Real Time Executive Interface Definition

DRAFT 2.1

Prepared by:

MOTOROLA Microcomputer Division
and

Software Components Group

¥ Abstract:

‘This specification defines a basic set of functions that constitute the Real Time
Executive Interface Definition. Draft 2.1 is for public review, MOTOROLA/SCG
retain the right to modify this definition as appropriate during implementation.
Dr;.ft /2.1 will be submitted to the VITA technical committee no later than
01/25/88.

PRELIMINARY

REAL TIME EXECUTIVE INTERFACE DEFINITION -~ — -

January 22, 1988

- G DISCLAIMER

;LThis RTEID specification is being proposed to be used as the basis for formal
~standardization by the VME International Trade Association (VITA). However,
Lsince the standardization process has just begun, any standard resulting from

| this document might be different from this document . Any Product designed to

| this document might not be compatible with the final standard. No responsibility
| is.assumed for such incompatibilities and no liability is assumed for any product
! built to .g¢onform to this document.

While considerable effort has been expended to make this document
comprehensive, reliable, and unambiguous, it is still being published in
preliminary form for public study and comment.

This document is prepared by Motorola Inc., Microcomputer Division. The
design and development of RTEID is a joint effort of Motorola Inc.,
Microcomputer Division and Software Components Group, Inc. Interest in the
RTEID is welcomed and encouraged any technical questions, suggestions or

comments may be directed to:

Motorola Inc. Software Components Group, Inc.
Microcomputer Division 4655 Old Ironsides Drive
Dept: RTEID Santa Clara, California 95054
2900 South Diablo Way Tel: (408)727-0707 408 - 43~ oo
Tempe, Arizona 85282 Fax: (408)727-0904
'T:'elz (6022))4388-3500 Tix: 757697 (softcom) : -
ax: (602)438-3581 . :
Tix: 4998071 (MOTPHE) _ e GilheT - dech skff

. L—\‘r—‘&ai Muuy;r - SQ\QS

Real Time Executive Interface Definition

January 22, 1988

REVISION RECORD

Issue Revision Description Date
1 Initial version. Internal Only. 05/08/87
2 Added semaphores and debug management. 06/01/87
3 Preliminary Draft, limited distribution. 08/17/87
4 Design review of SCG’s comments. 07/24/87
5 SCG/MOT Technical review. 08/20/87
8 SCG/MOT Technical review. 08/28/87
7 SCG/MOT Technical review. 09/14/87
8 SCG/MOT Technical review for Draft 2.1 12/14/87 _ .
9 Added Debug Extensions for Draft 2.1 12/22/87 .
10 Added I/O Interface for Draft 2.1 01/15/88
11 Removed Debug Extensions from Draft 2.1 01/22/88 -
12 Final Draft 2.1 submitted to VITA 01/25/88' :-
13
BT U000 8iR
25 126
L e
; T
Footon
g iy, 9

January 22, 1988

IR

A=

Real Time Executive Interface Definition : January 22, 1988

TABLE OF CONTENTS

1. INTRODUCTION . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o s o o o Y R L L R R 1
1.1 OVerview . o o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o ¢ s s a s s s sa s oo s 00 00eace 1
1.2 Definitions « « o o o ¢ s o o 0 6 0o s 002 0066068 60@wosesseose 1
1.3 Typedefs and Structures « « « « « « o ¢ ¢ o o o o o o o o o o o o o o o o o o 1

2. BasicSystem Services . . ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ e o s 0 0 0 0 0 6 0 e 0 e o s e e o s 2

3. EXECUTIVEFACILITIES « ¢ ¢« ¢ o ¢ o o o o o s o s s s o s o o 3 6 o 0 00 o 3
3.1 TaskManagement . ¢« « ¢ ¢« « o ¢ o« o ¢ o o o o o o o 06 o o s s o o s 8 o0 7

8311 TCREATE ¢« s o o 016 6110165 6. 0 o o 60 o 6 0 0 0 000 ¢ 8599 @ 8
312 T.IDENT o s 6 o bifeiniio o o 6 o & & 8 8 o o o 9% ® & o & » & o @ 10
313 T START ¢ o o a6 606 06 6s s s 68 6o6wso8sss o 11
314 TRESTART ... ¢ ¢ o o & . R T T N 13
. 3185 T.DELETE ¢ o006 o s 6o s s s 8 5 » “ w s s e s e 15
318 T.SUSPEND . ¢ ¢ ¢ ¢ ¢ o ¢ 0 s 0 6 060 o . o WS e e w s . 18
317 TRESUME ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o s o o 17

3.1.8 TSETPRI ...
319 TMODE

3110 T-GETREG . & ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ s s s o o o o T e e e s e e e 21
3.1.11 TSETREG ’ o o .

3.2 Message, Event, and Signal Management o @ o
3.2.1 Message Manager SEEEE
3.22 EventManager ¢ ¢ ¢ ... e e s s s s s e e s e e e
323 SignalManager . . ¢ ¢ ¢ ¢ ¢ vt 0 b e e et o0 e e e e o @ 27
3.2.4 Data Structures for Message Management . . « ¢« ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o 28
325 QO CREATE . + ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o P e e e . 29
328 Q-IDENT . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o o R N i s @ 31
327 QDELETE 4 o o ¢ o o 6 0 o 0 0o 5 s 6 06 06 oo o s oo .

328 QSEND ¢ & ¢ v ¢ vt 0t e o v o o o T T L Y ce oo 33
329 QURGENT . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o e o v o o o o o oo oeosoeeoesees 34
3.2.10 Q. BROADCAST« . .. i e s e e s e s s s e e s eos. 38
3211 QRECEIVE .« « ¢ ¢ ¢ ¢ 0 o o o 0o o o B - 1 4
3212 EV.SEND . ¢ ¢ ¢ ¢ ¢ o ¢ s 6 6 0000 seesesssesesesese 39
323 EVRECEIVE . . . « ¢ ¢ ¢ ¢ ¢ o « & e oo e imecsoiseeoeiee 40
3214 AS.CATCH . . ¢ ¢ ¢ ¢ e ¢ o o o 0 0 o0 s 0 cooeossoescooecse 42
3215 ASSEND ¢ ¢ ¢ ¢ s ¢ s 6 6 s s s e s s e s s s sososesoecse 44
3216 ASSRETURN . ¢ ¢ ¢ ¢ ¢ ¢ ¢ 6 e ¢ s s o s o s ossosososceoesese 45
3.3 SemaphoreManagement . . . « ¢ ¢ ¢ ¢ ¢ ¢ s o e 0 e s 0 e e 0 e o ¢« ... 48
331 SM.CREATE . . ¢« ¢ ¢ ¢ ¢ ¢ ¢ 0 e o e 0o 6 0 oo oosososoeeese 47
332 SMIDENT . . . ¢ v v v o v v o v oo e e e s s s e s es s 49
333 SMDELETE st s e s e e s e s e e e eeees 50
- 334 SMP . s o oo eoseos0s0ccs s b s e e e e S)
335 SM_V it ¢ o ¢ o e e oo et oeseeoosoosossosssseoease 383
3.4 TimeManagement . « ¢ « ¢ ¢ ¢ ¢ ¢ o ¢ o o o o . £ |
3.4.1 Timebuf Structure 1.
342 TMSET -« s s s s n s s pwwwis s o o6 eTE e e e e e 56
O o« o BT

. - 3.4-3 MGET L] e ° e o e 70

Real Time Executive Interface Definition

‘.9.5 WRITE . L] L] L] . . L] Ll . . . L3 L . . . Ld . .
4.9.0 CNm L] L] L] L L L . Ll . L] L . .
4-10 Driver Inteff‘ce in C ng“ase @ o o o o o o ©o 0 & o © 0 0 © 6 6 5 o 6 e e 0 o

January 22, 1988

108
107
108

2.4

January 22, 1988

3.5

3.8

3.7

3.8

3.9

3.44
3.4.5
3.4.6
3.4.7
3.48
3.4.9

3.5.1
3.6.1

3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.8
3.7.7
3.7.8
3.7.9
3.7.10
3.7.11
3.7.12

3.8.1

3.8.2
3.8.3
3.8.4
3.8.5
3.8.8
3.8.7
3.8.8
3.8.9
3.8.10

3.9.1
3.9.2

4. 1/0 INTERFACE

4.2

4.3
4.4
4.5
4.8
4.7
4.8
4.9

I/0 Interface Rou

4.9.1
4.9.2
4.9.3

Real Time Executive Interface Definition

TMWKWHEN¢0o0cooo.. S e W w8 e e . e
TIMEVAPTER < « s s « s s« 5.5 666 455 5 s o ® o i e e %
TMEVWHEN & ¢ i it vt e v o oo o oo oo nennseoooes
TMLEICK ¢ ¢ v v o s 6 o v 5 66 5 5 56 548 555502 8pmme s
Interrupt Handling « & & ¢ ¢ ¢ ¢ v 4 o v o v o v o o o o e e ee e
LRETURN « o ¢ 5 5 s 6 5 s s s s s s o s swo s w o 5 8 & & @ % o
FatalErrors « ¢ o v v v v o v o ot o o o oot e s o oo oo o ennna
N
Memory Management « « « « ¢ v ¢ v v v v b b b b b e e e e e e e ...
RegionManager i w e e e e e s e e
Partition Manager . . . ¢ & v v v v v o v o b b et e e e e e e
RN.CREATE . . ¢ ¢ ¢ ¢ ¢ ¢ v v v v v v o R I I
RNIDENT . . ¢ v v 00 v v v o .
RNDELETE ¢ ¢ ... N R
RNGETSEG « « « « v 6 s 6 556 566060 e e e s s e e ee
RNRETSEG .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ e 0 o o o o o oo oeosnsoas o
PT_CREATE
PLIDENT o o 0 0.0 0 s w6 86 8 5 85 W 4 & & &
PIDELETE o + o s o ¢ o 6 6 o b 6o 60 60 8 6 5 5 2w w ® » o e e
PT.GETBUF &« s o o s 5 6 # w464 55 5 & s s s ameesswnsxs
PILRETBUF « o s 55 4 ¢ «on o e e e e .
MMUManagement « « ¢ ¢ v v ¢ v v v v v v v v v et e e e o v % e @
Segments vs. Sections : @ @ . 55 E e
Regions YRR e o o s s s s 0 e s s . e
Partitions e e o e e o Wil te @ % e
1 B . e e e TR L EEE
MMP2L . .t vttt et e e een R I I PR 8
MMPMAP o o o o s 0 v o s 5 5 % 8 8 % 6 & & 8 5 6§44 6o
MM_UNMAP ¢ o o 6 s o o s s e e e e e e e
MMPREAD . . ¢ v v v v vt v v o v o v v oo G w e e .
MMPWRITE . & ¢ ¢t i i it e et e e e e oo oo oo 5 @ oa
MM_PTCREATE . . @ T T
Dual-ported Memory « « ¢ ¢ ¢« ¢ ¢ ¢ v ¢ ¢ o ¢ o o o o o e e e e e . e
M_EXT2INT TEEEEEE oliem m o w e e
MINT2EXT .. ¢ ¢ e o« T I
41 DriverProperties o o « o o o s 6 5 6 5 5 6 5555 56600 0000ne
Data Structures . « « o ¢ v ¢ ¢ o o o . ¢ o wew®
4.2.1 Driver Address Table. e e w e “ % e
4.2.2 DeviceDataAreaTable . . . ¢« v v ¢ v o v v o 0 v v o N
DevicoInitlalisation o o v o v o 5 6 5 6 0 4 5 5 5 55 6% 608 6 509ss
Parameter Passing ¢c ... e e o o e e e s s e e e s
I/O Interface in C Language D D
I/O Interface in Assembly Laniguage . . « ¢ ¢ ¢« v ¢ ¢ o v ¢ o o o o o o o o «
Driver Interface in Assembly Language & ¢ v v v v v v v v v o o
Error Handling « « « s « o 65 a6 56 ¢ & & 0 TR R
tines in C Language ~o S W m.e wme s s s E s

INIT & v o 0 e e e e o e o v o eTe @ e @
OPEN . e nv v o sssmmes o am o™ s 8 8 5 & & & & & & i e
CLOSE. « o s nieo s % 6 4 6 i 6 &0 & b 5 8 & 8 P~ PP
READ e e e e e e e . « s @ .

4.9.4

- i

58
59
60
61
62
63
64
85
68
87
68
68
69
70
72
73
74
76
77
79
80
81
82
83
83
83
83
85
86
87
89
90
91
92
94
95
96

97
97
97
98
98
99
99
99

. 100

100

101

101
102
103
104
105

January 22, 1988 Real Time Executive Interface Definition

1. INTRODUCTION
1.1 Overview
This document is intended to serve the following major purposes:

e To serve as a reference source for the definition of the external interfaces to services that are
provided by all Real Time Executive environments. This includes source-code interfaces and
run-time behavior as seen by an application-program. It does not include the details of how
the kernel implements these functions.

e To serve as a complete definition of Real Time Executive external interfaces, so that applica-
tion source-code that conforms to these interfaces, will execute as defined in all Real Time
Executive environments. It is assumed that source-code is recompiled for the proper target
hardware. The basic objective is to facilitate the writing of applications-program source-code
that is directly portable across all Real Time Executive implementations.

This document describes the basic set of functionality that makes up the Base System. This func-
tionality has been structured to provide a minimal, stand alone run-time environment for
application-programs originally written in a high-level language, such as C.

Other extensions to this Base System will be defined as a continuing effort to produce this stan-
dard Real Time Executive Run Time Environment.

It is anticipated that all conforming systems must support the source code interfaces and runtime
behavior of the Base System. A system may conform to some, none, or all of the extensions.

1.2 Definitions

executive That portion of software that constitutes the kernel or performs
specific services on behalf of programs tasks.

Real Time Executive Same as executive.

node A processor within a multiprocessor system configuration.

local node The processor within a multiprocessor system configuration on
which the current operation is being executed.

remote node A processor within a multiprocessor system configuration on
which the current operation is not being executed.

target The destination remote node in a multiprocessor system
configuration.

1.3 Typedefs and Structures

For ease of documentation, the following typedefs are used in this document.
typedef unsigned int uint; /® 32-bit unsigned integer */

typedef void : (*ptf)(); /*® pointer to a function that returns nothing */

Page 1

Py

January 22, 1988 Real Time Executive Interface Definition

LIST OF TABLES

TABLE 1. Directive’ Ll * L] L] L] L] . L] . . L] . . L] L] . . L] L Ll Ll . . . L] L] Ll Ll L] 3
TABLE 2. Directive Usage

.o--ooolooooooo.oconoo.oooooco'5

January 22, 1988 Real Time Executive Interface Definition

2. Basic System Services

The Basic System Services is intended to support a minimal run-time environment for exe-
cutable applications. The Basic System Services defines a set of Real Time Executive com-
ponents needed by applications-programs. This basic set would be supported by any con-
forming system. It defines each component’s source-code interface and run-time behavior,
but does not specify its implementation. Source-code interfaces described are for the C
language.

While only the run-time behavior of these components is supported by the Basic System
Services, the source-code interfaces to these components are defined because an objective of
the Real Time Executive Interface Definition is to facilitate application-program source-code
portability across all Real Time Executive implementations. It is assumed that an
application-program targeted to run on a system that provides only the Basic System Ser-
vices (a run-time environment) would be compiled on a system supporting software develop-
ment.

Page 2

Real Time Executive Interface Definition

3. EXECUTIVE FACILITIES

January 22, 1988

The facilities of the executive have been grouped by function, and are discussed in the following

. paragraphs.
TABLE 1. Directives

Name Input Parameters QOutput Parameters
t_create name superstk userstk priority flags &tid
t_ident name node &tid
t_start tid saddr mode argp
t_restart tid argp :
t_delete tid
t_suspend tid
t_resume tid
t_setpri tid priority &ppriority
t_mode mode mask &pmode
t_getreg tid regnum ®val
t_setreg tid regnum _ regval
q-create name count flags &qid
q-ident name node &qid
q-delete qid -,
g-send" qid - buffer
q-urgent qid buffer
q-broadcast | qid . buffer &count
q_receive qid buffer flags timeout
ev_send tid event
ev_receive eventin flags timeout &eventout
as_catch asraddr mode
as_send tid signal
as_return
sm_create name count flags &smid
sm_ident name node &smid
sm_delete smid
sm_p smid flags timeout
sm_v smid
tm_set timebuf
tm_get timebuf
tm_wkafter | ticks
tm_wkwhen | timebuf
tm_evafter ticks event &tmid
tm_evwhen timebuf event &tmid
tm_cancel tmid
tm_tick
ireturn
k_fatal errcode

Page 3

January 22, 1988

Real Time Executive Interface Definition

Name - Input Pgnmeten Output Parameters

rn_create name paddr length pagesise flags &rnid &bytes

rn_ident name &rnid]

rn_delete rnid

ro_getseg rnid sige flags timeout &segaddr

rn_retseg rnid segaddr

pt_create name paddr length bsise flags &ptid &bnum
ptident name node &ptid

pt—delete ptid

pt—getbuf ptid &bufaddr

pt_retbuf ptid bufaddr

mm_12p tid laddr &paddr &length
mm_p2l tid paddr &laddr &length
mm_pmap tid laddr paddr length flags

mm_unmap tid laddr

mm_pread paddr laddr length

mm_pwrite paddr laddr length

mm_ptcreate | name paddr length bsise laddr flags | &ptid &bnum
m_ext2int external &internal

m_int2ext internal &external

Page 4

Real Time Executive Interface Definition

TABLE 2. Directive Usage

Name Remote | ISR | ISR to Remote
t_create no no -
t_ident yes yes yes
tstart no no -
t_restart no no -
t_delete no no -
t_suspend yes no -
t_resume yes yes no
t_setpri yes no -
t_mode no no -
t_getreg yes yes no
t_setrgL yes yes no
q-create no no -
q-ident yes yes yes
q-delete no no -
q-send yes yes no
q-urgent yes yes no
q-broadcast yes yes no
q_receive yes yes no
ev_send yes yes no
ev_receive yes no -
as_catch no no -
as_send yes yes no
as_return no no -
sm_create no no -
sm_ident yes yes yes
sm_delete no no -
sm_p yes yes no
sm_v yes yes no
tm_set yes yes no
tm_get no yes no
tm_wkafter no no -
tm_wkwhen no no -
tm_evafter no no -
tm_evwhen no no -
tm_cancel no no -
tm_tick no yes no
ireturn no yes -
k_fatal no yes -

January 22, 1988

Page 5

January 22, 1988

Real Time Executive Interface Definition

Name Remote | ISR | ISR to Remote
rn_create no no -
rn_ident (yesy | yes | yes
ro_delete “no no -
rn_getseg no no -
ro_retseg no no -
pt_create no no -
pt—ident yes yes yes
pt-delete no no -
pt_getbuf yes yes yes
pt_retbuf yes yes yes
mm_12p no yes no
mm_p2l no no -
mm_pmap no yes no
mm_unmap no yes no
mm_pread no no -
mm_pwrite no no -
mm_ptcreate no no -
m_ext2int no yes no
m_int2ext no yes no

Real Time Executive Interface Definition January 22, 1988

3.1 Task Management

A task is a function that can execute concurrently with other functions within a multitasking
environment. A task typically accepts one or more inputs, performs some processing function
based on the input, and responds with one or more outputs.

A task is created using the t_create directive. Once a task is created, other tasks can refer to it
and act on its behalf in allocating resources to it. A task is started with the t_start directive.
Once a task has been started, it can execute its function and vie with other tasks for processor
time ucordmg to its relative priority.

A task may be deleted with the t_delete directive. All knowledge of the task is removed from the
system, and other tasks referring to it will be returned an error.

All tasks have a task identifier (tid). The tid is assigned to the task at creation time, and must
be used in all subsequent calls to the executive to identify that task. The t_ident directive may
be used to obtain the tid of another task when the task name is known.

All tasks have a priority. A task’s priority is a measure of the task’s importance relative ta all
other tasks within the system and indicate its "need to run” in a multitasking environment where
many, tasks may be ready to run at any moment. A task is given a priority at creation time. A
task’s priority may be changed with the t_setpri directive.

A task’s mode of execution is set up initially with the t_start directive, and may be changed using
the t_mode directive. The mode of a task specifies its ability to be preempted, timesliced, to exe-
cute in user mode, to execute in supervisor mode at an optional interrupt ‘level, and to
disable/enable its asynchronous sigr.al routine.

The task manager provides the pair of directives, t_suspend and t_resume, to control execution of
another task.

A task is provided with a set of eight user and eight system defined software registers which may
be set with the t_setreg directive, and read with the t_getreg directive.

The directives provided by the task manager are:

Directive Function
t_create Create a task

t_ident Obtain id of a task
t_delete Delete a task
t_start Start a task

t_restart Restart a task
t_suspend | Suspend a task
t_resume Resume a task
t_setpri Set task priority
t_mode Change task mode
t_getreg Get task register
t_setreg | Set task register

. Page 7

January 22, 1988 Real Time Executive Interface Definition

3.1.1 T_-CREATE

NAME
t_create — "Create a Task"
SYNOPSIS

uint t_create (name, superstk, userstk, priority, flags, &tid)

uint name; /* user defined 4-byte task name */
uint superstk; /* supervisor stack sise in bytes */
uint userstk; /* user stack sise in bytes */

uint priority; /* task priority */

uint flags; /* task attributes */

uint tid; /* task id - returned by this call */

14

Flags is defined as follows:

CMASK Coprocessor mask
0 = no coprocessor
GLOBAL set to indicate the task is a
multiprocessor global resource.
clear to indicate the task is local

DESCRIPTION

The t_create directive creates a task by allocating and initialising a task data struciure. A task
is created by name. A task id is returned to the caller in the tid field. The tid must be used in
all calls to the executive requiring a tid.

The task is allocated a user stack and supervisor stack as determined by the values in the userstk
and superstk fields. A minimum supervisor stack is required, and an error will be returned if the
superastk value is too small. There is no minimum user stack required.

By setting the GLOBAL value in the flags field, the tid will be sent to all processors in the sys-
tem, to be entered into a global resource table. The system is defined as the collection of intercon-
nected processors. The task is always created on the local node.

The newly created task will be placed in the dormant state. The t_start directive will make the
task ready, in priority order. The executive will support a minimum of 32 priorities.

The maximum number of tasks is a configuration parameter.)

 RETURN VALUE

If t_create successfully created a task, the tid is filled in, and 0 is returned.

Page 8

Real Time Executive Interface Definition

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Too many tasks.

No more memory for stack(s) segment.
Superstk too small.

Invalid priority.

NOTES

Not callable from ISR.

Will not cause a preempt.

January 22, 1988

Page 9

January 22, 1988 Real Time Executive Interface Definition

3.1.2 TIDENT

NAME
t_ident — "Obtain id of a task"
SYNOPSIS
uint t_ident (name, node, &tid)
uint name; /* user defined 4-byte task name */
/* 0 indicates requesting task */
uint node; /* node identifier */
/* 0 indicates any node */
uint tid; /* task id - returned by this call */

DESCRIPTION

This directive allows a task to obtain the tid of itself or another task in the system. The tid must
_ then be used in all calls to the executive requiring a tid.

If the task name is not unique, the tid returned may not correspond to the task named in this
call.)

The task identified by its name may exist on the local processor or any remote processor in a
multiprocessor configuration, as long as the task was created with the GLOBAL flags value set

(see t_create). If the task name is not unique within the multiprocessor configuration, a non-zero
node identifier must be specified in the node field.

RETURN VALUE

If t_ident succeeded, the #d is filled in, and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS

Task with this name does not exist.

Invalid node identifier.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

Page 10

Real Time Executive Interface Definition January 22, 1988

3.1.3 T_START

NAME
t_start -« "Start a Task"
SYNOPSIS

uint t_start (tid, saddr, mode, argp)

uint tid; /* task id as returned from t_create or t_ident */
ptf saddr; /* start execution address of task */
uint mode; /* initial mode value of task */

long (*argp)(4]; /* pointer to argument list */

The mode value is defined as follows:

o NOPREEMPT set to disable preempting
clear to enable preempting
TSLICE set to enable timeslicing
clear to disable timeslicing
NOASR set to disable asynchronous signal processing
clear to enable asynchronous signal processing
SUPV set to execute in supervisor mode
clear to execute in user mode
LEVEL interrupt level when SUPV is set
DESCRIPTION

The task identified by the tid is made ready, based on its current priority, to await execution. A
task can be started only from the dormant state.

Saddr is the logical address where the task wants to start execution. Mode contains the flag
values to enable/disable preempting, timeslicing, asynchronous processing, supervisor mode and
an optional interrupt level when the task starts execution.

Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack of the
task being started. A fifth argument, the executive’s fatal error handler, is also pushed onto the
task’s stack. Should the task attempt to exit the procedure (which normally causes unpredictable
behavior), the executive’s fatal error handler will be executed. The user must take this frame into
consideration when calculating the size of a task’s stack(s).

fatal

January 22, 1988 Real Time Executive Interface Definition
The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create).

RETURN VALUE

If ¢ start successfully started the task, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid #d.

Task not in dormant state.

Task not created from local node.

NOTES

Not c'alhble from ISR.

May cause a preempt if the task being started has a higher priority than the running task, and
the preempt mode is in effect.

Page 12

_If the call was not successful, an error code is returned.

Real Time Executive Interface Definition January 22, 1988

3.1.4 T_RESTART

NAME
t_restart — "Restart a Task"
SYNOPSIS

uint t_restart (tid, argp)

uint tid; /* task id as returned from t_create or t_ident */
long argp[4]; /* pointer to argument list */

DESCRIPTION

The task identified by the ¢id is made ready. If the task was blocked, the executive unblocks it.
The task’s superstk, userstk, and priority are set to their original values established when the task
was created using t.create. The task’s start address saddr and mode are set to their original
values established when the task was started using t_start. A task can be restarted from any
state.

Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack -of the
task being ~estarted. This argument list may be different from the original argument list. A fifth
argument, the executive’s fatal error handler, is also pushed onto the task’s stack. Should the
task attempt to exit the procedure (which normally causes unpredictable behavior), the
executive’s fatal error handler will be executed.

Tasks which anticipate being restarted can use the arguments to distinguish between initial
startup and a restart.

Due to the capability of this call to unblock a task, this call is useful to delete a task in the sys-
tem. Tasks which anticipate being deleted can use the arguments to distinguish between initial
startup and deletion.

fatal

L
=S

The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create). .

RETURN VALUE

If t_restart successfully restarted the task, then 0 is returned.

Page 13

January 22, 1988 Real Time Executive Interface Definition

ERROR CONDITIONS
Invalid tid.

Task has never been started.
Task not created from local node.
NOTES

Not callable from ISR.

May cause a preempt if the task being restarted has a higher priority than the running task, and
the preempt mode is in effect.

-t

Page 14

Real Time Executive Interface Definition January 22, 1988

3.1.5 T_DELETE

NAME
t_delete — "Delete a Task"
SYNOPSIS
uint t_delete (tid)
uint tid; /* task id as returned from t_create or t_ident *f
/* 0 indicates requesting task */
DESCRIPTION

This directive allows a task to delete itself, or the task identified in the tid field. The executive
halts execution of the task and frees the task data structure.

¥
The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create).

RETURN VALUE

If the task identified in the ¢id ‘field is the requesting task, then t delete always succeeds, and
there is no return.

If the task identified in the tid field is not the requesting task, and t_delete successfully deleted the
task, then 0 is returned to the requesting task.

If the task identified in the tid field is not the requesting task, and the call was not successful, an
error code is returned to the requesting task.

ERROR CONDITIONS

Invalid tid.

Task not created on local node.

NOTES

Not callable from ISR.

A new task is scheduled when the requesting task deletes itself, and there is no return.

Tasks are responsible for returning resources to the executive before deleting itself. It is sug-

gested that a task needing to delete another task use as_send or L restart to inform the task to
return its resources and then delete itself.

Page 15

January 22, 1988 Real Time Executive Interface Definition

3.1.6 T_SUSPEND

NAME
t_suspend — "Suspend Task"
SYNOPSIS
uint t_suspend (tid)

uint tid; /* task id as returned from t_create or t_ident */

/* 0 indicates requesting task */

DESCRIPTION
The executive will prevent future execution of the task identified in the tid field. The task
identjfied by the tid is placed in a suspended state. The suspended state is in addition to the
other wait states; waiting for memory, for a message, for an event, for a semaphore, or for a

timeout.

The t_resume directive lssued by another task removes the suspended state. The task is made
ready unless blocked by any o-her wait state.

The task identified by the tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
tcreate).

RETURN VALUE

If the task identified in the tid field is the requesting task, then t_suspend always succeeds and
returns 0 when the task runs.

If the task identified in the tid field is not the requesting task, and tsuspend successfully put the
task in the suspend state, then 0 is returned to the requesting task.

If the task identified in the tid field is not the requesting task, and the call was not successful, an
error code is returned to the requesting task.

ERROR CONDITIONS
Invalid tid.

Task already suspended.
NOTES

Not callable from ISR.

The running task will be blocked if suspending itself.

Real Time Executive Interface Definition January 22, 1988

3.1.7 T_RESUME

NAME
t_resume — "Resume a Task"
SYNOPSIS

uint t_resume (tid)
uint tid; /* task id as returned from t_create or t_ident */

DESCRIPTION

The t_resume directive removes the task identified in the tid field from the suspended state.

If the task was waiting for memory, for a message, for an event, for a semaphore, or for a
timeout, then the task will not be scheduled. Otherwise, the task is scheduled to await execution.
If the task is the highest priority ready to run task, it will cause a preempt.

The task identified by the tid may exist on the local processor or any remote brocessor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL_ﬂags value set (see
tcreate). ‘) :
RETURN VALUE

If tresume successfully resumed the task, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Task not suspended.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

May cause a preempt if the the resumed task is ready to run and has a higher priority than the

running task, and the preempt mode is in effect. A preempt will not occur if the resumed task
exists on a remote processor in a multiprocessor configuration.

Page 17

January 22, 1988 Real Time Executive Interface Definition

3.1.8 T_SETPRI

NAME
t_setpri — "Set Task Priority"
SYNOPSIS
uint t_setpri (tid, priority, &ppriority)

uint tid; /* task id as returned from t_create or t_ident */

/* 0 indicates requesting task */
uint priority; /* task priority */
/* 0 indicates current priority */
uint ppriority; /* previous priority - returned by this call */
0

DESCRIPTION &~
This directive clnn,(s the current priority of the task identified in the tid field to the new value
specified by taskattr. A task may change its own priority or the priority of another task. The
task will be scheduled according to the new nriority.
Priority level sero is reserved by the system, and may not be used. as a priority. If zero is
specified in the priority.field, the task’s current priority will be returned. The executive will sup-
port a minimum of 32 priorities.
The task identified by the tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
t_create).
RETURN VALUE
If t_setpri successfully changed the task priority, the ppriority is filled in, and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid priority.
NOTES
Not callable from ISR.
May cause a preempt if the running task lowers its own priority, or raises the priority of another

task, and the preempt mode is in-effect. A preempt will not occur if the task having its priority
raised exists on a remote processor in a multiprocessor configuration.

Page 18

Real Time Executive Interface Definition January 22, 1988

3.1.9 T .MODE

NAME
t_mode — "Change Task Mode"
SYNOPSIS
uint t_mode (mode, mask, &pmode)
uint mode; /* new mode */

uint mask; /* mask */
uint pmode; /* previous mode - returned by this call */

The mode and mask values are defined as follows:

NOPREEMPT set to disable preempting
clear to enable preempting

TSLICE set to enable timeslicing
clear to disable timeslicing

NOASR set to disable asynchronous signal processing

N clear “to enable asynchronous signal processing

SUPV set to execute in jupervisor mode (
clear to execute in user mode

LEVEL interrupt level when SUPV is set

DESCRIPTION

T_mode enables and disables several modes of execution for the calling task. A task may
enable/disable timeslicing, enable/disable preempting, enable/disable asynchronous signal process-
ing, or execute in supervisor mode at an optional interrupt level.

Tasks have the ability to process signals asynchronously. Any task with a valid asynchronous
signal routine (asr) which needs to temporarily disable asynchronous processing should use this
directive.

To change a particular mode, the user must indicate which mode is being changed by setting the
appropriate value in the mask parameter, and then set the appropriate value in the mode parame-
ter to the new mode. For example, if the user only wants to change the preempt mode charac-
teristic, he would set the mask value to NOPREEMPT and the mode value to NOPREEMPT
to disable preempting, or the mode field to 0 to enable preempting.

If the preempt mode is not in effect, timeslicing will not take place.

RETURN VALUE

The t_mode call always succeeds, pmode is filled in, and 0 is returned.

NOTES)) -

Page 19

January 22, 1988 Real Time Executive Interface Definition

Not callable from ISR.
May cause a preempt if the running task enables preempting.

Refer to as_cateh for discussion on receiving asynchronous signals.

Page 20

Real Time Executive Interface Definition January 22, 1988

3.1.10 T_.GETREG

NAME
t_getreg — "Get a task’s register”
SYNOPSIS

uint t_getreg (tid, regnum, ®val)

uint tid; /* task id as returned from t_create or t_ident */
uint regnum; /* register number */
uint regval; /* register value - returned by this call */

The regnum field values are:

; S_REGO0 System defined register 0
S_REG1 System defined register 1
S_REG2 System defined register 2
S_.REG3 System defined register 3
S_REG4 System defined register 4
S_REGS5 System defined register 5
S_REG8 System defined register 8
S_REG7 System defined register 7

U_REGO User defined register 0
U_REG1 User defined register 1
U_REG2 User defined register 2
U_REG3 User defined register 3
U_REG4 User defined register 4
U_REGS5 User defined register 5
U_REG8 User defined register 8
U_REG7 User defined register 7

DESCRIPTION

The executive returns the register value in the regval field for the register identified in the regnum
field and the task identified by the tid.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flags value set (see
t_create).

RETURN VALUE

If t_getreg is successful, rcg_val is filled in, and O is returned. -

" If the call was not successfu»l! an error code is returned.

Page 21

A

January 22, 1988 Real Time Executive Interface Definition

ERROR CONDITIONS
Invalid tid.

Invalid register number.

ISR cannot reference remote node.
NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 22

Real Time Executive Interface Definition January 22, 1988

3.1.11 T_SETREG

NAME
t_setreg — "Set a task’s register”
SYNOPSIS

uint t_setreg (tid, regnum, regval)

uint tid; /* task id as returned from t_create or t_ident */
uint regnum; /* register number */
uint regval; /* register value */

The regnum field values are:

S_.REG0 System defined register 0
S_REG1 System defined register 1
S_REG2 System defined register 2
S_REG3 System defined register 3
S_.REG4 System defined register 4
S_REG5 System defined register 5
S_REG8 System defined register 8
S_REG7 System defined register 7

U_REGO User defined register 0
U_REG1 User defined register 1
U_REG2 User defined register 2
U_REG3 User defined register 3
U_REG4 User defined register 4
U_REGS User defined register 5
U_REG8 User defined register 8
U_REG7 User defined register 7

DESCRIPTION

The executive sets the register identified in the regnum field for the task identified by the tid with
the value in the regval field.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flags value set (see
t_create).

RETURN VALUE .
If t_setreg successfully set the register value, 0 is returned.

If the call was not successful, an error code is returned. -

Page 23

January 22, 1988 Real Time Executive Interface Definition

ERROR CONDITIONS

Invalid tid.

Invalid register number.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 24

Real Time Executive Interface Definition January 22, 1988

3.2 Message, Event, and Signal Management

The executive supports communication and synchronisation between tasks using messages and
events. Asynchronous communication is supported using signals.

3.2.1 Message Manager

The message queue is the data structure supporting inter-task communication and synchroniza-
tion. One or more tasks may send mesugea to the message queue, and one or more tasks may
request messages from the queue.

Message queues are created at run time using the g_create directive. The creator assigns a 4-byte
name and attributes to the queue. The attributes define whether tasks waiting on messages from
the queue will wait first-in, first-out (FIFO), or by task priority, and whether the queue will limit
the number of messages queued to a specified maximum, or allow an unlimited number of mes-
sages.

A message queue is identified by both a name, assigned by the creator, and a message queue id (
qld), assigned by the executive at g_create time. The g¢id is returned to the caller by the g_create
directive, and must be used by tasks to send and receive messages from the message queue. Tasks
other than the task which created the message queue can obtain the gid by using the g_ident
directive.

Messages are sent to the message queue from any tack which knows the gid, using the g¢_send,
" g-urgent, and ¢_broadcast directives. :

When a message arrives at the queue, it will be copied into one of two places. If there is one or
more tasks waiting at the queue, then the message is copied into the message buffer belonging to
the waiting task. The task is removed from the wait list and is made ready. If there are no tasks
waiting at the queue, then the message is copied into a system message buffer (the executive main-
tains a pool of system message buffers for this purpose). This system message buffer is entered
into the message queue. If the message was sent using g_send, the message is entered at the tail
of the queue. If the message was sent using g_urgent, the message is entered at the head of the
queue. The ¢_broadcast directive sends a message to all tasks waiting at the queue, so they
become ready to run. The count of readied tasks is returned to the caller.

Messages are received from the message queue using the g_receive directive. When this directive

is called, and a message is in the queue, the message is copied to the task’s message buffer, and

the directive is complete. When no message is in the queue, there are several ways to proceed. If

the calling task asked to wait, the task will be entered into the queue’s wait list according the

quene’s attributes (FIFO or priority). If the calling task asked to wait with timeout, the task will

be entered into a timeout list. If the calling task asked not to wait, the task will be returned to
with an error code for no message available.

Message queues can be deleted by tasks knowing the gid using the g_delete directive. If any mes-
sages are queued, the executive will claim and return the system message buffers to the system
message buffer pool. If any tasks are waiting on the queue, then the executive will remove them
from the wait list and make them ready. Waiting tasks will return from the g¢_receive directive
with the message queue deleted error.

The message manager defines a ﬁxeuage as being fixed length, 18-bytes. The content o_f the mes-
sage is user defined. It may be used to carry data, pointers to data, or nothing at all.

Page 25

January 22, 1988 o Real Time Executive Interface Definition

The directives provided by the message manager are:

Directive Function

—_—
q-create Create queue
q-ident Obtain id of a queue
q-delete Delete queue
q-send Send message
q-urgent Urgent message
q-broadcast | Broadcast message
g_receive Receive message

3.2.2 Event Manager

Although inter-task synchronisation can be accomplished using the message queue, the executive
also provides a second, higher performance method of inter-task synchronization, using events.

Events are different from messages in that they are directed at other tasks. They are also
different from messages in that they carry no information, and they cannot be queued. The final
difference is tasks can wait for several events at one time, but cannot wait on multiple message
queues at one time.

Every task in the system has the ability to send and receive events. Events are simply bits
encoded into’s event mask. Thirty-two events are available; sixteen will be available as system
events and sixteen will be available as user events. A task can send one or more events to another
task using the ew_send directive. The tid of the destination task is required as input, along with
the event set. ‘

A task can receive events using the ev_receive directive. The events to receive are input to the
directive, along with an option to wait on all of the events, or just one of them. If the events are
already pending, then the event mask is cleared before returning to the calling task. If the event
condition cannot be satisfied, and the calling task asked to wait, the task will be blocked. If the
calling task asked to wait with timeout, the task will be entered into a timeout list. Tasks that
do not want to wait for the event condition must specify this as an option. If the event condition
was not pending, then an error code for event condition not met is returned.

The directives provided by the event manager are:

Directive Function

ev_send Send event
ev_receive | Receive event

Page 28

Real Time Executive Interface Definition January 22, 1988

3.2.3 Signal Manager -

Asyiichronou communication is supported through the use of signals.

Signals, like events, are simply bits encoded into a signal mask. Thirty-two signals are available;
sixteen will be available as system signals and sixteen will be available as user signals.

A task can send one or more signals to another task tum; the aa_send directive. If the receiving
task has set up an asynchronous signal routine (ur) using the as_cateh directive, the task will be
dispatched to the signal routine.

A task may asynchronously receive signals by establishing an asynchronous signal routine (asr) to
catch them using the asa_cateh directive. When a signal is caught, the task will be dispatched to
the asr address when it becomes the running task. The signal condition will be passed to the task
to enable it to determine what signals occurred.

The as_return directive must be executed to return the task to its previous dispatch address.

The directives provided by the signal manager are:

Directive | Function

as_catch Catch signal
as_send Send signal
as_return | Return from signal

Page 27

January 22, 1988 Real Time Executive Interface Definition

3.2.4 Data Structures for Mess-nge Management

Definitions for events and asynchronous signals are as follows:

Sy

S_EXECO0 System Software defined
S_EXEC1 System Software defined
S_EXEC2 System Software defined
S_EXEC3 System Software defined
S_EXEC4 System Software defined
S_EXECS System Software defined
S_EXECS System Software defined
S_EXEC7 System Software defined
S_EXECS System Software defined
S_EXEC9 System Software defined
S_EXEC10 System Software defined
S_EXEC11 System Software defined
S_EXEC12 System Software defined
S_EXEC13 System Software defined
S_EXEC14 System Software defined
S_EXEC15 System Software defined
S_USERO User defined
S_USER1. User defined
S_USER2 User defined
S_USER3 User defined
S_USER4 User defined
S_USERS User defined
S_USERS User defined
S_USER7 User defined
S_USERS User defined
S_USERS9 User defined
S_USER10 User defined
S_USER11 User defined
S_USER12 User defined
S_USER13 User defined
S_USER14 User defined
S_USER15 User defined

Page 28

Real Time Executive Interface Definition January 22, 1988

3.2.5 Q_CREATE

NAME
g-create — "Create a Message Queue”
SYNOPSIS

#include < messageh>
uint gcreate (name, count, flags, &qid)

uint name; /* user defined 4-byte name */

uint count; /* maximum message and reserved buffer count */
uint flags; /* process method */

uint qid; /* message queue id - returned by this call */

The flags values are:

PRIOR set to process by priority
clear to process by FIFO
GLOBAL set to indicate the queue is a
multiprocessor global resource.
clear to indicate the queue is local

TYPE set to process typed messages
clear to process messages without regard to type
LIMIT set to limit queue entries to number in count field

clear NO limit on queue entries and no reserved buffers
RESVD set to reserve system buffers equal to count when LIMIT is set
clear NO reserved system buffers when LIMIT is set

DESCRIPTION

The gcreate directive creates a message queue by allocating and initialising a message queue data
structure. A message queue is created by name. A message ¢id is returned. Subsequent sending
and receiving calls must reference the message queue with its message gid.

By setting the PRIOR value in the flags field, tasks waiting for messages in the queue will be
processed by task priority order. Otherwise the tasks waiting for messages will be processed by
first in, first out (FIFO) order.

By setting the TYPE value in the flags field, messages sent to this queue may be processed by
type.

The user may put a limit on the number of messages at the message queue by setting the LIMIT
value in the flags field, and placing the count in the count field. The user may additionally
reserve a number of system message buffers equal to the count in the count field by setting the
RESYVD value in the flags field.

By setting the GLOBAL value in the flags field, the message gid will be sent to all processors in

Page 29

January 22, 1988 - Real Time Executive Interface Definition

the system, to be entered into a global resource table. The system is defined as the collection of
interconnected processors. The message queue is always created on the local node. -

The maximum number of message queues that can be in existence at one time is a configuration
parameter.

The maximum number of system message buffers is a configuration parameter.
RETURN VALUE

If the g_create directive succeeds, the ¢id is filled in, and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Too many message queues.

No more system message buffers.

NOTES

Not callable from ISR.

Will not cause a preempt.

Page 30

Real Time Executive Interface Definition __ January 22, 1988

3.2.6 QIDENT

NAME
g-ident — "Obtain id of a Message Queue™
SYNOPSIS

#include <message.h>
uint q-ident (name, node, &qid)

uint name; /* user defined 4-byte name */
uint node; /® node identifier */
/* 0 indicates any node */
uint qid; /* message queue id - returned by this call */

DESCRIPTION

The g_ident directive allows a task to identify a previously created message queue by name and
receive the message ¢id to use for send and receive directives for the queue.

If the message queue name is not unique, the message gid returned may not correspond to the
message queue named in this call.

The message queue may exist on the local processor or any remote pr&emr in a multiprocessor
configuration, as long as the queue was created with the GLOBAL flags value set (see g—create).
If the message queue name is not unique within the multiprocessor configuration, a non-sero node
identifier must be specified in the node field.

RETURN VALUE

If the g_ident directive succeeds, the ¢id is filled in, and 0 is returned.
If the call was not succeasful, an error code is returned.

ERROR CONDITIONS

Named message queue does not exist.

Invalid node identifier.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

Page 31

g

January 22, 1988 —— Real Time Executive Interface Definition

3.2.7 Q_DELETE

NAME
q—delete — "Delete a Message Queue”
SYNOPSIS

#include <message.h>
uint g_delete (qid)

uint qid; /* message queue id returned from g_create or q_ident */

DESCRIPTION

The g delete directive deletes the message queue identified by the gid, freeing the data structure.
When a message queue is deleted, it could be in one of three states: empty, tasks waiting for
messages, messages waiting for tasks. If empty, the data structure of the message queue is
returned to the system. If tasks are waiting, each is made ready and given a return code indicat-
ing a deleted message queue. If messages are waiting, then each system message buffer is returned
to the system message buffer pool, and the message it is carrying is therefore lost.

The message queue must exist on the local processor. If the message queue was created with the
GLOBAL flags value set in a multiprocessor configuration, a notification will be sent to all pro-

cessors in the system, so the ¢id can be deleted from the global resource table.

The requester does not have to be the creator of the message queue. Any task knowing the gid
can delete it. 1

RETURN VALUE

If the g_delete directive successfully deleted the message queue, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message ¢id is invalid.

Message queue not created from local node.

NOTES

Cannot be called from within an ISR.

May cause a preempt if a task wait-ing at the message queue has a higher priority than the run-

ning task, and the preempt mode is in effect. A preempt will not occur if all tasks waiting at the
message queue exist on a remote processor in a multiprocessor configuration.

Page 32

Real Time Executive Interface Definition - .) January 22, 1988

3.2.8 Q_SEND

NAME
q-send — "Send a Message to a Message Queue"
SYNOPSIS

#include <message.h>
uint q_send (qid, buffer)

uint qid; /* message queue id returned from gq_create or g_ident */
long (*buffer)[4]; /* pointer to message buffer */

DESCRIPTION

The g_send directive sends a message to the queue identified by the gid.

If a task is already waiting at the queue, the message is copied to that task’s indicated receiving
buffer. The waiting task is then made ready. If there is no task waiting, the message is copied to

a system message buffer which is then placed at the end of the message queue.

Once sent, the task’s message buffer may be reused immediately. A message is fixed length, 18-
bytes. ’ ’) '

The message quene may exist on the local processor or any remote processor in a multiprocessor
configuration, as long as the queue was created with the GLOBAL flags value set (see g_create).

RETURN VALUE

If the ¢_send di:ective successfully sent a2 message, then 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message ¢id is invalid.

Out of system message buffers.

Message queue at maximum count.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.
May cause a preempt if a task waiting at the message queue has a higher priority than the run-

ning task, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on
a remote processor in a multiprocessor configuration.

Page 33

Real Time Executive Interface Definition

January 22, 1988 _

3.2.9 Q_URGENT

NAME
g-urgent — "Place an Urgent Message at the Head of a Message Queue"
SYNOPSIS

#include <message.h>
uint g-urgent (qid, buffer)

uint qid; /* message queue id returned from g_create or q_ident */
> long (*buffer)[4]; /* pointer to message buffer */

DESCRIPTION

The g_urgent directive sends a message to the queue identified by the gid. This call is the same as
the g_send call, except, if there are other messages at the queue, this message is put at the head of
the queue.

If a task is already waiting at the queue, the message is copied to that task’s indicated receiving
buffer. The task is then made ready. If there is no task waiting, the message is copied to a sys-

tem buffer which is then placed at the head ¢ “the message queue.

Once sent, the task’s message area may be reused immediately. A message is fixed length, 16-
bytes.

The message queue may exist on the local processor or any remote processor in a multiprocegsor
configuration, as long as the queue was created with the GLOBAL flags value set (see g_create)-

RETURN VALUE

If the g_urgent directive successfully sent a message, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message gid is invalid,

Out of system message buffers.

Message queue at maximum count. -

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.

May cause a preempt if a task waiting at the message queue has a higher priority than the run-
ning task, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on

Page 34

Real Time Executive Interface Definition i January 22, 1988

a remote processor in a multiprocessor configuration.

Page 35

January 22, 1988 -7 Real Time Executive Interface Definition

3.2.10 Q BROADCAST

NAME
q-broadcast — "Broadcast N Identical Messages to a Message Queue"
SYNOPSIS

#include <message.h>
uint g-broadcast (qid, buffer, &count)

uint qid; /* message queue id returned from g_create or q_ident */

long (*buffer)[4]; /* pointer to message buffer */

uint count; /* number of tasks made ready - returned by this call */
DESCRIPTION

The g_broadcast directive sends as many messages as necessary to make ready all tasks waiting on
the queue identified by the ¢gid. The number of tasks readied is returned to the caller in count.

Once sent, the task’s message buffer may be reused immediately.

Th: message quene may exist on the local processor or any remote processor in a multiprocessor
configuration, as long as the queue was created with the GLOBAL flags value set (see g_create).

RETURN VALUE

If the ¢_broadcast directive succeeds, the count is filled in with the number of tasks readied, and 0
is returned. ¢

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message gid is invalid.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.
May cause a preempt if a task waiting at the message queue has a higher priority than the run-

ning task, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on
a remote processor in a multiprocessor configuration.

Page 38

Real Time Executive Interface Definition January 22, 1988

3.2.11 Q_RECEIVE
NAME
q-receive — "Receive a Message from a Message Queue”

SYNOPSIS

#include <message.h>
uint q_receive (gid, buffer, flags, timeout)

uint qid; /* message queue id returned from g_create or q_ident */
long (*buffer){4]; /* pointer to message buffer */

uint flags; /* options */

uint timeout; /* number of ticks to wait */

/* 0 indicates wait forever */

The flags values are:

NOWAIT set if the task is to return immediately
clear if the task is to wait for a message

DI:SCRIPTION

The g_receive directive allows a task to request a message from the message queue identified by
qid.

If there is a message at the message queue, it is copied into the requester’s buffer.
&

If there is no message at the message queue, then the NOWAIT flag determines what to do. If
the NOWAIT flags value is set, the task returns immediately with -1 and the no message at
queue error number. If the NOWAIT flags value is clear, the task is put on a wait list for the
message queue, according the queue’s attributes (FIFO or priority).

The timeout field is used to determine how long to wait. A zero in the timeout field indicates no
timeout — wait forever. A non-sero entry in the timeout field indicates that the task will run

after that many ticks, if a message has not been received, or before if a message is received.

When ¢_receive is called from an ISR, the no wait option is forced by the executive. Thus there
will be no waiting for a message. An error will be returned if there is no message.

The message queue may exist on the local processor or any remote processor in a multiprocessor
configuration, as long as the queue was created with the GLOBAL flags value set (see g—create).

RETURN VALUE
If the g_receive directive succeeds, then 0 is returned.

If the call was not successful, an error code is returned.

Page 37

January 22, 1988) Real Time Executive Interface Definition

ERROR CONDITIONS

Message ¢id is invalid.

No message at quene (if no wait is selected).

Message queue deleted.

Timed out with no message (if wait and timeout is selected).
ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.
The executive will force the options to no wait.

The requesting task may be blocked if there is no message available, and the wait option is
selected.

Page 38

Real Time Executive Interface Definition - - January 22, 1988

3.2.132 EV_SEND

NAME
ev_send —~ "Send Event to a Task”
SYNOPSIS
uint ev_send (tid, event)
uint tid; /® task id as returned by t_create or t_ident */
uint event; /* event set */
DESCRIPTION
The ev_send directive sends an event to a task. The event field describes the set of events the
task wishes to send. Thirty-two events are available. Sixteen are available as system events and
sixteen are available as user events.
The task identified by the ¢id may exist on the local -processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
t.create).
Events sent to tasks not waiting for an event are left pending.
RETURN VALUE ‘
If the ev_send directive succeeds, then 0 is returned.
If the call was not successful, an error code is returned. ¢
ERROR CONDITIONS
Invalid tid.
ISR cannot reference remote node.
NOTES
Can be called from within an ISR, except when the task was not created from the local node.
May cause a preempt if the task waiting for the event has a higher priority than the running

task, and the preempt mode is in effect. A preempt will not occur if the task waiting exists on a
remote processor in a multiprocessor configuration.

Page 39

January 22, 1988 _] = <" Real Time Executive Interface Definition

3.2:.13 EV_RECEIVE

NAME

ev_receive — "Receive Event"

SYNOPSIS

uint ev_receive (eventin, flags, timeout, &eventout)

uint eventin; /* input event condition */
uint flags; /* options */
uint timeout; /* number of ticks to wait */
/* 0 indicates wait forever */
uint eventout; /* output events - returned by this call */

The flags values are:

NOWAIT set if the task is to return immediately
clear if the task is to wait for event condition
ANY set return when any one
T of the indicated events has occurred
clear return when all
of the indicated events have occurred

DESCRIPTION

4
The ev_receive directive allows a task to receive an event condition. The event condition to
receive is a set of events specified in the eventin field.

The task may elect to wait for the event condition, or return immediately by setting the
NOWAIT value in the flags field. The task may elect to receive all of the events, or receive any
one of them by setting the ANY value in the flags field.

When pending events satisfy the event condition, the events are cleared and the task will remain
running. Otherwise, if the task elects to wait, the task will become blocked. The task will be
made ready to run when the event condition is satisfied by new events, or the timeout condition is
met.

When pending events do not satisfy the event condition, and the task elects not to wait, the task
returns immediately with -1 and the no event available error number.

If the eventin field is 0, ev_receive will return the pending events, but the events will remain
pending.

The timeout field is used to determine how long to wait. A zero in the timeout field indicates no
timeout — wait forever. A non-sero entry in the timeout field indicates that the task will run
after that many ticks, if the event condition is not satisfied, or before if the event condition is
satisfied.

Page 40

Real Time Executive Interface Definition - _ - January 22, 1988

RETURN VALUE

If the en_receive directive succeeds, eventout is filled in with the- output events, and 0 is returned.
If the call was not successful, an error code is returned. _
ERROR CONDITIONS

Event not satisfied (if no wait is selected).

Timed out with no event (if wait and timeout is selected)-

NOTES |

Cannot be called from within an ISR.

The requesting task may be blocked if the event condition is not satisfied, and the wait option is
selected.

Page 41

January 22, 1988 Real Time Executive Interface Definition

3.2.14 AS_CATCH

NAME
as_catch — "Catch Signals"
SYNOPSIS
uint as_catch (asraddr, mode)
ptf asraddr; /* address of Asynchronous Signal Routine (asr) */
/* 0 indicates asr is invalid */
uint mode; /* mode value for asr */
The mode value is defined as follows:

NOPREEMPT set to disable preempting
clear to enable preempting

TSLICE set to enable timeslicing
clear to disable timeslicing
DISASR set to disable asr processing
clear to enable asr processing
SUPV set to execute in supervisor mode
' clear to execute in user mode
" LEVEL interrupt level when SUPV is set

DESCRIPTION

The as_catch directive allows a task to specify what action to take when catching signals.

The asr address is established when as_cateh is called with a non-sero address in the asraddr field.
Zero is not a valid asr address. The asr is invalidated when as_cateh is called with the asraddr
field equal sero. Asynchronous signal processing will be discontinued until re-enabled with a valid
asr address in another aa_catch call.

When a signal is caught, the task is not unblocked. Signals are latched until the task becomes
the running task, at which time the task is dispatched to its asr. The task will execute the asr
according to the values specified in the mode field. The signal condition will be passed to the
task, along with the the task’s current PC and mode, on the task’s stack in a signal stack frame.
The signal condition contains all of the signals which have been received since the last time the
task was executing.

The asr is responsible for saving and restoring all registers it uses.

The as_return directive must be executed to return the task to its previous dispatch address.

Only one asr per task is allowed.

RETURN VALUE

The as_cateh directive always succeeds, and returns 0.

Page 42

Real Time Executive Interface Definition —

ERROR CONDITIONS

None.

NOTES

Cannot be called from within an ISR.

Will not cause a preempt.

January 22, 1988

Page 43

S

January 22, 1988) ~ Real Time Executive Interfac:DeﬁniLion

NAME

as_send - "Send Signal to a Task"

SYNOPSIS

uint as_send (tid, signal)

uint tid; /* task id as returned by t_create or t_ident */

uint signal; /* signal set */
DESCRIPTION
The as_send directive sends signals to a task. The signal field describes the set of signals it wishes
to send. Thirty-two signals are available. Sixteen are available as system signals and sixteen are
available as user signals.
The signal set must be sent to tasks which have specified an asr using the as_cateh directive. If
the task identified by the tid does not have a valid asr, the caller returns with the invalid asr
error.
When a signal is sent to a task with a valid and enabled asr, the task will be dispatched to the
asr address when it becomes the running task. Signals sent to a blocked task are latched until
the task becomes the running task. Duplicate signals are not queued.
The task identified by the tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set {see
t_create).
RETURN VALUE
If the a2_send directive successfully sent the signal, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid asr.
ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created from the local node.

Page 44

January 22, 1988 Real Time Executive Interface Definition

3.2.156 AS_SEND

NAME
as_send — "Send Signal to a Task"
SYNOPSIS
uint as_send (tid, signal)

uint tid; /* task id as returned by t_create or t_ident */

uint signal; /* signal set */
DESCRIPTION
The aa_send directive sends signals to a task. The signal field describes the set of signals it wishes
to send. Thirty-two signals are available. Sixteen are available as system signals and sixteen are
available as user signals.
The signal set must be sent to tasks which have specified an asr using the as_catch directive. If °
the task identified by the tid does not have a valid asr, the caller returns with the invalid asr
error.
When a signal is sent to a task with a valid and enabled asr, the task will be dispatched to the
asr address when it becomes the running task. Signals sent to a blocked task are latched until
the task becomes the running task. Duplicate signals are not queued.
The task identified by the tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
t.create). '
RETURN VALUE
If the as_send directive successfully sent the signal, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid ase.
ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created from the local node.

Page 44

o

Real Time Executive Interface Definition | January 22, 1988

3.2.16 AS_RETURN

NAME

as_return — "Return from Signal Routine®
SYNOPSIS

void as_return ()

DESCRIPTION

The as_return must be used by tasks to return from an asynchronous signal routine (asr).
RETURN YVALUE

None.

ERROR CONDITIONS

Not in asr.

NOTES

This call is only used to return from an asr. Refer to the as_catch and as_send directives.

Page 45 .

January 22, 1988 _ - Real Time Executiy_e Interface Definition

3.3 Semaphore Management

The semaphore manager provides a set of directives to use in arbitrating access to a shared
resource (many-to-one). The semaphores primitives provided can be used to fulfill different sets of
requirements:

1. To control access to a single resource that is either available or not, the user can create a
semaphore with an initial value of 1.

2. To control access to a pool of "n® resources where at any moment "m" of those resources
are available (0 <=m <= n) and "n-m" are not, the user can create a semaphore with
an initial value of "n".

Arbitrating access to shared resources requires signaling that a predefined event has occurred.
Sophisticated synchronisation also requires a counter to record the number of events sent but not
yet received, and a list of tasks awaiting receipt of the event.

The semaphore data structure fulfills all the previous requirements. A semaphore possesses a
name to distinguish it from the other semaphores within the system, a semaphore id to enable
quick access to the semaphore, the requisite semaphore count variable to count the events, and a
list of waiting tasks. In addition to the semaphore count variable, the semaphore contains an ini-
tial count, used as an initial assignment value for the semaphore count.

The synchronisation rules for semaphores ar :

1. The sem'aphore count is decremented by 1, when a task does a sm_p operation. The task
continues execution if the count is then greater than or equal to zero. If the count is less
than sero, the task is put on a waiting list for the semaphore.

2. The semaphore count is incremented by one when a task does a sm_v operation. If the
count is less than or equal to zero, the first task in the semaphore waiting list is placed in
the ready state.

The directives provided by the semaphore manager are:

Directive Function

sm create | Get a semaphore

sm_ident Obtain the id of a Semaphore
sm_delete | Delete a semaphore

sm_p Access semaphore

sm_v Release semaphore

Page 46

Real Time Executive Interface Definition January 22, 1988

3.3.1 SM_CREATE

NAME

sm_create — "Create a Semaphore”
SYNOPSIS

#include <semaphore.h>

uint sm_create (name, count, flags, &smid)

uint name; /* semaphore name */

uint count; /* initial count */

uint flags; /* semaphore flags */

uint smid; /* semaphore id - returned by this call */

The flags field values are:

PRIOR set to process wait list by priority
clear to process wait list by FIFO
GLOBAL set to indicate the semaphore is a
multiprocessor global resource.
clear to indicate the semaphore is local.

DESCRIPTION p
The sm_create directive creates a semaphore and assigns it an initial count equal to the value in
the count field. The semaphore id is returned in smid. The smid must be used in subsequent

am_p, am_v, and sm_delete calls.

By setting the PRIOR value in the flags field, tasks waiting on a semaphore will be processed in
task priority order. Otherwise the tasks will be processed in first in, first out (FIFO) order.

By setting the GLOBAL value in the flags field, the smid will be sent to all processors in the sys-
tem, to be entered into a global resource table. The system is defined as the collection of intercon-

nected processors. The semaphore is always created on the local node.

The maximum number of semaphores that can be in existence at one time is a configuration
parameter.

RETURN VALUE
If sm_create successfully created the semaphore, the smid is filled in, and 0 is returned.

If the semaphore was not successfully created, an error code is returned.
ERROR CONDITIONS

Too many semaphores.

Page 47

— January 22, 1988

NOTES
Not callable from ISR.

Will not cause a preempt.

Page 48

Real Time Executive Interface Definition

Real Time Executive Interface Definition - - , January_2-2, 19-88

3.3.2 SM_IDENT

NAME

sm_ident — "Obtain the id of a Semaphore"
SYNOPSIS

#include <semaphore.h>

uint sm_ident (name, node, &smid)

uint name; /* semaphore name */
uint node; /* node identifier */
/* 0 indicates any node */
uint smid; /* semaphore id - returned by this call */

DESCRIPTION

The sm_ident directive allows a task to identify a previously created semaphore by name and
receive the smid to use in sm_p, sm_v and sm_delete directives for this semaphore.

If the semaphore name is not unique, the smid returned may not correspond to the semaphore
named in this call. :

The semaphore may exist on the local processor or any remote processor in a multiprocessor
configuration, as long as the semaphore was created with the GLOBAL flags value set (see

sm_create). If the semaphore name is not unique within the multiprocessor configuration, a non-
sero node identifier must be specified in the node field.

RETURN VALUE

If sm_ident succeeds, the smid will be filled in, and 0 is returned.
If sm_ident does not succeed, an error code is returned.
ERROR CONDITIONS

Named semaphore does not exist.

Invalid node identifier.

NOTES

Can be called from within an ISR.

Page 49

_January 22, 1988) Real Time Executive Interface Definition —

3.3.3 SM_DELETE

NAME

sm_delete — "Delete Semaphore®
SYNOPSIS

#include <semaphore.h>

uint sm_delete (smid)

uint smid; /* semaphore id as returned by sm_create or sm_ident *

DESCRIPTION
The semaphore identified by the smid is deleted from the system.

If tasks are waiting for the semaphore when the semaphore is deleted, each is made ready and
given a return code indicating a deleted semaphore.

The semaphore must exist on the local processor. If the semaphore was created with the GLO-
BAL flags value set in a multiprocessor configuration, a notification will be sent to all processors

in the system, so the smid can be deleted from the global resource table.

The requester does not have to be the creator of the semaphore. Any task knowing the smid can
delete it.

RETURN VALUE
If sm_delete successfully deleted the semaphore, 0 is returned.

If the semaphore was not successfully deleted, an error code is returned.

ERROR CONDITIONS

Invalid smid.

Semaphore not created from local node.

NOTES

Not callable from ISR.

May cause a preempt if a task waiting for the semaphore has a higher priority than the running

task, and the preempt mode is in effect. A preempt will not occur if all tasks waiting for the
semaphore exist on a remote processor in a multiprocessor configuration.

Page 50

Real Time Executive Interface Definition) ~_ January 22, 1988

3.3.4 SM P

NAME

sm_p — "Access Semaphore”
SYNOPSIS

#include <semaphore.h>

uint sm_p (smid, flags, timeout)

uint smid; /* semaphore id as returned by sm_create or sm_ident */
uint flags; /* wait option */
uint timeout; /* number of ticks to wait */

/* 0 indicates wait forever */

The flags field values are:

NOWAIT set return immediately with error if
semaphore count is negative
clear wait for resource
DESCRIPTION
If the NOWAIT flags value is clear, the current semaphore count of the semaphore identified, by
the smid is decremented by one. If the count is zero or positive, the requesting task continues
execution, returning without error. If the count is negative, the requesting task must wait for

access to the resource, and is put on a waiting list.

If the NOWALIT flags value is set, and the count is negative, an error is returned. If the count is
sero or positive, sero is returned.

The semaphore identified by the smid may exist on the local processor or any remote processor in
a multiprocessor configuration, as long as the semaphore was created with the GLOBAL flags
value set (see sm_create). :

When sm_p is called from an ISR, the no-wait option is forced by the executive.

RETURN VALUE

It "rg‘p succeeded, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid smid.

Timeout (if wait and timeout is selected).

Page 51

January 22, 1988 Real Time Executive Interface Definition

The semaphore count is negative (‘if no wait is selected).
Seﬁxaphore deleted. 7 |

ISR cannot reference remc;te node.

NOTES

Can be called from within an ISR, except when the semaphore was not created on the local node.
The no-wait option is forced by the executive.

The running task will be blocked if the count is negative.

Page 52

Rul Time Executive Interfai:e Definition - N January 22, 1988

3.3.5 SM_V

NAME

sm_v — "Release Semaphore"
SYNOPSIS

#include <semaphore.h>
uint sm_v (smid)

uint smid; /* semaphore id as returned by sm_create or sm_ident */

DESCRIPTION
The current semaphore count of the semaphore identified in the smid field is incremented by one.
If the count is sero or negative, the first task in the waiting list is removed from the list and is
made ready to await execution. If the task is of higher priority than the running task, it will
cause a preempt.
RETURN VALUE I

" If sm_v succeeded, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid smid.
ISR cannot reference remote node.
NOTES
Can be called from within an ISR, except when the semaphore was not created on the local node.
May cause a preempt if a task waiting on the semapﬁore has a higher priority than the running

task, and the preempt mode is in effect. A preempt will not occur if the task waiting exists on a
remote processor in a multiprocessor configuration.

Page 53

January 22, 1988 | “"Real Time Executive Interface Definition

3.4 Time Management

The executive time manager supports two concepts of time: calendar time and elapsed time.
These functions depend on periodic timer interrupts, and will not work without timer hardware.

The tm_set directive allows a task to inform the time manager of the current date and time (e.g.,
March 21, 1985; 12:04). The tm_get directive allows a task to request the current date and time
from the time manager (e.g., March 27, 1986; 09:24).

The tm_wkafter directive allows a task to remove itself from the running state and enter into a
wait state for a specified number of ticks. After the elapsed time expires, the task is made ready.

The tm_wkwhen directive allows a task to remove itself from the running state and enter into a
wait state until a specific date and time is reached. When the date and time is reached, the task
is made ready.

The tm_evafter directive allows a task to receive a timer event after the specified number of sys-
tem clock ticks have occurred. The requesting task fis not blocked by this call. To receive the
event, the ev_receive directive must be used.

The tm_evwhen directive allows a task to receive a timer event when the specified date and time
is reached. The requesting task is not blocked by this call. To receive the event, the cv_receive
directive must be used.

The tm_cancel directive allows a task to cancel a timer event scheduled bf the tm_evafter or
tm_evwhen directives. . .

The tm_tick directive allows a task or an interrupt service routine to inform the system of the
occurrence of a system clock tick. This information is used to maintain correct calendar time,
execute timeslicing, and decrement ticks from tasks which are currently being delayed or timing
out. 4

Tick and timeslice are configuration parameters. A tick is defined to be some integral number of
milliseconds. A timeslice is defined to be some integral number of ticks.

The directives provided by the time manager are:

| Directive Function

tm_set Set date and time

tm_get Get date and time
tm_wkafter | Wake after interval
tm_wkwhen | Wake when date and time

tm_evafter Send event after interval
tm_evwhen Send event when date and time
tm_cancel Cancel timer event

tm_tick Announce tick

Page 54

Real Time Executive Interface Deﬁhition“;a_

3.4.1 Timebuf Structure

January 22, 1988

The time and date buffer structure is defined as follows:

struct time_ds {
struct t_date date;
struct t_time time;
uint ticks;

b
Date is defined as follows:

struct t_date
short
char
char

¢
Time is defined as follows:

struct t_time
short
char
char

£

/* date */
/* time */
/* current elapsed ticks between seconds */

{

year;
month;
day;

{

hour;
minute;
second;

/* year, AD. */
/* month, 1->12 */
/* day, 1->31 %/

/* hour, 0->23 */
/* oinute, 0-> 59 */
/* second, 0-> 59 */

Page 55

January 22, 1988 ' ~ Real Time Executive Interface Definition

3.4.2 TM_SET - - i

NAME

tm_set — "Set System Time and Date"”
SYNOPSIS

#include <time.h>

uint tm_set (timebuf)

struct time_ds *timebuf; /* pointer to time and date structure */

DESCRIPTION

The tm_set directive sets or resets the date and time of all nodes within the system. The parame-
ters within the time and date structure are validated, and an error will be returned if they are
out of range.

After this call is successfully completed, the system maintains the date and time based upon the
frequency of system clock ticks. The current ‘date and time may be obtained by using the tm_get
directive. :

RETURN VALUE

If tm_set successfully set the date and time, then 0 is returned.

If the date and time were not successfully set, an error code is returned.

ERROR CONDITIONS ‘
Date input parameter error.

Time input parameter error.

Ticks input parameter error.

NOTES

Callable from ISR.

May cause a preempt if setting the time causes a task on the timeout list to become ready, and
that task has a higher priority than the running task, and the preempt mode is in effect.

Page 58

Real Time Executive Interface Definition - January 22, 1988

3.4.3 TM_GET

NAME

tm_get — "Get System Time and Date”
SYNOPSIS

#include <time.h>

uint tm_get (timebuf)

struct time_ds *timebuf; /* pointer to time and date structure */

DESCRIPTION
The requester is allowed to get the current date and time as maintained by the system. If the

date and time have not been set via the tm_set directive, then an error is returned, and the buffer
contents will be meaningless.

RETURN VALUE

If tm_get successfully got the date and tim ., timebuf will be filled in, and 0 is returned.
If the d;te and time have not been set, an error code is returned.

ERROR CONDITIONS

Date and time have not been set.

NOTES

Callable from ISR.

Will not cause a preempt.

Page 57

January 22, 1988 - _ - Real Time Executive Interface Definition

3.4.4 TM_WKAFTER =
'NAME

tm_wkafter — "Wake After Interval®

SYNOPSIS

#include <time.h>

uint tm_wkafter (ticks)

uint ticks; /* number of ticks to wait */

DESCRIPTION

The executive stops the execution of the requesting task until the specified number of system
clock ticks have occurred. Execution resumes at the location following the tm_wkafter directive.

If the system clock frequency is 100 ticks per second, and the requester wants to wait for 2
seconds, then the input parameter will be 100*2, or 200 ticks.

The relative scheduling priority of the task will influence when the task .actually gets to run
again. A manual round-robin may be performed by executing tm_wkafter(0). This causes the

requesting task to yield the processor to other tasks at the same priority, if any exist.

The number of ticks remaining until the task is awakened will not be modified by the executive if
the system date and time are reset via the tm_set directive.

The maximum duration is 2**32 - 1 ticks. 4
RETURN VALUE

Tm_wkafter always succeeds and returns 0.

ERROR CONDITIONS

None.

NOTES

Not callable from ISR.

The requesting task will be blocked until the interval is expired.

Page 58

Real Time Executive Int;;face Definition - o — January 22, 1988

3.4.5 TM_WKWHEN

NAME

#include <time.h>
tm_wkwhen — "Wake When Date and Time"

SYNOPSIS
#include <time.h>
uint tm_wkwhen (timebuf)

struct time_ds *timebuf; /* pointer to time and date structure */

DESCRIPTION

The executive stops execution of the requesting task until the specified date and time is reached.
Execution resumes at the location following the tm_wkwhen directive.

If the system date and time are reset via the tm_set directive, the requested date and time when
the task will be awakened will be modified by the executive. Therefore, if the date and time are

resei ahead of the requested time, the task may be awakened late.

The relative scheduling priority -of fhe task will influence when the task actually gets to run
again.

The current elapsed ticks in the ticks field within the timebuf structure are ignored.
RETURN VALUE
If tm_wkwhen is successful, then 0 is returned.
If the date and time are invalid, an error code is returned.
ERROR CONDITIONS
Date and time have not been set.
Date input parameter error.
Time input parameter error.
NOTES
Not callable from ISR

The requesting task will be blocked until the date and time is reached.

Page 59

January 22, 1988 : Real Time Executive Interface i)eﬁnitionﬂj

3.4.8 TM_EVAFTER

NAME

tm_evafter — "Send Event After Interval®
SYNOPSIS

#include <time.h>

uint tm_evafter (ticks, event, &tmid)

uint ticks; /* number of ticks until event */

uint event; /* event condition */

uint tmid; /* timer id - returned by this call */
DESCRIPTION
The tm_evafter directive allows a task to receive a timer event after the specified number of sys-
tem clock ticks have occurred. The requesting task is not blocked by this call. To receive the

event, the ev_receive directive must be used.

If the system clock frequency is 100 ticks per second, and the requester wants to receive an event
after 2 seconds, then the input parameter will be 100*2, or 200 ticks. ’

The number of ticks remaining until the timer event is sent will not be modified by the executive
if the system date and time are reset via the tm_set directive.

The maximum duration is 2**32 - 1 ticks.

RETURN VALUE

Tm_evafter always succeeds, the tmid is filled in, and 0 is returned.
ERROR CONDITIONS

Too many timers.

NOTES

Not callable from ISR.

Will not cause a preempt.

The requesting task will not be blocked.

Page 60

Real Time Executive Interface Deﬁpitiori: S ' January 22, 1988

3.4.7 TM_EVWHEN

NAME
tm_evwhen — "Send Event When Date and Time"
SYNOPSIS

#include <time.h>
uint tm_evwhen (timebuf, event, &tmid)

struct time_ds *timebuf; /* pointer to time and date structure */

uint event; /* event condition */
uint tmid; /* timer id - returned by this call */
DESCRIPTION

The tm_cvwhen directive allows a task to receive a timer event when the specified date and time
is reached. The requesting task is not blocked by this call. To receive the event, the ev_receive
directive must be used.

If the system date and time are reset via the tm_set directive, the requested date and time of the
timer event will be modified by the executive. Therefore,-if the date and time are reset ahead of
the requested time, the task may receive the timer event late. :
The current elapsed ticks in the ticks field within the timebuf structure are ignored.

RETURN VALUE ‘
If tm_evwhen is successful, the tmid is filled in, and O is returned.

If the date and time are invalid, an error code is returned.

ERROR CONDITIONS

Too many timers.

Date and time have not been set.

Date input parameter error.

Time input parameter error.

NOTES

Not callable from ISR.

Will not cause a preempt.

The requesting task will not be blocked.

Page 81

January 22, 1988 - Real Time Executive Interface Definition

3.4.8 TM_CANCEL

NAME

tm_cancel - "Cancel Timer Event®
SYNOPSIS

#include <time.h>

uint tm_cancel (tmid)

uint tmid; /* timer id - as returned from tm_evafter or tm_evwhen */

DESCRIPTION

The tm_cancel directive allows a task to cancel the timer event identified by the tmid. The timer
event may have been scheduled by the tm_cvafter or tm_evwhen directives.

RETURN VALUE

If tm_cancel successfully canceled the timer event, then 0 is returned.
If the call was not mccessful an error code is returned.

ERROR CONDITIONS

Invalid tmid.

Timer event not set.

NOTES

Not callable from ISR.

Will not cause a preempt.

The timer event not set error may occur if the specified ¢tmid has expired. The caller may need to
clear the event condition associated with the tmid.

Page 82

Real Time Executive Interface Definition , January 22, 1988

.3.4.9 TM_TICK

NAME

tm_tick — "Announce Tick"

SYNOPSIS

uint tm_tick ()

DESCRIPTION

This call is used to inform the executive that a system clock tick has occurred. This information
is used by the time manager to maintain correct calendar time, execute timeslicing, and decre-
ment ticks from tasks which are currently being delayed or timing out. When a timeslice or
timeout expires, the task is made ready.

RETURN VALUE

Tm_tick always succeeds and returns 0.

ERROR CONDITIONS

None.:

NOTES

Can be called from within an ISR.

Page 83

Real Time Executive Interface Deﬁnition

January 22, 1988

3.5 Interrupt Handling ' Co

Fast interrupt response and the ability to preempt from an Interrupt Service Routine (ISR) are

important features of a real time executive.

In order to provide the fastest possible interrupt service mechanism, the executive will allow tasks
and ISRs to directly claim interrupt vectors by writing directly to the vector table.

An ISR usually communicates with tasks within the system using RTEID directives. The direc-
tives which are callable from ISRs are identified in the NOTES section of each directive. Direc-
tives called from an ISR will always return immediately to the ISR, without going though the
normal dispatch cycle. The postponed dispatch is required to complete the ISR before any tasks
are dispatched.

The i_return directive provides the real-time exit mechanism for ISRs. Since an ISR can make a
task other than the running task ready to run, i.e. by sending a message from the ISR, it becomes
extremely important NOT to exit the ISR with the RTE instruction. This would return control
to the running task at the time of the interrupt, which may not be the highest priority task ready
to run. To ensure the highest priority task runs, all ISRs must exit using the L return directive,
which may cause the running task to be preempted.

The directives provided by the interrupt manager are:

Directive | Function

ireturn Return from Interrupt

Page 64

g

;iexl Time Executive Interface Definition) January 22, 1588

3.5.1 L RETURN

NAME

ireturn — "Return from Interrupt®

SYNOPSIS

void ireturn ()

DESCRIPTION

The L return directive will allow the executive to return control to the highest priority task in the
system following the interrupt processing. The interrupt routine may have caused a task of higher
priority than the task running at the time of interrupt, to become ready.

RETURN VALUE

None.

ERROR CONDITIONS

None.

NOTES

Can only be called from an ISR.

Page 65

January 22, 1988

Real Time Executive Interface Definition

-3.6 Fatal Errors

Occuionally, the executive, application or system software will detect an unrecoverable error con-
dition. Such a condition is called a fatal error and normally halts execution on the local node.
Such errors include checksum errors, not enough memory, ete.

The executive will provide a fatal error handler which is responsible for processing fatal errors.
The exact manner in which fatal errors are processed is implementation dependent. For example,
the executive may simply STOP, or it may pass control to a debugger or other user provided
fatal error handling routine.
There are three sources for fatal errors:

1. the executive

2. system code

3. user application code
When the executive detects a fatal error, control is automatically passed to the fatal error
handler. When system code or user application code detects a fatal error, the k_fatal directive

should be used to pass control to the fatal error handler. The error code passed to the fatal error
handler describes the type of fatal error.

Fatal errors only halt execution on the local node. Remote nodes are not directly affected.

The directive provided to report fatal errors is:

Directive | Function

k_fatal Fatal Error ¢

Page 668

Real Time Executive Interface Definition , - January 22, 1988

3.6.1 K FATAL

NAME
k_fatal ~ "Fatal Error®
SYNOPSIS

void k_fatal (errcode)
uint errcode; /* type of error to be reported */

DESCRIPTION

The k_fatal directive will allow the executive to halt execution of the system in a manner as
described by the errcode. TRis directive does not return to the caller.

RETURN VALUE
None.

ERROR CONDITIONS
None. .

NOTES

Can be called from witl;in an ISR.

Page 87

January 22, 1988 Real Time Executive Interface Definition

3.7 Memory Management

The executive will support two different memory managers. A region manager provides alloca-
tion of variable sised memory segments. ‘A partition manager provides allocation of fixed sized
buffers. '

3.7.1 Region Manager

A region is an area of physical contiguous memory from which the executive can dynamically
allocate segments to an application. A segment is a variable length block of memory.

A region is created with the rn_create directive. Like all objects managed by the executive, a
region has a 4 character name, and, once created, a 32-bit region id (rnid). Tasks other than the
creator can use the rn_ident directive to obtain a region’s rnid. The directives rn_getseg and
rn_retseg allocate and return segments from the region.

Each region has an associated pagesize, specified when the region is created. The pagesize must
be a power of 2. Segment lengths are always in multiples of this pagesize. For example, if a task
requests a 700 byte segment from a region having a 512 byte pagesize, a 1024 byte segment is
allocated.

When requesting a segment, if the request cannot immediatedly be satisfied, the requesting task
may optionally wait (with or without timeout) for a segment to become available. If it elects to
wait, the task is placed in a ;emory wait queue associated with the region. Tasks can be queued
either by priority or FIFO. V.h n a segment is returned, if possible it is merged with its neighbor
segments and then the wait queue is searched. The first task, if any, whose request can be
satisfied receives the segment.

In a multiprocessor system, regions may not be shared between processors. Segments may only
be allocated or returned by tasks running on the processor from which the region was created.
Hence, the GLOBAL flag used with the other create services is not supported by rn_create. ¢

When a region is created, the executive must build data structures to manage the region. The
memory containing these structures may itself be allocated from the region, in which case, the
amount of allocatable memory within the region may be slightly less than the original size of the

region.

The maximum number of regions that may exist at any one time is a configuration parameter.

The directives provided by the region manager are:

Directive Function

rn_create | Create a region
rn_ident Obtain id of a region
rn_delete | Delete a region
rn_getseg | Get a segment
rn_retseg | Return a segment

Page 68

Real Time Executive Interface Definition St January 22, 1988

3.7.2 Partition Manager

A partition is a pool of equal sised buffers. Pt_create creates a partition in a physical contiguous
memory area provided by the caller. Like all objects managed by the executive, partitions have a
4 character name, and, once created, a 32-bit partition id (ptid). Tasks other than the creator
can use the pt.ident directive to obtain a partition’s ptid. Pt_getbuf and pt_retbuf allocate and
return buffers from the partition.

Each partition contains a specified number of fixed size buffers. The number and sise of the
buffers is specified when the partition is created.

In a shared memory multiprocessor configuration, partitions may be shared between processors.
To do so, the caller must declare the partition GLOBAL when it is created. If a partition is
GLOBAL, then the executive will arbitrate access to the partition.

Tasks may not wait for buffers. If no buffers are available an error number is returned.

When a partition is created, the executive must build data structures to manage the partition.
The memory containing these structures may be allocated within the partition area provided by
the caller, in which case, the partition may occupy slightly more memory than the simple product

of the buffer count and buffer sise.

The maximum number of partitions that may exist at any one time is a configuration parameter.

The directives provided by the partition manager are:

Directive Function ¢

pt—create | Create a partition
pt—ident Obtain id of a partition
pt—delete | Delete a partition
pt—getbuf | Get a buffer

pt_retbuf | Return a buffer

Pace 89

- January 22; 1988 - Real Time Executive Interface Definition

3.7.3 RN_CREATE
NAME

rn_create — "Create a Region"
SYNOPSIS

#include <memory.h>

uint rn_create (name, paddr, length, pagesise, flags, &rnid, &bytes)

uint name; /* user defined 4-byte region name */
char *paddr; /* physical start address of region */
uint length; /* physical length in bytes */

uint pagesise; /* region pagesize */

uint flags; /* region attributes */
uint rnid; /* region id - returned by this call */
uint bytes; /* available number of bytes - returned by this call */

The fiags field values are:

"PRIOR set to yrocess wait list by priority
‘clear to process wait list by FIFO

DESCRIPTION

This directive allows the user to create a region from a physical contiguous memory area. The
region id will be returned in rnid by the executive to use in rn_getseg and rn_retseg directives for
the region.

The region physical start address specified in paddr will be long-word aligned by the executive. In
systems with an MMU, the region physical start address must be on the pagesize boundary.

The available number of bytes within the region will be returned by the executive in the dytes
field. Since the executive may use memory within the region for a region data structure, the
number of bytes in bytes may be less than the number of bytes in length.

By setting the PRIOR value in the flags field, tasks which wait for segments from the region will
be processed in task priority order. Otherwise, the tasks will wait in first in, first out (FIFO)
order.

Regions may not be shared between processors in a shared memory multiprocessor configuration.

The maximum number of regions that can be in existence at one time is a configuration parame-
ter.

RETURN VALUE
If rn_create successfully created the region, then rnid and bytes are filled in and 0 is returned.

Page 70

Real Time Executive Interface Deﬁnitiﬁon January 22, lgéé

If the region was not successfully created, an error cc;de is returned.
ERROR CONDITIONS

Too many regions.

Paddr is not on a pagesize boundary (MMU only).

NOTES

Not callable from ISR.

Page 71

January 22, 1988 — . Real Time Executive Interface Definition

-3.7.4 RN_IDENT

NAME

rn_ident — "Obtain id of a Region®
SYNOPSIS

#include <memory.h>

uint rn_ident (name, &rnid)

uint name; /* user defined 4-byte region name */
uint rnid; /* region id - returned by this call */
DESCRIPTION

This directive allows a task to identify a previously created region by name, and obtain the rnid
to use for rn_getseg and rn_retseg directives for the region.

The region must have been created by a task on the local processor. It may not be shared
between processors in a shared memory multiprocessor configuration.

If the region name is not unique, the region id returned in 1 1id may not correspond to the region
named by this call.

RETURN VALUE

If rn_ident directive succeeds, then the rnid is filled in and 0 is returned.
If the call was not sﬁccessful, an error code is returned.

ERROR CONDITIONS

Named region does not exist.

NOTES |

Can be called from within an ISR.

Will not cause a preempt.

Page 72

- Real Ti;ne Executive Interface Beﬁnition January 22, 1988

3.7.5 RN_DELETE

NAME

rn_delete — "Delete a Region®
SYNOPSIS

#include <memory.h>

uint rn_delete (rnid)

uint rnid; /* region id as returned by rn_create or rn_ident */

DESCRIPTION
This directive deletes the specified region, provided that none of its segments is still allocated.

After this directive has successfully executed, the executive will reject any rn_getseg and rn_retseg
directives for the region.

RETURN VALUE

If rn_delete successfully deleted the region, then 0 is returned.

If the region was not successfully deleted, an error code is returned.
ERROR CONDITIONS

Invalid rnid.

Cannot delete — outstanding segments.

NOTES

Not callable from ISR.

Will not cause a preempt.

Page 73

January 22, 1988 | Real Time Executive Interface Definition

3.7.6 RN_GETSEG] ’ -

NAME
rn_getseg — "Get a Segment”
SYNOPSIS

#include <memory.h>
uint rn_getseg (rnid, sise, flags, timeout, &segaddr)

uint rnid; /* region id as returned by rn_create or rn_ident */
uint sise; /* segment size in bytes */

uint flags; /* directive options */

uint timeout; /* number of ticks to wait for memory */

/* 0 indicates forever */
char *segaddr; /* segment address - returned by this call */

The flags field values are defined as follows:

NOWAIT set if the task is to return immediately
' clear if the task is to wait for memoryr

DESCRIPTION

This directive allocates a variable size segment from the region specified by the rnid. The address
of the segment is returned to the caller in segaddr. ¢

The actual segment length is a multiple of the region pagesize. Thus, the segment allocated may
be larger than the requested size.

RETURN VALUE

If rn_getseg successfully allocated the segment, the address of the segment is returned in segaddr
and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid rnid.

No memory available (no-wait only).

Timeout occurred before memory was available (wait with timeout).
Region has been deleted.

NOTES

Page 74

———

Real Time Executive Interface Definition January 22, 1988

Not callable from ISR.

Requester will be blocked when the wait option is selected and the memory is not available.

Page 75

~January 22,1988 - , ~ Real Time Executive Interf:ceFDeﬁfxition

3.7.7 RN_RETSEG] -
NAME

rn_retseg —~ "Return a Segment”

SYNOPSIS

#include <memory.h>

uint rn_retseg (rnid, segaddr)

uint rnid; /* region id as returned by rn_create or rn_ident */
char *segaddr; /* segment address as returned by rn_getseg */

DESCRIPTION

This directive returns a segment to its region. If possible, the segment is merged with neighbor-
ing segments. The resulting segment then becomes available for subsequent allocation, or alloca-
tion to tasks already waiting.

RETURN VALUE

If rn_retseg successfully returned the segment, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid rnid. #
Segment not from specified region.

NOTES

Not callable fro;n ISR.

May cause a preempt if a task waiting for memory becomes ready as a result of this call and has
a higher priority than the running task, and the preempt mode is in effect.

Page 78

ﬁe;l Time Executive Interface Definition —) January 22, 1988

3.7.8 PT_CREATE

NAME

ptcreate — "Create a Partition"
SYNOPSIS

#include <memory.h>

uint pt_create (name, paddr, length, bsise, flags, &ptid, &bnum)

uint name; /* user defined 4-byte partition name */
char *paddr; /* physical start address of partition */
uint length; /* physical length in bytes */

uint bsise; /* sise of buffers in bytes */

uint flags; /* partition attributes */

uint ptid; /* partition id - returned by this call */

uint bnum; /* number of buffers in partition - returned by this call */
Flags field values:

GLOBAL set to indicate the partition is
a multiprocessor global resource.
clear to indicate the partition is local

DESCRIPTION £

This directive allows the user to create a partition of fixed size buffers from a contiguous memory
area. The partition id will be returned in ptid by the executive to use for pt_getbuf and pt_retbuf
directives for the partition. The number of buffers created by the executive will be returned in
dnum.

The partition physical start address specified in paddr will be long-word aligned by the executive.
In systems with an MMU, the partition physical start address must be on the pagesise boundary.

The executive may use memory within the partition for partition and buffer data structures.
Therefore, the product of the buffer count and buffer size will be slightly less than the length of
the partition.

By setting the GLOBAL value in the flags field, the ptid will be sent to all processors in the sys-
tem, to be entered into a global resource table. The system is defined as the collection of intercon-
nected processors.

The maximum number of partitions that may exist at any one time is a configuration parameter.

RETURN VALUE

If pt_create successfully created the partition, the ptid and bnum are filled in and 0 is returned.

Page 77

January 22, 1988 . i Real Time Executive Interface Definition

" If the call was not successful, an error code is returned.
ERROR CONDITIONS

Too many partitions.

NOTES

Not callable from,‘ ISR.

Will not cause a preempt.

Page 78

Real Time Executive Interface Definition ' January 22, 1988_, :

3.7.9 PT_IDENT

NAME

pt-ident — "Obtain id of a Partition”
SYNOPSIS

#include <memory.h>

uint pt_ident (name, node, &ptid)

uint name; /* user defined 4-byte partition name */
uint node; /* node identifier */
/* 0 indicates any node */
uint ptid; /* partition id - returned by this call */
DESCRIPTION

This directive allows a task to identify a previously created partition by name and obtain the ptid -
to use for pt_getbuf and pt_retbuf directives for the partition.

If the partition name is not unique, the ptid returned r.ay not correspond to the partition named
in this call.

The partition may have been created by the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the partition was created with the GLOBAL flags value set
(see pt_create). If the partition name is not unique within the multiprocessor configuration, a
non-sero node identifier must be specified in the node field.

RETURN VALUE

If pt_ident directive succeeds, the ptid will be filled in and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Named partition does not exist.

Invalid node identifier.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

Page 79

January 22, 1988 - e ~ Real Time Executive Interface Definition

3.7.10 PT_DELETE
NAME

pt—delete — "Delete a Partition”
SYNOPSIS

#include <memory.h>

uint pt_delete (ptid)

uint ptid; /* partition id as returned by pt_create or pt_ident */

DESCRIPTION
This directive removes a partition, provided that none of its buffers is still allocated.

After this directive has successfully executed, the executive will reject any pt_getbuf or pt_retbuf
directives for the partition. :

The partition must exist on the local processor. If the partition was created with the GLOBAL
flags value set in a multiprocessor configuration, a notification will be sent to all processors in the
system, so the ptid can be deleted from the global resource table.

RETURN VALUE

If pt_delete successfully removed the partition, then 0 is returned.

If the call was not successful, an error code is returned. ¢
ERROR CONDITIONS

Invalid ptid.

Cannot delete — some buffers in use.

Partition not created from local node.

NOTES

Not callable from ISR.

Will not cause a preempt.

Page 80

Real —'i‘ime Executive Interface Definition _ January 22, 1988

3.7.11 PT_GETBUF

NAME

pt—getbuf — "Get a Buffer®
SYNOPSIS

#include <memory.h>

uint pt_getbuf (ptid, &bufaddr)

uint ptid; /* partition id as returned by pt_create or pt_ident */
char *bufaddr; /* buffer address - returned by this call */
DESCRIPTION

The pt_getbuf directive will get a buffer from a buffer partition. The buffer address will be
returned in bufaddr as a result of this call.

The partition may have been created by the local processor or any remote processor in a mul-

tiprocessor configuration, as long as the partition was created with the GLOBAL flags value set
(see pt_ereate). & N

RETURN VALUE

If pt_getbuf successfully got a buffer, then the address of the buffer is returned in bufaddr and 0 is
returned. ; 4

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid ptid.

Partition out of free buffers.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

Page 81

January 22, 1988 - Real Time Executive Interface Definition

3.7.12 PT_RETBUF
NAME

pt_retbuf — "Return a Buffer”
SYNOPSIS

#include <memory.h>

uint pt_retbuf (ptid, bufaddr)

uint ptid; /* partition id as returned by pt_create or pt_ident */

char *bufaddr; /* buffer start address as returned by pt_getbuf */
DESCRIPTION
The pt_retbuf directive will return a buffer to the partition from which it was originally allocated.
Buffers are not automatically released when a task is deleted.
RETURN VALUE
If pt_retbuf sncc-essfully returned the buﬂ'ér, then 0 is returned.
If the buffer was not returned, a value of -1 is returned, and errno is set to indicate the error.
ERROR CONDITIONS
Invalid ptid. : » ¢
Buffer not from specified partition.
NOTES
Can be called from within an ISR.

Will not cause a preempt.

Page 82

s

Real Time Executive Interface Definition . January 22,1988

3.8 MMU Management

The executive can optionally support the PMMU (M688851 and M68030) to provide memory pro-
tection, dynamic task loading, and dynamic memory allocation.

To provide these services, the executive adopts an MMU model which defines the pagesize, the
structure and depth of the memory map tree, and the degree of control each task has over its own
memory map. Different implementations of the RTEID are free to choose different models. How-
ever, the model chosen should allow the standard memory management services (regions and par-
titions) to operate in a consistent and intuitive manner in both an MMU and non-MMU environ-
ment.

Logically, the RTEID adopts a sectioned view of the logical address space associated with each
task. Memory objects are mapped into a task’s logical address space in variable size MMU sec-
tions. A single section is contiguous in the logical and possibly the underlying physical address
spaces. Thus, the MMU is used to define a set of mappings for each task in the form:

(logical address, length) —> physical address range

Based on this model, the RTEID defines how the memory management services should operate,
and defines additional services to manage the MMU directly.

3.8.1 1Segrnel:lt.a vs. Se tions

MMU sections should not be confused with region.segments. A segment is a block of memory
allocated from a region. It can exist on any CPU /the M68000 family. A section is only mean-
ingful on the MB8030 or M68020/M68851 combination, and refers to a contiguous block of
memory which is mapped into a task’s address space.

3.8.2 Regions

When a task calls rn_getseg to obtain a segment from a region, the segment is automatically
mapped into the task’s logical address space at an executive assigned address. Because rn_getseg
performs the mapping, the corresponding region is not mapped into the address space of tasks
using it. This means that allocated sections are accessible only by the allocating task, and those
tasks which explicitly are given access to the segment using the MMU directives. Thus, a segment
is fully protected from inadvertent access by other tasks.

3.8.3 Partitions

When a task executes a pt.create or ptident directive, the entire partition is mapped into the
task’s address space. Thus, tasks which share a partition can share and access any buffers allo-
cated from the partition. However, protection is on the partition level, and individual buffers are
not protected.

Page 83

— January 22, 1988 "~ Real Time Executive Interface Definition

The directives provided by the MMU manager are:

Directive Function
mm_12p Logical to physical
mm_p2l Physical to logical

mm_pmap Map physical
mm_unmap Unmap logical
mm_pread Physical read
mm_pwrite Physical write
mm_ptcreate | Create logical partition

Page 84

Real Time Executive Interface Definition - ' e January 22, 1988

3.8.4 MM_L2P

NAME

mm _12p — "Logical to Physical”
SYNOPSIS

#include <memory.h>

uint mm_12p (tid, laddr, &paddr, &length)

uint tid; /* task id as returned by t_create or t_ident */

char *laddr; /* logical start address */

char *paddr; /* physical start address - returned by this call * /*/

uint length; /* remaining length in bytes - returned by this call */
DESCRIPTION

This directive calculates the physical address within the section associated with the logical address
belonging to the task identified by the tid.

The physical start a_dress is returned in the paddr field. The number of bytes remaining in the
section is reiurned in the length field.

RETURN VALUE

If mm_I2p was successful, then the physical start address is returned in paddr, the number of
bytes remaining is returned in length, and 0 is returned. ¢

If the call was not sﬁccessful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Unmapped logical address.

Task not created on local node.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 85

January 22, 1988 “"Real Time Executive Interface Definition = _ -

3.8.6 MM_P2L

NAME

mm_p2l - "Physical to Logical®
'SYNOPSIS

#include <memory.h>

uint mm_p2l (tid, paddr, &laddr, &length)

uint tid; /* task id as returned by t_create or t_ident */

char *paddr; /* physical start address */

char *laddr; /* logical start address - returned by this call */ */

uint length; /* remaining length in bytes - returned by this call */
DESCRIPTION
This directive returns the logical address within the section associated with the physical address
belonging to the task identified by the tid. The executive will only return the first valid mapping
of the physical address it finds, and the logical address returned may be ambiguous if the task has
a many-to-one mapping of the physical address range.

The logical start address is returned in the laddr field, and the number of bytes remaining in the
section is returned in the length field.

RETURN VALUE

If mm_p2l was successful, then the logical address is returned in laddr, the number of b)"tes
remaining is returned in length, and 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid tid.

Unmapped logical address.

Task not created on local node.

NOTES

Not callable from ISR.

Will not cause a preempt.

Page 88

Real Time Executive Interface Definition - - January 22, 1988

3.8.8 MM_PMAP

NAME

mm_pmap — "Map Physical®
SYNOPSIS

#include <memory.h>

uint mm_pmap (tid, laddr, paddr, length, flags)

uint tid; /* task id as returned by t_create or t_ident */
char *laddr; /* logical start address */

char *paddr; /* physical start address */

uint length; /* length in bytes */

uint flags; /* section attributes */

The flags field values are defined as follows:

RDONLY set read-only
clear read-write
DESCRIPTION
This directive maps physical memory starting at paddr for the number of bytes specified in
length, to a section at the logical start address laddr in the address space of the task identified by

the tid.

The physical start address specified in paddr must be on the pagesize boundary. The logical start
address specified in /addr must be on a section boundary.

If length is not a multiple of the pagesise, then more bytes than requested are mapped.
RETURN VALUE

If mm_pmap was successful, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Paddr is not on a pagesise boundary.

Laddr is not on a section boundary.

Length specified is too large.

Page 87

January 22, 1988 . - Real Time Executive Interface Definition

Duplicate lo_gical address.) -

Task not created on local node.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 88

_ Real Time Executive Interface Definition January 22, 1988

3.8.7 MM_UNMAP

NAME

mm_unmap - "Unmap Logical”
SYNOPSIS

#include <memory.h>

uint mm_unmap (tid, laddr)

uint tid; /* task id as returned by t_create or t_ident */
char *laddr; /* logical start address */

DESCRIPTION

This directive removes the section starting at logical address laddr from the address space of the
task identified by the #id.

RETURN VALUE

If mm_unmap was successful, then' 0 is returned.

If the call was not successful, an er'i'or code is returned.
ERROR CONDITIONS

Invalid tid.

Unmapped logical address.

Task not created on local node.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the tasl; was not created on the local node.
Will not cause a preempt.

To return the segment to the region, the rn_retseg directive must be used.

Page 89

January 22,1988 B ~_ Real Time Executive Interface Definition

3.8.8 MM_PREAD
NAME

mm_pread — "Physical read®
SYNOPSIS

#include <memory.h>

uint mm_pread (paddr, laddr, length)

uint paddr; /* physical start address */

char *laddr; /* logical start address */

uint length; /* length in bytes */
DESCRIPTION

The mm_pread directive reads from a physical address, and writes to the logical address in the
calling task’s address space. The length cannot span a section boundary.

RETURN VALUE

It mmprcad was s;éqessful, then 0 is returned.

If the call was not successful, no data is transferred and an error code is returned.
ERROR CONDITIONS

Unmapped logical address.

Length spans section boundary.

NOTES

Not callable from ISR.

Will not cause a preempt.

Page 90

Real Time Executive Ihterface Definition . Jam-x_a"x;yg22, 1988

3.8.9 MM_PWRITE

NAME

mm_pwrite — "Physical write"
SYNOPSIS

#include <memory.h>

uint mm_pwrite (paddr, laddr, length)

uint paddr; /* physical start address */

char *laddr; /* logical start address */

uint length; /* length in bytes */
DESCRIPTION

The mm_puwrite directive reads from the logical address in the calling task’s address space, and
writes to a physical address. The length may not span a section boundary.

RETURN VALUE

If mm_pwrite was successful, then 0 is returned.

If the call was not successful, no data is transferred and an error code is returned.
ERROR CONDITIONS

Unmapped logical address.

Length spans section boundary.

NOTES

Not callable from ISR.

Will not cause a preempt.

Page 91

January 22, 1988 T Real Time Executive Interface Definition

3.8.10 MM_PTCREATE

NAME

mm_ptcreate — "Create a Logical Partition®
SYNOPSIS

#include <memory.h>

uint mm_ptcreate (name, paddr, length, bsise, laddr, flags, &ptid, &bnum)

uint name; /* user defined 4-byte partition name */
char *paddr; /* physical start address of partition .
uint length; /* physical length in bytes */

uint bsise; /* sise of buffers in bytes */

char *laddr; /* physical start address of partition */

uint flags; /* partition attributes */

uint ptid; /* partition id - returned by this call */

uint bnum; /* number of buffers in partition - returned by this call */

Flags field values:

l'.
GLOBAL set to indicate the partition is
a multiprocessor global resource.
clear to indicate the partition is local

DESCRIPTION ¢

This directive allows the user to create a logical partition of fixed size buffers from a contiguous
memory area. The partition is mapped into the caller’s address space at the logical address
specified in laddr. By creating logical partitions at the same logical addresses, partitions can be
easily shared between processors.

The partition id will be returned in ptid by the executive to use for pt_getbuf and pt_retbuf direc-
tives for the partition.

The partition physical start address must be on the pagesize boundary.

The number of buffers created by the executive will be returned in dnum. The executive may use
memory within the partition for partition and buffer data structures. Therefore, the product of
the buffer count and buffer size will be slightly less than the length of the partition.

By setting the GLOBAL value in the flags field, the ptid will be sent to all processors in the sys-
tem, to be entered into a global resource table. The system is defined as the collection of intercon-
nected processors.

The maximum number of partitions that may exist at any one time is a configuration parameter.

RETURN VALUE

Page 92

Real Time Executive Interface Definition ~ January 22, 1988

. If mm_ptereate successfully created the partition, the ptid and dnum are filled in and 0 is
returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Too many partitions.

NOTES

Not callable from ISR.

Will not cause a preempt.

D.__. An

January 22, 1988 - Real Time Executive Interface Definition

3.9 Dual-ported Memory

bDual-ported memory is commonly found in multiprocessor systems. The executive provides a

method for converting internal addresses to external, and external addresses to internal, to

accommodate the use of dual-ported memory and allow tasks to exchange addresses between pro-
cessors.

The snternal address will be defined as the address of a memory resource, relative to the local
node which needs to access the memory resource.

The ezternal address will be defined as the address of a memory resource, relative to a remote
node which needs to access the memory resource.

The directives provided for dual-ported memory are:

Directive Function

m_ext2int | Convert external address
m-int2ext | Convert internal address

Page 94

e

_ Real Time Executive Interface Definition - ' January 22, 1988

3.9.1 M_EXT2ZINT

NAME

m_ext2int — "Convert external address to internal address”
SYNOPSIS

uint m_ext2int (external, &internal)

char *external; /* external address */
char *internal; /* internal address - returned by this call */

DESCRIPTION

The m_ezt2int call is used to convert the physical address contained in ezternal into an internal
address, so it can be used by the local node. The internal address is returned to the caller in
internal.

The external (VMEbus) address is normally an address received by the local node, and the reques-
ter may not know whether its internal (local) or not. If the address contained in ezternal is ir‘er-

nal, the returned address will be same as the address in ezternal.

RETURN VALUE"

The m_ezt2int directive always succeeds, the internal address is returned in internal, and 0 is

returned. p

ERROR CONDITIONS

None.

NOTES

Can be called from within an ISR.
Will not cause a preempt.

In a MMU system, a task will need to execute mm_p2! following this call to oBtain a logical inter-
nal address.

Page 95

~ January 22, 1988 - Real Time Executive Interface Definition

3.9.2 M_INT2EXT

NAME
m_int2ext — "Convert internal address to external address”
SYNOPSIS
uint m_int2ext (internal, &external)
char *internal; /* internal address */
char *external; /* external address - returned by this call */
DESCRIPTION
The m_int2ezt call is used to convert the physical address contained in internal into an external
address, so it can pass the address to a remote node within the system. The external address is

returned to the requester in ezternal.

The internal address is a physical address accessible by the local node within its dual-ported
memory, and the external (VMEbus) address will be different.

RETURN VALUE

The m_snt2ezt directive always succeeds, the external address is returned in ezternal, and 0 is
returned.

ERROR CONDITIONS ’
None.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

In a MMU system, a task will need to execute mm.J2p preceding this call to obtain a physical
address.

Page 98

Real Time Executive Interface Definition January 22, 1988

4. VO INTERFACE

This section describes a set of I/O Interface services for the RTEID. These services provide a well
defined mechanism for installing and calling device drivers. They provide a structured methodol-
ogy for writing drivers which both simplifies and assists in the development of drivers and
enhances their portability between RTEID based ﬁﬁéﬁ‘g The RTEID does not make any
assumptions about the construction or operation of a driver itself.

The directives provided by the I/O Interface are:

Directive | Description

de_init Initialize a device driver
de_open Open a device for I/O
de_close Close a device

de_read Read from a device
de_write Write to a device
de_cntrl Special device services

4.1 Driver Properties
Device drivers shall have the following properties:

1. A driver is always called by a task and is considered to run on behalf of the task which
called it. ‘

2. A driver can make any and all RTEID calls, including additional I/O calls. I/O calls may
not be called from within the driver’s ISR.

3. If the driver makes a blocking service call, (e.g. g_receive), the calling task blocks.

4. Drivers always execute in supervisor mode regardless of the mode of the caller. Designers
should account for driver stack usage when determining supervisor stack sizes for new tasks.

5. A driver may temporarily enter user mode but must return to supervisor mode prior to
exiting.

8. Other than item (4) above, drivers retain the mode of the calling task. Thus on entry they
have the same interrupt mask level, preemption, asr and time-slicing status as the caller.
The driver may change any or all of these but is responsible for restoring them prior to
exiting.

4.2 Data Structures
The data structures used by drivers which are supported by the I/O Interface are:

e Driver Address Table

- Used by the I/O Interface to locate the driver’s INIT, OPEN, CLOSE, READ, WRITE, and
CNTRL routines.

Page 97

Janu;;y‘ﬁ, 1988 - CC == s Real Time Executive Interface Definition

e Device Data Area Table -

. = Used by the I/O Interface to locate the driver’s data area for the driver’s OPEN, CLOSE,
READ, WRITE, and CNTRL routines.

4.2.1 Driver Address Table

When a task makes an I/O Interface call, the executive must locate the driver associated with the
specified device (major number) and operation (i.e. READ). It does so via a Driver Address
Table provided by the user. The physical address of the table and the number of devices are
specified to the executive via configuration parameters.

The Driver Address Table for a system with N devices can be described by the following
declarations:

struct drvaddr drvatab|N];

struct drvaddr

{

int (*init_driver)();
int (*open_driver)();
int (*close_driver)();
int (*read_driver)();
int (*write_driver)();
int (*cntrl_driver)();
int resvdi;

int resvd?2;

}

£

As shown, the Driver Address Table is an array of N structures, one for each device. Each
structure contains eight entries. The first six entries contain pointers to functions (routines)
within the driver associated with the device. The last two entries are reserved for future use.

4.2.2 Device Data Area Table

Many, if not most, devices need a data area where the device driver can store information specific
to the device. Although a statically allocated area can be used, it is usually more convenient to
dynamically allocate this area when the device is initialized. The I/O Interface contains services
to support such dynamic allocation.

The Device Data Area Table is supplied and maintained by the I/O Interface. The table con-
tains one long word entry for each device in the system. The entry is used to maintain the
address of the data area for the device.

The device driver’s INIT routine is responsible for allocating the device’s data area and returning
its address to the I/O Interface. This memory can come from any source - static data, a region,
or a partition. On exit, the INIT routine must return the address of the data area to the I/0
Interface. The I/O Interface saves this address in the Device Data Area Table. Whenever a
device driver routine (other than INIT) is called, the I/O Interface passes the data area address to
the driver.

Page 98

Real Time Executive Interface Definition ; | = January 22, 1988

4.3 Device Initialisation

During system initialisation, the executive automatically calls the driver’s INIT routine for each
device. They are called sequentially, beginning with device 0 and ending with the last device in
the system.

Since drivers can only be called by tasks, the executive calls the driver’s INIT routine on behalf of
a system initialisation task, defined by configuration parameters. The mode of the system initiali-
sation task (also a configuration parameter) is used as the mode while the executive calls the INIT
routines of the drivers. If the driver’s INIT routine makes a RTEID call which blocks, control is
passed to an idle task provided by the executive until an interrupt unblocks the driver.

Although the driver’s INIT routine is always called at system startup, it may also be called by a
task, either to re-initialise a driver or when a new device driver is dynamically loaded.

4.4 Parameter Passing

All directives except de_init require a user provided parameter block. The format and content of
the parameter block depends on and is determined entirely by the particular driver and device it
controls. Its function is to pass input parameters to the driver.

In a system with an MMU, the address of the parameter block is a logical address. The I/O
Interface will convert it to a physical address before passing it to the driver. Wit/ 'n the parame-

ter block, addresses may be either logical or physical, as defined by the driver. The I/O Interface
does not examine or translate any fields within the parameter block.

4.5 VO Interface in C Language y

The I/O Interface may be called in the C language as follows:

Function | Parameters

de_init (dev)

de_open | (dev, argp, &rval)
de_close (dev, argp, &rval)
de_read (dev, argp, &rval)
de_write | (dev, argp, &rval)
de_cntrl | (dev, argp, &rval)

dev is a 32-bit device number formatted as follows:

bits 31-18 = major device number
bits 15-0 = minor device number

argp is a pointer to a parameter block which contains device and operation specific parameters.
The format and contents of the block is determined by the driver.

Page 99

January 22, 1988 - . Real Time Executive Interface Definition

rval is an output parameter in which READ, WRITE and CNTRL routines may return informa-
tion about the call.

4.6 VO Interface in Assembly Language

The I/O Interface may be called by loading parameters into specific CPU registers and executing
a TRAP instruction. The following assembly language interface is used:

INPUT
DO.W = function number as follows:
1 = INIT
2 = OPEN
3 = CLOSE
4 = READ
5 = WRITE
8 = CNTRL
7 = RESVD1
8 = RESVD2
D1.L = Device number (major and minor)
A0.L = Pointer to parameter block (except INIT)
OUTPUT

DO.L = Error code - 0 indicates successful return
D1.L = Return value from OPEN, CLOSE, READ, WRITE and CNTRL
AlL = Address of device data area (INIT only)

4.7 Driver Interface in Assembly Language

The I/O Interface calls the user provided driver using the following assembly language conven-
tion:

INPUT
DO.L = tid
D1.L = Device number (major and minor)
A0.L = Physical address of parameter block (except INIT)
Al.L = Physical address of device data area (except INIT)
OUTPUT

DO0.L = Error code - 0 indicates successful return

D1.L = Return value from OPEN, CLOSE, READ, WRITE and CNTRL
AlL = Address of device data area (INIT only)

Page 100

Real Time Executive Interface Definition January 22, 1988

4.8 Error Handling

There are a3 number of errors which can occur during a driver call.: In general, there are two

types:

1. Errors detected by the I/O Interface.
2. Errors detected and returned by the driver.

All I/O Interface generated errors are detected prior to calling the driver. In these cases, the I/0
supervisor loads register DO with an error code and returns to the caller without ever passing con-
trol to the driver. To distinguish between I/O Interface errors and driver errors, error codes
below 10000H (18-bit values) are reserved for use by the I/O Interface. Below is a list of the
errors which are detected by the I/O Interface:

Illegal Function Code

Nllegal Major Device Number

Ilegal to call driver from ISR

Illegal parameter block address (MMU version only)

Drivers should always return error codes which are greater than 10000H (non-szero in the upper
18-bits).

Error codes returned from the driver’s INIT routine are ignored by the executive. If a driver’s
INIT encounters a fatal error during system startup, the k_fatal directive may be used.

4.9 1O Interface Routines in C Language

The I/O Interface routines as called in the C language are described in the following pages.

Page 101

January 22, 1988 : e Real Time Executive Interface Definition—

4.9.1 INIT

NAME

de_init — "Initialise a Device Driver®
SYNOPSIS

uint de_init (dev)
uint dev; /* 32-bit device number */

DESCRIPTION

The INIT routine will be called during system initialization. The function of INIT is to setup the
hardware as necessary and to initialise the driver dependent variables. If the driver needs to allo-
cate a data area for its use, it would do so in the INIT routine. The address of this data area is
saved in the Device Data Area Table by the I/O Interface.

RETURN VALUE

If the call succeeds, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

To be defined.

NOTES

Not callable from ISR.

Page 102

"Real Time Executive Interface Definition

4.9.2 OPEN

NAME

de_open — "Open a device for I/O"
SYNOPSIS

uint de_open (dev, argp, &rval)

uint dev; /* 32-bit device number */

char *argp; /* Address of parameter block */
uint rval; /® rval - returned by this call */

DESCRIPTION

January 22, 1988

The OPEN routine is generally used in conjunction with the CLOSE routine. An example is the
implementation of mutual exclusion. OPEN can define the start of a task’s exclusive access to a

device.

RETURN VALUE

If the call succeeds, rval may be ﬁued in, and 0 is ret'urned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS

To be defined.

NOTES

Not callable from ISR.

Page 103

January 22, 1988 Real Time Executive Interface Definition

4.9.3 CLOSE -

NAME

de_close — "Close a device"

SYNOPSIS

uint de_close (dev, argp, &rval)

uint dev; /® 32-bit device number */

char ®argp; /* Address of parameter block */

uint rval; /® rval - returned by this call */

DESCRIPTION

The CLOSE routine is generally used in conjunction with the OPEN routine. An example is the

implementation of mutual exclusion. CLOSE can define the end of a task’s exclusive access to a
device.

RETURN VALUE

If the call succeeds, rval may be filled in, and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS

To be defined.

NOTES

Not callable from ISR.

Page 104

Real Time Executive Interface Definition

NAME

de_read — "Read from a device"
SYNOPSIS

uint de_read (dev, argp, &rval)

uint dev; /* 32-bit device number */

char *argp; /* Address of parameter block */
uint rval; /* rval - returned by this call */

DESCRIPTION

The READ routine transfers data from a device to a user’s buffer.

RETURN VALUE

If the call succeeds, rval may be filled in, and 0 is returned.

%
If the call was not successful, an errc code is returned.

ERROR CONDITIONS

To be defined.

NOTES

Not callable from ISR.

- January 22, 1988

Daas 1NnE

January 22,1988 . Real Time Executive Interface Definition

4.9.5 wm'rE

NAME

de_write = "Write to a device®
SYNOPSIS

uint de_write (dev, argp, &rval)

uint dev; /® 32-bit device number */

char *argp; /* Address of parameter block */
uint rval; /* rval - returned by this call */

r

DESCRIPTION

The WRITE routine transfers data from a user’s buffer to a device.
RETURN VALUE

If the call succeeds, rval may be filled in, and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

To be defined.

NOTES

Not callable from ISR.

Page 108

_~ Real Time Ex”ecutive Interface Definition B - ~ January 22, 1988

4.9.6 CNTRL

NAME

de_cntrl — "Special device services”

SYNOPSIS

uint de_cntrl (dev, argp, &rval)

uint dev; /* 32-bit device number */

char *argp; /* Address of parameter block */

uint rval; /* Return value - returned by this call */

DESCRIPTION

The function of the CNTRL routine is driver dependent. For serial I/O drivers, this routine can
define tty parameters such as the baud rate. For a disk driver, the CNTRL routine can include
disk formatting.

RETURN VALUE

If the call _mcceeds, rval may be filled in, and 0 is retu;ped.

If the call was not successful, an error code is returned. H

ERROR CONDITIONS

To be defined.

NOTES

Not callable from ISR.

Page 107

January 22, 1988 — _ Real Time Executive Interface Definition

4.10 Driver Inﬁcrfsee in C Languagq

In addition to the assembly language interface, a driver may support the C language interface as
defined below:

Function | Parameters
dx_init (dev, &datap, tid)

dx_open | (dev, pargp, datap, tid, &rval)
dx.close | (dev, pargp, datap, tid, &rval)
dx.read | (dev, pargp, datap, tid, &rval)
dx_write | (dev, pargp, datap, tid, &rval)
dx_cntrl | (dev, pargp, datap, tid, &rval)

dev is the 32-bit device number.

bits 31-18 = major device number
bits 15-0 = minor device number

pargp is the physical address of the parameter block which contains device and operation specific .
parameters. The format and contents of the block is determined by the driver.

datap is the physical address of the device’s data area for all calls except INIT. datap is an out-
put parameter in which the INIT routine returns the address of the device’s data area.

tid is the task id of the calling task.

4

rval is aa output parameter in which READ, WRITE and CNTRL routines may return comple-
tion information about the call.

Page 108 . /

