Copyright 1989 by VITA, the VMEbus International Trade Association

No parts of this document may be reproduced or used in any form or any
means - electronic, graphic, mechanical, electrical or chemical,
photocopying, recording in any medium, taping by any computer or
storage system etc without prior permission in writing from VITA, the
VMEbus International Trade Association.

Exception:
This document may be reproduced or multiplied by photocopying for the
exclusive purpose of soliciting public comments on the draft.

or

Open Real-time Kernel Interface Definition Page 1
Draft 1.0 for Public Comments

FROM THE CHAIRMAN

Before you lies the first draft of VITA's Open Real Time Interface
Definition, known as ORKID. This draft is the result of the activities
of a small working group under the auspices of the Software
Subcommittee of the VITA Technical Committee. It represents the view of
the working group and has not yet been approved.

The working group invites you to check this draft for consistency and
send in any comments and/or suggestions you may have to the working
group's secretary. All comments received before September 15th, 1989
will be studied by the working group, after which a final draft will be
presented to the Software Subcommittee and the Technical Committee for
approval.

The members of the working group are:

Reed Cardoza Eyring Research

Alfred Chao Software Components

Chris Eck CERN

Wayne Fischer FORCE Computers

John Fogelin Wind River Systems

Zoltan Hunor VITA Europe (secretary)
Kim Kempf Microware

Hugh Maaskant Philips (chairman)
Dick Vanderlin Motorola

I would like to thank these members for their efforts. Also I would
like to thank the companies they represent for providing the time and
expenses of these members. Without that support this draft would not
have been possible. Furthermore I would like to thank Stuart Fairful
for writing up a first version of this draft.

Eindhoven July 1989

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 2
Draft 1.0 for Public Comments

FOREWORD

The objective of the ORKID standard is to provide a state of the art
open real-time kernel interface definition that on one hand allows
users to create robust and portable code, while on the other hand
allowing implementors the freedom to profilate their compliant
product. Borderline conditions are that the standard:

- be implementable efficiently on a wide range of microprocessors,
- 1imposes no unnecessary hardware or software architecture,
- be open to future developments.

Many existing kernel products have been studied to gain insight in the
required functionality. As a result ORKID is, from a functional point
of view, a blend of these kernels. No radical new concepts have been
introduced because there would be no reasonable guarantee that these
could be implemented efficiently. Also they would reduce the
likelihood of acceptance in the user community. This is not to say
that the functionality is meagre, on the contrary: a rich set of
objects and operations has been provided.

One issue has to be addressed yet: that of MMU support. Clearly,

now that new microprocessors have integrated MMUs and hence the cost
and performance penalties of MMU support are diminishing, it will be
needed in the near future. At this moment, however, it was felt that
more experience is needed with MMUs in real-time environments to
define a standard. It is foreseen that an addendum to this standard
will address MMU support.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition

Draft 1.0 for Public Comments

TABLE OF CONTENTS

1. INTRODUCTION« « « « o« .

2. ORKID CONCEPTS . . &« « o o o o o o o =
2.1 Environment
ORKID Objects . . .

2.2. “ i s e
2.3. Naming and Identlflcatlon o v @
2.4. ORKID Operations
2.5. Multi-processing
2.6. ORKID compatibility
2.7. Layout of Operation Descriptions

3. TASKS . . . ¢ v v ¢ o« o o« o o« = s e
3.1. TASK_CREATE . o o o o o e e
3.2. TASK_DELETE . . o = o @ e
3.3. TASK_IDENT e o @ e o o e
3.4. TASK_START i % e e e e o o
3.5. TASK_RESTART « « « + .
3.6. TASK_SUSPEND . . o o o o o o
3.7. TASK_RESUME . ¢ & 5 e e e
3.8. TASK_SET_ PRIORITY w % s @ e s s
3.9. TASK_SET_MODE . . . o o o o o
3.10. TASK_READ_NOTE_PAD o o o e .
3.11. TASK_WRITE_NOTE_PAD s @ % 7

4. REGIONS o . . o w = & s
4.1. REGION CREATE o« o o o o s e =
4.2. REGION_DELETE 5o % .
4.3. REGION_IDENT o o o e
4.4. REGION_GET_SEG o« o ® s
4.5. REGION_RET_SEG e o .
4.6. REGION_INFO o o .

5. PARTITIONS e o o o
5.1. PARTITION CREATE o o o o o o e
5.2. PARTITION_DELETE
5.3. PARTITION_IDENT « .« .
5.4. PARTITION_GET_BLK . o o =
5.5. PARTITION_RET BLK
5.6. PARTITION_INFO

6. SEMAPHORES « ¢ « « « o « o« &
6.1. SEM CREATE . . . « « « « « « « .
6.2. SEM DELETE « « « . .
6.3. SEM_IDENT . . . « « « « « « o« &
6.4. SEM P . . ¢« v ¢ « o o o o o o o
6.5. SEM_V . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« o
6.6. SEM_INFO . . ¢ ¢ ¢ ¢ o o o o o o

7. QUEUES . . e o o o o o o o o
7.1. QUEUE CREATE e o o s o s o o o
7.2. QUEUE_DELETE « « « « .
7.3. QUEUE_IDENT . . . ¢ « « « « « .
7.4. QUEUE_SEND « ® s = %
7.5. QUEUE_URGENT o o

UNAPPROVED DRAFT. All rights

Do not specify or claim conformance to this document.

e o o o .
. e o e o
e o e e o
e o e e
e o o o e
e o o o o o
e o e e o o
e o e o e o
e o o o .
e o o o .
e o e o e e
e o e e e e
. e o e e o
e o e e e e
e o o e
e o o e e
e o o e
e o o o e o
e« o o e e
. e o e
e e o o e e
e o o e .
e o o o .
e o o e .
e e o e e
. e o e
. . e o
e o e e e e
e e e e e o
e o e e e o
e o o o e e
e e o o s o
e o e o e =
e o o e e o
e o e e e e
e e o e
e o e o
e o o e o o
e o e e e o
e o e e e e
e o e e e o
e o o e o o
e o o o o e
e o o e o
e o e e e
e e e e e e
e o e o e e

reserved by

Page

.
. .
. -
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
.
.
.
. .
.
. .
.
.
.
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
. .
. .
. .
. .
.)
. .
.
. .

VITA

e o o o o o

e o o e o

e o o o o

e o o o o o o

e o o & o e

Open Real-time Kernel Interface Definition Page
Draft 1.0 for Public Comments

7.6. QUEUE_BROADCAST o« o . : .« ® s ®
7.7. QUEUE_RECEIVE o i . . o o o
7.8. QUEUE_FLUSH . . . PR i s e . . & @
7.9. QUEUE_INFO o o

8. EVENTS . . 2 o o s o s &« o s @ @ o s is0 & » s o = = i3 i =
B:1. EVENT SEND i < 5 &« 5 = = 5 « = = = = = » & % % & 3@
8:2. EVENTRECEIVE « o s % % « & s« % & & & & % & & ® & @

9. EXCEPTIONS
9.1. EXCEPTION_CATCH .
9.2. EXCEPTION_RAISE .
9.3. EXCEPTION_RETURN .

* o o o
.
.
e e o o
e o o o
.
e o e o
« o o o
e o o o
« o
« e
o e
e e o o

10, CHOCK . « « o & » s w & s & ® % & % % &« s s w & & 5 1
10.1. CLOCK_SET . . &« v ¢ v ¢« o o o o o o« o« « o« .
10:2: CLOCK GET & & & & & s &« & s % & & & & & & @
10.3. CLOCK_TICK 6 W o w ® e 8w o % & w e & s

11. TIMERS
11.1. TIMER_WAKE_AFTER .
11.2. TIMER_WAKE_WHEN . .
11.3. TIMER_EVENT_AFTER . .
11.4. TIMER_EVENT_WHEN .
11.5. TIMER_CANCEL

e o o o o o
.
.
.
.

12. INTERRUPTS ¢ ¢ v ¢ ¢ o« o o o o o o o« o« o o« o
12,1, INT_ENTER =« &« s = 5 % & s s & & & % % & % & @ s
12.2. INT_EXIT e o o o o o o s s e e e 6 o 6 o e o =

A. RETURN CODES R N I T R S I

B. MINIMUM REQUIREMENTS FOR OPERATIONS FROM AN ISR

C. MINIMUM REQUIREMENTS FOR OPERATIONS FROM AN XSR .

D. SUMMARY OF ORKID OPERATIONS « « « « « « .« .

E. C LANGUAGE BINDING ¢ ¢ ¢ ¢ & ¢ ¢« o« o o o o o o o =

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 5
Draft 1.0 for Public Comments

1. INTRODUCTION

ORKID defines a standard programming interface to real-time kernels.
This interface consists of a set of standard ORKID operation calls,
defining operations on objects of standard types. An ORKID compliant
kernel manages these objects and implements the operations.

The application area that ORKID addresses ranges from embedded systems
to complex multi-processing systems with dynamic program loading. It
is restricted however to real-time environments and only addresses
kernel level functionality. As such it addresses a different segment
than the real-time extensions to POSIX P1003.4, although some
overlaps may OCcCur.

ORKID addresses the issue of multi-processing by defining two levels
of compliance: with and without support for multi-node systems. The
interfaces to the operations are the same in either level.

Section 2, ORKID PRINCIPLES, contains an introduction to the concepts
used in the ORKID standard. Introduced here are the standard ORKID
objects and how they are identified, ORKID operations and ORKID multi-
processing features. Factors affecting the portability of code
developed for ORKID and implementation compliance requirements are
also treated here.

Sections 3 to 12 describe in detail the various standard types of
object and the operations that manipulate them. There is one section
per type of object. Each section contains a general description of
this type of object, followed by subsections detailing the operations.
The latter are in a programming language independent format. It is
foreseen that for all required programming languages, a language
binding will be defined in a companion standard. The first one,
introduced in conjunction with ORKID, will be for the C language. For
syntax, the language binding document is the final authority.

The portability provided by the ORKID standard is at source code
level. This means that, optimally, a program written for one
implementation should run unmodified on another implementation,
requiring only recompilation and relinking. In practice there are
many reasons why this might not be true in all cases.

The syntax of ORKID operation calls in a real implementation will be
defined in the appropriate language binding. There will be, however,
a one to one correspondence between this standard and each language
binding for all literal values, operation names and parameter names
and types.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 6
Draft 1.0 for Public Comments

2. ORKID CONCEPTS

ORKID defines the interface to a real-time kernel by defining kernel
object types and operations upon these objects. Furthermore it assumes
an environment, i.e. the computer system, in which these objects exist.
This chapter describes that environment, introduces the various object
types, explains how objects are identified and defines the structure of
the ORKID operation descriptions. Furthermore it addresses the issues
of

multi-processing and ORKID compatibility.

2.1. Environment

The computer system environment expected by ORKID is described by the
notion of a system. A system consists of a collection of one or more
interconnected nodes. Each node is a computer with an ORKID compliant
kernel on which application programs can be executed. To ORKID a node
is a single entity, although it may be implemented as a multi-processor
computer there is only one kernel controlling that node.

2.2 ORKID Objects

The standard ORKID object types defined by ORKID are:

- tasks: single threads of program execution in a node.

- regions: memory areas for dynamic allocation of variable sized
segments.

- partitions: memory areas for dynamic allocation of fixed sized
blocks.

- semaphores: mechanisms used for synchronization and to manage
resource allocation amongst tasks.

- queues: inter task communication mechanisms with implied
synchronization.
- events: task specific event markers for synchronization.

- exceptions: task specific exceptional conditions with an
asynchronous service routine.

- notepad: task specific integer locations for simple,
unsynchronized data exchange.

- calendar: current date and time.

- timers: software delays and alarms.

Tasks are the active entities on a node, the CPU(s) of the node execute
the task's code, or program, under control of the kernel. Many tasks
may exist on a node; they may execute the same or different programs.
The maximum number of tasks on a node or in a system is implementation
dependent. Tasks compete for CPU time and other resources. Next to
tasks interrupt service routines compete for CPU time. Although ORKID
does not define how interrupt service routines are activated, it
provides facilities to deal with them.

Regions are consecutive chunks of memory from which tasks may allocate
segments of varying size for their own purposes. Typically a region
consists of memory of one physical nature such as shared RAM, battery

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 7
Draft 1.0 for Public Comments

backed-up SRAM etc. The maximum number of regions on a node are
implementation dependent.

Partitions are consecutive chunks of memory organized as a pool of
fixed sized blocks which tasks may allocate. Partitions are simpler
than regions and are intended for fast dynamic memory allocation /
de-allocation operations. The maximum number of partitions on a node is
implementation dependent.

Semaphores provide a mechanism to synchronize the execution of a task
with the execution of another task or interrupt service routine. They
can be used to provide sequencing, mutual exclusion and resource
management. The maximum number of semaphores on a node or in a system
is implementation dependent.

Queues provide a mechanism for intertask communication, allowing tasks
to send information to one another with implied synchronization. The
maximum number of queues on a node or in a system is implementation
dependent.

Events are task specific event markers that allow a task to block until
the event, or a specific combination thereof occurs, therefore they
form a simple synchronization mechanism. Each task has the same, fixed
number of events. The actual number is implementation dependent, but
the minimum number is fixed at sixteen.

Exceptions too are tasks specific conditions. Unlike events they are
handled asynchronously by the task, meaning that when an exception is
raised for a task that task's flow of control is interrupted to execute
the code designated to be the exception service routine (XSR).
Exceptions are intended to handle exceptional conditions without
constantly having to check for them. In general exceptions should not
be misused as a synchronization mechanism. Each task has the same,
fixed number of exceptions. The actual number is implementation
dependent, but the minimum number is fixed at sixteen.

Notepad locations are task specific integer variables that can be read
or written without any form of synchronization or protection. Each task
has the same, fixed number of notepads. The actual number is
implementation dependent, but the minimum number is fixed at sixteen.

The calendar is a mechanism maintaining the current date and time on
each node.

Timers come in two forms. The first type of timer is the delay timer
that allows a task to delay its execution for a specific amount of time
or until a given calendar value. The second type of timer is the event
timer. This timer will, upon expiration, sent an event to the task that
armed it. As with the delay timer it can expire after a specific
amount of time has elapsed or when a given calendar value has passed.
The maximum number of timers on a node is implementation dependent, in
all cases a delay timer must be available to each task.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 8
Draft 1.0 for Public Comments

2.3. Naming and Identification

Tasks, regions, partitions, semaphores and queues are kernel objects
dynamically created and deleted by tasks. When they are created, the
task supplies a name for the object and ORKID returns an identifier,
which identifies the object in subsequent ORKID operations. The syntax
rules for allowable object names is implementation dependent. ORKID
does not require uniqueness for object names. Conversely, an object's
identifier must identify it uniquely within a system.

Observation:

An identifier's uniqueness may be absolute over time, so that no two
objects are ever assigned the same identifier over the lifetime of the
system. Alternatively the uniqueness may be guaranteed only at the
current time, so that an object may be assigned the same identifier as
a previously deleted object. ORKID compliance requires at least
uniqueness at the current time

Identifier uniqueness is required only within the set of objects of the
same type.

Nodes have no names, but are distinguished by an identifier which must
be unique within a system. This standard does not describe how node
identifiers are allocated. Two aliases for node identifiers are defined
by ORKID: LOCAL_NODE and OTHER_NODES. LOCAL_NODE identifies the node on
which the operation is performed. OTHER_NODE defines the collection of
all nodes in the system excluding LOCAL_NODE.

One or more of a given task's events or exceptions may be specified
using a bit-field. Each bit of an event bit-field specifies a single
event, likewise for exceptions.

A notepad location is addressed by the combination of the task's
identifier and an index number, starting at zero.

The calendar has no name or identifier, it is implicitly addressed by
the ORKID clock operations.

Timers are created dynamically by user tasks and exist for the
duration of their operation. Delay timers have no names or
identifiers since they are never accessed once started. Event timers
are identified uniquely within a node by a kernel assigned identifier.

2.4. ORKID Operations

ORKID operations have the form of a function call, taking zero or more
input parameters, zero or more output parameters, and returning a
completion status. (The operations exception_return and int_return
are the only two which do not return a completion status as they alter
the flow of control.)

Input parameters pass data from the calling program to the kernel, and
output parameters pass data from the kernel to the calling program.
The physical form which the data takes, and the physical means by

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 9
Draft 1.0 for Public Comments

which it is passed, is implementation and language binding dependent.

The completion status may indicate success, a specific error condition
such as an invalid parameter value, or a specific operational condition
such as a time-out. When multiple conditions apply, only one status

is returned, defined by an implementation dependent precedence. All
statuses have symbolic values - the mapping of these symbols to numeric
values is implementation dependent.

Each operation interface described in sections 3 to 12 defines a list
of possible completion statuses. If the implementing kernel checks for
these conditions it must return the appropriate completion status
whenever that condition is true. In addition kernels may return
statuses not listed in this standard. If the kernel implements no
checks it should always return the value OK. Each implementation must
clearly specify which statuses may be returned for each operation.
Appendix A gives a list of all defined completion statuses.

Some ORKID operations must be callable from Interrupt Service Routines
(ISR) and/or Exception Service Routines (XSR). Kernels may support
additional operations from ISRs and/or XSRs. A list of minimum
requirements is defined in Appendix B and C.

2.5. Multi-processing

The ORKID standard has been defined to include facilities for multi-
processing. This means that it allows co-operating tasks to run
concurrently on more than one processor, while retaining the
functionality of ORKID operations. ORKID organizes this using the
concepts of node and system.

Nodes

A node is defined as a computing entity addressed by a node identifier
and containing a single ORKID data structure.

Systems

A system is defined as a set of one or more connected nodes. There
are two basic subdivisions in the way that nodes can be connected
within a system:

- A shared memory system consists of a set of nodes connected via
shared memory.

- A non-shared memory system consists of a set of nodes connected by a
network.

The behavior of a networked ORKID implementation should be consistent
with the behavior of a shared memory ORKID system.

It is also possible to have a mixture of these two schemes where a
non-shared memory system may contain one or more sets of nodes.

These sets of nodes are called shared memory subsystems.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 10
Draft 1.0 for Public Comments

System configuration

This standard does not specify how nodes are configured or how they
are assigned identifiers. However, it is recognized that the
availability of nodes in a running system can be dynamic. In
addition, it is possible but not mandatory that nodes can be added to
and deleted from a running system.

Levels of Compliance

ORKID defines two levels of compliance, a kernel may be either single
node ORKID compliant or multiple node ORKID compliant. The former type
of kernel supports systems with a single node only, while the latter
supports systems with multiple nodes.

The syntax of ORKID operation calls does not change with the level of
compliance. All 'node' operations must behave sanely in a single node
ORKID implementation, i.e. the behavior is that of a multiple node
configuration with only one active node.

2.6 ORKID compatibility

There are several places in this standard where the exact algorithms
to be used are defined by the implementor. Although each operation
has a defined functionality, the method used to achieve that
functionality may cause behavioral differences.

For example, ORKID does not define the kernel scheduling algorithm,
especially when several ready tasks have the same priority. This may
lead to tasks being scheduled completely differently in different
implementations, which may lead to possible different behavior.

Another example is the segment allocation algorithm. Different
kernels may handle fragmentation in different ways, leading to cases
where one implementation can fulfil a segment request, but another
returns an error, since it has left the region more fragmented.

Extensions

Any ORKID compliant implementation can add extensions to give
functionality in addition to that defined by this standard. Clearly,

a task which uses non-standard extensions is unlikely to be portable

to a standard system. In all cases, a kernel which claims compliance to
ORKID should have all extensions clearly marked in its documentation.

Undefined Items

There are several items which ORKID does not define but leaves up to
the implementation.

ORKID does not define how system or node start-up is accomplished;

this will obviously lead to differences in behavior, especially in

multi-node systems.

ORKID does not define the word length. On this depends the size of

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 11
Draft 1.0 for Public Comments

integer parameters. This latter will be defined in the language
binding along with all the other data structures, and so should not
cause problems. It is envisaged that ORKID should be scalable - in
other words it should be implementable on hardware with a different
word length without loss of portability.

ORKID does not define the maximum number of events and exceptions per
task. The minimum number is sixteen.

ORKID does not define the maximum number of task notepad locations.
The minimum number is sixteen.

ORKID does not define the range of priority values.

ORKID defines neither inter-kernel communication methods nor kernel
data structure structures. This means that there is no requirement
that one implementation must co-operate with other implementations
within a system. 1In general, all the nodes in a system will run the
same Kernel implementation.

ORKID does not define whether object identifiers need be unique only
at the current time, or must be unique throughout the system lifetime.
A task which assumes the latter may have problems with an
implementation which provides the former.

ORKID does not define the size limits on granularity for regions and
block size for partitions.

ORKID does not define any restrictions on the execution of operations
within XSRs and interrupt handling routines (ISRs). It does however
define a minimum requirement of operations that must be supported.

ORKID defines a number of completion statuses. If an implementation
does check for the condition corresponding to one of these statuses,
then it must return the appropriate status.

ORKID doe not define which completion status will be returned if
multiple conditions apply.

ORKID does not define the encoding (binary value) of completions
statuses, options and other symbolic values.

ORKID defines a minimum functionality for scheduling task's Exception
Service Routines.

2.7. Layout of Operation Descriptions

The remainder of this standard is divided into one section per ORKID
object type. Each section contains a detailed description of this
type of object, followed by subsections containing descriptions of the
relevant ORKID operations.

These operation descriptions are layed out in a formal manner, and
contain information under the following headings:

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 12
Draft 1.0 for Public Comments

Synopsis

This is a pseudo-language call to the operation giving its standard
name and its list of parameters. Note that the language bindings
define the actual names which are used for operations and parameters,
but the order of the parameters in the call is defined here.

Input Parameters

Those parameters which pass data to the operation are given here in
the format:

<parameter name> : <parameter type> Commentary

The actual names to be used for parameters and types are given
definitively in the language bindings.

Output Parameters

Those parameters which return data from the operation are given here
in the same format as for input parameters. Note that the types given
here are simply the types of the data actually passed, and take no
account of the mechanism whereby the data arrives back in the calling
program. The actual parameter names and types to be used are given
definitively in the language bindings.

Literal Values

Under this heading are given literal values which are used with given
parameters. They are presented in the following two formats:

<parameter name> = <literal value> Commentary
<parameter name> + <literal value> Commentary

The first format indicates that the parameter is given exactly the
indicated literal value if the parameters should affect the function
desired in the commentary. The second format indicates that more than
one such literal value for this parameter may be combined (logical
or) and passed to the operation. If none of the defined conditions is
set, the value of the parameter should be zero.

Completion Status

Under this heading are listed all of the possible standard completion
statuses that the operation may return.

Description
The last heading contains a description of the functionality of the

operation. This description should not be interpreted as a recipe for
implementation.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 13
Draft 1.0 for Public Comments

3. TASKS

Tasks are single threads of program execution. Within a node, a
number of tasks may run concurrently, competing for CPU time and other
resources. ORKID does not define the number of tasks allowed per
node. Tasks are created and deleted dynamically by existing tasks.

Tasks are allocated CPU time by a part of the kernel called the
scheduler. The exact behavior of the scheduler is implementation
dependent, but it must have the minimum functionality described in the
following paragraphs.

Throughout its existence, each task has a current priority, a current
mode and a current state, all of which may change over time. A task may
also have an exception service routine which has to be declared to it
at runtime.

Task Exception Service Routine

A task may designate an Exception Service Routine (XSR) to handle
exceptions which have been sent to that task. A task's XSR can be
changed at will, but a task can have only one at any time. The
purpose of an XSR is to deal with exceptions which have been sent to
the task. It is recommended that exceptions be reserved for errors
and other abnormal conditions which arise.

A task's XSR is activated asynchronously. This means that it is not
called explicitly by the task code, but automatically by the
scheduler whenever one or more exceptions are sent to the task. Thus
an XSR may be entered at any time during task execution. (But see
'Task Modes' below.) A task's XSR runs at least at the same priority
as the task; it only needs to be executed when the task normally would
have been scheduled to the running state. Exceptions are latched on a
single level. Multiple occurrences of the same exception during this
time will be seen as a single exception by the XSR.

Task Priority

A task's priority determines its 'importance' in relation to the
other tasks within the node. Priority is a numeric parameter and can
take any value in the range 1 to HIGHP. Priority HIGHP is 'highest'
or 'most important' and priority 1 is 'lowest' or 'least important'.
There may be any number of tasks with the same priority.

Priorities are assigned to tasks by the tasks themselves, and affect
the way in which task scheduling occurs. Although the exact
scheduling algorithm is outside the scope of this standard, in general
the higher the priority of a task, the more likely it is to receive
CPU time.

Task Modes

A task's mode determines certain aspects of the behavior of the

kernel in respect to the task. The mode is made up by the combination
of a number of mode parameters, each of which determines a single
aspect of kernel behavior.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 16
Draft 1.0 for Public Comments

3.1. TASK_CREATE

Create a task.

Synopsis
task_create(name, priority, stack_size, mode, options, tid)

Input parameters

name : string user defined task name
priority : prio initial task priority
stack_size : integer size in bytes of task's stack
mode : bit_field initial task mode

options : bit_field creation options

Output Parameters
tid : task_id kernel defined task identifier

Literal Values

mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT interrupt handling routine cannot be
activated
options + GLOBAL New task will be visible throughout
the system.

Completion Status

OK task_create operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_PRIORITY invalid priority value

INVALID_MODE invalid mode value

INVALID_OPTIONS invalid options wvalue

TOO_MANY_ TASKS too many tasks on the node
NO_MORE_MEMORY not enough memory to allocate task data

structure or task stack
Description

The task_create operation creates a new task in the kernel data
structure. Tasks are always created in the node in which the call to
task_create was made. The new task does not start executing code -
this is achieved with a call to the task_start operation.

The tid returned by the kernel is used in all subsequent ORKID
operations (except task_ident) to identify the newly created task.
If GLOBAL is specified in the options parameter, then the tid can be
used anywhere in the system to identify the task, otherwise it can be
used only in the node in which the task was created.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 17
Draft 1.0 for Public Comments
3.2. TASK_DELETE

Delete a task.

Synopsis
task_delete(tid)
Input Parameters
tid ¢ task_id kernel defined task identifier
Output Parameters
<none>
Literal Values

tid = SELF The calling task requests its own
deletion.

Completion Status

OK task_delete operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_1ID task does not exist
OBJECT_DELETED task specified has been deleted
OBJECT_PROTECTED task has NO_TERMINATION parameter set
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation stops the task identified by the tid parameter and
deletes it from its node's kernel data structure. If the task's
active mode has the parameters NOTERMINATION set, then the task will
not be deleted and the completion status OBJECT_PROTECTED will be
returned.

Observation:

The task_delete operation performs no ‘clean-up' of the resources
allocated to the task. It is therefore the responsibility of the
calling task to ensure that all segments, blocks, etc., allocated to
the task to be deleted have been returned.

For situations where one task must delete another, clean-up will
usually require co-operation between the tasks, typically using
exceptions, or task_restart.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 18
Draft 1.0 for Public Comments
3.3. TASK _IDENT

Obtain the identifier of a task on a given node with a given name.

Synopsis
task_ident(name, nid, tid)
Input Parameters

name : string user defined task name
nid : node_id node identifier

Output Parameters
tid : task_id kernel defined task identifier

Literal Values

nid = LOCAL_NODE The node containing the calling task
= OTHER_NODES all nodes in the system except the local
node
name = WHO_AM 1 Returns tid of calling task
Completion Status
OK task_ident operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_NODE node does not exist
NAME_NOT_FOUND name does not exist on node
NODE_NOT_REACHABLE node on which task resides is not
= reachable

Description

This operation searches the kernel data structure in the node(s)
specified by nid for a task with the given name. If OTHER_NODES is
specified, the node search order is implementation dependent. If there
is more than one task with the same name in the node(s) specified, then
the tid of the first one found is returned.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

