

ORKID
Open Real-Time Kernel Interface Definition

Drafted by
The ORKID Workig Group Software
Subcommittee of VITA

Draft 1.0 for Public Comments
July 1989

Copyright 1989 by VITA, the VMEbus International Trade Association

No parts of this document may be reproduced or used in any form or any means — electronic, graphic, mechanical, electrical or chemical, photocopying, recording in any medium, taping by any computer or storage system etc without prior permission in writing from VITA, the VMEbus International Trade Association.

Exception: This document may be reproduced or multiplied by photocopying for the exclusive purpose of soliciting public comments on the draft.

FROM THE CHAIRMAN

Before you lies the first draft of VITA's Open Real Time Interface Definition, known as ORKID. This draft is the result of the activities of a small working group under the auspices of the Software Subcommittee of the VITA Technical Committee. It represents the view of the working group and has not yet been approved.

The working group invites you to check this draft for consistency and send in any comments and/or suggestions you may have to the working group's secretary. All comments received before September 15th, 1989 will be studied by the working group, after which a final draft will be presented to the Software Subcommittee and the Technical Committee for approval.

The members of the working group are:
Reed Cardoza 		Eyring Research
Alfred Chao 		Software Components
Chris Eck 			CERN
Wayne Fischer 		FORCE Computers
John Fogelin Wind 		River Systems
Zoltan Hunor 		VITA Europe 	(secretary)
Kim Kempf 			Microware
Hugh Maaskant 		Philips 		(chairman)
Dick Vanderlin 		Motorola

I would like to thank these members for their efforts. Also I would like to thank the companies they represent for providing the time and expenses of these members. Without that support this draft would not have been possible. Furthermore I would like to thank Stuart Fairful for writing up a first version of this draft.

FOREWORD
The objective of the ORKID standard is to provide a state of the art open real—time kernel interface definition that on one hand allows users to create robust and portable code, while on the other hand allowing implementors the freedom to profilate their compliant product. Borderline conditions are that the standard:

- be implementable efficiently on a wide range of microprocessors,
- imposes no unnecessary hardware or software architecture,
- be open to future developments.

Many existing kernel products have been studied to gain insight in the required functionality. As a result ORKID is, from a functional point of view, a blend of these kernels. No radical new concepts have been introduced because there would be no reasonable guarantee that these could be implemented efficiently. Also they would reduce the likelihood of acceptance in the user community. This is not to say that the functionality is meagre, on the contrary: a rich set of objects and operations has been provided.

One issue has to be addressed yet: that of MMU support. Clearly, now that new microprocessors have integrated MMUs*and hence the cost and performance penalties of MMU support are diminishing, it will be needed in the near future. At this moment, however, it was felt that more experience is needed with MMUs in real-time environments to define a standard. It is foreseen that an addendum to this standard will address MMU support.

TABLE OF CONENTS (auto generate here)

1. 	INTRODUCTION

ORKID defines a standard programming interface to real-time kernels. This interface consists of a set of standard ORKID operation calls, defining operations on objects of standard types. An ORKID compliant kernel manages these objects and implements the operations.
The application area that ORKID addresses ranges from embedded systems to complex multi-processing systems with dynamic program loading. It is restricted however to real-time environments and only addresses kernel level functionality. As such it addresses a different segment than the real-time extensions to POSIX P1003.4, although some overlaps may occur.
ORKID addresses the issue of multi-processing by defining two levels of compliance: with and without support for multi-node systems. The interfaces to the operations are the same in either level.
Section 2, ORKID PRINCIPLES, contains an introduction to the concepts used in the ORKID standard. Introduced here are the standard ORKID objects and how they are identified, ORKID operations and ORKID multi-processing features. Factors affecting the portability of code developed for ORKID and implementation compliance requirements are also treated here.
Sections 3 to 12 describe in detail the various standard types of object and the operations that manipulate them. There is one section per type of object. Each section contains a general description of this type of object, followed by subsections detailing the operations. The latter are in a programming language independent format. It is foreseen that for all required programming languages, a language binding will be defined in a companion standard. The first one, introduced in conjunction with ORKID, will be for the C language. For syntax, the language binding document is the final authority.
The portability provided by the ORKID standard is at source code level. This means that, optimally, a program written for one implementation should run unmodified on another implementation, requiring only recompilation and relinking. In practice there are many reasons why this might not be true in all cases.
The syntax of ORKID operation calls in a real implementation will be defined in the appropriate language binding. There will be, however, a one to one correspondence between this standard and each language binding for all literal values, operation names and parameter names and types.

2. 	ORKID CONCEPTS

ORKID defines the interface to a real-time kernel by defining kernel object types and operations upon these objects. Furthermore it assumes an environment, i.e. the computer system, in which these objects exist. This chapter describes that environment, introduces the various object types, explains how objects are identified and defines the structure of the ORKID operation descriptions. Furthermore it addresses the issues of multi-processing and ORKID compatibility.
2.1. Environment
The computer system environment expected by ORKID is described by the notion of a system. A system consists of a collection of one or more interconnected nodes. Each node is a computer with an ORKID compliant kernel on which application programs can be executed. To ORKID a node is a single entity, although it may be implemented as a multi-processor computer there is only one kernel controlling that node.
2.2. ORKID Objects
The standard ORKID object types defined by ORKID are:
· tasks: 		single threads of program execution in a node.
· regions: 		memory areas for dynamic allocation of variable sized segments.
· partitions: 		memory areas for dynamic allocation of fixed sized blocks.
· semaphores: 	mechanisms used for synchronization and to manage resource allocation amongst tasks.
· queues: 		inter task communication mechanisms with implied synchronization.
· events: 		task specific event markers for synchronization.
· exceptions: 		task specific exceptional conditions with an asynchronous service routine.
· notepad: 		task specific integer locations for simple, unsynchronized data exchange.
· calendar: 		current date and time.
· timers: 		software delays and alarms.
Tasks are the active entities on a node, the CPU(s) of the node execute the task's code, or program, under control of the kernel. Many tasks may exist on a node; they may execute the same or different programs. The maximum number of tasks on a node or in a system is implementation dependent. Tasks compete for CPU time and other resources. Next to tasks interrupt service routines compete for CPU time. Although ORKID does not define how interrupt service routines are activated, it provides facilities to deal with them.
Regions are consecutive chunks of memory from which tasks may allocate segments of varying size for their own purposes. Typically a region consists of memory of one physical nature such as shared RAM, battery

backed-up SRAM etc. The maximum number of regions on a node are implementation dependent.
Partitions are consecutive chunks of memory organized as a pool of fixed sized blocks which tasks may allocate. Partitions are simpler than regions and are intended for fast dynamic memory allocation / de-allocation operations. The maximum number of partitions on a node is implementation dependent.
Semaphores provide a mechanism to synchronize the execution of a task with the execution of another task or interrupt service routine. They can be used to provide sequencing, mutual exclusion and resource management. The maximum number of semaphores on a node or in a system is implementation dependent.
Queues provide a mechanism for intertask communication, allowing tasks to send information to one another with implied synchronization. The maximum number of queues on a node or in a system is implementation dependent.
Events are task specific event markers that allow a task to block until the event, or a specific combination thereof occurs, therefore they form a simple synchronization mechanism. Each task has the same, fixed number of events. The actual number is implementation dependent, but the minimum number is fixed at sixteen.
Exceptions too are tasks specific conditions. Unlike events they are handled asynchronously by the task, meaning that when an exception is raised for a task that task's flow of control is interrupted to execute the code designated to be the exception service routine (XSR). Exceptions are intended to handle exceptional conditions without constantly having to check for them. In general exceptions should not be misused as a synchronization mechanism. Each task has the same, fixed number of exceptions. The actual number is implementation dependent, but the minimum number is fixed at sixteen.
Notepad locations are task specific integer variables that can be read or written without any form of synchronization or protection. Each task has the same, fixed number of notepads. The actual number is implementation dependent, but the minimum number is fixed at sixteen.
The calendar is a mechanism maintaining the current date and time on each node.
Timers come in two forms. The first type of timer is the delay timer that allows a task to delay its execution for a specific amount of time or until a given calendar value. The second type of timer is the event timer. This timer will, upon expiration, sent an event to the task that armed it. As with the delay timer it can expire after a specific amount of time has elapsed or when a given calendar value has passed. The maximum number of timers on a node is implementation dependent, in all cases a delay timer must be available to each task.

2.3. 	Naming and Identification
Tasks, regions, partitions, semaphores and queues are kernel objects dynamically created and deleted by tasks. when they are created, the task supplies a name for the object and ORKID returns an identifier, which identifies the object in subsequent ORKID operations. The syntax rules for allowable object names is implementation dependent. ORKID does not require uniqueness for object names. Conversely, an object‘s identifier must identify it uniquely within a system.
Observation:
An identifier 's uniqueness may be absolute over time, so that no two objects are ever assigned the same identifier over the lifetime of the system. Alternatively the uniqueness may be guaranteed only at the current time, so that an object may be assigned the same identifier as a previously deleted object. ORKID compliance requires at least uniqueness at the current time
Identifier uniqueness is required only within the set of objects of the same type.
Nodes have no names, but are distinguished by an identifier which must be unique within a system. This standard does not describe how node identifiers are allocated. Two aliases for node identifiers are defined by ORKID: LOCAL_NODE and OTHER_NODES. LOCAL_NODE identifies the node on which the operation is performed. OTHER_NODE defines the collection of all nodes in the system excluding LOCAL_NODE.
One or more of a given task's events or exceptions may be specified using a bit­field. Each bit of an event bit­field specifies a single event, likewise for exceptions.
A notepad location is addressed by the combination of the task‘s identifier and an index number, starting at zero.
The calendar has no name or identifier, it is implicitly addressed by the ORKID clock operations.
Timers are created dynamically by user tasks and exist for the duration of their operation. Delay timers have no names or identifiers since they are never accessed once started. Event timers are identified uniquely within a node by a kernel assigned identifier.
2 .4.	 ORKID Operations
ORKID operations have the form of a function call, taking zero or more input parameters, zero or more output parameters, and returning a completion status. (The operations exception_return and int_return are the only two which do not return a completion status as they alter the flow of control.)
Input parameters pass data from the calling program to the kernel, and output parameters pass data from the kernel to the calling program. The physical form which the data takes, and the physical means by
which it is passed, is implementation and language binding dependent.
The completion status may indicate success, a specific error condition such as an invalid parameter value, or a specific operational condition such as a time-out. When multiple conditions apply, only one status
is returned, defined by an implementation dependent precedence. All statuses have symbolic values the mapping of these symbols to numeric values is implementation dependent.
Each operation interface described in sections 3 to 12 defines a list of possible completion statuses. If the implementing kernel checks for these conditions it must return the appropriate completion status whenever that condition is true. In addition kernels may return statuses not listed in this standard. If the kernel implements no checks it should always return the Value OK. Each implementation must clearly specify which statuses may be returned for each operation. Appendix A gives a list of all defined completion statuses.
Some ORKID operations must be callable from Interrupt Service Routines (ISR) and/or Exception Service Routines (XSR). Kernels may support additional operations from ISRS and/or XSRS. A list of minimum requirements is defined in Appendix B and C.
2.5.	 Multi-processing
The ORKID standard has been defined to include facilities for multiprocessing. This means that it allows co-operating tasks to run concurrently on more than one processor, while retaining the functionality of ORKID operations. ORKID organizes this using the concepts of node and system.
Nodes
A node is defined as a computing entity addressed by a node identifier and containing a single ORKID data structure.
Systems
A system is defined as a set of one or more connected nodes. There are two basic subdivisions in the way that nodes can be connected within a system:
- A shared memory system consists of a set of nodes connected via
shared memory.
- A non-shared memory system consists of a set of nodes connected by a
network.
The behavior of a networked ORKID implementation should be consistent with the behavior of a shared memory ORKID system. It is also possible to have a mixture of these two schemes where a memory system may contain one or more sets of nodes. These sets of nodes are called shared memory subsystems.

System configuration

This standard does not specify how nodes are configured or how they are assigned identifiers. However, it is recognized that the availability of nodes in a running system can be dynamic. In addition, it is possible but not mandatory that nodes can be added to and deleted from a running system.
Levels of Compliance
ORKID defines two levels of compliance, a kernel may be either single node ORKID compliant or multiple node ORKID compliant. The former type of kernel supports systems with a single node only, while the latter supports systems with multiple nodes.
The syntax of ORKID operation calls does not change with the level of compliance. All 'node' operations must behave sanely in a single node ORKID implementation, i.e. the behavior is that of a multiple node configuration with only one active node.
2 .6.	 ORKID compatibility
There are several places in this standard where the exact algorithms to be used are defined by the implementor. Although each operation has a defined functionality, the method used to achieve that functionality may cause behavioral differences.
For example, ORKID does not define the kernel scheduling algorithm, especially when several ready tasks have the same priority. This may lead to tasks being scheduled completely differently in different implementations, which may lead to possible different behavior.
Another example is the segment allocation algorithm. Different kernels may handle fragmentation in different ways, leading to cases where one implementation can fulfil a segment request, but another returns an error, since it has left the region more fragmented.
Extensions
Any ORKID compliant implementation can add extensions to give functionality in addition to that defined by this standard. Clearly, a task which uses non-standard extensions is unlikely to be portable to a standard system. In all cases, a kernel which claims compliance to ORKID should have all extensions clearly marked in its documentation.
Undefined Items
There are several items which ORKID does not define but leaves up to the implementation.
ORKID does not define how system or node start-up is accomplished; this will obviously lead to differences in behavior, especially in multi-node systems.
ORKID does not define the word length. On this depends the size of

integer parameters. This latter will be defined in the language binding along with all the other data structures, and so should not cause problems. It is envisaged that ORKID should be scalable in other words it should be implementable on hardware with a different word length without loss of portability.
ORKID does not define the maximum number of events and exceptions per task. The minimum number is sixteen.
ORKID does not define the maximum number of task notepad locations. The minimum number is sixteen.
ORKID does not define the range of priority values.
ORKID defines neither inter-kernel communication methods nor kernel data structure structures. This means that there is no requirement that one implementation must co-operate with other implementations within a system. In general, all the nodes in a system will run the same kernel implementation.
ORKID does not define whether object identifiers need be unique only at the current time, or must be unique throughout the system lifetime. A task which assumes the latter may have problems with an implementation which provides the former.
ORKID does not define the size limits on granularity for regions and block size for partitions.
ORKID does not define any restrictions on the execution of operations within XSRS and interrupt handling routines (ISRS). It does however define a minimum requirement of operations that must be supported.
ORKID defines a number of completion statuses. If an implementation does check for the condition corresponding to one of these statuses, then it must return the appropriate status.
ORKID does not define which completion status will be returned if multiple conditions apply.
ORKID does not define the encoding (binary value) of completions statuses, options and other symbolic values.
ORKID defines a minimum functionality for scheduling task's Exception Service Routines.
2.7.	 Layout of Operation Descriptions
The remainder of this standard is divided into one section per ORKID object type. Each section contains a detailed description of this type of object, followed by subsections containing descriptions of the relevant ORKID operations.
These operation descriptions are layed out in a formal manner, and contain information under the following headings:

Synopsis
This is a pseudo­language call to the operation giving its standard name and its list of parameters. Note that the language bindings define the actual names which are used for operations and parameters, but the order of the parameters in the call is defined here.
Input Parameters
Those parameters which pass data to the operation are given here in the format:
<parameter name> : <parameter type> Commentary
The actual names to be used for parameters and types are given definitively in the language bindings.
Output Parameters
Those parameters which return data from the operation are given here in the same format as for input parameters. Note that the types given here are simply the types of the data actually passed, and take no account of the mechanism whereby the data arrives back in the calling program. The actual parameter names and types to be used are given definitively in the language bindings.
Literal Values
Under this heading are given literal values which are used with given parameters. They are presented in the following two formats:
<parameter name> = <literal value> Commentary
<parameter name> + <literal value> Commentary
The first format indicates that the parameter is given exactly the indicated literal value if the parameters should affect the function desired in the commentary. The second format indicates that more than one such literal value for this parameter may be combined (logical or) and passed to the operation. If none of the defined conditions is set, the value of the parameter should be zero.
Completion Status
Under this heading are listed all of the possible standard completion statuses that the operation may return.
Description
The last heading contains a description of the functionality of the operation. This-description should not be interpreted as a recipe for implementation

3. TASKS
Tasks are single threads of program execution. within a node, a number of tasks may run concurrently, competing for CPU time and other resources. ORKID does not define the number of tasks allowed per node. Tasks are created and deleted dynamically by existing tasks.
Tasks are allocated CPU time by a part of the kernel called the scheduler. The exact behavior of the scheduler is implementation dependent, but it must have the minimum functionality described in the following paragraphs.
Throughout its existence, each task has a current priority, a current mode and a current state, all of which may change over time. A task may also have an exception service routine which has to be declared to it at runtime.
Task Exception Service Routine
A task may designate an Exception Service Routine (XSR) to handle exceptions which have been sent to that task. A task's XSR can be changed at wili1 hat a task can have only one at any time. The purpose of an XSR is to deal with exceptions which have been sent to the task. It is recommended that exceptions be reserved for errors and other abnormal conditions which arise.
A task's XSR is activated asynchronously. This means that it is not called explicitly by the task code, but automatically by the scheduler whenever one or more exceptions are sent to the task. Thus an XSR may be entered at any time during task execution. (But see 'Task Modes' below.) A task's XSR runs at least at the same priority as the task; it only needs to be executed when the task normally would have been scheduled to the running state. Exceptions are latched on a single level. Multiple occurrences of the same exception during this time will be seen as a single exception by the XSR.
Task Priority
A task's priority determines its 'importance' in relation to the other tasks within the node. Priority is a numeric parameter and can take any value in the range 1 to HIGHP. Priority HIGHP is 'highest' or 'most important' and priority 1 is 'lowest' or 'least important'. There may be any number of tasks with the same priority.
Priorities are assigned to tasks by the tasks themselves, and affect the way in which task scheduling occurs. Although the exact scheduling algorithm is outside the scope of this standard, in general the higher the priority of a task, the more likely it is to receive CPU time.
Task Modes
A mode determines certain aspects of the behavior of the kernel in respect to the task. The mode is made up by the combination of a number of mode parameters, each of which determines a single aspect of kernel behavior.

3.1.	TASK_CREATE
Create a task .
Synopsis
task_create(name, priority, stack_size, mode, options, tid)
Input parameters
name 		: string		user defined task name
priority 	: prio 		initial task priority
stack_size 	: integer 	size in bytes of task's stack
mode 		: bit_field	initial task mode
options 	: bit_field 	creation options
Output Parameters
tid 		: task_id	kernel defined task identifier
Literal Values
mode 		+ NOXSR 		XSRs cannot be activated
+ NOTERMINATION	task cannot be restarted Or deleted
+ NOPREEMPT 	task cannot be preempted
+ NOINTERRUPT	interrupt handling routine cannot be activated
options 	+ GLOBAL 		New task will be visible throughout the system.
Completion Status
OK				task_create operation successful
ILLEGAL_USE 			operation not callable from XSR or ISR
INVALID_PARAMETER 		a parameter refers to an illegal address
INVALID_PRIORITY 		invalid priority value
INVALID_MODE 			invalid mode value
INVALID_OPTIONS 		invalid options value
TOO_MANY_TASKS 		too many tasks on the node
NO_MORE_MEMORY 		not enough memory to allocate task data structure or task stack
Description
The task_create operation creates a new task in the kernel data structure. Tasks are always created in the node in which the call to task_create was made. The new task does not start executing code - this is achieved with a call to the task_start operation. The tid returned by the kernel is used in all subsequent ORKID operations (except task_ident) to identify the newly created task. If GLOBAL is specified in the options parameter, then the tid can be used anywhere in the system to identify the task, otherwise it can be used only in the node in which the task was created.

3.2. TASK_DELETE
Delete a task.
Synopsis
task_delete(tid)
Input Parameters
tid 		: task_id 		kernel defined task identifier
Output Parameters
<none>
Literal Values
tid 		= SELF 		The calling task requests its own deletion.
Completion Status
OK 				task_delete operation successful
ILLEGAL_USE 		operation not callable from ISR
INVALID_PARAMETER 	a parameter refers to an illegal address
INVALID_ID 			task does not exist
OBJECT_DELETED 		task specified has been deleted
OBJECT_PROTECTED 	task has NO_TERMINATION parameter set
NODE_NOT_REACHABLE 	node on which task resides is not reachable
Description
This operation stops the task identified by the tid parameter and deletes it from its node's kernel data structure. If the task‘s active mode has the parameters NOTERMINATION set, then the task will not be deleted and the completion status OBJECT_PROTECTED will be returned.
Observation:
The task_delete operation performs no 'clean-up' of the resources allocated to the task. It is therefore the responsibility of the calling task to ensure that all segments, blocks, etc., allocated to the task to be deleted have been returned.
For situations where one task must delete another, clean­up will usually require co­operation between the tasks, typically using exceptions, or task_restart.

3.3. TASK_IDENT
Obtain the identifier of a task on a given node with a given name.
Synopsis
task_ident(name, nid, tid)
Input Parameters
name 	: string 		user defined task name nid : node_id node identifier
Output Parameters
tid		: task_id		kernel defined task identifier
Literal Values
nid 		= LOCAL_NODE 		The node containing the calling task
= OTHER_NODES 		all nodes in the system except the local node
name 		= WHO_AM_I 		Returns tid of calling task
Completion Status
OK 			task_ident operation successful
ILLEGAL_USE 		operation not callable from XSR or ISR
INVALID_PARAMETER 	a parameter refers to an illegal address
INVALID_NODE 		node does not exist
NAME_NOT_FOUND 	name does not exist on node
NODE_NOT_REACHABLE 	node on which task resides is not reachable
Description
This operation searches the kernel data structure in the node(s) specified by nid for a task with the given name. If OTHER_NODES is specified, the node search order is implementation dependent. If there is more than one task with the same name in the node(s) specified, then the tid of the first one found is returned.

3.4. TASK_START
Start a task.
Synopsis
task_start(tid, start_addr, arguments)
Input Parameters
tid 		: task_id 		kernel defined task identifier
start_addr 	: * 		task start address
arguments	: * 		arguments passed to task
Output Parameters
<none>
Completion Status
OK 				task_start operation successful
ILLEGAL_USE 			operation not callable from XSR or ISR
INVALID_PARAMETER 		a parameter refers to an illegal address
INVALID_ID 			task does not exist
OBJECT_DELETED 		task specified has been deleted
INVALID_ADDRESS 		invalid start address
INVALID_ARGUMENTS		invalid number or type or size of arguments
TASK_ALREADY_STARTED 	task has been started already
OBJECT_PROTECTED 		task has NOTERMINATION parameter set
NODE_NOT_REACHABLE 		node on which task resides is not reachable
Description
The task_start operation starts a task at the given address. The task must have been previously created with the task_create operation. The task is started with the priority and mode specified when the task was created.
* The specification of start address and the number and type of arguments are language binding dependent. For a high level language, the start address will likely be the name of a procedure and the arguments would be passed to the procedure as parameters.

3.5. TASK_RESTART
Restart a task.
Synopsis
 task_restart(tid, arguments)
Input Parameters
 tid : task_id kernel defined identifier
 arguments : * arguments passed to task
Output Parameters
 <none>
Literal Values
 tid = SELF The calling task restarts itself
Completion Status
OK task_restart operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_ARGUMENTS invalid number or type or size of arguments
TASK_NOT_STARTED task has not yet been started
OBJECT_PROTECTED task has NOTERMINATION parameter set
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
The task_restart operation interrupts the current thread of execution of the specified task and forces the task to restart at the address given in the task_start call which originally started the task. The stack pointer is reset to its original value. No assumption can be made about the original content of the stack at this time.
Any resources allocated to the task are not affected during the task_restart operation. The tasks themselves are responsible for the proper management of such resources through task_restart.
If the task's active mode has the parameter NOTERMINATION set, then the task will not be restarted and the completion status OBJECT_PROTECTED will be returned.
* The specification of the number and type of the arguments is language binding dependent. For a high level language, it is likely that these arguments will be passed as parameters to the procedure whose name was given as start address in the original task_start call.

3.6. TASK_SUSPEND
Suspend a task.
Synopsis
 task_suspend(tid)
Input Parameters
 tid : task_id kernel defined task identifier
Output Parameters
 <none>
Literal Values
 tid = SELF The calling task suspends itself
Completion Status
OK task_suspend operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
OBJECT_PROTECTED task has NOPREEMPT parameter set
TASK_ALREADY_SUSPENDED task already suspended
NODE_NOT_REACHABLE	 node on which task resides is not reachable
Description
This operation temporarily suspends the specified task until the suspension is lifted by a call to task_resume. While it is suspended, a task cannot be scheduled to run.
If the task's active mode has the parameter NOPREEMPT set the operation will fail and return the completions status OBJECT_PROTECTED, unless the task suspends itself. In which case the operation will always be successful.

3.7. TASK_RESUME
Resume a suspended task.
Synopsis
 task_resume(tid)
Input Parameters
 tid : task_id kernel defined task identifier
Output Parameters
 <none>
Completion Status
OK task_resume operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
TASK_NOT_SUSPENDED task not suspended
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
The task_resume operation lifts the task’s suspension immediately after the point at which it was suspended. The task must have been suspended with a call to the task_suspend operation.

3.8. TASK_SET_PRIORITY
Set priority of a task.
Synopsis
task_set_priority(tid, new_prio, old_prio)
Input Parameters
 tid : task_id kernel defined task id
 new_prio : prio task’s new priority
Output Parameters
 old_prio : prio task’s previous priority
Literal Values
 tid = SELF The calling task sets its own priority
 new_prio = CURRENT There will be no change in priority
Completion Status
OK task_set_priority operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
INVALID_PRIORITY invalid priority value
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation sets the priority of the specified task to new_prio. The new_prio parameter is specified as CURRENT if the calling task merely wishes to find out the current value of the specified task's priority. (see also 3. Task Priority)

3.9. TASK_SET_MODE
Set mode of own task.
Synopsis
 task_set_mode(new_mode, mask, old_mode)
Input Parameters
 new_mode : bit_field new task mode settings
 mask : bit_field significant bits in mode
Output Parameters
 old_mode : bit_field task's previous mode
Literal Values
 new_mode + NOXSR XSRs cannot be activated
 + NOTERMINATION task cannot be restarted or deleted
 + NOPREEMPT task cannot be preempted
 + NOINTERRUPT interrupt handling routine cannot be activated

old_mode + NOXSR XSRs cannot be activated
 + NOTERMINATION task cannot be restarted or deleted
 + NOPREEMPT task cannot be preempted
 + NOINTERRUPT interrupt handling routine cannot be activated
mask (same as mode)
Completion Status
OK task_set_mode operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_MODE invalid mode or mask value
Description
This operation sets a new active mode for the task or its XSR. If called from a task's XSR then the XSR mode is changed, otherwise the main task's mode is changed.
The mode parameters which are to be changed are given in mask. If a parameter is to be set then it is also given in mode, otherwise it is left out. For both mask and mode, the logical OR (!) of the symbolic values for the mode parameters are passed to the operation.
For example, to clear NOINTERRUPT and set NOPREEMPT, mask = NOINTERRUPT! NOPREEMPT, and mode = NOPREEMPT. To return the current mode without altering it, the mask should simply be set to zero. (see also 3. Task Modes)

3.10. TASK_READ_NOTE_PAD
Read one of a task's note-pad locations.
Synopsis
 task_read_note_pad(tid, loc_number, loc_value)
Input Parameters
 tid : task_id kernel defined task id
 loc_number : lnum note-pad location number
Output Parameters
 loc_value : integer note-pad location value
Literal Values
 tid = SELF The calling task reads its own notepad
Completion Status
OK task_read_note_pad operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
INVALID_LOCATION note-pad number does not exist
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation returns the value contained in the specified notepad location of the task identified by tid. (see also 3. Task Notepads)

3.11. TASK_WRITE_NOTE_PAD

Write one of a task's note-pad locations.
Synopsis
 task_write_note_pad (tid, loc_number, loc_value)
Input Parameters
 tid : task_id kernel defined task id
 loc_number : lnum note-pad location number
 loc_value : integer note-pad location value
Output Parameters
 <none>
Literal Values
 tid = SELF The calling task writes into its own notepad
Completion Status
 OK task_write_note_pad operation successful
 INVALID_PARAMETER a parameter refers to an illegal address
 INVALID_ID task does not exist
 OBJECT_DELETED task specified has been deleted
 INVALID_LOCATION note-pad number does not exist
 NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation writes the specified value into the specified notepad location of the task identified by tid. (see also 3. Task Notepads)

4. REGIONS
A region is an area of memory within a node which is organized by an ORKID compliant kernel into a pool of segments of varying size. The area of memory to become a region is declared to the kernel by a task when the region is created, and is thereafter managed by the kernel until it is explicitly deleted by a task.
Each region has a granularity, defined when the region is created. The actual size of segments allocated is always a multiple of the granularity, although the required segment size is given in bytes.
Once a region has been created, a task is free to claim variable sized segments from it and return them in any order. The kernel will do its best to satisfy all requests for segments, although fragmentation may cause a segment request to be unsuccessful, despite there being more than enough total memory remaining in the region. The memory management algorithms used are implementation dependent.
Regions, as opposed to partitions, tasks, etc., are only locally accessible. In other words, regions cannot be declared global and a task cannot access a region on another node. This does not stop a task from using the memory in a region on another node, for example in an area of memory shared between the nodes, but all claiming of segments must be done by a co-operating task in the appropriate node and the address passed back.
Observation:
Regions are intended to provide the first subdivisions of the physical memory available to a node. These subdivisions may reflect differing physical nature of the memory, giving for example a region of RAM, a region of ROM, a region of shared memory, etc.. Regions may also subdivide memory into areas for different uses, for example a region for kernel use and a region for user task use.

4.1. REGION_CREATE
Create a region.
Synopsis
 region_create (name, addr, length, granularity, options, rid)
Input Parameters
 name : string user defined region name
 addr : address start address of the region
 length : integer length of region in bytes
 granularity : integer allocation granularity in bytes
 options : bit_field region create options
Output Parameters
 rid : region_id kernel defined region identifier
Completion Status
OK region_create operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ADDRESS area given not within actual memory present
INVALID_GRANULARITY granularity not supported
INVALID_OPTIONS invalid options value
TOO_MANY_REGIONS too many regions on the node
REGION_OVERLAP area given overlaps an existing region
Description
This operation declares an area of memory to be organized as a region by the kernel. The process of formatting the memory to operate as a region may require a memory overhead which may be taken from the new region itself. It can never be assumed that all of the memory in the region will be available for allocation. The overhead percentage will be implementation dependent.
Observation:
Currently ORKID defines no options, the parameter is there as a place holder for future extensions and implementations desiring to provide additional options.

4.2. REGION_DELETE
Delete a region.
Synopsis
 region_delete(rid, options)
Input Parameters
 rid : region_id kernel defined region identifier
 options : bit_field region deletion options
Output Parameters
 <none>
Literal Values
 Options + FORCED_DELETE deletion will go ahead even though there are unreleased segments
Completion Status
 OK region_delete operation successful
 ILLEGAL_USE operation not callable from ISR
 INVALID_PARAMETER a parameter refers to an illegal address
 INVALID_ID region does not exist
 OBJECT_DELETED region specified has been deleted
 INVALID_OPTIONS invalid options value
 REGION_IN_USE segments from this region are still allocated
Description
[bookmark: _GoBack]Unless the FORCED_DELETE option was specified, this operation first checks whether the region has any segments which have not been returned. If this is the case, then the REGION_IN_USE completion status is returned. If not, and in any case if FORCED_DELETE was specified, then the region is deleted from the kernel data structure.

4.3. REGION_IDENT
Obtain the identifier of a region with a given name.
Synopsis
 region_ident(name, rid)
Input Parameters
 name : string user defined region name
Output Parameters
 rid : region_id kernel defined region identifier
Completion Status
 OK region_ident operation successful
 ILLEGAL_USE operation not callable from XSR or ISR
 INVALID_PARAMETER a parameter refers to an illegal node
 NAME_NOT_FOUND name does not exist on node
Description
This operation searches the kernel data structure in the local node for a region with the given name, and returns its identifier if found. If there is more than one region with the same name, the kernel will return the identifier of one of them, the choice being implementation dependent.

4.4. REGION_GET_SEG
Get a segment from a region.
Synopsis
 region_get_seg(rid, seg_size, seg_addr)
Input Parameters
 rid : region_id kernel defined region id
 seg_size : integer requested segment size in bytes
Output Parameters
 seg_addr : address address of obtained segment
Completion Status
OK region_get_seg operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID region does not exist
OBJECT_DELETED region specified has been deleted
NO_MORE_MEMORY not enough contiguous memory in the region to allocate segment of requested size
Description
The region_get_seg operation is a request for a given sized segment from a given region's free memory pool. If the kernel cannot fulfil the request immediately, it returns the error completion status NO_MORE_MEMORY, otherwise the address of the allocated segment is returned. The allocation algorithm is implementation dependent.
Note that the actual size of the segment returned will be more than the size requested, if the latter is not a multiple of the region’s granularity.

4.5. REGION_RET_SEG
Return a segment to its region.
Synopsis
 region_ret_seg(rid, seg_addr)
Input Parameters
 rid : region_id kernel defined region id
 seg_addr : address address of segment to be returned
Output Parameters
 <none>
Completion Status
OK region_ret_seg operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID region does not exist
OBJECT_DELETED region specified has been deleted
INVALID_SEGMENT no segment allocated from this region at seg_addr
Description
This operation returns the given segment to the given region's free memory pool. The kernel checks that this segment was previously allocated from this region, and returns INVALID_SEGMENT if it wasn’t.

4.6. REGION_INFO
Obtain information on a region.
Synopsis
 region_info(rid, size, max_segment, granularity)
Input Parameters
 rid : region_id kernel defined region id
Output Parameters
 size : integer length in bytes of overall area in region available for segment allocation
 max_segment : integer length in bytes of maximum segment allocatable at time of call
 granularity : integer allocation granularity in bytes
Completion Status
OK region_info operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID region does not exist
OBJECT_DELETED region specified has been deleted
Description
This operation provides information on the specified region. It returns the size of the region's area for segment allocation, which may be smaller than the region length given in region_create due to a possible formatting overhead. It returns also the size of the biggest segment allocatable from the region. This value should be used with care as it is just a snap­-shot of the region's usage at the time of executing the operation. Finally it returns the region’s allocatable granularity.

5. PARTITIONS
Partitions are areas of memory organized by the kernel as a pool of fixed size blocks. As for regions, the creating task supplies the area of memory to be used by the partition. The task also supplies the size of the blocks to be allocated from the partition. Any restrictions imposed on the block size are implementation dependent.
Partitions are simpler structures than regions, and are intended for use where speed of allocation is essential. Partitions may also be declared global, and be operated on from more than one node. However, this makes sense only if the nodes accessing the partition are all in the same shared memory system, and the partition is in shared memory.
Once the partition created, tasks may request blocks one at a time from it, and can return them in any order. Because the blocks are all the same size, there is no fragmentation problem in partitions. The exact allocation algorithms are implementation dependent.

5.1. PARTITION_CREATE
Create a partition.
Synopsis
 partition_create(name, addr, length, block_size, options, pid)
Input Parameters
 name : string user defined partition name
 addr : address start address of partition
 length : integer length of partition in bytes
 block_size : integer partition block size in bytes
 options : bit_field partition create options
Output Parameters
 pid : part_id kernel defined partition identifier
Literal Values
 option: + GLOBAL partition is global within the shared memory system
Completion Status
OK partition_create operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ADDRESS area defined is not within actual memory present
INVALID_BLOCK_SIZE block_size not supported
INVALID_OPTIONS invalid options value
TOO_MANY_PARTITIONS too many partitions on the node
PARTITION_OVERLAP area given overlaps an existing partition
Description
This operation declares an area of memory to be organized as a partition by the kernel. The process of formatting the memory to operate as a partition may require a memory overhead which may be taken from the new partition. It can never be assumed that all of the memory in the partition will be available for allocation. The overhead percentage will be implementation dependent.

5.2. PARTITION_DELETE
Delete a partition.
Synopsis
 partition_delete(pid, options)
Input Parameters
 pid : part_id kernel defined partition identifier
 options : bit_field partition deletion options
Output Parameters
 <none>
Literal Values
 options + FORCED_DELETE deletion will go ahead even though there are unreleased blocks
Completion Status
OK partition_delete operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID partition does not exist
OBJECT_DELETED partition specified has been deleted
INVALID OPTIONS invalid options value
PARTITION_IN_USE blocks from this partition are still allocated
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
Unless the FORCED_DELETE option was specified, this operation first checks whether the partition has any blocks which have not been returned. If this is the case, then the PARTITION_IN_USE completion status is returned. If not, and in any case if FORCED_DELETE was specified, then the partition is deleted from the kernel data structure.

5.3. PARTITION_IDENT
Obtain the identifier of a partition on a given node with a given name.
Synopsis
 partition_ident(name, nid, pid,)
Input Parameters
 name : string user defined partition name
 nid : node_id node identifier
Output Parameters
 pid : part_id kernel defined partition identifier
 block_size : integer the partition's block size
Literal Values
 nid = LOCAL_NODE the node containing the calling task
 = OTHER_NODES all nodes in the system except the local node
Completion Status
OK partition_ident operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_NODE node does not exist
NAME_NOT_FOUND name does not exist on node
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation searches the kernel data structure in the node(s) specified for a partition with the given name, and returns its identifier and block size if found. If OTHER_NODES is specified, the node search order is implementation dependent, but will include only those nodes in the shared memory system or subsystem containing the partition. If there is more than one partition with the same name, then the pid of the first one found is returned.

5.4. PARTITION_GET_BLK
Get a block from a partition.
Synopsis
 partition_get_blk(pid, blk_addr)
Input Parameters
 pid : part_id kernel defined partition identifier
Output Parameters
 blk_addr : address address of obtained block
Completion Status
OK partition_get_blk operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID partition does not exist
OBJECT_DELETED partition specified has been deleted
NO_MORE_MEMORY no more blocks available in partition
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation is a request for a single block from the partition's free block pool. If the kernel cannot immediately fulfil the request, it returns the error completion status NO_MORE_MEMORY, otherwise the address of the allocated block is returned. The exact allocation algorithm is implementation dependent.

5.5. PARTITION_RET_BLK
Return a block to its partition.
Synopsis
 partition_ret_blk(pid, blk_addr)
Input Parameters
 pid : part_id kernel defined partition identifier
 blk_addr : address address of block to be returned
Output Parameters
 <none>
Completion Status
OK partition_ret_blk operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID partition does not exist
OBJECT_DELETED partition specified has been deleted
INVALID_BLOCK no block allocated from partition at blk_addr
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation returns the given block to the given partition's free block pool. The kernel checks that the block was previously allocated from the partition and returns INVALID_BLOCK if it wasn't.

5.6. PARTITION_INFO
Obtain information on a partition.
Synopsis
 partition_info(pid, blocks, free_blocks, block_size)
Input Parameters
 pid : partition-id kernel defined region id
Output Parameters
 blocks : integer number of blocks in the partition
free_blocks : integer number of free blocks in the partition
block_size : integer partition block size in bytes
Completion Status
OK partition_info operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID partition does not exist
OBJECT_DELETED partition specified has been deleted
NODE_NOT_REACHABLE node on which the partition resides is not reachable
Description
This operation provides information on the specified partition. It returns its overall number of blocks, the number of free blocks in the partition, and the block size. The number of free blocks in the partition should be used with care as it is just a snap-shot of the partitions's usage at the time of executing the operation.

6. SEMAPHORES
The semaphores defined in ORKID are standard Dijkstra counting semaphores. Semaphores provide for the fundamental need of synchronization in multi-tasking systems, i.e. mutual exclusion, resource management and sequencing.
Semaphore Behavior
The following should not be understood as a recipe for implementations.
The behavior of counting semaphores can be described as follows:
During a sem_p operation, the semaphore count is decremented by one. If the resulting semaphore count is greater than or equal to zero, than the calling task continues to execute. If the count is less than zero, the task blocks from CPU usage and is put on a waiting list for the semaphore.
During a sem_v operation, the semaphore count is incremented by one. If the resulting semaphore count is less than or equal to zero then the first task in the waiting list for this semaphore is unblocked and is made eligible for CPU usage.
Semaphore Usage
Mutual exclusion is achieved by creating a counting semaphore with an initial count of one. A resource is guarded with this semaphore by requiring all operations on the resource to be proceeded by a sem_p operation. Thus, if one task has claimed a resource, all other tasks requiring the resource will be blocked until the task releases the resource with a sem_v operation.
In situations where multiple instantiations of a resource exist, the semaphore may be created with an initial count equal to a number of instantiations. A resource is claimed from the pool with the sem_p operation. When all available copies of the resource have been claimed, a task requiring the resource will be blocked until one of the claimed resources is returned to the pool by a sem_v operation.
Sequencing is achieved by creating a semaphore with an initial count of zero. A task may pend the arrival of another task by performing a sem_p operation when it reaches a synchronization point. The other tasks performs a sem_v operation when it reaches its synchronization point, unblocking the pended task.
Semaphore Options
ORKID defines the following option symbols, which may be combined.
* GLOBAL Semaphores created with the GLOBAL option set are
 visible and accessible from any node in the system.
* FIFO Semaphores created with the FIFO option set enqueue
 blocked tasks in order of arrival of the sem_p

operations. Without this option, the tasks are enqueued in order of task priority.

6.1. SEM_CREATE
Create a semaphore.
Synopsis
 sem_create(name, init_count, options, sid)
Input Parameters
 name : string user defined semaphore name
 init_count : integer initial semaphore count
 options : bit_field semaphore create options
Output Parameters
 sid : sema_id kernel defined semaphore identifier
Literal Values
 options + GLOBAL the new semaphore will be visible throughout the system
 + FIFO tasks will be queued in first in first out order
Completion Status
OK sem_create operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_COUNT init count is negative
INVALID_OPTIONS invalid options value
TOO_MANY_SEMAPHORES too many semaphores on node
Description
This operation creates a new semaphore in the kernel data structure, and returns its identifier. The semaphore is created with its counter at the value given by the count parameter. The task queue, initially empty, will be ordered by task priority, unless the FIFO option is set, in which case it will be first in first out.

6.2. SEM_DELETE
Delete a semaphore.
Synopsis
 sem_delete(sid)
Input Parameters
 sid : sema_id kernel defined semaphore identifier
Output Parameters
 <none>
Completion Status
OK sem_delete operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID semaphore does not exist
INVALID_OPTIONS semaphore specified has been deleted
TOO_MANY_SEMAPHORES node on which semaphore resides is not reachable
Description
The sem_delete operation deletes a semaphore from the kernel data structure. The semaphore is deleted immediately, even though there are tasks waiting in its queue. These latter are all unblocked and are returned the SEMAPHORE_DELETED completion status.

6.3. SEM_IDENT
Obtain the identifier of a semaphore on a given node with a given name.
Synopsis
 sem_ident(name, nid, sid)
Input Parameters
 name : string user defined semaphore name
 nid : node_id node identifier
Output Parameters
 sid : sema_id kernel defined semaphore identifier
Literal Values
 nid = LOCAL_NODE the node containing the calling task
 = OTHER_NODES all nodes in the system except the local node
Completion Status
OK sem_ident operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_NODE node does not exist
NAME_NOT_FOUND name does not exist on node
NODE_NOT_REACHABLE node on which semaphore resides is not reachable
Description
This operation searches the kernel data structure in the node(s) specified for a semaphore with the given name, and returns its identifier if found. If OTHER_NODES is specified, the node search order is implementation dependent. If there is more than one semaphore with the same name in the node(s) specified, then the sid of the first one found is returned.

6.4. SEM_P
Perform P operation (take) on a semaphore.
Synopsis
 sem_p(sid, options, time_out)
Input Parameters
 sid : sema_id kernel defined semaphore identifier
 options : bit_field semaphore wait options
 time_out : integer ticks to wait before timing out
Output Parameters
 <none>
Literal Values
 Options + NOWAIT do not wait - return immediately if
 semaphore not available
 time_out = FOREVER wait forever - do not time out
Completion Status
 OK sem_p operation successful
 ILLEGAL_USE operation not callable from ISR
 INVALID_PARAMETER a parameter refers to an illegal address
 INVALID_ID semaphore does not exist
 OBJECT_DELETED semaphore specified has been deleted
 TIME_OUT sem_p operation timed out
 SEMAPHORE_DELETED semaphore deleted while blocked in sem_p
 operation
 SEMAPHORE_NOT_AVAILABLE semaphore unavailable with NOWAIT option
 NODE_NOT_REACHABLE node on which semaphore resides is not
 reachable
Description
This operation performs a claim from the given semaphore. It first checks if the NOWAIT option has been specified and the counter is zero or less, in which case the SEMAPHORE_NOT_AVAIIABLE completion status is returned. Otherwise, the counter is decreased. If the counter is now zero or more, then the claim is successful, otherwise the calling task is put on the semaphore queue.
If the semaphore is deleted while the task is waiting on its queue, then the task is unblocked and this operation returns the SEMAPHORE_DELETED completion status. Otherwise the task is blocked either until the timeout expires, in which case the TIME_OUT completion status is returned, or until the task reaches the head of the queue and another task performs a sem_v operation on this semaphore.

6.5. SEM_V
Perform a V operation (give) on a semaphore.
Synopsis
 sem_v(sid)
Input Parameters
 sid : sema_id kernel defined semaphore identifier
Output Parameters
 <none>
Completion Status
OK sem_v operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID semaphore does not exist
OBJECT_DELETED semaphore specified has been deleted
SEM_OVERFLOW the counter of semaphore overflows
NODE_NOT_REACHABLE node on which semaphore resides is not reachable
Description
This operation increments the semaphore count by one. If the resulting semaphore count is less than or equal to zero then the first task in the semaphore queue is unblocked, and returned the successful completion status

6.6. SEM_INFO
Obtain information on a semaphore.
Synopsis
 sem_info(sid, options, count, tasks_waiting)
Input Parameters
 sid : sem-id kernel defined semaphore identifier
Output Parameters
 options : bit_field semaphore create options
 count : integer semaphore count at time of call
 tasks_waiting : integer number of tasks waiting in the semaphore queue
Completion Status
OK sem_info operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID semaphore does not exist
OBJECT_DELETED semaphore specified has been deleted
NODE_NOT_REACHABLE node on which semaphore resides is not reachable
Description
This operation provides information on the specified semaphore. It returns its create options, the value of it's counter, and the number of tasks waiting on the semaphore queue. The latter two values should be used with care as they are just a snap­shot of the semaphores's state at the time of executing the operation.

7. QUEUES
Queues permit the passing of messages amongst tasks. Queues contain a variable number of messages, all of which have the same user task defined length. The queues normally behave first in first out, with messages sent to a queue being appended at the tail, and messages received from a queue being taken from the head. Urgent messages can be inserted at the head of the queue, i.e. they are prepended. Several urgent messages prepended without an intervening receive will be received last in first out.

Queue Behavior
The following should not be understood as a recipe for implementations.
When a queue contains no messages, a task which receives from it is blocked (unless it specified the NOWAIT option) and is put on the queue's wait queue. This queue of waiting tasks is ordered either by task priority or as first in first out.
A task may broadcast a message to all tasks on a wait queue, which unblocks all of them and returns them all the same message. This latter operation is atomic with respect to any other operation on this queue.
All messages in a queue may be flushed with a single operation that is atomic with respect to any other operation on this queue.
Observation:
It can be seen that there is more than one way to use a queue. At one extreme, many tasks feed messages onto a queue and a single task receives them, creating a many to one data flow. At the other extreme, many tasks wait for a message and one task broadcasts a message synchronously to all of them, creating a one to many data flow.
Queue Options
A queue's options are set by the creating task. They define various aspects of the behavior of the kernel with respect to queues. ORKID defines the following option symbols, which may be combined unless otherwise stated. An implementation may define additional options.

- GLOBAL 	Queues created with the GLOBAL option set are visible and accessible from any node in the system. When a
		message is sent to a queue in another node, the message is physically copied to that other node. In non-shared
		memory systems, it is not guaranteed that a message has arrived in the destination node before the operation
returns a successful completion status.

- FIFO		With this option set, the tasks waiting for messages from the queue will be queued first in first out. The tasks
are by default queued in order of task priority	

7.1. 	QUEUE_CREATE
Create a message queue.
Synopsis
queue_create(name, max_buff, length, options, qid)
Input Parameters
name	: string		user defined queue name
max_buff	: integer	maximum number of buffers allowed in queue
length	: integer		length of message buffers in bytes
options	: bit_field	queue create options
Output Parameters
qid 		: queue_id 	kernel defined queue identifier
Literal Values
options	+ GLOBAL	the new queue will be visible throughout the system
		+ FIFO		tasks waiting on a message will be queued first in first out
Completion Status
OK 			queue_create operation successful
ILLEGAL_USE 		operation not callable from XSR or ISR
INVALID_PARAMETER 	a parameter refers to an illegal address
INVALID_LENGTH 	buffer length not supported
INVALID_OPTIONS 	invalid options value
TOO_MANY_QUEUES 	too many queues on node
NO_MORE_MEMORY 	not enough memory to allocate message buffer(s)

Description
This operation creates a new queue in the kernel data structure. The given number of buffers of the given length are allocated by the kernel. If the kernel cannot find sufficient memory it returns the NO_MORE_MEMORY completion status.
The maximum possible length of messages is implementation dependent, but an ORKID compliant kernel is required to support message lengths of up to 32 bytes.

7.2. 	QUEUE_DELETE
Delete an existing queue.
Synopsis
queue_delete(qid)
Input Parameters
qid 		: queue_id 	kernel defined queue identifier
Output Parameters
<none>
Completion Status
OK 				queue_delete operation successful
ILLEGAL_USE 		operation not callable from ISR
INVALID_PARAMETER 	a parameter refers to an illegal address
INVALID_ID 			queue does not exist
OBJECT_DELETED 		specified has been deleted
NODE_NOT_REACHABLE 	node on which semaphore resides is not reachable
Description
This option deletes the given queue from the kernel data structure. If any tasks were waiting for a message from the queue, they are unblocked and returned the QUEUE_DELETED completion status. If there were any messages in the queue, they are lost and the buffers deallocated.

7.3. 	QUEUE_IDENT
Obtain the identifier of a queue on a given node with a given name.
Synopsis
queue_ident(name, nid, qid)
Input Parameters
name 		: string 		user defined queue name
nid 			: node_id 	node identifier
Output Parameters
qid 		: queue_id 	kernel defined queue identifier
Literal Values
nid		= LOCAL_NODE 		the node containing the calling task
= OTHER_NODES 	all nodes in the system except the local node.
Completion Status
OK 				queue_ident operation successful
ILLEGAL_USE 			operation not callable from XSR or ISR
INVALID_PARAMETER		a parameter refers to an illegal address
INVALID_NODE 			node does not exist
NAME_NOT_FOUND 		name does not exist on node
NODE_NOT_REACHABLE		node on which semaphore resides is not reachable
Description
This operation searches the kernel data structure in the node(s) specified for a queue with the given name, and returns its identifier if found. If OTHER_NODES is specified, the node Search order is implementation dependent. If there is more than one queue with the same name in the node(s) specified, then the qid of the first one found is returned.

7.4. 	QUEUE_SEND
Send a message to a given queue.
Synopsis
queue_send(qid, message, length)
Input Parameters
qid 		: queue_id 	kernel defined queue identifier
message	: address 		message starting address
length 	: integer 		length of message in bytes
Output Parameters
<none>
Completion Status
OK 				queue_send operation successful
INVALID_PARAMETER 		a parameter refers to an illegal address
INVALID_ID 			queue does exist
OBJECT_DELETED		queue specified has been deleted
INVALID_LENGTH		message length greater than queue’s buffer length
QUEUE_FULL 			no more buffers available
NODE_NOT_REACHABLE		node on which semaphore resides is not reachable
Description
This operations sends a message to a queue. If the queue‘s wait queue contains a number of tasks waiting on messages, then the message is delivered to the task at the head of the wait queue. This task is then wait queue, unblocked and will be returned a successful completion status along with the message. Otherwise the message is put on the queue.
If the maximum queue length has been reached, then the QUEUE_FULL completion status is returned.

7.5. 	QUEUE_URGENT
Send a message to head of queue.
Synopsis
queue_urgent(qid, message, length)
Input Parameters
qid 		: queue_id 	kernel defined queue identifier
message	: address 		message starting address
length	: integer 		message length in bytes
Output Parameters
<none>
Completion Status
OK 					queue_broadcast operation successful
INVALID_PARAMETER 		a parameter refers to an illegal address
INVALID_ID 				queue does not exist
OBJECT_DELETED 			queue specified has been deleted
INVALID_LENGTH 			message length greater than queue’s buffer length
QUEUE_FULL			no more buffers available
NODE_NOT_REACHABLE		node on which semaphore resides is not reachable
Description
This operation sends a priority message to a queue.
If the queue’s wait queue contains a number of tasks waiting on messages, then the action is exactly the same as for queue send. The message is delivered to the task at the head of the wait queue. This task is then removed from the wait queue, unblocked and will be returned a successful completion status along with the message.
Otherwise the message is inserted at the head of the message queue. If there is no memory available for the buffer, then the NO_MORE_MEMORY completion status is returned.

7.6. 	QUEUE_BROADCAST
Broadcast message to all tasks blocked on a queue.
Synopsis
queue_broadcast(qid, message, length, count)
Input Parameters
qid 			: queue_id 		kernel defined queue identifier
message 		: address 		message starting address
length 		: integer 		message length in bytes
Output Parameters
count 		: integer 		number of unblocked tasks
Completion Status
OK 					queue_broadcast operation successful
ILLEGAL_USE 				operation not callable from ISR
INVALID_PARAMETER			a parameter refers to an illegal address
INVALID_ID 				queue does not exist
OBJECT_DELETED 			queue specified has been deleted
INVALID_LENGTH 			message length greater than queue’s buffer length
NODE_NOT_REACHABLE			node on which semaphore resides is not reachable
Description
This operation sends a message to all tasks waiting on the queue. If the wait queue is empty, then no messages are sent, no tasks are unblocked and the count returned will be zero. If the wait queue contains a number of tasks waiting on messages, then the message is delivered to each task in the wait queue. All tasks are then removed from the wait queue, unblocked and returned a successful completion status. The number of tasks unblocked is returned in the count parameter.
This operations is atomic with respect to other operations on the queue.

7.7.	 QUEUE_RECEIVE
Receive a message from a queue.
Synopsis
queue_receive(qid, message, options, time_out)
Input Parameters
qid		: queue_id			kernel defined queue identifier
message	: address			address to put message
options	: bit_field			queue receive options
time_out	: integer			max number of ticks to wait
Output Parameters
<none>
Literal Values
options 	 + NOWAIT 		do not wait return immediately if no message in queue
time_out	 = FOREVER		wait forever ~ do not time out
Completion Status
OK					queue receive operation successful
ILLEGAL_USE				operation not callable from ISR
INVALID_PARAMETER			a parameter refers to an illegal address
INVALID_ID				queue does not exist
OBJECT_DELETED			queue specified has been deleted
INVALID_ADDRESS			message refers to an illegal address
INVALID_OPTIONS			invalid options value
TIME_OUT				queue_receive operation timed out
QUEUE_DELETED			queue deleted while blocked in queue_receive operation
QUEUE_EMPTY				queue empty with NOWAIT option
NODE_NOT_REACHABLE			node on which semaphore resides is not reachable
Description
This operation receives a message from a given queue. If there are one or more messages on the queue, then the buffer at the head is removed from the queue, its message is copied into the given area, the buffer is deallocated, and a successful completion status returned.
If the queue is empty, and NOWAIT was not specified in the options, then the task is blocked and put on the queue's wait queue in order of task priority or first in first out. If NOWAIT was specified and the queue is empty, then the QUEUE*EMPTY completion status is returned. If the queue is deleted while the task is waiting on a message from it, then the QUEUE_DELETED completion status is returned. If the

timeout expires, then the TIME_OUT completion status is returned. Otherwise, when the task reaches the head of the queue and a message is sent, or if a message is broadcast while the task is anywhere in the queue, then the task receives the message and is returned a successful completion status.

7.8. 	QUEUE_FLUSH
Flush all messages on a queue.
Synopsis
queue_flush(qid, count)
Input Parameters
qid 		: queue_id 		kernel defined queue identifier
Output Parameters
count 	: integer 			number of flushed messages
Completion Status
OK 				queue_flush operation successful
ILLEGAL_USE 			operation not callable from ISR
INVALID_PARAMETE.R 		a parameter refers to an illegal address
INVALID_ID 			queue does not exist
OBJECT_DELETED 		queue specified has been deleted
NODE_NOT_REACHABLE 		node on which semaphore resides is not reachable
Description
If there were one or more messages in the specified queue, then they are removed from the queue, their buffers deallocated and their number returned in count. If there were no messages in the queue, then a count of zero is returned.

7.9. QUEUE_INFO
Obtain information on a queue.
Synopsis
 queue_info(qid, max_buff, length, options, messages_waiting
 tasks_waiting)
Input Parameters
 qid : queue_id kernel defined queue identifier
Output Parameters
 max_buff : integer maximum number of buffers in queue
 length : integer length of message buffers in bytes
 options : bit_field semaphore create options
 tasks_waiting : integer number of tasks waiting on the message queue
 messages_waiting : integer number of messages waiting in the message queue
Completion Status
OK queue_info operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID queue does not exist
OBJECT_DELETED queue specified has been deleted
NODE_NOT_REACHABLE node on which the queue resides is not reachable
Description
This operation provides information on the specified message queue. It returns its maximum number of buffers in bytes, its create options, and the number of tasks waiting for messages on this queue, respectively the number of messages waiting in the queue to be read.
The latter two values should be used with care as they are just a snapshot of the semaphores's state at the time of executing the operation.

8. EVENTS
Events provide a simple method of task synchronization. Each task has the same number of events. The maximum number of these is implementation dependent, but the minimum number is fixed at sixteen. Events have no identifiers, but are addressed using a task identifier and a bit-field. A bit-field can indicate any number of a task's events at once.
A task can wait on any combination of its events, requiring either all specified events to arrive, or at least one of them, before being unblocked. Tasks can send any combination of events to a given task. If the receiving task is not in the same node as the sending task, then the receiving task must be global.
Sending events in effect sets a one bit latch for each event. Receiving a combination of events clears the appropriate latches. This means that if an event is sent more than once before being received, the second and subsequent sends are not seen.

8.1. EVENT_SEND
Send event(s) to a task.
Synopsis
 event_send(tid, event)
Input Parameters
 tid : task_id kernel defined task identifier
 event : bit_field event(s) to be sent
Output Parameters
 <none>
Completion Status
OK event_send operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
NODE_NOT_REACHABLE node on which semaphore resides is not reachable
Description
This operation sends the given event(s) to the given task. The appropriate task event latches are set. If the task is waiting on a combination of events, a check is made to see if the currently set latches satisfy the requirements. If this is the case, the given task receives the event(s) it is waiting on and the appropriate bits are cleared in the latch.

8.2. EVENT_RECEIVE
Receive event(s).
Synopsis
 event_receive(events, options, time_out, events_received)
Input Parameters
 events : bit_field		event(s) to receive
 options : bit_field		receive options
 time_out : integer		max no of tricks to wait
Output Parameters
 events_received : bit_field event(s) received
Literal Values
 options + ANY			return when any of the events is sent
 + NOWAIT		do not wait - return immediately if no events set
 time_out = FOREVER		wait forever - do not time out
Completion Status
OK				event_receive operation successful
ILLEGAL_USE			operation not callable from ISR
INVALID_PARAMETER		a parameter refers to an illegal address
INVALID_OPTIONS		invalid options value
TIME_OUT			event_receive operation timed out
NO_EVENTS			event(s) not set and NOWAIT option given
Description
This operation waits on a given combination of events to occur. By default, the operation waits until all of the events have been sent. If the ANY option is set, then the operation waits only until any one of the events has been sent.
The operation first checks the task’s event latches to see if the required event(s) have already been sent. In this case the task receives the events, which are returned in events_caught, and the appropriate event latches are cleared. If the ANY option was set, and more than one of the specified events was sent, all the events sent, satisfying the events, are received.
If the required event(s) have yet to be sent, and the NOWAIT option has been specified, the NO_EVENTS completion status is returned. If NOWAIT is not specified then the task is blocked, waiting on the appropriate events to be sent. A timeout is initiated, unless the time_out value supplied is FOREVER. If all required events are sent before the timeout expires, then the events are received and a successful completion status returned. If the timeout expires, the TIME_OUT completion status is returned.

9. EXCEPTIONS
ORKID exceptions provide tasks with a method of handling exceptional conditions asynchronously. Each task has the same number of exceptions. The maximum number of these is implementation dependent, but the minimum number is fixed at sixteen. Exceptions have no identifiers, but are addressed using a task identifier and a bit field, which can indicate any number of exceptions at once.
Exceptions are identified in the same manner as events. Using a bit field, any number of exceptions can be raised simultaneously to a task. Raising an exception sets a one bit latch for each exception. If the same exception is raised more than once to a task before the task can catch them, then the second and subsequent raisings are ignored. If the target task is not in the same node as the raising task, then the target task must be global.
The 'catching' of exceptions is quite different than that of events, and involves the activation of the task's Exception Service Routine (XSR). XSRS have to be declared via the exception_catch operation to tasks after their creation. A task may change its XSR at any time.
An XSR is activated whenever one or more exceptions are raised to a task, and the task has not set its NOXHR modal parameter in the active mode. If the NOXHR parameter is set, the XSR will be activated as soon as it is cleared. When an XSR is activated, the task's current flow of execution is interrupted and the XSR entered. The XSR is passed the bit field indicating which exceptions have been sent as a parameter. The exact way how to accomplish this is defined in the language binding. The XSR always catches all exceptions which have been raised, and all the latches are cleared.
An XSR is treated by the scheduler in exactly the same way as other parts of the task. The kernel automatically activates a task's current XSR as detailed above, but the XSR is actually required to execute only when the task would normally be scheduled to run. The XSR must deactivate and return to the code which it interrupted with a special ORKID operation: EXCEPTION_RETURN. While it is active, an XSR has no special privileges or restrictions other than those necessitated by its asynchronous execution.
A XSR has its own mode with the same four mode parameters as tasks: NOXSR, NOTERMINATION, NOPREEMPT and NOINTERRUPT. The mode parameter given in the exception_catch operation is ored with the active mode at the time of the XSR's activation. The XSR will enter execution with this mode, which now becomes the active mode.
An active XSR can itself be interrupted by an exception being raised. In this case, unless the XSR's modal parameter NOXHR was set, the XSR is immediately reentered to handle the new exception. Theoretically, XSR activation can be thus nested to any depth. The kernel only considers the active mode when making scheduling decisions.

9.1. EXCEPTION_CATCH
Specify a task's asynchronous exception handling routine.
Synopsis
 exception_catch(new_XSR, mode, old_XSR, old_mode)
Input Parameters
 new_XSR : address address of exception handling routine
 mode : bit_field startup execution mode of XSR
Output Parameters
 old_XSR : address address of previous XSR
 old_mode : bit_field mode associated with old XSR
Literal Values
 new_XSR = NULL_XSR task henceforth will have no XSR
 mode + NOXHR XSR cannot be activated
 + NOTERMINATION task cannot be restarted or deleted
 + NOPREEMPT task cannot be preempted
 + NOINTERRUPT interrupt handling routine cannot be activated
 old_XSR = NULL_XSR task previously had no XSR
Completion Status
OK				exceptions_catch operation successful
ILLEGAL_USE			operation not callable from ISR
INVALID_PARAMETER		a parameter refers to an illegal address
INVALID_ADDRESS		new_XSR refers to an illegal address
INVALID_MODE			invalid mode value
Description
This operation designates a new exception handling routine (XSR) for the current task. The task supplies the start address of the XSR, and the mode in which it will be started. If this operation returns a successful completion status, an exception sent to the task will henceforth cause the XSR at the given address to be activated.
The kernel returns the address of the previous XSR and the mode associated with that XSR.
Observation:
This can be used when a task wishes to use a different XSR temporarily. Once finished with the temporary XSR, the original one can be simply reinstated.
Note that if tasks are created without an XSR in a particular

implementation, the first call to exception_catch will return the symbolic value NULL_XSR in old_XSR. This same value can be passed as the new_XSR input parameter, which removes the current XSR from the task without designating a new one.

9.2. EXCEPTION_RAISE
Raise exceptions to a task.
Synopsis
 exception_raise(tid, exceptions)
Input Parameters
 tid : task_id kernel defined task id
 exceptions : bit_field exceptions to be raised
Output Parameters
 <none>
Completion Status
OK exceptions_send operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
XSR_NOT_SET task has no exception handler routine
NODE_NOT_REACHABLE node on which semaphore resides is not reachable
Description
This operation raises one or more exceptions to a task. If the task in question has an XSR, then unless it has the NOXHR modal parameter set, the XSR will be activated immediately and run not later than the task would normally be scheduled. If NOXHR is set, the XSR will be activated as soon as the task clears this parameter.
If the task has no current XSR, then this operation returns the XSR_NOT_SET completion status.

9.3. EXCEPTION_RETURN
Return from Asynchronous Exception Handling Routine.
Synopsis
 exception_return()
Input Parameters
 <none>
Output Parameters
 <none>
Completion Status
 <not applicable>
Description
This operation transfers control from an XSR back to the code which it interrupted. It has no parameters and does not produce a completion status. This operation must be used to deactivate an XSR.
The behavior of exception_return when not called from an XSR is undefined.

10. CLOCK
Each ORKID kernel maintains a node clock. This is a single data object in the kernel data structure which contains the current date and time. The clock is updated at every tick, the frequency of which is node dependent. The range of dates the clock is allowed to take is implementation dependent.
In a multi-node system, the different node clocks will very likely be synchronized, although this is not necessarily done automatically by the kernel. Since nodes could be in different time zones in widely distributed systems, the node clock specifies the local time zone, so that all nodes can synchronize their clocks to the same absolute time.
The data structure containing the clock value passed in clock operations is language binding dependent. It identifies the date and time down to the nearest tick, along with the local time zone. The time zone value is defined as the number of hours ahead (positive value) or behind (negative value) Greenwich Mean Time (GMT).
When the system starts up, the clock may be uninitialised. If this is the case, attempts at reading it before it has been set result in an error completion status, rather than returning a random value.

10.1. CLOCK_SET
Set node time and date.
Synopsis
 clock_set(clock)
Input Parameters
 clock : clock_buf current time and date
Output Parameters
 <none>
Completion Status
OK clock_set operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_CLOCK invalid clock value
Description
This operation sets the node clock to the specified value. The kernel checks the supplied date and time in clock_buf to ensure that they are legal. This is purely a syntactic check - the operation will accept any legal value. The exact structure of the data supplied is language binding dependent.

10.2. CLOCK_GET
Get node time and date.
Synopsis
clock_get(clock)
Input Parameters
 <none>
Output Parameters
 clock : clock_buf current time and date
Completion Status
 OK clock_get operation successful
 INVALID_PARAMETER a parameter refers to an illegal address
 CLOCK_NOT_SET clock has not been initialized
Description
This operation returns the current date and time in the node clock. If the node clock has not yet been set, then the CLOCK_NOT_SET completion status is returned. The exact structure of the clock_buf data returned is language binding dependent.

10.3. CLOCK_TICK
Announce a tick to the clock.
Synopsis
clock_tick()
Input Parameters
 <none>
Output Parameters
 <none>
Completion Status
 OK clock_tick operation successful
Description
This operation increments the current node time by one tick. There are no parameters and the operation always succeeds. Every node must contain a mechanism which keeps the node clock up to date by calling upon CLOCK_TICK.

11. TIMERS
ORKID defines two types of timers. The first type is the sleep timer. This type allows a task to sleep either for a given period, or up until a given time, and then wake and continue. Obviously a task can set only one such timer in operation at a time, and once set, it cannot be cancelled. These timers have no identifier.
The second type of timer is the event timer. This type allows a task to send events to itself either after a given period or at a given time. A task can have more than one event timer running at a time. Each event timer is assigned an identifier by the kernel when the event is set. This identifier can be used to cancel the timer.
Timers are purely local objects. They affect only the calling task, either by putting it to sleep or sending it events. Timers exist only while they are running. When they expire or are cancelled, they are deleted from the kernel data structure.

11.1. TIMER_WAKE_AFTER
Wake after a specified time interval.
Synopsis
timer_wake_after(ticks)
Input Parameters
 ticks	: integer		number of ticks to wait
Output Parameters
 <none>
Completion Status
OK timer_wake_after operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
Description
This operation causes the calling task to be blocked for the given number of ticks. The task is woken after this interval has expired, and is returned a successful completion status. If the node clock is set using the clock_set operation during this interval, the number of ticks left does not change.

11.2. TIMER_WAKE_WHEN
Wake at a specified wall time.
Synopsis
timer_wake_when(clock)
Input Parameters
 clock		: clock_buf	time and date to wake
Output Parameters
 <none>
Completion Status
 OK			timer_wake_when operation successful
 ILLEGAL_USE		operation not callable from XSR or ISR
 INVALID_PARAMETER	a parameter refers to an illegal address
 INVALID_CLOCK		invalid clock value
Description
This operation causes the calling task to be blocked up until a given date and time. The task is woken at this time, and is returned a successful completion status. The kernel checks the supplied clock_buf data for validity. The exact structure of that data is language binding dependent.
If the node clock is set while the timer is running, the wall time at which the task is woken remains valid. If the node time is set to after the timer wake time, then the timer is deemed expired and the task is woken immediately and returned a successful completion status.

11.3. TIMER_EVENT_AFTER
Send event after a specified time interval.
Synopsis
timer_event_after(ticks, event, tmid)
Input Parameters
 ticks : integer number of ticks to wait
 event : bit_field event to send
Output Parameters
 tmid : timer_id kernel defined timer identifier
Completion Status
 OK timer_event_after operation successful
 INVALID_PARAMETER a parameter refers to an illegal address
 TOO_MANY_TIMERS too many timers on the node
Description
This operation starts an event timer which will send the given events to the calling task after the specified number of ticks. The kernel returns an identifier which can be used to cancel the timer. If the node clock is set using the clock_set operation during this interval, the number of ticks left does not change.

11.4. TIMER_EVENT_WHEN
Send event at the specified wall time and date.
Synopsis
timer_event_when(clock, event, tmid)
Input Parameters
 clock : clock_buf	time and date to send event
 event : bit_field	event(s) to send
Output Parameters
 tmid : timer_id	kernel defined timer identifier
Completion Status
OK			timer_event_when operation successful
INVALID_PARAMETER	a parameter refers to an illegal address
INVALID_CLOCK	invalid clock value
TOO_MANY_TIMERS	too many timers on node
Description
This operation starts an event timer which will send the given events to the calling task at the given date and time. The kernel returns an identifier which can be used to cancel the timer.
If the node clock is set while the timer is running, the wall time at which the task is woken remains valid. If the node time is set to after the timer wake time, then the timer is deemed expired and the events are sent to the calling task immediately.

11.5. TIMER_CANCEL
Cancel a running event timer.
Synopsis
timer_cancel(tmid)
Input Parameters
 tmid : timer_id kernel defined timer identifier
Output Parameters
 <none>
Completion Status
OK timer_cancel operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID timer does not exist
Description
This operation cancels an event timer previously started using the timer_event_after or timer_event_when operations. The user specifies the timer using the identifier returned by these operations. If the given timer has expired or has been cancelled, the INVALID_ID completion status is returned.

12. INTERRUPTS
ORKID defines two operations which bracket interrupt handler code. It is up to each implementor to decide what functionality, to put in these operations.
Observation:
The kernel may use int_enter and int_exit with an Interrupt Service Routine code or task code is being executed. Typically int_exit will be used to decide if a scheduling action must take place in pre­emptive kernels.

12.1. 	INT_ENTER
Announce interrupt handler entry.
Synopsis
int_enter()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
OK 				int_enter operation successful
Description
This operation call announces the start of an interrupt handling routine to the kernel. Its functionality is implementation dependent. The operation takes no parameters and always returns a successful completion status. It is up to a user task to set up vectors to the handler which makes this call.

12.2. 	INT_EXIT
Exit from an interrupt handler.
Synopsis
int_exit()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
<not applicable>
Description
This operation announces the end of an interrupt handling routine to the kernel. Its exact functionality is implementation dependent, but will involve returning to interrupted code or scheduling another task. The operation takes no parameters and does not return to the calling code.
The behavior of int_return when not called from an Interrupt Service Routine is undefined.

A. RETURN CODES
CLOCK_NOT_SET 		clock has not been initialized
ILLEGAL_USE 			operation not callable from XSR or ISR invalid options value
INVALID_OPTIONS 		invalid options value
INVALID_ADDRESS 		a specific parameter refers to an illegal address
INVALID_ARGUMENTS 		invalid number or type or size of arguments
I NVALID_BLOCK 		no block allocated from partition at blk_addr
INVALID_BLOCK_SIZE 		block_size not supported
INVALID_CLOCK 		invalid clock value
INVALID_COUNT 		init count is negative
INVALID_GRANULARITY 		granularity not supported
INVALID_ID 			object does not exist
INVALID_LEINGTH 		buffer length not supported
INVALID_LOCATION 		note-pad number does not exist
INVALID_MODE 		invalid mode or mask value
INVALID_NODE 			node does not exist
INVALID_OPTIONS 		invalid options value
INVALID_PARAMETER 		a parameter refers to an illegal address
INVALID_PRIORITY 		invalid priority value
INVALID_SEGMENT 		no segment allocated from this region at seg_addr
NAME_NOT_FOUND 		name does not exist on node
NODE_NOT_REACHABLE 		node on which object resides is not reachable
NO_EVENTS 			event(s) not set and NOWAIT option given
NO_MORE_MEMORY 		not enough memory to satisfy request
OBJECT_DELETED 		specified object has been deleted
OBJECT_PROTECTED 		task has NOPREEMPT or NOTERMINATION parameter set
OK 				operation successful
PARTITION_IN_USE 		blocks from this partition are still allocated
PARTITION_OVERLAP 		Area given overlaps an existing partition
QUEUE_DELETED 		queue deleted while blocked in queue_receive operation
QUEUE_EMPTY 			queue empty with NOWAIT option
QUEUE_FULL 			no more buffers available
REGION_IN_USE 		segments from this region are still allocated
REGION_OVERLAP 		area given overlaps an existing region
SEMAPHORE_DELETED 		semaphore deleted while blocked in sem_p operation
SEIMAPHORE_NOT_AVAILABLE 	semaphore unavailable with NOWAIT option
SEM_OVERFLOW 		the counter of semaphore overflows
TASK_ALREADY_STARTED 	task has been started already
TASK_ALREADY_SUSPENDED 	task already suspended
TASK_NOT_STARTED 		task has not yet been started
TASK_NOT_SUSPENDED 		task not suspended
TIME_OUT 			operation timed out
TOO_MANY_PARTITIONS 		too many partitions on the node
TOO_MANY_QUEUES 		too many queues on node
TOO_MANY_REIGIONS 		too many regions on the node
TOO_MANY_SEMAPHORES 	too many semaphores on node
TOO_MANY_TASKS 		too many tasks on the node
TOO_MANY_TIMERS 		too many timers on node
XSR_NOT_SET 			task has no exception handler routine

B. 	MINIMUM REQUIREMENTS FOR OPERATIONS FROM AN ISR.
ORKID requires that at least the following operations are supported from an Interrupt Service Routine. Only operations on local objects need to be supported. If the object resides on a remote node and remote operations are not supported, then the INVALID_ID completion status must be returned.
Task Operations
task_suspend 	(tid)
task_resume 		(tid)
task_read_notepad 	(tid, loc_number, loc_value)
task_write_notepad 	(tid, loc_number, loc_value)
Semaphore Operations
sem_v		(sid)	
Queue Operations
queue_send 		(qid, message, length)
queue_urgent 	(qid, message, length)
Event Operations
event_send		(tid, event)
Exception Operations
exceptions_raise 	(tid, exceptions)
Clock Operations
clock_tick 		()
clock_get 		(clock)

Interrupt Operations
int_enter 		()
int_exit 		()

C. 	MINIMUM REQUIREMENTS FOR OPERATIONS FROM AN XSR.
ORKID requires that at least the following operations are supported from an Exception Service Routine.
Task Operations
task_delete 		(tid)
task_start 		(tid, start_addr, arguments)
task_restart 	(tid, arguments)
task_suspend 	(tid)
task_resume 		(tid)
task_set_priority	(tid, new_prio, old_prio)
task_set_mode 	(mode, mask, old_mode)
task_read_notepad 	(tid, loc_number, loc_value)
task_write_notepad 	(tid, loc_number, loc_value)
Region Operations
region_delete 	(rid, options)
region_get_seg 	(rid, seg_size, seg_addr)
region_ret_seg 	(rid, seg_addr)
region_info 		(rid, size, max_segment, granularity)

Partition Operations
partition_delete 	(pid, options)
partition_get_blk 	(pid, blk_addr)
partition_ret_blk 	(pid, blk_addr)
partition_info 	(pid, blocks, free_blockS, block_size)
Semaphore Operations
sem_delete 		(sid)
sem_p 		(sid, time_out)
sem_v 		(Sid)
sem_info 		(sit, options, count, tasks_waiting)
Queue Operations
queue_delete 	(qid)
queue_send 		(qid, message, length)
queue_urgent 	(qid, message, length)
queue_broadcast 	(qid, message, length, count)
queue_receive 	(qid, message, time_out)
queue_flush 		(qid, count)
queue_info		(qid, max_buf, length, options, messages_waiting, tasks_waiting)
Event Operations
event_send 		(tid, event)
event_receive 	(events, options, time_out, events_caught)

Exception Operations
exceptions_send 		(tid, exceptions)
exceptions_return 		()
Clock Operations
clock_set 			(clock)
clock_get 			(clock)
clock_tick 			()
Timer Operations
timer_wake_after 		(ticks)
timer_wake_when 		(clocks)
timer_event_after 		(ticks, event, tmid)
timer_event_when 		(clock, event, tmid)
timer_cancel 		(tmid)

D.	SUMMARY OF ORKID OPERATIONS
In the following summary, output parameters are underlined.
Task Operations
task_create 			(name, priority, stack_size, mode, options, tid)
task_delete 			(tid)
task_ident 			(name, nid, tid)
task_start 			(tid, start_addr, arguments)
task_restart 		(tid, arguments)
task_suspend 		(tid)
task_resume 			(tid)
task_setpriority 		(tid, new_prio, old_prio)
task_set_mode 		(mode, mask, old_mode)
task_read_notepad 		(tid, loc_number, loc_value)
task_write_notepad		(tid, loc_number, loc_value)
Region Operations
region_create		(name, addr, length, granularity, options, rid)
region_delete 		(rid, options)
region_ident 		(name, rid)
region_get_seg 		(rid, seg_size, seg_addr)
region_ret_seg 		(rid, seg_addr)
region_info			(rid, size, max_segment, granularity)
Partition Operations
partition_create 		(name, addr, length, block_size, options, pid)
partition_delete 		(pid, options)
partition_ident 		(name, nid, pid, block_size)
partition_get_blk 		(pid, blk_addr)
partition_ret_blk 		(pid, blk_addr)
partition_info		(pid, blocks, free_blocks, block_size)
Semaphore Operations
sem_create 			(name, count, options, sid)
sem_delete 			(sid)
sem_ident 			(name, nid, sid)
sem_p 			(sid, time_out)
sem_v 			(sid)
sem_info			(sit, options, count, tasks_waiting)
Queue Operations
queue_create 		(name, priv_buff, max_buff, length, options, qid)
queue_delete 		(qid)
queue_ident 			(name, nid, qid)
queue_send 			(qid, message, length)
queue_urgent 		(qid, message, length)
queue_broadcast 		(qid, message, length, count)
queue_receive		(qid, message, time_out)

queue_flush 			(qid, count)
queue_info 			(qid, max_buf, length, options, messages_waiting, tasks_waiting)
Event Operations
event_send 			(tid, event)
event_receive 			(events, options, time_out, events_caught)
Exception Operations
exceptions_catch		(new_XSR, mode, old_XSR, old_mode)
exceptions_send		(tid, exceptions)
exceptions_return		()
Clock Operations
clock_set 			(clock)
clock_get 			(clock)
clock_tick			()
Timer Operations
timer_wake_after 		(ticks)
timer_wake_when 		(clock)
timer_event_after 		(ticks, event, tmid)
timer_event_when 		(clock, event, tmid)
timer_cancel 		(tmid)
Interrupt Operations
int_enter 			()
int_exit 			()

#ifndef ORKID_H
#define ORKID_H 1
/*
E. 	ORKID: 		C LANGUAGE BINDING
This file contains the C language binding standard for VITA's "Open Real­time Kernel Interface Definition", henceforth called ORKID. The file is in the format of a C language header file, and is intended to be a common starting point for system developers wishing to produce an ORKID compliant kernel.
The ORKID C language binding consists of four sections, containing type specifications, function declarations, completion status codes and special symbol codes. The character sequence ??? has been used throughout wherever the coding is implementation dependent.
Of the four sections in this standard, only the function declarations are completely defined. In the other sections, only the type names and constant symbols are defined by this standard - all types and values are implementation dependent. Nevertheless, where possible, example values have been given.
Both ANSI C and non-ANSI C have been used for this header file. Defining the symbol __ANSI__ will cause the ANSI versions to be used, otherwise the non-ANSI versions will be used. Full prototyping has been employed for the ANSI function declarations.
*/

/*

ORKID TYPE SPECIFICATIONS
This section of the ORKID C language binding contains typedef definitions for the types used in operation arguments in the main ORKID standard. The names are the same as those in the ORKID standard. Only the names, and in clock_buf the order of the structure members, are defined by this standard. The actual types are implementation dependent.
*/
typedef unsigned int prio ;
typedef unsigned int lnum ;
typedef unsigned int bit_field ;
typedef struct { ??? } task_id ;
typedef struct { ??? } node_id ;
typedef struct { ??? } region_id ;
typedef struct { ??? } part_id ;
typedef struct { ??? } sema_id ;
typedef struct { ??? } queue_id ;
typedef struct { ??? } timer_id ;
typedef struct {
	??? cb_year ;
	??? cb_month ;
	??? cb_day ;
	??? cb_hours ;
	??? cb_minutes ;
	??? cb_seconds ;
	??? cb_tick ;
	??? cb_time_zone ; } clock_buf ;

/*
ORKID OPERATION DECLARATIONS
This section of the the ORKID C language binding is the largest and contains function declarations for all the operations defined in the main ORKID standard, and is subdivided according to the subsections in this standard.
Each subdivision contains a list of function declarations and a list of symbol definitions. The function names have been kept to six characters for the sake of linker compatibility. Of these six characters, the first two are always 'OK', and the third designates the ORKID object type on which the operation works. The symbol definitions link the full names of the operations given in the ORKID standard (in lower case) to the appropriate abbreviation.
The lists of function declarations are split in two. If the symbol __ANSI__ has been defined, then all the functions are declared to the ANSI C standard using full prototyping, with parameter names also included. This latter is not necessary, but not illegal. It shows the correspondence between arguments in this and the main ORKID standard, the names being identical. If the symbol has not been defined, then the functions are declared without prototyping.
The correspondence between the C types and arguments and those defined in the ORKID standard are mostly obvious. However, the following comments concerning task_start/restart and exceptionäcatch are perhaps necessary.
A task start address is translated into a function with one argument -a pointer to anything. The task‘s startup arguments are given as a pointer to anything and a length. The actual arguments will be contained in a programmer defined data type, a copy of which will be passed to the new task. The following is an example of a declaration of a task‘s main program and a call to start that task (the necessary task creation call is not included):
typedef struct { int arg1, arg2, arg3 } argblock ; /* can contain anything */
argblock *argp ;
void taskmain (argblock *taskargs) { . . . } ; /* main task program */
status = oktsta (tid, taskmain, *argp, sizeof(argblock)) ;
/* start the task */

An XHR address also becomes a function with one argument - this time a bitfield. The previous XHR address output parameter becomes a pointer to such a function. The following is an example of the declaration of an XHR and a call to exception_catch to set it up:
void taskxhr (bit_field exceptions_caught) { . . . } /* XHR declaration */
void (*prevxhr)() ;
status = okxcat (taskxhr, NOXHR, prevxhr) ; /* set up taskxhr as XHR */
*/

/* 	TASK OPERATONS	*/
#ifdef __ANSI__
extern int oktcre(char *name, prio priority, int stacksize, bit_field mode, bit_field options, task_id *tid) ;
extern int oktdel(tasi_id *tid) ;
extern int oktidt(char *name, node_id node, task_id *tid) ;
extern int oktsta(task_id *tid, void start(void *), void *arguments, int arg_length) ;
extern int oktrst(task_id *tid, void *arguments, int arg_length) ;
extern int oktsus(task_id *tid) ;
extern int oktrsm(task_id *tid) ;
extern int oktspr(task_id *tid, prio new_prio, prio *prev_prio) ;
extern int oktsmd(bit_field mode, bit_field mask, bit_field *prev_mode) ;
extern int oktrdl(task_id *tid, lnum loc_number, int *loc_value) ;
extern int oktwrl(task_id *tid, lnum loc_number, int loc_value) ;
#else
extern int oktcre() ;
extern int oktdel() ;
extern int oktidt() ;
extern int oktsta() ;
extern int oktrst() ;
extern int oktsus() ;
extern int oktrsm() ;
extern int oktspr() ;
extern int oktsmd() ;
extern int oktrdl() ;
extern int oktwrl() ;
#endif
#define task_create 		oktcre
#define task_delete 		oktdel
#define task_ident 		oktidt
#define task_start 		oktsta
#define task_restart 		oktrst
#define task_suspend 		oktsus
#define task_resume 		oktrsm
#define task_set_priority 	oktspr
#define task_set_mode 		oktsmd
#define task_read_location 	oktrdl
#define task_write_location 	oktwrl

/* 	Region Operations		*/
#ifdef __ANSI__
extern int okrcre(char *name, void *addr, int length, int granularity, bit_field options, region_id *rid) ;
extern int okrdel(region_id *rid, bit_field options) ;
extern int okridt(char *name, region_id *rid) ;
extern int okrgsg(region_id *rid, int seg_size, void **seg_addr) ;
extern int okrrsg(region_id *rid, void *seg_addr) ;
#else
extern int okrcre() ;
extern int okrdel() ;
extern int okridt() ;
extern int okrgsg() ;
extern int okrrsg() ;
#endif
#define region_create	okrcre
#define region_delete 	okrdel
#define region_ident 	okridt
#define region_get_seg 	okrgsg
#define region_reg_seg 	okrrsg

/* 	Partition Operations	 */
#ifdef __ANSI__
extern int okpcre(char *name, void *addr, int length, int block_size, bit_field options, part_id *pid) ;
extern int okpdel(part_id *pid, bit_field options) ;
extern int okpidt(char *name, node_id *nid, part_id *pid, int block_size) ;
extern int okpgbl(part_id *pid, void **blk_addr) ;
extern int okprbl(part_id *pid, void *blk_addr) ;
#else
extern int okpcre() ;
extern int okpde() ;
extern int okpidt() ;
extern int okpgbl() ;
extern int okprbl() ;
#endif
#define partition_create 		okpcre
#define partition_delete 		okpdel
#define partition_ident 		okpidt
#define partition_get_blk 	okpgbl
#define partition_ret_blk 	okprbl

/* 	Semaphore Operations 	/*
 #ifdef __ANSI__
 extern int okscre(char *name, int count, bit_field options, sema_id *sid) ;
 extern int oksdel(sema_id *sid) ;
 extern int oksidt(char *name, node_id *nid, sema_id *sid) ;
 extern int oksemp(sema_id *sid, int time_out) ;
 extern int oksemv(sema_id *sid) ;
 #else
 extern int okscre() ;
 extern int oksdel() ;
 extern int oksidt() ;
 extern int oksemp() ;
 extern int oksemv() ;
#endif
#define sem_create 	okscre
#define sem_delete 	oksdel
#define sem_ident 	oksidt
#define sem_p 		oksemp
#define sem_v 		oksemv

/*	 Queue Operations 		*/
#ifdef __ANSI__
extern int okqcre(char *name, int priv_buff, int max_buff, int length, bit_field options, queue_id *qid) ;
extern int okqdel(queue_id *qid) ;
extern int okqidt(char *name, node_id nid, queue_id *qid) ;
extern int okqsnd(queue_id *qid, void *message, int length) ;
extern int okqurg(queue_id *qid, void *message, int length) ;
extern int okqbro(queue_id *qid, void *message, int length, int *count) ;
extern int okqrcv(queue_id *qid, void *message, int time_out) ;
extern int okqflu(queue_id *qid, int *count) ;
#else
extern int okqcre() ;
extern int okqdel() ;
extern int okqidt() ;
extern int okqsnd() ;
extern int okqurg() ;
extern int okqbro() ;
extern int okqrcv() ;
extern int okqflu() ;
#endif
#define queue_create 	okqcre
#define queue_delete 	okqdel
#define queue_ident 	okqidt
#define queue_send 	okqsnd
#define queue_urgent 	okqurg
#define queue_broadcast 	okqbro
#define queue_receive 	okqrcv
#define queue_flush 	okqflu

/* 	Event Operations		*/
#ifdef __ANSI__
extern int okesnd(task_id *tid, bit_field event) ;
extern int okercv(bit_field events, bit_field options, int timeout, bit_field *events_caught) ;
#else
extern int okesnd() ;
extern int okercv() ;
#endif
#define event_send 	okesnd
#define event_receive 	okercv

/* 	Exception operations	 */
#ifdef __ANSI__
extern int okxcat(void new_xhr(bit_field), bit_field mode, void (*old_xhr)(bit_field), bit_field *old_mode) ;
extern int okxsnd(task_id *tid, bit_field exceptions) ;
extern void okxret(void) ;
#else
extern int okxcat() ;
extern int okxsnd() ;
extern void okxret() ;
#endif
#define exceptions_catch 		okxcat
#define exceptions_send 		okxsnd
#define exceptions_return 	okxret

/*	Clock Operations 		*/
#ifdef __ANSI__
extern int okcset(clock_buf *clock) ;
extern int okcget(clock_buf *clock) ;
extern int okctik(void) ;
#else
extern int okcset() ;
extern int okcget() ;
extern int okctik() ;
#endif
#define clock_set 		okcset
#define clock_get 		okcget
#define clock_tick 		okctik

/*	Timer Operations	*/
#ifdef __ANSI__
extern int oktmwa(int ticks) ;
extern int oktmww(clock_buf clock) ;
extern int oktmea(int ticks, bit_field event, timer_id *tmid) ;
extern int oktmew(clock_buf clock, bit_field event, timer_id *tmid) ;
extern int oktcan(timer_id *tmid) ;
#else
extern int oktmwa() ;
extern int oktmww() ;
extern int oktmea() ;
extern int oktmew() ;
extern int oktcan() ;
#endif
#define timer_wake_after	oktmwa
#define timer_wake_when	oktmww
#define timer_event_after			oktmea
#define timer_event_when			oktmew
#define timer_cancel	oktmca

/*	Interrupt Operations	*/
#ifdef __ANSI__
extern int okient(void) ;
extern void okiexi(void) ;
#else
extern int okient() ;
extern void okiexi() ;
#endif
#define int_enter okient
#define int_exit okiexi

/*
COMPLETION STATUS CONSTANTS
This section of the ORKID C language binding contains definitions for
all the completion status values used in the main ORKID standard. The
symbols used are the same as those given in the main standard, and are defined for C by this standard. Of the values, only the value O for the completion status ‘OK’ is defined here - the other values are given only as examples.
*/
#define OK	0
#define CLOCK_NOT_SET	1
#define COUNT_T0O_HIGH	2
#define ILLEGAL_USE	3
#define INVALID_ADDRESS	4
#define INVALID_ARGUMENT	5
#define INVALID_BLOCK	6
#define INVALID_BLOCK_SIZE	7
#define INVALID_CLOCK	8
#define INVALID_COUNT	9
#define INVALID_GRANULARITY	10
#define INVALID_ID	11
#define INVALID_LENGTH	12
#define INVALID_LOCATION	13
#define INVALID_MAX_BUFF	14
#define INVALID_MODE	15
#define INVALID_NAME	16
#define INVALID_NODE	17
#define INVALID_OPTIONS	18
#define INVALID_PRIORITY	19
#define INVALID_SEGMENT	20
#define NAME_NOT_FOUND	21
#define N0_EVENTS	22
#define NO_MORE_MEMORY	23
#define NODE_NOT_REACHABLE	24
#define 0BJECT_DELETED	25
#define OBJECT_NOT_GLOBAL	26
#define PARTITION_IN_USE	27
#define PARTITION_OVERLAP	28
#define QUEUE_DELETED	29
#define QUEUE_EMPTY	30
#define QUEUE_FULL	31
#define REGION_IN_USE	32
#define REGION_OVERLAP	33
#define SEMAPHORE_DELETED	34
#define SEMAPHORE_NOT_AVAILABLE 35
#define TASK_ALREADY_STARTED	36
#define TASK_ALREADY_SUSPENDED	37
#define TASK_MARKED_FOR_DELETE	38
#define TASK_MARKED_FOR_RESTART 39
#define TASK_NOT_SUSPENDED	40
#define TIME_OUT	41
#define TOO_MANY_PARTITIONS	42

#define T00_MANY_QUEUES	43
#define TOO_MANY_REGIONS	44
#define TOO_MANY_SEMAPHORES	45
#define TOO_MANY_TASKS	46
#define TOO_MANY_TIMERS	47
#define XHR_NOT_SET	48

/*
LITERAL VALUES
This section of the RKID C language binding contains definitions for all special symbols used in argument values in the main ORKID standard. The symbols used are the same as those given in the main standard, and are defined for C by this standard. None of the values given here are defined by this standard — they are included as examples only.
*/
#define SELF	0	/* tid */
#define LOCAL_NODE	0	/* nid */
#define OTHER_NODES	-1
#define CURRENT	0	/* new_prio */
#define HIGHP	63	/* new_prio, prev_prio, priority */
#define NOXHR	0x1	/* mode, mask, prev_mode */
#define NOTERMINATION	0x2
#define NOPREEMPT	0x4
#define NOINTERRUPT	0x8
#define GLOBAL	0x000l	/* options */
#define FORCED_DELETE	0x0002
#define FIFO	0x0004
#define ANY	0x0008
#define NOWAIT	0x00l0
#define FOREVER	0	/* time_out */
#define NULL_XHR	0	/* new_xhr, prev_xhr */
#endif

