ERROR CONDITIONS
Invalid tid.
Task has never been started.
Task not created from local node.
NOTES
Not callable from ISR.
May cause a preempt if the task being restarted has a higher priority than the running task, and the preempt mode is in effect.

3.1.5 T_DELETE

NAME
t_delete - "Delete a Task‘

SYNOPSIS
uint t_delete (tid)
uint tid; /* task id as returned from t_create or t_ident */
/* 0 indicates requesting task */

DESCRIPTION
This directive allows a task to delete itself, or the task identified in the tid field. The executive halts execution of the task and frees the task data structure.
The task identified by the tid must exist on the local processor, even if the task was created with the GLOBAL flags value set (see t_create}.

RETURN VALUE
If the task identified in the tid field is the requesting task, then t_delete always succeeds, and there is no return.
If the task identified in the tid field is not the requesting task, and t_delete successfully deleted the task, then 0 is returned to the requesting task.
If the task identified in the tid field is not the requesting task, and the call was not successful, an error code is returned to the requesting task.

ERROR CONDITIONS
Invalid tid.
Task not created on local node.

NOTES
Not callable from ISR.
A new task is scheduled when the requesting task deletes itself, and there is no return.
Tasks are responsible for returning resources to the executive before deleting itself. It is suggested that a task needing to delete another task use as_send or t_restart to inform the task to return its resources and then delete itself.

3.1.6 T_SUSPEND

NAME
t_suspend – “Suspend Task‘

SYNOPSIS
uint t_suspend (tid)
uint tid; /*task id as returned from t_create or t_ident */
/* 0 indicates requesting task */

DESCRIPTION
The executive will prevent future execution of the task identified in the tid field. The task identified by the tid is placed in a suspended state. The suspended state is in addition to the other wait states; waiting for memory, for a message, for an event, for a semaphore, or for a
timeout.

The t_resume directive issued by another task removes the suspended state. The task is made ready unless blocked by any other wait state.
The task identified by the tid may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see t_create).

RETURN VALUE
If the task identified in the tid field is the requesting task, then t_suspend always succeeds and returns 0 when the task runs.
If the task identified in the tid field is not the requesting task, and t_suspend successfully put the task in the suspend state, then 0 is returned to the requesting task.
If the task identified in the tid field is not the requesting task, and the call was not successful, an error code is returned to the requesting task.

ERROR CONDITIONS
Invalid tid.
Task already suspended.

NOTES
Not callable from ISR.
The running tank will be blocked if suspending itself.

3.1.7 T_RESUME

NAME
t_resume - ‘Resume a Task‘

SYNOPSIS
uint t_resume (tid)
uint tid; /*task id as returned from t_create or t_ident */

Description
The t_resume directive removes the task identified in the tid field from the suspended state.
If the task was waiting for memory, for a message, for an event, for a semaphore, or for a timeout, then the task will not be scheduled. Otherwise, the task is scheduled to await execution. If the task is the highest priority ready to run task, it will cause a preempt.
The task identified by the tid may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see t_create).

Return Value
If t_resume successfully resumed the task, then 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS
Invalid tid.
Task not suspended.
ISR cannot reference remote node.

NOTES
Can be called from within an ISR, except when the task was not created on the local node.
May cause a preempt if the resumed task is ready to run and has a higher priority than the running task, and the preempt mode is in effect. A preempt will not occur if the resumed task exits on a remote processor in a multiprocessor configuration.

3.1.8 T_SETPRI

NAME
t_setpri – “Set Task Priority”

SYNOPSIS
uint t_settpri (tid, priority, &ppriority)
uint tid; /*task id as returned from t_create or t_ident */
/* 0 indicates requesting task */
	uint priority; /* task priority */
			/* 0 indicates current priority */
	Unit ppriority; /* previous priority – returned by this call */

DESCRIPTION
This directive changes the current priority of the task identified in the tid field to the new value specified by taskattr. A task may change its own priority or the priority of another task. The task will be scheduled according to the new priority.
Priority level zero is reserved by the system, and may not be used as a priority. If zero is specified in the priority field, the task’s current priority will be returned. The executive will support a minimum of 32 priorities.
The task identified by the tid may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see t_create).

RETURN VALUE
If t_setpri successfully changed the task priority, the ppriority is filled in, and 0 is returned.
If the call was not successful, an error code is returned.

ERROR. CONDITIONS
Invalid tid.
Invalid priority.

NOTES
Not callable from ISR.
May cause a preempt if the running task lowers its own priority, or raises the priority of another task, and the preempt mode is in effect. A preempt will not occur if the task having its priority raised exists on a remote processor in a multiprocessor configuration.

3.1.9 T_MODE

NAME
t_mode - "Change Task Mode”

SYNOPSIS
uint t_mode (mode, mask, &pmode)
uint mode;	 /* new mode */
uint mask; 	/* mask */
uint pmode;	 /* previous mode - returned by this call */
The mode and mask values are defined as follows:
NOPREEMPT 	set to disable preempting
clear to enable preempting
TSLICE 		set to enable timeslicing
clear to disable timeslicing
NOASR 		set to disable asynchronous signal processing
clear 'to enable asynchronous signal processing
SUPV		set to execute in supervisor mode
clear to execute in user mode
LEVEL		interrupt level when SUPV is set

DESCRIPTION
T_mode enables and disables several modes of execution for the calling task. A task may enable/disable timeslicing, enable/disable preempting, enable/disable asynchronous signal processing, or execute in supervisor mode at an optional interrupt level.

Tasks have the ability to process signals asynchronously. Any task with a valid asynchronous signal routine (asr) which needs to temporarily disable asynchronous processing should use this directive.

To change a particular mode, the user must indicate which mode is being changed by setting the appropriate value in the mask parameter, and then set the appropriate value in the mode parameter to the new mode. For example, if the user only wants to change the preempt mode characteristic, he would set the mask value to NOPREEMPT and the mode value to NOPREEMPT to disable preempting, or the mode field to 0 to enable preempting.
If the preempt mode is not in effect, timeslicing will not take place.

RETURN VALUE
The t_mode call always succeeds, pmode is filled in, and 0 is returned.

NOTES

Not callable from ISR.
May cause a preempt if the running task enables preempting.
Refer to as_catch for discussion on receiving asynchronous signals.

3.1.10 T_GETREG

NAME
t_getreg — “Get a task’s register”

SYNOPSIS
uint t_getreg (tid, regnum, ®val)
uint tid; /* task id as returned from t_create or t_ident */
uint regnum; /* register number */
uint regval; /* register value - returned by this call */
The regnum field value: are:
S_REG0	System defined register 0
S_REG1	System defined register 1
S_REG2	System defined register 2
S_REG3	System defined register 3
S_REG4	System defined register 4
S_REG5	System defined register 5
S_REG6	System defined register 6
S_REG7	System defined register 7

U_REG0	User defined register 0
U_REG1	User defined register 1
U_REG2	User defined register 2
U_REG3	User defined register 3
U_REG4	User defined register 4
U_REG5	User defined register 5
U_REG6	User defined register 6
U_REG7	User defined register 7

DESCRIPTION
The executive returns the register value in the regval field for the register identified in the regnum field and the task identified by the tid.
The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flags value set (see t_create).

RETURN VALUE
If t_getreg is successful, regval is filled in, and 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS
Invalid tid.
Invalid register number.
ISR cannot reference remote node.
NOTES
Can be called from within an ISR, except when the task was not created on the local node.
Will not cause a preempt.

3.1.11 T_SETREG

NAME
t_setreg — “Set a task’s register”

SYNOPSIS
uint t_setreg (tid, regnum, regval)
uint tid;		/* task id as returned from t_create or t_ident */
uint regnum;	/* register number */
uint regval;	/* register value */
The regnum field values are:
S_REG0	System defined register 0
S_REG1	System defined register 1
S_REG2	System defined register 2
S_REG3	System defined register 3
S_REG4	System defined register 4
S_REG5	System defined register 5
S_REG6	System defined register 6
S_REG7	System defined register 7

U_REG0	User defined register 0
U_REG1	User defined register 1
U_REG2	User defined register 2
U_REG3	User defined register 3
U_REG4	User defined register 4
U_REG5	User defined register 5
U_REG6	User defined register 6
U_REG7	User defined register 7

DESCRIPTION
The executive sets the register identified in the regnum field for the task identified by the tid with the value in the regval field.
The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flags value set (see t_create).

RETURN VALUE
If t_setreg successfully set the register value, 0 is returned.
If the call was not successful, an error code is returned.
