Open Real-time Kernel Interface Definition Page 45
Draft 1.0 for Public Comments
6.3. SEM_IDENT
Obtain the identifier of a semaphore on a given node with a given
name.
Synopsis
sem_ident(name, nid, sid)
Input Parameters

name : string user defined semaphore name
nid ¢ node_id node identifier

Output Parameters
sid : sema_id kernel defined semaphore identifier

Literal Values

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node.
Completion Status

OK sem_ident operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_ PARAMETER a parameter refers to an illegal address

INVALID_NODE node does not exist

NAME_NOT_FOUND name does not exist on node

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a semaphore with the given name, and returns its
identifier if found. If OTHER_NODES is specified, the node search order
is implementation dependent. If there is more than one semaphore with
the same name in the node(s) specified, then the sid of the first one
found is returned.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 46
Draft 1.0 for Public Comments

6.4. SEM_P

Perform P operation (take) on a semaphore.

Synopsis
sem_p(sid, options, time_out)

Input Parameters

sid : sema_id kernel defined semaphore identifier
options : bit_field semaphore wait options
time_out : integer ticks to wait before timing out

Output Parameters
<none>

Literal Values

options + NOWAIT do not wait - return immediately if
semaphore not available
time_out = FOREVER wait forever - do not time out

Completion Status

OK sem_p operation successful

ILLEGAL_USE operation not callable from ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ID semaphore does not exist

OBJECT_DELETED semaphore specified has been deleted

TIME_OUT sem_p operation timed out

SEMAPHORE_DELETED semaphore deleted while blocked in sem_p
operation

SEMAPHORE_NOT_AVAILABLE semaphore unavailable with NOWAIT option

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation performs a claim from the given semaphore. It first
checks if the NOWAIT option has been specified and the counter is zero
or less, in which case the SEMAPHORE_NOT_AVAILABLE completion status
is returned. Otherwise, the counter is decreased. If the counter is
now zero or more, then the claim is successful, otherwise the calling
task is put on the semaphore queue.

If the semaphore is deleted while the task is waiting on its queue,
then the task is unblocked and this operation returns the
SEMAPHORE_DELETED completion status. Otherwise the task is blocked
either until the timeout expires, in which case the TIME_OUT
completion status is returned, or until the task reaches the head of
the queue and another task performs a sem_v operation on this
semaphore.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 47
Draft 1.0 for Public Comments
6.5. SEM_V

Perform a V operation (give) on a semaphore.

Synopsis

sem_v(sid)
Input Parameters

sid ¢ sema_id kernel defined semaphore identifier
Output Parameters

<none>

Completion Status

OK sem_v operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID semaphore does not exist
OBJECT_DELETED semaphore specified has been deleted
SEM_OVERFLOW the counter of semaphore overflows
NODE_NOT_ REACHABLE node on which semaphore resides is not
reachable
Description

This operation increments the semaphore count by one. If the resulting
semaphore count is less than or equal to zero then the first task in
the semaphore queue is unblocked, and returned the successful
completion status.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 48
Draft 1.0 for Public Comments
6.6. SEM_INFO
Obtain information on a semaphore.
Synopsis
sem_info(sid, options, count, tasks_waiting)
Input Parameters
sid : sem-id kernel defined semaphore identifier

Output Parameters

options : bit_field semaphore create options

count : integer semaphore count at time of call

tasks_waiting: integer number of tasks waiting in the semaphore
queue

Completion Status

OK sem_info operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID semaphore does not exist
OBJECT_DELETED semaphore specified has been deleted
NODE_NOT_REACHABLE node on which semaphore resides is not
reachable
Description

This operation provides information on the specified semaphore. It
returns its create options, the value of it's counter, and the number
of tasks waiting on the semaphore queue. The latter two values should
be used with care as they are just a snap-shot of the semaphores's
state at the time of executing the operation.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 49
Draft 1.0 for Public Comments

7. QUEUES

Queues permit the passing of messages amongst tasks. Queues contain a
variable number of messages, all of which have the same user task
defined length. The queues normally behave first in first out, with
messages sent to a queue being appended at the tail, and messages
received from a queue being taken from the head. Urgent messages can
be inserted at the head of the queue, i.e. they are prepended. Several
urgent messages prepended without an intervening receive will be
received last in first out.

Queue Behavior
The following should not be understood as a recipe for implementations.

When a queue contains no messages, a task which receives from it is
blocked (unless it specified the NOWAIT option) and is put on the
queue's wait queue. This queue of waiting tasks is ordered either by
task priority or as first in first out.

A task may broadcast a message to all tasks on a wait queue, which
unblocks all of them and returns them all the same message. This
latter operation is atomic with respect to any other operation on this
queue.

When a message is sent to a queue, the message data is immediately
copied by the kernel. If no task is waiting for a message from the
queue when one is sent, then the kernel copies the message into a
buffer. If a task is waiting when one is sent, then the message may
be copied into a buffer or it may be delivered directly to the waiting
task. Whether a buffer is used in this case is implementation
dependent.

All messages in a queue may be flushed with a single operation that is
atomic with respect to any other operation on this queue.

Observation:

It can be seen that there is more than one way to use a queue. At one
extreme, many tasks feed messages onto a queue and a single task
receives them, creating a many to one data flow. At the other
extreme, many tasks wait for a message and one task broadcasts a
message synchronously to all of them, Creating a one to many data
flow.

Queue Options

A queue's options are set by the Ccreating task. They define various
aspects of the behavior of the kernel with respect to queues. ORKID
defines the following option symbols, which may be combined unless
otherwise stated. An implementation may define additional options.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

