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Redistribution and use in source and binary forms, with or without modification, are permit-

ted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS

IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CON-

TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT

OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.
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1 | Introduction

This document aims to help in understanding the inner structure and inner working of

the RTEMS kernel. This document is aimed to developers who are interested in discovering

the kernel of RTEMS and that are not familiar with it: this manual should accompany

them (step by step) by showing the most important features of the OS (namely scheduler,

semaphores, messages and events).

The kernel of RTEMS is big, and in this document only a little subset of it is ex-

plained. This document focuses on the time-composable version of RTEMS produced

at the University of Padua based on the work-in-progress RTEMS 4.11 at commit

40d24d54ab59fdb2e4133128bf184ec8935f3545 (April 2015). The focus is on the SMP
personality of the kernel (which is only a proof of concept in version 4.11), and specifically
targets the fixed-priority scheduler and the RTEMS API (no POSIX).

However, even if it is focused on a specific version of RTEMS, this document should

reveal useful even for the master branch of RTEMS-SMP. Some discrepancies are to be

expected, but the core concepts should still hold. Moreover, some topics are not considered

because subjected to rapid change (e.g., consistency and synchronization inside the kernel)

or because too platform specific (e.g., interrupts).

1.1 Time composable version

The modified version of RTEMS focuses on the 4 services listed in Table 1.1: the major

changes are expected to be found on those managers1. With respect to the original version

of RTEMS, those managers are not fully exploited: only a subset of their operations are

assumed available to the user. In this way it is easier to provide a sort of guarantee on

the timing behavior of the services since those services has been reduced, simplified and

modified to this purpose (hardware limitations still applies, e.g., contention on the bus is

intrinsically a source of variability in SMP systems).

1.2 Structure of the document

Each core functionality of RTEMS is addressed (mostly) as:
1 The biggest changes relate to the refactoring of the implementation of MrsP (Semaphore Manager and the

scheduler).
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Table 1.1: Services modified for the RTEMS-SMP Time-Composable version.

Task Manager

Semaphore Manager

Message Manager

Event Manager

1. data structures used to implement it

(a) brief explanation of the structure and its goals

(b) visual representation of the structure

(c) list and description of its fields

2. operations available

(a) when and where the data structures are instantiated

(b) invariants / possible state configurations of the system

(c) interesting runtime behavior

Table 1.2 lists the topics that are discussed in this document. Other than the 4 main man-

agers, the other topics deal with some core concepts or RTEMS. It is suggested to read the

topics as they are presented: even if some concepts are strictly related, the structure of the

document tries to describe all the topics in a linear and incremental way.

Table 1.2: Topics of this document.

Chains

Objects and Managers

Scheduler (Partitioned Fixed-Priority only)

Task Manager

Semaphore Manager (MrsP only)

Message Manager

Event Manager

In order to ease the understanding of the document, specific fonts and color are used.

• Structure: identifies data structures.

• Structure.field: identifies a specific field inside a structure. When the structure is

obvious, it is omitted.

• function: identifies procedures. The signature of the procedures is omitted for clarity.

Sometimes the name of a procedure is a hyperlink referencing where the procedure is

described.

• MACRO: identifies a macro or a value of an enumeration.
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A red background is used to highlight very important concepts.

A gray background is used to offer some examples, normally describing how some fields interact.

1.3 Acknowledgments

The research leading to this document has received funding from the European Com-

munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement number

611085.
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2 | Chains

Chains are used extensively inside the kernel of RTEMS. They are used to create ordered,

mutable and dynamic lists of structures that are not assured to be contiguous in memory.

2.1 Data Structures

Chains are implemented as a double linked lists. The anchor point for the chain is

Chain_Control. It embodies both the head and the tail of the chain. Moreover it points to

both the first and the last element of the chain. The element of the chain is Chain_Node. It

points to both the next and previous element of the chain.

2.1.1 Chain Node

Chain_Node

Chain_Node * next
Chain_Node * prev

Figure 2.1: Chain_Node

Figure 2.1 depicts a Chain_Node.

next: points to the next node in the list.

prev: points to the previous node in the list.

The Chain_Node does not point to the complex structure that should be part of the chain:
it must be part of it (be the first member). Being the first member, both the Chain_Node
and the complex structure share the same address: it is then programmer responsibility

to cast such address to the desired complex structure.

Since Chain_Nodes reside inside the structures that must be listed, it is not necessary to

dynamically allocate memory whenever an element must be inserted or removed from a

list: the memory needed to insert/remove objects from a list is the memory occupied by the

Chain_Node which is created at the same time as the object it represents.
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2.1.2 Chain Control

Chain_Control

Chain_Node

Chain_Node

Head Tail

Chain_Node * next fill
Chain_Node * prev next
Chain_Node * fill prev

Figure 2.2: Chain_Control

Figure 2.2 depicts a Chain_Control. A Chain_Control is a union of two structures: Head

and Tail. Both these structures contain 3 pointers to Chain_Nodes, therefore they use up

the same memory and each field in one structure correspond to another field in the other

structure. The two fields other than fill are in effect a Chain_Node structure.

fill: unused. It serves as padding in order to overlay Head.prev with Tail.next.

Node: the chain node of the Head or Tail. In Figure 2.2 it is depicted as the two fields next

and prev. Thanks to fill, Head.prev and Tail.next share same memory location:

this memory location is set to NULL since Head has no predecessors and Tail has ho

successors.

2.2 Usage

A chain can be modified in a protected or in a non-protected way. In case the chain is

a shared resource (and therefore subject to data race) it must be modified in the protected

way. How the protection is implemented is not discussed in this document.

v1.0 9 of 69



3 | Managers and Objects

RTEMS tries its best to hide its internal structures to the user: it offers a vast interface

for its services (grouped in Managers) while exposing very little details on its inner structure.

This is accomplished by forcing the user to use rtems_ids, which are identifiers pointing to

specific kernel objects upon which the services of a manager can be used. The user should

never use the kernel structures directly: the rtems_id plays the same role of a pointer, but it

is the manager of the service that translates the id to a specific kernel structure.

As an example, if the user needs to lock a semaphore, he will use the service rtems_semaphore_obtain
offered by the semaphore manager and he will supply the rtems_id of a previously created semaphore.

3.1 Data Structures

3.1.1 Objects Control

An Object in RTEMS can be defined as everything that a user can address with an rtems_id.

Inside the kernel, the rtems_id is translated in order to retrieve a more complex structure,

possibly a set of complex structures: this set of complex structures is indeed the real kernel

object. There are lots of different kernel objects which are implemented in different way

(e.g., a thread is a complete different structure than a semaphore). However, there is

something in common in all these objects: they all have the structure Object_Control as their

first member1.

The Objects_Control represents the super class of any RTEMS Object. It must be the
first member of any Object, thus allowing any Objects_Control (the structure that any

Manager uses to perform general operations) to be downcast to the real complex

structure of the Object.

Figure 3.1 depicts a Objects_Control.

Node: the chain node used to place the object in a chain. The object can be inside in at most

one chain at every instant.

id: the ID of the objects. This ID is created before the actual object it relates to. Strictly

speaking, it identifies a particular memory region: the same ID can refer to differ-

1 Recall what highlighted in Section 2.1.1: being the first member allows the Object_Control to be downcast to
a more specific structure while it allows to treat different objects in the same way (for basic, common operations).
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Objects_Control

Chain_Node node
Objects_Id id

Objects_Name name

Figure 3.1: Objects_Control

ent objects during the life time of the system, given that those objects do not exists

simultaneously. Refer to Section 3.1.3.

name: the name of the object. Depending on how RTEMS is compiled, it can be a 4 letters

name (4 bytes) or an arbitrary length name (maximum length must be capped by the

configuration of the system). It is used as a mnemonic identifier of the object: the

object’s rtems_id can be retrieved by supplying this name to rtems_<manager>_ident.

If several objects of the same manager share the same name, one of them is retrieved.

Retrieving an object by its name is discouraged. In order to retrieve the object,

rtems_<manager>_ident performs a linear search over all the objects of the manager

until one with the given name is found (the first encountered in case there are several

objects with the same name).

3.1.2 Objects Id / rtems_id

Objects_Id : uint32_t
bits: 31

class

27 26

API

24 23

node

16 15

index

0

Figure 3.2: Objects_Id aka rtems_id

Figure 3.2 depicts a Objects_Id. This structure is available to the user as rtems_id.

class: identifies the manager which the object belongs to.

API: identifies the API used to create the object. There are 3 APIs:

1. Internals: used to manage kernel related structures. User never sees these objects.

2. Classic: relates to the RTEMS classic API.

3. POSIX: relates to the POSIX API.

Node: identifies the node where the object resides. Used only in case of MP systems (not in

SMP), each node is a different binary file.

index: identifies the offset of the object inside the pool of memory created by the manager

(see Section 3.1.3).
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3.1.3 Object_Informations

A Manager is a set of services that works on the same set of kernel structures: such

services share the same prefix.

As an example, rtems_semaphore_create and rtems_semaphore_obtain share the same prefix: they
belongs to the Semaphore Manager. Indeed, all services belonging to the Semaphore Manager share the
same prefix in the format rtems_semaphore_<operation>.

However, for these services to be available, the kernel must first initialize the manager. As

a matter of fact, inside the kernel the Manager is a structure: Objects_Information. This

structure is populated by the parameters that the user specifies for the system (generally

through the file confdefs.h). It coordinates the creation, deletion and identification of

Objects. Moreover, it also allocates the pool of memory needed to actually store the objects

it must manage.

As an example, if the user specifies the macro CONFIGURE_MAXIMUM_TASKS 5, then the Objects_Information
related to the task manager will have its Objects_Information.max set to 5 and it will allocate enough
space in memory in order for at most 5 threads to be active simultaneously. Trying to create a 6th thread
when there are already 5 present, it will result in an error because there won’t be enough space to create it.

Figure 3.3 depicts a Objects_Information and the relationship of some of its fields with

the memory it allocates/manages.

the_api: the API that the manager manages. All the Objects it creates will have this value in

their rtems_ids.

the_class: the type of Objects it manages. All the Objects it creates will have this value in their

rtems_ids.

minimum_id
maximum_id: minimum and maximum rtems_id that an Object of this manager can have. All valid

rtems_id of this manager will be comprised in this range.

maximum: the maximum number of Objects that this manager can have.

autoextend: enables the manager to dynamically allocate memory for a growing population of

Objects. This value is set if and only if the user specifies that this manager will have

unlimited/unbounded Objects.
If this value is false, then the number of Objects will be capped by the user and the

manager will allocate (only once, during initialization) enough memory for all those

Objects. Therefore maximum==allocation_size.

If this value is true, then every time that the manager runs out of memory for its

Objects, a new block of memory is allocated. This new block of memory can store

allocation_size Objects, therefore both maximum_id and maximum are increased by

allocation_size in order to account for these new objects that the manager can

handle.

allocation_size: the number of objects that can be stored in a block of memory. The allocation of a

block of memory is regulated by autoextend.

v1.0 12 of 69



RTEMS Internals Manual
-how the kernel works-

Objects_Information
Objects_APIs the_api

uint16_t the_class
Objects_Id minimum_id
Objects_Id maximum_id

Objects_Maximum maximum
bool autoextend

Objects_Maximum allocation_size
size_t size

Objects_Control ** local_table
Chain_Control inactive_list

Objects_Maximum inactive
uint32_t * inactive_per_block

void ** objects_block
uint16_t name_length

contiguous memory

. . .

. . .

NULL . . .

maximum/allocation_size

maximum/allocation_size

maximum

>
1

elem
ent⇒

autoextend=
true

co
nt

ig
uo

us
m

em
or

y

Objects_Control

node
id.index = 1

fill with proper
complex

structure data

si
ze

. . .

Objects_Control

node
id.index = allocation_size

fill with proper
complex

structure data

. . .

co
nt

ig
uo

us
m

em
or

y
Objects_Control

node
id.index = . . .

fill with proper
complex

structure data

. . .

Objects_Control

node
id.index = maximum

fill with proper
complex

structure data

Figure 3.3: Objects_Information

local_table: a list of pointers. Each entry points to the memory location of an active Object, oth-

erwise it is NULL. In this context a Object is active when the memory allocated to it

has been claimed through an <manager>_create directive. The address of an active

Object whose rtems_id.index is i can be stored only in the i-th entry of this array.

The first entry of this table is always NULL: the value 0 for an rtems_id.index is not
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valid, as it is used as the special value RTEMS_SELF (meaningful for the Task Manager).
See Section 3.2.1.3 to understand how the memory for each object is allocated.

inactive_list: the anchor point for the list of inactive/unused Objects. In this context a Object is

inactive when the memory allocated to it has not been claimed through an

<manager>_create service. This anchor point leverages the Objects_Control.node

to build the chain.

inactive: the length of inactive_list, aka the total number of inactive Objects.

inactive_per_block: the number of inactive Objects in each block of memory. Shortcut to understand when

a block of memory is fully used.

objects_block: a list of pointers. Each pointer points to the memory location of a memory block. A

memory block is a contiguous memory region in which allocation_size Objects can

be created. The number of memory blocks is regulated by autoextend.

name_length: the upper bound of the length of the name of Objects_Control.

3.2 Usage

A kernel Object is created by the manager when the user calls the service

<manager-prefix>_create. However, this “creation” is relative to the initialization of the

Object’s fields. The memory needed by these fields is reserved by the manager during the

system start-up phase: the manager preallocates the memory that will become a kernel

Object. While preallocating this memory, the manager also creates and initializes the

Objects_Controls of its Objects. This means that the Objects_Id (aka rtems_id) is created when

the memory is preallocated, and it will relates to any Object that will occupy that specific

chunk of memory. This is because the rtems_id.index field is in fact the displacement inside

Objects_Information.local_table of the pointer pointing to the chunk of preallocated

memory that will become the Object.

3.2.1 Manager initialization

A Objects_Information is initialized during the start-up phase of RTEMS. The memory

preallocation happens during the initialization of the

Objects_Information or when the Manager runs out of inactive preallocated Objects and the

user declared the Manager to have an unbounded number of Objects.

3.2.1.1 Manager location

The Objects_Information relative to a specific Manager is instantiated in a specific file with

a specific name. These structures are then collected as pointers in a 2-dimensional array:

_Objects_Information_table[<api>][<class>] = &<the Objects_Information>.
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3.2.1.2 Manager initialization

The initialization of a Manager has two main steps:

1. Initialize the relative Objects_Information. This step is common to all Managers and

the inputs are values supplied by the user (generally through confdefs.h). Performed

by _Object_Initialize_information.

2. Perform any Manager specific initialization. Each manager will supply additional

information if needed.

_Objects_Initialize_information

1. It sets the constant values of Objects_Information (e.g., the_api, allocation_size).

2. It registers the Objects_Information to the _Objects_Information_table.

3. It calls _Objects_Extend_information to allocate the first chunk of memory.

3.2.1.3 Memory preallocation

Memory is effectively reserved with _Workspace_allocate, which is the RTEMS version

of the C/C++ malloc.

The function requesting the memory allocation is _Objects_Extend_information. If

there is already memory allocated to the specific Manager (i.e., autoextend is true), it will

allocates a new block of memory and it will deep copy the tables. The tables are copied (and

not extended) because they are arrays and must reside on contiguous memory.

_Objects_Extend_information

1. It allocates a new block of memory through _Workspace_allocate. A block of memory

has size allocation_size×size.

2. It allocates a new chunk of memory where the arrays

objects_block, inactive_per_block and local_table are stored. In case it is actually

extending the available memory (i.e., it is not initializing the Objects_Information) it will

deep copy the content of the previous arrays in the newly allocated ones.

3. It initializes the content of the new arrays.

• objects_block points to the block memory allocated in point (1).

• inactive_per_block is set to allocation_size (all newly allocated objects in the

memory block are unused).

• Each entry in local_table is set to NULL since all the Objects are inactive.

4. It initializes the content of the new memory block.

• It creates Objects_Control.id for each

Objects_Control depending on their position inside the memory block.

• It initializes Objects_Control.node and append it to the chain inactive_list.
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Each Objects_Control inside the memory block is size bytes apart from the others:

it contains enough padding to actually store the content of the specific Object.

Note that size will also account for the memory needed to store the Objects_Control since

it will be part of the specific Object structure.

3.2.2 Object creation

The creation of an object is performed by a specific manager through the service

<manager>_create. Each one of these services follows a common template.

1. It performs some checks on the input (e.g., are the parameters within a specific

range?).

2. It requests the (already preallocated) memory through _Objects_Allocate.

3. It initializes the Object specific fields.

4. It “install” the newly created object with _Objects_Open.

_Objects_Allocate

1. It gets and return the first inactive

Objects_Control from the specific Objects_Information.inactive_list. In case there

are no more inactive objects and Objects_Information.auto_extend is true then it

calls _Objects_Extend_information to allocate the memory for the new Object.

_Objects_Open

1. It sets the Objects_Control.name with the name supplied by the user.

2. It installs the address of the

Objects_Control inside the Objects_Information.local_table. The entry used is the

one specified by the rtems_id.index:

local_table[<the_Objects_Control>.id.index] = &<the_Objects_Control>

3.2.3 Object retrieval

The retrieval of an Object is done inside the kernel of RTEMS and never exposed to the

user. This operation is performed in order to translate the rtems_id supplied by the user into

the real Object. Each manager has its own specific procedure, but they all follow the same

template:

1. Call _Objects_Get in order to get the Objects_Control with the supplied rtems_id.

2. Cast the generic Objects_Control to the specific data structure.
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_Objects_Get

1. It checks that the supplied rtems_id is a valid id for the current Manager (i.e., same API,

class and node).

2. It checks that the supplied rtems_id relates to an active Object.

3. It returns the Objects_Control registered in the local_table of the specific Manager at

the entry corresponding to rtems_id.index.
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4 | Scheduler Manager

There is not really a manager for the scheduler, at least not a manager like the one for

the other services. In this chapter it is shown how the scheduler is configured and how it

performs its scheduling decisions.

The focus in on the SMP Deterministic Priority Scheduler.

4.1 Threads and Scheduler Nodes

The main goal of a scheduler is to decide which one among the available threads should

execute.

It is important to note that the scheduler does not directly manage Thread_Controls,
but instead it deals with Scheduler_Nodes (or one of its specializations): indeed the

queues inside the Scheduler_Context contain Scheduler_Nodes and not Thread_Controls.
The Thread_Control remains a fundamental piece inside the scheduler, however the

Scheduler_Nodes are the items used to perform the scheduling decisions and can be

viewed as placeholders for threads. For this reason, Thread_Controls and

Scheduler_Nodes have separate scheduling state. The state of a node represents the

scheduling state of the placeholder with respect to a specific scheduler. The state of a

thread represents the “union” of the scheduling states of the nodes that it can use to

execute (possibly more than 1 if it is using MrsP resources).

This distinction between threads and nodes is forced by the use of the helping mechanism

(a piece of the MrsP protocol): when a thread uses the MrsP protocol, it must be able to

be scheduled (execute) in place of a thread that is waiting for the same MrsP resource.

When such scenario occurs, the thread needing help starts using the Scheduler_Node of the

thread offering help, while its own Scheduler_Node remains in the scheduler. In this way the

migrating thread inherits with ease the scheduling state of the the thread offering help.

As an example, we can imagine Scheduler_Nodes as boxes that are moved and ordered inside the queues of
the scheduler, while Thread_Controls as tokens that can be placed inside such boxes. The boxes are normally
closed with their own token inside. When a thread uses the MrsP protocol, its box opens and the token can
be exchanged conveniently with the tokens of other open boxes. In this way any open box that is occupying
a place in the Scheduled queue can exchange its token with the token of the ready box whose token is
the thread that holds the MrsP resource. The fact that such boxes are used in the queues of the schedulers
enforces the correct behavior of MrsP: even if a thread is being helped by another scheduler, in its own
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scheduler there is a placeholder that prevents lower priority threads to execute (an important property for
MrsP).

Scheduler_Nodes are tightly coupled with the threads they belong to. They are better de-

scribed in Section 5.1.4.

4.2 Data Structures

The scheduler (any scheduler) has two main goals that are embodied in the two main

structures that compose it.

1. Scheduler context. It remembers the scheduling state of the system (e.g., which tasks

are ready).

2. Scheduler operations. It enumerates the basic scheduling operations and link them to

their specific implementation (i.e., the operations that can correctly mange the data

structures of the scheduler).

4.2.1 Scheduler Context

Figure 4.1 depicts the main stateful scheduling structure used when the user chooses the

deterministic SMP priority scheduler. This structure, the Scheduler_priority_SMP_Context,
contains (recursively) as its first member its base class: the Scheduler_Context.

processor_count: the number of processors that are managed by the processors. When using a parti-

tioned approach, this number is always 1.

Scheduled: the list of scheduled (i.e., running, being executed) threads. The length of this queue

equals processor_count. This list is ordered by the priority of the thread. This list

contains Scheduler_Nodes or one of its specialization1.

Idle_threads: the list of idle threads available to this scheduler. There is one idle thread for each

processor that this scheduler must manage. This list contains Thread_Controls (not

Scheduler_Nodes). This list is used to have easy access to the idle threads when they

must be used as placeholders for the MrsP protocol. See Section 4.3.1.4.

Bit_Map: the structure that makes the scheduler deterministic. In constant time it is able to

determine which is the (index of the) highest priority ready queue inside Ready that is

non-empty (i.e., which is the priority of the thread that has the highest priority among

the ready threads). The internals of this structure is further visualized in Figure 5.3.

Ready: the array of ready threads. This array is in fact a 2 dimensional structure: the array

Ready contains a chain for each one of the possible priorities that a thread can have

(value specified by the user through the macro CONFIGURE_MAXIMUM_PRIORITY). A

ready thread is appended only in the chain corresponding to its priority (the index of

the chain mirrors the priority of the thread). This list contains Scheduler_Nodes or one

1 See note at page 22
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_Configuration_Scheduler_priority_SMP_<name>

Scheduler_priority_SMP_Context Base

Scheduler_SMP_Context Base

Scheduler_Contex Base

enough memory to
store <priority_count>

Chain_Controls

uint32_t processor_count

Chain_Control Scheduled
Chain_Control Idle_threads

Priority_bit_map_Control Bit_Map
Chain_Control Ready[0]

Scheduler_Control

Scheduler_Context * context

uint32_t name

Scheduler_Operations operations

_Scheduler_priority_SMP_Initialize
_Scheduler_default_Schedule

_Scheduler_priority_SMP_Yield
_Scheduler_priority_SMP_Block

_Scheduler_priority_SMP_Unblock
_Scheduler_priority_SMP_Change_priority
_Scheduler_priority_SMP_Ask_for_help
_Scheduler_priority_SMP_Node_initialize

_Scheduler_default_Node_destroy
_Scheduler_priority_SMP_Update_priority

_Scheduler_priority_Priority_compare
_Scheduler_default_Release_job

_Scheduler_default_Tick
_Scheduler_SMP_Start_idle

_Scheduler_default_Get_affinity
_Scheduler_default_Set_affinity

will overflow to

Figure 4.1: Scheduler_priority_SMP_Control
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of its specialization2. This array is defined to have 0 elements: the correct number of

elements is per-scheduler specific (defined by the user, can differ between schedulers),

and these elements will be allocated immediately after Ready (enough memory will

be reserved to allocate the whole array). Every access to this array will overflow to

the specifically allocated memory that contains all the elements of the array.

4.2.2 Scheduler Operations

Scheduler_Operations is a stateless structure that gathers the base scheduling operations

that the scheduler must be able to perform. These operations must be able to correctly

manage the stateful part of the scheduler. Each scheduler has its own set of scheduling

operation: for the deterministic SMP priority scheduler the set is defined by the macro

SCHEDULER_PRIORITY_SMP_ENTRY_POINTS. These core operations are then used by higher

level scheduling primitives.

In Figure 4.1 are shown the specific core operations used by the deterministic SMP

priority scheduler. The suffix of their name represents the name of the field they belong to.

Faded-out operations are not used in the deterministic SMP priority scheduler.

initialize: initialize the scheduler’s context.

schedule: performs a scheduling operation. In the SMP scheduler it is unused: each operation

that modify the scheduler’s context triggers a re-schedule.

yield: yield the specified thread. A context-switch can follow. The scheduler’s context is

updated.

block: block the specified thread. A context-switch can follow. The Scheduler_Node of a

blocked thread is not enqueued in the scheduler’s context.

unblock: unblock the specified thread. A context-switch can follow. The Scheduler_Node of the

thread is enqueued in the scheduler’s context.

change_priority: change the priority of the node of the specified thread. A context-switch can follow.

The Scheduler_Node of the thread is enqueued again based on the new priority.

ask_for_help: not used in the new implementation of the MrsP protocol. It was used to trigger the

helping mechanism.

node_initialize: initialize the Scheduler_Node of the specified thread.

node_destroy: destroy the Scheduler_Node of the specified thread.

update_priority: update the priority of the node of the specified thread. It does not perform scheduling

operations and it does not queue the node on the correct queue.

priority_compare: compare the supplied priorities.

release_job: unused.

2 See note at page 22
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tick: called by the periodic tick interrupt. It does not perform any work for P-FP scheduler.

start_idle: create, make ready and start the idle threads of the scheduler. Used only during the

initialization of the scheduler. It is not used to let a system idle thread execute when
there are no other ready threads in the scheduler: an idle thread will be scheduled as

any other thread, and having the lowest possible priority it will execute only when

there are no other ready thread.

get_affinity
set_affinity: specific for the priority affinity SMP scheduler. Unused.

4.3 Usage

4.3.1 Scheduler initialization and installation

The schedulers must be defined and initialized by the user. There are some macros that

can be used in conjunction with confdefs.h in order ease the initialization of the schedulers.

The specialization of Scheduler_Node used inside the scheduler depends on the sched-

uler selected by the user. The user can select a scheduler through the macro

CONFIGURE_SCHEDULER_<scheduler>. In this document we consider only the determin-

istic SMP priority scheduler. This scheduler is selected by

CONFIGURE_SCHEDULER_PRIORITY_SMP. The corresponding specialization of

Scheduler_Node is Scheduler_priority_SMP_Node.

4.3.1.1 Scheduler installation

RTEMS expects to find informations about the schedulers in two global arrays.

const Scheduler_Control _Scheduler_Table[] It gathers all the schedulers structures.

It is filled with the content of the user-defined macro

CONFIGURE_SCHEDULER_CONTROLS.

const Scheduler_Assignment _Scheduler_Assignments[] It gathers the relationships

between schedulers and processors. It is filled with the content of the user-defined

macro CONFIGURE_SMP_SCHEDULER_ASSIGNMENTS.

It is important to note that a scheduler cannot be created dynamically. They must be

statically created at the start of the system. Indeed _Scheduler_Table and

_Scheduler_Assignments arrays are defined to be const.

4.3.1.2 Scheduler to CPU assignment

The start-up phase of RTEMS checks _Scheduler_Assignments in order to understand

whether to start or not a core. Table 4.1 shows the outcome of this assignment phase

depending on the attr value specified by the user inside the Scheduler_Assignment and the
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CPU available CPU not available
SCHEDULER_ASSIGN_MANDATORY CPU wake up fatal error
SCHEDULER_ASSIGN_OPTIONAL CPU wake up ignored assignment

no assignment CPU keep sleeping nothing happens

Table 4.1: Scheduler_Assignment vs CPUs availability

availability of CPUs. After a CPU has been awakened, the scheduler reference inside the

Scheduler_Assignment is set to the _Per_CPU_Control of the specific processors: when the

processors will be released (after the initialization phase has ended), each CPU will perform

its scheduling decision based on the scheduler set inside its own _Per_CPU_Control.

4.3.1.3 Scheduler creation

The creation of a scheduler is a 3 steps operation, and for each step there is a macro

(defined in confdefs.h) that can be used to ease the process.

1. Create the context of the scheduler.
The macro RTEMS_SCHEDULER_CONTEXT_PRIORITY_SMP(name, prio) creates the one-

time-use structures _Configuration_Scheduler_priority_SMP_<name>. As depicted in

Figure 4.1, this structure is a wrapper for Scheduler_priority_SMP_Context: it contains

some padding memory that will become the content of array Ready.

2. Create the whole scheduler.
The macro RTEMS_SCHEDULER_CONTROL_PRIORITY_SMP(name, objname) links the pre-

viously created context (named after name) with a specific set of scheduler operations

(specific to the deterministic priority SMP scheduler). The schedulers created in this

way should be listed inside CONFIGURE_SCHEDULER_CONTROLS such to let confdefs.h

to correctly create _Scheduler_Table. The objname is the name of the scheduler and

is used to identify it.

3. Create a relationship between scheduler and CPU.
The macro

RTEMS_SCHEDULER_ASSIGN(index, attr) tells the start-up phase of RTEMS that the

scheduler _Scheduler_Table[index] must or must not be assigned to a CPU (based

on the value of attr).

4.3.1.4 Idle threads

Idle threads have two main uses inside the scheduler.

1. Being the idle thread when there are no other threads available to execute.

2. Being a placeholder for the MrsP protocol (see Section 6.2.1.1).

The idle threads are somehow special.
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• Idle threads are created during the start-up phase by operations.start_idle. They

are the default threads that should execute after the boot process ends (unless the user

specifies a main thread for a specific processor/scheduler).

• The thread control block (TCB) of idle threads are stored in a different place than the

TCB of user-defined threads.

• The Scheduler_Node of a idle thread behaves like the node of any other thread: it

can be queued either in the Scheduled or Ready queue of the scheduler. On the other

hand, the queue Idle_threads lists all the idle threads of the scheduler, but this queue

lists directly the threads (each element of the queue is Thread_Control.Node) and

not their Scheduler_Nodes. Indeed, this latter queue is used to quickly reference the

idle threads when they must be used as placeholders inside the MrsP protocol (see

Section 6.2.1.1). In fact, but for for the queue Idle_threads, the scheduler has no

other mean to recognize a idle thread except performing a linear search in its own

queues and double checking where the TCBs of the threads reside.

4.3.2 Scheduler retrieval

A scheduler does not have a real

rtems_id. Every time the rtems_id of a scheduler is needed (e.g., it is necessary to let a thread

migrate to a specific CPU/scheduler) it is computed on the fly. The only real information

contained in this rtems_id is the index of the scheduler inside _Scheduler_Table.

A scheduler can be dynamically identified by

rtems_scheduler_ident. It is necessary to provide the name of the scheduler: the name

of the scheduler is stored in Scheduler_Control.name (and corresponds to objname of the

macro RTEMS_SCHEDULER_CONTROL_PRIORITY_SMP). It is important that each scheduler has
a unique name otherwise it will never be addressable by the user.

rtems_scheduler_ident

1. It searches for the first scheduler inside _Scheduler_Table with the specified name.

2. It returns a rtems_id created on the fly based on the index of the scheduler inside the

_Scheduler_Table.

4.3.3 Scheduler operations

The structure Scheduler_Control stores the basic operations inside operations, and those

operations are used as plug-in (or a jump table). Every time a scheduling operation must

be performed over a thread, the scheduler that is currently managing that specific thread is

considered and its own operations are applied to the thread.

The basic operations are scheduler-specific, since they must be able to correctly manage

the context of the scheduler. However, the logical steps that must be performed in order to

achieve a specific side-effect over the scheduler are similar to almost all the schedulers.
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As an example, the steps needed to make the highest-priority ready thread the running thread are the same
for every scheduler: remove the highest-priority thread from the ready queue, remove the running thread
from the scheduled queue, put the highest-priority ready thread in the scheduled queue, put the old running
thread in the ready queue, perform a context switch. What changes from scheduler to scheduler is how
these small step are implemented in order to correctly manage the context of the scheduler.

In order to have a modular and reusable kernel, these small logical steps are implemented

as stand-alone auxiliary procedures and are scheduler-specific. Each basic operation of

the scheduler is just the instance of a general/high-level template where these auxiliary

scheduler-specific procedures are used (generally, the auxiliary scheduler-specific procedures

are passed as arguments to more general functions).

As an example, the scheduler operation operations.yield for the deterministic SMP priority scheduler is
_Scheduler_priority_SMP_Yield. This function is just an instance of the more general function
_Scheduler_SMP_Yield which expects 3 functions as input: a function capable to extract a thread from the
ready queue, a function capable to queue a thread to the ready queue, and a function capable to queue a
thread in the scheduled queue. Having those 3 functions, the template function _Scheduler_SMP_Yield is
able to perform a yield operation. In case of _Scheduler_priority_SMP_Yield, _Scheduler_SMP_Yield
is called with 3 scheduler-specific auxiliary functions that are able to manage the context of the deterministic
SMP priority scheduler (i.e., they know how to manage the queues of the scheduler).

It is useful to note that not all procedures are strictly scheduler-specific: if two or more

schedulers have common (i.e., identical) internal traits, then they use the same procedures

in order to manage those traits. This happens when a scheduler is a specialization of another

scheduler: this sort of hierarchy between schedulers can also be seen from the prefixes of the

procedures used inside the kernel. Indeed, the prefix of a procedure identifies the scheduler

it addresses, and if a procedure addresses more schedulers then the prefix will reflect the

first ancestor that they have in common.

As an example, both the deterministic and the simple SMP priority scheduler have the same way to account
for the scheduled queue: a single
Chain_Control. Therefore, the operations that manage the scheduled queue can be shared among these two
scheduler. The prefix for the deterministic SMP scheduler is _Scheduler_priority_SMP while the prefix
for the simple SMP scheduler is _Scheduler_simple_SMP. Their common ancestor is _Scheduler_SMP and
this prefix is used for those procedures that manage the scheduler queue.

In this section we try to:

1. Enumerate the auxiliary scheduler-specific procedures. We focus only on the proce-

dures used for the deterministic SMP priority scheduler. However, by doing so we

also try to highlight the side effects and invariants that each procedure must have. In-

deed, different procedures must manage different Scheduler_Contexts, but the generic

templates expect the same behavior and same side effects.

2. Enumerate the main entries of the scheduler and show how they are redirected to the

small scheduler-specific procedures.

4.3.3.1 Auxiliary scheduler-specific procedures
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_Scheduler_priority_SMP_Get_highest_ready
It belongs to the function type Scheduler_SMP_Get_highest_ready.

No side effect. It returns the reference to the node of the highest-priority ready thread.

Node is not moved from the queue.

_Scheduler_SMP_Get_lowest_scheduled
It belongs to the function type Scheduler_SMP_Get_lowest_scheduled.

No side effect. It returns the node of the running thread (if the scheduler manages more

than 1 CPU then it picks up the lowest-priority thread that is running in any CPU). Node is not

moved from the queue.

_Scheduler_SMP_Extract_from_scheduled
It belongs to the function type Scheduler_SMP_Extract.

It removes the supplied node from the scheduled queue. It does not update the internal

state of the thread or node. The node must be on the scheduled queue.

_Scheduler_priority_SMP_Extract_from_ready
It belongs to the function type Scheduler_SMP_Extract.

It removes the supplied node from the ready queue. It does not update the internal state of

the thread or node. It does update the bitmaps. The node must be on the ready queue.

_Scheduler_priority_SMP_Insert_ready_fifo/lifo
It belongs to the function type Scheduler_SMP_Insert.

It appends (FIFO) or prepend (LIFO) the supplied node to the correct ready queue (depend-

ing on the priority of the node). It updates the state of the bitmap.

_Scheduler_SMP_Insert_scheduled_fifo/lifo
It belongs to the function type Scheduler_SMP_Insert.

It inserts the node in the scheduled queue. The position inside the queue is decided by the

priority of the node (the scheduled queue is an ordered list). FIFO or LIFO behavior applies

only on the sublist of node with the same priority. This procedure should be used in conjunction

with _Scheduler_SMP_Extract_from_scheduled in order to maintain the correct number of

nodes (i.e., having as much nodes as the number of CPUs that the scheduler must manage).

_Scheduler_priority_SMP_Move_from_scheduled_to_ready
It belongs to the function type Scheduler_SMP_Move.

Same behavior as the sequence:

1. _Scheduler_SMP_Extract_from_scheduled

2. _Scheduler_priority_SMP_Insert_ready_fifo

It moves one node from one queue to the other. Bitmaps are updated. It does not update the

internal state of the node or the thread.
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_Scheduler_priority_SMP_Move_from_ready_to_scheduled
It belongs to the function type Scheduler_SMP_Move.

Same behavior as the sequence:

1. _Scheduler_priority_SMP_Extract_from_ready

2. _Scheduler_SMP_Insert_scheduled_fifo

It moves one node from one queue to the other. Bitmaps are updated. It does not update the

internal state of the node or the thread.

_Scheduler_priority_SMP_Do_update
It belongs to the function type Scheduler_SMP_Update.

It changes the priority of the node. It updates the bitmap information inside the node. It

does not manage any queue (it does not move the node in the correct queue) and it does not

change the priority of the thread.

_Scheduler_priority_SMP_Enqueue_fifo/lifo
It belongs to the function type Scheduler_SMP_Enqueue.

It ends up calling _Scheduler_SMP_Enqueue_ordered with the following parameters:

1. order← _Scheduler_SMP_Insert_priority_fifo/lifo_order

2. insert_ready← _Scheduler_priority_SMP_Insert_ready_fifo/lifo

3. insert_scheduled← _Scheduler_SMP_Insert_scheduled_fifo/lifo

4. move_from_scheduled_to_ready←
_Scheduler_priority_SMP_Move_from_scheduled_to_ready

5. get_lowest_scheduled← _Scheduler_SMP_Get_lowest_scheduled

6. allocate_processor← _Scheduler_SMP_Allocate_processor_lazy

It inserts a node into the correct queue: the ready queue or the scheduled queue. The input

node (the node that must be queued) must have its internal state set as a ready node (e.g., the

node could have just been extracted from the ready queue). In case the input node must replace

a scheduled node, the internal state of both nodes and threads are updated and a context switch

will be pending. In this same case, if the input node belongs to a thread using a MrsP resource,

the MrsP invariant is updated to account for the new available node, and the internal state of

node is updated to match the global state of the MrsP protocol.

It returns a thread that could be in need of help: the thread that was evicted from the

scheduled queue (in case the input node is set to be scheduled) or the thread of the input node

(in case the the input note is queued in the ready queue).

_Scheduler_priority_SMP_Enqueue_scheduled_fifo/lifo
It belongs to the function type Scheduler_SMP_Enqueue_scheduled.

It ends up calling

_Scheduler_SMP_Enqueue_scheduled_ordered with the following parameters:

1. order← _Scheduler_SMP_Insert_priority_fifo/lifo_order

2. extract_from_ready← _Scheduler_priority_SMP_Extract_from_ready
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3. get_highest_ready← _Scheduler_priority_SMP_Get_highest_ready

4. insert_ready← _Scheduler_priority_SMP_Insert_ready_fifo/lifo

5. insert_scheduled← _Scheduler_SMP_Insert_scheduled_fifo/lifo

6. move_from_ready_to_scheduled←
_Scheduler_priority_SMP_Move_from_ready_to_scheduled

7. allocate_processor← _Scheduler_SMP_Allocate_processor_lazy

It inserts a node into the correct queue: the ready queue or the scheduled queue. The input

node (the node that must be queued) must be a scheduled node that is no more queued in the

scheduled queue (its internal state must be that of a scheduled node and thread). In case there

are no higher priority ready nodes, the input node is reinserted in the scheduled queue. If there

is a ready node with higher priority then the two nodes (and threads) are swapped and their

internal state is updated to match the new position in the queues. In this latter case, if the ready

node belongs to a thread using a MrsP resource, the MrsP invariant is updated to account for

the new available node, and the internal state of node is updated to match the global state of

the MrsP protocol .

It returns a thread that could be in need of help: the thread that was evicted from the

scheduled queue (in case the input node is transitioning to the ready state).

_Scheduler_SMP_Allocate_processor_lazy
It belongs to the function type Scheduler_SMP_Allocate_processor.

It prepares the internal state of the CPU for a context switch:

• It updates the CPU reference of the thread that is going to execute.

• It updates the heir of the CPU.

• It signals the CPU that a dispatch is necessary (with a inter processor interrupt if neces-

sary).

The “lazy” part is because it avoids (when it is possible) to migrate an already running thread:

in this casea the running thread keeps executing in its CPU and instead the thread that was

going to displace it will migrate.

a The scheduler must be in charge of both CPUs.

_Scheduler_SMP_Allocate_processor

• It updates the the internal state of the node (and thread) that is going to execute: to

SCHEDULED state.

• It prepares for the upcoming context-switch (by

_Scheduler_SMP_Allocate_processor_lazy or a type equivalent procedure).

_Scheduler_SMP_Enqueue_to_scheduled
This is the core of _Scheduler_SMP_Enqueue_ordered.

• It updates the internal state of the lowest scheduled node (and thread) that is going to

be evicted: to READY state.

• It insert the next-to-run node in the scheduled queue (by
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_Scheduler_SMP_Insert_scheduled_fifo/lifo).

• It moves the lowest scheduled node from the scheduled queue to the ready queue (by

_Scheduler_priority_SMP_Move_from_scheduled_to_ready).

• It prompts the update to the internal state of the next-to-run node and it prompts the

preparation of the context-switch (by _Scheduler_SMP_Allocate_processor).

_Scheduler_SMP_Schedule_highest_ready
It elects a ready node to become running.

• It gets the highest-priority ready node (by

_Scheduler_priority_SMP_Get_highest_ready: no side effect to the ready queue).

• It updates the internal state of the highest-priority ready node in case it participates in

the helping protocol: it makes sure that the MrsP invariant hold.

• It updates the internal state of the highest-priority ready node such to prepare it for its

execution and context-switch (by _Scheduler_SMP_Allocate_processor).

• It moves the node from the ready queue to the scheduled queue (by

_Scheduler_priority_SMP_Move_from_ready_to_scheduled).

There must be an empty slot in the scheduled queue (this procedure does not remove any

scheduled node/thread). There will always be a ready node available (the idle threads).

_MRSP_check_invariant_for_resume_execution
It makes sure that the MrsP invariant holds when a Scheduler_Node resumes its execution.

1. If the thread of the node is waiting for a MrsP resource, it makes sure that the owner

of the resource is already executing, otherwise it let the owner execute in place of the

waking thread.

2. If the node belongs to the thread owning the resource, it makes sure that if the owner

is already executing (because it is being helped) it will not execute in the waking node.

This last case avoids to perform a migration of a running thread and uses the idle thread

as a placeholder for the owner of the resource.

It updates the global state of the MrsP resources to reflect the fact that now a new processor

can be used for the helping mechanism (only in the case that the thread of the node is using

the MrsP protocol).

It is called by the following procedures

1. _Scheduler_SMP_Enqueue_ordered

2. _Scheduler_SMP_Enqueue_scheduled_ordered

3. _Scheduler_SMP_Schedule_highest_ready

when a node transitions from the ready to the scheduled queue.

_MRSP_check_invariant_for_stop_execution
It makes sure that the MrsP invariant holds when a thread is going to be switched-out.

1. If the thread is owning a MrsP resource, it makes sure to migrate it to a CPU where there

is a thread spinning for the same resource tree.

v1.0 29 of 69



RTEMS Internals Manual
-how the kernel works-

2. If the thread is a idle thread used as a placeholder, it restores the idle thread to its rightful

place. In this case the owner of the resource must be executing (it is helped) somewhere

else.

It updates the global state of the MrsP resources to reflect the fact that now there is one less

processor that can be used for the helping mechanism (only in the case that the thread is using

the MrsP protocol).

This function is embedded inside _Scheduler_Ask_for_help_if_necessary.

4.3.3.2 Template scheduling procedures

_Scheduler_SMP_Yield
Calling tree:

_Thread_Yield→

_Scheduler_Yield→

operations.yield (_Scheduler_priority_SMP_Yield)→

_Scheduler_SMP_Yield using the auxiliaries:

(1) [input] _Scheduler_priority_SMP_Extract_from_ready

(2) [input] _Scheduler_priority_SMP_Enqueue_fifo

(3) [input] _Scheduler_priority_SMP_Enqueue_scheduled_fifo

(4) [embedded] _Scheduler_SMP_Extract_from_scheduled

In case the thread to yield is running, its node is extracted from the queue Scheduled with (4)

and is then enqueued again using (3).

In case the thread to yield is not running, its node is extracted from the queue Ready with (1)

and is then enqueued again using (2).

Cannot be used on a thread that is using the MrsP protocol.

_Scheduler_SMP_Block
Calling tree:

_Thread_Set_state→

_Scheduler_Block→

operations.block (_Scheduler_priority_SMP_Block)→

_Scheduler_SMP_Block using the auxiliaries:

(1) [input] _Scheduler_priority_SMP_Extract_from_ready

(2) [input] _Scheduler_priority_SMP_Get_highest_ready

(3) [input] _Scheduler_priority_SMP_Move_from_ready_to_scheduled

(4) [input] _Scheduler_SMP_Allocate_processor_lazy

(5) [embedded] _Scheduler_SMP_Schedule_highest_ready

(6) [embedded] _Scheduler_SMP_Extract_from_scheduled
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It updates the state of the input thread and the node to BLOCKED.

In case the thread to block is running, it removes the node from the queue Scheduled with (6)

and it elects a new running thread with (5) (and supplying it with (1-4)).

In case the thread to block is not running, its node is removed from the queue Ready with (1).

Cannot be used on a thread that is using the MrsP protocol.

_Scheduler_SMP_Unblock
Calling tree:

_Thread_Set_state, _Thread_Ready, _Scheduler_default_Start_idle→

_Scheduler_Unblock→

operations.unblock (_Scheduler_priority_SMP_Unblock)→

_Scheduler_SMP_Unblock using the auxiliaries:

(1) [input] _Scheduler_priority_SMP_Enqueue_fifo

It updates the state of the input thread and the node to BLOCKED.

In case the thread to block is running, it removes the node from the queue Scheduled with (6)

and it elects a new running thread with (5) (and supplying it with (1-4)).

In case the thread to block is not running, its node is removed from the queue Ready with (1).

Cannot be used on a thread that is using the MrsP protocol.

_Scheduler_SMP_Change_priority
Calling tree:

_Thread_Change_priority→

_Scheduler_Change_priority→

operations.change_priority (_Scheduler_priority_SMP_Change_priority)→

_Scheduler_SMP_Change_priority using the auxiliaries:

(1) [input] _Scheduler_priority_SMP_Extract_from_ready

(2) [input] _Scheduler_priority_SMP_Do_update

(3) [input] _Scheduler_priority_SMP_Enqueue_fifo

(4) [input] _Scheduler_priority_SMP_Enqueue_lifo

(5) [input] _Scheduler_priority_SMP_Enqueue_scheduled_fifo

(6) [input] _Scheduler_priority_SMP_Enqueue_scheduled_lifo

(7) [input] _Scheduler_priority_SMP_Enqueue_fifo

(8) [embedded] _Scheduler_SMP_Extract_from_scheduled

It removes the node of the input thread from its queue (with (1) if in the queue Ready or with

(8) if in the queue Scheduled). It updates the priority of the node with (2).

If the node was previously queued inside the scheduler (i.e., it is not in the state BLOCKED)

it is queued again in the same queue. It is queued with (3) or (5) if the policy is to append

the node after nodes with the same priority, or with (4) or (6) if the node must be prepended

(thus maintaining a higher urgency with respect to nodes that are already queued). The node
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is queued by taking into account the new priority.

This procedure returns a thread that is possibly in need of help. This candidate is (if any) a

thread that is being evicted from execution: or the thread that is changing priority (by setting

a lower priority) or a thread that is being replaced by the input thread (now with a higher

priority). No checks are performed on the returned thread (i.e., it is possible that the thread is

not using the helping protocol).

The priority of the thread (not of the node) is changed by the calling procedures (e.g., by

_Thread_Set_priority).

_Scheduler_SMP_Update_priority
Calling tree:

_Thread_Set_priority, _Thread_Change_priority, _Scheduler_Set→

_Scheduler_Update_priority→

operations.update_priority (_Scheduler_priority_SMP_Update_priority):

(1) [embedded] _Scheduler_priority_SMP_Do_update

It updates the priority of the node with (1).

The priority of the thread (not of the node) is changed by the calling procedures (e.g., by

_Thread_Set_priority).

_Scheduler_priority_SMP_Ask_for_help_if_necessary
Calling tree:

_Scheduler_Yield, _Scheduler_Unblock, _Scheduler_Change_priority→

_Scheduler_priority_SMP_Ask_for_help_if_necessary:

(1) [embedded] _MRSP_check_invariant_for_stop_execution

It checks whether the input thread must trigger the helping mechanism: if the thread is using

the MrsP protocol then the procedure (1) is called.

The input thread comes from the scheduling operations performed by _Scheduler_Yield,

_Scheduler_Unblock or _Scheduler_Change_priority. This thread must be a running thread

that is being evicted from these operations. It is not possible that a non-running thread can be

in need of help: a thread using MrsP cannot block and therefore cannot be unblocked, it is only

possible that a higher priority thread evicts an already running thread participating in the MrsP

protocol.
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5 | Task Manager

The task manager offers the user a set of operations with which it is possible to control

the task population of the system. This means being able to create, start, suspend, resume

and delete tasks. Moreover, with the advent of the SMP part of the scheduler, it means being

able to assign a task to a specific scheduler (or processor).

In this chapter it is shown how the life cycle of threads is managed and stored inside the

kernel.

5.1 Data Structures

The kernel representation of a task is a Thread_Control, also known as thread control

block (TCB). This structure is used for many different things.

1. Monitoring the thread’s life cycle.

2. Keeping track of shared resources acquired or requested by the thread.

3. Managing part of the incoming and outgoing messages.

4. Storing events.

5. Other things.

Since this structure is quite overloaded by other bits coming from other managers (indeed,

the thread is the actor that actually uses the other managers), in this chapter we focus only

on the pieces used to monitor a thread’s life cycle (also with respect to the scheduler). Other

managers will describe the data structures inside the TCB that are mainly used for other

purposes.

5.1.1 Thread Control

The Thread_Control is the base structure for a thread. Its members are known to be of

constant size: it does not contain data whose size depends on some configuration option.

Indeed, those fields which can vary depending on a user’s configuration are defined as

pointers and the actual memory is reserved inside Configuration_Thread_control. In this

way, the kernel of RTEMS can be compiled on its own, and can be later linked with any

application. Figure 5.1 shows part of this structure (it shows the fields that are useful to this

manual).
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Configuration_Thread_control

void * extensions[<USER_VALUE>]

RTEMS_API_Control API_RTEMS
POSIX_API_Control API_POSIX

struct _reent New_lib

union Scheduler
Scheduler_Node Base

Scheduler_priority_SMP_Node Priority_SMP

Thread_Control Control

Objects_Control Object
States_Control current_state
Priority_Control current_priority
Priority_Control real_priority

Thread_Wait_Information Wait
Watchdog_Control Timer

Resource_Node Resource_node
bool is_preemptible

struct _reent * libc_reent
void * API_Extension[2]
void * extension[0]

Thread_Scheduler_control Scheduler
Thread_Scheduler_state state

const Scheduler_Control * own_control
const Scheduler_Control * control

Scheduler_Node * own_node
Scheduler_Node * node

Per_CPU_Control * cpu

0
1

will overflow to

Figure 5.1: Thread_Control. Some fields are omitted. Green lines represent the relationships
established by _Thread_Control_add_ons.

Object: the Control_Object of the thread. It contains the data need by the manager to perform

the basic operation and it contains the Chain_Node that can be used to append the

thread to any chain/list.

current_state: bitmask used to remember in which state of its life cycle the thread is. It is mainly

used to understand if it is possible to perform some operation on the thread (e.g., a

blocked thread is not queued in any scheduler queue, if another blocking operation is

performed while the thread is still blocked, it must avoid to remove its node from the

scheduler). This field can assume several states (see file score/statesimpl.h). Most

of these states can be grouped in some categories (e.g.,

STATES_LOCALLY_BLOCKED, STATES_BLOCKED). Such categories are in fact masks that
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can be used against current_state to determine if the thread is in a state of such

categories. To note that the state STATES_READY represents the state of a thread that

has been created and can execute if there is an available processor: in this case “ready”

does not refer only to the ready queue, but also to the scheduled queue (or conversely

it means that the thread is not blocked).

current_priority: the current priority of the thread. It is the dynamic priority of the thread, and can

change when the thread uses priority ceiling/priority inheritance protocols.

real_priority: the original priority of the thread. This value is set when the thread is created and it

changes only when the user calls rtems_task_change_priority.

Wait: this structure is used when the thread performs a blocking operation on some object.

It mainly serves as a callback storage. This structure is further explained in Chapter 7

and Chapter 8.

Timer: each thread has its own timer to satisfy time-related operations (e.g.,

rtems_task_wake_after). This structure is not explained further.

Resource_node: this structure remembers which MrsP resources are owned by the thread and which

MrsP resource it is waiting for (if any).This structure is further explained in Chapter 6.

is_preemptible: thread attribute used to make a thread non-preemptive.

Scheduler: this structure remembers which scheduler the thread belongs to and other sched-

uler/processor related information.

libc_reent: used for libc.

API_Extenxion: array used to reference specific API data.

API_RTEMS API_Extension[0]

API_POSIX API_Extension[1]

These extensions are defined by the kernel. The size of the array is always 2 (unless

more APIs are added to the kernel).

extension: should behave in the same way as API_Extension. The possible extension(s) are user-

defined. Since the size of this array is defined by the configuration of the application,

it is defined to have 0 elements: it will overflow on the following memory area. This

memory area is reserved by Configuration_Thread_control and its size is computed in

order to correctly store the whole array.

5.1.2 Configuration Thread control

The Configuration_Thread_control is a wrapper for the thread. It is a structure that is

defined in confdefs.h and therefore it exists only when the application is compiled (it is

not known by the kernel). This structure varies depending on the system’s configuration:

most of its fields are enclosed inside #ifdef and are therefore defined only if they are used

by the system. In Figure 5.1 are shown the most notable variable structure.
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Control: this is the Thread_Control, the invariant part of Configuration_Thread_control. It must

be the first member because it is in fact the superclass of Configuration_Thread_control.

extensions: this is not a structure. This is padding, memory reserved for the array

Control.extension. Control.extension will overflow in this memory area.

Schedule: this is a union containing the possible types Scheduler_Node. Each type of node is

enclosed inside #ifdef and are defined only if their relative scheduler is being used.

The node Base that is always defined independently of the scheduler used, is in fact

overlapped by any other Scheduler_Node (since any specialization of nodes starts with

a Scheduler_Node as its first member). This structure is referenced by the pointer

Control.Scheduler.node.

API_RTEMS: this structure contains the data used by the classic RTEMS API. This structure is

referenced by the pointer Control.API_Extension[0].

API_POSIX: this structure contains the data used by the POSIX API. This structure is referenced by

the pointer Control.API_Extension[1].

5.1.3 Thread Scheduler Control

The Thread_Scheduler_Control holds the state of the thread with respect to the scheduler.

Figure 5.1 shows this structure inserted inside the Thread_Control.

state: this flag mirrors the real runtime state of the thread. This state can be different from

the one of the thread’s node in case the thread is using the MrsP protocol.

– THREAD_SCHEDULER_SCHEDULED: the thread is currently executing on a processor.

The thread is using a node that is in the Scheduled queue.

– THREAD_SCHEDULER_READY: the thread is not executing because some other thread

is using the processor. The thread is using a node that is in the Ready queue.

– THREAD_SCHEDULER_BLOCKED: the thread can not execute because it is blocked

(e.g., waiting on an already occupied mutex, sleeping for some ticks). The thread

is using a node that is not queued in any scheduler’s queues. Most of the times,

the thread (not node) is queued on the object that will wake it (e.g., a thread

blocked while waiting for a message queues itself on the message queue so that

when a message arrives the thread can be woken up).

own_control: a pointer to the Scheduler_Control to which the thread belong. This field is set when

a thread is created and is updated only when the user explicitly forces the thread to

change scheduler with rtems_task_set_scheduler.

control: a pointer to the

Scheduler_Control in which the thread is. This field differs from own_control only

when a thread uses the helping mechanism: when a thread migrates to another node

because of MrsP it updates this field to point the scheduler to which it migrates.

v1.0 36 of 69



RTEMS Internals Manual
-how the kernel works-

own_node: a pointer to the Scheduler_Node that belongs to the thread. This field is set when a

thread is created and is updated only when the user explicitly forces the thread to

change scheduler with rtems_task_set_scheduler. In this case the

Scheduler_Node must be created again since the Scheduler_Node is tightly coupled to

the scheduler (each scheduler uses a different specialization of Scheduler_Node) and

this pointer must then be updated. The Scheduler_Node it points to is located in the

Configuration_Thread_control of the thread.

node: a pointer to the Scheduler_Node that is currently using. This field differs from own_node

only when a thread uses the helping mechanism: when a thread migrates to another

node this field is updated.

cpu: a pointer to the structure holding per-cpu specific information (e.g., which thread is

executing? is a dispatch pending on this processor?). This field is updated every time

the thread execute on a different processor. It is useful to note that this can happen

also without changing the scheduler since a scheduler can manage more that 1 CPU.

While using a partitioned system, this field can change because the user is forcing a

migration on the thread or because the thread is using the helping mechanism of MrsP.

5.1.4 Scheduler Node

Scheduler_priority_SMP_Node

Scheduler_priority_Ready_queue Ready_queue

Scheduler_SMP_Node Base

Scheduler_SMP_Node_state state
Priority_Control priority

Scheduler_Node Base

Chain_Node Node
Thread_Control * user

Scheduler_Help_state help_state
Thread_Control owner

Figure 5.2: Scheduler_Node

The Scheduler_Node is the item used by the scheduler to organize its queues. It acts as a

placeholder for the thread (see Section 4.1) and each thread has its own. It is instantiated

when a thread is created or it is overwritten when the user manually sets a new scheduler

for the thread by calling rtems_task_set_scheduler: each scheduler have a specialization

of Scheduler_Node they are able to manage, and in fact the specific type of node is created

by the scheduler with Scheduler->Operations.node_initialize. The area that the node

occupies resides inside Configuration_Thread_control. Figure 5.2 shows the specific node

used by the Deterministic SMP priority scheduler:
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Scheduler_priority_SMP_Node. This structure contains its “base classes”

Scheduler_SMP_Node and Scheduler_Node.

Node: the anchor point for the chains/queue.

owner: a pointer to the thread for which this node was created. Its value never changes.

user: a pointer to the thread that is currently using the node. It is the thread that will

execute when the node becomes scheduled. This field differs from owner only in case

the thread owning the node makes use of the helping mechanism of MrsP. In this case

this field is either the thread that is owning a MrsP resource (the owner is helping the

resource owner) or it is the idle thread (acting as placeholder while the owner of the

node is being helped by someone).

help_state: a flag denoting the helping state of the thread owning the node. Useful only if when

the thread uses MrsP.

– SCHEDULER_HELP_YOURSELF: the thread is not using any MrsP resource and does

not participate in the helping mechanism. This means that the state of the node

and the state of the thread matches, and that the thread can use only its own

node1.

– SCHEDULER_HELP_ACTIVE_OWNER: the thread is using the MrsP protocol and it has

acquired/locked the last resource it requested. This flag means that the thread

owning this node can execute using other Scheduler_Nodes. Such nodes must

participate in the helping mechanism (their help_state must be SCHEDULER_-

HELP_ACTIVE_RIVAL) and must be related (directly or indirectly) to the same

MrsP resource.

– SCHEDULER_HELP_ACTIVE_RIVAL: the thread is using the MrsP protocol and its

last request has not been satisfied (i.e., the last requested MrsP resource is locked

by some other thread). This flag means that the node is available to host and to

let execute the resource holder.

– SCHEDULER_HELP_DUMMY_IDLE: the thread is the idle thread and it is executing as

placeholder in another node. A node in this state is never going to be scheduled

(its owner, the idle thread, is executing as placeholder on a node that has -by

definition- a higher priority). This flag is used to understand if an evicted thread

is in fact just the idle thread playing as placeholder.

state: the runtime state of the node. This flag represent the state of the node with respect to

the scheduler (i.e., in which queue it is staying and therefore what the thread using

this node should do).

– SCHEDULER_SMP_NODE_READY: the node is queued in the Ready queue. The thread

user cannot execute.
1 Except for the idle thread. The idle thread is always participating in the helping mechanism as a placeholder
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– SCHEDULER_SMP_NODE_SCHEDULED: the node is queued in the Scheduled queue.

The thread user is executing on a processor managed by the scheduler.

– SCHEDULER_SMP_NODE_BLOCKED: the node is not queued in any queue and the

thread user must not execute. The operation Scheduler->Operations.unblock

will enqueue the node in the correct queue. A node can be in this state only

if its help_state is SCHEDULER_HELP_YOURSELF, indeed a thread using a MrsP

resource is forbidden to perform blocking operations and therefore its node will

never block: this is to avoid to break MrsP.

priority: the priority of the node. It mirrors the priority of its owner thread.

Ready_queue: a structure to ease the insertion of the node in the Ready queue and to ease the

updating of the Bit_map of the scheduler. See Section 5.1.5.

5.1.5 Priority Masks

Scheduler_priority_SMP_Context
· · ·

Chain_Control Ready[<MAX_PRIO>]

Priority_bit_map_Control Bit_map

Priority_bit_map_Word major_bit_map
Priority_bit_map_Word bitmap[16]

Scheduler_priority_SMP_Node
· · ·

Scheduler_priority_Ready_queue

Chain_Control * ready_chain
Priority_bit_map_Control Bit_map

Priority_bit_map_Word * minor
Priority_bit_map_Word ready_major
Priority_bit_map_Word ready_minor
Priority_bit_map_Word block_major
Priority_bit_map_Word block_minor

Figure 5.3: Priority_bit_map_Control and Scheduler_priority_Ready_queue

There are 3 structures involved in easing the insertion and selection of a Scheduler_Node
inside the Ready queue of the Deterministic SMP priority Scheduler. Figure 5.3 shows them

and how they relate to the Scheduler_Context and Scheduler_Node.
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5.1.5.1 Priority bit map Control

The structure Priority_bit_map_Control represents a bitset of size 256. To achieve this

it is implemented as a 2-level hierarchical bitset. This bitset is used to index the highest

priority ready queue that is non empty: in fact RTEMS support at most 256 thread priorities.

Figure 5.3 shows this structure. It is inserted inside the scheduler, as shown in Figure 4.1,

and it is used by the scheduler in order to understand (without a linear search) what is the

priority of the “highest ready” thread.

major_bit_map: the first level of the bitset. Contains 16 bits. Each bit represents if in the relative 2nd

level bitset has non-zero bits. If the i-th bit in major_bit_map is set, then bit_map[i]

has at least one bit set.

bit_map: the second level of the bitset. This array contains 16 bitsets, and each bitset contains

16 bits. If a bitset has only zeroes, then the relative bit on major_bit_map is zero.

The actual priority of the “highest ready” thread is computed by combining the values from

both the 1st and the 2nd level of bitsets.

As an example, let us assume that major_bit_map has the highest set bit at position i, and that bit_map[i]
has the highest set bit at position j. Then, the final priority p is i × 16 + j. This priority p is then used
to index the queue Ready[p] from which the scheduler will extract a Scheduler_Node (the queue will be
non-empty because Priority_bit_map_Control is kept updated).

5.1.5.2 Scheduler priority Ready queue

The structure Scheduler_priority_Ready_queue represents the shortcut that a thread can

use when it must manage its scheduler node inside the Ready queue of the scheduler. The

structure Priority_bit_map_Information inserted inside

Scheduler_priority_Ready_queue holds additional informations that are used to quickly up-

date the bitsets of

Priority_bit_map_Control of the scheduler when the thread’s node transitions to or from the

READY state. Figure 5.3 shows these structures.

ready_chain: a pointer to the Ready queue of the scheduler where the thread’s node must be inserted

when transitioning to the READY state.

minor: a pointer to the 2nd level bitset of Priority_bit_map_Control of the scheduler. It points

to the bitset that contains the information of the Ready queue corresponding to the

priority of the thread’s node.

ready_minor
block_minor: bitmasks used to set or unset the correct bit in the bitset pointed by minor. The bit

is set when the thread’s node transitions to the READY state and there are no other

nodes already queued on the same Ready queue. The bit is unset when the thread’s

node transitions out from the READY state and it is the last node queued in the Ready

queue.

ready_major
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block_major: bitmasks used to set or unset the correct bit in the major_bit_map of

Priority_bit_map_Control. The bit is set when the bitset pointed by minor transitions

from 0 (meaning that no nodes within the specific range of priorities are in the READY

state) to ready_minor (meaning that the thread’s node has transitioned to the READY

state and that therefore there is now 1 ready node in the specific range of priorities).

The bit is unset when the bitset pointed by minor transitions to 0 (meaning that the

thread’s node is no more queued in the Ready queue and that there are no other ready

nodes in the specific range of priorities).

5.2 Usage

5.2.1 Thread Initialization

As explained in Section 5.1.2 the final thread structure is not known to the kernel because

it depends on the configuration selected by the user. The kernel knows how to manage each

sub-structure of the thread but it does not know how the memory is laid out. And it should

not even care except for two points.

1. The kernel must know how big is Configuration_Thread_control since its manager must

allocate enough space for each thread object (see Section 3.2.1.3).

2. The Task Manager must initialize some pointers inside Thread_Control to some memory

addresses that depends on the layout of Configuration_Thread_control (see red arrows

in Figure 5.1).

Thread size. To solve this issue, the size reserved for each object from the Task Manager
depends on an extern value defined in the file confdefs.h: this value is just a sizeof()

of the final thread structure, but it is defined in this file since it is in fact a configuration-

dependent value.

Thread pointers. To solve this issue, the initialization sequence for a thread (i.e., when-

ever a thread is created) refers to the global array _Thread_Control_add_ons[]. This array,

made of

Thread_Control_add_on, knows how to connect the fields inside the Thread_Control to the

data structures laid out inside Configuration_Thread_control. Each Thread_Control_add_on
has two fields.

destination: it remembers the offset of the pointer that must be initialized. This means that

destination bytes after the starting address of the thread that is being created, is the

address of a pointer that must point to a structure inside Configuration_Thread_control.

source: it remembers the offset of the starting address of a data structure inside

Configuration_Thread_control. Since the starting addresses of

Thread_Control and Configuration_Thread_control are the same2, this offset is in fact

the displacement in bytes (inside the thread that is being created) of the data structure

that must be pointed from destination.
2 This is because Thread_Control is the first field inside Configuration_Thread_Control.
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As an example, let’s assume that every pointer inside this paragraph is a char*, such to be able to address
any byte at any alignment. Given that thread is the pointer of the thread that is being created, for every
Thread_Control_add_on: *(thread+destination) = thread+source.

The array _Thread_Control_add_ons is defined inside confdefs.h since it must know the

final layout of Configuration_Thread_control. This array is then exported so that the kernel

can use it at runtime.
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6 | Semaphore Manager

The semaphore manager offers the user a way to synchronize tasks while using shared

resources. Such manager is able to create different type of semaphores (locks) depending on

the parameters that the user selects when creating one. However, while considering the SMP

personality of the kernel, there is just one type of semaphore that can be used by the user

when the shared data is shared by tasks that resides in different cores. This protocol, the

MrsP protocol, was first presented in the paper “A Schedulability Compatible Multiprocessor
Resource Sharing Protocol - MrsP” by A. Burns and A. J. Wellings during ECRTS 2013. Such

protocol is the main focus of this chapter (we do not consider the uniprocessor resource

sharing protocols supported by RTEMS).

The internals of this protocol reported in this chapter is quite different from its imple-

mentation inside the master branch of RTEMS.

It is advisable to understand how the protocol works before reading this chapter. Refer

to Section 6.2.1

6.1 Data Structures

Being a ceiling priority protocol, MrsP must have hooks on several places inside the

kernel.

• On the thread that is using or waiting for the resource, in order to update the internal

state of the resource.

• On the resource itself, to keep track of the pending requests and the internal state of

the resource.

• On the scheduler, in order to manage the ceiling priority and the eventual scheduling

decisions that enforce the change in the priority of threads. Moreover, also the helping

mechanism must interact with the whole scheduler to enforce the helping mechanism

invariant.

6.1.1 Resource Node

The Resource_Node is the structure that remembers which MrsP resources are owned

by a specific thread. This is the hook of the protocol inside the thread structure and each
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Thread_Control has its own, as can be seen in Figure 5.1. Note that the structure itself is

embedded inside Thread_Control as it is not a pointer: the memory it requires is accounted

for in Thread_Control. Figure 6.1 shows this structure.

Resource_Node

Chain_Control resources_owned
MRSP_Control * pending_on

uint32_t index_of_pending_request

Figure 6.1: Resource_Node

resources_owned: the LIFO-ordered list of resources currently owned by the thread.

pending_on: a pointer to the MrsP resource that the thread requested but whose request could not

be granted since the resource is already owned by another thread. If this pointer is

not NULL then the thread participates in the helping mechanism whenever it uses its

processor.

index_of_pending_request: the index of the request inside the FIFO queue of the MrsP resources. This is a useful

shortcut since the FIFO queue of the MrsP resources is implemented as a circular

buffer.

6.1.2 Semaphore Control

The Semaphore_Control is the “base class” for any semaphore that RTEMS can use. Figure

6.2 shows this structure.

Semaphore_Control

Objects_Control Object
rtems_attribute attribute_set

union Core_control

CORE_mutex_Control mutex
CORE_semaphore_Control semaphore

MRSP_Control mrsp

Figure 6.2: Semaphore_Control

Object: the Object_Control of the semaphore.

attribute_set: the attributes specified by the user when the semaphore is created. These are used to

discriminate between the 3 structures inside the Core_control and they are also used

to discriminate the runtime behavior of the semaphore if it is not a MrsP semaphore.

Core_control: this is a union containing the actual semaphore-specific data of the type of semaphore

selected by the user. In this chapter we focus only on MRS_Control.
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6.1.3 MrsP Control

The MRSP_Control is the structure representing a MrsP resource, and as such it holds all

the the MrsP-specific data. Figure 6.3 shows this structure.

MRSP_Control

bitmask
management

owner
management

FIFO queue
management

spinners
management

priority
management

Chain_Node Node
bitmask id
bitmask resource_mask
bitmask nested_mask

Thread_Control * owner
bool owner_is_executing

Thread_Control ** pending
uint32_t in
uint32_t out

Chain_Control Rivals
bitmask spinning

Priority_Control initial_priority_of_owner
Priority_Control * ceiling_priorities

contiguous memory

0 1 . . . m

contiguous memory

0 1 . . . m
1 element for
each scheduler

threadi stack

Resource_Node

Chain_Node Node
Atomic_Uint state

Figure 6.3: MRSP_Control and MRSP_Rival

Node: the chain node of the resource. It is the element that is inserted in

Resource_Node.resources_owned.

id: the numeric id of the resource. This value is unique and is produced from

MRSP_global_Control.available_ids. It is used to index the resource inside

MRSP_global_Control: since lots of operations are managed through bitmask opera-

tions, this numeric value identifies which bit inside the bitmasks (the

id-th bit) represents the specific resource.

resource_mask: a shortcut. This is the bitmask where only the id-th bit is set. It is used to perform

bitmask operations in MRSP_global_Control.
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nested_mask: a bitmask that remembers all the resources that are directly or indirectly related by

nesting to this resource. The “nesting relationship” is transitive. A i-th bit set in this

mask means that the resource whose id is i is related to this resource through nesting.

Refer to Section 6.2.4 for the specific use of this field.

owner: a pointer to the thread that is currently owning the resource. This field is NULL if the

resource is free.

owner_is_executing: flag to determine whether owner is currently executing (possibly using the

Scheduler_Node of a rival). This field is kept updated by the scheduler through

_MRSP_check_invariant_for_XXX_execution.

pending: array used to implement the FIFO queue of each MrsP resource. It is implemented

as a circular buffer. It is not implemented as a list because it is related to spinning:

spinning is treated as a bitmask and it produces “absolute” indexes that correspond

to the elements inside this array. If if the i-th bit of spinning is set, it means that the

thread pending[i] is currently spinning (or offering help to owner).

in
out: indexes used to manage the circular buffer pending. in remembers the first free

position inside pending, while out remembers the index of the oldest (valid) element

inside pending.

Rivals: the chain containing the ticket locks used to implement the spinning mechanism. The

chain is a FIFO queue: it has the “same” elements and the same orders that pending.

spinning: the bitmask used to remember which of the pending thread are currently executing

(i.e., which pending thread are spinning or are helping owner). This bitmask is used

to quickly index an element inside pending. Its content is kept updated from the

scheduler through _MRSP_check_invariant_for_XXX_executing.

initial_priority_of_owner: the priority of owner before it raised its priority to the ceiling of the resource. This

priority is restored to the thread’s node once it releases the resource. To note: this

priority could be the ceiling priority of a previously nested resources, in which case

that resource has the original priority of the thread’s node.

ceiling_priorities: array used to remember the ceiling priority of the resource for each scheduler. In

partitioned systems, each scheduler corresponds to a specific processor. Each value

should be updated by the user through rtems_semaphore_set_priority.

6.1.4 MrsP Rival

MRSP_Rival is a temporary structure used to implement a MCS (Mellor-Crummey and

Scott) queue-based locks. This low-level lock is used to implement the spinning mechanism.

This kind of lock has been selected in the hope of exploiting the memory hierarchy of the

platform: spinning is performed on a local flag, easily fitting inside L1 cache (possibly no

bus accesses), whose value is updated only once by the remote task that is releasing the

resource (just one bus access). Figure 6.3 shows this structure.
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Node: the chain node inserted inside MRSP_Control.Rivals.

state: the state of the spinlock. There are only two states.

1. MRSP_RIVAL_STATE_WAITING: the thread that created this MRSP_Rival should be

spinning: it is a rival.

2. MRSP_RIVAL_STATE_NEW_OWNER: the thread that created this MRSP_Rival should

stop spinning since it became the new owner of the resource.

6.1.5 MrsP Global Control

The MRSP_global_Control is a structure summarizing the state of the protocol throughout

the whole system. Its main use is to ease the enforcement of the helping mechanism by the

scheduler. Its internal state is updated by both the scheduler and the semaphore manager.

Figure 6.4 shows this structure. Section 6.2.4 and 6.2.3.5 further explain how this structure

is used.

MRSP_global_Control

bitmask available_ids
Thread_Control ** offering_help

bitmask actives
MRSP_Control ** root_resources

contiguous memory

0 1 . . . k

0 1 . . . k

max bitmask index

Figure 6.4: MRSP_global_Control

available_ids: a bitmask remembering which ids are still unused. Every time a MrsP resource is

created a bit inside this bitmask is cleared, and every time a MrsP resource is deleted a

bit inside this bitmask is set. This bitmask is an easy way to generate unique numbers1

within a specific range. The ids produced from this bitmask are used for

MRSP_Control.id. The ids produced from this bitmask range from 1 to the mask index

inside the bitmask: the produced id values are used to extract bits in other bitmasks.

offering_help: an array summarizing the state of the helping mechanism. This array is in fact a

dictionary: the index of the array is the id of a MrsP resource, while the value stored

represents one of the threads that can be used for the helping mechanism in case the

owner of the MrsP resource identified by MRSP_Control.id is not executing. If there

1 Unique in this context means that the same number is not used simultaneously by different objects. Objects
whose life times do not overlap may have/use the same unique number.
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are several threads that can help the resource owner, just one of them is remembered.

This array is kept updated by both the lock/unlock procedures and the scheduler: the

array stored inside this array are thread that are currently executing. This array is

used in conjunction with active.

actives: a bitmask remembering which resources have threads that are currently spinning. This

bitmask is used to quickly indexing offering_help. Its value is kept updated by both

the lock/unlock procedures and the scheduler. The bit i is 0 iff the resource whose id

is i has no set bits inside spinning.

root_resources: an array summarizing how resources are nested. This array is in fact a dictionary:

the index of the array is the id of a MrsP resource, while the value stored represents

outermost resource that prevents the use of the MrsP resource identified by

MRSP_Control.id. Such outermost resource is in fact the root of the resource tree.

The resource tree is the hierarchical representation of the relationships formed by

threads owning resources and thread waiting for resources (see Section 6.2.1.2).

6.2 Usage

6.2.1 Overview of the MrsP Protocol

MrsP is a generalization of the uniprocessor Stack Resource Protocol (SRP). It was

developed to be Response Time Analysis (RTA) friendly and in such a way to minimize the

blocking time of tasks pending on the same resources. In this section we assume that the

protocol is defined to work in a partitioned fixed-priority system, but the protocol can be

generalized.

CPU1

task1
· · ·

taskx

partition1

SRP

· · ·

CPUm

tasky

· · ·
taskn

partitionm

SRP

resk FIFO

m

spinning at
own ceiling

spinning at
own ceiling

Figure 6.5: Visual representation of the MrsP protocol.

The protocol is build upon some core concepts. Figure 6.5 shows the general structure

and base concepts of MrsP.

• It is a ceiling priority protocols. Every time a task acquires a MrsP lock it raises its

priority to the highest priority of those tasks that reside in the same partition and that

can request the same lock.
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• If a task requests a lock that is already locked by a task that resides in another partition,

then its request is inserted in a per-lock FIFO queue and the task start spinning at the

ceiling priority of the lock. Note that every time a task requests a lock, it is assured

that no other task inside the same partition has requested the same lock (because of

the ceiling priority). The FIFO queue guarantees that the task will eventually become

the lock holder after a finite (and accountable) amount of time. The task performs

busy wait (spinning) such to ensure the ceiling priority of the protocol: no other lower

priority tasks can start using the processor and possibly start using the same lock.

• It is leverages a helping mechanism in order to speed up the use of the resource (and

consequently the release of the lock) by remote tasks. This helping mechanism states

an invariant that must hold for every time instant: every spinning cycle performed by

tasks waiting on a resource can be converted in the execution of the task holding the

resource. This means that if the resource holder is preempted in its own core, then

this task should progress in its execution (until it releases the resource) by using the

busy wait of those tasks (if any) waiting on the same resource.

6.2.1.1 Implementation-specific issues

The protocol itself is quite general and does not bother with implementation issues,

which must however be addressed in any RTOS.

Helping mechanism The protocol itself does not forces a specific implementation on the

helping mechanism. The helping mechanism was implemented with a temporary

migration of the task holding the resource: such a thread can temporary use the

Scheduler_Node of a thread pending on the same resource and thus make progress on

a remote processor.

Original processor becomes available If the resource holder is being helped in a remote

processor and in the meanwhile its own original processor becomes available again,

it was decided that the resource holder should not migrate back. In its stead, a

placeholder is used to keep the processor occupied while preventing lower priority

tasks to execute. Such a placeholder is in fact the idle thread using the Scheduler_Node
of the resource holder (and thus inheriting its ceiling priority).

Blocking operations The whole protocol leverages the fact that the resource holder makes

progress whenever there is at least one task busy waiting for the same resource: letting

a task be blocked while holding or waiting for a MrsP resource invalidates this property.

It is enforced inside the scheduler that no blocking operations can be performed on

threads using the MrsP protocol

6.2.1.2 Resource Tree and Nested Resources

It is useful to note that the helping mechanism invariant can be easily generalized when

tasks are permitted to nest resources, as this invariant is transitive. Indeed, a task that is

nesting resources is enabled to use the spinning cycles of any of those tasks waiting for any
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of the resources it is nesting. Moreover, such a task can leverage all those tasks that are

indirectly blocked by the resource it is nesting. Figure 6.6 shows graphically a scenario where

the helping mechanism must be applied transitively. The hierarchical structure depicted in

T1

RB T2 T3

RC T5RA T4

Figure 6.6: Scenario with nested resources: the property of being a “task offering help” must
be transitive. In this example, task T5 which is waiting for resource RC , can help both task
T3, which is directly preventing its execution, and task T1, which is instead doing it indirectly,
through RB. Symmetrically, a helper for T1 is to be searched within the set of tasks it is
directly or indirectly blocking.

the same Figure 6.6 is a resource tree: the transitivity of the MrsP invariant translates in a set

of resources and threads that must all cooperate in order to make progress. In the simplest

case, where threads do not nest resources, the resource tree equals to the FIFO queue of

pending threads and the thread owning the resource.

6.2.2 Semaphore Initialization

The semaphore manager must preallocate enough memory in order for its objects to

hold any type of semaphore: in fact the user can create at runtime any kind of semaphore,

and such semaphore-object are initialized only at runtime. This is partly done by the union

Core_control inside Semaphore_Control: it will hold enough memory for the largest data

structure among the ones listed. confdefs.h also account for the memory through several

macros: indeed a MrsP resource must be able to allocate several arrays and such memory

overhead is accounted for inside confdefs.h through the macro

CONFIGURE_MEMORY_FOR_MRSP_SEMAPHORES.

6.2.2.1 MrsP Global Control Initialization

The two arrays used by MRSP_global_Control must be allocated and initialized during

the start-up phase. The current implementation creates these two arrays inside confdefs.h.

Their size depends on the number of MrsP resources needed by the user, and such value is

upperbounded by the maximum index that the type bitmask can produce.

6.2.2.2 MrsP Control Initialization

As shown in Figure 6.3, the two arrays

pending and ceiling_priorities are not embedded inside MRSP_Control because their

size is user-defined (upperbounded by the total number of schedulers in the system). Each
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of these arrays are created by rtems_workspace_allocate, and their memory overhead is

accounted for inside confdefs.h. Such arrays are initialized with default values.

• pending is filled with NULL pointers.

• ceiling_priorities is filled with the value (a single value) supplied by the user. The

user should then update this array with rtems_semaphore_set_priority in order to

set the specific ceiling priority for each scheduler.

The id of a resource is extracted from MRSP_global_Control.available_ids. Every

time a resource is created, a bit is cleared inside available_ids and the index of such bit

becomes the id of the resource. When the resource is deleted, its id is used to set the

corresponding bit inside available_ids such that other resources can be created. This is an

important step since most of the bitmask operations rely on the fact that each MrsP resource

has a unique id and that such id can be used as index inside several arrays (such arrays are

in fact dictionaries whose key is the numeric id of the resource).

6.2.3 Runtime MrsP Resource Management

As shown in Figure 6.3, the MRSP_Control contains several fields that can be grouped

together since they are used for a specific purpose.

6.2.3.1 Owner Management

The management of the owner is straightforward. Once a thread becomes the owner of

a resource the field MRSP_Control.owner is updated.

The field MRSP_Control.owner_is_executing is updated by the lock/unlock procedures

or by the scheduler itself.

• The lock procedure updates this field in case a thread requests a resource while the

owner of the resource is not executing. The helping mechanism is applied and as a

side effect also this field.

• The unlock procedure updated this field in case the next thread that must use the

resource is not executing (and there are no other spinning threads).

• The scheduler updates this field every time the helping mechanism must be applied

or when the thread owning the resource is preempted while there are no spinning

threads available.

6.2.3.2 FIFO Queue Management

The FIFO queue of the resource (MRSP_Control.pending) is implemented as a circular

buffer in order to avoid to perform a linear search in a list looking for a non-preempted

spinning thread whenever the helping mechanism must be applied, and this can be avoided

thanks to the bitmask MRSP_Control.spinning (see Section 6.2.3.4). The parameters in

and out are used as indexes pointing to the head and tail of the circular buffer, and they
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are updated every time a thread is inserted or removed from the FIFO queue. Every time a

thread is inserted in the FIFO queue, the position of the circular buffer where it is inserted is

stored in Resource_Node.index_of_pending_request (since each thread can be pending

on at most one resource at a time, a single field suffices). This field is used by the scheduler

to update the bitmask spinning whenever a spinning thread is preempted or resumes its

execution.

6.2.3.3 Ceiling Priority Management

Once a thread requests a MrsP resource it must inherit the ceiling priority of the resource.

As a first thing, the priority is changed only on the Scheduler_Node of the thread, while

the thread maintains its own priority: indeed this change relates to the runtime state of

the scheduler, which is kept within the nodes and not the threads. As a second thing, it

is important to remember which was the priority of the Scheduler_Node before its thread

attempted to request the resource: such priority must be restored once the thread releases

the resource. Moreover, since threads can nest resources and as such they can inherit a

cascading set of ceiling priorities, there must be a way to remember the priority of the node

at each step of its nesting.

Ceiling priority. The ceiling priority is extracted from

MRSP_Control.ceiling_priorities, using as index the scheduler to which the node be-

longs to. It is important to note that if a thread nests resources while being helped (while

using the Scheduler_Node of a spinning thread) then the ceiling priority must be updated on

the original node of the thread, and the helping node must not be updated. This is because

the helping node has no relation with the newly nested resources: it is offering help for the

base resource and as such there will probably be higher priority tasks in its scheduler that

should not be delayed because the helped (alien) thread is nesting other resources. The

thread can however keep using the Scheduler_Node of the spinning thread as long as it is

not preempted.

Original priority. It is possible to implement the history of the several ceiling priorities

without using lists. This is possible thanks to the thread stack and to the field

MRSP_Control.initial_priority_of_owner. Every time a thread requests a resource it

must change the priority of its node, however while doing so it has access to its previous

priority.

1. If the resource it requests is free, then such previous priority is saved inside

initial_priority_of_owner. Since nesting resources is managed as a LIFO queue,

when the thread releases the resource it will restore its priority to the value saved

inside initial_priority_of_owner, thus obtaining the priority it had before the

request (whether it was the ceiling priority of a previously obtained resource or its

own original priority).

2. If the resource it requests is not free, then the thread will start spinning. This operation

is “blocking”, meaning that the thread will not return from the

rtems_semaphore_obtain procedure before it stops spinning. Therefore, the previous
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priority can be stored as a temporal variable inside the stack of the thread. Once the

thread stops spinning (and will therefore be the owner of the resource), it can save

such value in the field initial_priority_of_owner.

In this way, all spinning threads can remember (step by step) the history of their ceiling

priorities.

6.2.3.4 Spinning Management

The spinning management is strictly related to the helping mechanism: the spinning

threads are the ones that can offer help to the resource owner.

Threads spin on a local variable (inside MRSP_Rival) that they create while inside the

rtems_semaphore_obtain procedure. Being a temporary local variable on the stack of

the thread, its lifetime equals the lifetime of the stack of the rtems_semaphore_obtain

procedure. Such structure is inserted inside the chain MRSP_Control.Rival in a FIFO

order (the same order of the FIFO queue MRSP_Control.pending). Since threads will keep

spinning until they become the owners of the resource, there will not be inconsistencies

inside the chain MRSP_Control.Rival: even if MRSP_Rivals are stack variables used in the

“global chain” Rivals, they will not be deleted out of order, as they will be deleted at specific

times (when the thread transitions from being a spinning thread to being the owner of the

resource).

The field MRSP_Control.spinning is a bitmask remembering which of the spinning

threads are currently executing. This bitmask is used to quickly select a spinning thread that

can be used by the helping mechanism. This value is kept updated by the scheduler itself

since every time a spinning thread is preempted or resumes its execution this field must

be updated. It is important to note that this field is strictly related to the circular buffer

implementing the FIFO queue of the resource: each bit inside spinning relates to the thread

of the same index inside pending. The scheduler can correctly update this bitmask thanks

to Resource_Node.index_of_pending_request: being a circular buffer, the position inside

pending will not change during the spinning cycles of the thread, thus making

index_of_pending_request always coherent.

When it is necessary to select a spinning thread for the helping mechanism:

1. From the bitmask spinning is selected the first set bit;

2. The position of this bit is translated to a index;

3. This index is used to extract an element from the array pending;

4. This extracted value represents a currently spinning thread that can therefore be used

for the helping mechanism.

6.2.3.5 Global State Management

The global state mainly manages two pieces of information.

v1.0 53 of 69



RTEMS Internals Manual
-how the kernel works-

Resource tree summary. MRSP_global_Control.root_resources is a dictionary that

can be used to understand which is the root resource for a specific resource. How this field

is updated is explained in Section 6.2.3.6.

Threads offering help. There can be several threads spinning on the same resource, but

only one at a time can be used for the helping mechanism. The fields

MRSP_global_Control.offering_help and

MRSP_global_Control.actives are used to leverage this observation: they are a shortcut

for the helping mechanism to select which thread can offer help when necessary. These two

fields are updated by both the lock/unlock procedures and the scheduler. Their updates are

driven by very specific invariants (and whichever operation modifies the premises of these

invariants, must then update these fields).

actives. When there is at least one thread spinning on a resource whose id is i, then

<resourcei>.spinning must have at least one set bit. As long as

<resourcei>.spinning is not zero, then the i-th bit of actives is set.

offering_help. This array collapses the content of array

MRSP_Control.pending to a single value: one value for each available resource id.

Each element can be easily computed (i.e., updated) thanks to the bitmasks inside

MRSP_Control. Refer to Section 6.2.3.4 to understand how a spinning thread can be

elected from MRSP_Control.pending in constant time.

active and offering_help must be coherent: offering_help[i]==NULL iff the i-th bit in

active is not set.

6.2.3.6 Nested Resources Management

Managing nested resources requires a little bit of iterations over the resource tree: indeed

nesting resources means that two different resource trees must be joined together, and

updating a hierarchical structure requires some iterations. The building block of the resource

tree is the bitmask

MRSP_Control.nested_mask: it remembers all the resources2 of the resource tree rooted

on the specified MRSP_Control. Looking at those nested_mask in a cascading fashion shows

how resources are nested together. Moreover, in order to avoid to incrementally build the

resource tree every time it is needed, the field MRSP_global_Control.root_resources acts

as a cache for the most important and required information about the resource tree: which

resource is the root. By knowing the root, it is possible to address every part of the whole

resource tree, and more importantly, by accessing the nested_mask of the root it is possible

to know all the resources that are part of the tree (important piece of information for the

helping mechanism).

Acquiring a resource. When a thread nests resources, it combines two different resource

trees: the one of the already obtained resources (tree Old), and the one of the resource

R that is going to be acquired (tree New). In case this resource R is free, then the

2 Each bit in the bitmask corresponds to a specific MRSP_Control: index of the bit equals the id of the resource.
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Figure 6.7: Joining two resource trees: tree New joins tree Old because the thread owning
the root of tree New tries to obtain resource R. Gray rectangles represent threads, circles
represent resources. Resources of tree New change their resource root from L to A (in
MRSP_global_Control.root_resources). The resource sub-trees rooted on resources A,
B and R have changed (tree New is a new branch): they must update their
MRSP_Control.nested_mask. The non-green resources of tree Old remain untouched.
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Figure 6.8: Dividing a resource tree: the thread owning the root of the old resource tree
releases A, thus creating two subtrees, tree Local and tree Other. Gray rectangles represent
threads, circles represent resources. Resources of tree Local change their resource root
from A to B (in MRSP_global_Control.root_resources). The root resource in tree Other
changes its nest_mask to forget the resources belonging to the old resource tree that are
now part of tree Local.

combination is easy since tree New comprises only resource R. On the other side, if

resource R is already occupied, tree New can be a big and complex tree. In order for

the bitmask nested_mask to hold its meaning, part of the tree New must be updated:

some of its resources now reckon an additional branch (the new branch is tree Old).

The part of the tree that must be updated, as shown in Figure 6.7, is the chain of

resources that leads from resource R up to the root of the tree New. Moreover, every
resource in tree Old has now a new resource root: therefore the array
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MRSP_global_Control.root_resources must be updated.

Releasing a resource. When a thread releases a nested resource, it divides the resource

tree into two new trees: the tree Local is the one that the thread still uses (whose

resource root is the outermost resource locked by the thread), and the tree Other

that comprises all the resources and threads that were still pending on the released

resource. Since a thread can release only one resource at a time, updating the

MRSP_Control.nested_mask is easy. As shown in Figure 6.8, the new root of tree

Local knows exactly all the resources of its own resource tree: nested_mask remember

exactly this information. This means that the tree Other has all the resources of the

non-divided resource tree minus all the resources of tree Local. This subtraction can be

easily performed by the bitmask. However, the tree Local has now a new resource root,

and therefore the array MRSP_global_Control.root_resources must be updated.

6.2.4 Helping Mechanism

The helping mechanism revolves around enforcing that the thread owning a resource

makes progress as long as there are at least one thread spinning waiting for one of the

resources it blocks to be freed. This translates in making sure to pick up a spinning thread

and preempt it in favor of the resource owner. Once a thread available to help is selected, it

is just a matter of performing a context-switch (and possibly a migration). The selection of

a helping thread can be decomposed in several steps.

1. Understanding which thread must be helped. This means understanding which is the

root resource of the resource tree. The resource tree is identified by the resource(s)

owned by the thread or by the resource on which a thread is pending on. If the thread

is not pending on any resource (and is using the MrsP protocol), it means that it is the

root of the resource tree. Otherwise, if a thread is pending on a resource, the root of

the resource tree can be obtained by looking at the

MRSP_global_Control.root_resources: the root resource is

<root_resource> = MRSP_global_Control.root_resources[<thread>.Resource_Node.pending_on.id].

2. Understanding which resources in the resource tree have spinning threads that are

wasting CPU cycles. This means understanding which resources are part of the resource

tree and selecting those which currently have at least one pending thread spinning.

This can be done with a simple bitmask operation:

<active_resources> = <root_resource>.nested_mask AND MRSP_global_Control.actives.

3. Selecting one of the spinning threads of the resource tree. This means selecting one

of the “active resources” and picking one of its currently spinning threads.

<helping_task> = MRSP_global_Control.offering_help[FIRST_BIT_TO_INDEX(<active_resources>)].

This can be done in constant time and the result is correct because all the involved data

structures are kept updated by both the lock/unlock procedures and by the scheduling

operations.

The selection of the helping thread is performed in 4 distinct scenarios.
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1. Locking a resource. When a thread requests a resource, and the owner of the resource

is not executing3.

2. Unlocking a resource. When the next-in-line pending thread is not executing: the

thread releasing the resource must make sure that the MrsP invariant holds for the

released resource tree.

3. Preempting the resource owner. The scheduler must make sure that the MrsP invariant

holds: if there are spinning threads, then one of them must be selected as the helping

thread. This is done by the MRSP_check_invariant_for_stop_execution procedure.

4. Resuming a spinning thread. The scheduler must make sure that the root of the

resource tree is already executing, and if it is not the case then the just resumed thread

is eligible as the helping thread. This is done by the

MRSP_check_invariant_for_resume_execution procedure.

3 In this case the selection of the helper is redundant, since the thread requesting the resource is the logical
candidate.
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The message manager offers the user a set of operations which can be used to transmit

one-time-use data among the task population. Section 7.2.1 illustrates its expected runtime

behavior.

7.1 Data Structures

The message manager makes use of two kind of data structures.

• Some data structures are used only by the message manager itself. Such structures

manages the specific aspects of the manager (e.g., how the buffer storing messages is

implemented). Such structures are: Message_queue_Control,
CORE_message_queue_Control, CORE_message_queue_Buffer_control,
CORE_message_queue_Buffer.

• Some data structures are shared among other managers: these structures mainly relate

to the suspension of tasks and their management. One of these structures can be used

by at most one manager at any time (i.e., a task can not suspend itself in order to

wait simultaneously for a message and an event) and is therefore placed in the TCB:

it is the Thread_Wait_information. Another structure is instead just a template that is

instantiated also by other manager, however each manager uses its field in a specific

way: it is Thread_queue_Control. In this chapter it is shown and explained how such

structures and their fields are used by the Message Manager.

7.1.1 Message queue Control

The Message_queue_Control is the overlay

Object manipulated by the manager. It remembers how the message queue must be managed

and it encapsulates the runtime state of the message queue. As shown in Figure 7.1 it is

mainly a wrapper for the kernel-level message queue.

Object: the Objects_Control of the message queue. It represents the Object that can be used by

user as a channel of communication.

attribute_set: the attributes specified by the user that the message queue must have (see the user

manual for the list of attributes and their meaning).
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Figure 7.1: Data structures for the Message Queue Manager.
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7.1.2 CORE message queue Control

The

CORE_message_queue_Control represents the kernel-level data structure for the message

queue. It contains both the pointer to buffer where the messages can be stored and the list

of thread pending on the buffer (waiting of a message or waiting to write into the buffer).

Figure 7.1 shows this structure and how it relates to CORE_message_queue_Buffer_control.

Wait_queue: the queue used to store the threads that are blocked on the message queue. Threads

are blocked either because they are waiting for a message while the message queue is

empty, or because they want to store a message while the message queue is full.

Attributes: a flag used to understand in which order blocked tasks should wait.

max_pending_messages: the maximum number of messages that can be stored in the buffer. Indeed, the memory

reserved to store buffered messages depends on this value.

num_pending_messages: the number of messages stored on the buffer. It is the length of the queue

Pending_messages.

max_message_size: the maximum size that a message sent using this message queue can have. This value

is used to compute the amount of memory reserved for the buffer.

Pending_messages: the anchor point for the list of pending messages. The nodes of this list are

CORE_message_queue_Buffer_control.Node. The order of pending messages de-

pends on the primitive used by the user: using RTEMS API messages can be queued

either in FIFO order (by using rtems_message_queue_send) or in LIFO order (by us-

ing rtems_message_queue_urgent). Messages can be queued based on their priority

only through the POSIX APIs.

message_buffers: the pointer to the allocated memory that contains buffered messages. This field re-

members the starting address of the memory allocated through

rtems_workspace_allocate and it is used only to free the same memory.

Inactive_messages: the anchor point for the list of free entries of the message buffer. A message must be

queued either in this list or in the Pending_messages list.

7.1.2.1 Thread queue Control

The Thread_queue_Control is used to manage sets of tasks blocked on a object. In this

section it is shown how this structure is used by the Message Manager. Refer to Section 7.2.4

for further information.

Queues: it is actually a union. It is the anchor point for a list or a tree: the flag discipline

signals which of the two structure must be used. This is the queue used to collect the

set of tasks blocked on the message queue.

Chain_Control Fifo: the list used when tasks must be queued in FIFO order.
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RBTree_Control Priority: the tree used when tasks must be queued in priority

order.

sync_state: a flag (enum) used to make sure that the thread that is going to block on the message

queue must really be blocked. It is to avoid to block a thread when an ISR or timeout

that is going to unblock the same thread is fired during the blocking operation (in

order to reduce the code executed while having interrupt disabled, only some pieces

of the blocking procedure is executed with disabled interrupt).

discipline: a flag specifying what kind of Queues is used. It is an enum. It has a direct relation to

CORE_message_queue_Attributes.

THREAD_QUEUE_DISCIPLINES_FIFO: tasks will queue in FIFO order.

Queue is implemented using the Chain_Control.

THREAD_QUEUE_DISCIPLINES_PRIORITY: tasks will queue in priority order. The

priority is the priority of the task (Thread_Control.current_priority). Queue

is implemented using the RBTree_Control.

timeout_status: it holds the value that will be returned to threads still pending on Queues when their

timeout fires.

7.1.2.2 CORE message queue Attributes

The CORE_message_queue_Attributes just encapsulates a single flag. This flag has a direct

relation to Thread_queue_Control.discipline: it is in fact used only to understand which kind

of Thread_queue_Control.Queue must be created.

discipline: it specifies in which order blocked tasks will be ordered. It is an enum.

CORE_MESSAGE_QUEUE_DISCIPLINES_FIFO: tasks will queue in FIFO order. Re-

lates to THREAD_QUEUE_DISCIPLINES_FIFO.

CORE_MESSAGE_QUEUE_DISCIPLINES_PRIORITY: tasks will queue in priority or-

der. Relates to THREAD_QUEUE_DISCIPLINES_PRIORITY.

7.1.3 CORE message queue Buffer control

The CORE_message_queue_Buffer_control is the wrapper for the actual message. This

wrapper contains the information that are used by the Message Manager to manage the

actual message. Figure 7.1 shows this wrapper and where it is allocated.

Node: the element that is used to queue the message in the list

CORE_message_queue_Control.Pending_message (meaning that the message is buffered

and contains valid data) or in the list

CORE_message_queue_Control.Inactive_messages (meaning that the memory of

this structure contains non-valid data and that it can then be used for buffering a new

message).

priority: the priority of the message. This value is used only with the POSIX API.
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7.1.3.1 CORE message queue Buffer

The CORE_message_queue_Buffer represents the actual message. Since the size of the

message is unknown to the kernel and is specified by the user, the actual data of the message

will overflow to the memory that the manager allocated exactly for this purpose. Even if the

size of the messages is unknown, in order to allocate enough memory for them the manager

leverage the fact that each message must have a size of at most

CORE_message_queue_Control.max_message_size (value provided by the user during the

initialization of the message queue).

size: the actual size of the message. This value is always smaller or equal than

CORE_message_queue_Control.max_message_size. This field is used in order to copy

only the actual content of the message. From the point of view of the kernel, a message

is just a sequence of bytes with no special meaning (i.e., it is not structured data since

the content of the message differs from queue to queue): in order to copy its content

correctly it must know only how big (i.e., how much size) a message uses.

buffer: the actual content of the message. This array marks only the start of the message’s

content: the whole message will overflow from this array and will use the memory

that follows it (such memory is preallocated when the message queue is created).

7.1.4 Thread Wait information

The Thread_Wait_information remembers all the information needed by a thread when

it is suspended waiting for something. In this case, a thread can be waiting on a message

queue in order to receive a message or waiting for the message queue to have some place

in the buffer to store a message. It’s main purpose is to decouple the thread to the “event”

it is waiting for, and therefore storing the possible callbacks and results in an asynchronous

way. In case the thread is waiting because the message queue is empty, then this structure

is used to acquire the information about the message when it will be received. In case the

thread is waiting because the message queue is full, then this structure is used to store the

information about the message that should be sent. Since a thread can be waiting for at

most one “event” at time, this structure is placed inside the TCB (as seen in Figure 5.1) and

is shared among several manager. Figure 7.2 shows this structure, and in this section it is

shown how its field are used by the Message Manager.

id: the id of the message queue on which the thread is waiting.

count: the “priority” with which the message was sent. Considering the RTEMS API, this

field is used to store whether the message is sent with rtems_message_queue_send or

rtems_message_queue_urgent.

return_argument: the address of the local variable that is going to store the size of the message. This

field is used only for thread suspending while waiting for a message.

return_argument_second: it stores the pointer for the content of the message. It is in fact a union of either a

void * or a const void *: the difference is determined on the fact that the message must
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Thread_Wait_information

Objects_Id id
uint32_t count

void * return_argument
Thread_Wait_information_Object_argument_type return_argument_second

uint32_t option
uint32_t return_code

Thread_queue_Control * queue
Thread_Wait_flags flags

Figure 7.2: Thread_Wait_information

be sent (in which case it is used as const void * because the message is read-only) or on

the fact that the message must be received (in which case it is used as void * since it is

the pointer where the message’s content must be written inside the receiving thread).

option: the size of the message. This field is used only when a thread suspends waiting for a

free entry inside the buffer of the message queue.

return_code: the flag signaling whether the operation was successful or not. Since threads can be

blocked on a message queue, the actual acquisition or buffering of the message can be

performed by someone else, and the blocked thread is not assured to resume imme-

diately its execution (i.e., while being blocked a higher priority thread was released

preventing the blocked thread to resume its execution after it is no more waiting on

the message queue). Therefore this field is used as an intermediate place to store the

actual outcome of the operation. This value is then converted into rtems_status_code
and returned to the user when the blocked thread resumes its execution.

queue: the queue where the thread is suspended.

flags: unused.

7.2 Usage

7.2.1 Overview of the Message Protocol

The message protocol offers the threads a way to communicate and synchronize. A

message is a user-defined amount of data, and how this data is structured is transparent to

the protocol (as long as the size of the data is known). The whole protocol is centered on

the concept of message queue. A message queue is a channel over which a thread sends

and receives messages. The message queue also act as a buffer for sent messages. Moreover,

threads can wait (i.e., suspend with or without timer) on a message queue while waiting for

a message (if the message queue is empty) or while waiting for a free entry into the buffer

(when the message queue is full). Whether threads are suspends, and which policy they

follow while waiting (FIFO or priority) is specified by the user.
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In the time composable version of RTEMS, the message protocol acts as a sampling port.

This greatly simplifies its implementation (e.g., no need for timers) and provides a more

analysable runtime behavior.

7.2.2 Message Queue Initialization

The Message Manager is tasked to create a Message_queue_Control every time the user

calls rtems_message_queue_create. It is then its duty to reserve enough memory that will

be used as the buffer for the messages. The layout of the memory is shown in Figure 7.1.

This (single) chunk of memory is then initialized: at regular intervals are created and instan-

tiated the Chain_Node which are then chained inside

CORE_message_queue_Control.Inactive_messages. Each of these Chain_Nodes is placed

in such a way as to have enough memory for both the structure

CORE_message_queue_Buffer_control and the content of the message. Indeed, the size of

the message’s content is accounted for (because the user specifies the maximum size that a

message of the queue can have) only during the initialization phase of the message queue:

it is the Message Manager that makes sure that between any two

CORE_message_queue_Buffer_control there is enough memory for the content of the mes-

sages. Such memory (even if it does not belong to any data structure) is used because

CORE_message_queue_Buffer.buffer will overflow in it.

7.2.3 Sending and Receiving Messages

The message queue has a buffer where messages can be stored. This buffer is used only

in case there are no threads already waiting to receive a message: in this case there is at

least one waiting thread, the thread sending the message bypasses the buffer and write the

content of the message directly to one pending thread (using the address provided by the

pending thread’s Wait_information.return_argument_second).

Messages can be any kind of data: the kernel is just concerned on their size. Indeed,

the act of sending, buffering and receiving messages is performed with a deep copy of the

content of the message. How much data needs to be copied is specified by

CORE_message_queue_buffer.size. It is the receiving thread that must know which kind

of data it receives. It is useful to note that the messages normally live on the thread stack but

for the period when they are buffered on the message queue (and this is why the messages

are deep copied).

7.2.4 Waiting Threads

Threads can wait on a message queue either because there are no messages pending

on the queue to be received or either because the message queue is full and there is no

place to store the message to send. Since these two scenarios are mutually exclusive, just

a single Wait_queue can be used for both situations and therefore the memory footprint of

the kernel can be reduced: understanding why the thread are blocked on the queue (and
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therefore understanding what to do with them) is just a matter of checking whether the

message queue has pending messages.
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The event manager offers the user a way to synchronize the task population. Section

8.2.1 illustrates its expected runtime behavior.

8.1 Data Structures

Similar to the message manager, the event manager uses two kind of data structures.

1. One data structure is used only for the event manager: it is the one that embodies

the concept of event set. This data structure is minimal: since an event is just a

flag, the event set is simply a bitfield inside _Configuration_Thread_control. Such data

structure is Event_Control. It is useful to note that the an “event” is not properly an

Object, indeed it does not have an rtems_id: the event manager is an overlay upon the

task population, and as such it uses the rtems_id of the thread in order to perform its

operations.

2. Some data structures are shared among other managers: these structures mainly

relate to the suspension of tasks and their management. These structures can be

used by at most one manager at a time therefore are placed inside the TCB: they

are the Thread_Wait_information and Watchdog_Control. The Watchdog_Control is not

discussed in this document.

8.1.1 Event Control

The Event_Control is the structures that gathers the events. This structure is placed inside

RTEMS_API_Control which in turn is defined inside the _Configuration_Thread_control: since

the events are per-task specific they are placed inside the thread. It is possible to retrieve

the RTEMS_API_Control (and therefore the

Event_Control) from the TCB: it is Thread_Control.API_Extension[0] (see Figure 5.1 to

see its placement inside the TCB and refer to Section 5.2.1 on how this field is initialized).

Figure 8.1 shows this structure.

Event: the structure containing the event set. The event set is just a bit field, and each bit

corresponds to an event. In fact, rtems_event_set is just a uint32_t and therefore each

single event is a power of two. Since each event uses exactly one bit, by combining

them with the or operator it is possible to form a set of events. The field
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RTEMS_API_Control

Event_Control System_event
ASR_Information Signal
Thread_Action Signal_action

uint32_t Notepads[0]

Event_Control Event
rtems_event_set pending_events

Figure 8.1: Event_Control inside RTEMS_API_Control

pending_events remembers all the events sent to the task that are still not used. An

event is used when a task resumes its execution because that event is necessary to

satisfy its waiting condition. A set bit at position i inside pending_events means that

the task received RTEMS_EVENT_<i>.

System_event: events used by the kernel (e.g., for the networking layer). This exists in order to not

occupy “events slots” from the user.

Signal: structure used for the Asynchronous Signal Routine (ASR) Manager.

Signal_action: structure used for the ASR Manager.

Notepads: deprecated. Array size is 0 because it will overflow in the following memory area.

8.1.2 Thread Wait information

The Thread_Wait_information remembers all the information needed by a thread when

it is suspended waiting for something. Figure 8.2 shows this structure, and in this section

it is shown how its field are used by the Event Manager. This structure is placed inside the

TCB, as shown in Figure 5.1.

Thread_Wait_information

Objects_Id id
uint32_t count

void * return_argument
Thread_Wait_information_Object_argument_type return_argument_second

uint32_t option
uint32_t return_code

Thread_queue_Control * queue
Thread_Wait_flags flags

Figure 8.2: Thread_Wait_information

id: unused.
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count: it stores the set of events upon which the task is waiting. It is used as a read-only value:

each task sending events will update the Event_Control.pending_events field and

it will then check such updated value against count to determine whether the waiting

condition of the task is satisfied or not. The set of events upon which the task is waiting

is maintained separated to the set of events received by the task because the set of

events received by the task must be updated (i.e., cleared) only once, exactly when

the task resumes its execution: if during the suspension of the task the same events

are sent several times they should still count as events sent only once.

return_argument: it stores the pointer to the variable that will contain the set of satisfied events. The

variable is supplied by the user.

return_argument_second: unused.

option: it stores the policy used by the suspended task. It can be either RTEMS_EVENT_ANY or

RTEMS_EVENT_ALL. This information is used by a task sending an event in order to

understand whether the waiting condition of the suspended task is satisfied or not.

return_code: it is the rtems_status_code that will be returned to the user when the task will resume

its execution. This field is set by tasks sending events or by the timeout routine. This

field exists because a suspended task does not know why it resumes its execution: it

can be both because its waiting condition is satisfied or because the timeout fired.

queue: unused.

flags: unused.

8.2 Usage

8.2.1 Overview of the Event Protocol

With respect to the RTEMS API, an event is a flag upon which a task can synchronize its

execution. Being a flag, an event does not carry any additional information: its meaning is

completely determined by how the user decides to use the events. Normally this means that

the set of events upon which a task is waiting translates in a synchronization barrier for the

waiting task.

A task can suspend itself waiting for one or more events to be satisfied: an event is

satisfied when the corresponding flag is set. Moreover, a task has several ways to wait for

an event: it can decide to wait for at least one or for all the events to be satisfied (in case

the task is waiting for more than one event) and it can decide to wait for at most a specific

amount of time before resuming its execution even if the even(s) is not satisfied (the task

arms a timer that forces the task to wake up).

A task can send one or more events to any other task: it is not required that the task

that receives the event must be suspended. Indeed, sending an event translates in setting

a specific flag inside the targeted task: whether the targeted task uses or not the event is

application specific. Moreover, an event can be sent several times, but the receiving task
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has no way to determine the number of times its events have been set: the flag is a binary

flag and is reset only when the task consumes the event (i.e., when the task waits for the

specified event and then resumes its execution).
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