticks remaining until the task is awakened will not be modified by the executive if the system date and time are reset via the tm_set directive.
The maximum duration is 2**32 -1 ticks.
RETURN VALUE
Tm_wkafter always succeeds and returns 0.
ERROR CONDITIONS
None.
NOTES
Not callable from ISR.
The requesting task will be blocked until the interval is expired.

3.4.5 TM_WKWHEN
NAME
#include <time.h>
Tm_wkwhen – “Wake When Date and Time”
SYNOPSIS
#include <time.h>
uint tm_wkwhen (timebuf)

	struct time_ds *timebuf;		/* pointer to time and date structure */

DESCRIPTION
The executive stops execution of the requesting task until the specified date and time is reached. Execution resumes at the location following the tm_wkwhen directive.
If the system date and time are reset via the tm_set directive, the requested date and time when the task will be awakened will be modified by the executive. Therefore, if the date and time are reset ahead of the requested time, the task may be awakened late.
The relative scheduling priority of the task will influence when the task actually gets to run again.
The current elapsed ticks in the ticks field within the timebuf structure are ignored.
RETURN VALUE
If tm_wkwhen is successful, then 0 is returned.
If the date and time are invalid, an error code is returned.
ERROR CONDITIONS
Date and time have not been set.
Date input parameter error.
Time input parameter error.
NOTES
Not callable from ISR.
The requesting task will be blocked until the date and time is reached.

3.4.6 TM_EVAFTER
NAME
tm_evafter - “Send Event After Interval”
SYNOPSIS
#include <time.h>
uint tm_evafter (ticks, event, &tmid)

		uint ticks;	/* number of ticks until event */
		uint event;	/* event condition */
		uint tmid;	/* timer id – returned by this call */

DESCRIPTION
The tm_evafter directive allows a task to receive a timer event after the specified number of system clock ticks have occurred. The requesting task is not blocked by this call. To receive the event, the ev_receive directive must be used.
If the system clock frequency is 100 ticks per second, and the requester wants to receive an event after 2 seconds, then the input parameter will be 100*2, or 200 ticks.
The number of ticks remaining until the timer event is sent will not be modified by the executive if the system date and time are reset via the tm_set directive.
The maximum duration is 2**32 - 1 ticks.
RETURN VALUE
Tm_evafter always succeeds, the tmid is filled in, and 0 is returned.
ERROR CONDITIONS
Too many timers.
NOTES
Not callable from ISR.
Will not cause a preempt.
The requesting task will not be blocked.

3.4.7 TM_EVWHEN
NAME
tm_evwhen – “Send Event When Date and Time”
SYNOPSIS
#include <time.h >
uint tm_evwhen (timebuf, event, &tmid)

	struct time_ds *timebuf;		/* pointer to time and date structure */
	uint event;			/* event condition */
uint tmid;			/* timer id – returned by this call */

DESCRIPTION
The tm_evwhen directive allows a task to receive a timer event when the specified date and time is reached. The requesting task is not blocked by this call. To receive the event, the ev_receive directive must be used.
If the system date and time are reset via the tm_set directive, the requested date and time of the timer event will be modified by the executive. Therefore, if the date and time are reset ahead of the requested time, the task may receive the timer event late.
The current elapsed ticks in the ticks field within the timebuf structure are ignored.
RETURN VALUE
If tm_evwhen is successful, the tmid is filled in, and 0 is returned.
If the date and time are invalid, an error code is returned.
ERROR CONDITIONS
Too many timers.
Date and time have not been set.
Date input parameter error.
Time input parameter error.
NOTES
Not callable from ISR.
Will not cause preempt.
The requesting task will not be blocked.

3.4.8 TM_CANCEL
NAME
tm_cancel – “Cancel Timer Event”
SYNOPSIS
#include <time.h >
uint tm_cancel (tmid)

	uint tmid;	/* timer id – as returned form tm_evafter or tm_evwhen */

DESCRIPTION
The tm_cancel directive allows a task to cancel the timer event identified by the tmid. The timer event may have been scheduled by the tm_evafter or tm_evwhen directives.
RETURN VALUE
If tm_cancel successfully canceled the timer event, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tmid.
Timer event not set.
NOTES
Not callable from ISR.
Will not cause a preempt.
The timer event not set error may occur if the specified tmid has expired. The caller may need to clear the event condition associated with the tmid.

