
CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

RTEMS SMPReady to Fly

Technical NoteSpace ProfileRelease 2

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CONTENTS

1 Introduction 3

2 External Dependencies 5
2.1 Compiler . 5
2.2 Bootloader . 5
2.3 C Library . 5
2.4 Mathematical Library . 6
2.5 ABI compatibility . 6

3 Space Profile Definition 7
3.1 Platforms . 7
3.2 Devices . 7
3.3 Locking Protocols and Scheduling . 8
3.4 C Standard Support . 8
3.5 Initialization . 8
3.6 Barrier Manager . 8
3.7 Clock Manager . 9
3.8 Event Manager . 9
3.9 Fatal Error Manager . 9
3.10 Interrupt Manager . 9
3.11 Message Manager . 10
3.12 Object Manager . 10
3.13 Partition Manager . 10
3.14 Rate Monotonic Manager . 11
3.15 Scheduler Manager . 11
3.16 Semaphore Manager . 11
3.17 Task Manager . 12
3.18 Timer Manager . 13
3.19 Extensions Manager . 13

4 Space Profile Justification 15
4.1 Platforms . 15

4.1.1 Included . 15
4.1.2 Excluded . 15

4.2 Devices . 15
4.2.1 Included . 15
4.2.2 Excluded . 15

© 2019 embedded brains GmbH and contributors i

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

4.3 Programming and Parallel Languages . 16
4.3.1 Included - C . 16
4.3.2 Included - uPython . 16
4.3.3 Excluded - Ada . 16
4.3.4 Excluded - C++, Java, Go, Rust and LUA 16
4.3.5 Excluded - OpenMP . 16
4.3.6 Excluded - MTAPI . 17

4.4 Dynamic Memory . 17
4.4.1 Included . 17
4.4.2 Excluded . 17

4.5 Classic API . 17
4.5.1 Included . 17
4.5.2 Excluded . 18

4.6 Other Features . 19
4.6.1 Open - CLOCK_REALTIME . 19
4.6.2 Excluded - Arbitrary Thread to Processor Affinity 19
4.6.3 Excluded - Reclamation of Dynamic Memory or Objects 19
4.6.4 Excluded - POSIX API . 19
4.6.5 Excluded - File Systems . 19
4.6.6 Excluded - Network Stack . 19

5 Comparison to Edisoft RTEMS Improvement 21
5.1 C Library . 21
5.2 Application Configuration . 21
5.3 RTEMS Managers . 23

6 Open Issues 27
6.1 CLOCK_REALTIME . 27
6.2 Fatal Error Handling . 27
6.3 Interrupt Controller Interface . 27
6.4 GPIO Driver . 27
6.5 MIL-STD-1553 Driver . 28
6.6 UART Driver . 28
6.7 SpaceWire Driver . 28

7 Survey Questions and Responses 29
7.1 Processor Architectures . 29
7.2 Target Platforms . 30
7.3 Devices . 31
7.4 Dynamic Memory . 32
7.5 Thread Support . 33
7.6 Locking Protocols and Scheduling . 35
7.7 Programming Languages and Libraries . 37
7.8 Miscellaneous . 38
7.9 Barrier Manager . 39
7.10 Clock Manager . 39
7.11 Event Manager . 40
7.12 Interrupt Manager . 41
7.13 IO Manager . 42
7.14 Message Manager . 42

© 2019 embedded brains GmbH and contributors ii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.15 Classic Objects . 43
7.16 Partition Manager . 43
7.17 Rate Monotonic Manager . 44
7.18 Region Manager . 45
7.19 Semaphore Manager . 45
7.20 Signal Manager . 46
7.21 SMP Support . 46
7.22 Extensions Manager . 46
7.23 Task Manager . 47
7.24 Timer Manager . 48
7.25 Fatal Error Handling . 48
7.26 POSIX Barriers . 49
7.27 POSIX Clocks . 49
7.28 POSIX Condition Variables . 50
7.29 POSIX Keys . 50
7.30 POSIX Message Queues . 51
7.31 POSIX Mutexes . 52
7.32 POSIX Read-Write Locks . 53
7.33 POSIX Semaphores . 53
7.34 POSIX Named Semaphore . 54
7.35 POSIX Spinlocks . 54
7.36 POSIX Thread Cancellation . 54
7.37 POSIX Threads . 55

Bibliography 57

© 2019 embedded brains GmbH and contributors iii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019 embedded brains GmbH and contributors iv

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

Identification, Copyrights and License

© 2019 EDISOFT

© 2019 embedded brains GmbH

© 2019 European Space Agency

The copyright in this document is vested in the copyright holders listed above. This document
may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted
in any form, or by any means electronic, mechanical, photocopying or otherwise, either with
the permission of the copyright holders, or in accordance with the terms of ESA Contract No.
4000125572/18/NL/GLC/as.

This work is available under the Creative Commons Attribution-ShareAlike 4.0 In-
ternational Public License in accordance with the terms of ESA Contract No.
4000125572/18/NL/GLC/as.

Release Date Status Changes
1 2019-04-12 For review Initial version of the RTEMS space profile

specification, issued for community review.
2 2019-07-18 Released Baseline document issued after public re-

view.

Contributing authors
Sebastian Huber (embedded brains GmbH)
Jose Valdez (EDISOFT)
Marcel Verhoef (ESA)

Approver Signature
Marcel
Verhoef
(ESA)

© 2019 embedded brains GmbH and contributors 1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019 embedded brains GmbH and contributors 2

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
ONE

INTRODUCTION

PURPOSE OF THIS DOCUMENT

This document is issued for PUBLIC RELEASE.

If there are any questions on this document, or on the qualification project, please do
not hesitate to contact us, either directly by e-mail or via the RTEMS mailing lists.
Please provide your comments electronically to: sebastian.huber@embedded-brains.de

This document is used as the baseline for the RTEMS qualification project,
as performed under ESA Contract No 4000125572. It is unlikely that significant
change requests for the space profile can be accommodated in the
context of this project. However, comments are still welcomed, to create
a roadmap for future extensions and to identify potential follow-up activities.

Finally, we would like to express our thanks to the questionnaire
respondents, who have helped to shape this RTEMS space profile proposal.

Note that the respondents comments are reported as-is, albeit anonymised;
explicit references to specific products, projects or missions have been removed.

© 2019 embedded brains GmbH and contributors 3

mailto:sebastian.huber@embedded-brains.de

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

The aim of this activity is to pre-qualify a subset of RTEMS according to ECSS standards (mainly
ECSS-E-ST-40C [ECS09] and ECSS-Q-ST-80C Rev.1 [ECS17]).

RTEMS provides a lot of features and a pre-qualification of

• the entire scope is infeasible (time and budget constraints of this activity), and

• the entire scope is not needed (not all features are used).

As with previous pre-qualification activities, we define a space profile which is

• based on needs of the (ESA) space software community,

• based on past applications and usage experiences,

• based on future usage expectations (in particular: multi-core platforms), and

• eases the RTEMS source code tailoring.

This activity will use the current development branch of mainline RTEMS. As a result of this
activity, changes in mainline RTEMS will be integrated. Since the schedule of this activity and
the RTEMS community release process may not correlate, it is not yet clear if the baseline for
the pre-qualified RTEMS will be a proper RTEMS project release, e.g. RTEMS 5.1.

To get input from users a survey was carried out from 7 March 2019 to 25 March 2019 via
a world wide accessible online form. We received 31 responses in total (mostly from ESA
member states, 2 from USA). This activity and early results of the survey were presented in
an user consultation meeting hosted by ESA on 27 March 2019. The full survey results are
presented in section Survey Questions and Responses.

Outputs of the qualification activity for the space profile are:

• A cross-compiler and build process that delivers RTEMS space profile libraries

• All relevant ECCS compliant documentation

• A test suite and tools to automate the regression test process

All artefacts will be available as open source at no cost. The project will deliver qualification
data packs periodically, provided as patches to the RTEMS main line repository. The maturity of
the qualification data pack will evolve over time to reach ECSS parity. ESA approved versions
of the qualification data pack will be distributed via the European Space Software Repository.

© 2019 embedded brains GmbH and contributors 4

https://essr.esa.int

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
TWO

EXTERNAL DEPENDENCIES

2.1 Compiler
The pre-qualified RTEMS library produced by this activity may have some dependencies on
external libraries provided by the compiler (GCC). These external libraries will be used as is
(e.g. libgcc). One possible use of such an external library is a 64-bit integer division present
in the clock driver initialization. The aim is to avoid such dependencies. The 64-bit integer
division is currently the only known dependency.

The integer support functions are moderately complex and adding them to the scope of this
activity exceeds our time and budget limits. It is not the job of a real-time operating system
kernel to offer basic C support for functions like this:

uint64_t div(uint64_t a, uint64_t b)
{

return a / b;
}

Given the commit history of libgcc2.c, the GCC review procedures, the expert knowledge of the
GCC maintainers, and the usage areas and history of this piece of software it can be considered
proven in use.

Using an alternative compiler such as LLVM/Clang is out of scope of this activity. In general,
there is support available for SPARC/LEON in LLVM/Clang as a result of previous ESA activities.
These are available from Cobham Gaisler.

2.2 Bootloader
The board support package (BSP) may depend on the low-level initialization performed by
a bootloader provided by the platform vendor, for example MKPROM2 from Gaisler. A pre-
qualification of this software is out of scope of this activity.

2.3 C Library
There will be no dependency on the Newlib provided libc as a whole, this will be enforced
by the use of explicit linker options. Instead, basic functions like memcpy() and memset() will

© 2019 embedded brains GmbH and contributors 5

https://gcc.gnu.org/viewcvs/gcc/trunk/libgcc/libgcc2.c
https://www.gaisler.com/index.php/products/compilers
https://www.gaisler.com/doc/mkprom.pdf

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

be selected from Newlib (see section C Standard Support) and any modifications made will be
submitted for upstream inclusion in Newlib.

2.4 Mathematical Library
The standard mathematical library libm will not be used by the pre-qualified RTEMS of this
activity. The pre-qualified RTEMS will support the ESA provided MLFS.

2.5 ABI compatibility
This project does not address any ABI (Application Binary Interface) concerns.

© 2019 embedded brains GmbH and contributors 6

https://essr.esa.int/project/mlfs-mathematical-library-for-flight-software

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
THREE

SPACE PROFILE DEFINITION

This section gives a list of features, directives, and application configuration options which are
included in the space profile. Anything not mentioned here is excluded from the space profile.
Excluded means that it is not subject to the pre-qualification activity. Additional functionality
can be enabled or added by the end-users, but this must then done under their own respon-
sibility (to complete the qualification for the additional parts). The data package produced
by this activity may for example include two libraries for a certain platform, one contains the
pre-qualified software components (e.g. librtemsqual) and one contains additional components
normally available in mainline RTEMS (e.g. librtemsextra). This allows end-users to select
additional components at their own expense in terms of the effort needed to qualify (this is a
different approach as taken with Edisoft RTEMS Improvement where features were explicitly
removed). For the application configuration defines (CONFIGURE_*) listed here, value ranges
are not yet defined.

3.1 Platforms
• GR712RC (single-core and dual-core configurations)

• GR740 (single-core and multi-core configurations)

See also Survey Responses: Processor Architectures, Survey Responses: Target Platforms and Space
Profile Justification: Platforms.

3.2 Devices
• GPIO, see Open Issue: GPIO Driver.

• MIL-STD-1553, see Open Issue: MIL-STD-1553 Driver.

• Simplified UART driver, see Open Issue: UART Driver.

• SpaceWire, see Open Issue: SpaceWire Driver.

See also Survey Responses: Devices and Space Profile Justification: Devices.

© 2019 embedded brains GmbH and contributors 7

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

3.3 Locking Protocols and Scheduling
• Transitive Priority Inheritance

• Immediate Ceiling Priority Protocol (ICPP)

• O(m) Independence-Preserving Protocol (OMIP)

• Multiprocessor Resource Sharing Protocol (MrsP)

• Run-time deadlock detection

• Clustered scheduling

• EDF scheduler with one-to-one and one-to-all thread to processor affinity support

See also Survey Responses: Locking Protocols and Scheduling and Survey Responses: Thread Sup-
port.

3.4 C Standard Support
• aligned_alloc()

• calloc()

• malloc() (maybe without support for errno and the deferred free)

• memcpy()

• memset()

• Thread-local Storage (TLS)

See also Survey Responses: Dynamic Memory, Survey Responses: Miscellaneous and Space Profile
Justification: Dynamic Memory.

3.5 Initialization
The board support package (BSP) for the platform will initialize the system according to the ap-
plication configuration. The BSP may rely on low-level initialization performed by a bootloader.
See also Initalization Manager.

3.6 Barrier Manager
• CONFIGURE_MAXIMUM_BARRIERS

• rtems_barrier_create()

• rtems_barrier_ident()

• rtems_barrier_release()

• rtems_barrier_wait()

© 2019 embedded brains GmbH and contributors 8

https://docs.rtems.org/branches/master/c-user/key_concepts.html#priority-inheritance-protocol
https://docs.rtems.org/branches/master/c-user/key_concepts.html#immediate-ceiling-priority-protocol-icpp
https://docs.rtems.org/branches/master/c-user/key_concepts.html#o-m-independence-preserving-protocol-omip
https://docs.rtems.org/branches/master/c-user/key_concepts.html#multiprocessor-resource-sharing-protocol-mrsp
https://docs.rtems.org/branches/master/c-user/symmetric_multiprocessing_services.html#clustered-scheduling
https://docs.rtems.org/branches/master/c-user/scheduling_concepts.html#earliest-deadline-first-smp-scheduler
https://docs.rtems.org/branches/master/c-user/initialization.html

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

See also Survey Responses: Barrier Manager and Space Profile Justification: Classic API.

3.7 Clock Manager
• Clock driver providing the clock tick and CLOCK_MONOTONIC

• CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER

• CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

• CONFIGURE_MICROSECONDS_PER_TICK

• rtems_clock_get_ticks_per_second()

• rtems_clock_get_ticks_since_boot()

• rtems_clock_get_uptime()

See also Open Issue: CLOCK_REALTIME, Survey Responses: Clock Manager and Space Profile
Justification: Classic API.

3.8 Event Manager
• rtems_event_receive()

• rtems_event_send()

• rtems_event_system_receive()

• rtems_event_system_send()

See also Survey Responses: Event Manager and Space Profile Justification: Classic API.

3.9 Fatal Error Manager
• rtems_fatal()

See also Survey Responses: Fatal Error Handling and Space Profile Justification: Classic API.

3.10 Interrupt Manager
• CONFIGURE_INTERRUPT_STACK_SIZE

• rtems_interrupt_local_disable()

• rtems_interrupt_local_enable()

• rtems_interrupt_lock_acquire()

• rtems_interrupt_lock_destroy()

• rtems_interrupt_lock_initialize()

© 2019 embedded brains GmbH and contributors 9

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• rtems_interrupt_lock_release()

See also Survey Responses: Interrupt Manager and Space Profile Justification: Classic API.

3.11 Message Manager
• CONFIGURE_MAXIMUM_MESSAGE_QUEUES

• CONFIGURE_MESSAGE_BUFFER_MEMORY

• CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE

• rtems_message_queue_broadcast()

• rtems_message_queue_create()

• rtems_message_queue_flush()

• rtems_message_queue_get_number_pending()

• rtems_message_queue_ident()

• rtems_message_queue_receive()

• rtems_message_queue_send()

• rtems_message_queue_urgent()

See also Survey Responses: Message Manager and Space Profile Justification: Classic API.

3.12 Object Manager
• rtems_build_name()

See also Survey Responses: Classic Objects and Space Profile Justification: Classic API.

3.13 Partition Manager
• CONFIGURE_MAXIMUM_PARTITIONS

• rtems_partition_create()

• rtems_partition_get_buffer()

• rtems_partition_ident()

• rtems_partition_return_buffer()

See also Survey Responses: Partition Manager and Space Profile Justification: Classic API.

© 2019 embedded brains GmbH and contributors 10

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

3.14 Rate Monotonic Manager
• CONFIGURE_MAXIMUM_PERIODS

• rtems_rate_monotonic_cancel()

• rtems_rate_monotonic_create()

• rtems_rate_monotonic_deadline()

• rtems_rate_monotonic_get_status()

• rtems_rate_monotonic_ident()

• rtems_rate_monotonic_period()

See also Survey Responses: Rate Monotonic Manager and Space Profile Justification: Classic API.

3.15 Scheduler Manager
• CONFIGURE_MAXIMUM_PROCESSORS

• CONFIGURE_SCHEDULER_ASSIGNMENTS

• CONFIGURE_SCHEDULER_EDF_SMP

• CONFIGURE_SCHEDULER_TABLE_ENTRIES

• rtems_scheduler_add_processor()

• rtems_scheduler_get_processor()

• rtems_scheduler_get_processor_maximum()

• rtems_scheduler_get_processor_set()

• rtems_scheduler_ident()

• rtems_scheduler_ident_by_processor()

• rtems_scheduler_ident_by_processor_set()

• rtems_scheduler_remove_processor()

See also Survey Responses: Locking Protocols and Scheduling, Survey Responses: SMP Support and
Space Profile Justification: Classic API. Please note that rtems_get_current_processor() was
replaced by rtems_scheduler_get_processor() and that rtems_get_processor_count() was
replaced by rtems_scheduler_get_processor_maximum() recently.

3.16 Semaphore Manager
• CONFIGURE_MAXIMUM_MRSP_SEMAPHORES

• CONFIGURE_MAXIMUM_SEMAPHORES

• rtems_semaphore_create()

© 2019 embedded brains GmbH and contributors 11

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• rtems_semaphore_ident()

• rtems_semaphore_obtain()

• rtems_semaphore_release()

• rtems_semaphore_set_priority()

See also Survey Responses: Semaphore Manager and Space Profile Justification: Classic API.

3.17 Task Manager
• CONFIGURE_EXTRA_TASK_STACKS

• CONFIGURE_INIT_TASK_ARGUMENTS

• CONFIGURE_INIT_TASK_ATTRIBUTES

• CONFIGURE_INIT_TASK_ENTRY_POINT

• CONFIGURE_INIT_TASK_INITIAL_MODES

• CONFIGURE_INIT_TASK_PRIORITY

• CONFIGURE_INIT_TASK_STACK_SIZE

• CONFIGURE_MAXIMUM_TASKS

• CONFIGURE_MINIMUM_TASK_STACK_SIZE

• rtems_task_create()

• rtems_task_get_affinity()

• rtems_task_get_priority()

• rtems_task_get_scheduler()

• rtems_task_ident()

• rtems_task_is_suspended()

• rtems_task_iterate()

• rtems_task_restart()

• rtems_task_resume()

• rtems_task_self()

• rtems_task_set_affinity()

• rtems_task_set_priority()

• rtems_task_set_scheduler()

• rtems_task_start()

• rtems_task_suspend()

• rtems_task_wake_after()

© 2019 embedded brains GmbH and contributors 12

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

See also Survey Responses: Locking Protocols and Scheduling, Survey Responses: Thread Support,
Survey Responses: Task Manager and Space Profile Justification: Classic API.

3.18 Timer Manager
• CONFIGURE_MAXIMUM_TIMERS

• rtems_timer_cancel()

• rtems_timer_create()

• rtems_timer_fire_after()

• rtems_timer_ident()

• rtems_timer_initiate_server()

• rtems_timer_reset()

• rtems_timer_server_fire_after()

See also Survey Responses: Timer Manager and Space Profile Justification: Classic API.

3.19 Extensions Manager
• CONFIGURE_INITIAL_EXTENSIONS

• CONFIGURE_MAXIMUM_USER_EXTENSIONS

• rtems_extension_create()

• rtems_extension_ident()

See also Survey Responses: Extensions Manager and Space Profile Justification: Classic API.

© 2019 embedded brains GmbH and contributors 13

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019 embedded brains GmbH and contributors 14

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
FOUR

SPACE PROFILE JUSTIFICATION

4.1 Platforms
4.1.1 Included
The survey results confirm that the LEON3/LEON4 Gaisler platforms GR712RC and GR740 se-
lected for this activity are the most interesting for the respondents of the survey.

4.1.2 Excluded
The questionnaire identified also the need to qualify RTEMS on other platforms (single-core
LEONs UT699/UT700, ARM, RISC-V, etc). Even though these platforms cannot be targeted
in the context of this activity due to resource constraints, however, the infrastructure created
will allow to easily add support for them, e.g. as part of future activities or by community
contribution.

4.2 Devices
4.2.1 Included
Included devices are GPIO, MIL-STD-1553, UART and SpaceWire, the RTEMS upstream drivers
from Gaisler are used as the starting point.

4.2.2 Excluded
Excluded devices are CAN, I2C, PCI, SPI and Ethernet due to a lack of user interest or time and
budget constraints. To avoid duplicated work in space projects it is recommended to add more
device drivers in follow up activities to a common pool which can be used by space missions.
This activity will do the ground work to set up the infrastructure for this. From the survey, it
became clear that proprietary CAN drivers and protocol stack are already in use. No investment
will be made to support the generic RTEMS IO Manager.

© 2019 embedded brains GmbH and contributors 15

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

4.3 Programming and Parallel Languages
4.3.1 Included - C
C is supported including thread-local storage (TLS) support. Most of the C standard library
support is excluded.

4.3.2 Included - uPython
For compatibility with previous uPython activities carried out by ESA (see https://essr.esa.
int/project/micropython-for-leon), support for it will be included in the space profile. How-
ever, not all features will be supported, e.g. task notes were removed in RTEMS 5.1. The
rtems_*_delete() directives are not in the space profile.

4.3.3 Excluded - Ada
In mainline RTEMS 5.1 the process to build a GCC with Ada support was substantially sim-
plified since now all header files required by the Ada runtime library are included in Newlib.
So, the GCC can be built in one step without the need to build RTEMS first. Also the task
variables were replaced by thread-local storage (TLS) variables to support SMP configurations.
Tool chains with Ada support are regularly built for ARM, PowerPC, RISC-V and SPARC targets
by RTEMS community members. However, the Ada support depends on the excluded POSIX
API. It would be possible to pre-qualify the additional components in a parallel or follow up ac-
tivity. This activity should avoid dependencies on the POSIX signals (e.g. pthread_sigmask(),
pthread_kill(), and sigaction()) since their implementation in RTEMS has a questionable
quality.

4.3.4 Excluded - C++, Java, Go, Rust and LUA
C++ may work out of the box, however, at your own risk. Most parts of the standard C++
library will require the components outside the pre-qualified RTEMS library.

The demand for Java, Go, and Rust was quite weak. LUA was mentioned in a remark. In general,
programming language support can be added in follow up projects. All relevant synchronization
primitives are included in the space profile. There is just a lack of time and budget to cover all
API variants.

4.3.5 Excluded - OpenMP
There was some interest in OpenMP. The OpenMP in GCC is well supported in mainline RTEMS
and on par with the Linux support. Critical synchronization primitives such as the OpenMP
barriers use the Linux code based on Futexes as is. Note however that Futexes are not part of
the qualification scope.

The OpenMP support in GCC consists of three parts:

1. The code generation through the compiler.

© 2019 embedded brains GmbH and contributors 16

https://essr.esa.int/project/micropython-for-leon
https://essr.esa.int/project/micropython-for-leon

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

2. The libgomp runtime support library.

3. The operating system services required by libgomp.

For a qualified application all three parts must be taken into account, in addition to the Futex
support. Providing only part three in this activity would still require at least a pre-qualification
of libgomp which is completely out of scope of this activity. The operating system services
required by libgomp are mainly POSIX API functions. OpenMP would be the only valid reason
to include these POSIX API functions in the space profile. To focus on the overall quality of the
pre-qualification activity it was decided to not include OpenMP unless the project progress is
exceptionally good.

4.3.6 Excluded - MTAPI
There was no user interest in MTAPI. It will not be included in the space profile.

4.4 Dynamic Memory
4.4.1 Included
The survey results suggest that dynamic memory allocation during system initialization is highly
desired. Therefore the space profile will include the aligned_alloc(), calloc() and malloc()
functions. It will probably not support the setting of errno to ENOMEM in case of an allocation
failure. It will probably also not support the deferred free, since the free() function is excluded
in the space profile.

4.4.2 Excluded
Excluded are the free of allocated memory and reallocations.

4.5 Classic API
4.5.1 Included
The following RTEMS Classic API managers are included in parts in the space profile:

• Barrier Manager

• Clock Manager

• Event Manager

• Fatal Error Manager

• Interrupt Manager

• Message Manager

• Object Manager

© 2019 embedded brains GmbH and contributors 17

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• Partition Manager

• Rate Monotonic Manager

• Scheduler Manager

• Semaphore Manager

• Task Manager

• Timer Manager

• Extensions Manager

4.5.2 Excluded
Explicitly excluded are

• IO Manager

• all object delete directives,

• all diagnostic directives, e.g. rtems_rate_monotonic_get_statistics(),

• the rtems_clock_get_tod() directive,

• the rtems_timer_fire_when() directive,

• the rtems_timer_server_fire_when() directive, and

• rtems_task_wake_when() directive.

With respect to the rtems_*_when() and rtems_clock_get_tod() directives, see Open Issue:
CLOCK_REALTIME.

The Signal Manager is excluded due to no strong interest from the user side and the question-
able implementation. Signals are called as a side effect of thread dispatching. No application
code should run in this area. There is a possibility of infinite recursion since signal handlers
may block leading to a thread dispatch.

The Region Manager is excluded due to little interest from the user side. Its use is not recom-
mended in general as long as it is implemented as a first-fit allocator.

The Dual Ported Memory Manager is excluded since is lacks a proper use case.

A lot of diagnostic and debug support is excluded due to time and budget constraints. These
services can still be used during application development. They just have to be removed in the
flight software configuration.

There will be no support for asymmetric multiprocessing (RTEMS_MULTIPROCESSING). It was
not included in the Edisoft RTEMS Improvement as well. It is rarely tested by the RTEMS
community work flow. During the massive code rewrites to support SMP things may have
broken the RTEMS_MULTIPROCESSING support in subtle ways. The current status is that it is
compile clean. The implementation exploits that the MPCI thread has the highest priority and
is non-preemptive. This exploit breaks in SMP configuration.

© 2019 embedded brains GmbH and contributors 18

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

4.6 Other Features
4.6.1 Open - CLOCK_REALTIME
There is some interest in CLOCK_REALTIME support, however, it is not clear what
CLOCK_REALTIME should be. See also Open Issue: CLOCK_REALTIME.

4.6.2 Excluded - Arbitrary Thread to Processor Affinity
There was some interest in support for arbitrary thread to processor affinities. However, this is
only supported in a proof-of-concept scheduler in RTEMS and a production quality implemen-
tation is quite complex, see [GCB13] and [CGB14].

For the application use case where i.e. real-time tasks need to be separated from computa-
tional tasks, then this can be achieved using clustered scheduling, which is part of the activity
scope. This has the additional benefit that no scheduler data structures are shared between the
domains.

4.6.3 Excluded - Reclamation of Dynamic Memory or Objects
There was little interest in the support to free dynamic memory or delete objects. There was
some interest in thread deletion in error handling situations. This use case can also be addressed
through a thread restart. There will be no free() function or ability to delete objects (e.g.
rtems_task_delete(), rtems_semaphore_delete(), etc.).

4.6.4 Excluded - POSIX API
Interest was expressed in POSIX, mainly for the sake of application portability. It was decided
in the context of this project that the need is not significant enough to warrant inclusion of
POSIX in the space profile. Most users seem happy with RTEMS classic APIs. However, POSIX
support shall be considered for the future space profile roadmap, however focused primarily on
identified potential user needs (i.e. Ada and OpenMP support).

4.6.5 Excluded - File Systems
There was some interest in file systems. They are excluded in this activity due to time and
budget constraints.

4.6.6 Excluded - Network Stack
A network stack will be not included in the space profile. It may still be used during application
development. The goal is to provide an add-on library so that you have access to the full RTEMS
feature set during development.

© 2019 embedded brains GmbH and contributors 19

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019 embedded brains GmbH and contributors 20

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
FIVE

COMPARISON TO EDISOFT RTEMS IMPROVEMENT

The following subsections present a summary of the C Library, Application Configuration and
the Managers that are present in RTEMS Improvement. The bolded and surrounded with hash
tags, (e.g. #items#) are the ones that are not present in RTEMS SMP Space Profile.

The purpose of this section is to show users of RTEMS Improvement, what will change in case
they consider migrating towards the new RTEMS SMP Space profile.

5.1 C Library
In the following table is presented the necessary auxiliary C Library functions for RTEMS Im-
provement.

Table 1: RTEMS Improvement C Library

Function
memcpy()
memset()
#_mktm_r()#
#strncmp()#

5.2 Application Configuration
In the following table, the Configuration variables for RTEMS Improvement are presented. For
some variables the default value is presented (i.e the value assumed by RTEMS, when the user
does not define one) and the maximum value (a compile warning will be shown in such a case).

Table 2: RTEMS Improvement Application Configuration

Variable Default Max
Time Management:
CONFIGURE_MICROSECONDS_PER_TICK 10000 -
#CONFIGURE_TICKS_PER_TIMESLICE# 50 -
Object Management:

Continued on next page

© 2019 embedded brains GmbH and contributors 21

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageVariable Default Max
CONFIGURE_MAXIMUM_TASKS 0 (a warning will be

generated, since this
value should be rede-
fined to be at least
1, to account for the
Init task)

64

CONFIGURE_MAXIMUM_TIMERS 0 64
CONFIGURE_MAXIMUM_SEMAPHORES 0 256
CONFIGURE_MAXIMUM_MESSAGE_QUEUES 0 256
CONFIGURE_MAXIMUM_PERIODS 0 64
CONFIGURE_MAXIMUM_USER_EXTENSIONS 0 16
#CONFIGURE_SEM_SECURE_BLOCK_SUSPEND# 0 -
Device Driver Management:
#CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE# Not Defined -
#CONFIGURE_MAXIMUM_DRIVERS# number of entries

in Devices_drivers
array

-

CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER Not Defined -
#CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER# Not Defined -
#CONFIGURE_APPLICATION_EXTRA_DRIVERS# Not Defined -
Initialization Tasks Table Configuration:
#CONFIGURE_RTEMS_INIT_TASKS_TABLE# Defined -
#CONFIGURE_HAS_OWN_INIT_TASK_TABLE# Not defined (use

RTEMS default)
-

CONFIGURE_INIT_TASK_NAME rtems_build_name
(‘U’, ‘I’, ‘1’, ‘’)

-

CONFIGURE_INIT_TASK_STACK_SIZE RTEMS_MINIMUM
_STACK_SIZE

-

#RTEMS_MINIMUM_STACK_SIZE# 1024 * 4 -
CONFIGURE_INIT_TASK_PRIORITY 1 -
CONFIGURE_INIT_TASK_ATTRIBUTES RTEMS _DEFAULT

_ATTRIBUTES
-

#RTEMS_DEFAULT_ATTRIBUTES# 0x00000000 (mean-
ing: RTEMS_NO
_FLOATING_POINT
and RTEMS _APLI-
CATION _TASK)

-

CONFIGURE_INIT_TASK_ENTRY_POINT Init -
CONFIGURE_INIT_TASK_INITIAL_MODES RTEMS_NO _PRE-

EMPT
-

CONFIGURE_INIT_TASK_ARGUMENTS 0 -
Extra parameters:
#CONFIGURE_HAS_OWN_CONFIGURATION_TABLE# Not defined -
#CONFIGURE_INTERRUPT_STACK_MEMORY# RTEMS _MINIMUM

_STACK _SIZE
-

Continued on next page

© 2019 embedded brains GmbH and contributors 22

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageVariable Default Max
#RTEMS_MINIMUM_STACK_SIZE# 1024 * 4 -
#CONFIGURE_EXECUTIVE_RAM_WORK_AREA# NULL -
CONFIGURE_MESSAGE_BUFFER_MEMORY 0 -
#CONFIGURE_MEMORY_OVERHEAD# 0 -
CONFIGURE_EXTRA_TASK_STACKS 0 -
Fatal Error Handling:
#CONFIGURE_HAS_OWN_APP_SAFE_STATE_HANDLER# Not Defined -

5.3 RTEMS Managers
In the following table, the RTEMS Managers and the respective directives selected for RTEMS
Improvement are presented.

Table 3: RTEMS Improvement Managers

Manager Functions
Initialization Manager: #rtems_initialize_executive_early()#*

#rtems_initialize_executive_late()#*
rtems_shutdown_executive()
*Remarks: These directives were replaced by
rtems_initialize_executive()

Task Manager: rtems_task_create()
rtems_task_ident()
rtems_task_start()
rtems_task_restart()
#rtems_task_delete()#
rtems_task_suspend()
rtems_task_resume()
rtems_task_is_suspended()
rtems_task_set_priority()
#rtems_task_mode()#
#rtems_task_set_note()#
#rtems_task_get_note()#
rtems_task_wake_after()
#rtems_task_wake_when()#
#rtems_task_variable_add()#
#rtems_task_variable_get()#
#rtems_task_variable_delete()#

#Interrupt Manager#: #rtems_interrupt_catch()#
#rtems_interrupt_disable()#
#rtems_interrupt_enable()#
#rtems_interrupt_flash()#
#rtems_interrupt_is_in_progress()#
#rtems_interrupt_is_masked()#

Continued on next page

© 2019 embedded brains GmbH and contributors 23

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

Table 3 – continued from previous pageManager Functions
#rtems_mask_interrupt()#
#rtems_unmask_interrupt()#

Clock Manager: #rtems_clock_set()#
#rtems_clock_get()#
rtems_clock_get_uptime()
#rtems_clock_set_nanoseconds_extension()#
#rtems_clock_tick()#

Timer Manager: rtems_timer_create()
rtems_timer_ident()
rtems_timer_cancel()
#rtems_timer_delete()#
rtems_timer_fire_after()
#rtems_timer_fire_when()#
rtems_timer_initiate_server()
rtems_timer_server_fire_after()
#rtems_timer_server_fire_when()#
rtems_timer_reset()

Semaphore Manager: rtems_semaphore_create()
rtems_semaphore_ident()
#rtems_semaphore_delete()#
rtems_semaphore_obtain()
rtems_semaphore_release()
#rtems_semaphore_flush()#

Message Queue Manager: rtems_message_queue_create()
rtems_message_queue_ident()
#rtems_message_queue_delete()#
rtems_message_queue_send()
rtems_message_queue_urgent()
rtems_message_queue_broadcast()
rtems_message_queue_receive()
rtems_message_queue_get_number_pending()
rtems_message_queue_flush()

Event Manager: rtems_event_send()
rtems_event_receive()

#I/O Manager#: #rtems_io_register_driver()#
#rtems_io_initialize()#
#rtems_io_open()#
#rtems_io_close()#
#rtems_io_read()#
#rtems_io_write()#
#rtems_io_control()#

#Error Manager#: #rtems_fatal_error_occurred()#
#rtems_error_report()#
#rtems_error_get_latest_non_fatal_by_offset()#
#rtems_error_get_latest_fatal_by_offset()#

Continued on next page

© 2019 embedded brains GmbH and contributors 24

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

Table 3 – continued from previous pageManager Functions
Rate Monotonic Manager: rtems_rate_monotonic_create()

rtems_rate_monotonic_ident()
rtems_rate_monotonic_cancel()
#rtems_rate_monotonic_delete()#
rtems_rate_monotonic_period()
rtems_rate_monotonic_get_status()
rtems_rate_monotonic_deadline()
#rtems_rate_monotonic_get_deadline_state()#
#rtems_rate_monotonic_execution_time()#

User Extensions Manager: rtems_extension_create()
rtems_extension_ident()
#rtems_extension_delete()#

© 2019 embedded brains GmbH and contributors 25

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019 embedded brains GmbH and contributors 26

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
SIX

OPEN ISSUES

6.1 CLOCK_REALTIME
The survey results suggest that there is an interest in supporting CLOCK_REALTIME. This clock
shall be specified first. It raises the question how the time synchronization should be done (e.g.
Network Time Protocol)? How is the leap second handling performed? How do you get the
initial time at system start?

No feedback was received as part of the public review process, therefore it is likely that
CLOCK_REALTIME support will be dropped or only implemented in a restricted solution, as
user needs are still unclear.

6.2 Fatal Error Handling
The API for fatal error handling in mainline RTEMS and Edisoft RTEMS Improvement diverged
substantially. There are no plans to integrate the Edisoft RTEMS Improvement fatal error han-
dling support in mainline RTEMS.

6.3 Interrupt Controller Interface
The interrupt controller interface shall be specified. This includes interrupt handler installation
and removal, disabling and enabling of specific interrupts, setting of interrupt priorities, etc.

6.4 GPIO Driver
The survey results suggest that some users would like to have a GPIO driver included in the
space profile. The interface and feature set of such a driver shall be specified. GPIO drivers are
available in mainline RTEMS based on the Gaisler driver manager, which will form the starting
point.

© 2019 embedded brains GmbH and contributors 27

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

6.5 MIL-STD-1553 Driver
The survey results suggest that some users would like to have an MIL-STD-1553 driver included
in the space profile. The interface and feature set of such a driver shall be specified. MIL-STD-
1553 drivers are available in mainline RTEMS based on the Gaisler driver manager and also
previous ESA activities, which will be the starting point.

6.6 UART Driver
The survey results suggest that some users would like to have a UART driver included in the
space profile. The use case is not only for debugging output but also for interfacing with other
subsystems. The interface and feature set of such a driver shall be specified. The standard UART
drivers of RTEMS uses the Termios framework, which is out of scope of this activity. A simplified
UART driver shall be implemented that covers device settings (baud, bits per word, parity, stop
bits) and data transfers via user provided buffers in interrupt or polled mode. Each user buffer
shall have callback function which is invoked after transmission or reception. All other features
such as flow control and DMA support will not be supported.

6.7 SpaceWire Driver
The survey results suggest that some users would like to have an SpaceWire driver included in
the space profile. The interface and feature set of such a driver shall be specified. SpaceWire
drivers are available in mainline RTEMS based on the Gaisler driver manager and also previous
ESA activities.

© 2019 embedded brains GmbH and contributors 28

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
SEVEN

SURVEY QUESTIONS AND RESPONSES

7.1 Processor Architectures

0 5 10 15 20 25

ARMv7-A or ARMv8-A (AArch32)

ARMv7-R or ARMv8-R (AArch32)

ARMv7-M or ARMv8-M

SPARC / LEON

AArch64

RISC-V

none

PowerPC

ARM Cortex R5

x86_32

22.6%

32.3%

29.0%

90.3%

16.1%

25.8%

3.2%

12.9%

3.2%

3.2%

Collected remarks from questionnaire respondents:

• “LEON3/LEON4 is the most important and near term. ARM targets are longer term, RISC-
V is speculative at this point.”

• “None (we are tool developers).”

• “Mass Memory applications”

• “Gaisler GR740 processor”

• “PowerPC is desirable, not required”

• “These are computer architectures we are looking at for future projects. The availabil-
ity of RTEMS on such architectures would be welcome as an additional solution. This
does not necessarily imply at this stage that if RTEMS SMP would be supported on such
architecture, than it would be the selected solution.”

• “Cortex-Rs added due to DAHLIA.”

See also Space Profile Proposal: Platforms.

© 2019 embedded brains GmbH and contributors 29

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.2 Target Platforms

0 5 10 15

GR712RC (single-core)
GR712RC (multi-core)

GR740 (single-core)
GR740 (multi-core)

DAHLIA SoC
[0]
[1]

LEON3FT-RTAX
LEON3-FT UT700/UT699E

Xilinx Zynq / Zynq UltraScale+ MPSOC
HPSC ARM R52, possibly HPSC AARCH64 A53

[2]
none

OCE E698PM Quadcore LEON4
[3]
[4]

Gaisler OBC NG (LEON2-FT - single core)
[5]

MPC8548e

41.9%
38.7%

22.6%
48.4%

32.3%
45.2%

22.6%
9.7%

16.1%
38.7%

3.2%
25.8%

3.2%
3.2%
3.2%

6.5%
3.2%
3.2%
3.2%

Legenda to other target architectures identified (see figure above):

0. Time-space partitioning kernel (AIR, PikeOS, XtratuM)

1. Aeroflex Gaisler UT699 (LEON3FT single-core)

2. Microchip / ATMEL SAMV71 (ARM Cortex-M7 single-core)

3. ARM Cortex-M3, also using ERC32 for legacy projects

4. NXP QorIQ (e.g. BAE RAD5500, TeleDyne E2V P5020, TeleDyne E2V LS1046)

5. LEON3 would be seen favourably mostly to have a single and most recent version of
RTEMS (5) qualifiable for all LEON3 - LEON4 based platforms

Collected remarks from questionnaire respondents:

• “We are tool suppliers, we will support any platform requried.”

• “Our main platform today is LEON2, as it provides sufficient performances.”

• “Again, these are processors / TSP RTOS on which the availability of RTEMS SMP would
be one among other possible solutions. It does not imply that if RTEMS SMP would
support those, then it would be selected.”

• “These are platforms that are either used, or going to be used in missions and R&D
projects.”

See also Space Profile Proposal: Platforms.

© 2019 embedded brains GmbH and contributors 30

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.3 Devices
Table 1: Devices

Feature MUST SHOULD COULD WON’T
CAN 8 8 10 5

GPIO 24 5 1 1

I2C 3 6 13 9

MIL-STD-1553 18 7 0 6

PCI 4 6 9 12

SpaceWire 25 3 2 1

SPI 11 8 8 4

UART 22 6 0 3

Ethernet 7 9 13 2

Collected remarks from questionnaire respondents:

• “Need GPIO for very high speed and low overhead tracing for WCET analysis.”

• “We write all drivers ourselves.”

• “UART is mainly for debugging (disabled in flight configuration)”

• “Derived from our baseline DHS HW architecture.”

• “1553, SpW, UART, GPIO present in most architectures. ETH at least as debug link. SPI
and PCI as second priority. I2C present in some architectures but not all.”

• “Ethernet functional for on-ground testing purpose. Not necessary in flight.”

See also Space Profile Proposal: Devices.

© 2019 embedded brains GmbH and contributors 31

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.4 Dynamic Memory
Table 2: Dynamic Memory

Feature MUST SHOULD COULD WON’T
Do you want to allocate memory during initializa-tion?

17 7 4 3

Do you want to allocate memory after initializa-tion?
2 5 17 7

Do you want to free allocated memory? 0 2 10 19

Do you need a scalable SMP memory allocator,e.g. FreeBSD UMA or jemalloc?
0 2 15 14

Do you expect problems due to memory fragmentation?

Yes

22.6%

No

77.4%

Collected remarks from questionnaire respondents:

• “No dynamic memory needs for tracing for WCET analysis.”

• “No dynamic memory allocation in our SW architecture, but rather custom static memory
allocator “

• “Our standards ALLOW, but discourage, memory allocation at initialization, and dissallow
memory allocation after initialization with exceptions permited in some very constrained
cases. In some of our missions, we have removed malloc from the library so it can’t be
used.”

• “For some cat. C applications, memory allocation after initialisation or free of allocated
memory could add flexibility (e.g., partial reconfiguration / reload)”

© 2019 embedded brains GmbH and contributors 32

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• “To my knowledge, in Cat-C and B, we don’t allocate after initialization, and we never
free; so there’s no need for scaleable SMP allocator, and there can be no fragmentation.”

See also Space Profile Proposal: C Standard Support.

7.5 Thread Support
Table 3: Thread Support

Feature MUST SHOULD COULD WON’T
Do you want to delete threads? 5 4 5 17

Do you want to delete other threads than the ex-ecuting thread?
4 2 6 19

Do you want to restart threads? 4 6 10 11

Do you want to restart other threads than the ex-ecuting thread?
4 4 13 10

Do you want to use a one-to-one thread to pro-cessor affinity?
14 7 5 5

Do you want to use arbitrary thread to processoraffinity?
5 2 15 9

Why do you want to use thread to processor affinity?

• “Prevent jitter in switching time that could appear as a thread switches CPUs. “

• “Predictability”

• “potential workload balancing”

• “To optimize latencies and minimize overhead of thread migration when not needed.”

• “Determinism and simplification of design.”

• “Should not be used!!!. Makes WCET analysis extremely hard and very pessimistic, no
Scheduling solution for thread migration really exists. Does provide negative value for
schedulability analysis and WCET analysis.”

• “To best segregate the functions”

• “Simplification of the schedulability analysis; Processor cache ussage”

• “For more control”

• “To ensure realtime performance of critical tasks, and to simplify schedulability analysis”

• “Pre-defined static allocation of threads to processor only”

• “For execution determinism”

• “yes”

© 2019 embedded brains GmbH and contributors 33

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• “For real-time guarantees and minimizing inter-core interference”

• “Real-time processing constraints”

• “to formally prove hard real-time constraints to be met”

• “The ability to control affinity MAY be useful in some circumstances for functions that are
required to be highly responsive.”

• “Separate applications with different real-time properties”

• “Static assignment preferred in priority.”

• “Deterministic execution timing”

• “System control”

• “Some missions work on AMP-like configurations - e.g. allocating I/O task on a single
core, processing tasks on other”

• “Basic feature found in other OS.”

• “Reduce complexity of the schedulability analysis”

Collected remarks from questionnaire respondents:

• “Restart for recovery only, use on single-core processors must be possible.”

• “Our SW architecture does not require stopping, restarting or suspending tasks”

• “Difficult to have a single reply. Very different strategy could be possible according to a
mission cat. B institutional or commercial or low-cost or cat. C.”

• “The suspend/restart is used in missions for e.g. diagnosis tasks. The deletion of a task
is allowed in missions only during initialization - if unexpected failures occur and a retry
needs to be attempted.”

See also Space Profile Proposal: Locking Protocols and Scheduling and Space Profile Proposal: Task
Manager.

© 2019 embedded brains GmbH and contributors 34

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.6 Locking Protocols and Scheduling
Table 4: Locking Protocols and Scheduling

Feature MUST SHOULD COULD WON’T
Do you want to use lock-free algorithms? 5 11 11 4

Do you want to use Futex based synchronization? 0 10 16 5

Do you want to use the transitive priority inheri-tance protocol?
4 11 13 3

Do you want to use the OMIP locking protocol()? 1 6 17 7

Do you want to use the priority ceiling lockingprotocol?
6 10 11 4

Do you want to use the MrsP locking protocol? 2 5 15 9

Doyouwant a run-time deadlock detection inmu-tex lock operations?
5 10 12 4

Do you want to use clustered scheduling? 4 3 17 7

Do you want to use the Earliest Deadline First(EDF) scheduler?
6 4 10 11

Do you want to use the Constant BandwidthServer (CBS) scheduler?
0 5 15 11

Do you want to perform a schedulability analysis? 17 6 8 0

How do you want to perform a schedulability analysis?

• “Any”

• “This is an open question.”

• “Automatic analysis based on simple methods and based on SIMPLE scheduling models.”

• “Pen and Paper”

• “execution analysis”

• “By using tools (AbsInt)”

• “On a per-processor basis”

• “Not yet defined. Hypothesis is to use a custom thread-based tool that analyses individual
cores for schedulability and design review for multicore aspects.”

• “SW prototyping and timing measurement”

• “Now we are modelling the system (e.g. in MAST); schedulability analysis based on static
code analysis would be very welcome.”

© 2019 embedded brains GmbH and contributors 35

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• “Preferably - code based static analysis, or code model extraction for external tools (like
MAST etc.)”

• “Response Time Analysis according to MrsP”

• “I would like to know that too ;-)”

• “On a critical subset of SW, the minimum is to be able to feed analytical equations with re-
sults of on-target measurements. More advanced techniques according to RTEMS features
that are used (level of non-determinisms. . . .) and available tools”

• “Our application has few interrupt driven periodic tasks and some few background tasks.
The interdependence is limited. With knowledge of the design the timing can be analysed
with rather naïve methods.”

• “Own tools”

• “Per ECSS-E40 compliance (5.8.3.11), schedulability analysis techniques are mandatory.
The “how” is an open question!”

• “As simply as possible ;-)”

Collected remarks from questionnaire respondents:

• “We do not yet have experience with SMP in real time systems. Over time, as we gain
experience, we expect to explore some of these options. For now I just answered “could”,
but we are not actively studying these features right now. “

• “Task model should be so simple that would make any schedullability analysis trivial. For
example, simple fixed priority worst-case response time analysis. The only open issue is
to determine WCET.”

• “In our SW architecture, to maximise reuse from existing code base and to implement core
affinity based priority scheduling on multi-core processor by maximising determinism”

• “EDF and CBS could be used in a system without task priorities.”

• “According to the different applications I could have different profiles of desired mecha-
nisms.”

• “We were unsure what the “transitive” term referred to (couldn’t find it in
docs.rtems.org).”

• “Difficult to answer this generally. Depending on the application, a different set of lock-
ing/scheduling will be necessary. And MUST everywhere is not a good answer either. . . ”

See also Space Profile Proposal: Locking Protocols and Scheduling and Space Profile Proposal: Task
Manager.

© 2019 embedded brains GmbH and contributors 36

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.7 Programming Languages and Libraries
Table 5: Programming Languages and Libraries

Feature MUST SHOULD COULD WON’T
Do you want to use Ada? 3 3 5 20

Do you want to use C++? 6 8 9 8

Do you want to use Java? 0 0 4 27

Do you want to use the Go programming lan-guage?
1 0 2 28

Do you want to use (micro) Python? 2 1 17 11

Do you want to use Rust? 0 0 11 20

Do you want to use the OpenMP? 2 7 13 9

Do you want to use the Gaisler MTAPI? 0 1 20 10

Do you want to use the EMBBMTAPI? 0 0 21 10

Collected remarks from questionnaire respondents:

• “C”

• “C is the only hard requirement here, C++ is a possibility for integrating existing code.
Python and Rust are more aligned with research than actual space requirements. OpenMP
applies to HPSC. “

• “Ada and C are easy to analyse. C++ is a nightmare for compiler verification and test-
ing. All other languages do not have a pedigree yet for critical software and there is no
ecosystem for verification. “

• “Mainly C language and Ada”

• “VHDL”

• “Python for test only (e.g. HW boards tests)”

• “C and Assembler are the baseline. Gaisler support building blocks could be useful to
reduce cost of our SW development “

• “LUA is our preferred language for OBCP’s. Why: LUA is highly modular.”

• “On multi core hardware we intend to manually allocate software applications to the
processors. Most probably the applications on the different cores will be developed by
different contractors.”

© 2019 embedded brains GmbH and contributors 37

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.8 Miscellaneous
Table 6: Miscellaneous

Feature MUST SHOULD COULD WON’T
Do you want to use CLOCK_REALTIME? 13 6 10 2

Do you want to use CLOCK_MONOTONIC? 9 10 9 3

Do you want to use file systems? If yes, remarkwhich in the comments below.
7 2 10 12

Do you want to use FILE objects? 4 1 14 12

Do you want to use thread-local storage (TLS)? 3 5 15 8

Do you want to use functions which require er-rno?
5 6 13 7

Do you want to use the C locale support? 2 2 7 20

Do you want to use functions which requireNewlib struct _reent?
3 3 14 11

Do you want to use the Gaisler driver manager? 7 4 11 9

Collected remarks from questionnaire respondents:

• “Need RFS and a good flash filesystem”

• “Will use IMFS and RFS. Could use flash file systems”

• “in memory file system + custom file system for EEPROM, Flash”

• “Guaranteeing timing behaviour requires limiting dynamic features and use of complex
libraries like file systems. Our objective is to provide accurate and tight schedulability
analysis and WCET analysis, the times marked Won’t in this table don’t help”

• “No POSIX or other support packages required by our SW architecture because not in our
baseline. Gaisler drive manager would be useful to reduce development cost”

• “RFS and JFFS”

• “FS: RFS, TFTP, JFFS2 “

• “File system must support FLASH based Mass Memory”

• “Even if a monotonic clock is used, some provision for setting the time is necessary. It also
must be set during testing and validation, sometimes frequently. So these capabilies must
be provided for even if monotonic is used.”

• “Not enough internal feedback on the last 4 questions to reply. Left as “Could” for the
moment”

• “errno-wise, e.g. the MLFS will set it (qualified mathematical library).”

© 2019 embedded brains GmbH and contributors 38

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• “a read-only filesystem only. Drvmgr, I would like to use non-qualified drivers “out of the
box” also and to get updates when drivers are updated (only certain parts of the drvmgr
needed).”

7.9 Barrier Manager
Table 7: Barrier Manager

Feature MUST SHOULD COULD WON’T
rtems_barrier_create() 7 4 2 18

rtems_barrier_ident() 2 5 6 18

rtems_barrier_release() 7 4 2 18

rtems_barrier_wait() 7 4 2 18

Collected remarks from questionnaire respondents:

• “If you want to use the barrier manager, why would you not need some or all of these
functions?”

• “This API was used in at least one mission.”

See also Space Profile Proposal: Barrier Manager.

7.10 Clock Manager
Table 8: Clock Manager

Feature MUST SHOULD COULD WON’T
rtems_clock_get_ticks_per_second() 19 5 1 6

rtems_clock_get_ticks_since_boot() 17 5 3 6

Collected remarks from questionnaire respondents:

• “We use the clock manager through a software bus / executive layer on top of RTEMS.
I’m not sure which of these functions that layer may use, but I would want them to be
available.”

• “Note that more APIs are used than mentioned here - specifically, the com-
plete list (obtained from analysis of existing mission code bases) includes:
rtems_clock_get_uptime, rtems_clock_set, rtems_clock_tick, rtems_clock_get_options,
rtems_clock_get_ticks_since_boot, rtems_clock_get, rtems_clock_get_ticks_per_second”

See also Space Profile Proposal: Clock Manager.

© 2019 embedded brains GmbH and contributors 39

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.11 Event Manager
Table 9: Event Manager

Feature MUST SHOULD COULD WON’T
rtems_event_receive() 15 6 3 7

rtems_event_send() 15 6 3 7

rtems_event_system_receive() 2 4 12 13

rtems_event_system_send() 2 4 12 13

Collected remarks from questionnaire respondents:

• “not familiar with rtems_event_system apis”

• “could be useful for UML modeling (execution framework)”

• “Inheritance from our legacy SW architecture “

• “The event manager is not absolutely necessary. It falls into the could category.”

• “system events were not seen in any mission codebase so far.”

See also Space Profile Proposal: Event Manager.

© 2019 embedded brains GmbH and contributors 40

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.12 Interrupt Manager
Table 10: Interrupt Manager

Feature MUST SHOULD COULD WON’T
rtems_interrupt_local_disable() 15 8 3 5

rtems_interrupt_local_enable() 15 8 3 5

RTEMS_INTERRUPT_LOCK_DECLARE() 7 5 12 7

RTEMS_INTERRUPT_LOCK_DEFINE() 7 5 12 7

RTEMS_INTERRUPT_LOCK_MEMBER() 6 5 13 7

rtems_interrupt_lock_acquire() 10 4 11 6

rtems_interrupt_lock_acquire_isr() 9 5 11 6

rtems_interrupt_lock_destroy() 5 3 14 9

rtems_interrupt_lock_initialize() 9 4 11 7

rtems_interrupt_lock_release() 10 5 10 6

rtems_interrupt_lock_release_isr() 9 6 10 6

Collected remarks from questionnaire respondents:

• “We only use rtems_interrupt_catch()”

• “Planned to be used for critical sections definitions and interrupts handling on multi-core
processor”

• “cache freezing during interrupts should be supported (which wasn’t in RTEMS 4.8.1 on
LEON2 with Gaisler BSP)”

• “The interrupt-local disable/enable cannot be used for creating critical sections anymore
(in the SMP world). But it still has value if e.g. a single core is in control of I/O and wants
to manage specific interrupt lines.”

See also Space Profile Proposal: Interrupt Manager.

© 2019 embedded brains GmbH and contributors 41

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.13 IO Manager
Table 11: IO Manager

Feature MUST SHOULD COULD WON’T
rtems_io_close() 6 7 2 16

rtems_io_control() 6 7 2 16

rtems_io_initialize() 6 7 2 16

rtems_io_open() 6 7 2 16

rtems_io_read() 6 7 2 16

rtems_io_register_driver() 7 6 2 16

rtems_io_write() 6 7 2 16

Collected remarks from questionnaire respondents:

• “don’t know yet”

• “This allows mission-specific driver/API creation.”

7.14 Message Manager
Table 12: Message Manager

Feature MUST SHOULD COULD WON’T
rtems_message_queue_broadcast() 7 4 5 15

rtems_message_queue_create() 18 4 1 8

rtems_message_queue_delete() 8 4 5 14

rtems_message_queue_flush() 12 6 1 12

rtems_message_queue_get_number_pending() 11 8 1 11

rtems_message_queue_ident()? 11 3 6 11

rtems_message_queue_receive() 18 4 1 8

rtems_message_queue_send() 18 4 1 8

rtems_message_queue_urgent() 10 4 5 12

Collected remarks from questionnaire respondents:

© 2019 embedded brains GmbH and contributors 42

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• “Creation only at startup”

• “The “delete” is in SHOULD, because generally these are resources that are never “freed”
in mission codebases.”

• “grspw_pkt driver uses messages from ISR to work-task/user. The driver could be simpli-
fied to remove the message-queue?”

See also Space Profile Proposal: Message Manager.

7.15 Classic Objects
Table 13: Classic Objects

Feature MUST SHOULD COULD WON’T
rtems_build_name() 12 9 8 2

See also Space Profile Proposal: Object Manager.

7.16 Partition Manager
Table 14: Partition Manager

Feature MUST SHOULD COULD WON’T
rtems_partition_create() 8 4 3 16

rtems_partition_delete() 2 2 6 21

rtems_partition_get_buffer() 7 4 4 16

rtems_partition_ident() 4 5 5 17

rtems_partition_return_buffer() 7 4 4 16

Collected remarks from questionnaire respondents:

• “don’t know yet”

See also Space Profile Proposal: Partition Manager.

© 2019 embedded brains GmbH and contributors 43

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.17 Rate Monotonic Manager
Table 15: Rate Monotonic Manager

Feature MUST SHOULD COULD WON’T
rtems_rate_monotonic_cancel() 8 6 6 11

rtems_rate_monotonic_create() 11 4 5 11

rtems_rate_monotonic_delete() 3 3 10 15

rtems_rate_monotonic_get_status() 6 7 7 11

rtems_rate_monotonic_ident() 4 3 12 12

rtems_rate_monotonic_period() 10 5 5 11

rtems_rate_monotonic_reset_all_statistics() 3 5 12 11

rtems_rate_monotonic_reset_statistics() 3 5 12 11

rtems_rate_monotonic_get_statistics() 3 5 12 11

Collected remarks from questionnaire respondents:

• “From CPU load evaluation”

• “Only if timing properties are all known and controllable such that response time analysis
can be engaged upon this mechanism”

• “Adding the monotonic statistics (currently not in RTEMS EDISOFT if I am not mistaken),
is considered useful for confidence test, V&V activities and some continuous monitoring”

• “Statistics would be nice, but not in the current API state (i.e. over serial)”

See also Space Profile Proposal: Rate Monotonic Manager.

© 2019 embedded brains GmbH and contributors 44

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.18 Region Manager
Table 16: Region Manager

Feature MUST SHOULD COULD WON’T
rtems_region_create() 1 2 1 27

rtems_region_delete() 0 2 1 28

rtems_region_extend() 0 1 1 29

rtems_region_get_free_information() 0 1 3 27

rtems_region_get_information() 0 1 2 28

rtems_region_get_segment() 1 1 2 27

rtems_region_get_segment_size() 0 1 3 27

rtems_region_ident() 1 1 2 27

rtems_region_resize_segment() 0 1 1 29

rtems_region_return_segment() 0 1 2 28

Collected remarks from questionnaire respondents:

• “Although not currently using it, it may be a good alternative to an in-house memory
manager”

• “Single region to get segments to allocate partitions”

7.19 Semaphore Manager
Table 17: Semaphore Manager

Feature MUST SHOULD COULD WON’T
rtems_semaphore_create() 26 3 0 2

rtems_semaphore_delete() 13 3 6 9

rtems_semaphore_flush() 14 9 3 5

rtems_semaphore_ident() 13 8 5 5

rtems_semaphore_obtain() 25 4 0 2

rtems_semaphore_release() 25 4 0 2

rtems_semaphore_set_priority() 12 9 4 6

© 2019 embedded brains GmbH and contributors 45

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

Collected remarks from questionnaire respondents:

• “Semaphores are used for tasks synchronisation in our baseline. Only created, obtained
and released, but not destroyed. Fixed priorities.”

See also Space Profile Proposal: Semaphore Manager.

7.20 Signal Manager
Table 18: Signal Manager

Feature MUST SHOULD COULD WON’T
rtems_signal_catch() 5 4 4 18

rtems_signal_send() 5 4 4 18

Collected remarks from questionnaire respondents:

• “Useful for some cases of inter-task communications”

• “Mission codebases are using this API.”

7.21 SMP Support
Table 19: SMP Support

Feature MUST SHOULD COULD WON’T
rtems_get_current_processor() 14 9 4 4

rtems_get_processor_count() 12 8 5 6

7.22 Extensions Manager
Table 20: Extensions Manager

Feature MUST SHOULD COULD WON’T
rtems_extension_create() 9 5 3 14

rtems_extension_delete() 3 3 4 21

rtems_extension_ident() 6 2 7 16

Collected remarks from questionnaire respondents:

© 2019 embedded brains GmbH and contributors 46

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

• “Just a provision, may be used to check task death”

• “To define extensions for collection of time and stack usage statistics. Extensions created
but never destroyed “

• “Only the callback in case of fatal error detection of interest”

See also Space Profile Proposal: Extensions Manager.

7.23 Task Manager
Table 21: Task Manager

Feature MUST SHOULD COULD WON’T
rtems_task_create() 29 0 2 0

rtems_task_delete() 13 7 4 7

rtems_task_ident() 18 7 4 2

rtems_task_is_suspended() 13 7 6 5

rtems_task_priority() 18 4 5 4

rtems_task_restart() 11 7 9 4

rtems_task_resume() 14 6 7 4

rtems_task_self() 20 4 6 1

rtems_task_set_affinity() 17 4 6 4

rtems_task_set_priority() 20 6 5 0

rtems_task_set_scheduler() 13 3 12 3

rtems_task_start() 29 0 2 0

rtems_task_suspend() 15 5 8 3

rtems_task_wake_after() 26 1 2 2

Collected remarks from questionnaire respondents:

• “To handle core affinity for tasks running on multi-core processor. Tasks are started but
never destroyed or suspended. Fixed waiting periods used for task synchronisation with
HW responses”

See also Space Profile Proposal: Task Manager.

© 2019 embedded brains GmbH and contributors 47

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.24 Timer Manager
Table 22: Timer Manager

Feature MUST SHOULD COULD WON’T
rtems_timer_cancel() 15 6 5 5

rtems_timer_create() 19 7 1 4

rtems_timer_fire_after() 17 8 1 5

rtems_timer_ident() 10 8 7 6

rtems_timer_reset() 16 8 3 4

See also Space Profile Proposal: Timer Manager.

7.25 Fatal Error Handling
Table 23: Fatal Error Handling

Feature MUST SHOULD COULD WON’T
rtems_fatal_error_occurred() 12 7 7 5

rtems_fatal() 11 6 9 5

rtems_exception_frame_print() 5 7 10 9

rtems_fatal_source_text() 5 6 11 9

rtems_internal_error_text() 5 6 12 8

Collected remarks from questionnaire respondents:

• “Traps management strategy is based on collecting information and restarting the SW”

• “FDIR is usually done in a mission-specific, custom way.”

See also Space Profile Proposal: Fatal Error Manager.

© 2019 embedded brains GmbH and contributors 48

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.26 POSIX Barriers
Table 24: POSIX Barriers

Feature MUST SHOULD COULD WON’T
pthread_barrierattr_destroy() 2 1 1 27

pthread_barrierattr_getpshared() 2 1 2 26

pthread_barrierattr_init() 3 1 1 26

pthread_barrierattr_setpshared() 2 1 2 26

pthread_barrier_destroy() 3 0 1 27

pthread_barrier_init() 4 0 1 26

pthread_barrier_wait() 4 0 1 26

7.27 POSIX Clocks
Table 25: POSIX Clocks

Feature MUST SHOULD COULD WON’T
clock_getcpuclockid() 1 4 2 24

clock_getres() 2 3 3 23

clock_gettime() 2 6 0 23

clock_nanosleep() 1 4 3 23

clock_settime() 1 5 2 23

nanosleep() 3 4 1 23

© 2019 embedded brains GmbH and contributors 49

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.28 POSIX Condition Variables
Table 26: POSIX Condition Variables

Feature MUST SHOULD COULD WON’T
pthread_condattr_destroy() 1 3 2 25

pthread_condattr_getclock() 1 3 3 24

pthread_condattr_getshared() 1 2 4 24

pthread_condattr_init() 3 3 1 24

pthread_condattr_setclock() 1 3 3 24

pthread_condattr_setpshared() 1 2 4 24

pthread_cond_broadcast() 1 3 3 24

pthread_cond_destroy() 0 3 2 26

pthread_cond_init() 3 4 0 24

pthread_cond_signal() 3 4 0 24

pthread_cond_timedwait() 3 4 0 24

pthread_cond_wait() 4 3 0 24

pthread_once() 1 3 11 16

Collected remarks from questionnaire respondents:

• “Usage of POSIX not required in our baseline”

• “so far we haven’t looked at the POSIX interface (so all related is answered with no) but
if this interface is beneficial we might consider using it.”

7.29 POSIX Keys
Table 27: POSIX Keys

Feature MUST SHOULD COULD WON’T
pthread_key_create() 1 2 1 27

pthread_key_delete() 0 0 1 30

pthread_getspecific() 1 2 1 27

pthread_setspecific() 1 2 1 27

© 2019 embedded brains GmbH and contributors 50

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.30 POSIX Message Queues
Table 28: POSIX Message Queues

Feature MUST SHOULD COULD WON’T
mq_close() 3 0 1 27

mq_getattr() 3 0 1 27

mq_notify() 3 0 1 27

mq_open() 3 0 1 27

mq_receive() 3 0 1 27

mq_send() 3 0 1 27

mq_setattr() 3 0 1 27

mq_timedreceive() 3 0 1 27

mq_timedsend() 3 0 1 27

mq_unlink() 2 0 1 28

© 2019 embedded brains GmbH and contributors 51

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.31 POSIX Mutexes
Table 29: POSIX Mutexes

Feature MUST SHOULD COULD WON’T
pthread_mutexattr_destroy() 2 1 3 25

pthread_mutexattr_getprioceiling() 3 1 4 23

pthread_mutexattr_getprotocol() 3 1 4 23

pthread_mutexattr_getpshared() 3 0 5 23

pthread_mutexattr_getrobust() 3 1 4 23

pthread_mutexattr_gettype() 3 1 4 23

pthread_mutexattr_init() 4 1 3 23

pthread_mutexattr_setprioceiling() 3 1 4 23

pthread_mutexattr_setprotocol() 3 1 4 23

pthread_mutexattr_setpshared() 3 1 4 23

pthread_mutexattr_setrobust() 3 1 4 23

pthread_mutexattr_settype() 3 1 4 23

pthread_mutex_consistent() 3 2 3 23

pthread_mutex_destroy() 2 2 2 25

pthread_mutex_getprioceiling() 3 2 3 23

pthread_mutex_init() 5 2 1 23

pthread_mutex_lock() 5 2 1 23

pthread_mutex_setprioceiling() 4 2 2 23

pthread_mutex_timedlock() 5 2 1 23

pthread_mutex_trylock() 5 2 1 23

pthread_mutex_unlock() 5 2 1 23

© 2019 embedded brains GmbH and contributors 52

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.32 POSIX Read-Write Locks
Table 30: POSIX Read-Write Locks

Feature MUST SHOULD COULD WON’T
pthread_rwlockattr_destroy() 1 2 3 25

pthread_rwlockattr_getpshared() 2 1 4 24

pthread_rwlockattr_init() 2 2 3 24

pthread_rwlockattr_setpshared() 2 1 4 24

pthread_rwlock_destroy() 1 2 3 25

pthread_rwlock_init 4 2 1 24

pthread_rwlock_rdlock() 4 2 1 24

pthread_rwlock_timedrdlock() 4 2 1 24

pthread_rwlock_timedwrlock() 4 2 1 24

pthread_rwlock_tryrdlock() 4 2 1 24

pthread_rwlock_trywrlock() 4 2 1 24

pthread_rwlock_unlock() 4 2 1 24

pthread_rwlock_wrlock() 4 2 1 24

7.33 POSIX Semaphores
Table 31: POSIX Semaphores

Feature MUST SHOULD COULD WON’T
sem_destroy() 2 1 3 25

sem_getvalue() 5 1 2 23

sem_init() 5 1 2 23

sem_post() 5 1 2 23

sem_timedwait() 5 1 2 23

sem_trywait() 5 1 2 23

sem_wait() 5 1 2 23

© 2019 embedded brains GmbH and contributors 53

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.34 POSIX Named Semaphore
Table 32: POSIX Named Semaphore

Feature MUST SHOULD COULD WON’T
sem_close() 0 0 3 28

sem_open() 0 0 3 28

sem_unlink() 0 0 3 28

7.35 POSIX Spinlocks
Table 33: POSIX Spinlocks

Feature MUST SHOULD COULD WON’T
pthread_spin_destroy() 1 0 1 29

pthread_spin_init() 2 1 1 27

pthread_spin_lock() 2 1 1 27

pthread_spin_trylock() 2 1 1 27

pthread_spin_unlock() 2 1 1 27

7.36 POSIX Thread Cancellation
Table 34: POSIX Thread Cancellation

Feature MUST SHOULD COULD WON’T
pthread_cancel() 1 0 2 28

pthread_cleanup_pop() 0 1 2 28

pthread_cleanup_push() 0 1 2 28

pthread_setcancelstate() 0 1 2 28

pthread_testcancel() 0 1 2 28

© 2019 embedded brains GmbH and contributors 54

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

7.37 POSIX Threads
Table 35: POSIX Threads

Feature MUST SHOULD COULD WON’Tpthread_attr_destroy() 2 1 2 26pthread_attr_getdetachstate() 2 2 2 25pthread_attr_getguardsize() 2 1 3 25pthread_attr_getinheritsched() 2 2 2 25pthread_attr_getschedparam() 3 1 2 25pthread_attr_getschedpolicy() 3 1 2 25pthread_attr_getscope() 2 2 2 25pthread_attr_getstack() 2 2 2 25pthread_attr_getstacksize() 2 2 2 25pthread_attr_init() 3 2 2 24pthread_attr_setdetachstate() 2 2 3 24pthread_attr_setguardsize() 2 1 4 24pthread_attr_setinheritsched() 2 2 3 24pthread_attr_setschedparam() 3 1 3 24pthread_attr_setschedpolicy() 3 1 3 24pthread_attr_setscope() 2 1 4 24pthread_attr_setstack() 2 1 4 24pthread_attr_setstacksize() 3 1 3 24pthread_create() 4 1 2 24pthread_detach() 4 0 3 24pthread_equal() 3 1 3 24pthread_exit() 2 1 3 25pthread_getconcurrency() 2 1 4 24pthread_getcpuclockid() 2 2 3 24pthread_getname_np() 2 1 3 25pthread_getschedparam() 3 1 3 24pthread_join() 3 1 3 24pthread_self() 3 2 2 24pthread_setconcurrency() 2 1 4 24pthread_setname_np() 2 1 3 25pthread_setschedparam() 3 1 3 24pthread_setschedprio() 2 2 3 24

Collected remarks from questionnaire respondents:

• “In principle a single thread interface would be enough, either RTEMS or POSIX. I have
set the POSIX items in the lower range SHOULD instead of MUST. I have tried to mark
which functionality of POSIX I believe is important.”

© 2019 embedded brains GmbH and contributors 55

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019 embedded brains GmbH and contributors 56

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: Space Profile
Release 2 ESA Contract No. 4000125572/18/NL/GLC/as

BIBLIOGRAPHY

[CGB14] Felipe Cerqueira, Arpan Gujarati, and Björn B. Brandenburg. Linux’s Processor Affinity
API, Refined: Shifting Real-Time Tasks towards Higher Schedulability. In Proceedings
of the 35th IEEE Real-Time Systems Symposium (RTSS 2014). 2014. URL: http://www.
mpi-sws.org/~bbb/papers/pdf/rtss14f.pdf.

[ECS09] ECSS. ECSS-E-ST-40C - Software general requirements. European Coop-
eration for Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-e-st-40c-software-general-requirements/.

[ECS17] ECSS. ECSS-Q-ST-80C Rev.1 - Software product assurance. European Coop-
eration for Space Standardization, 2017. URL: https://ecss.nl/standard/
ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/.

[GCB13] Arpan Gujarati, Felipe Cerqueira, and Björn B. Brandenburg. Schedulability Analysis
of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities. In Proceedings
of the 25th Euromicro Conference on Real-Time Systems (ECRTS 2013). 2013. URL:
https://people.mpi-sws.org/~bbb/papers/pdf/ecrts13a-rev1.pdf.

© 2019 embedded brains GmbH and contributors 57

http://www.mpi-sws.org/~bbb/papers/pdf/rtss14f.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/rtss14f.pdf
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://people.mpi-sws.org/~bbb/papers/pdf/ecrts13a-rev1.pdf

	Introduction
	External Dependencies
	Compiler
	Bootloader
	C Library
	Mathematical Library
	ABI compatibility

	Space Profile Definition
	Platforms
	Devices
	Locking Protocols and Scheduling
	C Standard Support
	Initialization
	Barrier Manager
	Clock Manager
	Event Manager
	Fatal Error Manager
	Interrupt Manager
	Message Manager
	Object Manager
	Partition Manager
	Rate Monotonic Manager
	Scheduler Manager
	Semaphore Manager
	Task Manager
	Timer Manager
	Extensions Manager

	Space Profile Justification
	Platforms
	Included
	Excluded

	Devices
	Included
	Excluded

	Programming and Parallel Languages
	Included - C
	Included - uPython
	Excluded - Ada
	Excluded - C++, Java, Go, Rust and LUA
	Excluded - OpenMP
	Excluded - MTAPI

	Dynamic Memory
	Included
	Excluded

	Classic API
	Included
	Excluded

	Other Features
	Open - CLOCK_REALTIME
	Excluded - Arbitrary Thread to Processor Affinity
	Excluded - Reclamation of Dynamic Memory or Objects
	Excluded - POSIX API
	Excluded - File Systems
	Excluded - Network Stack

	Comparison to Edisoft RTEMS Improvement
	C Library
	Application Configuration
	RTEMS Managers

	Open Issues
	CLOCK_REALTIME
	Fatal Error Handling
	Interrupt Controller Interface
	GPIO Driver
	MIL-STD-1553 Driver
	UART Driver
	SpaceWire Driver

	Survey Questions and Responses
	Processor Architectures
	Target Platforms
	Devices
	Dynamic Memory
	Thread Support
	Locking Protocols and Scheduling
	Programming Languages and Libraries
	Miscellaneous
	Barrier Manager
	Clock Manager
	Event Manager
	Interrupt Manager
	IO Manager
	Message Manager
	Classic Objects
	Partition Manager
	Rate Monotonic Manager
	Region Manager
	Semaphore Manager
	Signal Manager
	SMP Support
	Extensions Manager
	Task Manager
	Timer Manager
	Fatal Error Handling
	POSIX Barriers
	POSIX Clocks
	POSIX Condition Variables
	POSIX Keys
	POSIX Message Queues
	POSIX Mutexes
	POSIX Read-Write Locks
	POSIX Semaphores
	POSIX Named Semaphore
	POSIX Spinlocks
	POSIX Thread Cancellation
	POSIX Threads

	Bibliography

		2019-08-21T16:59:07+0200
	Marcel Verhoef

