
CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

RTEMS SMPReady to Fly

QT-109 Technical NoteRTEMS SMPQualification TargetRelease 6

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CONTENTS

1 Introduction 3

2 Applicable and Reference Documents 5
2.1 Applicable Documents . 5
2.2 Reference Documents . 5

3 Terms, Definitions and Abbreviated Terms 7

4 Artefacts 13
4.1 Requirements Baseline . 13

4.1.1 Software System Specification (SSS) . 13
4.1.2 Interface Requirements Document (IRD) 13
4.1.3 Safety and Dependability Analysis Results for Lower Level Suppliers 13

4.2 Technical Specification (TS) . 13
4.2.1 Software Requirements Specification (SRS) 13
4.2.2 Software Interface Control Document (ICD) 20

4.3 Design Definition File (DDF) . 22
4.3.1 Software Design Document (SDD) . 22
4.3.2 Software Configuration File (SCF) . 32
4.3.3 Software Release Document (SRelD) . 34
4.3.4 Software User Manual (SUM) . 36
4.3.5 Software Source Code and Media Labels 38
4.3.6 Software Product and Media Labels . 38
4.3.7 Training Material . 38

4.4 Design Justification File (DJF) . 38
4.4.1 Software Verification Plan (SVerP) . 38
4.4.2 Software Validation Plan (SValP) . 38
4.4.3 Independent Software Verification & Validation Plan 39
4.4.4 Software Unit and Integration Test Plan (SUITP) 39
4.4.5 Software Validation Specification (SVS) with Respect to TS 45
4.4.6 Software Validation Specification (SVS) with Respect to RB 50
4.4.7 Acceptance Test Plan . 50
4.4.8 Software Unit and Integration Test Report 50
4.4.9 Software Validation Report with Respect to TS 50
4.4.10 Software Validation Report with Respect to RB 50
4.4.11 Acceptance Test Report . 50
4.4.12 Installation Report . 51

© 2019, 2020, 2021 embedded brains GmbH i

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.4.13 Software Verification Report (SVR) . 51
4.4.14 Independent Software Verification & Validation Report 60
4.4.15 Software Reuse File (SRF) . 60
4.4.16 Software Problems Reports and Nonconformance Reports 62
4.4.17 Joint Review Reports . 62
4.4.18 Justification of Selection of Operational Ground Equipment and Support

Services . 62
4.5 Management File (MGT) . 62

4.5.1 Software Development Plan (SDP) . 62
4.5.2 Software Review Plan (SRevP) . 62
4.5.3 Software Configuration Management Plan (SCMP) 62
4.5.4 Training Plan . 62
4.5.5 Interface Management Procedures . 62
4.5.6 Identification of NRB SW and Members . 63
4.5.7 Procurement Data . 63

4.6 Maintenance File (MF) . 63
4.6.1 Maintenance Plan . 63
4.6.2 Maintenance Records . 63
4.6.3 SPR and NCR . 63
4.6.4 Modification Analysis Report . 63
4.6.5 Problem Analysis Report . 63
4.6.6 Modification Documentation . 63
4.6.7 Baseline for Change . 63
4.6.8 Joint Review Reports . 64
4.6.9 Migration Plan and Notification . 64
4.6.10 Retirement Plan and Notification . 64

4.7 Operational (OP) . 64
4.7.1 Software Operation Support Plan . 64
4.7.2 Operational Testing Results . 64
4.7.3 SPR and NCR . 64
4.7.4 User’s Request Record . 64
4.7.5 Post Operation Review Report . 64

4.8 Product Assurance File (PAF) . 64
4.8.1 Software Product Assurance Plan (SPAP) 64
4.8.2 Software Product Assurance Requirements For Suppliers 65
4.8.3 Audit Plan and Schedule . 65
4.8.4 Review and Inspection Plans or Procedures 65
4.8.5 Procedures and Standards . 65
4.8.6 Modelling and Design Standards . 65
4.8.7 Coding Standards and Description of Tools 65
4.8.8 Software Problem Reporting Procedure . 65
4.8.9 Software Dependability and Safety Analysis Report 65
4.8.10 Criticality Classification of Software Components 66
4.8.11 Software Product Assurance Report . 66
4.8.12 Software Product Assurance Milestone Report (SPAMR) 66
4.8.13 Statement of Compliance With Test Plans and Procedures 70
4.8.14 Records of Training and Experience . 70
4.8.15 (Preliminary) Alert Information . 70
4.8.16 Results of Pre-Award Audits and Assessments, and of Procurement Sources 70

© 2019, 2020, 2021 embedded brains GmbH ii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.8.17 Software Process Assessment Plan . 70
4.8.18 Software Process Assessment Report . 70
4.8.19 Review and Inspection Reports . 70
4.8.20 Receiving Inspection Report . 70
4.8.21 Input to Product Assurance Plan for Systems Operation 71

5 Qualification Data Package 73
5.1 Variants . 73
5.2 Content . 73

6 Work Items 77
6.1 Traceability . 77
6.2 Software Requirements Engineering . 85

6.2.1 Requirements for Requirements . 87
6.2.1.1 Identification . 87
6.2.1.2 Level of Requirements . 88

6.2.1.2.1 Absolute Requirements 89
6.2.1.2.2 Absolute Prohibitions . 89
6.2.1.2.3 Recommendations . 89
6.2.1.2.4 Permissions . 89
6.2.1.2.5 Possibilities and Capabilities 90

6.2.1.3 Syntax . 90
6.2.1.4 Wording Restrictions . 91
6.2.1.5 Separate Requirements . 93
6.2.1.6 Conflict Free Requirements . 93
6.2.1.7 Use of Project-Specific Terms and Abbreviations 94
6.2.1.8 Justification of Requirements . 94
6.2.1.9 Requirement Validation . 94
6.2.1.10 Resources and Performance . 94

6.2.2 Specification Items . 95
6.2.2.1 Specification Item Hierarchy . 95
6.2.2.2 Specification Item Types . 96

6.2.2.2.1 Root Item Type . 96
6.2.2.2.2 Build Item Type . 97
6.2.2.2.3 Build Ada Test Program Item Type 98
6.2.2.2.4 Build BSP Item Type . 99
6.2.2.2.5 Build Configuration File Item Type 100
6.2.2.2.6 Build Configuration Header Item Type 101
6.2.2.2.7 Build Group Item Type . 101
6.2.2.2.8 Build Library Item Type 102
6.2.2.2.9 Build Objects Item Type 103
6.2.2.2.10 Build Option Item Type 104
6.2.2.2.11 Build Script Item Type 105
6.2.2.2.12 Build Start File Item Type 107
6.2.2.2.13 Build Test Program Item Type 107
6.2.2.2.14 Constraint Item Type . 108
6.2.2.2.15 Glossary Item Type . 109
6.2.2.2.16 Glossary Group Item Type 109
6.2.2.2.17 Glossary Term Item Type 109

© 2019, 2020, 2021 embedded brains GmbH iii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.18 Interface Item Type . 109
6.2.2.2.19 Application Configuration Group Item Type 110
6.2.2.2.20 Application Configuration Option Item Type 110
6.2.2.2.21 Application Configuration Feature Enable Option Item

Type . 111
6.2.2.2.22 Application Configuration Feature Option Item Type . . 111
6.2.2.2.23 Application Configuration Value Option Item Type 111
6.2.2.2.24 Interface Compound Item Type 112
6.2.2.2.25 Interface Container Item Type 112
6.2.2.2.26 Interface Define Item Type 112
6.2.2.2.27 Interface Domain Item Type 113
6.2.2.2.28 Interface Enum Item Type 113
6.2.2.2.29 Interface Enumerator Item Type 113
6.2.2.2.30 Interface Forward Declaration Item Type 114
6.2.2.2.31 Interface Function Item Type 114
6.2.2.2.32 Interface Group Item Type 114
6.2.2.2.33 Interface Header File Item Type 115
6.2.2.2.34 Interface Macro Item Type 115
6.2.2.2.35 Interface Typedef Item Type 115
6.2.2.2.36 Interface Unspecified Item Type 116
6.2.2.2.37 Interface Variable Item Type 116
6.2.2.2.38 Requirement Item Type 116
6.2.2.2.39 Functional Requirement Item Type 117
6.2.2.2.40 Action Requirement Item Type 117
6.2.2.2.41 Generic Functional Requirement Item Type 121
6.2.2.2.42 Non-Functional Requirement Item Type 121
6.2.2.2.43 Design Group Requirement Item Type 122
6.2.2.2.44 Generic Non-Functional Requirement Item Type 122
6.2.2.2.45 Runtime Performance Requirement Item Type 123
6.2.2.2.46 Requirement Validation Item Type 125
6.2.2.2.47 Runtime Measurement Test Item Type 125
6.2.2.2.48 Specification Item Type 126
6.2.2.2.49 Test Case Item Type . 127
6.2.2.2.50 Test Platform Item Type 128
6.2.2.2.51 Test Procedure Item Type 128
6.2.2.2.52 Test Suite Item Type . 129

6.2.2.3 Specification Attribute Sets and Value Types 129
6.2.2.3.1 Action Requirement Boolean Expression 129
6.2.2.3.2 Action Requirement Condition 130
6.2.2.3.3 Action Requirement Expression 130
6.2.2.3.4 Action Requirement Expression Condition Set 131
6.2.2.3.5 Action Requirement Expression State Name 131
6.2.2.3.6 Action Requirement Expression State Set 131
6.2.2.3.7 Action Requirement Name 132
6.2.2.3.8 Action Requirement Skip Reasons 132
6.2.2.3.9 Action Requirement State 132
6.2.2.3.10 Action Requirement Transition 133
6.2.2.3.11 Action Requirement Transition Post-Condition State . . . 133
6.2.2.3.12 Action Requirement Transition Post-Conditions 134

© 2019, 2020, 2021 embedded brains GmbH iv

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.13 Action Requirement Transition Pre-Condition State Set . 134
6.2.2.3.14 Action Requirement Transition Pre-Conditions 134
6.2.2.3.15 Application Configuration Group Member Link Role . . . 135
6.2.2.3.16 Application Configuration Option Name 135
6.2.2.3.17 Boolean or Integer or String 135
6.2.2.3.18 Build Assembler Option 135
6.2.2.3.19 Build C Compiler Option 136
6.2.2.3.20 Build C Preprocessor Option 136
6.2.2.3.21 Build C++ Compiler Option 136
6.2.2.3.22 Build Dependency Link Role 137
6.2.2.3.23 Build Include Path . 137
6.2.2.3.24 Build Install Directive 137
6.2.2.3.25 Build Install Path . 138
6.2.2.3.26 Build Link Static Library Directive 138
6.2.2.3.27 Build Linker Option . 138
6.2.2.3.28 Build Option Action . 139
6.2.2.3.29 Build Option C Compiler Check Action 141
6.2.2.3.30 Build Option C++ Compiler Check Action 141
6.2.2.3.31 Build Option Default by Variant 142
6.2.2.3.32 Build Option Name . 142
6.2.2.3.33 Build Option Set Test State Action 142
6.2.2.3.34 Build Option Value . 143
6.2.2.3.35 Build Source . 143
6.2.2.3.36 Build Target . 143
6.2.2.3.37 Build Test State . 144
6.2.2.3.38 Build Use After Directive 144
6.2.2.3.39 Build Use Before Directive 144
6.2.2.3.40 Constraint Link Role . 145
6.2.2.3.41 Copyright . 145
6.2.2.3.42 Enabled-By Expression 145
6.2.2.3.43 Glossary Membership Link Role 146
6.2.2.3.44 Integer or String . 146
6.2.2.3.45 Interface Brief Description 146
6.2.2.3.46 Interface Compound Definition Kind 147
6.2.2.3.47 Interface Compound Member Compound 147
6.2.2.3.48 Interface Compound Member Declaration 147
6.2.2.3.49 Interface Compound Member Definition 148
6.2.2.3.50 Interface Compound Member Definition Directive 148
6.2.2.3.51 Interface Compound Member Definition Variant 148
6.2.2.3.52 Interface Definition . 149
6.2.2.3.53 Interface Definition Directive 149
6.2.2.3.54 Interface Definition Variant 149
6.2.2.3.55 Interface Description . 150
6.2.2.3.56 Interface Enabled-By Expression 150
6.2.2.3.57 Interface Enum Definition Kind 151
6.2.2.3.58 Interface Enumerator Link Role 151
6.2.2.3.59 Interface Function Definition 151
6.2.2.3.60 Interface Function Definition Directive 152
6.2.2.3.61 Interface Function Definition Variant 152

© 2019, 2020, 2021 embedded brains GmbH v

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.62 Interface Function Link Role 152
6.2.2.3.63 Interface Group Identifier 153
6.2.2.3.64 Interface Group Membership Link Role 153
6.2.2.3.65 Interface Include Link Role 153
6.2.2.3.66 Interface Notes . 153
6.2.2.3.67 Interface Parameter . 154
6.2.2.3.68 Interface Parameter Direction 154
6.2.2.3.69 Interface Placement Link Role 154
6.2.2.3.70 Interface References Set 154
6.2.2.3.71 Interface Return Directive 155
6.2.2.3.72 Interface Return Value 155
6.2.2.3.73 Interface Target Link Role 155
6.2.2.3.74 Link . 155
6.2.2.3.75 Name . 156
6.2.2.3.76 Optional String . 157
6.2.2.3.77 Placement Order Link Role 157
6.2.2.3.78 Requirement Reference 157
6.2.2.3.79 Requirement Reference Type 158
6.2.2.3.80 Requirement Refinement Link Role 158
6.2.2.3.81 Requirement Text . 158
6.2.2.3.82 Requirement Validation Link Role 160
6.2.2.3.83 Requirement Validation Method 160
6.2.2.3.84 Runtime Measurement Environment 161
6.2.2.3.85 Runtime Measurement Environment Table 161
6.2.2.3.86 Runtime Measurement Parameter Set 161
6.2.2.3.87 Runtime Measurement Request Link Role 162
6.2.2.3.88 Runtime Measurement Value Kind 162
6.2.2.3.89 Runtime Measurement Value Table 162
6.2.2.3.90 Runtime Performance Limit Table 162
6.2.2.3.91 Runtime Performance Parameter Set 163
6.2.2.3.92 SPDX License Identifier 163
6.2.2.3.93 Specification Attribute Set 163
6.2.2.3.94 Specification Attribute Value 164
6.2.2.3.95 Specification Boolean Value 164
6.2.2.3.96 Specification Explicit Attributes 164
6.2.2.3.97 Specification Floating-Point Assert 165
6.2.2.3.98 Specification Floating-Point Value 166
6.2.2.3.99 Specification Generic Attributes 166
6.2.2.3.100 Specification Information 166
6.2.2.3.101 Specification Integer Assert 167
6.2.2.3.102 Specification Integer Value 168
6.2.2.3.103 Specification List . 168
6.2.2.3.104 Specification Mandatory Attributes 168
6.2.2.3.105 Specification Member Link Role 169
6.2.2.3.106 Specification Refinement Link Role 169
6.2.2.3.107 Specification String Assert 169
6.2.2.3.108 Specification String Value 170
6.2.2.3.109 Test Case Action . 170
6.2.2.3.110 Test Case Check . 171

© 2019, 2020, 2021 embedded brains GmbH vi

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.111 Test Context Member 171
6.2.2.3.112 Test Header . 172
6.2.2.3.113 Test Run Parameter . 172
6.2.2.3.114 Test Support Method 173
6.2.2.3.115 UID . 173
6.2.2.3.116 Unit Test Link Role . 173

6.2.3 Traceability of Specification Items . 174
6.2.3.1 History of Specification Items . 174
6.2.3.2 Backward Traceability of Specification Items 174
6.2.3.3 Forward Traceability of Specification Items 174
6.2.3.4 Traceability between Software Requirements, Architecture and

Design . 174
6.2.4 Requirement Management . 175

6.2.4.1 Change Control Board . 175
6.2.4.2 Add a Requirement . 176
6.2.4.3 Modify a Requirement . 177
6.2.4.4 Mark a Requirement as Obsolete 177

6.2.5 Tooling . 177
6.2.5.1 Tool Requirements . 177
6.2.5.2 Tool Evaluation . 178
6.2.5.3 Best Available Tool - Doorstop . 178
6.2.5.4 Custom Requirements Management Tool 180

6.2.6 How-To . 180
6.2.6.1 Getting Started . 180
6.2.6.2 Application Configuration Options 180

6.2.6.2.1 Modify an Existing Group 181
6.2.6.2.2 Modify an Existing Option 181
6.2.6.2.3 Add a New Group . 181
6.2.6.2.4 Add a New Option . 182
6.2.6.2.5 Generate Content after Changes 182

6.2.6.3 Glossary Specification . 182
6.2.6.4 Interface Specification . 183

6.2.6.4.1 Specify an API Header File 183
6.2.6.4.2 Specify an API Element 183

6.2.6.5 Requirements Depending on Build Configuration Options 184
6.2.6.6 Requirements Depending on Application Configuration Options . . 185
6.2.6.7 Action Requirements . 186

6.2.6.7.1 Example . 187
6.2.6.7.2 Pre-Condition Templates 193
6.2.6.7.3 Post-Condition Templates 195

6.3 Applicable and Reference Documents . 197
6.4 Terms, Definitions and Abbreviated Terms . 198
6.5 Work Packages . 198

6.5.1 Specify Build System . 201
6.5.1.1 Inputs . 201
6.5.1.2 Activities . 201
6.5.1.3 Outputs . 201

6.5.2 Implement Build System . 201
6.5.2.1 Inputs . 201

© 2019, 2020, 2021 embedded brains GmbH vii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.2.2 Activities . 201
6.5.2.3 Outputs . 202

6.5.3 Software User Manual (SUM) . 202
6.5.3.1 Inputs . 202
6.5.3.2 Activities . 202
6.5.3.3 Outputs . 202

6.5.4 Specify Application Configuration . 202
6.5.4.1 Inputs . 202
6.5.4.2 Activities . 202
6.5.4.3 Outputs . 203

6.5.5 Design Application Configuration . 203
6.5.5.1 Inputs . 203
6.5.5.2 Activities . 203
6.5.5.3 Outputs . 203

6.5.6 Test Application Configuration . 203
6.5.6.1 Inputs . 203
6.5.6.2 Activities . 203
6.5.6.3 Outputs . 204

6.5.7 SUITP . 204
6.5.7.1 Inputs . 204
6.5.7.2 Activities . 204
6.5.7.3 Outputs . 204

6.5.8 SVS for TS . 204
6.5.8.1 Inputs . 204
6.5.8.2 Activities . 204
6.5.8.3 Outputs . 205

6.5.9 Specify Object Support . 205
6.5.9.1 Inputs . 205
6.5.9.2 Activities . 205
6.5.9.3 Outputs . 205

6.5.10 Design Object Support . 205
6.5.10.1 Inputs . 205
6.5.10.2 Activities . 206
6.5.10.3 Outputs . 206

6.5.11 Test Object Support . 206
6.5.11.1 Inputs . 206
6.5.11.2 Activities . 206
6.5.11.3 Outputs . 206

6.5.12 Specify Partition Manager . 206
6.5.12.1 Inputs . 207
6.5.12.2 Activities . 207
6.5.12.3 Outputs . 207

6.5.13 Design Partition Manager . 207
6.5.13.1 Inputs . 207
6.5.13.2 Activities . 207
6.5.13.3 Outputs . 207

6.5.14 Test Partition Manager . 208
6.5.14.1 Inputs . 208
6.5.14.2 Activities . 208

© 2019, 2020, 2021 embedded brains GmbH viii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.14.3 Outputs . 208
6.5.15 Specify Barrier Manager . 208

6.5.15.1 Inputs . 208
6.5.15.2 Activities . 208
6.5.15.3 Outputs . 209

6.5.16 Design Barrier Manager . 209
6.5.16.1 Inputs . 209
6.5.16.2 Activities . 209
6.5.16.3 Outputs . 209

6.5.17 Test Barrier Manager . 209
6.5.17.1 Inputs . 209
6.5.17.2 Activities . 209
6.5.17.3 Outputs . 210

6.5.18 Specify Event Manager . 210
6.5.18.1 Inputs . 210
6.5.18.2 Activities . 210
6.5.18.3 Outputs . 210

6.5.19 Design Event Manager . 210
6.5.19.1 Inputs . 210
6.5.19.2 Activities . 211
6.5.19.3 Outputs . 211

6.5.20 Test Event Manager . 211
6.5.20.1 Inputs . 211
6.5.20.2 Activities . 211
6.5.20.3 Outputs . 211

6.5.21 Specify Timer Manager . 211
6.5.21.1 Inputs . 212
6.5.21.2 Activities . 212
6.5.21.3 Outputs . 212

6.5.22 Design Timer Manager . 212
6.5.22.1 Inputs . 212
6.5.22.2 Activities . 212
6.5.22.3 Outputs . 212

6.5.23 Test Timer Manager . 213
6.5.23.1 Inputs . 213
6.5.23.2 Activities . 213
6.5.23.3 Outputs . 213

6.5.24 Specify Message Queue Manager . 213
6.5.24.1 Inputs . 213
6.5.24.2 Activities . 213
6.5.24.3 Outputs . 214

6.5.25 Design Message Queue Manager . 214
6.5.25.1 Inputs . 214
6.5.25.2 Activities . 214
6.5.25.3 Outputs . 214

6.5.26 Test Message Queue Manager . 214
6.5.26.1 Inputs . 214
6.5.26.2 Activities . 214
6.5.26.3 Outputs . 215

© 2019, 2020, 2021 embedded brains GmbH ix

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.27 Specify Extension Manager . 215
6.5.27.1 Inputs . 215
6.5.27.2 Activities . 215
6.5.27.3 Outputs . 215

6.5.28 Design Extension Manager . 215
6.5.28.1 Inputs . 215
6.5.28.2 Activities . 216
6.5.28.3 Outputs . 216

6.5.29 Test Extension Manager . 216
6.5.29.1 Inputs . 216
6.5.29.2 Activities . 216
6.5.29.3 Outputs . 216

6.5.30 Specify Semaphore Manager . 216
6.5.30.1 Inputs . 217
6.5.30.2 Activities . 217
6.5.30.3 Outputs . 217

6.5.31 Design Semaphore Manager . 217
6.5.31.1 Inputs . 217
6.5.31.2 Activities . 217
6.5.31.3 Outputs . 217

6.5.32 Test Semaphore Manager . 218
6.5.32.1 Inputs . 218
6.5.32.2 Activities . 218
6.5.32.3 Outputs . 218

6.5.33 Specify Task Manager . 218
6.5.33.1 Inputs . 218
6.5.33.2 Activities . 218
6.5.33.3 Outputs . 219

6.5.34 Design Task Manager . 219
6.5.34.1 Inputs . 219
6.5.34.2 Activities . 219
6.5.34.3 Outputs . 219

6.5.35 Test Task Manager . 219
6.5.35.1 Inputs . 219
6.5.35.2 Activities . 219
6.5.35.3 Outputs . 220

6.5.36 Specify Scheduler Manager . 220
6.5.36.1 Inputs . 220
6.5.36.2 Activities . 220
6.5.36.3 Outputs . 220

6.5.37 Design Scheduler Manager . 220
6.5.37.1 Inputs . 220
6.5.37.2 Activities . 221
6.5.37.3 Outputs . 221

6.5.38 Test Scheduler Manager . 221
6.5.38.1 Inputs . 221
6.5.38.2 Activities . 221
6.5.38.3 Outputs . 221

6.5.39 Specify Clock Manager . 221

© 2019, 2020, 2021 embedded brains GmbH x

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.39.1 Inputs . 222
6.5.39.2 Activities . 222
6.5.39.3 Outputs . 222

6.5.40 Design Clock Manager . 222
6.5.40.1 Inputs . 222
6.5.40.2 Activities . 222
6.5.40.3 Outputs . 222

6.5.41 Test Clock Manager . 223
6.5.41.1 Inputs . 223
6.5.41.2 Activities . 223
6.5.41.3 Outputs . 223

6.5.42 Specify Rate Monotonic Manager . 223
6.5.42.1 Inputs . 223
6.5.42.2 Activities . 223
6.5.42.3 Outputs . 224

6.5.43 Design Rate Monotonic Manager . 224
6.5.43.1 Inputs . 224
6.5.43.2 Activities . 224
6.5.43.3 Outputs . 224

6.5.44 Test Rate Monotonic Manager . 224
6.5.44.1 Inputs . 224
6.5.44.2 Activities . 224
6.5.44.3 Outputs . 225

6.5.45 Specify C Standard Support . 225
6.5.45.1 Inputs . 225
6.5.45.2 Activities . 225
6.5.45.3 Outputs . 225

6.5.46 Implement C Standard Support . 225
6.5.46.1 Inputs . 225
6.5.46.2 Activities . 226
6.5.46.3 Outputs . 226

6.5.47 Test C Standard Support . 226
6.5.47.1 Inputs . 226
6.5.47.2 Activities . 226
6.5.47.3 Outputs . 226

6.5.48 Specify System Initialization . 226
6.5.48.1 Inputs . 226
6.5.48.2 Activities . 227
6.5.48.3 Outputs . 227

6.5.49 Design System Initialization . 227
6.5.49.1 Inputs . 227
6.5.49.2 Activities . 227
6.5.49.3 Outputs . 227

6.5.50 Test System Initialization . 227
6.5.50.1 Inputs . 228
6.5.50.2 Activities . 228
6.5.50.3 Outputs . 228

6.5.51 Specify System Termination . 228
6.5.51.1 Inputs . 228

© 2019, 2020, 2021 embedded brains GmbH xi

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.51.2 Activities . 228
6.5.51.3 Outputs . 229

6.5.52 Design System Termination . 229
6.5.52.1 Inputs . 229
6.5.52.2 Activities . 229
6.5.52.3 Outputs . 229

6.5.53 Test System Termination . 229
6.5.53.1 Inputs . 229
6.5.53.2 Activities . 229
6.5.53.3 Outputs . 230

6.5.54 Software Configuration File (SCF) . 230
6.5.54.1 Inputs . 230
6.5.54.2 Activities . 230
6.5.54.3 Outputs . 230

6.5.55 Software Reuse File (SRF) . 230
6.5.55.1 Inputs . 230
6.5.55.2 Activities . 230
6.5.55.3 Outputs . 231

6.5.56 Specify Board Support Package . 231
6.5.56.1 Inputs . 231
6.5.56.2 Activities . 231
6.5.56.3 Outputs . 231

6.5.57 Design Board Support Package . 231
6.5.57.1 Inputs . 232
6.5.57.2 Activities . 232
6.5.57.3 Outputs . 232

6.5.58 Test Board Support Package . 232
6.5.58.1 Inputs . 232
6.5.58.2 Activities . 232
6.5.58.3 Outputs . 232

6.5.59 Specify SPARC Support . 233
6.5.59.1 Inputs . 233
6.5.59.2 Activities . 233
6.5.59.3 Outputs . 233

6.5.60 Design SPARC Support . 233
6.5.60.1 Inputs . 233
6.5.60.2 Activities . 234
6.5.60.3 Outputs . 234

6.5.61 Test SPARC Support . 234
6.5.61.1 Inputs . 234
6.5.61.2 Activities . 234
6.5.61.3 Outputs . 234

6.5.62 Specify UART Driver . 234
6.5.62.1 Inputs . 235
6.5.62.2 Activities . 235
6.5.62.3 Outputs . 235

6.5.63 Design UART Driver . 235
6.5.63.1 Inputs . 235
6.5.63.2 Activities . 236

© 2019, 2020, 2021 embedded brains GmbH xii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.63.3 Outputs . 236
6.5.64 Implement UART Driver . 236

6.5.64.1 Inputs . 236
6.5.64.2 Activities . 236
6.5.64.3 Outputs . 236

6.5.65 Test UART Driver . 236
6.5.65.1 Inputs . 236
6.5.65.2 Activities . 237
6.5.65.3 Outputs . 237

6.5.66 Specify GPIO Driver . 237
6.5.66.1 Inputs . 237
6.5.66.2 Activities . 237
6.5.66.3 Outputs . 238

6.5.67 Design GPIO Driver . 238
6.5.67.1 Inputs . 238
6.5.67.2 Activities . 238
6.5.67.3 Outputs . 238

6.5.68 Implement GPIO Driver . 238
6.5.68.1 Inputs . 238
6.5.68.2 Activities . 239
6.5.68.3 Outputs . 239

6.5.69 Test GPIO Driver . 239
6.5.69.1 Inputs . 239
6.5.69.2 Activities . 239
6.5.69.3 Outputs . 239

6.5.70 Specify SpaceWire Driver . 239
6.5.70.1 Inputs . 239
6.5.70.2 Activities . 240
6.5.70.3 Outputs . 240

6.5.71 Design SpaceWire Driver . 240
6.5.71.1 Inputs . 240
6.5.71.2 Activities . 240
6.5.71.3 Outputs . 240

6.5.72 Implement SpaceWire Driver . 240
6.5.72.1 Inputs . 241
6.5.72.2 Activities . 241
6.5.72.3 Outputs . 241

6.5.73 Test SpaceWire Driver . 241
6.5.73.1 Inputs . 241
6.5.73.2 Activities . 241
6.5.73.3 Outputs . 241

7 RTEMS Improvement Qualification Data Package 243
7.1 RTEMS Managers Candidate Evaluation Report . 243
7.2 RTEMS Improvement Requirement Document . 243
7.3 RTEMS Improvement User Manual and Design Notes 244
7.4 RTEMS Improvement Verification Report . 245
7.5 Software Budget Report . 246
7.6 Product Software Justification File . 247

© 2019, 2020, 2021 embedded brains GmbH xiii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.7 RTEMS Improvement Design Document . 248
7.8 RTEMS Improvement Configuration File . 248
7.9 RTEMS Improvement Integration Test Plan . 249
7.10 RTEMS Improvement Unit Test Plan . 250
7.11 RTEMS Improvement Validation Testing Specification 250
7.12 RTEMS Tailoring Plan . 251
7.13 RTEMS Improvement Validation, Integration and Unit Test Report 251

7.13.1 RTEMS Improvement Validation Test Report 252
7.13.2 RTEMS Improvement Integration Test Report 252
7.13.3 RTEMS Improvement Unit Test Report . 253

7.14 RTEMS Test Suite . 253
7.15 RTEMS Improvement Acceptance Test Plan . 254
7.16 RTEMS Improvement Maintenance Plan . 254
7.17 RTEMS Improvement Installation Report . 255
7.18 RTEMS Improvement Acceptance Data Package 256
7.19 RTEMS Tailored . 256
7.20 Software Development Plan . 258
7.21 Review Plan . 259
7.22 Final Report . 259
7.23 RTEMS Improvement Product Assurance Plan . 260
7.24 RTEMS Improvement Product Assurance Report 261
7.25 RTEMS Improvement Configuration Management Plan 261
7.26 RTEMS Improvement SOC with GSWS . 262
7.27 RTEMS Improvement Software Criticality Analysis 263
7.28 EDILIB . 264
7.29 Conclusion . 264

8 Analysis of other standards 265
8.1 GSWS Analysis . 265

8.1.1 Conclusions . 288
8.2 DO Analysis . 288

8.2.1 DO-178 . 288
8.2.1.1 Conclusions . 308

8.2.2 DO-330 . 309
8.2.3 DO-333 . 309

8.3 ISO 26262 Analysis . 309
8.3.1 Conclusions . 333

8.4 IEC Analysis . 334
8.4.1 IEC 61508-1 . 334
8.4.2 IEC 61508-3 . 341
8.4.3 Conclusions . 354

9 Tailoring of ECSS Standards for the QDP 355
9.1 Tailoring of ECSS-E-ST-40C . 355

9.1.1 Specification of system requirements allocated to software (5.2.2.1a) . . . 357
9.1.2 Identification of observability requirements (5.2.2.2a) 357
9.1.3 Specification of HMI requirements (5.2.2.3a) 358
9.1.4 Verification and validation process requirements (5.2.3.1a) 358
9.1.5 System input for software validation (5.2.3.2a) 358

© 2019, 2020, 2021 embedded brains GmbH xiv

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.6 System input for software installation and acceptance (5.2.3.3a) 359
9.1.7 Identification of software versions for software integration into the system

(5.2.4.1a) . 359
9.1.8 Identification of software versions for software integration into the system

(5.2.4.1b) . 359
9.1.9 Supplier support to system integration (5.2.4.2a) 360
9.1.10 Interface requirement specification (5.2.4.3a) 360
9.1.11 System database (5.2.4.4a) . 361
9.1.12 Development constraints (5.2.4.5a) . 361
9.1.13 On board control procedures (5.2.4.6a) 361
9.1.14 Development of software to be reused (5.2.4.7a) 362
9.1.15 Software safety and dependability requirements (5.2.4.8a) 362
9.1.16 Format and data medium (5.2.4.9a) . 363
9.1.17 System requirements review (5.2.5a) . 363
9.1.18 Software life cycle identification (5.3.2.1a) 364
9.1.19 Software life cycle identification (5.3.2.1b) 364
9.1.20 Software life cycle identification (5.3.2.1c) 364
9.1.21 Software life cycle identification (5.3.2.1d) 365
9.1.22 Identification of interfaces between development and maintenance

(5.3.2.2a) . 365
9.1.23 Software procurement process implementation (5.3.2.3a) 366
9.1.24 Automatic code generation (5.3.2.4a) . 366
9.1.25 Automatic code generation (5.3.2.4b) . 367
9.1.26 Automatic code generation (5.3.2.4c) . 367
9.1.27 Automatic code generation (5.3.2.4d) . 367
9.1.28 Automatic code generation (5.3.2.4e) . 368
9.1.29 Changes to baselines (5.3.2.5a) . 369
9.1.30 Joint reviews (5.3.3.1a) . 369
9.1.31 Software project reviews (5.3.3.2a) . 370
9.1.32 Software project reviews (5.3.3.2b) . 370
9.1.33 Software technical reviews (5.3.3.3a) . 371
9.1.34 Software technical reviews (5.3.3.3b) . 371
9.1.35 Software technical reviews (5.3.3.3c) . 371
9.1.36 System requirement review (5.3.4.1a) . 372
9.1.37 Preliminary design review (5.3.4.2a) . 372
9.1.38 Preliminary design review (5.3.4.2b) . 373
9.1.39 Critical design review (5.3.4.3a) . 373
9.1.40 Critical design review (5.3.4.3b) . 374
9.1.41 Qualification review (5.3.4.4a) . 374
9.1.42 Acceptance review (5.3.4.5a) . 375
9.1.43 Test readiness reviews (5.3.5.1a) . 375
9.1.44 Test review board (5.3.5.2a) . 375
9.1.45 Review phasing for flight software (5.3.6.1a) 376
9.1.46 Review phasing for flight software (5.3.6.1b) 376
9.1.47 Review phasing for ground software (5.3.6.2a) 377
9.1.48 Interface management procedures (5.3.7.1a) 377
9.1.49 Software technical budget and margin philosophy definition (5.3.8.1a) . . 377
9.1.50 Technical budget and margin computation (5.3.8.2a) 378
9.1.51 Compliance matrix (5.3.9.1a) . 379

© 2019, 2020, 2021 embedded brains GmbH xv

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.52 Documentation compliance (5.3.9.2a) . 379
9.1.53 Establishment and documentation of software requirements (5.4.2.1a) . . 379
9.1.54 Definition of functional and performance requirements for in flight mod-

ification (5.4.2.2a) . 380
9.1.55 Construction of a software logical model (5.4.2.3a) 380
9.1.56 Construction of a software logical model (5.4.2.3b) 381
9.1.57 Construction of a software logical model (5.4.2.3c) 381
9.1.58 Conducting a software requirement review (5.4.2.4a) 381
9.1.59 Transformation of software requirements into a software architecture

(5.4.3.1a) . 382
9.1.60 Software design method (5.4.3.2a) . 382
9.1.61 Selection of a computational model for real-time software (5.4.3.3a) . . . 382
9.1.62 Description of software behaviour (5.4.3.4a) 383
9.1.63 Development and documentation of the software interfaces (5.4.3.5a) . . 383
9.1.64 Definition of methods and tools for software intended for reuse (5.4.3.6a) 383
9.1.65 Definition of methods and tools for software intended for reuse (5.4.3.6b) 384
9.1.66 Definition of methods and tools for software intended for reuse (5.4.3.6c) 384
9.1.67 Reuse of existing software (5.4.3.7a) . 384
9.1.68 Definition and documentation of the software integration requirements

and plan (5.4.3.8a) . 385
9.1.69 Conducting a preliminary design review (5.4.4a) 385
9.1.70 Detailed design of each software component (5.5.2.1a) 386
9.1.71 Detailed design of each software component (5.5.2.1b) 386
9.1.72 Detailed design of each software component (5.5.2.1c) 386
9.1.73 Development and documentation of the software interfaces detailed de-

sign (5.5.2.2a) . 387
9.1.74 Production of the detailed design model (5.5.2.3a) 387
9.1.75 Software detail design method (5.5.2.4a) 387
9.1.76 Detailed design of real-time software (5.5.2.5a) 388
9.1.77 Detailed design of real-time software (5.5.2.5b) 388
9.1.78 Detailed design of real-time software (5.5.2.5c) 388
9.1.79 Detailed design of real-time software (5.5.2.5d) 389
9.1.80 Detailed design of real-time software (5.5.2.5e) 389
9.1.81 Utilization of description techniques for the software behaviour (5.5.2.6a) 389
9.1.82 Determination of design method consistency for real-time software

(5.5.2.7a) . 390
9.1.83 Development and documentation of the software user manual (5.5.2.8a) . 390
9.1.84 Definition and documentation of the software unit test requirements and

plan (5.5.2.9a) . 390
9.1.85 Conducting a detailed design review (5.5.2.10a) 391
9.1.86 Development and documentation of the software units (5.5.3.1a) 391
9.1.87 Software unit testing (5.5.3.2a) . 391
9.1.88 Software unit testing (5.5.3.2b) . 392
9.1.89 Software unit testing (5.5.3.2c) . 392
9.1.90 Software integration test plan development (5.5.4.1a) 393
9.1.91 Software units and software component integration and testing (5.5.4.2a) 393
9.1.92 Establishment of a software validation process (5.6.2.1a) 393
9.1.93 Establishment of a software validation process (5.6.2.1b) 394
9.1.94 Establishment of a software validation process (5.6.2.1c) 395

© 2019, 2020, 2021 embedded brains GmbH xvi

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.95 Selection of an ISVV organization (5.6.2.2a) 395
9.1.96 Selection of an ISVV organization (5.6.2.2b) 395
9.1.97 Development and documentation of a software validation specification

with respect to the technical specification (5.6.3.1a) 396
9.1.98 Development and documentation of a software validation specification

with respect to the technical specification (5.6.3.1b) 397
9.1.99 Development and documentation of a software validation specification

with respect to the technical specification (5.6.3.1c) 397
9.1.100 Conducting the validation with respect to the technical specification

(5.6.3.2a) . 398
9.1.101 Updating the software user manual (5.6.3.3a) 398
9.1.102 Conducting a critical design review (5.6.3.4a) 399
9.1.103 Development and documentation of a software validation specification

with respect to the requirements baseline (5.6.4.1a) 399
9.1.104 Development and documentation of a software validation specification

with respect to the requirements baseline (5.6.4.1b) 400
9.1.105 Development and documentation of a software validation specification

with respect to the requirements baseline (5.6.4.1c) 400
9.1.106 Conducting the validation with respect to the requirements baseline

(5.6.4.2a) . 401
9.1.107 Conducting the validation with respect to the requirements baseline

(5.6.4.2b) . 401
9.1.108 Updating the software user manual (5.6.4.3a) 402
9.1.109 Conducting a qualification review (5.6.4.4a) 402
9.1.110 Preparation of the software product (5.7.2.1a) 402
9.1.111 Supplier’s provision of training and support (5.7.2.2a) 403
9.1.112 Installation procedures (5.7.2.3a) . 403
9.1.113 Installation activities reporting (5.7.2.4a) 403
9.1.114 Installation activities reporting (5.7.2.4b) 404
9.1.115 Installation activities reporting (5.7.2.4c) 404
9.1.116 Installation activities reporting (5.7.2.4d) 404
9.1.117 Acceptance test planning (5.7.3.1a) . 404
9.1.118 Acceptance test execution (5.7.3.2a) . 405
9.1.119 Executable code generation and installation (5.7.3.3a) 405
9.1.120 Supplier’s support to customer’s acceptance (5.7.3.4a) 405
9.1.121 Supplier’s support to customer’s acceptance (5.7.3.4b) 406
9.1.122 Evaluation of acceptance testing (5.7.3.5a) 406
9.1.123 Conducting an acceptance review (5.7.3.6a) 406
9.1.124 Establishment of the software verification process (5.8.2.1a) 407
9.1.125 Establishment of the software verification process (5.8.2.1b) 407
9.1.126 Establishment of the software verification process (5.8.2.1c) 408
9.1.127 Establishment of the software verification process (5.8.2.1d) 409
9.1.128 Selection of the organization responsible for conducting the verification

(5.8.2.2a) . 409
9.1.129 Selection of the organization responsible for conducting the verification

(5.8.2.2b) . 410
9.1.130 Verification of requirements baseline (5.8.3.1a) 410
9.1.131 Verification of the technical specification (5.8.3.2a) 411
9.1.132 Verification of the software architectural design (5.8.3.3a) 412

© 2019, 2020, 2021 embedded brains GmbH xvii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.133 Verification of the software detailed design (5.8.3.4a) 413
9.1.134 Verification of code (5.8.3.5a) . 413
9.1.135 Verification of code (5.8.3.5b) . 414
9.1.136 Verification of code (5.8.3.5c) . 415
9.1.137 Verification of code (5.8.3.5d) . 415
9.1.138 Verification of code (5.8.3.5e) . 416
9.1.139 Verification of code (5.8.3.5f) . 416
9.1.140 Verification of software unit testing (plan and results) (5.8.3.6a) 417
9.1.141 Verification of software integration (5.8.3.7a) 418
9.1.142 Verification of software validation with respect to the technical specifi-

cations and the requirements baseline (5.8.3.8a) 418
9.1.143 Verification of software validation with respect to the technical specifi-

cations and the requirements baseline (5.8.3.8b) 419
9.1.144 Evaluation of validation: complementary system level validation

(5.8.3.9a) . 419
9.1.145 Verification of software documentation (5.8.3.10a) 420
9.1.146 Schedulability analysis for real-time software (5.8.3.11a) 420
9.1.147 Schedulability analysis for real-time software (5.8.3.11b) 421
9.1.148 Schedulability analysis for real-time software (5.8.3.11c) 421
9.1.149 Technical budgets management (5.8.3.12a) 422
9.1.150 Technical budgets management (5.8.3.12b) 422
9.1.151 Technical budgets management (5.8.3.12c) 423
9.1.152 Behaviour modelling verification (5.8.3.13a) 423
9.1.153 Behaviour modelling verification (5.8.3.13b) 424
9.1.154 Behaviour modelling verification (5.8.3.13c) 424
9.1.155 Operational testing definition (5.9.2.1a) 425
9.1.156 Software operation support plans and procedures development (5.9.2.2a)426
9.1.157 Problem handling procedures definition (5.9.2.3a) 427
9.1.158 Operational testing execution (5.9.3.1a) 427
9.1.159 Software operational requirements demonstration (5.9.3.2a) 428
9.1.160 Software release (5.9.3.3a) . 428
9.1.161 Software operation support performance (5.9.4.1a) 428
9.1.162 Problem handling (5.9.4.2a) . 429
9.1.163 Assistance to the user (5.9.5.1a) . 429
9.1.164 Assistance to the user (5.9.5.1b) . 429
9.1.165 Handling of user’s requests (5.9.5.2a) 429
9.1.166 Handling of user’s requests (5.9.5.2b) 430
9.1.167 Handling of user’s requests (5.9.5.2c) . 430
9.1.168 Provisions of work-around solutions (5.9.5.3a) 430
9.1.169 Provisions of work-around solutions (5.9.5.3b) 431
9.1.170 Establishment of the software maintenance process (5.10.2.1a) 432
9.1.171 Establishment of the software maintenance process (5.10.2.1b) 432
9.1.172 Establishment of the software maintenance process (5.10.2.1c) 433
9.1.173 Establishment of the software maintenance process (5.10.2.1d) 433
9.1.174 Establishment of the software maintenance process (5.10.2.1e) 434
9.1.175 Long term maintenance for flight software (5.10.2.2a) 434
9.1.176 Problem analysis (5.10.3.1a) . 435
9.1.177 Problem analysis (5.10.3.1b) . 435
9.1.178 Problem analysis (5.10.3.1c) . 436

© 2019, 2020, 2021 embedded brains GmbH xviii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.179 Problem analysis (5.10.3.1d) . 436
9.1.180 Problem analysis (5.10.3.1e) . 436
9.1.181 Analysis and documentation of product modification (5.10.4.1a) 437
9.1.182 Documentation of software product changes (5.10.4.2a) 437
9.1.183 Invoking of software engineering processes for modification implemen-

tation (5.10.4.3a) . 438
9.1.184 Invoking of software engineering processes for modification implemen-

tation (5.10.4.3b) . 440
9.1.185 Invoking of software engineering processes for modification implemen-

tation (5.10.4.3c) . 441
9.1.186 Invoking of software engineering processes for modification implemen-

tation (5.10.4.3d) . 441
9.1.187 Invoking of software engineering processes for modification implemen-

tation (5.10.4.3e) . 441
9.1.188 Maintenance reviews (5.10.5.1a) . 442
9.1.189 Baseline for change (5.10.5.2a) . 442
9.1.190 Applicability of this Standard to software migration (5.10.6.1a) 443
9.1.191 Migration planning and execution (5.10.6.2a) 443
9.1.192 Contribution to the migration plan (5.10.6.3a) 443
9.1.193 Preparation for migration (5.10.6.4a) . 444
9.1.194 Notification of transition to migrated system (5.10.6.5a) 444
9.1.195 Notification of transition to migrated system (5.10.6.5b) 445
9.1.196 Post-operation review (5.10.6.6a) . 445
9.1.197 Post-operation review (5.10.6.6b) . 445
9.1.198 Maintenance and accessibility of data of former system (5.10.6.7a) . . . 446
9.1.199 Retirement planning (5.10.7.1a) . 446
9.1.200 Notification of retirement plan (5.10.7.2a) 447
9.1.201 Identification of requirements for software retirement (5.10.7.3a) 447
9.1.202 Maintenance and accessibility to data of the retired product (5.10.7.4a) 447

9.2 Tailoring of ECSS-Q-ST-80C Rev.1 . 448
9.2.1 Organization (5.1.1a) . 450
9.2.2 Responsibility and authority (5.1.2.1a) . 450
9.2.3 Responsibility and authority (5.1.2.2a) . 451
9.2.4 Responsibility and authority (5.1.2.3a) . 451
9.2.5 Resources (5.1.3.1a) . 451
9.2.6 Resources (5.1.3.2a) . 452
9.2.7 Software product assurance manager/engineer (5.1.4.1a) 452
9.2.8 Software product assurance manager/engineer (5.1.4.2a) 452
9.2.9 Training (5.1.5.1a) . 453
9.2.10 Training (5.1.5.2a) . 453
9.2.11 Training (5.1.5.3a) . 453
9.2.12 Training (5.1.5.4a) . 453
9.2.13 Software product assurance planning and control (5.2.1.1a) 454
9.2.14 Software product assurance planning and control (5.2.1.1b) 454
9.2.15 Software product assurance planning and control (5.2.1.2a) 454
9.2.16 Software product assurance planning and control (5.2.1.3a) 455
9.2.17 Software product assurance planning and control (5.2.1.4a) 455
9.2.18 Software product assurance planning and control (5.2.1.5a) 455
9.2.19 Software product assurance planning and control (5.2.1.5b) 456

© 2019, 2020, 2021 embedded brains GmbH xix

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.20 Software product assurance reporting (5.2.2.1a) 456
9.2.21 Software product assurance reporting (5.2.2.2a) 456
9.2.22 Software product assurance reporting (5.2.2.3a) 457
9.2.23 Audits (5.2.3a) . 457
9.2.24 Alerts (5.2.4a) . 457
9.2.25 Software problems (5.2.5.1a) . 458
9.2.26 Software problems (5.2.5.2a) . 458
9.2.27 Software problems (5.2.5.3a) . 458
9.2.28 Software problems (5.2.5.4a) . 459
9.2.29 Nonconformances (5.2.6.1a) . 459
9.2.30 Nonconformances (5.2.6.1b) . 460
9.2.31 Nonconformances (5.2.6.1c) . 460
9.2.32 Nonconformances (5.2.6.2a) . 460
9.2.33 Quality requirements and quality models (5.2.7.1a) 461
9.2.34 Quality requirements and quality models (5.2.7.2a) 461
9.2.35 Risk management (5.3.1a) . 462
9.2.36 Critical item control (5.3.2.1a) . 462
9.2.37 Critical item control (5.3.2.2a) . 462
9.2.38 Supplier selection (5.4.1.1a) . 462
9.2.39 Supplier selection (5.4.1.2a) . 463
9.2.40 Supplier requirements (5.4.2.1a) . 463
9.2.41 Supplier requirements (5.4.2.2a) . 463
9.2.42 Supplier monitoring (5.4.3.1a) . 464
9.2.43 Supplier monitoring (5.4.3.2a) . 464
9.2.44 Supplier monitoring (5.4.3.3a) . 464
9.2.45 Supplier monitoring (5.4.3.4a) . 465
9.2.46 Criticality classification (5.4.4a) . 465
9.2.47 Procurement documents (5.5.1a) . 466
9.2.48 Review of procured software component list (5.5.2a) 466
9.2.49 Procurement details (5.5.3a) . 466
9.2.50 Identification (5.5.4a) . 467
9.2.51 Inspection (5.5.5a) . 467
9.2.52 Exportability (5.5.6a) . 467
9.2.53 Methods and tools (5.6.1.1a) . 468
9.2.54 Methods and tools (5.6.1.2a) . 468
9.2.55 Methods and tools (5.6.1.3a) . 468
9.2.56 Development environment selection (5.6.2.1a) 469
9.2.57 Development environment selection (5.6.2.2a) 469
9.2.58 Development environment selection (5.6.2.3a) 469
9.2.59 Process assessment (5.7.1a) . 470
9.2.60 Assessment process (5.7.2.1a) . 470
9.2.61 Assessment process (5.7.2.2a) . 470
9.2.62 Assessment process (5.7.2.3a) . 471
9.2.63 Assessment process (5.7.2.4a) . 471
9.2.64 Process improvement (5.7.3.1a) . 471
9.2.65 Process improvement (5.7.3.1b) . 472
9.2.66 Process improvement (5.7.3.2a) . 472
9.2.67 Process improvement (5.7.3.3a) . 472
9.2.68 Life cycle definition (6.1.1a) . 473

© 2019, 2020, 2021 embedded brains GmbH xx

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.69 Life cycle definition (6.1.1b) . 473
9.2.70 Process quality objectives (6.1.2a) . 473
9.2.71 Life cycle definition review (6.1.3a) . 474
9.2.72 Life cycle resources (6.1.4a) . 474
9.2.73 Software validation process schedule (6.1.5a) 474
9.2.74 Documentation of processes (6.2.1.1a) . 475
9.2.75 Documentation of processes (6.2.1.2a) . 475
9.2.76 Documentation of processes (6.2.1.3a) . 475
9.2.77 Documentation of processes (6.2.1.4a) . 476
9.2.78 Documentation of processes (6.2.1.5a) . 476
9.2.79 Documentation of processes (6.2.1.6a) . 476
9.2.80 Documentation of processes (6.2.1.7a) . 476
9.2.81 Documentation of processes (6.2.1.8a) . 477
9.2.82 Documentation of processes (6.2.1.9a) . 477
9.2.83 Software dependability and safety (6.2.2.1a) 477
9.2.84 Software dependability and safety (6.2.2.2a) 478
9.2.85 Software dependability and safety (6.2.2.3a) 478
9.2.86 Software dependability and safety (6.2.2.3b) 478
9.2.87 Software dependability and safety (6.2.2.4a) 479
9.2.88 Software dependability and safety (6.2.2.5a) 479
9.2.89 Software dependability and safety (6.2.2.6a) 480
9.2.90 Software dependability and safety (6.2.2.7a) 480
9.2.91 Software dependability and safety (6.2.2.8a) 480
9.2.92 Software dependability and safety (6.2.2.9a) 481
9.2.93 Software dependability and safety (6.2.2.10a) 481
9.2.94 Handling of criticality software (6.2.3.1a) 482
9.2.95 Handling of criticality software (6.2.3.1b) 482
9.2.96 Handling of criticality software (6.2.3.2a) 482
9.2.97 Handling of criticality software (6.2.3.3a) 483
9.2.98 Handling of criticality software (6.2.3.4a) 483
9.2.99 Handling of criticality software (6.2.3.5a) 484
9.2.100 Handling of criticality software (6.2.3.6a) 484
9.2.101 Handling of criticality software (6.2.3.7a) 485
9.2.102 Handling of criticality software (6.2.3.8a) 485
9.2.103 Software configuration management (6.2.4.1a) 485
9.2.104 Software configuration management (6.2.4.2a) 486
9.2.105 Software configuration management (6.2.4.3a) 486
9.2.106 Software configuration management (6.2.4.4a) 486
9.2.107 Software configuration management (6.2.4.5a) 487
9.2.108 Software configuration management (6.2.4.5b) 487
9.2.109 Software configuration management (6.2.4.6a) 487
9.2.110 Software configuration management (6.2.4.7a) 488
9.2.111 Software configuration management (6.2.4.8a) 488
9.2.112 Software configuration management (6.2.4.9a) 488
9.2.113 Software configuration management (6.2.4.10a) 489
9.2.114 Software configuration management (6.2.4.11a) 489
9.2.115 Process metrics (6.2.5.1a) . 489
9.2.116 Process metrics (6.2.5.2a) . 490
9.2.117 Process metrics (6.2.5.3a) . 490

© 2019, 2020, 2021 embedded brains GmbH xxi

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.118 Process metrics (6.2.5.4a) . 490
9.2.119 Process metrics (6.2.5.5a) . 491
9.2.120 Verification (6.2.6.1a) . 491
9.2.121 Verification (6.2.6.2a) . 491
9.2.122 Verification (6.2.6.2b) . 492
9.2.123 Verification (6.2.6.3a) . 492
9.2.124 Verification (6.2.6.4a) . 492
9.2.125 Verification (6.2.6.5a) . 493
9.2.126 Verification (6.2.6.6a) . 493
9.2.127 Verification (6.2.6.7a) . 493
9.2.128 Verification (6.2.6.8a) . 494
9.2.129 Verification (6.2.6.9a) . 494
9.2.130 Verification (6.2.6.10a) . 494
9.2.131 Verification (6.2.6.11a) . 495
9.2.132 Verification (6.2.6.12a) . 495
9.2.133 Verification (6.2.6.13a) . 496
9.2.134 Verification (6.2.6.13b) . 497
9.2.135 Reuse of existing software (6.2.7.2a) . 497
9.2.136 Reuse of existing software (6.2.7.3a) . 498
9.2.137 Reuse of existing software (6.2.7.4a) . 498
9.2.138 Reuse of existing software (6.2.7.5a) . 499
9.2.139 Reuse of existing software (6.2.7.6a) . 499
9.2.140 Reuse of existing software (6.2.7.7a) . 500
9.2.141 Reuse of existing software (6.2.7.8a) . 500
9.2.142 Reuse of existing software (6.2.7.8b) . 501
9.2.143 Reuse of existing software (6.2.7.9a) . 501
9.2.144 Reuse of existing software (6.2.7.10a) 501
9.2.145 Reuse of existing software (6.2.7.11a) 502
9.2.146 Automatic code generation (6.2.8.1a) 502
9.2.147 Automatic code generation (6.2.8.2a) 503
9.2.148 Automatic code generation (6.2.8.3a) 503
9.2.149 Automatic code generation (6.2.8.4a) 503
9.2.150 Automatic code generation (6.2.8.5a) 504
9.2.151 Automatic code generation (6.2.8.6a) 504
9.2.152 Automatic code generation (6.2.8.7a) 504
9.2.153 Software related system requirements process (6.3.1.1a) 505
9.2.154 Software related system requirements process (6.3.1.2a) 506
9.2.155 Software related system requirements process (6.3.1.3a) 506
9.2.156 Software requirements analysis (6.3.2.1a) 506
9.2.157 Software requirements analysis (6.3.2.2a) 506
9.2.158 Software requirements analysis (6.3.2.3a) 507
9.2.159 Software requirements analysis (6.3.2.4a) 507
9.2.160 Software requirements analysis (6.3.2.5a) 508
9.2.161 Software architectural design and design of software items (6.3.3.1a) . . 508
9.2.162 Software architectural design and design of software items (6.3.3.2a) . . 508
9.2.163 Software architectural design and design of software items (6.3.3.3a) . . 509
9.2.164 Software architectural design and design of software items (6.3.3.4a) . . 509
9.2.165 Software architectural design and design of software items (6.3.3.5a) . . 509
9.2.166 Software architectural design and design of software items (6.3.3.5b) . . 510

© 2019, 2020, 2021 embedded brains GmbH xxii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.167 Software architectural design and design of software items (6.3.3.6a) . . 510
9.2.168 Software architectural design and design of software items (6.3.3.7a) . . 510
9.2.169 Coding (6.3.4.1a) . 511
9.2.170 Coding (6.3.4.2a) . 511
9.2.171 Coding (6.3.4.3a) . 511
9.2.172 Coding (6.3.4.4a) . 512
9.2.173 Coding (6.3.4.5a) . 512
9.2.174 Coding (6.3.4.6a) . 512
9.2.175 Coding (6.3.4.6b) . 513
9.2.176 Coding (6.3.4.7a) . 513
9.2.177 Coding (6.3.4.8a) . 513
9.2.178 Testing and validation (6.3.5.1a) . 513
9.2.179 Testing and validation (6.3.5.2a) . 514
9.2.180 Testing and validation (6.3.5.3a) . 514
9.2.181 Testing and validation (6.3.5.4a) . 515
9.2.182 Testing and validation (6.3.5.5a) . 515
9.2.183 Testing and validation (6.3.5.5b) . 515
9.2.184 Testing and validation (6.3.5.6a) . 516
9.2.185 Testing and validation (6.3.5.7a) . 516
9.2.186 Testing and validation (6.3.5.8a) . 516
9.2.187 Testing and validation (6.3.5.9a) . 517
9.2.188 Testing and validation (6.3.5.10a) . 517
9.2.189 Testing and validation (6.3.5.11a) . 517
9.2.190 Testing and validation (6.3.5.12a) . 518
9.2.191 Testing and validation (6.3.5.13a) . 518
9.2.192 Testing and validation (6.3.5.14a) . 518
9.2.193 Testing and validation (6.3.5.15a) . 519
9.2.194 Testing and validation (6.3.5.16a) . 519
9.2.195 Testing and validation (6.3.5.17a) . 519
9.2.196 Testing and validation (6.3.5.18a) . 520
9.2.197 Testing and validation (6.3.5.19a) . 520
9.2.198 Testing and validation (6.3.5.20a) . 520
9.2.199 Testing and validation (6.3.5.21a) . 521
9.2.200 Testing and validation (6.3.5.22a) . 521
9.2.201 Testing and validation (6.3.5.23a) . 522
9.2.202 Testing and validation (6.3.5.24a) . 522
9.2.203 Testing and validation (6.3.5.25a) . 522
9.2.204 Testing and validation (6.3.5.26a) . 523
9.2.205 Testing and validation (6.3.5.27a) . 523
9.2.206 Testing and validation (6.3.5.28a) . 524
9.2.207 Testing and validation (6.3.5.29a) . 524
9.2.208 Testing and validation (6.3.5.30a) . 525
9.2.209 Testing and validation (6.3.5.31a) . 525
9.2.210 Testing and validation (6.3.5.32a) . 525
9.2.211 Software delivery and acceptance (6.3.6.1a) 526
9.2.212 Software delivery and acceptance (6.3.6.2a) 526
9.2.213 Software delivery and acceptance (6.3.6.3a) 526
9.2.214 Software delivery and acceptance (6.3.6.4a) 527
9.2.215 Software delivery and acceptance (6.3.6.5a) 527

© 2019, 2020, 2021 embedded brains GmbH xxiii

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.216 Software delivery and acceptance (6.3.6.6a) 527
9.2.217 Software delivery and acceptance (6.3.6.7a) 528
9.2.218 Software delivery and acceptance (6.3.6.8a) 528
9.2.219 Software delivery and acceptance (6.3.6.9a) 528
9.2.220 Operations (6.3.7.1a) . 529
9.2.221 Operations (6.3.7.2a) . 529
9.2.222 Operations (6.3.7.3a) . 529
9.2.223 Maintenance (6.3.8.1a) . 530
9.2.224 Maintenance (6.3.8.2a) . 530
9.2.225 Maintenance (6.3.8.3a) . 530
9.2.226 Maintenance (6.3.8.4a) . 531
9.2.227 Maintenance (6.3.8.5a) . 531
9.2.228 Maintenance (6.3.8.6a) . 531
9.2.229 Maintenance (6.3.8.7a) . 532
9.2.230 Deriving of requirements (7.1.1a) . 532
9.2.231 Quantitative definition of quality requirements (7.1.2a) 532
9.2.232 Assurance activities for product quality requirements (7.1.3a) 533
9.2.233 Product metrics (7.1.4a) . 533
9.2.234 Basic metrics (7.1.5a) . 534
9.2.235 Reporting of metrics (7.1.6a) . 534
9.2.236 Numerical accuracy (7.1.7a) . 534
9.2.237 Analysis of software maturity (7.1.8a) 535
9.2.238 Requirements baseline and technical specification (7.2.1.1a) 535
9.2.239 Requirements baseline and technical specification (7.2.1.2a) 535
9.2.240 Requirements baseline and technical specification (7.2.1.3a) 536
9.2.241 Design and related documentation (7.2.2.1a) 536
9.2.242 Design and related documentation (7.2.2.2a) 536
9.2.243 Design and related documentation (7.2.2.3a) 537
9.2.244 Test and validation documentation (7.2.3.1a) 537
9.2.245 Test and validation documentation (7.2.3.2a) 540
9.2.246 Test and validation documentation (7.2.3.3a) 541
9.2.247 Test and validation documentation (7.2.3.4a) 541
9.2.248 Test and validation documentation (7.2.3.5a) 541
9.2.249 Test and validation documentation (7.2.3.6a) 541
9.2.250 Software reuse/Customer requirements (7.3.1a) 542
9.2.251 Software reuse/Separate documentation (7.3.2a) 542
9.2.252 Software reuse/Self-contained information (7.3.3a) 542
9.2.253 Software reuse/Requirements for intended reuse (7.3.4a) 543
9.2.254 Software reuse/Configuration management for intended reuse (7.3.5a) . 543
9.2.255 Software reuse/Testing on different platforms (7.3.6a) 543
9.2.256 Software reuse/Certificate of conformance (7.3.7a) 544
9.2.257 Operational system/Hardware procurement (7.4.1a) 544
9.2.258 Operational system/Service procurement (7.4.2a) 544
9.2.259 Operational system/Constraints (7.4.3a) 545
9.2.260 Operational system/Selection (7.4.4a) 545
9.2.261 Operational system/Maintenance (7.4.5a) 545
9.2.262 Firmware/Device programming (7.5.1a) 546
9.2.263 Firmware/Marking (7.5.2a) . 546
9.2.264 Firmware/Calibration (7.5.3a) . 546

© 2019, 2020, 2021 embedded brains GmbH xxiv

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.3 Tailoring of SOW QDP Requirements . 546
9.3.1 RS-1 . 546
9.3.2 RS-2 . 547
9.3.3 RS-3 . 547
9.3.4 RS-4 . 547
9.3.5 RS-5 . 548
9.3.6 RS-6 . 548
9.3.7 RS-7 . 548
9.3.8 RS-8 . 548
9.3.9 RS-9 . 549
9.3.10 RS-10 . 549
9.3.11 RS-11 . 549
9.3.12 RS-12 . 549
9.3.13 RS-13 . 550
9.3.14 RS-14 . 550
9.3.15 RS-15 . 550

9.4 Justifications of Tailoring Decisions . 551
9.4.1 No Requirements Baseline (RB) . 551
9.4.2 No Installation and Acceptance . 551
9.4.3 No Maintenance (MF) . 551
9.4.4 No Operational Phase (OP) . 551
9.4.5 On Demand Unit and Integration Testing 551
9.4.6 Combined Unit and Integration Testing . 552
9.4.7 No Logical and Computational Model . 552
9.4.8 No Schedulability Analysis . 553
9.4.9 No Software Dependability and Safety Analysis 553
9.4.10 No Independent Software Verification and Validation 553
9.4.11 No Numerical Accuracy Analysis . 553

Bibliography 555

© 2019, 2020, 2021 embedded brains GmbH xxv

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019, 2020, 2021 embedded brains GmbH xxvi

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Identification, Copyrights and License

© 2019, 2020, 2021 embedded brains GmbH

The copyright holders listed above grant that this document may be reproduced in whole or
in part, or stored in a retrieval system, or transmitted in any form, or by any means electronic,
mechanical, photocopying or otherwise, under the Creative Commons Attribution-ShareAlike
4.0 International Public License.

Release Git Hash Date Status Changes
01 e487910c 2019-10-18 Replaced Initial version
02 acc1b518 2019-11-11 Replaced Resolved the following RID (actions):

• PDR-MF-01
• PDR-MF-02 (#223)
• PDR-MF-05 (#224)
• PDR-MV-13 (#81, #85, #126,

#127, #131, #132, #133,
#193)

• PDR-MV-16 (#198)
• PDR-MV-17 (#200)
• PDR-MV-18 (#201)
• PDR-TT-03 (#205)

03 5101c7ad 2020-06-29 Replaced
• The document was synchronized

with the RTEMS Software Engi-
neering manual. The specifica-
tion item section was automat-
ically generated by the Qualifi-
cation Toolchain using the speci-
fication of RTEMS. Mention re-
moval of Doorstop as the re-
quirements management tool.
Update SDD proposal to address
review comments.

04 64677d1d 2020-10-14 Replaced
• Complete IEC 61508 analysis
• SVR and SPAMR for RTEMS

are open issues again, see #89,
#128, and #557.

• Synchronize with RTEMS Soft-
ware Engineering manual.

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 1

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/223
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/224
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/81
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/85
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/126
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/127
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/131
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/132
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/133
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/193
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/198
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/200
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/201
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/205
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/89
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/128
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/557

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 1 – continued from previous pageRelease Git Hash Date Status Changes
05 7ca702df 2021-01-07 Replaced

• Add SVR and SPAMR proposals
for RTEMS document, according
with the above issues and: #225

• Update license according with
issue #572

06 5b07f71d 2021-06-01 Approved
• Add SCF proposal according to:

#67
• Address review comments ac-

cording to: #701
• Update, according RID PDR-MF-

10: #229
• Do not mention use of Doorstop:

#477
• Synchronize with RTEMS Soft-

ware Engineering manual.
• Remove MIL-STD-1553 Driver

from work package list (RID
CDR-MV-05): #650

Action Name Organization Signature
Written by Cláudio Maia CISTER Research Centre

Joel Pinto CISTER Research Centre
José Valdez EDISOFT
Sebastian Huber embedded brains GmbH
Ting Peng embedded brains GmbH

Verified by Rute Mateus EDISOFT
Approved by Nuno Ramos EDISOFT

© 2019, 2020, 2021 embedded brains GmbH 2

https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/225
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/572
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/67
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/701
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/229
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/477
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues/650

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
ONE

INTRODUCTION

This technical note contains

• a list of RTEMS SMP items to be qualified,

• an identification of all work items to execute and artefacts to produce,

• a sanity check against other standards,

• an identification of potential re-use items from the EDISOFT RTEMS activities, and

• two compliance matrices of RTEMS to ECSS standards,

• the guideline for requirements management tools.

© 2019, 2020, 2021 embedded brains GmbH 3

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019, 2020, 2021 embedded brains GmbH 4

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
TWO

APPLICABLE AND REFERENCE DOCUMENTS

2.1 Applicable Documents
The following is an applicable document:

• Technical Note: Space Profile [eb19]

2.2 Reference Documents
For reference documents see the bibliography.

© 2019, 2020, 2021 embedded brains GmbH 5

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019, 2020, 2021 embedded brains GmbH 6

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
THREE

TERMS, DEFINITIONS AND ABBREVIATED TERMS

ABI Application Binary Interface

ADP Acceptance Data Package

AI Action Item

analysis Verification method which consists of interpretation (or interpolation/extrapolation)
of data under defined conditions, or reasoning to show theoretical compliance with spec-
ification

API Application Programming Interface

applicable document This term is defined by ECSS-S-ST-00-01C as a “document that contains
provisions which, through reference in the source document, constitute additional provi-
sions of the source document”.

AR Acceptance Review (for the organization and conduct of reviews see [ECS08c])

assembler language A programming language which can be translated very easily into ma-
chine code and data. For this project assembler languages are restricted to languages
accepted by the GNU assembler program for the target architectures.

BSP Board Support Package

C language See C11.

C11 The standard ISO/IEC 9899:2011.

CCB Change Control Board

CDR Critical Design Review (for the organization and conduct of reviews see [ECS08c])

CI Configuration Item

CM Configuration Management

configurable code This term is defined by ECSS-E-ST-40C 3.2.5 as “code (source code or ex-
ecutable code) that can be tailored by setting values of parameters”. The same section
contains also a note which lists some examples for configurable code:

This definition covers in particular classes of configurable code obtained by the
following configuration means:

• configuration based on the use of a compilation directive;

• configuration based on the use of a link directive;

© 2019, 2020, 2021 embedded brains GmbH 7

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• configuration performed through a parameter defined in a configuration
file;

• configuration performed through data defined in a database with impact
on the actually executable parts of the software (e.g. parameters defining
branch structures that result in the non-execution of existing parts of the
code).

DDR Detailed Design Review (for the organization and conduct of reviews see [ECS08c])

deactivated code This term is defined by ECSS-E-ST-40C 3.2.8 as “code that, although incor-
porated through correct design and coding, is intended to execute in certain software
product configurations only, or in none of them [adapted from RTCA/DO-178B]”.

dead code This term is defined by Wikipedia_deadcode as “a section in the source code of a
program which is executed but whose result is never used in any other computation.”.

Doorstop Doorstop is a requirements management tool.

EARS Easy Approach to Requirements Syntax

ECSS European Cooperation for Space Standardization

ELF Executable and Linkable Format

FCV Functional Configuration Verification

feature This term is used by ECSS-E-ST-40C, however, it is undefined by ECSS. For this project,
a feature is defined as a functional requirement.

FMEA Failure Modes and Effects Analysis [ECS09e]

FMECA Failure Modes, Effects and Criticality Analysis [ECS09e]

FR Final Review (for the organization and conduct of reviews see [ECS08c])

GCC GNU Compiler Collection

GNAT GNAT is the GNU compiler for Ada, integrated into the GCC.

GNU GNU’s Not Unix!

GTR Generic Test Report

HMI Human Machine Interface

HSIA Hardware/Software Interaction Analysis

HW Hardware

ICD Interface Control Document

inspection this verification method consists in examining the item against the applicable doc-
umentation/source code to verify the compliance with requirement(s)

interrupt service An interrupt service consists of an interrupt service routine which is called
with a user provided argument upon reception of an interrupt service request. The routine
is invoked in interrupt context. Interrupt service requests may have a priority and an
affinity to a set of processors. An interrupt service is a software component.

IRD Software Interface Requirements Document

© 2019, 2020, 2021 embedded brains GmbH 8

https://en.wikipedia.org/wiki/Dead_code
https://github.com/jacebrowning/doorstop
https://gcc.gnu.org/
https://www.gnu.org/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

ISVV Independent Software Verification and Validation

ITP Interface Test Plan

ITR Interface Test Report

ITT Invitation To Tender

JDD Joint Design Direction

KO Kick-Off meeting (for the organization and conduct of reviews see [ECS08c])

NA

N/A Not Applicable

NCR Non-Conformity Report

NRB Non-Conformance Review Board

OAR Online Applications Research Corporation

PA Product Assurance

PAM Product Assurance Manager

PCV Physical Configuration Verification

PDR Preliminary Design Review (for the organization and conduct of reviews see [ECS08c])

property annotation A formal annotation in C code defining a logical property required of that
code. It can be part of a functional specification or requirement.

QA Quality Assurance

QDP Qualification Data Package

QR Qualification Review (for the organization and conduct of reviews see [ECS08c])

QT Qualification Toolchain

RAMS Reliability, Availability, Maintainability and Safety

RB Requirements Baseline

ReqIF Requirements Interchange Format

RFC Request For Comments

RFD Request For Deviation

RFW Request For Waiver

RID Review Item Discrepancy

RSB RTEMS Source Builder

RTEMS Real-Time Executive for Multiprocessor Systems

SCAR Software Criticality Analysis Report

SCC Software Criticality Category

SCF Software Configuration File

© 2019, 2020, 2021 embedded brains GmbH 9

https://www.omg.org/spec/ReqIF/About-ReqIF/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

SCM Software Configuration Management

SCS Software Coding Standard

SDD Software Design Document

SDP Software Development Plan

SDS Software Design Standard

SFMECA See FMECA

SFTA Software Fault Tolerance Analysis

SFW Software

SIS SPARC/RISCV instruction simulator

SoC System on Chip

SOC Statement Of Compliance

software component This term is defined by ECSS-E-ST-40C 3.2.28 as a “part of a software
system”. For this project a software component shall be any of the following items and
nothing else:

• software unit

• explicitly defined ELF symbol in a source code file

• assembler language data in a source code file

• C language object with static storage duration

• C language object with thread-local storage duration

• thread

• interrupt service

• collection of software components (this is a software architecture element)

Please note that explicitly defined ELF symbols and assembler language data are consid-
ered a software component only if they are defined in a source code file. For example, this
rules out symbols and data generated as side-effects by the toolchain (compiler, assembler,
linker) such as jump tables, linker trampolines, exception frame information, etc.

software item See software product.

software product The software product is the RTEMS real-time operating system.

software unit This term is defined by ECSS-E-ST-40C 3.2.24 as a “separately compilable piece
of source code”. For this project a software unit shall be any of the following items and
nothing else:

• assembler language function in a source code file

• C language function (external and internal linkage)

A software unit is a software component.

© 2019, 2020, 2021 embedded brains GmbH 10

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

source code This project uses the source code definition of the Linux Information Project:
“Source code (also referred to as source or code) is the version of software as it is origi-
nally written (i.e., typed into a computer) by a human in plain text (i.e., human readable
alphanumeric characters).”

SOW Statement Of Work

SPAMR Software Product Assurance Milestone Report

SPAP Software Product Assurance Plan

SPAR Software Product Assurance Report

SPR Software Problem Report

SRD Software Requirements Document

SRR System Requirements Review (for the organization and conduct of reviews see [ECS08c])

SRS Software Requirements Specification

SSS Software System Specification

SVR Software Verification Report

SW

S/W Software

SW&D Software Waiver and Deviation

SwRR Software Requirements Review (for the organization and conduct of reviews see
[ECS08c])

TBC To Be Confirmed

TBD To Be Defined

technical specification The technical specification contains a set of technical requirements. In
ECSS-E-ST-40C it consists of the Software Requirements Specification (SRS) defined by
Annex D and the Interface Control Document (ICD) defined by Annex E. General require-
ments for technical requirements specifications are defined by ECSS-E-ST-10-06C.

test Verification method which consists in an action by which the operational, functional and
performance capabilities of the item are verified when subject to controlled environment
conditions (real or simulated) and stimuli.

thread This project uses the thread definition of Wikipedia_thread: “a thread of execution is
the smallest sequence of programmed instructions that can be managed independently
by a scheduler, which is typically a part of the operating system.” A thread is a software
component.

UID Unique IDentifier (in contrast to the UUID it may be only unique within a certain scope,
e.g. a project)

unreachable code This term is defined by ECSS-E-ST-40C 3.2.42 as a “code that cannot be
executed due to design or coding error”.

UTP Unit Test Plan

UTR Unit Test Report

© 2019, 2020, 2021 embedded brains GmbH 11

http://www.linfo.org/source_code.html
https://en.wikipedia.org/wiki/Thread_(computing)

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

UUID Universally Unique IDentifier

VR Verification Report

VTP Validation Test Plan

VTR Validation Test Report

YAML YAML Ain’t Markup Language

© 2019, 2020, 2021 embedded brains GmbH 12

https://tools.ietf.org/html/rfc4122
https://yaml.org/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
FOUR

ARTEFACTS

4.1 Requirements Baseline
4.1.1 Software System Specification (SSS)
Not included in the QDP, see No Requirements Baseline (RB).

4.1.2 Interface Requirements Document (IRD)
Not included in the QDP, see No Requirements Baseline (RB).

4.1.3 Safety and Dependability Analysis Results for Lower Level Suppliers
Not included in the QDP, see No Requirements Baseline (RB).

4.2 Technical Specification (TS)
General requirements on a technical requirements specification are defined in ECSS-E-ST-10-
06C [ECS09a].

4.2.1 Software Requirements Specification (SRS)
The Software Requirements Specification (SRS) is a part of the Technical Specification (TS)
and its content is defined by ECSS-E-ST-40C Annex D [ECS09b]. This section presents verbatim
copies of the expected response from the standard highlighted as blocks followed by a content
proposal for the QDP.

D.2 Expected response
D.2.1 Scope and content
<1> Introduction
a. The SRS shall contain a description of the purpose, objective, content and

the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 13

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<2> Applicable and reference documents
a. The SRS shall list the applicable and reference documents to support the

generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SRS shall include any additional terms, definition or abbreviated

terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Software overview
<4.1> Function and purpose
a. The SRS shall describe the purpose of the product.

This will be provided as hand written content in Sphinx format.

<4.2> Environmental considerations
a. The SRS shall summarize:

1. the physical environment of the target system;
2. the hardware environment in the target system;
3. the operating environment in the target system;

Content will be provided by specialized Specification Items.

<4.3> Relation to other systems
a. The SRS shall describe in detail the product’s relationship to other

systems.
b. If the product is a component of an integrated HWSW product, then the

SRS shall:
1. summarize the essential characteristics of this larger product;
2. list the other HW or SW component the software interfaces with,

and summarize the computer hardware and peripheral equipment
to be used.

c. A block diagram may be presented showing the major components of the
larger system or project, interconnections, and external interfaces.

This will be provided as hand written content in Sphinx format. The content of this section will
be abstract. In particular, it will not depend on the QDP configuration.

<4.4> Constraints
a. The SRS shall describe any items that limit the developer’s options for

building the software.
b. The SRS should provide background information and seek to justify the

constraints.

Constraints will be maintained as Specification Items with a dedicated type. For background
information and justification, see also Justification of Requirements.

<5> Requirements
<5.1> General

NOTE The following provisions apply to the software

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 14

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

requirements listed in the SRS, as specified in
<5.2> to <5.17> below.

c. Each requirement shall be uniquely identified.

See Identification.

d. When requirements are expressed as models, the supplier shall establish
a way to assign identifiers within the model for sake of traceability.

See No Logical and Computational Model.

e. The traceability information of each requirement derived from higher
level documentation, to the applicable higher level requirement, shall be
stated.
NOTE The documented trace can be provided

automatically by tools when models are used to
express requirements.

See Backward Traceability of Specification Items.

f. Requirements may be characterized, for example as essential or not, with
a priority level to prepare incremental delivery, stable or not.

This option is not used.

<5.2> Functional requirements
a. The SRS shall describe the capabilities to be provided by the software

item under definition.

Capabilities will be maintained as Specification Items with a dedicated type.

b. The SRS shall provide where applicable the link between the
requirements and the system states and modes.

The goal is to ensure this with EARS, see Syntax.

c. Functional requirement shall be grouped by subject, in accordance with
the logical model organization (e.g. per controlled subsystem).

See Identification.

d. Each requirement definition should be organized according to the
following:
1. General
2. Inputs
3. Outputs
4. Processing

It is proposed to use the EARS, see Syntax.

e. The SRS shall describe the functional requirements related to software
safety and dependability.

© 2019, 2020, 2021 embedded brains GmbH 15

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Safety- and dependability-functions will be maintained as Specification Items with a dedicated
type.

<5.3> Performance requirements
a. The SRS shall list any specific requirement to the specified performance

of software item under definition.

See Resources and Performance.

<5.4> Interface requirements
a. The SRS shall list and describe (or reference in the ICD) the software item

external interfaces.
b. The following interfaces shall be fully described either in the SRS itself or

by reference to the ICD:
1. interfaces between the software item and other software items;
2. interfaces between the software item and hardware products;
3. interfaces requirements relating to the manmachine interaction.

A reference to the ICD will be made, see Software Interface Control Document (ICD).

c. Naming convention applicable to the data and command interface shall
be also described.

There is no data and command interface.

d. The definition of each interface shall include at least the provided service,
the description (name, type, dimension), the range and the initial value.

See Software Interface Control Document (ICD).

<5.5> Operational requirements
a. The SRS shall list any specific requirement related to the operation of the

software in its intended environment.
b. The information specified in <5.5>a. should include, at least, any specified

operational mode and mode transition for the software, and, in case of
manmachine interaction, the intended use scenarios.

Operational requirements will be maintained as Specification Items with a dedicated type.

c. Diagrams may be used to show the intended operations and related
modestransitions.

Diagrams will not be included in the SRS, they may be included in the SDD.

<5.6> Resources requirements
a. The SRS shall describe all the resource requirements related to the

software and the hardware requirements (target hardware on which the
software is specified to operate), as follows:
1. List of the requirements relevant to hardware environment in

which the software is specified to operate.
2. List of the sizing and timing requirements applicable to the

software item under specification.
3. Description of the computer software to be used with the software

under specification or incorporated into the software item (e.g.

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 16

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

operating system and software items to be reused).
4. Description of the real time constraints to respect (e.g. time

management with respect to the handling of input data before its
loss of validity).

See Resources and Performance.

<5.7> Design requirements and implementation constraints
a. The SRS shall list any requirements driving the design of the software

item under specification and any identified implementation constraint.
b. Requirements applicable to the following items shall be included:

1. software standards (e.g. applicable coding standards, and
development standards);

2. design requirements;
3. specific design methods to be applied to minimize the number of

critical software components (see ECSS-Q-ST-80 6.2.2.4);
4. requirements relevant to numerical accuracy management;
5. design requirements relevant to the “inflight modification” of the

software item;
6. specific design requirements to be applied if the software is

specified to be designed for intended reuse;
7. specific constraints induced by reused software (e.g. COTS, free

software and open source).

Design requirements will be maintained as Specification Items with a dedicated type.

<5.8> Security and privacy requirements
a. The SRS shall describe any security and privacy requirement applicable

to the software item.

There will be no security and privacy requirements, see Tailoring of ECSS Standards for the QDP.

<5.9> Portability requirements
a. The SRS shall list any portability requirement applicable to the software

item.

Portability requirements will be maintained as Specification Items with a dedicated type.

<5.10> Software quality requirements
a. The SRS shall list any quality requirement applicable to the software

item.

Quality requirements will be maintained as Specification Items with a dedicated type.

<5.11> Software reliability requirements
a. The SRS shall list any reliability requirement applicable to the software

item.

Reliability requirements will be maintained as Specification Items with a dedicated type.

<5.12> Software maintainability requirements
a. The SRS shall list any maintainability requirement applicable to the

software item.

© 2019, 2020, 2021 embedded brains GmbH 17

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Maintainability requirements will be maintained as Specification Items with a dedicated type.

<5.13> Software safety requirements
a. The SRS shall list any safety requirement applicable to the software item.

Safety requirements will be maintained as Specification Items with a dedicated type.

<5.14> Software configuration and delivery requirements
a. The SRS shall list any requirement applicable to the selected delivery

medium and any software configuration applicable to the software item.

Application and build configuration requirements will be maintained as Specification Items with
a dedicated type. The application configuration is a use-case in the software development life
cycle. Application configuration requirements are not considered functional requirements.

<5.15> Data definition and database requirements
a. The SRS shall list any requirement related to specific data format or

structure to be exchanged with other systems or any database
requirements allowing to take into account e.g. for a flight software, the
mission and product specific constraints.

There will be no data definition and database requirements, see Tailoring of ECSS Standards for
the QDP.

<5.16> Human factors related requirements
a. The SRS shall list any requirement applicable to:

1. the personnel and to the specific software product under
definition;

2. manual operations, humanequipment interactions, constraints on
personnel, concentrated human attention areas and that are
sensitive to human errors and training, and human factors
engineering.

There will be no human factors related requirements, see Tailoring of ECSS Standards for the
QDP.

<5.17> Adaptation and installation requirements
a. This SRS shall list any requirement applicable to adaptation data and to

specific installation.

There will be adaptation and installation requirements, see Tailoring of ECSS Standards for the
QDP.

<6> Validation requirements
a. The SRS shall describe, per each uniquely identified requirement in <5>,

the validation approach.

Each validation approach is stored in validation specification items, see Requirement Validation.
The validation method is indicated by the specification item type. The validation specification
items are linked to the corresponding requirement. A report can be generated automatically,
showing the validation method for each specification item.

© 2019, 2020, 2021 embedded brains GmbH 18

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

b. A validation matrix (requirements to validation approach correlation
table) shall be utilized to describe the validation approach applicable to
each requirement.

The validation matrix can be automatically generated from the Specification Items.

<7> Traceability
a. The SRS shall report the traceability matrices

1. from the upper level specification requirements to the
requirements contained in <5> (forward traceability table), and

2. from the requirements contained in <5> to the upper level
applicable specification (backward traceability table).

See Traceability of Specification Items.

b. In case the information in <7>a. is separately provided in the DJF,
reference to this documentation shall be clearly stated.

The information is included in the SRS.

<8> Logical model description
a. The SRS shall include a topdown description of the logical model of the

software.
NOTE 1 The logical model can be the result of an

iterative verification process with the customer.
It also supports the requirements capture,
documents and formalizes the software
requirements.

NOTE 2 A logical model is a representation of the
technical specification, independent of the
implementation, describing the functional
behaviour of the software product. The logical
model is written with a formalized language
and it can be possibly executable. Formal
methods can be used to prove properties of the
logical model itself and therefore of the
technical specification. The logical model
allows in particular to verify that a technical
specification is complete (i.e. by checking a
software requirement exists for each logical
model element), and consistent (because of the
model checking).
The logical model can be completed by specific
feasibility analyses such as benchmarks, in
order to check the technical budgets (e.g.
memory size and computer throughput). In
case the modelling technique allows for it,
preliminary automatic code generation can be
used to define the contents of the software
validation test specification.

NOTE 3 If software system co-engineering activities are
considered, the logical model is a refinement of
the following system models: data, application
function, event and failure

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 19

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

b. The method used to express the logical model shall be described
c. Diagrams, tables, data flows and explanatory text may be included.
d. The functionality at each level should be described, to enable the reader

to ’walkthrough’ e.g. the model levelbylevel, functionbyfunction,
and flowbyflow.

e. The behavioural view of the software logical model shall be also
described in the SRS.
NOTE This is particularly relevant for flight software

applications.

This is not included, see No Logical and Computational Model.

4.2.2 Software Interface Control Document (ICD)
The Software Interface Control Document (ICD) is a part of the Technical Specification (TS)
and its content is defined by ECSS-E-ST-40C Annex E [ECS09b]. This section presents verbatim
copies of the expected response from the standard highlighted as blocks followed by a content
proposal for the QDP.

E.2 Expected response
E.2.1 Scope and content
<1> Introduction
a. The ICD shall contain a description of the purpose, objective, content and

the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

<2> Applicable and reference documents
a. The ICD shall list the applicable and reference documents to support the

generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The ICD shall include any additional terms, definition or abbreviated

terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Software overview
a. The ICD may reference the software overview done in the SRS.

A reference to SRS will be made, see Software Requirements Specification (SRS).

<5> Requirements and design
<5.1> General provisions to the requirements in the IRD
a. Each requirement shall be uniquely identified.

See Identification.

© 2019, 2020, 2021 embedded brains GmbH 20

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

b. When requirements are expressed as models, the supplier shall establish
a way to assign identifiers within the model for sake of traceability.

See No Logical and Computational Model.

c. The traceability information of each requirement derived from higher
level documentation, to the applicable higher level requirement, shall be
stated.
NOTE The documented trace can be provided

automatically by tools when models are used to
express requirements.

See Backward Traceability of Specification Items.

<5.2> Interface requirements
a. In case the requirements of the IRD need to be further detailed, the ICD

shall list and describe the software item external interfaces.
b. The following interfaces shall be fully described:

1. interfaces between the software item and other software items;
2. interfaces between the software item and hardware products;
3. interfaces requirements relating to the man-machine interaction.
4. This can be also information about e.g. :

o detailed requirements on database structure
o logical interface architecture
o requirements on signal
o communication protocols
o timing requirements
o required behaviour in case of error
o telecommands (e.g. PUS selection, words contents)
o observable data
o telemetry

The interface requirements will be provided through Non-Functional Requirement Item Type
specification items. It is not clear what interface requirements will be and how they differ
from the interface design in RTEMS.

<5.3> Interface design
a. The ICD shall describe the external interfaces design of the software item
b. The external interface may be expressed by models.
c. The following interfaces shall be fully described:

1. interfaces between the software item and other software items;
2. interfaces between the software item and hardware products;
3. interfaces requirements relating to the man-machine interaction.
4. This can be also information about e.g.:

o Physical interface architecture
o Complete TM/TC plan
o Design of all commands and telemetry stream
o Protocol detailed implementation
o specific design requirements to be applied if the software is

specified to be designed for intended reuse
d. The definition of each interface shall include at least the provided service,

the description (name, type, dimension), the range and the initial value.
e. For each interface external to the software , this can be e.g. organized as

follows:
(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 21

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

- Data item (Name , description, unique identifier, description,
source, destination, unit of measure, limit/range, accuracy,
precision, frequency, rate, legality checks, data type, data
representation)

- Message item
- Communication protocol (by reference to the applicable

documents)

The interface design will be provided through Interface Item Type specification items.

<6> Validation requirements
a. The ICD shall describe, per each uniquely identified requirement in <5>,

the validation approach.

Each validation approach is stored in validation specification items, see Requirement Validation.
The validation method is indicated by the specification item type. The validation specification
items are linked to the corresponding requirement. A report can be generated automatically,
showing the validation method for each specification item.

b. A validation matrix (requirements to validation approach correlation
table) shall be utilized to describe the validation approach applicable to
each requirement.

The validation matrix can be automatically generated from the Specification Items.

<7> Traceability
a. The ICD shall report the traceability matrices

1. from the upper level specification requirements to the
requirements contained in <5> (forward traceability table), and

2. from the requirements contained in <5> to the upper level
applicable specification (backward traceability table).

See Traceability of Specification Items.

b. In case the information in <7>a.1. is separately provided in the DJF,
reference to this documentation shall be clearly stated.

The information is included in the ICD.

4.3 Design Definition File (DDF)
4.3.1 Software Design Document (SDD)
The Software Design Document (SDD) is a part of the Design Definition File (DDF) and its
content is defined by ECSS-E-ST-40C Annex F [ECS09b]. This section presents verbatim copies
of the expected response from the standard highlighted as blocks followed by a content proposal
for the QDP.

The entire SDD will be produced by Doxygen. This means that the section numbering will not
be in line with the standard. For each scope and content demand of the standard a mapping to
Doxygen features will be presented in this section.

© 2019, 2020, 2021 embedded brains GmbH 22

http://www.doxygen.nl

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

F.2 Expected response
F.2.1 Scope and content
<1> Introduction
a. The SDD shall contain a description of the purpose, objective, content

and the reason prompting its preparation.

The introduction will be provided by the main page (@mainpage).

<2> Applicable and reference documents
a. The SDD shall list the applicable and reference documents to support the

generation of the document.

The applicable and reference documents are generated by @cite special commands using the
RTEMS Project bibliography.

<3> Terms, definitions and abbreviated terms
a. The SDD shall include any additional terms, definition or abbreviated

terms used.

There is no out of the box support for a glossary in Doxygen. The workaround proposed in
Doxygen issue #1808 will be used. See also Doxygen ALIASES configuration option.

The glossary of terms is contained in the specification through Glossary Term Item Type items.
From this we could generate the glossary sections described in the Doxygen issue. In the normal
Doxygen markup we could use an @glossary{abc} to reference glossary terms. Alternatively,
we can generate links to the project-wide glossary in the RTEMS Classic API Guide.

<4> Software design overview
NOTE The SDD briefly introduces the system context

and design and discuss the background to the
project detailed as follows.

<4.1> Software static architecture
a. The SDD shall describe the architecture of the software item, as well as

the main relationship with the major components identified.

The software architecture will be described via Doxygen groups which contain software compo-
nents.

b. The SDD shall also describe any system state or mode in which the
software operates.

The system states will be described in the System State Handler.

c. The SDD shall describe the separated mission and configuration data.
NOTE Data can be classified in the following

categories:
- data resulting from the mission analysis and
which thus vary from one mission to
another;

- reference data which are specific to a family
of software product;

- reference data which never change;
- data depending only on the specific mission

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 23

https://git.rtems.org/rtems-docs/tree/common/refs.bib
https://github.com/doxygen/doxygen/issues/1808
http://www.doxygen.nl/manual/config.html#cfg_aliases
https://git.rtems.org/sebh/rtems-qual.git/tree/spec/glossary
https://git.rtems.org/rtems/tree/cpukit/include/rtems/score/sysstate.h

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

requirements (e.g. calibration of sensors);
- data required for the software operation
which only vary the higher level system
design (in which is embedded the software)
is changed;

There is no mission data. The configuration data will be described in the RTEMS Classic API
Guide [RTEa].

<4.2> Software dynamic architecture
a. The SDD shall describe the design choices to cope with the real time

constraints (e.g. selection and description of the computational model).

See No Logical and Computational Model. There are no plans to provide content for this section.

<4.3> Software behaviour

The software behaviour is described for each software unit in Doxygen markup.

<4.4> Interfaces context
a. The SDD shall identify all the external interfaces or refer to the ICD.

The application programming interface will be contained in an API top level Doxygen group.
The goal is to generate the corresponding header files from interface design items, see Specifi-
cation Items. Other interface will be contained in Doxygen groups, e.g. CPU port interface.

b. The description in <4.4>a. should be based on system block diagram or
context diagram to illustrate the relationship between this system and
other systems.

This information will be already provided by the ICD.

<4.5> Long lifetime software
a. The SDD shall describe the design choices to cope with the long planned

lifetime of the software, in particular minimum dependency on the
operating system and the hardware to improve portability.

Content provided by @page special command. Referenced by main page. Alternatively, reference
to RTEMS Software Engineering manual [RTEb].

<4.6> Memory and CPU budget
a. The SDD shall document and summarize the allocation of memory and

processing time to the software components.

There is one SDD for all RTEMS target architectures, platforms, and build configurations. The
data structures and algorithmic complexity will be documented at software component level if
necessary. However, the size of particular data structures is platform-dependent. So, this infor-
mation will be included in the user manual. It will present the information so that application
designers can create this section in their SDD. The goal is to get the resource usage and per-
formance characteristics through the test reports. Using the test reports we can generate the
documentation for a specific platform. See also Resources and Performance.

© 2019, 2020, 2021 embedded brains GmbH 24

https://docs.rtems.org/branches/master/c-user/config/index.html
https://docs.rtems.org/branches/master/c-user/config/index.html
https://docs.rtems.org/doxygen/branches/master/group__RTEMSAPI.html

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<4.7> Design standards, conventions and procedures
a. The SDD shall summarize (or reference in the SDP) the software methods

adopted for the architectural and the detailed design.
NOTE A design method offers often the following

characteristics:
- decomposition of the software architecture
in design objects having integral parts that
communicate with each other and with the
outside environment

- explicit recognition of typical activities of
real-time systems (i.e. cyclic and sporadic
threads, protected resources)

- integration of appropriate scheduling
paradigms with the design process

- explicit definition of the application timing
requirements for each activity

- static verification of processor allocation,
schedulability and timing analysis

- consistent code generation

A reference to RTEMS Software Engineering manual [RTEb] will be made. In a normal ECSS
project, there would be a reference to the SDP, however, the SDP of this activity is not integrated
in the RTEMS Project documentation set. Everything which should be integrated in the RTEMS
Project (this includes the Doxygen markup) should only reference documents in the RTEMS
Project eco-system. The RTEMS Software Engineering manual is basically a container for our
activity which can hold content which is normally present in the SDP. The SDP should then
reference the RTEMS Software Engineering manual. For an RTEMS Project integration and
the long-term maintenance of our work it is important that everything gets documented in the
standard documentation set of the RTEMS Project.

b. The following information shall be summarized:
1. software architectural design method;
2. software detailed design method;
3. code documentation standards;
4. naming conventions;
5. programming standards;
6. intended list of reuse components
7. main design trade-off.

No summary will be provided, there will be references to the RTEMS Software Engineering
manual provided by @page special command [RTEb]. Referenced by main page.

<5> Software design
<5.1> General
a. The SDD shall describe the software architectural design.

The software architecture will be described via Doxygen groups.

b. The architecture structure of the software item shall be described,
identifying the software components, their hierarchical relationships, any
dependency and interfaces between them.

This is implemented via the use of standard Doxygen features.

© 2019, 2020, 2021 embedded brains GmbH 25

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

c. For flight software, the design shall reflect in flight modification
requirements.

There will be no in flight modifications.

d. The structure in <5.2> to <5.5> should be used.

A modified structure will be used, see below.

<5.2> Overall architecture
a. The SDD shall describe the software architectural design, from a static

point of view and also, when the software to be developed has real time
constraints, from a dynamic point of view, and from a behaviour point of
view.

The static point of view is documented via Doxygen groups. No dynamic and behaviour point
of view will be documented, see No Logical and Computational Model.

b. The software static architecture shall be summarized describing its
components.

Each Doxygen group will have an @brief and a detailed description. The software components
of a group are presented by Doxygen automatically.

c. For real-time software, the software dynamic architecture shall be
summarized describing its selected computational model.
NOTE An analysable computational model generally

consists in defining:
- the types of components (objects)
participating to the real-time behaviour,
from which the system is constructed (e.g.
active-periodic, active-sporadic, protected,
passive, actors, process, blocks, drivers)

- the scheduling type (e.g. sequential or
multithreaded), the scheduling model (e.g.
cyclic or pre-emptive, fixed or dynamic
priority based), and the analytical model
(e.g. Rate Monotonic Scheduling, Deadline
Monotonic Scheduling, Earliest Deadline
First), under which the system is executed
and its associated mechanisms

- the means of communication between
components/objects (e.g. mailboxes, entry
parameters)

- the means of synchronization between
components or objects (e.g. mutual
exclusion, protected object entries, basic
semaphores)

- If applicable , the means of distribution and
internode communication (e.g. virtual
nodes, Remote Procedure Call)
and (optional for non flight software):

- the means of providing timing facilities (e.g.

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 26

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

real clock, with or without interrupt,
multiple interrupting count-down, relative
or absolute delays, timers time-out)

- the means of providing asynchronous
transfer of control (e.g. watchdog to transfer
control from anywhere to the reset
sequence, software service of the underlying
run-time system to cause transfer of control
within the local scope of the thread)

d. The description in <5.2>c. should consist in the following information:
1. type of components participating to the real time behaviour,
2. scheduling type (e.g. single or multi-threads),
3. scheduling model (e.g. pre-emptive or not, fixed or dynamic

priority based),
4. analytical model (e.g. rate monotonic scheduling, deadline

monotonic scheduling),
5. Tasks identification and priorities,
6. Means of communication and synchronization,
7. Time management.

No dynamic architecture and computational model will be documented, see No Logical and
Computational Model.

e. The software behaviour shall be described e.g. with automata or
scenarios.

The software behaviour will only be described at software component level if necessary. Au-
tomata and scenarios may be visualized with @dot special commands, @msc special commands,
or PlantUML diagrams.

f. The software static, dynamic and behavioural architecture shall be
described in accordance with the selected design method.

Doxygen is thoroughly used by the RTEMS Project for more than ten years to describe the
software. It is evident that Doxygen is a proven in use tool and in line with the design method
of the RTEMS Project.

g. The SDD shall describe the error handling and fault tolerance principles
(e.g. error detection, reporting, logging, and fault containment regions.)

Content provided by @page special command. Referenced by main page. Since this information
is also relevent for the RTEMS users, it should be included in the RTEMS Classic API Guide
[RTEa]. If we add the information to this guide, then a reference will be made.

<5.3> Software components design - General
a. The SDD shall describe:

1. The software components, constituting the software item.
2. The relationship between the software components.
3. The purpose of each software component.
4. For each software component, the development type (e.g. new

development, software to be reused).
5. If the software is written for the reuse,

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 27

http://plantuml.com/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

- its provided functionality from an external point of view,
and

- its external interfaces.
6. Handling of existing reused components.
NOTE See Annex N.

Implemented via the use of standard Doxygen features.

b. The following shall apply to the software components specified in
<5.3>a.1.:
1. Each software component is uniquely identified.

Software components are identified by domain-specific designators, e.g. Doxygen group name,
function name, symbol name, variable name. No separate design-specific identifier is provided.
The identifiers are unique if they follow the naming convention.

2. When components are expressed as models, the supplier
establishes a way to assign identifiers within the model for sake of
traceability.

Models are not used, see No Logical and Computational Model.

3. The software requirements allocation provides for each software
component;

NOTE The documented trace can be provided
automatically by tools when models are used to
express components.

See Traceability between Software Requirements, Architecture and Design.

c. The description of the components should be laid out hierarchically, in
accordance with the following aspects for each component, further
described in <5.4>:
- <Component identifier>
- <Type>
- <Purpose>
- <Function>
- <Subordinates>
- <Dependencies>
- <Interfaces>
- <Resources>
- <References>
- <Data>
NOTE Detailed description of the aspects for each

component are describe in <5.4>.

Implemented via the use of standard Doxygen features.

<5.4> Software components design - Aspects of each component
<5.4.1> General
a. This part of the DRD, as well as <5.5>, may be produced as the detailed

design model of a tool, if agreed with the customer.

© 2019, 2020, 2021 embedded brains GmbH 28

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Doxygen is the proposed tool.

<5.4.2> <Component identifier>
a. Each component should have a unique identifier.

See <5.3>b.1.

b. The component should be named according to the rules of the
programming language or operating system to be used.

Yes, this is obvious.

c. A hierarchical naming scheme should be used that identifies the parent
of the component (e.g. ParentName_ChildName).

Yes, the RTEMS coding style guide has a naming scheme.

<5.4.3> <Type>
a. Component type should be described by stating its logical and physical

characteristics.
b. The logical characteristics should be described by stating the package,

library or class that the component belongs to.
c. The physical characteristics should be described by stating the type of

component, using the implementation terminology (e.g. task, subroutine,
subprogram, package and file).
NOTE The contents of some components description

clauses depend on the component type. For the
purpose of this guide, the following categories
are used: executable (i.e. contains computer
instructions) or non-executable (i.e. contains
only data).

Implemented via the use of standard Doxygen features.

<5.4.4> <Purpose>
a. The purpose of a component should describe its trace to the software

requirements that it implements.
NOTE Backward traceability depends upon each

component description explicitly referencing
the requirements that justify its existence.

See Traceability between Software Requirements, Architecture and Design.

<5.4.5> <Function>
a. The function of a component shall be described in the software

architectural design.
b. The description specified in <5.4.5>a. should be done by stating what the

component does.
NOTE 1 The function description depends upon the

component type. Therefore, it can be a
description of the process.

NOTE 2 Process descriptions can use such techniques as
structured English, precondition-postcondition
specifications and state-transition diagrams.

© 2019, 2020, 2021 embedded brains GmbH 29

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Yes.

<5.4.6> <Subordinates>
a. The subordinates of a component should be described by listing the

immediate children.
NOTE 1 The subordinates of a unit are the units that are

"called by" it. The subordinates of a database
can be the files that "compose" it.

NOTE 2 The subordinates of an object are the objects
that are "used by" it.

Implemented via the use of standard Doxygen features. Call and caller graphs can be enabled
via the CALL_GRAPH and CALLER_GRAPH Doxygen configuration options. Please note that the
call and caller graphs generated by Doxygen do not cover static functions.

<5.4.7> <Dependencies>
a. The dependencies of a component should be described by listing the

constraints upon its use by other components.
NOTE Examples are:

- Operations to take place before this
component is called,

- Operations that are excluded when this
operation takes place.

Yes, but only if necessary and not for all components.

<5.4.8> <Interfaces>
a. Both control flow and data flow aspects of an interface shall be described

for each "executable" component.
b. Data aspects of "non executable" components should be described.
c. The control flow to and from a component should be described in terms

of how to start (e.g. subroutine call) and terminate (e.g. return) the
execution of the component.

d. If the information in <5.4.8>c. is implicit in the definition of the type of
component, a description need not be done.

e. If control flows take place during execution (e.g. interrupt), they should
be described.

f. The data flow input to and output from each component shall be
described.

g. It should be ensured that data structures:
1. are associated with the control flow (e.g. call argument list);
2. interface components through common data areas and files.

Yes.

<5.4.9> <Resources>
a. The resources' needs of a component should be described by itemising

what the component needs from its environment to perform its function.
NOTE 1 Items that are part of the component interface

are excluded.
NOTE 2 Examples of resources' needs of a component

are displays, printers and buffers.

Yes, but only if necessary and not for all components.

© 2019, 2020, 2021 embedded brains GmbH 30

http://www.doxygen.nl/manual/config.html#cfg_call_graph
http://www.doxygen.nl/manual/config.html#cfg_caller_graph

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<5.4.10> <References>
a. Explicit references should be inserted where a component description

uses or implies material from another document.

Yes.

<5.4.11> <Data>
a. The data internal to a component should be described.

NOTE The amount of details to be provided depends
strongly on the type of the component.

b. The data structures internal to a program or subroutine should also be
described.

c. Data structure definitions shall include the:
1. description of each element (e.g. name, type, dimension);
2. relationships between the elements (i.e. the structure);
3. range of possible values of each element;
4. initial values of each element.

Yes.

<5.5> Internal interface design
a. The SDD shall describe the internal interfaces among the identified

software components.
b. The interface data specified in a., by component, shall be organized

showing the complete interfaces map, using as appropriate diagrams or
matrices supporting their cross-checking.

c. For each identified internal interface, all the defined data elements shall
be included.
NOTE The amount of detail to be provided depends

strongly on the type of component.
d. The logical and physical data structure of files that interface major

component should be postponed to the detailed design.
e. Data structure definitions shall include:

1. the description of each element (e.g. name, type, dimension);
2. the relationships between the elements (i.e. the structure);
3. the initial values of each element.

Implemented via the use of standard Doxygen features.

<6> Requirements to design components traceability
a. The SDD shall provide traceability matrices

1. from the software requirements to component down to the lower
identified component in the software hierarchy (forward
traceability) and

2. from the software components to its upper level component up to
the software requirements (backward traceability).

b. In case the information in <6>a. is provided as separate documentation in
the DJF, a reference to it shall be stated.

See Traceability between Software Requirements, Architecture and Design.

c. The SDD shall define the potential specific measures taken for critical
software in the design documentation.

There will be no specific measures taken for critical software.

© 2019, 2020, 2021 embedded brains GmbH 31

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.3.2 Software Configuration File (SCF)
The Software Configuration File (SCF) is a part of the Design Definition File (DDF) and its
content is defined by ECSS-M-ST-40C Rev.1 Annex E [ECS09d]. This section presents verbatim
copies of the expected response from the standard highlighted as blocks followed by a content
proposal for the QDP.

Since this document contains information about the configuration of the QDP and contains
hash values of the QDP and its content, it shall be placed outside the QDP archive. It is the first
document a user of the QDP is supposed to read and can be used to verify the integrity of the
QDP archive.

E.2 Expected response
E.2.1 Scope and content
<1> Introduction
a. The introduction shall describe the purpose and

objective of the SCF.

This will be provided as hand written content in Sphinx format.

<2> Applicable and reference documents
a. The SCF shall list the applicable and reference documents to

support the generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SCF shall include any additional terms,

definition or abbreviated terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Software configuration item overview
a. The SCF shall contain a brief description of

the software configuration item.

This will be provided as hand written content in Sphinx format.

b. For the software configuration item, the following
information shall be provided:
1. how to get information about the software

configuration item;
2. composition of the software configuration item:

code, documents;
3. means to develop, modify, install, run the software

configuration item;
4. differences from the reference or previous version;
5. status of software problem reports, software change

requests, and software waivers and deviations related
to the software configuration item.

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 32

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<5> Inventory of materials
a. The SCF shall list all physical media and associated

documentation released with the software configuration item.
NOTE Example of physical media are listings, tapes, cards and disks.
b. The SCF shall define the instructions necessary to get information

included in physical media.
NOTE For example, to get files.

This will be provided as hand written content in Sphinx format. Although there is no physical
media for the QDP, this section should contain the reference to the ESA website which will
contain the QDPs and the Qualification Toolchain, which will allow generation of customized
QDPs.

<6> Baseline documents
a. The SCF shall identify all the documents applicable to the

delivered software configuration item version.

This will be provided as hand written content in Sphinx format. Since the QDP contains all
project-specific documents, references to sections 4.1, 4.2, and 4.3 will be made.

<7> Inventory of software configuration item
a. The SCF shall describe the content of the software

configuration item.
b. The SCF shall list all files constituting the software

configuration item:
1. source codes with name, version, description;
2. binary codes with name, version, description;
3. associated data files necessary to run the software;
4. media labelling references;
5. checksum values;
6. identification and protection method and tool description.

This will be provided as hand written content in Sphinx format. The QDP archive will contain
an automatically generated Python script (for example verify_package.py) which can be used
to verify the integrity of the unpacked QDP files. The script may be used to get a list of the files
of the QDP.

<8> Means necessary for the software configuration item
a. The SCF shall describe all items (i.e. hardware and software)

that are not part of the software configuration item, and
which are necessary to develop, modify, generate and run the
software configuration item, including:
1. items related to software development;
NOTE For example, compiler name and version,
linker, and libraries.
2. build files and software generation process;
3. other software configuration items.

This will be provided as hand written content in Sphinx format. This section should reference
to the QDP UM Software User Manual (SUM), which should contain a section with the necessary
software to use the QDP.

© 2019, 2020, 2021 embedded brains GmbH 33

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<9> Installation instructions
a. The SCF shall describe how to install the software

configuration item version, its means and procedures
necessary to install the product and to verify its installation.

This will be provided as hand written content in Sphinx format. This section should reference to
the QDP UM Software User Manual (SUM), which should contain a section with the instructions
on how to install and use the QDP.

<10> Change list
a. This SCF shall contain the list of all changes incorporated into

the software configuration item version, with a cross reference
to the affected software configuration item document, if any.

b. Changes not incorporated yet but affecting the S/W CI shall
also be listed and include.
1. software problem reports;
2. software change requests and proposals;
3. contractual change notices;
4. software waivers and deviations.

This will be provided as hand written content in Sphinx format. There will be one subsection
for each QDP version. For item b., simply a reference to section 12 will be made.

<11> Auxiliary information
a. The SCF shall include any auxiliary information to describe

the software configuration.

This will be provided as hand written content in Sphinx format. This section will contain
auxiliary information about the QDP configuration (if applicable).

<12> Possible problems and known errors
a. The SCF shall identify any possible problems or known errors

with the software configuration item version and any steps
being taken to resolve the problems or errors.

This will be provided as hand written content in Sphinx format. This section should reference
to the SRelD Software Release Document (SRelD), which will contain the list of SPRs and NCRs.

4.3.3 Software Release Document (SRelD)
The Software Release Document (SRelD) is a part of the Design Definition File (DDF) and its
content is defined by ECSS-E-ST-40C Annex G [ECS09b]. This section presents verbatim copies
of the expected response from the standard highlighted as blocks followed by a content proposal
for the QDP.

G.2 Expected response
G.2.1 Scope and content
<1> Introduction
a. The SRelD shall contain a description of the purpose, objective, content

and the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 34

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<2> Applicable and reference documents
a. The SRelD shall list the applicable and reference documents to support

the generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SRelD shall include any additional terms, definition or abbreviated

terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Software release overview
a. The SRelD shall contain a brief description of the information to be

associated with a software release, including:
1. reference of the corresponding SCF,
2. version of the delivered software configuration item,
3. status of SPRs, SCRs and SW&D related to the software

configuration item, and
4. advice for use of the software configuration item.
NOTE The software release document is a subset of

the software configuration file that describes a
new version by comparison with "reference" or
the previous one. It is used for the delivery of a
new version of a software configuration item to
a customer.

This will be provided as hand written content in Sphinx format.

<5> Status of the software configuration item
<5.1> Evolution since previous version
a. The SRelD shall

1. summarize the main information on the software configuration
item, and

2. describe the changes implemented since previous version.

This will be provided as hand written content in Sphinx format.

<5.2> Known problems or limitations
a. The SRelD shall list all the unsolved SPR and approved SW&D related to

the version of the software configuration item.

The list of unsolved SPRs and approved SW&D should be automatically generated.

<6> Advice for use of the software configuration item
a. The SRelD shall provide advice for the use of this version of the software

configuration item.
NOTE For example: Potential problems, and

compatibility with other configuration items).

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 35

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<7> On-going changes
a. The SRelD shall provide information on planned evolution of the

software configuration item.

This will be provided as hand written content in Sphinx format.

4.3.4 Software User Manual (SUM)
The Software User Manual (SUM) is a part of the Design Definition File (DDF) and its content
is defined by ECSS-E-ST-40C Annex H [ECS09b]. This section presents verbatim copies of the
expected response from the standard highlighted as blocks followed by a content proposal for
the QDP. It is proposed to use the RTEMS User Manual as is for the SUM of the QDP. The
Software Configuration File (SCF) will address QDP-specific use cases.

H.2 Expected response
H.2.1 Scope and content
<1> Introduction
a. The SUM shall contain a description of the purpose, objective, content

and the reason prompting its preparation.

The RTEMS User Manual has an Introduction chapter.

<2> Applicable and reference documents
a. The SUM shall list the applicable and reference documents to support the

generation of the document.

The RTEMS User Manual has no applicable and reference documents.

<3> Terms, definitions and abbreviated terms
a. The SUM shall include any additional terms, definition or abbreviated

terms used.

The RTEMS User Manual has a Glossary chapter.

<4> Conventions
a. The SUM shall summarise symbols, stylistics conventions, and command

syntax conventions used in the document.
NOTE An example of stylistic conventions is using

boldface and courier font to distinguish user
input. Examples of syntax conventions are the
rules for combining commands, keywords and
parameters.

The RTEMS Project documentation has currently no section to summarise symbols, stylistics
conventions, and command syntax conventions used in the documents.

<5> Purpose of the Software
a. The SUM shall include a description of the intended uses of the software,

in terms of capabilities, operating improvements, and benefits expected
from its use.

© 2019, 2020, 2021 embedded brains GmbH 36

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The purpose of the software is described in the Features section of the Introduction chapter of
the RTEMS User Manual.

<6> External view of the software
a. The SUM shall identify the software files, including databases and data

files, which are necessary for the software to operate, including security
and privacy considerations for each file and identification of the software
necessary to continue or resume operation in case of an emergency.

[...]
<11.3> Using the software on a typical task
a. The SUM shall describe a typical use case of the software, using graphical

pictures and diagrams to demonstrate the actions performed by the user.

The RTEMS User Manual does not follow the Annex H scope and content descriptions for sec-
tions <6> to <11> since they are inappropriate for an operating system library which should
be used to develop applications. They target full software products which can be used in mis-
sions, e.g. with an operational phase. The RTEMS User Manual focuses on the installation and
use of RTEMS and its ecosystem in general.

<12> Analytical Index
a. The SUM, if more than 40 pages, shall include an index containing a

systematic list of topics from the user's point of view, the major
synonyms and variants (especially if these are well known to users but
are not employed in the operational manual for technical reasons),
pointing to topics in the body of the manual by:
- page number,
- section number,
- illustration number,
- primary index entry (one level of reference only).
NOTE Index entries usefully contain auxiliary

information, especially cross-references to
contrasting or related terms. For example, the
entry for INSERT says 'see also DELETE'.
Indexes are made particularly helpful if
attention is drawn primarily to important
keywords, and to important locations in the
body of the manual. This is achieved by
highlighting such entries, and by grouping
minor entries under major headings. Indexes
do not contain more than two levels of entry. If
a single index points to different kinds of
location, such as pages and illustration
numbers, these are unambiguously
distinguished, (e.g. Page 35, Figure 7), since the
use of highlighting (35, 7) is not for instance
sufficient to prevent confusion in this case.

The RTEMS User Manual has a document index.

© 2019, 2020, 2021 embedded brains GmbH 37

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.3.5 Software Source Code and Media Labels
The source code in the QDP will consist of:

• Git clones of RTEMS Project repositories (e.g. rtems, rtems-docs, rtems-source-builder)
maybe with additional project-specific commits

• tool chain sources downloaded by the RSB

• build and configuration files

No media labels will be provided. Due to the inclusion of full Git clones (Git repositories) the
user of the QDP has full access to the project history. This allows an efficient integration of
source code into the Git work flow or any other version control system of the user.

4.3.6 Software Product and Media Labels
The software product in the QDP will consist of:

• an installation of the RTEMS BSP in the configuration defined by the QDP variant

• an installed tool chain built by the RSB of the QDP on a 64-bit Debian 10 machine with
only standard packages installed

No media labels will be provided.

4.3.7 Training Material
No training material will be provided by the QDP. There are training options available for users
of the QDP from embedded brains.

4.4 Design Justification File (DJF)
4.4.1 Software Verification Plan (SVerP)
The SVerP will be included in the SDP, see [EDI19c].

4.4.2 Software Validation Plan (SValP)
The Software Validation Plan is included in the SDP, see [EDI19c].

© 2019, 2020, 2021 embedded brains GmbH 38

https://embedded-brains.de/en/rtems-real-time-operating-system/rtems-training-courses/
https://embedded-brains.de/en

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.4.3 Independent Software Verification & Validation Plan
Not included in the QDP, see No Independent Software Verification and Validation.

4.4.4 Software Unit and Integration Test Plan (SUITP)
The Software Unit and Integration Test Plan is a part of the Design Justification File (DJF) and
its content is defined by ECSS-E-ST-40C Annex K [ECS09b]. This section presents verbatim
copies of the expected response from the standard highlighted as blocks followed by a content
proposal for the QDP.

There will be a combined plan for unit and integration tests, see Combined Unit and Integration
Testing. This is a deviation from ECSS-E-ST-40C.

K.2 Expected response
K.2.1 Scope and content
<1> Introduction
a. The SUITP shall contain a description of the purpose, objective, content

and the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

<2> Applicable and reference documents
a. The SUITP shall list the applicable and reference documents to support

the generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SUITP shall include any additional terms, definition or abbreviated

terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Software overview
a. The SUITP shall contain a brief description of the software under test and

its context: a summary of its functionality, its configuration, its
operational environment and its external interfaces.
NOTE Reference to technical documentation can be

done.

References to the Software Requirements Specification (SRS) and Software Interface Control Doc-
ument (ICD).

<5> Software unit testing and software integration testing
NOTE The SUITP describes the responsibility and

schedule information for the software unit
testing and integration testing, detailed as
follows.

<5.1> Organization
a. The SUITP shall describe the organization of software unit testing and

integration testing activities.

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 39

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

b. The following topics should be included:
1. roles,
2. reporting channels,
3. levels of authority for resolving problems,
4. relationships to the other activities such as project management,

development, configuration management and product assurance.

This will be provided as hand written content in Sphinx format.

<5.2> Master schedule
a. The SUITP shall describe the schedule for the software unit testing and

integration testing activities, in particular, test milestones identified in
the software project schedule and all item delivery events.

b. The SUITP should include:
1. a reference to the master schedule given in the software

development plan,
2. any additional test milestones and state the time required for each

testing task,
3. the schedule for each testing task and test milestone,
4. the period of use for the test facilities.

This section will be empty.

<5.3> Resource summary
a. The SUITP shall summarize the resources needed to perform the

software unit testing / integration testing activities such as staff,
hardware and software tools.

This will be provided as hand written content in Sphinx format.

<5.4> Responsibilities
a. The SUITP shall describe the specific responsibilities associated with the

roles described in a.
b. The responsibilities specified in <5.4>a. should be described by

identifying the groups responsible for managing, designing, preparing,
executing the tests.
NOTE Groups can include developers, technical

support staff, and product assurance staff.

This will be provided as hand written content in Sphinx format.

<5.5> Tools, techniques and methods
a. The SUITP shall describe the hardware platforms, software tools,

techniques and methods used for software unit testing and integration
testing activities.

This will be provided as hand written content in Sphinx format.

<5.6> Personnel and personnel training requirements
a. The SUITP shall list any requirement for software unit testing and

integration testing personnel and their training needs.

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 40

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<5.7> Risks and contingencies
a. The SUITP shall describe (or refer to the SDP) risks to the software unit

testing and integration testing campaign.
b. Contingency plans should be included.

This will be provided as hand written content in Sphinx format. Reference to Software Develop-
ment Plan (SDP).

<6> Control procedures for software unit testing / integration
testing

a. The SUITP shall contain information (or reference to) about applicable
management procedures concerning the following aspects:
1. problem reporting and resolution;
2. deviation and waiver policy;
3. control procedures.

This will be provided as hand written content in Sphinx format. Reference to Software Develop-
ment Plan (SDP).

<7> Software unit testing and integration testing approach
NOTE The SUITP describes the approach to be utilized

for the software unit testing and integration
testing, detailed as follows.

<7.1> Unit/integration testing strategy
a. The SUITP shall describe the software integration strategy

This will be provided as hand written content in Sphinx format.

<7.2> Tasks and items under test
a. The SUITP shall describe which are the tasks and the items under tests, as

well as criteria to be utilized.

This will be provided as hand written content in Sphinx format.

<7.3> Features to be tested
a. The SUITP shall describe all the features to be tested, making references

to the applicable documentation.

This will be provided as hand written content in Sphinx format.

<7.4> Features not to be tested
a. The SUITP shall describe all the features and significant combinations not

to be tested.

This will be provided as hand written content in Sphinx format.

<7.5> Test pass - fail criteria
a. The SUITP shall describe the general criteria to be used to determine

whether or not test are passed.

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 41

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<7.6> Manually and automatically generated code
a. The SUITP shall address separately the activities to be performed for

manually and automatically generated code, although they have the
same objective (ECSS-Q-ST-80 clause 6.2.8.2 and 6.2.8.7).

This will be provided as hand written content in Sphinx format.

<8> Software unit test / integration test design
<8.1> General
a. The SUITP shall provide the definition of unit and integration test design.

This will be provided as hand written content in Sphinx format.

b. For each identified test design, the SUITP shall provide the information
given in <8.2>
NOTE This can be simplified in the software unit test

plan.
<8.2> Organization of each identified test design

NOTE The SUITP provides the definition of each unit
test and integration test design, detailed as
follows.

<8.2.1> Test design identifier
a. The SUITP shall identify each test design uniquely.

See Identification.

b. The SUITP shall briefly describe the test design.
<8.2.2> Features to be tested
a. The SUITP shall list the test items and describe the features to be tested.
b. Reference to appropriate documentation shall be made and traceability

information shall be provided.

For each test design (Test Suite Item Type), this information can be generated from the Test
Case Item Type specification items referencing the test design. The term feature in the SUITP is
defined as the software unit referenced by a unit test case, in contrast to the project definition
of feature.

<8.2.3> Approach refinements
a. The SUITP shall describe the test approach implemented for the specific

test design and the specific test class.
b. The description specified in a. shall provide the rationale for the test case

selection and grouping into test procedures.
c. The method for analysing test results shall be identified (e.g. compare

with expected output).
d. Configuration of the facility (both hardware and software) to be used to

execute the identified test shall be described.
<8.2.4> Test case identifier
a. The SUITP shall list the test cases associated with the test design and

provide a summary description of each ones.

The test designs will be provided through Test Suite Item Type specification items.

© 2019, 2020, 2021 embedded brains GmbH 42

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<9> Software unit and integration test case specification
<9.1> General
a. The SUITP shall provide an identification of software unit test and

integration test cases.

See Identification.

b. For each identified test case, the SUITP shall provide the information
given in <9.2>.
NOTE Each test case can be described through one or

several description sheets.
<9.2> Organization of each identified test case

NOTE The SUITP provides the definition of each unit
and integration test case, detailed as follows.

<9.2.1> Test case identifier
a. The SUITP shall identify the test case uniquely.
b. A short description of the test case purpose shall be provided.
<9.2.2> Test items
a. The SUITP shall list the test items.
b. Reference to appropriate documentation shall be performed and

traceability information shall be provided.
<9.2.3> Inputs specification
a. The SUITP shall describe the inputs to execute the test case.
<9.2.4> Outputs specification
a. This SUITP shall describe the expected outputs.
<9.2.5> Test pass - fail criteria
a. The SUITP shall list the criteria to decide whether the test has passed or

failed.
<9.2.6> Environmental needs
a. The SUITP shall describe:

1. the exact configuration and the set up of the facility used to
execute the test case as well as the utilization of any special test
equipment (e.g. bus analyser);

2. the configuration of the software utilized to support the test
conduction (e.g. identification of the simulation configuration);

<9.2.7> Special procedural constraints (ECSS-Q-ST-80 clause 6.3.5.25)
a. The SUITP shall describe any special constraints on the used test

procedures.
<9.2.8> Interfaces dependencies
a. The SUITP shall describe all the test cases to be executed before this test

case.

The test cases will be provided through Test Case Item Type specification items.

<9.2.9> Test script
a. The SUITP shall describe all the test script used to execute the test case.

NOTE The test scripts can be collected in an appendix.

Reference to the Qualification Toolchain documentation.

<10> Software unit and integration test procedures
<10.1> General
a. The SUITP shall provide a identification of software unit and integration

test procedures.

© 2019, 2020, 2021 embedded brains GmbH 43

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

See Identification.

b. For each identified test procedure, the SUITP shall provide the
information given in <10.2>.

<10.2> Organization of each identified test procedure
NOTE The SUITP provides the definition of each unit

and integration test procedure, detailed as
follows.

<10.2.1> Test procedures identifier
a. The SUITP shall include a statement specifying the test procedure

uniquely.
<10.2.2> Purpose
a. The SUITP shall describe the purpose of this procedure.
b. A reference to each test case implemented by the test procedure shall be

given.
<10.2.3> Procedure steps
a. The SUITP shall describe every step of the procedure execution:

1. log: describe any special methods or format for logging the results
of test execution, the incidents observed, and any other event
pertinent to this test;

2. set up: describe the sequence of actions to set up the procedure
execution;

3. start: describe the actions to begin the procedure execution;
4. proceed: describe the actions during the procedure execution;
5. test result acquisition: describe how the test measurements is

made;
6. shut down: describe the action to suspend testing when

interruption is forced by unscheduled events;
7. restart: identify any procedural restart points and describe the

actions to restart the procedure at each of these points;
8. wrap up: describe the actions to terminate testing.

The test procedures will be provided through Test Procedure Item Type specification items.

<11> Software test plan additional information
a. The following additional information shall be provided:

1. test procedures to test cases traceability matrix;
2. test cases to test procedures traceability matrix;
3. test scripts;
4. detailed test procedures.
NOTE 1 This information can be given in separate

appendices.
NOTE 2 One test design uses one or more test cases.
NOTE 3 One test procedure execute one or more test

cases.

The traceability matrices will be generated from the Specification Items. Test script information
will be provided by reference to the Qualification Toolchain documentation. No extra detailed
test procedures will be provided in this section.

© 2019, 2020, 2021 embedded brains GmbH 44

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.4.5 Software Validation Specification (SVS) with Respect to TS
The Software Validation Specification with Respect to TS is a part of the Design Justification
File (DJF) and its content is defined by ECSS-E-ST-40C Annex L [ECS09b]. This section presents
verbatim copies of the expected response from the standard highlighted as blocks followed by
a content proposal for the QDP.

L.2 Expected response
L.2.1 Scope and content
<1> Introduction
a. The SVS w.r.t. TS or RB shall contain a description of the purpose,

objective, content and the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

<2> Applicable and reference documents
a. The SVS w.r.t. TS or RB shall list the applicable and reference documents

to support the generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SVS w.r.t. TS or RB shall include any additional terms, definition or

abbreviated terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Software overview
a. The SVS w.r.t. TS or RB shall contain a brief description of the software

under test and its context: a summary of its functionality, its
configuration, its operational environment and its external interfaces.
NOTE Reference to technical documentation can be

done.

References to the Software Requirements Specification (SRS), Software Interface Control Docu-
ment (ICD), and Software Design Document (SDD).

<5> Software validation specification task identification
NOTE The SVS w.r.t. TS or RB describes the approach

to be utilized for the software validation
specification, detailed as follows.

<5.1> Task and criteria
a. The SVS w.r.t. TS or RB shall describe which are the tasks and the items

under tests, as well as criteria to be utilized.

This will be provided as hand written content in Sphinx format.

<5.2> Features to be tested
a. The SVS w.r.t. TS or RB shall describe all the features to be tested, making

references to the applicable documentation.

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 45

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<5.3> Features not to be tested
a. The SVS w.r.t. TS or RB shall describe all the features and significant

combinations not to be tested.

This will be provided as hand written content in Sphinx format.

<5.4> Test pass - fail criteria
a. The SVS w.r.t. TS or RB shall describe the general criteria to be used to

determine whether or not tests are passed.

This will be provided as hand written content in Sphinx format.

<5.5> Items that cannot be validated by test
a. The SVS w.r.t. TS or RB shall list the tasks and items under tests that

cannot be validated by test.
b. Each of them shall be properly justified
c. For each of them, an analysis, inspection or review of design shall be

proposed.

The validation by analysis, inspection, or review of design will be provided by Requirement
Validation.

<5.6> Manually and automatically generated code
a. The SVS shall address separately the activities to be performed for

manually and automatically generated code, although they have the
same objective (ECSS-Q-ST-80 clause 6.2.8.2 and 6.2.8.7).

This will be provided as hand written content in Sphinx format.

<6> Software validation testing specification design
<6.1> General
a. The SVS w.r.t. TS or RB shall provide the definition of software

validation testing specification design, giving the design grouping
criteria such as function, component or equipment management.

This will be provided as hand written content in Sphinx format.

b. For each identified test design, the SVS w.r.t. TS or RB shall provide the
information given in <6.2>.

<6.2> Organization of each identified test design
NOTE The SVS w.r.t. TS or RB provides the definition

of each validation test design, detailed as
follows

<6.2.1> General
a. The SVS w.r.t. TS or RB shall briefly describe the test design.
<6.2.2> Features to be tested
a. The SVS w.r.t. TS or RB shall describe the test items and the features to be

tested.
b. Reference to appropriate documentation shall be performed and

traceability information shall be provided.

For each test design (Test Suite Item Type), this information can be generated from the Test Case
Item Type specification items referencing the test design.

© 2019, 2020, 2021 embedded brains GmbH 46

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<6.2.3> Approach refinements
a. The SVS w.r.t. TS or RB shall describe the test approach implemented for

the specific test design and the specific test class implemented.
b. The description specified in a. shall provide the rationale for the test case

selection and grouping into test procedures.
c. The method for analysing test results shall be identified (e.g. compare

with expected output, and compare with old results).
d. Configuration of the facility (both hardware and software) to be used to

execute the identified test shall be described.

The test designs will be provided through Test Suite Item Type specification items.

<7> Software validation test case specification
<7.1> General
a. The SVS w.r.t. TS or RB shall provide the identification of software

validation test cases.

See Identification.

b. For each identified test case, the SVS w.r.t. TS or RB shall provide the
information given in 7.2

<7.2> Organization of each identified test case
NOTE The SVS w.r.t. TS or RB provides the definition

of each validation test case, detailed as follows.
<7.2.1> Test case identifier
a. The SVS w.r.t. TS or RB shall describe the test case uniquely.
b. A short description of the test case purpose shall be provided.
<7.2.2> Inputs specification
a. The SVS w.r.t. TS or RB shall describe, for each test case, the inputs to

execute the test case.
<7.2.3> Outputs specification
a. The SVS w.r.t. TS or RB shall describe, for each test case, the expected

outputs.
<7.2.4> Test pass - fail criteria
a. The SVS w.r.t. TS or RB shall describe, for each test case, the criteria to

decide whether the test has passed or failed.
<7.2.5> Environmental needs
a. The SVS w.r.t. TS or RB shall describe:

1. the exact configuration and the set up of the facility used to
execute the test case as well as the utilization of any special test
equipment (e.g. bus analyser);

2. the configuration of the software utilized to support the test
conduction (e.g. identification of the simulation configuration);

<7.2.6> Special procedural constraints(ECSS-Q-ST-80 clause 6.3.5.25)
a. The SVS w.r.t. TS or RB shall describe any special constraints on the used

test procedures.
<7.2.7> Interfaces dependencies
a. The SVS w.r.t. TS or RB shall list all the test cases to be executed before

this test case.

The test cases will be provided through Test Case Item Type specification items.

<8> Software validation test procedures
<8.1> General

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 47

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

a. This part of the DRD may be placed in a different document, if agreed
with the customer.
NOTE Procedures are not always attached to each test

case
b. The SVS w.r.t. TS or RB shall provide the identification of software

validation test procedures.

See Identification.

c. For each identified validation test procedure, the SVS w.r.t. TS or RB shall
provide the information presented in 8.2

<8.2> Organization of each identified test procedure
NOTE The SVS w.r.t. TS or RB provides the

description of each identified validation test
procedure, detailed as follows.

<8.2.1> Test procedure identifier
a. The SVS w.r.t. TS or RB shall identify each test procedure uniquely.
<8.2.2> Purpose
a. The SVS w.r.t. TS or RB shall describe the purpose of each test procedure.
b. A reference to each test case used by the test procedure shall be given.
<8.2.3> Procedure steps
a. The SVS w.r.t. TS or RB shall describe every step of each procedure

execution:
1. log: describe any special methods or format for logging the results

of test execution, the incidents observed, and any other event
pertinent to this test;

2. set up: describe the sequence of actions necessary to set up the
procedure execution;

3. start: describe the actions necessary to begin the procedure
execution;

4. proceed: describe the actions necessary during the procedure
execution;

5. test result acquisition: describe how the test measurements is
made;

6. shut down: describe the action necessary to suspend testing when
interruption is forced by unscheduled events;

7. restart: identify any procedural restart points and describe the
actions necessary to restart the procedure at each of these points;

8. wrap up: describe the actions necessary to terminate testing.

The test procedures will be provided through Test Procedure Item Type specification items.

<8.2.4> Test script
a. The SVS w.r.t. TS or RB shall list all the test script used to execute the test

case.
NOTE The test scripts can be collected in an appendix.

Reference to the Qualification Toolchain documentation.

<9> Software validation analysis, inspection, review of
design

a. The SVS w.r.t. TS or RB shall include, for each items where it can be
justified that a test is not possible, another validation method based on

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 48

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

analysis, inspection, review of design.

The validation by analysis, inspection, or review of design will be provided by Requirement
Validation.

<10> Validation test platform requirements
a. The SVS w.r.t. TS or RB shall list the validation requirements related to

the validation test platform to be used (for example, benches or
simulators capabilities and their representativity with respect to e.g. real
time constraints, target or real hardware equipments on which the
software is specified to operate).

The Test Procedure Item Type specification items may reference validation test platform require-
ments.

<11> Software validation specification additional information
a. The following additional information shall be included in the SVS w.r.t.

TS or RB:
1. Test/analysis/inspection/review of design to requirement

traceability matrix,
2. Requirement to test/analysis/inspection/review of design

traceability matrix,
3. Test procedures to test cases traceability matrix,
4. Test cases to test procedures traceability matrix,
5. Test scripts,
6. Detailed test procedures.
NOTE 1 This information can be given in separate

appendices.
NOTE 2 One test design uses one or more test cases.
NOTE 3 One test procedure execute one or more test

cases.
NOTE 4 Traceability matrices include the title of the

requirement or test in addition to its number
for readability purpose.

The traceability matrices will be generated from the Specification Items. Test script information
will be provided by reference to the Qualification Toolchain documentation. No extra detailed
test procedures will be provided in this section.

© 2019, 2020, 2021 embedded brains GmbH 49

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.4.6 Software Validation Specification (SVS) with Respect to RB
Not included in the QDP, see No Requirements Baseline (RB).

4.4.7 Acceptance Test Plan
Not included in the QDP, see No Installation and Acceptance.

4.4.8 Software Unit and Integration Test Report
The report shall be generated by the Qualification Toolchain from the test output of the RTEMS
Test Framework. The generator should support histograms for performance tests. The generator
should support timing diagrams for interrupts and thread switches if the test cases produces
tracing output. See proof of concept.

There will be a combined report for unit and integration tests, see Combined Unit and Integration
Testing. This is a deviation from ECSS-E-ST-40C.

Note: This report will be included in the Software Verification Report (SVR).

4.4.9 Software Validation Report with Respect to TS
The report shall be generated by the Qualification Toolchain from the test output of the RTEMS
Test Framework and validation by analysis, inspection, and review of design specification items
(Requirement Validation). The generator should support histograms for performance tests. The
generator should support timing diagrams for interrupts and thread switches if the test cases
produces tracing output. See proof of concept.

Note: This report will be included in the Software Verification Report (SVR).

4.4.10 Software Validation Report with Respect to RB
Not included in the QDP, see No Requirements Baseline (RB).

4.4.11 Acceptance Test Report
Not included in the QDP, see No Installation and Acceptance.

© 2019, 2020, 2021 embedded brains GmbH 50

https://docs.rtems.org/branches/master/eng/test-framework.html#the-rtems-test-framework
https://docs.rtems.org/branches/master/eng/test-framework.html#the-rtems-test-framework
https://ftp.rtems.org/pub/rtems/people/sebh/test-report.pdf
https://docs.rtems.org/branches/master/eng/test-framework.html#the-rtems-test-framework
https://docs.rtems.org/branches/master/eng/test-framework.html#the-rtems-test-framework
https://ftp.rtems.org/pub/rtems/people/sebh/test-report.pdf

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.4.12 Installation Report
Not included in the QDP, see No Installation and Acceptance.

4.4.13 Software Verification Report (SVR)
The Software Verification Report (SVR) is a part of the Design Justification File (DJF) and its
content is defined by ECSS-E-ST-40C Annex M [ECS09b]. This section presents verbatim copies
of the expected response from the standard highlighted as blocks followed by a content proposal
for the QDP.

M.2 Expected response
M.2.1 Scope and content
<1> Introduction
a. The SVR shall contain a description of the purpose, objective, content and

the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

<2> Applicable and reference documents
a. The SVR shall list the applicable and reference documents to support the

generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SVR shall include any additional terms, definition or abbreviated

terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Verification activities reporting and monitoring
<4.1> General
a. The SVR shall address separately the activities to be performed for

manually and automatically generated code.

<4.1>.a. essentially requests that all sections below should report on manual and generated
code distinctively. Yet, this document will not make a difference between hand written and
automatically generated code. The following justification will be provided:

Automatically generated code has its origin in some specification items. These items
contain pieces of human written code. We use tools to assemble these pieces of
manual conceived code into entire files of code. These files contain the collected
pieces of hand written code, some generated header and trailer code as well as
tables which are also derived from manually created specification items. All other
code is fully hand written.

A automatically generated code files are treated as if there were hand written:

• The tool to generate the code is run by a programmer.

• The generated files are inspected and tested by that programmer.

© 2019, 2020, 2021 embedded brains GmbH 51

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• The generated files are sent to the developer mailing list as if that programmer
had created them by hand.

• The generated files are reviewed on the mailing list like any other files and any
findings must be fixed.

• Finally, the generated code is committed to the source code repository like all
hand written code.

• This means, the automatically produced code is not generated a new every time
the operating system is build. Instead, the code is generated once, reviewed,
committed to the other source code. The operating system is then build again
and again from that once checked-in source code without generating it every
time from scratch.

As automatically generated code in RTEMS is handled like hand written code, the
verification activities performed on generated code are exactly the same as those for
hand written code.

<4.2> Software related system requirements process verification
(for the SRR)

a. The SVR shall include the report of the verification of the requirement
baseline and the interface requirements specification as specified in
5.8.3.1.

There is no requirement baseline, see No Requirements Baseline (RB) and ECSS-E-ST-40C 5.8.3.1.

b. If system models are available, a model checking report (e.g. data, event,
failure) shall be included in the SVR.

There is no system model, see No Logical and Computational Model.

<4.3> Software requirements and architecture engineering process
verification (for the PDR)

<4.3.1> Traceability (when not already included in related software
requirements, interface and design documents)

a. The SVR shall present the following traceability matrices:
- software requirements to system requirements
- Software architectural design to requirements

There is no requirement baseline. Therefore, traceability from software requirements to system
requirements is not included (see No Requirements Baseline (RB)). The software architectural
design to requirements traceability is included in the Software Design Document (SDD). See also
Traceability between Software Requirements, Architecture and Design.

<4.3.2> Feasibility
a. The SVR shall present in gathering all the specific verification

reports that have been planned to be provided w.r.t. the SVerP,
including e.g.:

In case there are several items which need to be verified (such as different software documents),
there may be a report on each individual item or one report on all items. The reports may be
included in this SVR or this SVR will reference the documents containing the reports.

© 2019, 2020, 2021 embedded brains GmbH 52

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

- Software requirements verification as per 5.8.3.2.

Each point of ECSS-E-ST-40C section 5.8.3.2 will be covered by hand written content with the
exception of these:

2. Not applicable because of No Requirements Baseline (RB)

3. Not applicable because of No Requirements Baseline (RB)

10. Point 10 asks to check whether the verification method defined for each re-
quirement because of ECSS-Q-ST-80C 7.2.1.3 is feasible. Whereby such a
method is to be defined for:

a. Requirement baseline This is not applicable because of No Requirements
Baseline (RB).

b. Technical specification These requirements are those stated in the Soft-
ware Requirements Specification (SRS) and arise from specification items.
Whether their validation method is feasible will be provided in hand writ-
ten form.

11. Not applicable because of No Logical and Computational Model

- HMI evaluation by e.g. mock-up as per ECSS-E-ST-10-11

There is no HMI.

- Behavioural verification of the logical model and architectural
design verification as per 5.8.3.13a. and b.

There is no logical model, see No Logical and Computational Model.

- Verification of the software architectural and interface design as
per 5.8.3.3.

Each point of ECSS-E-ST-40C section 5.8.3.3 will be covered by hand written content with the
exception of point 3 which will be automatically checked and the resulting report will be in-
cluded.

- Architectural design behavioural model checking

There is no behavioural model, see No Logical and Computational Model.

- Verification of software documentation as per 5.8.3.10.

This sub-point repeats in the SVR in the following sections:

• <4.3.2>.a for PDR

• <4.4>.a.2 for CDR

• <4.5>.a.2 for QR and AR

• <4.6>.a.2 for CDR, QR and AR

© 2019, 2020, 2021 embedded brains GmbH 53

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Since this document has not been presented at PDR, all software documentation ready for CDR
will be covered in section <4.4>.a.2. Verifications of later changes to software documentation
and new software documentation shall be reported in section <4.5>.a.2.

Consequently, this section here (<4.3.2>.a) will be empty and point to <4.4>.a.2 in this SVR.

- Other specific inspections, analyses or review of design report (e.g.
numerical accuracy , technical risks analysis, evaluation of reuse
potential)

- Others specific verification related to RAMS requirements (e.g.
analysis reports using HSIA, SFTA, SFMECA)

The above sub-point repeats in the SVR in the following sections:

• <4.3.2>.a for PDR

• <4.4>.a.2 for CDR

• <4.5>.a.2 for QR and AR (only partial repetition)

Since this document has not been presented at PDR and the content will be the same for PDR
and CDR, only section <4.4>.a.2 will contain the report and this sub-section here (<4.3.2>.a)
will only contain a pointer there.

<4.4> Software design and implementation engineering process
verification (for CDR)

a. The SVR shall present in gathering all the specific verification reports that
have been planned to be provided w.r.t. the SVerP, including e.g.:
1. Traceability (when not already included in related software design

documents or software code), presenting the following traceability
matrices:
o software detailed design to software architectural design
o Software code to software detailed design
o Software unit test to requirements, design

The traceability information will be provided by the SDD (see Software Design Document (SDD)
and Traceability between Software Requirements, Architecture and Design). The relevant sections
of that document will be referenced.

The third bullet is covered by validation tests; not by unit tests. RTEMS has existing test suites
with about 600 to 700 tests. Most of these tests exist since long before the start of this qualifi-
cation project and have naturally no relation to the requirements.

In contrast, the specification items define tests specifically designed to test a particular require-
ment. These tests are called verification tests. These test are linked to the requirement they
test. Therefore, these verification tests are the ones which must be used in the above mentioned
traceability matrix.

See also On Demand Unit and Integration Testing and Combined Unit and Integration Testing.

2. Feasibility, presenting in gathering all the specific verification
reports that have been planned to be provided w.r.t. the SVerP,
including e.g.:
o Software detailed design verification as per 5.8.3.4

© 2019, 2020, 2021 embedded brains GmbH 54

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Each point of ECSS-E-ST-40C 5.8.3.4 will be covered by hand written content with the exception
of

• point 3 which will be automatically checked and the resulting report will be included and

• point 9 which is not applicable (see No Logical and Computational Model)

o Design model checking (including behavioural verification
as per 5.8.3.13b.)

There is no behavioural model, see No Logical and Computational Model and ECSS-E-ST-40C
5.8.3.13b.

o Software code verification as per 5.8.3.5a.

Each point of ECSS-E-ST-40C 5.8.3.5a will be covered by hand written content with the excep-
tion of these:

3. partly hand written and partly automatically generated

9. not applicable because RTEMS has no floating point operations (see No Numer-
ical Accuracy Analysis)

o Structural code coverage achievement.

This will be automatically generated content obtained from code coverage tests.

o Deactivated code verification as per ECSS-Q-ST-80 6.2.6.5

There is no deactivated code in RTEMS, since the pre-qualified RTEMS will achieve 100% code
coverage.

o Configurable code verification as per ECSS-Q-ST-80 6.2.6.6

This sub-section will contain the following text:

This requirement is met by RTEMS design:

• There are checks of the C pre-processer, which detects invalid/illegal configu-
ration.

• RTEMS has configuration checks at link-time as well as at start-up

• The user can check certain configuration parameters by diagnostic functions

o Source code robustness verification

This will be provided as hand written content which references to the results of the static analyz-
ers which will be provided in the SPAMR (Software Product Assurance Milestone Report (SPAMR))
and explains relevance of the output of the tools. See ECSS-E-ST-40C 5.8.3.5f

o Verification of software unit testing as per 5.8.3.6

RTEMS calls these kind of test validation tests instead of unit tests. Each point of ECSS-E-ST-40C
5.8.3.6 will be covered by hand written content.

© 2019, 2020, 2021 embedded brains GmbH 55

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

o Verification of software integration as per 5.8.3.7

RTEMS calls these kind of test validation tests instead of integration tests. ECSS-E-ST-40C 5.8.3.7
will be covered by hand written text.

o Verification of software documentation as per 5.8.3.10

There will be a report for each software document. Each point of ECSS-E-ST-40C 5.8.3.10 will
be covered by hand written content.

See repeating document verification in SVR.

o Others specific inspections, analyses or review of design
report (e.g. technical risks analysis, evaluation of reuse
potential)

The reused software is referred in the SRF [EDI20]. No more specific inspections, analysis or
review of design are necessary.

o Others specific verification related to RAMS requirements
(e.g. analysis reports using HSIA, SFTA, SFMECA).

This sub-section will contain the following text:

The HSIA and SFTA are not applicable to RTEMS. A SFMECA was performed to
RTEMS (see SPAP [EDI19e], chapter 6) and derived into recommendations but as a
final conclusion none of them is applicable to Pre-Qualified RTEMS (space profile).
Hence, there are no RAMS requirements.

See repeating other verifications in SVR

<4.5> Software delivery and acceptance process verification (for QR
and AR)

a. The SVR shall present in gathering all the specific verification reports that
have been planned to be provided w.r.t. the SVerP, including e.g.:
1. Traceability (when not already included in related software

acceptance documents), presenting the following traceability
matrices:
o Software acceptance testing to requirement baseline

There is no requirement baseline, see No Requirements Baseline (RB).

2. Feasibility, presenting in gathering all the specific verification
reports that have been planned to be provided w.r.t. the SVerP,
including:
o Structural code coverage achievement (update for QR and

AR)

This will be automatically generated content obtained from code coverage tests.

o Verification of software documentation as per 5.8.3.10

There will be a report for each new software document or document change. Each point of
ECSS-E-ST-40C 5.8.3.10 will be covered by hand written content.

© 2019, 2020, 2021 embedded brains GmbH 56

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

See repeating document verification in SVR.

o Others specific verification related to RAMS design (e.g. unit
and integration testing coverage ratio)

There are no RAMS requirements/design. See above.

See also repeating other verifications in SVR

<4.6> Software validation process verification (for CDR, QR, AR)
a. The SVR shall present in gathering all the specific verification reports that

have been planned to be provided w.r.t. the SVerP, including e.g.:
1. Traceability (when not already included in related software

validation specification), presenting the following traceability
matrices:
o software validation specifications to TS

The traceability from software validation to technical specification will be generated automati-
cally and be included in the Software Validation Specification (SVS) with Respect to TS.

o software validation specifications to RB

Not applicable as there is no requirement baseline (see No Requirements Baseline (RB)).

2. Feasibility, presenting in gathering all the specific verification
reports that have been planned to be provided w.r.t. the SVerP,
including e.g.:
o Verification of software validation w.r.t. TS as per 5.8.3.8a.

The verification is done automatically and the resulting report will be provided.

o Verification of software validation w.r.t. RB as per 5.8.3.8b.

Not applicable as there is no requirement baseline (see No Requirements Baseline (RB)).

o Verification of software documentation as per 5.8.3.10

Empty here but will be done for QR and AR in <4.5>.a.2. See repeating document verification
in SVR.

o Verification of testing as per ECSS-Q-ST-80 clause 7.2.3.6

The content will be generated automatically.

<4.7> Software quality requirements verification
a. The SVR shall present in gathering all the specific verification reports

related to software quality that have been planned to be provided in the
SVerP. This include in particular the verification of the software quality
requirements according to ECSS-Q-ST-80 clause 6.2.6.1, and the
verification of the application of the chosen measures to handle
automatically generated code.

NOTE Deactivated and configurable code verification
reports are in section <4.4>a.2. Numerical
accuracy report is in section <6> of this DRD.

© 2019, 2020, 2021 embedded brains GmbH 57

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The verifications will be done according to the Software Verification Plan (part of SDP-000
[EDI19c]) section 10.3.3.1:

• For collection and analysis of metrics defined in SPAP-002 deliverable: This will only refer-
ence the metrics already reported and justified in the Software Product Assurance Milestone
Report (SPAMR) section <7>.

• For quality review of the deliverables on each formal review: This will only refrence the
reviews and findings already reported in the Software Product Assurance Milestone Report
(SPAMR) section <4>.a.5.

Moreover, a hand written content about the measures to handle automatically generated code
will be provided:

• Generated code is reviewed on the mailing list like manual written code.

• Generated code is subject to testing (in order to achieve the code coverage threshold)

• Generated code undergoes the same static analyzing and metering as the manual gener-
ated code

See ECSS-Q-ST-80C Rev.1 6.2.6.1.

<5> Margin and technical budget status
NOTE This section is often placed in a separate

document named STSB (Software Timing and
Sizing Budget).

<5.1> Technical budgets and margins computation
a. The SVR shall include the way to compute the technical budgets and

margins.

This will contain a reference to [RTEb] sections:

• 8.1.5 Test Case Resource Accounting

• 8.1.10 Time Services

• 8.1.11 Code Runtime Measurements

• 8.1.14 Test Reporting

In addition, there will be a hand written description on how the memory sizes are measured.

<5.2> Software budget (sizing and timing)
a. The status of margins regarding the technical budgets shall be presented

in the SVR at each milestone, describing the utilized analytical
hypothesis.

b. The margins shall be established by estimation for PDR, by analysis of
design after detailed design, and consolidated by performance
measurements commensurate with the software implementation for
CDR, QR and AR.

c. The SVR shall include at PDR:
1. the memory size for static code size, static data size and stack size;
2. the CPU utilization;
3. the deadline fulfilment, the margin available for every deadline in
the worst case and, if feasible, the jitter in the nominal case;

d. The SVR shall include after detailed design:

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 58

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

1. the memory size refined for static code size, static data size and
stack size expressed on a thread basis, measuring them per lowest
level design component;

2. the CPU utilization, refined, considering the worst case execution
time of each lowest level design component having its own control
flow (therefore including the call to the protected objects)
(expressed in time and in percentage of a reference period);

3. the deadline fulfilment.
NOTE The worst case execution time of each lowest

level design component having its own control
flow is multiplied by the number of times this
component is executed per second. The
resulting quantity is summed over all other
design components. The result is the estimated
percentage processor utilization.

The content of this section will be mostly automatically generated from

• performance test results

• inspection of binary (i.e. ELF) files

Since we do not deliver an application but an operating system certain of the above demands
are not applicable – for example, there is no deadline defined; CPU utilization is meaningless for
a single function call. Moreover, the worst case execution time cannot be determined in prac-
tice. Instead values meaningful for the practitioner like the maximum, middle and minimum
execution time per function will be reported. See also Resources and Performance.

There will a hand written explanation of each kind of value appearing in the above report.

<5.3> Schedulability simulation and analyses
a. The SVR shall include the result of the schedulability analysis or the

schedulability simulation, based on:
1. estimated values at PDR,
2. refined values after detailed design,
3. measured values at CDR.
NOTE An example of schedulability analysis report is

a table with the following columns:
* process name
* P: process priority
* C: process worst case execution time
* T: process period
* D: process deadline
* I: process interference time, the time that the

process can be interrupted by processes of
higher priority

* B: process blocking time, the time that the
process can be blocked on a protected object
access by a process of lower priority

* S: process schedulability factor in
percentage, computed as the sum of C, I and
B, this sum divided by D

Not applicable. See No Schedulability Analysis.

© 2019, 2020, 2021 embedded brains GmbH 59

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

<6> Numerical accuracy analysis
a. The SVR shall include the estimation and the verification of the

numerical accuracy.

Not applicable. See No Numerical Accuracy Analysis.

4.4.14 Independent Software Verification & Validation Report
Not included in the QDP, see No Independent Software Verification and Validation.

4.4.15 Software Reuse File (SRF)
The Software Reuse File (SRF) is a part of the Design Justification File (DJF) and its content
is defined by ECSS-E-ST-40C Annex N [ECS09b]. This section presents verbatim copies of the
expected response from the standard highlighted as blocks followed by a content proposal for
the QDP.

N.2 Expected response
N.2.1 Scope and content
<1> Introduction
a. The SRF shall contain a description of the purpose, objective, content and

the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

<2> Applicable and reference documents
a. The SRF shall list the applicable and reference documents to support the

generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SRF shall include any additional terms, definition or abbreviated

terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Presentation of the software intended to be reused
a. The SRF shall describe the technical and management information

available on the software intended for reuse.
b. For each software item, the SRF shall provide (or state the absence of) the

following information:
1. software item name and main features;
2. developer name;
3. considered version and list of components;
4. licensing conditions;
5. industrial property and exportability constraints, if any;
6. implementation language;
7. development and execution environment (e.g. platform, and

operating system);
8. applicable dispositions for warranty, maintenance, installation and

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 60

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

training;
9. commercial software necessary for software execution, if any;
10. 1size of the software (e.g. number of source code lines, and size of

the executable code).
<5> Compatibility of existing software with project

requirements
a. The SRF shall describe which part of the project requirements (RB) are

intended to be implemented through software reuse
b. For each software item, the SRF shall provide the availability and quality

status (completeness, correctness, etc.) of the following information:
1. software requirements documentation;
2. software architectural and detailed design documentation;
3. forward and backward traceability between system requirements;
4. software requirements, design and code;
5. unit tests documentation and coverage;
6. integration tests documentation and coverage;
7. validation documentation and coverage;
8. verification reports;
9. performance (e.g. memory occupation, CPU load);
10. 1operational performances;
11. 1residual non conformance and waivers;
12. 1user operational documentation (e.g. user manual);
13. 1code quality (adherence to coding standards, metrics).

c. For each of the points in <5>b, the SRF shall document the quality level of
the existing software with respect to the applicable project requirements,
according to the criticality of the system function implemented.

<6> Software reuse analysis conclusion
a. The SRF shall document the results of the software reuse analysis.
b. For each software item, the SRF shall provide the following information:

1. decision to reuse or not reuse, based on the information provided
in previous chapters;

2. estimated level of reuse;
3. assumptions and methods applied when estimating the level of

reuse.
<7> Detailed results of evaluation
a. The SRF shall include the detailed results of the evaluation.

NOTE The detailed results of the evaluation can be
presented in an appendix.

<8> Corrective actions
a. The SRF shall document any corrective actions identified to ensure that

the software intended for reuse meets the applicable project
requirements.

b. The SRF shall document the detailed results of the implementation of the
identified corrective actions.

<9> Configuration status
a. The SRF shall include the detailed configuration status of the reused

software baseline.

This will be provided as hand written content in Sphinx format.

Reused software running on the host computer falls under the tool selection scope, e.g. GNU
Binutils, GCC. The assumption is that only software running on the target system will be covered
by the SRF of the QDP. All software reused by RTEMS is declared as an integral part of RTEMS.
It will be specified in the SRS and ICD. So, there will be no reused software in the QDP. This

© 2019, 2020, 2021 embedded brains GmbH 61

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

makes the SRF quite trivial.

4.4.16 Software Problems Reports and Nonconformance Reports
See [EDI19b] and [EDI19a].

4.4.17 Joint Review Reports
Not included in the QDP.

4.4.18 Justification of Selection of Operational Ground Equipment and Support Ser-vices
Not included in the QDP. There is are no operational ground equipment and support services in
the QDP.

4.5 Management File (MGT)
4.5.1 Software Development Plan (SDP)
This document will be provided as a copy of the latest SDP of the overall activity, see [EDI19d].

4.5.2 Software Review Plan (SRevP)
This document will be provided as a copy of the latest SRevP of the overall activity, see [EDI19g].

4.5.3 Software Configuration Management Plan (SCMP)
This document will be provided as a copy of the latest SCMP of the overall activity, see [EDI19b].

4.5.4 Training Plan
Not included in the QDP. No trainings planned in this activity.

4.5.5 Interface Management Procedures
The Interface Management Procedures will be included in the SCMP, see [EDI19b].

© 2019, 2020, 2021 embedded brains GmbH 62

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.5.6 Identification of NRB SW and Members
The Identification of NRB SW and Members will be included in the SCMP, see [EDI19b].

4.5.7 Procurement Data
Not included in the QDP. No procurement planned in this activity.

4.6 Maintenance File (MF)
4.6.1 Maintenance Plan
Not included in the QDP, see No Maintenance (MF).

4.6.2 Maintenance Records
Not included in the QDP, see No Maintenance (MF).

4.6.3 SPR and NCR
Not included in the QDP, see No Maintenance (MF).

4.6.4 Modification Analysis Report
Not included in the QDP, see No Maintenance (MF).

4.6.5 Problem Analysis Report
Not included in the QDP, see No Maintenance (MF).

4.6.6 Modification Documentation
Not included in the QDP, see No Maintenance (MF).

4.6.7 Baseline for Change
Not included in the QDP, see No Maintenance (MF).

© 2019, 2020, 2021 embedded brains GmbH 63

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.6.8 Joint Review Reports
Not included in the QDP, see No Maintenance (MF).

4.6.9 Migration Plan and Notification
Not included in the QDP, see No Maintenance (MF).

4.6.10 Retirement Plan and Notification
Not included in the QDP, see No Maintenance (MF).

4.7 Operational (OP)
4.7.1 Software Operation Support Plan
Not included in the QDP, see No Operational Phase (OP).

4.7.2 Operational Testing Results
Not included in the QDP, see No Operational Phase (OP).

4.7.3 SPR and NCR
Not included in the QDP, see No Operational Phase (OP).

4.7.4 User’s Request Record
Not included in the QDP, see No Operational Phase (OP).

4.7.5 Post Operation Review Report
Not included in the QDP, see No Operational Phase (OP).

4.8 Product Assurance File (PAF)
4.8.1 Software Product Assurance Plan (SPAP)
This document will be provided as a copy of the latest SPAP of the overall activity, see [EDI19e].

© 2019, 2020, 2021 embedded brains GmbH 64

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.8.2 Software Product Assurance Requirements For Suppliers
The Software Product Assurance Requirements For Suppliers will be included in the SPAP, see
[EDI19e].

4.8.3 Audit Plan and Schedule
The Audit Plan and Schedule be included in the SPAP, see [EDI19e].

4.8.4 Review and Inspection Plans or Procedures
The Review and Inspection Plans or Procedures will be included in the SPAP, see [EDI19e].

4.8.5 Procedures and Standards
The Procedures and Standards will be defined in the SPAP, see [EDI19e].

4.8.6 Modelling and Design Standards
The Modelling and Design Standards will be defined in the SPAP and the adherence will be
reported in the SPAMR, see [EDI19e] and [EDI19d].

4.8.7 Coding Standards and Description of Tools
The Coding Standards and Description of Tools will be included in the SDP, see [EDI19c]. The
SPAP defines the related product assurance activities, see [EDI19e].

4.8.8 Software Problem Reporting Procedure
The Software Problem Reporting Procedure is defined in the SCMP, see [EDI19b].

4.8.9 Software Dependability and Safety Analysis Report
The Software Dependability and Safety Analysis Report will be included in the SPAP, see
[EDI19e].

© 2019, 2020, 2021 embedded brains GmbH 65

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.8.10 Criticality Classification of Software Components
Not included in the QDP. Criticality defined by contract.

4.8.11 Software Product Assurance Report
Not included in the QDP. Only a SPAMR will be provided, see Software Product Assurance Mile-
stone Report (SPAMR).

4.8.12 Software Product Assurance Milestone Report (SPAMR)
The Software Product Assurance Milestone Report (SPAMR) is a part of the Product Assurance
File (PAF) and its content is defined by ECSS-Q-ST-80C Rev.1 Annex C [ECS17d]. This section
presents verbatim copies of the expected response from the standard highlighted as blocks
followed by a content proposal for the QDP.

C.2 Expected response
C.2.1 Scope and content
<1> Introduction
a. The SPAMR shall contain a description of the purpose, objective, content

and the reason prompting its preparation.

This will be provided as hand written content in Sphinx format.

<2> Applicable and reference documents
a. The SPAMR shall list the applicable and reference documents to support

the generation of the document.

See Applicable and Reference Documents.

<3> Terms, definitions and abbreviated terms
a. The SPAMR shall include any additional terms, definition or abbreviated

terms used.

See Terms, Definitions and Abbreviated Terms.

<4> Verification activities performed
a. The SPAMR shall contain reporting on verification activities performed

by the product assurance function, including:
1. reviews;

This will be provided as hand written content in Sphinx format. The following content will be
placed into this section:

The review processes followed the planed procedures detailed in the Software Verifi-
cation Plan (part of SDP-000 [EDI19c]) and in the Software Product Assurance Plan
(SPAP-002 [EDI19e]). The reports for these reviews were produced according with
SCF Software Configuration File (SCF), SPAMR Software Product Assurance Milestone
Report (SPAMR) and SVR Software Verification Report (SVR) deliverables proposals,
as described in this document.

© 2019, 2020, 2021 embedded brains GmbH 66

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

2. inspections;

This will be provided as hand written content in Sphinx format and provide the report on the
verification of the quality requirements inspection.

3. walk-throughs;

Walk-throughs are not planed.

4. review of traceability matrices;

The traceability matrices will be automatically checked and the results will be reported.

5. documents reviewed.

The quality review for each QDP document will be provided as hand written content in Sphinx
format. For each QDP document the following information will be presented:

• list of findings

• resolution status of each finding

b. The SPAMR shall contain reporting on the verification of the measures
applied for the handling of critical software.

This will be provided as hand written content in Sphinx format with the verification as specified
in [ECS17d] section 6.2.3.

<5> Methods and tools
a. The SPAMR shall include or reference a justification of the suitability of

the methods and tools applied in all the activities of the development
cycle, including requirements analysis, software specification, design,
coding, validation, testing, configuration management, verification and
product assurance.

This will be provided as hand written content in Sphinx format. The tools listed in section 5.4
of [EDI19c] will be justified according to [ECS17d] section 5.6.1.2.

b. The SPAMR shall include reporting on the correct use of methods and
tools.

This will be provided as hand written content in Sphinx format with the verification as specified
in [ECS17d] section 5.6.1.3.

<6> Adherence to design and coding standards
a. The SPAMR shall include reporting on the adherence of software

products to the applicable modelling, design and coding standards,
including:
1. reporting on the application of measures meant to ensure that the

design complexity and modularity meet the quality requirements;

The Static Analyzer results will be presented in this section. Since this document will be avail-
able to RTEMS community, they may decide whether or not they apply the findings presented

© 2019, 2020, 2021 embedded brains GmbH 67

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

here. Also, for the violations found a justification will be provided, explaining why the source
code is still correct

2. reporting on design documentation w.r.t. suitability for
maintenance.

This section will contain the following text:

RTEMS has been maintained by the RTEMS community for several decades. Con-
sequently, the available design documentation has proven itself to be suitable for
maintenance.

RTEMS code was developed since the late 1980s under ever changing coding stan-
dards. The current code contains all these different coding styles. Changing these
styles now would have grave negative effects on the maintainability. For example,
changing the coding style will make it hard to figure out who has written a cer-
tain code in the past. Only new RTEMS source files adhere to the current coding
standards as defined in [RTEb] section 6.3

The project does not use models (see No Logical and Computational Model).

<7> Product and process metrics
a. The SPAMR shall include reporting on the collected product and process

metrics, the relevant analyses performed, the corrective actions
undertaken and the status of these actions.

b. The results of the software maturity analysis shall also be reported.

This content will be provided mixed hand written and automatically generated for metrics
which can be calculate using a tool. The list below stems from the table 5.1 Quality model
of the Software Product Assurance Plan (SPAP-002 [EDI19e]):

• Requirements Allocation – Not applicable (see No Requirements Baseline (RB)).

• Requirement Implementation Coverage – Produced automatically

• Requirements Completeness – Produced automatically

• V&V Coverage:

– Requirement Level – Produced automatically

– Unit/Integration Level – Produced automatically

• Requirement Clarity – Hand written

• Suitability of Development Documentation – Hand written

• Adherence to Coding Standards – Not applicable (see discussion about coding standard
above)

• SPR/NCR Status – Produced automatically

• Structural Coverage – Reference to the automatically generated coverage report in the
SVR

• Requirement Testability - Produced automatically

• Cyclomatic Number – Produced automatically

© 2019, 2020, 2021 embedded brains GmbH 68

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Nesting Level – Produced automatically

• Module Lines of Code – Produced automatically

• Comment Frequency – Produced automatically; Notes:

1. The comment frequency will be calculated with the headers stripped from
the source files (the header comments, which include authors, licenses, etc
are not code comments)

2. There are RTEMS files that violate the comment frequency threshold. The
source code of these files is self-explaining. This means that these source
files will not be corrected to cope with this metric.

• User Documentation Clarity – Hand written

• User Documentation Completeness – Produced automatically

• User Manual Adequacy/Suitability – Hand written

• Reuse Modification Rate – Hand written

• Safety activities adequacy – Hand written

• Milestone Tracking – Hand written

• Action Status and Code Size – Hand written as far as automatic production is impossible.
Code size will be calculated automatically.

Each metric is described in and will be calculated in accordance with [ECS11].

<8> Testing and validation
a. The SPAMR shall include reporting on adequacy of the testing and

validation documentation (including feasibility, traceability
repeatability), and on the achieved test coverage w.r.t. stated goals.

This will be provided as hand written content in Sphinx format with the verifications as specified
in [ECS17d] sections 6.3.5.3, 6.3.5.5 and 6.3.5.12

<9> SPRs and SW NCRs
a. The SPAMR shall include reporting on the status of software problem

reports and nonconformances relevant to software.

This will be provided as hand written content in Sphinx format. This section should reference
to the SRelD Software Release Document (SRelD), which will contain the list of SPRs and NCRs.

<10> References to progress reports
a. Whenever relevant and up-to-date information has been already

delivered as part of the regular PA progress reporting, a representative
summary shall be provided, together with a detailed reference to the
progress report(s) containing that information.

This will be provided as hand written content in Sphinx format.

© 2019, 2020, 2021 embedded brains GmbH 69

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.8.13 Statement of Compliance With Test Plans and Procedures
The Statement of Compliance With Test Plans and Procedures will be included in the SPAMR,
see [EDI19d].

4.8.14 Records of Training and Experience
Anonymized Records of Training and Experience may be annexed to the SPAMR [EDI19d].
Personal data should not be included in the QDP.

4.8.15 (Preliminary) Alert Information
Not included in the QDP.

4.8.16 Results of Pre-Award Audits and Assessments, and of Procurement Sources
Not included in the QDP. No procurement planned in this activity.

4.8.17 Software Process Assessment Plan
Process assessment will be performed internally by EDISOFT and reported in the SPAMR, see
[EDI19d].

4.8.18 Software Process Assessment Report
The Software Process Assessment Report will be provided as an annex to the SPAMR, see
[EDI19d].

4.8.19 Review and Inspection Reports
The proposal is to maintain review and inspection reports with Requirement Validation Item Type
specification items.

4.8.20 Receiving Inspection Report
The Receiving Inspection Reports will be included in the SPAMR, see [EDI19d].

© 2019, 2020, 2021 embedded brains GmbH 70

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.8.21 Input to Product Assurance Plan for Systems Operation
Not included in the QDP, see No Operational Phase (OP).

© 2019, 2020, 2021 embedded brains GmbH 71

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019, 2020, 2021 embedded brains GmbH 72

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
FIVE

QUALIFICATION DATA PACKAGE

5.1 Variants
The QDP will be delivered in four variants (two BSP, two build configurations):

• BSP sparc/gr712rc configured with --disable-smp

• BSP sparc/gr712rc configured with --enable-smp

• BSP sparc/gr740 configured with --disable-smp

• BSP sparc/gr740 configured with --enable-smp

5.2 Content
This section proposes the QDP content. It will be included in a GNU tar archive compressed with
xz. The proposed file name is rtems-qdp-<arch>-<bsp>-<config>-<version>.tar.xz` with

• <arch> being sparc,

• <bsp> being one of gr712rc and gr740,

• <config> being one of uni and smp, and

• <version> being an integer starting at zero which is incremented with each generation of
the QDP variant.

The directory and file structure should follow this incomplete proposal:

• doc

– ts

* srs: Software Requirements Specification (SRS)

· srs.pdf

· html/index.html

* icd: Software Interface Control Document (ICD)

· icd.pdf

· html/index.html

© 2019, 2020, 2021 embedded brains GmbH 73

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

– ddf

* sdd: Software Design Document (SDD)

· sdd.pdf: Doxygen generated PDF output

· html/index.html: Doxygen generated HTML output

* sreld: Software Release Document (SRelD)

· sreld.pdf

· html/index.html

– djf

* suitp: Software Unit and Integration Test Plan (SUITP)

· suitp.pdf

· html/index.html

* svsts: Software Validation Specification (SVS) with Respect to TS

· svsts.pdf

· html/index.html

* svr: Software Verification Report (SVR)

· svr.pdf

· html/index.html

* srf: Software Reuse File (SRF)

· srf.pdf

· html/index.html

– mgt

* sdp: Software Development Plan (SDP)

· sdp.pdf

· html/index.html

* srevp: Software Review Plan (SRevP)

· srevp.pdf

· html/index.html

* scmp: Software Configuration Management Plan (SCMP)

· scmp.pdf

· html/index.html

– paf

* spap: Software Product Assurance Plan (SPAP)

· spap.pdf

© 2019, 2020, 2021 embedded brains GmbH 74

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

· html/index.html

* spamr: Software Product Assurance Milestone Report (SPAMR)

· spamr.pdf

· html/index.html

– technical-notes

* tn-qt.pdf: this document

* tn-ti.pdf: [EDI19i]

– rtems: standard RTEMS Project documentation

* user : adopted as the RTEMS QDP User Manual

· user.pdf

· html/index.html

* c-user

· c-user.pdf

· html/index.html

* eng

· eng.pdf

· html/index.html

* cpu-supplement

· cpu-supplement.pdf

· html/index.html

– fm: Formal Methods documentation

* fvp

· FV1-200.pdf

· html/index.html

* fva

· FV2-201.pdf

· html/index.html

* fvr

· FV3-202.pdf

· html/index.html

• src: source code (Software Source Code and Media Labels)

– example: a project with an example RTEMS application and build files

– rtems: software product (Software Product and Media Labels)

© 2019, 2020, 2021 embedded brains GmbH 75

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019, 2020, 2021 embedded brains GmbH 76

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
SIX

WORK ITEMS

6.1 Traceability
In the relevant ECSS standards for this activity, traceability from a source item to a destination
item is mentioned in several clauses and normative document scope and content sections. This
section collects all the items subject to traceability from the ECSS-E-ST-40C [ECS09b] and ECSS-
Q-ST-80C Rev.1 [ECS17d] standards. For each link from a source item to a destination item a
technical solution is outlined if it is applicable to the QDP. The items need a clear definition for
this activity. They need a unique, human and machine readable identifier.

The wording of items in the standard is context sensitive. In the table the full item names are
given. For example in ECSS-E-ST-40C 5.8.3.4.a.3 we have:

“the traceability between the architecture and the detailed design is complete;”

From the context it is clear that software architecture and software detailed design is meant.
This may not be that clear in every clause of the standards.

In ECSS-Q-ST-80C Rev.1 traceability is mentioned in Reuse of existing software (6.2.7.4a) and
Testing and validation (6.3.5.3a). These two clauses define goals of product assurance activities.
Several ECSS-E-ST-40C clauses ensure that a software product engineered according to this
standard meets these goals.

The following table presents all items subject to traceability relevant for the QDP. Definitions in
quotes (”. . . ”) are verbatim copies from the referenced standard.

Table 1: Traceability Item Definitions

Item Reference Definition Realization in QDP
acceptance
test

ECSS-S-ST-00-01C
Annex A

WARNING: Undefined in
this standard.

No Requirements Baseline
(RB)

analysis ECSS-S-ST-00-01C
2.3.8

“verification method
utilizing techniques and
tools to confirm that
verification
requirements have been
satisfied”

Requirement Validation

feature feature or software unit
continues on next page

© 2019, 2020, 2021 embedded brains GmbH 77

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 1 – continued from previous pageItem Reference Definition Realization in QDP
inspection ECSS-S-ST-00-01C

2.3.110
“conformance
evaluation by
observation and
judgement accompanied
as appropriate by
measurement, testing or
gauging [ISO
9000:2005]”

Requirement Validation

integration ECSS-S-ST-00-01C
2.3.111

“functionally combining
lower-level functional
entities (hardware or
software) so they
operate together to
constitute a higher-level
functional entity”

interface ECSS-S-ST-00-01C
2.3.113

“interface boundary
where two or more
products meet and
interact”

Interface Item Type

interface
requirement

See items interface and
requirement.

Non-Functional
Requirement Item Type

object code SPARC machine code in
ELF file

requirement ECSS-S-ST-00-01C
2.3.173

“documented demand to
be complied with”

Specification Items

require-
ments
baseline

ECSS-E-ST-40C
Annex B (SSS);
ECSS-E-ST-40C
Annex C (IRD)

See references. No Requirements Baseline
(RB)

review ECSS-S-ST-00-01C
2.3.175

“activity undertaken to
determine the suitability,
adequacy and
effectiveness of the
subject matter to achieve
established objectives”

review of
software
design

See items review and
software design.

Requirement Validation

software ECSS-E-ST-40C
3.2.27

“software product”

software
architecture

ECSS-E-ST-40C
5.4.3

Doxygen markup
throughout the header,
source and assembler
files; see Software Design
Document (SDD)
continues on next page

© 2019, 2020, 2021 embedded brains GmbH 78

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 1 – continued from previous pageItem Reference Definition Realization in QDP
software
component

ECSS-E-ST-40C
3.2.28

“part of a software
system”

software component

software
design

ECSS-E-ST-40C
5.5.2

Doxygen markup
throughout the header,
source and assembler
files; see Software Design
Document (SDD)

software
integration

See items software and
integration.

software
item

ECSS-E-ST-40C
3.2.30

“software product”

software
product

ECSS-S-ST-00-01C
Annex A

WARNING: Undefined in
this standard.

subset of RTEMS (space
profile); see software
product

software
requirement

See items software and
requirement.

Specification Items

software
unit

ECSS-E-ST-40C
3.2.34

“separately compilable
piece of source code”

software unit

source code source code
system ECSS-S-ST-00-01C

2.3.212
“set of interrelated or
interacting functions
constituted to achieve a
specified objective

system
requirement

See items system and
requirement.

No Requirements Baseline
(RB)

test ECSS-E-ST-40C
2.3.215

“measurement of
product characteristics,
performance or
functions under
representative
environments”

test case ECSS-E-ST-40C
3.2.37

“set of test inputs,
execution conditions
and expected results
developed for a
particular objective such
as to exercise a
particular program path
or to verify compliance
with a specified
requirement”

Test Case Item Type

test code See items test and source
code.

RTEMS Test Framework
test case code
continues on next page

© 2019, 2020, 2021 embedded brains GmbH 79

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 1 – continued from previous pageItem Reference Definition Realization in QDP
test
procedure

ECSS-E-ST-40C
3.2.39

“detailed instructions for
the set up, operation
and evaluation of the
results for a given test”

Test Procedure Item Type

validation
result

Requirement Validation

The following table presents a complete list of all clauses and normative scope and content
sections which mention the traceability from a source item to a destination item in ECSS-E-
ST-40C. The reference column specifies the corresponding clause or normative document scope
and content section. For readers not knowing all the clauses off by heart a subject is given. The
source item and destination item columns define the traceability relationship (link from source
to destination). The item names refer to the table above. The last column gives an outline of
the solution provided by the QDP to satisfy the ECSS requirement.

Table 2: Traceability from Item to Item in ECSS-E-ST-40C

Reference Subject Source Destination Solution in QDP
5.7.3.5a Evaluation of

acceptance
testing

acceptance
test

require-
ments
baseline

No Requirements Baseline
(RB)

5.8.3.2a 2 Verification of
the technical
specification

software
requirement

system
requirement

No Requirements Baseline
(RB)

5.8.3.3a 3 Verification of
the software
architectural
design

software
component

software
requirement

Traceability between
Software Requirements,
Architecture and Design

5.8.3.4a 3 Verification of
the software
detailed design

software
design

software
architecture

Traceability between
Software Requirements,
Architecture and Design

5.8.3.5a 3 Verification of
code

source code software
design

Traceability between
Software Requirements,
Architecture and Design

5.8.3.5a 3 Verification of
code

source code software
requirement

Traceability between
Software Requirements,
Architecture and Design

5.8.3.5e Verification of
code

object code source code N/A (only required for
criticality A software)

5.8.3.6a 2 Verification of
software unit
testing (plan
and results)

test case software re-
quirements

each software unit
references a software
requirement; see
Software Design
Document (SDD)

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 80

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageReference Subject Source Destination Solution in QDP
5.8.3.6a 2 Verification of

software unit
testing (plan
and results)

test case software
design

each software unit is
contained in a Doxygen
group representing the
software design
component; see Software
Design Document (SDD)

5.8.3.6a 2 Verification of
software unit
testing (plan
and results)

test case source code each test case references
a software unit; see Test
Case Item Type

5.8.3.7a 1 Verification of
software
integration

software
integration

software
architecture

traceability is provided by
the Software Design
Document (SDD) through
standard Doxygen
means; a software
integration is
documented through
Doxygen groups which
are contained in software
architecture Doxygen
groups

5.8.3.8a
eo.a

Verification of
software
validation with
respect to the
technical
specifications
and the baseline
requirements

validation
result

software
requirement

No Requirements Baseline
(RB)

5.8.3.8a
eo.b

Verification of
software
validation with
respect to the
technical
specifications
and the baseline
requirements

validation
result

software
requirement

Requirement Validation

Annex D
(SRS)
<5.1>.e

Requirements -
General

requirement system
requirement

No Requirements Baseline
(RB)

Annex D
(SRS)
<7>.a.1

Traceability requirement requirement Forward Traceability of
Specification Items

Annex D
(SRS)
<7>.a.2

Traceability requirement requirement Backward Traceability of
Specification Items

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 81

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageReference Subject Source Destination Solution in QDP
Annex E
(ICD)
<5.1>.c

General
provisions to
the
requirements in
the IRD

requirement system
requirement

No Requirements Baseline
(RB)

Annex E
(ICD)
<7>.a.1

Traceability requirement requirement Forward Traceability of
Specification Items

Annex E
(ICD)
<7>.a.2

Traceability requirement requirement Backward Traceability of
Specification Items

Annex F
(SDD)
<5.3>.b.3

Software
components
design - General

software
component

software
requirement

Traceability between
Software Requirements,
Architecture and Design

Annex F
(SDD)
<5.4.4>.a

Software
components
design - Aspects
of each
component -
Purpose

software
component

software
requirement

Traceability between
Software Requirements,
Architecture and Design

Annex F
(SDD)
<6>.a.1

Requirements to
design
components
traceability

software
requirement

software
component

Traceability between
Software Requirements,
Architecture and Design

Annex F
(SDD)
<6>.a.1

Requirements to
design
components
traceability

software
component

software
component

Traceability between
Software Requirements,
Architecture and Design

Annex F
(SDD)
<6>.a.2

Requirements to
design
components
traceability

software
component

software
component

Traceability between
Software Requirements,
Architecture and Design

Annex F
(SDD)
<6>.a.2

Requirements to
design
components
traceability

software
component

software
requirement

Traceability between
Software Requirements,
Architecture and Design

Annex K
(SUITP)
<8.2.2>.b

Organization of
each identified
test design

test design feature the feature is a software
unit in the SUITP;
obtained through the
references in the Test Case
Item Type specification
items of the test design
(Test Suite Item Type)

Annex K
(SUITP)
<9.2.2>.a

Organization of
each identified
test case

test case test item reference in the Test Case
Item Type

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 82

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageReference Subject Source Destination Solution in QDP
Annex K
(SUITP)
<11>.a.1

Software test
plan additional
information

test
procedure

test case Forward Traceability of
Specification Items

Annex K
(SUITP)
<11>.a.2

Software test
plan additional
information

test case test
procedure

Backward Traceability of
Specification Items

Annex L
(SVS)
<6.2.2>.b.2

Organization of
each identified
test design

test design feature obtained through the
references in the Test
Case Item Type
specification items of the
test design (Test Suite
Item Type); see feature

Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

analysis software
requirement

Requirement Validation
and Backward Traceability
of Specification Items

Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

analysis system
requirement

No Requirements Baseline
(RB)

Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

inspection software
requirement

Requirement Validation
and Backward Traceability
of Specification Items

Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

inspection system
requirement

No Requirements Baseline
(RB)

Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

review of
software
design

software
requirement

Requirement Validation
and Backward Traceability
of Specification Items

Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

review of
software
design

system
requirement

No Requirements Baseline
(RB)

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 83

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageReference Subject Source Destination Solution in QDP
Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

test case software
requirement

Test Case Item Type and
Backward Traceability of
Specification Items

Annex L
(SVS)
<11>.a.1

Software
validation
specification
additional
information

test case system
requirement

No Requirements Baseline
(RB)

Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

software
requirement

analysis Requirement Validation
and Forward Traceability
of Specification Items

Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

system
requirement

analysis No Requirements Baseline
(RB)

Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

software
requirement

inspection Requirement Validation
and Forward Traceability
of Specification Items

Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

system
requirement

inspection No Requirements Baseline
(RB)

Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

software
requirement

review of
software
design

Requirement Validation
and Forward Traceability
of Specification Items

Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

system
requirement

review of
software
design

No Requirements Baseline
(RB)

Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

software
requirement

test case Test Case Item Type and
Forward Traceability of
Specification Items

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 84

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageReference Subject Source Destination Solution in QDP
Annex L
(SVS)
<11>.a.2

Software
validation
specification
additional
information

system
requirement

test case No Requirements Baseline
(RB)

Annex L
(SVS)
<11>.a.3

Software
validation
specification
additional
information

test
procedure

test case Test Procedure Item Type,
Test Case Item Type, and
Forward Traceability of
Specification Items

Annex L
(SVS)
<11>.a.4

Software
validation
specification
additional
information

test case test
procedure

Test Case Item Type, Test
Procedure Item Type, and
Backward Traceability of
Specification Items

Annex M
(SVR)
<4.3.1>.a

Software
requirements
and architecture
engineering
process
verification (for
the PDR)

software
requirement

system
requirement

No Requirements Baseline
(RB)

Annex M
(SVR)
<4.3.1>.a

Software
requirements
and architecture
engineering
process
verification (for
the PDR)

software
architecture

software
requirement

provided in Software
Design Document (SDD)

6.2 Software Requirements Engineering
Warning: This section is supposed to be in synchronization with the corresponding chapter
in the RTEMS Software Engineering manual. The content here may be not up to date.

Software engineering standards for critical software such as ECSS-E-ST-40C demand that soft-
ware requirements for a software product are collected in a software requirements specification
(technical specification in ECSS-E-ST-40C terms). They are usually derived from system re-
quirements (requirements baseline in ECSS-E-ST-40C terms). RTEMS is designed as a reusable
software product which can be utilized by application designers to ease the development of their
applications. The requirements of the end system (system requirements) using RTEMS are only
known to the application designer. RTEMS itself is developed by the RTEMS maintainers and
they do not know the requirements of a particular end system in general. RTEMS is designed as
a real-time operating system to meet typical system requirements for a wide range of applica-

© 2019, 2020, 2021 embedded brains GmbH 85

https://docs.rtems.org/branches/master/eng/req-eng.html

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

tions. Its suitability for a particular application must be determined by the application designer
based on the technical specification provided by RTEMS accompanied with performance data
for a particular target platform.

Currently, no technical specification of RTEMS exists in the form of a dedicated document. Since
the beginning of the RTEMS evolution in the late 1980s it was developed iteratively. It was never
developed in a waterfall model. During initial development the RTEID [Mot88] and later the
ORKID [VIT90] draft specifications were used as requirements. These were evolving during the
development and an iterative approach was followed often using simple algorithms and coming
back to optimise. In 1993 and 1994 a subset of pthreads sufficient to support GNAT was added
as requirements. At this time the Ada tasking was defined, however, not implemented in GNAT,
so this involved guessing during the development. Later some adjustments were made when
Ada tasking was actually implemented. So, it was consciously iterative with the specifications
evolving and feedback from performance analysis. Benchmarks published from other real time
operating systems were used for comparison. Optimizations were carried out until the results
were comparable. Development was done with distinct contractual phases and tasks for devel-
opment, optimization, and the addition of priority inheritance and rate monotonic scheduling.
The pthreads requirement has grown to be as much POSIX as possible.

Portability from FreeBSD to use its network stack, USB stack, SD/MMC card stack and device
drivers resulted in another set of requirements. The addition of support for symmetric multi-
processing (SMP) was a huge driver for change. It was developed step by step and sponsored
by several independent users with completely different applications and target platforms in
mind. The high performance OpenMP support introduced the Futex as a new synchronization
primitive.

Guidance

A key success element of RTEMS is the ability to accept changes driven by user needs and
still keep the operating system stable enough for production systems. Procedures that place
a high burden on changes are doomed to be discarded by the RTEMS Project. We have to
keep this in mind when we introduce a requirements management work flow which should
be followed by RTEMS community members and new contributors.

We have to put in some effort first into the reconstruction of software requirements through
reverse engineering using the RTEMS documentation, test cases, sources, standard references,
mailing list archives, etc. as input. Writing a technical specification for the complete RTEMS
code base is probably a job of several person-years. We have to get started with a moderate
feature set (e.g. subset of the Classic API) and extend it based on user demands step by step.

The development of the technical specification will take place in two phases. The first phase tries
to establish an initial technical specification for an initial feature set. This technical specification
will be integrated into RTEMS as a big chunk. In the second phase the technical specification is
modified through arranged procedures. There will be procedures

• to modify existing requirements,

• add new requirements, and

• mark requirements as obsolete.

All procedures should be based on a peer review principles.

© 2019, 2020, 2021 embedded brains GmbH 86

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.1 Requirements for Requirements
6.2.1.1 Identification
Each requirement shall have a unique identifier (UID). The question is in which scope should
it be unique? Ideally, it should be universally unique. Therefore all UIDs used to link one
specification item to another should use relative UIDs. This ensures that the RTEMS require-
ments can be referenced easily in larger systems though a system-specific prefix. The standard
ECSS-E-ST-10-06C recommends in section 8.2.6 that the identifier should reflect the type of the
requirement and the life profile situation. Other standards may have other recommendations.
To avoid a bias of RTEMS in the direction of ECSS, this recommendation will not be followed.

The absolute UID of a specification item (for example a requirement) is defined by a leading /
and the path of directories from the specification base directory to the file of the item separated
by / characters and the file name without the .yml extension. For example, a specification item
contained in the file build/cpukit/librtemscpu.yml inside a spec directory has the absolute
UID of /build/cpukit/librtemscpu.

The relative UID to a specification item is defined by the path of directories from the file con-
taining the source specification item to the file of the destination item separated by / characters
and the file name of the destination item without the .yml extension. For example the relative
UID from /build/bsps/sparc/leon3/grp to /build/bsps/bspopts is ../../bspopts.

Basically, the valid characters of an UID are determined by the file system storing the item files.
By convention, UID characters shall be restricted to the following set defined by the regular
expression [a-zA-Z0-9_-]+. Use - as a separator inside an UID part.

In documents the URL-like prefix spec: shall be used to indicated specification item UIDs.

The UID scheme for RTEMS requirements shall be component based. For example, the UID
spec:/classic/task/create-err-invaddr may specify that the rtems_task_create() directive
shall return a status of RTEMS_INVALID_ADDRESS if the id parameter is NULL.

A initial requirement item hierarchy could be this:

• build (building RTEMS BSPs and libraries)

• acfg (application configuration groups)

– opt (application configuration options)

• classic

– task

* create-* (requirements for rtems_task_create())

* delete-* (requirements for rtems_task_delete())

* exit-* (requirements for rtems_task_exit())

* getaff-* (requirements for rtems_task_get_affinity())

* getpri-* (requirements for rtems_task_get_priority())

* getsched-* (requirements for rtems_task_get_scheduler())

* ident-* (requirements for rtems_task_ident())

© 2019, 2020, 2021 embedded brains GmbH 87

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

* issusp-* (requirements for rtems_task_is_suspended())

* iter-* (requirements for rtems_task_iterate())

* mode-* (requirements for rtems_task_mode())

* restart-* (requirements for rtems_task_restart())

* resume* (requirements for rtems_task_resume())

* self* (requirements for rtems_task_self())

* setaff-* (requirements for rtems_task_set_affinity())

* setpri-* (requirements for rtems_task_set_priority())

* setsched* (requirements for rtems_task_set_scheduler())

* start-* (requirements for rtems_task_start())

* susp-* (requirements for rtems_task_suspend())

* wkafter-* (requirements for rtems_task_wake_after())

* wkwhen-* (requirements for rtems_task_wake_when())

– sema

* . . .

• posix

• . . .

A more detailed naming scheme and guidelines should be established. We have to find the right
balance between the length of UIDs and self-descriptive UIDs. A clear scheme for all Classic API
managers may help to keep the UIDs short and descriptive.

The specification of the validation of requirements should be maintained also by specification
items. For each requirement directory there should be a validation subdirectory named test,
e.g. spec/classic/task/test. A test specification directory may contain also validations by
analysis, by inspection, and by design, see Requirement Validation.

6.2.1.2 Level of Requirements
The level of a requirement shall be expressed with one of the verbal forms listed below and
nothing else. The level of requirements are derived from RFC 2119 [Bra97] and ECSS-E-ST-10-
06C [ECS09a].

© 2019, 2020, 2021 embedded brains GmbH 88

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.1.2.1 Absolute Requirements
Absolute requirements shall be expressed with the verbal form shall and no other terms.

6.2.1.2.2 Absolute Prohibitions
Absolute prohibitions shall be expressed with the verbal form shall not and no other terms.

Warning: Absolute prohibitions may be difficult to validate. They should not be used.

6.2.1.2.3 Recommendations
Recommendations shall be expressed with the verbal forms should and should not and no other
terms with guidance from RFC 2119:

SHOULD This word, or the adjective “RECOMMENDED”, mean that there may exist
valid reasons in particular circumstances to ignore a particular item, but the full
implications must be understood and carefully weighed before choosing a different
course.

SHOULD NOT This phrase, or the phrase “NOT RECOMMENDED” mean that there
may exist valid reasons in particular circumstances when the particular behavior is
acceptable or even useful, but the full implications should be understood and the
case carefully weighed before implementing any behavior described with this label.

6.2.1.2.4 Permissions
Permissions shall be expressed with the verbal form may and no other terms with guidance from
RFC 2119:

MAY This word, or the adjective “OPTIONAL”, mean that an item is truly optional.
One vendor may choose to include the item because a particular marketplace re-
quires it or because the vendor feels that it enhances the product while another ven-
dor may omit the same item. An implementation which does not include a particular
option MUST be prepared to interoperate with another implementation which does
include the option, though perhaps with reduced functionality. In the same vein an
implementation which does include a particular option MUST be prepared to inter-
operate with another implementation which does not include the option (except, of
course, for the feature the option provides.)

© 2019, 2020, 2021 embedded brains GmbH 89

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.1.2.5 Possibilities and Capabilities
Possibilities and capabilities shall be expressed with the verbal form can and no other terms.

6.2.1.3 Syntax
Use the Easy Approach to Requirements Syntax (EARS) to formulate requirements. A recom-
mended reading list to get familiar with this approach is [MWHN09], [MW10], [MWGU16],
and Alisair Mavin’s web site. The patterns are:

• Ubiquitous

The <system name> shall <system response>.

• Event-driven

When <trigger>, the <system name> shall <system response>.

• State-driven

While <pre-condition>, the <system name> shall <system response>.

• Unwanted behaviour

If <trigger>, then the <system name> shall <system response>.

• Optional

Where <feature is included>, the <system name> shall <system response>.

• Complex

Where <feature 0 is included>, where <feature 1 is included>, . . . , where
<feature n is included>, while <pre-condition 0>, while <pre-condition 1>,
. . . , while <pre-condition m>, when <trigger>, the <system name> shall
<system response>.

Where <feature 0 is included>, where <feature 1 is included>, . . . , where
<feature n is included>, while <pre-condition 0>, while <pre-condition 1>,
. . . , while <pre-condition m>, if <trigger>, then the <system name> shall
<system response>.

The optional pattern should be only used for application configuration options. The goal is
to use the enabled-by attribute to enable or disable requirements based on configuration pa-
rameters that define the RTEMS artefacts used to build an application executable (header files,
libraries, linker command files). Such configuration parameters are for example the architec-
ture, the platform, CPU port options, and build configuration options (e.g. uniprocessor vs.
SMP).

© 2019, 2020, 2021 embedded brains GmbH 90

https://alistairmavin.com/ears/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.1.4 Wording Restrictions
To prevent the expression of imprecise requirements, the following terms shall not be used in
requirement formulations:

• “acceptable”

• “adequate”

• “almost always”

• “and/or”

• “appropriate”

• “approximately”

• “as far as possible”

• “as much as practicable”

• “best”

• “best possible”

• “easy”

• “efficient”

• “e.g.”

• “enable”

• “enough”

• “etc.”

• “few”

• “first rate”

• “flexible”

• “generally”

• “goal”

• “graceful”

• “great”

• “greatest”

• “ideally”

• “i.e.”

• “if possible”

• “in most cases”

• “large”

• “many”

© 2019, 2020, 2021 embedded brains GmbH 91

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• “maximize”

• “minimize”

• “most”

• “multiple”

• “necessary”

• “numerous”

• “optimize”

• “ought to”

• “probably”

• “quick”

• “rapid”

• “reasonably”

• “relevant”

• “robust”

• “satisfactory”

• “several”

• “shall be included but not limited to”

• “simple”

• “small”

• “some”

• “state-of-the-art”.

• “sufficient”

• “suitable”

• “support”

• “systematically”

• “transparent”

• “typical”

• “user-friendly”

• “usually”

• “versatile”

• “when necessary”

For guidelines to avoid these terms see Table 11-2, “Some ambiguous terms to avoid in require-
ments” in [WB13]. There should be some means to enforce that these terms are not used, e.g.

© 2019, 2020, 2021 embedded brains GmbH 92

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

through a client-side pre-commit Git hook, a server-side pre-receive Git hook, or some scripts
run by special build commands.

6.2.1.5 Separate Requirements
Requirements shall be stated separately. A bad example is:

spec:/classic/task/create The task create directive shall evaluate the parameters, allocate a
task object and initialize it.

To make this a better example, it should be split into separate requirements:

spec:/classic/task/create When the task create directive is called with valid parameters and a
free task object exists, the task create directive shall assign the identifier of an initialized
task object to the id parameter and return the RTEMS_SUCCESSFUL status.

spec:/classic/task/create-err-toomany If no free task objects exists, the task create directive
shall return the RTEMS_TOO_MANY status.

spec:/classic/task/create-err-invaddr If the id parameter is NULL, the task create directive
shall return the RTEMS_INVALID_ADDRESS status.

spec:/classic/task/create-err-invname If the name parameter is invalid, the task create direc-
tive shall return the RTEMS_INVALID_NAME status.

. . .

6.2.1.6 Conflict Free Requirements
Requirements shall not be in conflict with each other inside a specification. A bad example is:

spec:/classic/sema/mtx-obtain-wait When a mutex is not available, the mutex obtain direc-
tive shall enqueue the calling thread on the wait queue of the mutex.

spec:/classic/sema/mtx-obtain-err-unsat If a mutex is not available, the mutex obtain direc-
tive shall return the RTEMS_UNSATISFIED status.

To resolve this conflict, a condition may be added:

spec:/classic/sema/mtx-obtain-wait When a mutex is not available and the RTEMS_WAIT
option is set, the mutex obtain directive shall enqueue the calling thread on the wait
queue of the mutex.

spec:/classic/sema/mtx-obtain-err-unsat If a mutex is not available, when the RTEMS_WAIT
option is not set, the mutex obtain directive shall return the RTEMS_UNSATISFIED status.

© 2019, 2020, 2021 embedded brains GmbH 93

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.1.7 Use of Project-Specific Terms and Abbreviations
All project-specific terms and abbreviations used to formulate requirements shall be defined in
the project glossary.

6.2.1.8 Justification of Requirements
Each requirement shall have a rationale or justification recorded in a dedicated section of the
requirement file. See rationale attribute for Specification Items.

6.2.1.9 Requirement Validation
The validation of each Requirement Item Type item shall be accomplished by one or more speci-
fication items of the types Test Case Item Type or Requirement Validation Item Type through a link
from the validation item to the requirement item with the Requirement Validation Link Role.

Validation by test is strongly recommended. The choice of any other validation method shall
be strongly justified. The requirements author is obligated to provide the means to validate the
requirement with detailed instructions.

6.2.1.10 Resources and Performance
Normally, resource and performance requirements are formulated like this:

• The resource U shall need less than V storage units.

• The operation Y shall complete within X time units.

Such statements are difficult to make for a software product like RTEMS which runs on many
different target platforms in various configurations. So, the performance requirements of
RTEMS shall be stated in terms of benchmarks. The benchmarks are run on the project-specific
target platform and configuration. The results obtained by the benchmark runs are reported in
a human readable presentation. The application designer can then use the benchmark results to
determine if its system performance requirements are met. The benchmarks shall be executed
under different environment conditions, e.g. varying cache states (dirty, empty, valid) and sys-
tem bus load generated by other processors. The application designer shall have the ability
to add additional environment conditions, e.g. system bus load by DMA engines or different
system bus arbitration schemes.

To catch resource and performance regressions via test suite runs there shall be a means to
specify threshold values for the measured quantities. The threshold values should be provided
for each validation platform. How this can be done and if the threshold values are maintained
by the RTEMS Project is subject to discussion.

© 2019, 2020, 2021 embedded brains GmbH 94

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2 Specification Items
6.2.2.1 Specification Item Hierarchy
The specification item types have the following hierarchy:

• Root Item Type

– Build Item Type

* Build Ada Test Program Item Type

* Build BSP Item Type

* Build Configuration File Item Type

* Build Configuration Header Item Type

* Build Group Item Type

* Build Library Item Type

* Build Objects Item Type

* Build Option Item Type

* Build Script Item Type

* Build Start File Item Type

* Build Test Program Item Type

– Constraint Item Type

– Glossary Item Type

* Glossary Group Item Type

* Glossary Term Item Type

– Interface Item Type

* Application Configuration Group Item Type

* Application Configuration Option Item Type

· Application Configuration Feature Enable Option Item Type

· Application Configuration Feature Option Item Type

· Application Configuration Value Option Item Type

* Interface Compound Item Type

* Interface Container Item Type

* Interface Define Item Type

* Interface Domain Item Type

* Interface Enum Item Type

* Interface Enumerator Item Type

© 2019, 2020, 2021 embedded brains GmbH 95

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

* Interface Forward Declaration Item Type

* Interface Function Item Type

* Interface Group Item Type

* Interface Header File Item Type

* Interface Macro Item Type

* Interface Typedef Item Type

* Interface Unspecified Item Type

* Interface Variable Item Type

– Requirement Item Type

* Functional Requirement Item Type

· Action Requirement Item Type

· Generic Functional Requirement Item Type

* Non-Functional Requirement Item Type

· Design Group Requirement Item Type

· Generic Non-Functional Requirement Item Type

· Runtime Performance Requirement Item Type

– Requirement Validation Item Type

– Runtime Measurement Test Item Type

– Specification Item Type

– Test Case Item Type

– Test Platform Item Type

– Test Procedure Item Type

– Test Suite Item Type

6.2.2.2 Specification Item Types
6.2.2.2.1 Root Item Type
The technical specification of RTEMS will contain for example requirements, specializations of
requirements, interface specifications, test suites, test cases, and requirement validations. These
things will be called specification items or just items if it is clear from the context.

The specification items are stored in files in YAML format with a defined set of key-value pairs
called attributes. Each attribute key name shall be a Name. In particular, key names which
begin with an underscore (_) are reserved for internal use in tools.

This is the root specification item type. All explicit attributes shall be specified. The explicit
attributes for this type are:

© 2019, 2020, 2021 embedded brains GmbH 96

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

SPDX-License-Identifier The attribute value shall be a SPDX License Identifier. It shall be the
license of the item.

copyrights The attribute value shall be a list. Each list element shall be a Copyright. It shall be
the list of copyright statements of the item.

enabled-by The attribute value shall be an Enabled-By Expression. It shall define the conditions
under which the item is enabled.

links The attribute value shall be a list. Each list element shall be a Link.

type The attribute value shall be a Name. It shall be the item type. The selection of types and
the level of detail depends on a particular standard and product model. We need enough
flexibility to be in line with ECSS-E-ST-10-06 and possible future applications of other
standards. The item type may be refined further with additional type-specific subtypes.

This type is refined by the following types:

• Build Item Type

• Constraint Item Type

• Glossary Item Type

• Interface Item Type

• Requirement Item Type

• Requirement Validation Item Type

• Runtime Measurement Test Item Type

• Specification Item Type

• Test Case Item Type

• Test Platform Item Type

• Test Procedure Item Type

• Test Suite Item Type

6.2.2.2.2 Build Item Type
This type refines the Root Item Type through the type attribute if the value is build. This set of
attributes specifies a build item. All explicit attributes shall be specified. The explicit attributes
for this type are:

build-type The attribute value shall be a Name. It shall be the build item type.

This type is refined by the following types:

• Build Ada Test Program Item Type

• Build BSP Item Type

• Build Configuration File Item Type

• Build Configuration Header Item Type

© 2019, 2020, 2021 embedded brains GmbH 97

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Build Group Item Type

• Build Library Item Type

• Build Objects Item Type

• Build Option Item Type

• Build Script Item Type

• Build Start File Item Type

• Build Test Program Item Type

6.2.2.2.3 Build Ada Test Program Item Type
This type refines the Build Item Type through the build-type attribute if the value is
ada-test-program. This set of attributes specifies an Ada test program executable to build.
Test programs may use additional objects provided by Build Objects Item Type items. Test pro-
grams have an implicit enabled-by attribute value which is controlled by the option action
set-test-state. If the test state is set to exclude, then the test program is not built. All explicit
attributes shall be specified. The explicit attributes for this type are:

ada-main The attribute value shall be a string. It shall be the path to the Ada main body file.

ada-object-directory The attribute value shall be a string. It shall be the path to the Ada object
directory (-D option value for gnatmake).

adaflags The attribute value shall be a list of strings. It shall be a list of options for the Ada
compiler.

adaincludes The attribute value shall be a list of strings. It shall be a list of Ada include paths.

cflags The attribute value shall be a list. Each list element shall be a Build C Compiler Option.

cppflags The attribute value shall be a list. Each list element shall be a Build C Preprocessor
Option.

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

ldflags The attribute value shall be a list. Each list element shall be a Build Linker Option.

source The attribute value shall be a list. Each list element shall be a Build Source.

stlib The attribute value shall be a list. Each list element shall be a Build Link Static Library
Directive.

target The attribute value shall be a Build Target.

use-after The attribute value shall be a list. Each list element shall be a Build Use After Directive.

use-before The attribute value shall be a list. Each list element shall be a Build Use Before
Directive.

Please have a look at the following example:

© 2019, 2020, 2021 embedded brains GmbH 98

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
ada-main: testsuites/ada/samples/hello/hello.adb
ada-object-directory: testsuites/ada/samples/hello
adaflags: []
adaincludes:
- cpukit/include/adainclude
- testsuites/ada/support
build-type: ada-test-program
cflags: []
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
cppflags: []
enabled-by: true
includes: []
ldflags: []
links: []
source:
- testsuites/ada/samples/hello/init.c
stlib: []
target: testsuites/ada/ada_hello.exe
type: build
use-after: []
use-before: []

6.2.2.2.4 Build BSP Item Type
This type refines the Build Item Type through the build-type attribute if the value is bsp. This
set of attributes specifies a base BSP variant to build. All explicit attributes shall be specified.
The explicit attributes for this type are:

arch The attribute value shall be a string. It shall be the target architecture of the BSP.

bsp The attribute value shall be a string. It shall be the base BSP variant name.

cflags The attribute value shall be a list. Each list element shall be a Build C Compiler Option.

cppflags The attribute value shall be a list. Each list element shall be a Build C Preprocessor
Option.

family The attribute value shall be a string. It shall be the BSP family name. The name shall
be the last directory of the path to the BSP sources.

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

install The attribute value shall be a list. Each list element shall be a Build Install Directive.

source The attribute value shall be a list. Each list element shall be a Build Source.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
arch: myarch
bsp: mybsp
build-type: bsp

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 99

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

cflags: []
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
cppflags: []
enabled-by: true
family: mybsp
includes: []
install:
- destination: ${BSP_INCLUDEDIR}
source:
- bsps/myarch/mybsp/include/bsp.h
- bsps/myarch/mybsp/include/tm27.h

- destination: ${BSP_INCLUDEDIR}/bsp
source:
- bsps/myarch/mybsp/include/bsp/irq.h

- destination: ${BSP_LIBDIR}
source:
- bsps/myarch/mybsp/start/linkcmds

links:
- role: build-dependency
uid: ../../obj

- role: build-dependency
uid: ../../opto2

- role: build-dependency
uid: abi

- role: build-dependency
uid: obj

- role: build-dependency
uid: ../start

- role: build-dependency
uid: ../../bspopts

source:
- bsps/myarch/mybsp/start/bspstart.c
type: build

6.2.2.2.5 Build Configuration File Item Type
This type refines the Build Item Type through the build-type attribute if the value is
config-file. This set of attributes specifies a configuration file placed in the build tree. The
configuration file is generated during the configure command execution and is placed in the
build tree. All explicit attributes shall be specified. The explicit attributes for this type are:

content The attribute value shall be a string. It shall be the content of the configuration file.
A ${VARIABLE} substitution is performed during the configure command execution using
the variables of the configuration set. Use $$ for a plain $ character. To have all variables
from sibling items available for substitution it is recommended to link them in the proper
order.

install-path The attribute value shall be a Build Install Path.

target The attribute value shall be a Build Target.

© 2019, 2020, 2021 embedded brains GmbH 100

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
build-type: config-file
content: |

...
Name: ${ARCH}-rtems${__RTEMS_MAJOR__}-${BSP_NAME}
...

copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by: true
install-path: ${PREFIX}/lib/pkgconfig
links: []
target: ${ARCH}-rtems${__RTEMS_MAJOR__}-${BSP_NAME}.pc
type: build

6.2.2.2.6 Build Configuration Header Item Type
This type refines the Build Item Type through the build-type attribute if the value is
config-header. This set of attributes specifies configuration header file. The configuration
header file is generated during configure command execution and is placed in the build tree.
All collected configuration defines are written to the configuration header file during the con-
figure command execution. To have all configuration defines from sibling items available it is
recommended to link them in the proper order. All explicit attributes shall be specified. The
explicit attributes for this type are:

guard The attribute value shall be a string. It shall be the header guard define.

include-headers The attribute value shall be a list of strings. It shall be a list of header files to
include via #include <...>.

install-path The attribute value shall be a Build Install Path.

target The attribute value shall be a Build Target.

6.2.2.2.7 Build Group Item Type
This type refines the Build Item Type through the build-type attribute if the value is group.
This set of attributes provides a means to aggregate other build items and modify the build
item context which is used by referenced build items. The includes, ldflags, objects, and
use variables of the build item context are updated by the corresponding attributes of the build
group. All explicit attributes shall be specified. The explicit attributes for this type are:

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

install The attribute value shall be a list. Each list element shall be a Build Install Directive.

ldflags The attribute value shall be a list of strings. It shall be a list of options for the linker.
They are used to link executables referenced by this item.

use-after The attribute value shall be a list. Each list element shall be a Build Use After Directive.

© 2019, 2020, 2021 embedded brains GmbH 101

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

use-before The attribute value shall be a list. Each list element shall be a Build Use Before
Directive.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
build-type: group
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by:
- BUILD_TESTS
- BUILD_SAMPLES
includes:
- testsuites/support/include
install: []
ldflags:
- -Wl,--wrap=printf
- -Wl,--wrap=puts
links:
- role: build-dependency
uid: ticker

type: build
use-after: []
use-before:
- rtemstest

6.2.2.2.8 Build Library Item Type
This type refines the Build Item Type through the build-type attribute if the value is library.
This set of attributes specifies a static library. Library items may use additional objects provided
by Build Objects Item Type items through the build dependency links of the item. All explicit
attributes shall be specified. The explicit attributes for this type are:

cflags The attribute value shall be a list. Each list element shall be a Build C Compiler Option.

cppflags The attribute value shall be a list. Each list element shall be a Build C Preprocessor
Option.

cxxflags The attribute value shall be a list. Each list element shall be a Build C++ Compiler
Option.

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

install The attribute value shall be a list. Each list element shall be a Build Install Directive.

install-path The attribute value shall be a Build Install Path.

source The attribute value shall be a list. Each list element shall be a Build Source.

target The attribute value shall be a Build Target. It shall be the name of the static library, e.g.
z for libz.a.

Please have a look at the following example:

© 2019, 2020, 2021 embedded brains GmbH 102

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
build-type: library
cflags:
- -Wno-pointer-sign
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
cppflags: []
cxxflags: []
enabled-by: true
includes:
- cpukit/libfs/src/jffs2/include
install:
- destination: ${BSP_INCLUDEDIR}/rtems
source:
- cpukit/include/rtems/jffs2.h

install-path: ${BSP_LIBDIR}
links: []
source:
- cpukit/libfs/src/jffs2/src/build.c
target: jffs2
type: build

6.2.2.2.9 Build Objects Item Type
This type refines the Build Item Type through the build-type attribute if the value is objects.
This set of attributes specifies a set of object files used to build static libraries or test programs.
All explicit attributes shall be specified. The explicit attributes for this type are:

cflags The attribute value shall be a list. Each list element shall be a Build C Compiler Option.

cppflags The attribute value shall be a list. Each list element shall be a Build C Preprocessor
Option.

cxxflags The attribute value shall be a list. Each list element shall be a Build C++ Compiler
Option.

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

install The attribute value shall be a list. Each list element shall be a Build Install Directive.

source The attribute value shall be a list. Each list element shall be a Build Source.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
build-type: objects
cflags: []
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
cppflags: []
cxxflags: []
enabled-by: true
includes: []
install:

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 103

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

- destination: ${BSP_INCLUDEDIR}/bsp
source:
- bsps/include/bsp/bootcard.h
- bsps/include/bsp/default-initial-extension.h
- bsps/include/bsp/fatal.h

links: []
source:
- bsps/shared/start/bootcard.c
- bsps/shared/rtems-version.c
type: build

6.2.2.2.10 Build Option Item Type
This type refines the Build Item Type through the build-type attribute if the value is option.
This set of attributes specifies a build option. The following explicit attributes are mandatory:

• actions

• default

• default-by-variant

• description

The explicit attributes for this type are:

actions The attribute value shall be a list. Each list element shall be a Build Option Action. Each
action operates on the action value handed over by a previous action and action-specific
attribute values. The actions pass the processed action value to the next action in the list.
The first action starts with an action value of None. The actions are carried out during the
configure command execution.

default The attribute value shall be a Build Option Value. It shall be the default value of
the option if no variant-specific default value is specified. Use null to specify that
no default value exits. The variant-specific default values may be specified by the
default-by-variant attribute.

default-by-variant The attribute value shall be a list. Each list element shall be a Build Option
Default by Variant. The list is processed from top to bottom. If a matching variant is found,
then the processing stops.

description The attribute value shall be an optional string. It shall be the description of the
option.

format The attribute value shall be an optional string. It shall be a Python format string, for
example '{}' or '{:#010x}'.

name The attribute value shall be a Build Option Name.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
actions:

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 104

https://docs.python.org/3/library/string.html#formatstrings

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

- get-integer: null
- define: null
build-type: option
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
default: 115200
default-by-variant:
- value: 9600
variants:
- m68k/m5484FireEngine
- powerpc/hsc_cm01

- value: 19200
variants:
- m68k/COBRA5475

description: |
Default baud for console and other serial devices.

enabled-by: true
format: '{}'
links: []
name: BSP_CONSOLE_BAUD
type: build

6.2.2.2.11 Build Script Item Type
This type refines the Build Item Type through the build-type attribute if the value is script. This
set of attributes specifies a build script. The optional attributes may be required by commands
executed through the scripts. The following explicit attributes are mandatory:

• do-build

• do-configure

• prepare-build

• prepare-configure

The explicit attributes for this type are:

asflags The attribute value shall be a list. Each list element shall be a Build Assembler Option.

cflags The attribute value shall be a list. Each list element shall be a Build C Compiler Option.

cppflags The attribute value shall be a list. Each list element shall be a Build C Preprocessor
Option.

cxxflags The attribute value shall be a list. Each list element shall be a Build C++ Compiler
Option.

do-build The attribute value shall be an optional string. If this script shall execute, then it shall
be Python code which is executed via exec() in the context of the do_build() method of
the wscript. A local variable bld is available with the waf build context. A local variable
bic is available with the build item context.

© 2019, 2020, 2021 embedded brains GmbH 105

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

do-configure The attribute value shall be an optional string. If this script shall execute, then it
shall be Python code which is executed via exec() in the context of the do_configure()
method of the wscript. A local variable conf is available with the waf configuration
context. A local variable cic is available with the configuration item context.

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

ldflags The attribute value shall be a list. Each list element shall be a Build Linker Option.

prepare-build The attribute value shall be an optional string. If this script shall execute, then it
shall be Python code which is executed via exec() in the context of the prepare_build()
method of the wscript. A local variable bld is available with the waf build context. A
local variable bic is available with the build item context.

prepare-configure The attribute value shall be an optional string. If this script shall exe-
cute, then it shall be Python code which is executed via exec() in the context of the
prepare_configure() method of the wscript. A local variable conf is available with the
waf configuration context. A local variable cic is available with the configuration item
context.

stlib The attribute value shall be a list. Each list element shall be a Build Link Static Library
Directive.

use-after The attribute value shall be a list. Each list element shall be a Build Use After Directive.

use-before The attribute value shall be a list. Each list element shall be a Build Use Before
Directive.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
build-type: script
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
default: null
default-by-variant: []
do-build: |
bld.install_as(

"${BSP_LIBDIR}/linkcmds",
"bsps/" + bld.env.ARCH + "/" + bld.env.BSP_FAMILY +
"/start/linkcmds." + bld.env.BSP_BASE

)
do-configure: |
conf.env.append_value(

"LINKFLAGS",
["-qnolinkcmds", "-T", "linkcmds." + conf.env.BSP_BASE]

)
enabled-by: true
links: []
prepare-build: null
prepare-configure: null
type: build

© 2019, 2020, 2021 embedded brains GmbH 106

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.12 Build Start File Item Type
This type refines the Build Item Type through the build-type attribute if the value is start-file.
This set of attributes specifies a start file to build. A start file is used to link an executable. All
explicit attributes shall be specified. The explicit attributes for this type are:

asflags The attribute value shall be a list. Each list element shall be a Build Assembler Option.

cppflags The attribute value shall be a list. Each list element shall be a Build C Preprocessor
Option.

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

install-path The attribute value shall be a Build Install Path.

source The attribute value shall be a list. Each list element shall be a Build Source.

target The attribute value shall be a Build Target.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
asflags: []
build-type: start-file
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
cppflags: []
enabled-by: true
includes: []
install-path: ${BSP_LIBDIR}
links: []
source:
- bsps/sparc/shared/start/start.S
target: start.o
type: build

6.2.2.2.13 Build Test Program Item Type
This type refines the Build Item Type through the build-type attribute if the value is
test-program. This set of attributes specifies a test program executable to build. Test programs
may use additional objects provided by Build Objects Item Type items. Test programs have an
implicit enabled-by attribute value which is controlled by the option action set-test-state. If the
test state is set to exclude, then the test program is not built. All explicit attributes shall be
specified. The explicit attributes for this type are:

cflags The attribute value shall be a list. Each list element shall be a Build C Compiler Option.

cppflags The attribute value shall be a list. Each list element shall be a Build C Preprocessor
Option.

cxxflags The attribute value shall be a list. Each list element shall be a Build C++ Compiler
Option.

features The attribute value shall be a string. It shall be the waf build features for this test
program.

© 2019, 2020, 2021 embedded brains GmbH 107

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

includes The attribute value shall be a list. Each list element shall be a Build Include Path.

ldflags The attribute value shall be a list. Each list element shall be a Build Linker Option.

source The attribute value shall be a list. Each list element shall be a Build Source.

stlib The attribute value shall be a list. Each list element shall be a Build Link Static Library
Directive.

target The attribute value shall be a Build Target.

use-after The attribute value shall be a list. Each list element shall be a Build Use After Directive.

use-before The attribute value shall be a list. Each list element shall be a Build Use Before
Directive.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
build-type: test-program
cflags: []
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
cppflags: []
cxxflags: []
enabled-by: true
features: c cprogram
includes: []
ldflags: []
links: []
source:
- testsuites/samples/ticker/init.c
- testsuites/samples/ticker/tasks.c
stlib: []
target: testsuites/samples/ticker.exe
type: build
use-after: []
use-before: []

6.2.2.2.14 Constraint Item Type
This type refines the Root Item Type through the type attribute if the value is constraint. This
set of attributes specifies a constraint. All explicit attributes shall be specified. The explicit
attributes for this type are:

rationale The attribute value shall be an optional string. If the value is present, then it shall
state the rationale or justification of the constraint.

text The attribute value shall be a Requirement Text. It shall state the constraint.

© 2019, 2020, 2021 embedded brains GmbH 108

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.15 Glossary Item Type
This type refines the Root Item Type through the type attribute if the value is glossary. This
set of attributes specifies a glossary item. All explicit attributes shall be specified. The explicit
attributes for this type are:

glossary-type The attribute value shall be a Name. It shall be the glossary item type.

This type is refined by the following types:

• Glossary Group Item Type

• Glossary Term Item Type

6.2.2.2.16 Glossary Group Item Type
This type refines the Glossary Item Type through the glossary-type attribute if the value is
group. This set of attributes specifies a glossary group. All explicit attributes shall be specified.
The explicit attributes for this type are:

name The attribute value shall be a string. It shall be the human readable name of the glossary
group.

text The attribute value shall be a string. It shall state the requirement for the glossary group.

6.2.2.2.17 Glossary Term Item Type
This type refines the Glossary Item Type through the glossary-type attribute if the value is
term. This set of attributes specifies a glossary term. All explicit attributes shall be specified.
The explicit attributes for this type are:

term The attribute value shall be a string. It shall be the glossary term.

text The attribute value shall be a string. It shall be the definition of the glossary term.

6.2.2.2.18 Interface Item Type
This type refines the Root Item Type through the type attribute if the value is interface. This set
of attributes specifies an interface specification item. Interface items shall specify the interface
of the software product to other software products and the hardware. Use Interface Domain Item
Type items to specify interface domains, for example the API, C language, compiler, interfaces
to the implementation, and the hardware. All explicit attributes shall be specified. The explicit
attributes for this type are:

index-entries The attribute value shall be a list of strings. It shall be a list of additional doc-
ument index entries. A document index entry derived from the interface name is added
automatically.

interface-type The attribute value shall be a Name. It shall be the interface item type.

This type is refined by the following types:

© 2019, 2020, 2021 embedded brains GmbH 109

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Application Configuration Group Item Type

• Application Configuration Option Item Type

• Interface Compound Item Type

• Interface Container Item Type

• Interface Define Item Type

• Interface Domain Item Type

• Interface Enum Item Type

• Interface Enumerator Item Type

• Interface Forward Declaration Item Type

• Interface Function Item Type

• Interface Group Item Type

• Interface Header File Item Type

• Interface Macro Item Type

• Interface Typedef Item Type

• Interface Unspecified Item Type

• Interface Variable Item Type

6.2.2.2.19 Application Configuration Group Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
appl-config-group. This set of attributes specifies an application configuration group. All
explicit attributes shall be specified. The explicit attributes for this type are:

description The attribute value shall be a string. It shall be the description of the application
configuration group.

name The attribute value shall be a string. It shall be human readable name of the application
configuration group.

text The attribute value shall be a Requirement Text. It shall state the requirement for the
application configuration group.

6.2.2.2.20 Application Configuration Option Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
appl-config-option. This set of attributes specifies an application configuration option. All
explicit attributes shall be specified. The explicit attributes for this type are:

appl-config-option-type The attribute value shall be a Name. It shall be the application con-
figuration option type.

description The attribute value shall be an Interface Description.

© 2019, 2020, 2021 embedded brains GmbH 110

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

name The attribute value shall be an Application Configuration Option Name.

notes The attribute value shall be an Interface Notes.

This type is refined by the following types:

• Application Configuration Feature Enable Option Item Type

• Application Configuration Feature Option Item Type

• Application Configuration Value Option Item Type

6.2.2.2.21 Application Configuration Feature Enable Option Item Type
This type refines the Application Configuration Option Item Type through the
appl-config-option-type attribute if the value is feature-enable. This set of attributes
specifies an application configuration feature enable option.

6.2.2.2.22 Application Configuration Feature Option Item Type
This type refines the Application Configuration Option Item Type through the
appl-config-option-type attribute if the value is feature. This set of attributes speci-
fies an application configuration feature option. All explicit attributes shall be specified. The
explicit attributes for this type are:

default The attribute value shall be a string. It shall describe what happens if the configuration
option is undefined.

6.2.2.2.23 Application Configuration Value Option Item Type
This type refines the following types:

• Application Configuration Option Item Type through the appl-config-option-type at-
tribute if the value is initializer

• Application Configuration Option Item Type through the appl-config-option-type at-
tribute if the value is integer

This set of attributes specifies application configuration initializer or integer option. All explicit
attributes shall be specified. The explicit attributes for this type are:

default-value The attribute value shall be an Integer or String. It shall describe the default
value of the application configuration option.

© 2019, 2020, 2021 embedded brains GmbH 111

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.24 Interface Compound Item Type
This type refines the following types:

• Interface Item Type through the interface-type attribute if the value is struct

• Interface Item Type through the interface-type attribute if the value is union

This set of attributes specifies a compound (struct or union). All explicit attributes shall be
specified. The explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition The attribute value shall be a list. Each list element shall be an Interface Compound
Member Definition Directive.

definition-kind The attribute value shall be an Interface Compound Definition Kind.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the compound (struct or
union).

notes The attribute value shall be an Interface Notes.

6.2.2.2.25 Interface Container Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
container. Items of this type specify an interface container. The item shall have exactly one
link with the Interface Placement Link Role to an Interface Domain Item Type item. This link
defines the interface domain of the container.

6.2.2.2.26 Interface Define Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
define. This set of attributes specifies a define. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition The attribute value shall be an Interface Definition Directive.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the define.

notes The attribute value shall be an Interface Notes.

© 2019, 2020, 2021 embedded brains GmbH 112

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.27 Interface Domain Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
domain. This set of attributes specifies an interface domain. Items of the types Interface Con-
tainer Item Type and Interface Header File Item Type are placed into domains through links with
the Interface Placement Link Role. All explicit attributes shall be specified. The explicit attributes
for this type are:

description The attribute value shall be a string. It shall be the description of the domain

name The attribute value shall be a string. It shall be the human readable name of the domain.

6.2.2.2.28 Interface Enum Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
enum. This set of attributes specifies an enum. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition-kind The attribute value shall be an Interface Enum Definition Kind.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the enum.

notes The attribute value shall be an Interface Description.

6.2.2.2.29 Interface Enumerator Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
enumerator. This set of attributes specifies an enumerator. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition The attribute value shall be an Interface Definition Directive.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the enumerator.

notes The attribute value shall be an Interface Notes.

© 2019, 2020, 2021 embedded brains GmbH 113

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.30 Interface Forward Declaration Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
forward-declaration. Items of this type specify a forward declaration. The item shall have
exactly one link with the Interface Target Link Role to an Interface Compound Item Type item.
This link defines the type declared by the forward declaration.

6.2.2.2.31 Interface Function Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
function. This set of attributes specifies a function. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition The attribute value shall be an Interface Function Definition Directive.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the function.

notes The attribute value shall be an Interface Notes.

params The attribute value shall be a list. Each list element shall be an Interface Parameter.

return The attribute value shall be an Interface Return Directive.

6.2.2.2.32 Interface Group Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
group. This set of attributes specifies an interface group. All explicit attributes shall be specified.
The explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

description The attribute value shall be an Interface Description.

identifier The attribute value shall be an Interface Group Identifier.

name The attribute value shall be a string. It shall be the human readable name of the interface
group.

text The attribute value shall be a Requirement Text. It shall state the requirement for the
interface group.

© 2019, 2020, 2021 embedded brains GmbH 114

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.33 Interface Header File Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
header-file. This set of attributes specifies a header file. The item shall have exactly one link
with the Interface Placement Link Role to an Interface Domain Item Type item. This link defines
the interface domain of the header file. All explicit attributes shall be specified. The explicit
attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

path The attribute value shall be a string. It shall be the path used to include the header file.
For example rtems/confdefs.h.

prefix The attribute value shall be a string. It shall be the prefix directory path to the header
file in the interface domain. For example cpukit/include.

6.2.2.2.34 Interface Macro Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
macro. This set of attributes specifies a macro. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition The attribute value shall be an Interface Definition Directive.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the macro.

notes The attribute value shall be an Interface Notes.

params The attribute value shall be a list. Each list element shall be an Interface Parameter.

return The attribute value shall be an Interface Return Directive.

6.2.2.2.35 Interface Typedef Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
typedef. This set of attributes specifies a typedef. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition The attribute value shall be an Interface Definition Directive.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the typedef.

notes The attribute value shall be an Interface Notes.

© 2019, 2020, 2021 embedded brains GmbH 115

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.36 Interface Unspecified Item Type
This type refines the following types:

• Interface Item Type through the interface-type attribute if the value is unspecified

• Interface Item Type through the interface-type attribute if the value is
unspecified-define

• Interface Item Type through the interface-type attribute if the value is
unspecified-function

• Interface Item Type through the interface-type attribute if the value is
unspecified-group

• Interface Item Type through the interface-type attribute if the value is unspecified-type

This set of attributes specifies an unspecified interface. All explicit attributes shall be specified.
The explicit attributes for this type are:

name The attribute value shall be a string. It shall be the name of the unspecified interface.

references The attribute value shall be an Interface References Set.

6.2.2.2.37 Interface Variable Item Type
This type refines the Interface Item Type through the interface-type attribute if the value is
variable. This set of attributes specifies a variable. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

definition The attribute value shall be an Interface Definition Directive.

description The attribute value shall be an Interface Description.

name The attribute value shall be a string. It shall be the name of the variable.

notes The attribute value shall be an Interface Notes.

6.2.2.2.38 Requirement Item Type
This type refines the Root Item Type through the type attribute if the value is requirement. This
set of attributes specifies a requirement. All explicit attributes shall be specified. The explicit
attributes for this type are:

rationale The attribute value shall be an optional string. If the value is present, then it shall
state the rationale or justification of the requirement.

references The attribute value shall be a list. Each list element shall be a Requirement Reference.

requirement-type The attribute value shall be a Name. It shall be the requirement item type.

text The attribute value shall be a Requirement Text. It shall state the requirement.

This type is refined by the following types:

© 2019, 2020, 2021 embedded brains GmbH 116

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Functional Requirement Item Type

• Non-Functional Requirement Item Type

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de
enabled-by: true
functional-type: capability
links: []
rationale: |
It keeps you busy.

requirement-type: functional
text: |
The system shall do crazy things.

type: requirement

6.2.2.2.39 Functional Requirement Item Type
This type refines the Requirement Item Type through the requirement-type attribute if the value
is functional. This set of attributes specifies a functional requirement. All explicit attributes
shall be specified. The explicit attributes for this type are:

functional-type The attribute value shall be a Name. It shall be the functional type of the
requirement.

This type is refined by the following types:

• Action Requirement Item Type

• Generic Functional Requirement Item Type

6.2.2.2.40 Action Requirement Item Type
This type refines the Functional Requirement Item Type through the functional-type attribute if
the value is action. This set of attributes specifies functional requirements and corresponding
validation test code. The functional requirements of an action are specified. An action performs
a step in a finite state machine. An action is implemented through a function or a macro.
The action is performed through a call of the function or an execution of the code of a macro
expansion by an actor. The actor is for example a task or an interrupt service routine.

For action requirements which specify the function of an interface, there shall be exactly one
link with the Interface Function Link Role to the interface of the action.

The action requirements are specified by

• a list of pre-conditions, each with a set of states,

• a list of post-conditions, each with a set of states,

• the transition of pre-condition states to post-condition states through the action.

© 2019, 2020, 2021 embedded brains GmbH 117

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Along with the requirements, the test code to generate a validation test is specified. For an
action requirement it is verified that all variations of pre-condition states have a set of post-
condition states specified in the transition map. All transitions are covered by the generated
test code. All explicit attributes shall be specified. The explicit attributes for this type are:

post-conditions The attribute value shall be a list. Each list element shall be an Action Require-
ment Condition.

pre-conditions The attribute value shall be a list. Each list element shall be an Action Require-
ment Condition.

skip-reasons The attribute value shall be an Action Requirement Skip Reasons.

test-action The attribute value shall be a string. It shall be the test action code.

test-brief The attribute value shall be an optional string. If the value is present, then it shall be
the test case brief description.

test-cleanup The attribute value shall be an optional string. If the value is present, then it shall
be the test cleanup code. The code is placed in the test action loop body after the test
post-condition checks.

test-context The attribute value shall be a list. Each list element shall be a Test Context Member.

test-context-support The attribute value shall be an optional string. If the value is present,
then it shall be the test context support code. The context support code is placed at file
scope before the test context definition.

test-description The attribute value shall be an optional string. If the value is present, then it
shall be the test case description.

test-header The attribute value shall be a Test Header.

test-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include <...>.

test-local-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include "...".

test-prepare The attribute value shall be an optional string. If the value is present, then it shall
be the early test preparation code. The code is placed in the test action loop body before
the test pre-condition preparations.

test-setup The attribute value shall be a Test Support Method.

test-stop The attribute value shall be a Test Support Method.

test-support The attribute value shall be an optional string. If the value is present, then it shall
be the test case support code. The support code is placed at file scope before the test case
code.

test-target The attribute value shall be a string. It shall be the path to the generated test case
source file.

test-teardown The attribute value shall be a Test Support Method.

transition-map The attribute value shall be a list. Each list element shall be an Action Require-
ment Transition.

© 2019, 2020, 2021 embedded brains GmbH 118

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by: true
functional-type: action
links: []
post-conditions:
- name: Status
states:
- name: Success
test-code: |
/* Check that the status is SUCCESS */

text: |
The status shall be SUCCESS.

- name: Error
test-code: |
/* Check that the status is ERROR */

text: |
The status shall be ERROR.

test-epilogue: null
test-prologue: null

- name: Data
states:
- name: Unchanged
test-code: |
/* Check that the data is unchanged */

text: |
The data shall be unchanged by the action.

- name: Red
test-code: |
/* Check that the data is red */

text: |
The data shall be red.

- name: Green
test-code: |
/* Check that the data is green */

text: |
The data shall be green.

test-epilogue: null
test-prologue: null

pre-conditions:
- name: Data
states:
- name: NullPtr
test-code: |
/* Set data pointer to NULL */

text: |
The data pointer shall be NULL.

- name: Valid
test-code: |
/* Set data pointer to reference a valid data buffer */

text: |
The data pointer shall reference a valid data buffer.

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 119

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

test-epilogue: null
test-prologue: null

- name: Option
states:
- name: Red
test-code: |
/* Set option to RED */

text: |
The option shall be RED.

- name: Green
test-code: |
/* Set option to GREEN */

text: |
The option shall be GREEN.

test-epilogue: null
test-prologue: null

requirement-type: functional
skip-reasons: {}
test-action: |
/* Call the function of the action */

test-brief: null
test-cleanup: null
test-context:
- brief: null
description: null
member: void *data

- brief: null
description: null
member: option_type option

test-context-support: null
test-description: null
test-header: null
test-includes: []
test-local-includes: []
test-prepare: null
test-setup: null
test-stop: null
test-support: null
test-target: tc-red-green-data.c
test-teardown: null
transition-map:
- enabled-by: true
post-conditions:
Status: Error
Data: Unchanged

pre-conditions:
Data: NullPtr
Option: all

- enabled-by: true
post-conditions:
Status: Success
Data: Red

pre-conditions:

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 120

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

Data: Valid
Option: Red

- enabled-by: true
post-conditions:
Status: Success
Data: Green

pre-conditions:
Data: Valid
Option: Green

rationale: null
references: []
text: |

${.:/text-template}
type: requirement

6.2.2.2.41 Generic Functional Requirement Item Type
This type refines the following types:

• Functional Requirement Item Type through the functional-type attribute if the value is
capability

• Functional Requirement Item Type through the functional-type attribute if the value is
dependability-function

• Functional Requirement Item Type through the functional-type attribute if the value is
function

• Functional Requirement Item Type through the functional-type attribute if the value is
operational

• Functional Requirement Item Type through the functional-type attribute if the value is
safety-function

Items of this type state a functional requirement with the functional type defined by the speci-
fication type refinement.

6.2.2.2.42 Non-Functional Requirement Item Type
This type refines the Requirement Item Type through the requirement-type attribute if the value
is non-functional. This set of attributes specifies a non-functional requirement. All explicit
attributes shall be specified. The explicit attributes for this type are:

non-functional-type The attribute value shall be a Name. It shall be the non-functional type of
the requirement.

This type is refined by the following types:

• Design Group Requirement Item Type

• Generic Non-Functional Requirement Item Type

• Runtime Performance Requirement Item Type

© 2019, 2020, 2021 embedded brains GmbH 121

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.2.43 Design Group Requirement Item Type
This type refines the Non-Functional Requirement Item Type through the non-functional-type
attribute if the value is design-group. This set of attributes specifies a design group require-
ment. Design group requirements have an explicit reference to the associated Doxygen group
specified by the identifier attribute. Design group requirements have an implicit validation
by inspection method. The qualification toolchain shall perform the inspection and check that
the specified Doxygen group exists in the software source code. All explicit attributes shall be
specified. The explicit attributes for this type are:

identifier The attribute value shall be an Interface Group Identifier.

6.2.2.2.44 Generic Non-Functional Requirement Item Type
This type refines the following types:

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is build-configuration

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is constraint

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is design

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is documentation

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is interface

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is interface-requirement

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is maintainability

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is performance

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is portability

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is quality

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is reliability

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is resource

• Non-Functional Requirement Item Type through the non-functional-type attribute if the
value is safety

© 2019, 2020, 2021 embedded brains GmbH 122

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Items of this type state a non-functional requirement with the non-functional type defined by
the specification type refinement.

6.2.2.2.45 Runtime Performance Requirement Item Type
This type refines the Non-Functional Requirement Item Type through the non-functional-type
attribute if the value is performance-runtime. The item shall have exactly one link with the Run-
time Measurement Request Link Role. A requirement text processor shall support a substitution
of ${.:/limit-kind}:

• For a Runtime Measurement Value Kind of min-lower-bound or min-upper-bound, the sub-
stitution of ${.:/limit-kind} shall be "minimum".

• For a Runtime Measurement Value Kind of mean-lower-bound or mean-upper-bound, the
substitution of ${.:/limit-kind} shall be "mean".

• For a Runtime Measurement Value Kind of max-lower-bound or max-upper-bound, the sub-
stitution of ${.:/limit-kind} shall be "maximum".

A requirement text processor shall support a substitution of ${.:/limit-condition}:

• For a Runtime Measurement Value Kind of min-lower-bound, mean-lower-bound, or
max-lower-bound, the substitution of ${.:/limit-condition} shall be "greater than or
equal to <value>" with <value> being the value of the corresponding entry in the Run-
time Measurement Value Table.

• For a Runtime Measurement Value Kind of min-upper-bound, mean-upper-bound, or
max-upper-bound, the substitution of ${.:/limit-condition} shall be "less than or equal
to <value>" with <value> being the value of the corresponding entry in the Runtime
Measurement Value Table.

A requirement text processor shall support a substitution of ${.:/environment}. The value of
the substitution shall be "<environment> environment" with <environment> being the envi-
ronment of the corresponding entry in the Runtime Measurement Environment Table.

This set of attributes specifies a runtime performance requirement. Along with the requirement,
the validation test code to execute a measure runtime request is specified. All explicit attributes
shall be specified. The explicit attributes for this type are:

limits The attribute value shall be a Runtime Performance Limit Table.

params The attribute value shall be a Runtime Performance Parameter Set.

test-body The attribute value shall be a Test Support Method. It shall provide the code of the
measure runtime body handler. In contrast to other methods, this method is mandatory.

test-cleanup The attribute value shall be a Test Support Method. It may provide the code to
clean up the measure runtime request. This method is called before the cleanup method
of the corresponding Runtime Measurement Test Item Type item and after the request.

test-prepare The attribute value shall be a Test Support Method. It may provide the code to
prepare the measure runtime request. This method is called after the prepare method of
the corresponding Runtime Measurement Test Item Type item and before the request.

© 2019, 2020, 2021 embedded brains GmbH 123

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

test-setup The attribute value shall be a Test Support Method. It may provide the code of the
measure runtime setup handler.

test-teardown The attribute value shall be a Test Support Method. It may provide the code of
the measure runtime teardown handler.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by: true
links:
- role: runtime-measurement-request
uid: ../val/performance

limits:
sparc/leon3:
DirtyCache:
max-upper-bound: 0.000005
mean-upper-bound: 0.000005

FullCache:
max-upper-bound: 0.000005
mean-upper-bound: 0.000005

HotCache:
max-upper-bound: 0.000005
mean-upper-bound: 0.000005

Load/1:
max-upper-bound: 0.00001
mean-upper-bound: 0.00001

Load/2:
max-upper-bound: 0.00001
mean-upper-bound: 0.00001

Load/3:
max-upper-bound: 0.00001
mean-upper-bound: 0.00001

Load/4:
max-upper-bound: 0.00001
mean-upper-bound: 0.00001

params: {}
rationale: null
references: []
test-body:
brief: |
Get a buffer.

code: |
ctx->status = rtems_partition_get_buffer(ctx->part_many, &ctx->buffer);

description: null
test-cleanup: null
test-prepare: null
test-setup: null
test-teardown:

brief: |
Return the buffer.

code: |
rtems_status_code sc;

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 124

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

T_quiet_rsc_success(ctx->status);

sc = rtems_partition_return_buffer(ctx->part_many, ctx->buffer);
T_quiet_rsc_success(sc);

return tic == toc;
description: null

text: |
When a partition has exactly ${../val/performance:/params/buffer-count} free
buffers, the ${.:limit-kind} runtime of exactly
${../val/performance:/params/sample-count} successful calls to
${../if/get-buffer:/name} in the ${.:/environment} shall be
${.:limit-condition}.

non-functional-type: performance-runtime
requirement-type: non-functional
type: requirement

6.2.2.2.46 Requirement Validation Item Type
This type refines the Root Item Type through the type attribute if the value is validation. This
set of attributes provides a requirement validation evidence. The item shall have exactly one link
to the validated requirement with the Requirement Validation Link Role. All explicit attributes
shall be specified. The explicit attributes for this type are:

method The attribute value shall be a Requirement Validation Method. Validation by test is done
through Test Case Item Type items.

text The attribute value shall be a string. It shall provide the validation evidence depending on
the validation method:

• By analysis: A statement shall be provided how the requirement is met, by analysing
static properties of the software product.

• By inspection: A statement shall be provided how the requirement is met, by inspec-
tion of the source code.

• By review of design: A rationale shall be provided to demonstrate how the require-
ment is satisfied implicitly by the software design.

6.2.2.2.47 Runtime Measurement Test Item Type
This type refines the Root Item Type through the type attribute if the value is
runtime-measurement-test. This set of attributes specifies a runtime measurement test case.
All explicit attributes shall be specified. The explicit attributes for this type are:

params The attribute value shall be a Runtime Measurement Parameter Set.

test-brief The attribute value shall be an optional string. If the value is present, then it shall be
the test case brief description.

© 2019, 2020, 2021 embedded brains GmbH 125

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

test-cleanup The attribute value shall be a Test Support Method. If the value is present, then
it shall be the measure runtime request cleanup method. The method is called after each
measure runtime request.

test-context The attribute value shall be a list. Each list element shall be a Test Context Member.

test-context-support The attribute value shall be an optional string. If the value is present,
then it shall be the test context support code. The context support code is placed at file
scope before the test context definition.

test-description The attribute value shall be an optional string. If the value is present, then it
shall be the test case description.

test-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include <...>.

test-local-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include "...".

test-prepare The attribute value shall be a Test Support Method. If the value is present, then it
shall be the measure runtime request prepare method. The method is called before each
measure runtime request.

test-setup The attribute value shall be a Test Support Method. If the value is present, then it
shall be the test case setup fixture method.

test-stop The attribute value shall be a Test Support Method. If the value is present, then it shall
be the test case stop fixture method.

test-support The attribute value shall be an optional string. If the value is present, then it shall
be the test case support code. The support code is placed at file scope before the test case
code.

test-target The attribute value shall be a string. It shall be the path to the generated test case
source file.

test-teardown The attribute value shall be a Test Support Method. If the value is present, then
it shall be the test case teardown fixture method.

6.2.2.2.48 Specification Item Type
This type refines the Root Item Type through the type attribute if the value is spec. This set
of attributes specifies specification types. All explicit attributes shall be specified. The explicit
attributes for this type are:

spec-description The attribute value shall be an optional string. It shall be the description of
the specification type.

spec-example The attribute value shall be an optional string. If the value is present, then it
shall be an example of the specification type.

spec-info The attribute value shall be a Specification Information.

spec-name The attribute value shall be an optional string. It shall be the human readable name
of the specification type.

© 2019, 2020, 2021 embedded brains GmbH 126

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

spec-type The attribute value shall be a Name. It shall the specification type.

Please have a look at the following example:

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by: true
links:
- role: spec-member
uid: root

- role: spec-refinement
spec-key: type
spec-value: example
uid: root

spec-description: null
spec-example: null
spec-info:
dict:
attributes:
an-example-attribute:

description: |
It shall be an example.

spec-type: optional-str
example-number:
description: |
It shall be the example number.

spec-type: int
description: |
This set of attributes specifies an example.

mandatory-attributes: all
spec-name: Example Item Type
spec-type: spec
type: spec

6.2.2.2.49 Test Case Item Type
This type refines the Root Item Type through the type attribute if the value is test-case. This set
of attributes specifies a test case. All explicit attributes shall be specified. The explicit attributes
for this type are:

test-actions The attribute value shall be a list. Each list element shall be a Test Case Action.

test-brief The attribute value shall be a string. It shall be the test case brief description.

test-context The attribute value shall be a list. Each list element shall be a Test Context Member.

test-context-support The attribute value shall be an optional string. If the value is present,
then it shall be the test context support code. The context support code is placed at file
scope before the test context definition.

test-description The attribute value shall be an optional string. It shall be the test case de-
scription.

test-header The attribute value shall be a Test Header.

© 2019, 2020, 2021 embedded brains GmbH 127

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

test-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include <...>.

test-local-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include "...".

test-setup The attribute value shall be a Test Support Method.

test-stop The attribute value shall be a Test Support Method.

test-support The attribute value shall be an optional string. If the value is present, then it shall
be the test case support code. The support code is placed at file scope before the test case
code.

test-target The attribute value shall be a string. It shall be the path to the generated target test
case source file.

test-teardown The attribute value shall be a Test Support Method.

6.2.2.2.50 Test Platform Item Type
This type refines the Root Item Type through the type attribute if the value is test-platform.
Please note:

Warning: This item type is work in progress.

This set of attributes specifies a test platform. All explicit attributes shall be specified. The
explicit attributes for this type are:

description The attribute value shall be a string. It shall be the description of the test platform.

name The attribute value shall be a string. It shall be the human readable name of the test
platform.

6.2.2.2.51 Test Procedure Item Type
This type refines the Root Item Type through the type attribute if the value is test-procedure.
Please note:

Warning: This item type is work in progress.

This set of attributes specifies a test procedure. All explicit attributes shall be specified. The
explicit attributes for this type are:

name The attribute value shall be a string. It shall be the human readable name of the test
procedure.

purpose The attribute value shall be a string. It shall state the purpose of the test procedure.

© 2019, 2020, 2021 embedded brains GmbH 128

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

steps The attribute value shall be a string. It shall describe the steps of the test procedure
execution.

6.2.2.2.52 Test Suite Item Type
This type refines the Root Item Type through the type attribute if the value is test-suite. This
set of attributes specifies a test suite. All explicit attributes shall be specified. The explicit
attributes for this type are:

test-brief The attribute value shall be a string. It shall be the test suite brief description.

test-code The attribute value shall be a string. It shall be the test suite code. The test suite
code is placed at file scope in the target source file.

test-description The attribute value shall be an optional string. It shall be the test suite de-
scription.

test-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include <...>.

test-local-includes The attribute value shall be a list of strings. It shall be a list of header files
included via #include "...".

test-suite-name The attribute value shall be a string. It shall be the name of the test suite.

test-target The attribute value shall be a string. It shall be the path to the generated target test
suite source file.

6.2.2.3 Specification Attribute Sets and Value Types
6.2.2.3.1 Action Requirement Boolean Expression
A value of this type is a boolean expression.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and The attribute value shall be a list. Each list element shall be an Action Requirement
Boolean Expression. The and operator evaluates to the logical and of the evaluation
results of the expressions in the list.

not The attribute value shall be an Action Requirement Boolean Expression. The not oper-
ator evaluates to the logical not of the evaluation results of the expression.

or The attribute value shall be a list. Each list element shall be an Action Requirement
Boolean Expression. The or operator evaluates to the logical or of the evaluation
results of the expressions in the list.

post-conditions The attribute value shall be an Action Requirement Expression Condition
Set. The post-conditions operator evaluates to true, if the post-condition states of the
associated transition are contained in the specified post-condition set, otherwise to
false.

© 2019, 2020, 2021 embedded brains GmbH 129

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

pre-conditions The attribute value shall be an Action Requirement Expression Condition
Set. The pre-conditions operator evaluates to true, if the pre-condition states of the
associated transition are contained in the specified pre-condition set, otherwise to
false.

• The value may be a list. Each list element shall be an Action Requirement Boolean Expres-
sion. This list of expressions evaluates to the logical or of the evaluation results of the
expressions in the list.

This type is used by the following types:

• Action Requirement Boolean Expression

• Action Requirement Expression

6.2.2.3.2 Action Requirement Condition
This set of attributes defines an action pre-condition or post-condition. All explicit attributes
shall be specified. The explicit attributes for this type are:

name The attribute value shall be an Action Requirement Name.

states The attribute value shall be a list. Each list element shall be an Action Requirement State.

test-epilogue The attribute value shall be an optional string. If the value is present, then it shall
be the test epilogue code. The epilogue code is placed in the test condition preparation or
check before the state-specific code. The code may use a local variable ctx which points
to the test context, see Test Context Member.

test-prologue The attribute value shall be an optional string. If the value is present, then
it shall be the test prologue code. The prologue code is placed in the test condition
preparation or check after the state-specific code. The code may use a local variable ctx
which points to the test context, see Test Context Member.

This type is used by the following types:

• Action Requirement Item Type

6.2.2.3.3 Action Requirement Expression
This set of attributes defines an expression which may define the state of a post-condition.
The else and specified-by shall be used individually. The if and then or then-specified-by
expressions shall be used together. At least one of the explicit attributes shall be specified. The
explicit attributes for this type are:

else The attribute value shall be an Action Requirement Expression State Name. It shall be the
name of the state of the post-condition.

if The attribute value shall be an Action Requirement Boolean Expression. If the boolean expres-
sion evaluates to true, then the state is defined according to the then attribute value.

specified-by The attribute value shall be an Action Requirement Name. It shall be the name of
a pre-condition. The name of the state of the pre-condition in the associated transition
defines the name of the state of the post-condition.

© 2019, 2020, 2021 embedded brains GmbH 130

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

then The attribute value shall be an Action Requirement Expression State Name. It shall be the
name of the state of the post-condition.

then-specified-by The attribute value shall be an Action Requirement Name. It shall be the
name of a pre-condition. The name of the state of the pre-condition in the associated
transition defines the name of the state of the post-condition.

6.2.2.3.4 Action Requirement Expression Condition Set
This set of attributes defines for the specified conditions a set of states. Generic attributes may
be specified. Each generic attribute key shall be an Action Requirement Name. Each generic
attribute value shall be an Action Requirement Expression State Set. There shall be at most one
generic attribute key for each condition. The key name shall be the condition name. The value
of each generic attribute shall be a set of states of the condition.

This type is used by the following types:

• Action Requirement Boolean Expression

6.2.2.3.5 Action Requirement Expression State Name
The value shall be a string. It shall be the name of a state of the condition or N/A if the condition
is not applicable. The value

• shall match with the regular expression “^[A-Z][a-zA-Z0-9]+$”,

• or, shall be equal to “N/A”.

This type is used by the following types:

• Action Requirement Expression

6.2.2.3.6 Action Requirement Expression State Set
A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be an Action Requirement Expression State
Name. The list defines a set of states of the condition.

• The value may be a string. It shall be the name of a state of the condition or N/A if the
condition is not applicable. The value

– shall match with the regular expression “^[A-Z][a-zA-Z0-9]+$”,

– or, shall be equal to “N/A”.

This type is used by the following types:

• Action Requirement Expression Condition Set

© 2019, 2020, 2021 embedded brains GmbH 131

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.7 Action Requirement Name
The value shall be a string. It shall be the name of a condition or a state of a condition used
to define pre-conditions and post-conditions of an action requirement. It shall be formatted in
CamelCase. It should be brief and abbreviated. The rationale for this is that the names are
used in tables and the horizontal space is limited by the page width. The more conditions you
have in an action requirement, the shorter the names should be. The name NA is reserved and
indicates that a condition is not applicable. The value

• shall match with the regular expression “^[A-Z][a-zA-Z0-9]+$”,

• and, shall be not equal to “NA”.

This type is used by the following types:

• Action Requirement Condition

• Action Requirement Expression Condition Set

• Action Requirement Expression

• Action Requirement Skip Reasons

• Action Requirement State

• Action Requirement Transition Post-Conditions

• Action Requirement Transition Pre-Conditions

6.2.2.3.8 Action Requirement Skip Reasons
This set of attributes specifies skip reasons used to justify why transitions in the transition map
are skipped. Generic attributes may be specified. Each generic attribute key shall be an Action
Requirement Name. Each generic attribute value shall be a string. The key defines the name of a
skip reason. The name can be used in Action Requirement Transition Post-Conditions to skip the
corresponding transitions. The value shall give a reason why the transitions are skipped.

This type is used by the following types:

• Action Requirement Item Type

6.2.2.3.9 Action Requirement State
This set of attributes defines an action pre-condition or post-condition state. All explicit at-
tributes shall be specified. The explicit attributes for this type are:

name The attribute value shall be an Action Requirement Name.

test-code The attribute value shall be a string. It shall be the test code to prepare or check
the state of the condition. The code may use a local variable ctx which points to the test
context, see Test Context Member.

text The attribute value shall be a Requirement Text. It shall define the state of the condition.

This type is used by the following types:

© 2019, 2020, 2021 embedded brains GmbH 132

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Action Requirement Condition

6.2.2.3.10 Action Requirement Transition
This set of attributes defines the transition from multiple sets of states of pre-conditions to a set
of states of post-conditions through an action in an action requirement. The ability to specify
multiple sets of states of pre-conditions which result in a common set of post-conditions may
allow a more compact specification of the transition map. For example, let us suppose you want
to specify the action of a function with a pointer parameter. The function performs an early
check that the pointer is NULL and in this case returns an error code. The pointer condition
dominates the action outcome if the pointer is NULL. Other pre-condition states can be simply
set to all for this transition. All explicit attributes shall be specified. The explicit attributes for
this type are:

enabled-by The attribute value shall be an Enabled-By Expression. The transition map may be
customized to support configuration variants through this attribute. The default transi-
tions (enabled-by: true) shall be specified before the customized variants in the list.

post-conditions The attribute value shall be an Action Requirement Transition Post-Conditions.

pre-conditions The attribute value shall be an Action Requirement Transition Pre-Conditions.

This type is used by the following types:

• Action Requirement Item Type

6.2.2.3.11 Action Requirement Transition Post-Condition State
A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be an Action Requirement Expression. The
list contains expressions to define the state of the corresponding post-condition.

• The value may be a string. It shall be the name of a state of the corresponding post-
condition or N/A if the post-condition is not applicable. The value

– shall match with the regular expression “^[A-Z][a-zA-Z0-9]+$”,

– or, shall be equal to “N/A”.

This type is used by the following types:

• Action Requirement Transition Post-Conditions

© 2019, 2020, 2021 embedded brains GmbH 133

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.12 Action Requirement Transition Post-Conditions
A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines for each post-condition
the state after the action for a transition in an action requirement. Generic attributes may
be specified. Each generic attribute key shall be an Action Requirement Name. Each generic
attribute value shall be an Action Requirement Transition Post-Condition State. There shall
be exactly one generic attribute key for each post-condition. The key name shall be the
post-condition name. The value of each generic attribute shall be the state of the post-
condition or N/A if the post-condition is not applicable.

• The value may be a string. It shall be the name of a skip reason. If a skip reason is given
instead of a listing of post-condition states, then this transition is skipped and no test code
runs for this transition. The value

– shall match with the regular expression “^[A-Z][a-zA-Z0-9]+$”,

– and, shall be not equal to “NA”.

This type is used by the following types:

• Action Requirement Transition

6.2.2.3.13 Action Requirement Transition Pre-Condition State Set
A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be an Action Requirement Name. The list
defines the set of states of the pre-condition in the transition.

• The value may be a string. The value all represents all states of the pre-condition in this
transition. The value N/A marks the pre-condition as not applicable in this transition. The
value shall be an element of

– “all”, and

– “N/A”.

This type is used by the following types:

• Action Requirement Transition Pre-Conditions

6.2.2.3.14 Action Requirement Transition Pre-Conditions
A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines for each pre-condition
the set of states before the action for a transition in an action requirement. Generic
attributes may be specified. Each generic attribute key shall be an Action Requirement
Name. Each generic attribute value shall be an Action Requirement Transition Pre-Condition
State Set. There shall be exactly one generic attribute key for each pre-condition. The key
name shall be the pre-condition name. The value of each generic attribute shall be a set
of states of the pre-condition.

© 2019, 2020, 2021 embedded brains GmbH 134

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• The value may be a string. If this name is specified instead of explicit pre-condition states,
then the post-condition states of this entry are used to define all remaining transitions of
the map. The value shall be equal to “default”.

This type is used by the following types:

• Action Requirement Transition

6.2.2.3.15 Application Configuration Group Member Link Role
This type refines the Link through the role attribute if the value is appl-config-group-member.
It defines the application configuration group membership role of links.

6.2.2.3.16 Application Configuration Option Name
The value shall be a string. It shall be the name of an application configuration option. The
value shall match with the regular expression “^(CONFIGURE_|BSP_)[A-Z0-9_]+$”.

This type is used by the following types:

• Application Configuration Option Item Type

6.2.2.3.17 Boolean or Integer or String
A value of this type shall be of one of the following variants:

• The value may be a boolean.

• The value may be an integer number.

• The value may be a string.

This type is used by the following types:

• Build Option Action

• Interface Return Value

6.2.2.3.18 Build Assembler Option
The value shall be a string. It shall be an option for the assembler. The options are used to
assemble the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Script Item Type

• Build Start File Item Type

© 2019, 2020, 2021 embedded brains GmbH 135

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.19 Build C Compiler Option
The value shall be a string. It shall be an option for the C compiler. The options are used
to compile the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build BSP Item Type

• Build Library Item Type

• Build Objects Item Type

• Build Option C Compiler Check Action

• Build Script Item Type

• Build Test Program Item Type

6.2.2.3.20 Build C Preprocessor Option
The value shall be a string. It shall be an option for the C preprocessor. The options are used
to preprocess the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build BSP Item Type

• Build Library Item Type

• Build Objects Item Type

• Build Script Item Type

• Build Start File Item Type

• Build Test Program Item Type

6.2.2.3.21 Build C++ Compiler Option
The value shall be a string. It shall be an option for the C++ compiler. The options are used
to compile the sources of this item. The options defined by this attribute succeed the options
presented to the item by the build item context.

This type is used by the following types:

• Build Library Item Type

• Build Objects Item Type

• Build Option C++ Compiler Check Action

© 2019, 2020, 2021 embedded brains GmbH 136

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Build Script Item Type

• Build Test Program Item Type

6.2.2.3.22 Build Dependency Link Role
This type refines the Link through the role attribute if the value is build-dependency. It defines
the build dependency role of links.

6.2.2.3.23 Build Include Path
The value shall be a string. It shall be a path to header files. The path is used by the C
preprocessor to search for header files. It succeeds the includes presented to the item by the
build item context. For an Build Group Item Type item the includes are visible to all items
referenced by the group item. For Build BSP Item Type, Build Objects Item Type, Build Library
Item Type, Build Start File Item Type, and Build Test Program Item Type items the includes are
only visible to the sources specified by the item itself and they do not propagate to referenced
items.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build BSP Item Type

• Build Group Item Type

• Build Library Item Type

• Build Objects Item Type

• Build Script Item Type

• Build Start File Item Type

• Build Test Program Item Type

6.2.2.3.24 Build Install Directive
This set of attributes specifies files installed by a build item. All explicit attributes shall be
specified. The explicit attributes for this type are:

destination The attribute value shall be a string. It shall be the install destination directory.

source The attribute value shall be a list of strings. It shall be the list of source files to be
installed in the destination directory. The path to a source file shall be relative to the
directory of the wscript.

This type is used by the following types:

• Build BSP Item Type

• Build Group Item Type

© 2019, 2020, 2021 embedded brains GmbH 137

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Build Library Item Type

• Build Objects Item Type

6.2.2.3.25 Build Install Path
A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the installation path of a Build Target.

This type is used by the following types:

• Build Configuration File Item Type

• Build Configuration Header Item Type

• Build Library Item Type

• Build Start File Item Type

6.2.2.3.26 Build Link Static Library Directive
The value shall be a string. It shall be an external static library identifier. The library is used
to link programs referenced by this item, e.g. m for libm.a. The library is added to the build
command through the stlib attribute. It shall not be used for internal static libraries. Internal
static libraries shall be specified through the use-after and use-before attributes to enable a
proper build dependency tracking.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build Script Item Type

• Build Test Program Item Type

6.2.2.3.27 Build Linker Option
The value shall be a string. It shall be an option for the linker. The options are used to link
executables. The options defined by this attribute succeed the options presented to the item by
the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build Script Item Type

• Build Test Program Item Type

© 2019, 2020, 2021 embedded brains GmbH 138

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.28 Build Option Action
This set of attributes specifies a build option action. Exactly one of the explicit attributes shall
be specified. The explicit attributes for this type are:

append-test-cppflags The attribute value shall be a string. It shall be the name of a test pro-
gram. The action appends the action value to the CPPFLAGS of the test program. The
name shall correspond to the name of a Build Test Program Item Type item. Due to the
processing order of items, there is no way to check if the name specified by the attribute
value is valid.

assert-aligned The attribute value shall be an integer number. The action asserts that the
action value is aligned according to the attribute value.

assert-eq The attribute value shall be a Boolean or Integer or String. The action asserts that the
action value is equal to the attribute value.

assert-ge The attribute value shall be an Integer or String. The action asserts that the action
value is greater than or equal to the attribute value.

assert-gt The attribute value shall be an Integer or String. The action asserts that the action
value is greater than the attribute value.

assert-int16 The attribute shall have no value. The action asserts that the action value is a
valid signed 16-bit integer.

assert-int32 The attribute shall have no value. The action asserts that the action value is a
valid signed 32-bit integer.

assert-int64 The attribute shall have no value. The action asserts that the action value is a
valid signed 64-bit integer.

assert-int8 The attribute shall have no value. The action asserts that the action value is a valid
signed 8-bit integer.

assert-le The attribute value shall be an Integer or String. The action asserts that the action
value is less than or equal to the attribute value.

assert-lt The attribute value shall be an Integer or String. The action asserts that the action
value is less than the attribute value.

assert-ne The attribute value shall be a Boolean or Integer or String. The action asserts that the
action value is not equal to the attribute value.

assert-power-of-two The attribute shall have no value. The action asserts that the action value
is a power of two.

assert-uint16 The attribute shall have no value. The action asserts that the action value is a
valid unsigned 16-bit integer.

assert-uint32 The attribute shall have no value. The action asserts that the action value is a
valid unsigned 32-bit integer.

assert-uint64 The attribute shall have no value. The action asserts that the action value is a
valid unsigned 64-bit integer.

© 2019, 2020, 2021 embedded brains GmbH 139

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

assert-uint8 The attribute shall have no value. The action asserts that the action value is a
valid unsigned 8-bit integer.

check-cc The attribute value shall be a Build Option C Compiler Check Action.

check-cxx The attribute value shall be a Build Option C++ Compiler Check Action.

define The attribute value shall be an optional string. The action adds a define to the config-
uration set. If the attribute value is present, then it is used as the name of the define,
otherwise the name of the item is used. The value of the define is the action value. If the
action value is a string, then it is quoted.

define-condition The attribute value shall be an optional string. The action adds a conditional
define to the configuration set. If the attribute value is present, then it is used as the name
of the define, otherwise the name of the item is used. The value of the define is the action
value.

define-unquoted The attribute value shall be an optional string. The action adds a define to
the configuration set. If the attribute value is present, then it is used as the name of the
define, otherwise the name of the item is used. The value of the define is the action value.
If the action value is a string, then it is not quoted.

env-append The attribute value shall be an optional string. The action appends the action
value to an environment of the configuration set. If the attribute value is present, then it
is used as the name of the environment variable, otherwise the name of the item is used.

env-assign The attribute value shall be an optional string. The action assigns the action value
to an environment of the configuration set. If the attribute value is present, then it is used
as the name of the environment variable, otherwise the name of the item is used.

env-enable The attribute value shall be an optional string. If the action value is true, then
a name is appended to the ENABLE environment variable of the configuration set. If the
attribute value is present, then it is used as the name, otherwise the name of the item is
used.

find-program The attribute shall have no value. The action tries to find the program specified
by the action value. Uses the ${PATH} to find the program. Returns the result of the find
operation, e.g. a path to the program.

find-tool The attribute shall have no value. The action tries to find the tool specified by the
action value. Uses the tool paths specified by the --rtems-tools command line option.
Returns the result of the find operation, e.g. a path to the program.

format-and-define The attribute value shall be an optional string. The action adds a define to
the configuration set. If the attribute value is present, then it is used as the name of the
define, otherwise the name of the item is used. The value of the define is the action value.
The value is formatted according to the format attribute value.

get-boolean The attribute shall have no value. The action gets the action value for subse-
quent actions from a configuration file variable named by the items name attribute. If no
such variable exists in the configuration file, then the default value is used. The value is
converted to a boolean.

get-env The attribute value shall be a string. The action gets the action value for subsequent
actions from the environment variable of the configuration set named by the attribute
value.

© 2019, 2020, 2021 embedded brains GmbH 140

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

get-integer The attribute shall have no value. The action gets the action value for subsequent
actions from a configuration file variable named by the items name attribute. If no such
variable exists in the configuration file, then the default value is used. The value is con-
verted to an integer.

get-string The attribute shall have no value. The action gets the action value for subsequent
actions from a configuration file variable named by the items name attribute. If no such
variable exists in the configuration file, then the default value is used. The value is con-
verted to a string.

script The attribute value shall be a string. The action executes the attribute value with the
Python eval() function in the context of the script action handler.

set-test-state The attribute value shall be a Build Option Set Test State Action.

set-value The attribute value shall be a Build Option Value. The action sets the action value for
subsequent actions to the attribute value.

split The attribute shall have no value. The action splits the action value.

substitute The attribute shall have no value. The action performs a ${VARIABLE} substitution
on the action value. Use $$ for a plain $ character.

This type is used by the following types:

• Build Option Item Type

6.2.2.3.29 Build Option C Compiler Check Action
This set of attributes specifies a check done using the C compiler. All explicit attributes shall be
specified. The explicit attributes for this type are:

cflags The attribute value shall be a list. Each list element shall be a Build C Compiler Option.

fragment The attribute value shall be a string. It shall be a code fragment used to check the
availability of a certain feature through compilation with the C compiler. The resulting
object is not linked to an executable.

message The attribute value shall be a string. It shall be a description of the feature to check.

This type is used by the following types:

• Build Option Action

6.2.2.3.30 Build Option C++ Compiler Check Action
This set of attributes specifies a check done using the C++ compiler. All explicit attributes shall
be specified. The explicit attributes for this type are:

cxxflags The attribute value shall be a list. Each list element shall be a Build C++ Compiler
Option.

fragment The attribute value shall be a string. It shall be a code fragment used to check the
availability of a certain feature through compilation with the C++ compiler. The resulting
object is not linked to an executable.

© 2019, 2020, 2021 embedded brains GmbH 141

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

message The attribute value shall be a string. It shall be a description of the feature to check.

This type is used by the following types:

• Build Option Action

6.2.2.3.31 Build Option Default by Variant
This set of attributes specifies build option default values by variant. All explicit attributes shall
be specified. The explicit attributes for this type are:

value The attribute value shall be a Build Option Value. It value shall be the default value for
the matching variants.

variants The attribute value shall be a list of strings. It shall be a list of Python regular expres-
sion matching with the desired variants.

This type is used by the following types:

• Build Option Item Type

6.2.2.3.32 Build Option Name
The value shall be a string. It shall be the name of the build option. The value shall match with
the regular expression “^[a-zA-Z_][a-zA-Z0-9_]*$”.

This type is used by the following types:

• Build Option Item Type

6.2.2.3.33 Build Option Set Test State Action
This set of attributes specifies test states for a set of test programs. Generic attributes may be
specified. Each generic attribute key shall be a Name. Each generic attribute value shall be
a Build Test State. The keys shall be test program names. The names shall correspond to the
name of a Build Test Program Item Type or Build Ada Test Program Item Type item. Due to the
processing order of items, there is no way to check if the name specified by the attribute key is
valid.

This type is used by the following types:

• Build Option Action

© 2019, 2020, 2021 embedded brains GmbH 142

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.34 Build Option Value
A value of this type shall be of one of the following variants:

• The value may be a boolean.

• The value may be an integer number.

• The value may be a list. Each list element shall be a string.

• There may by be no value (null).

• The value may be a string.

This type is used by the following types:

• Build Option Action

• Build Option Default by Variant

• Build Option Item Type

6.2.2.3.35 Build Source
The value shall be a string. It shall be a source file. The path to a source file shall be relative to
the directory of the wscript.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build BSP Item Type

• Build Library Item Type

• Build Objects Item Type

• Build Start File Item Type

• Build Test Program Item Type

6.2.2.3.36 Build Target
The value shall be a string. It shall be the target file path. The path to the target file shall be
relative to the directory of the wscript. The target file is located in the build tree.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build Configuration File Item Type

• Build Configuration Header Item Type

• Build Library Item Type

• Build Start File Item Type

© 2019, 2020, 2021 embedded brains GmbH 143

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Build Test Program Item Type

6.2.2.3.37 Build Test State
The value shall be a string. This string defines a test state. The value shall be an element of

• “benchmark”,

• “exclude”,

• “expected-fail”,

• “indeterminate”, and

• “user-input”.

This type is used by the following types:

• Build Option Set Test State Action

6.2.2.3.38 Build Use After Directive
The value shall be a string. It shall be an internal static library identifier. The library is used
to link programs referenced by this item, e.g. z for libz.a. The library is placed after the use
items of the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build Group Item Type

• Build Script Item Type

• Build Test Program Item Type

6.2.2.3.39 Build Use Before Directive
The value shall be a string. It shall be an internal static library identifier. The library is used to
link programs referenced by this item, e.g. z for libz.a. The library is placed before the use
items of the build item context.

This type is used by the following types:

• Build Ada Test Program Item Type

• Build Group Item Type

• Build Script Item Type

• Build Test Program Item Type

© 2019, 2020, 2021 embedded brains GmbH 144

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.40 Constraint Link Role
This type refines the Link through the role attribute if the value is constraint. It defines the
constraint role of links. The link target shall be a constraint.

6.2.2.3.41 Copyright
The value shall be a string. It shall be a copyright statement of a copyright holder of the
specification item. The value

• shall match with the regular expression “^\s*Copyright\s+\(C\)\s+[0-9]+,\s*[0-9]+\
s+.+\s*$”,

• or, shall match with the regular expression “^\s*Copyright\s+\(C\)\s+[0-9]+\s+.+\
s*$”,

• or, shall match with the regular expression “^\s*Copyright\s+\(C\)\s+.+\s*$”.

This type is used by the following types:

• Root Item Type

6.2.2.3.42 Enabled-By Expression
A value of this type shall be an expression which defines under which conditions the specifica-
tion item or parts of it are enabled. The expression is evaluated with the use of an enabled set.
This is a set of strings which indicate enabled features.

A value of this type shall be of one of the following variants:

• The value may be a boolean. This expression evaluates directly to the boolean value.

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and The attribute value shall be a list. Each list element shall be an Enabled-By Expres-
sion. The and operator evaluates to the logical and of the evaluation results of the
expressions in the list.

not The attribute value shall be an Enabled-By Expression. The not operator evaluates to
the logical not of the evaluation results of the expression.

or The attribute value shall be a list. Each list element shall be an Enabled-By Expression.
The or operator evaluates to the logical or of the evaluation results of the expressions
in the list.

• The value may be a list. Each list element shall be an Enabled-By Expression. This list of
expressions evaluates to the logical or of the evaluation results of the expressions in the
list.

• The value may be a string. If the value is in the enabled set, this expression evaluates to
true, otherwise to false.

This type is used by the following types:

© 2019, 2020, 2021 embedded brains GmbH 145

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Action Requirement Transition

• Enabled-By Expression

• Interface Include Link Role

• Root Item Type

Please have a look at the following example:

enabled-by:
and:
- RTEMS_NETWORKING
- not: RTEMS_SMP

6.2.2.3.43 Glossary Membership Link Role
This type refines the Link through the role attribute if the value is glossary-member. It defines
the glossary membership role of links.

6.2.2.3.44 Integer or String
A value of this type shall be of one of the following variants:

• The value may be an integer number.

• The value may be a string.

This type is used by the following types:

• Application Configuration Value Option Item Type

• Build Option Action

6.2.2.3.45 Interface Brief Description
A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the brief description of the interface. It should be a
single sentence. The value shall not match with the regular expression “\n\n”.

This type is used by the following types:

• Interface Compound Item Type

• Interface Compound Member Definition

• Interface Define Item Type

• Interface Enum Item Type

• Interface Enumerator Item Type

• Interface Function Item Type

© 2019, 2020, 2021 embedded brains GmbH 146

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Interface Group Item Type

• Interface Header File Item Type

• Interface Macro Item Type

• Interface Typedef Item Type

• Interface Variable Item Type

6.2.2.3.46 Interface Compound Definition Kind
The value shall be a string. It specifies how the interface compound is defined. It may be a
typedef only, the struct or union only, or a typedef with a struct or union definition. The value
shall be an element of

• “struct-only”,

• “typedef-and-struct”,

• “typedef-and-union”,

• “typedef-only”, and

• “union-only”.

This type is used by the following types:

• Interface Compound Item Type

6.2.2.3.47 Interface Compound Member Compound
This type refines the following types:

• Interface Compound Member Definition through the kind attribute if the value is struct

• Interface Compound Member Definition through the kind attribute if the value is union

This set of attributes specifies an interface compound member compound. All explicit attributes
shall be specified. The explicit attributes for this type are:

definition The attribute value shall be a list. Each list element shall be an Interface Compound
Member Definition Directive.

6.2.2.3.48 Interface Compound Member Declaration
This type refines the Interface Compound Member Definition through the kind attribute if the
value is member. This set of attributes specifies an interface compound member declaration. All
explicit attributes shall be specified. The explicit attributes for this type are:

definition The attribute value shall be a string. It shall be the interface compound member
declaration. On the declaration a context-sensitive substitution of item variables is per-
formed.

© 2019, 2020, 2021 embedded brains GmbH 147

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.49 Interface Compound Member Definition
This set of attributes specifies an interface compound member definition. All explicit attributes
shall be specified. The explicit attributes for this type are:

brief The attribute value shall be an Interface Brief Description.

description The attribute value shall be an Interface Description.

kind The attribute value shall be a string. It shall be the interface compound member kind.

name The attribute value shall be a string. It shall be the interface compound member name.

This type is refined by the following types:

• Interface Compound Member Compound

• Interface Compound Member Declaration

This type is used by the following types:

• Interface Compound Member Definition Directive

• Interface Compound Member Definition Variant

6.2.2.3.50 Interface Compound Member Definition Directive
This set of attributes specifies an interface compound member definition directive. All explicit
attributes shall be specified. The explicit attributes for this type are:

default The attribute value shall be an Interface Compound Member Definition. The default
definition will be used if no variant-specific definition is enabled.

variants The attribute value shall be a list. Each list element shall be an Interface Compound
Member Definition Variant.

This type is used by the following types:

• Interface Compound Item Type

• Interface Compound Member Compound

6.2.2.3.51 Interface Compound Member Definition Variant
This set of attributes specifies an interface compound member definition variant. All explicit
attributes shall be specified. The explicit attributes for this type are:

definition The attribute value shall be an Interface Compound Member Definition. The definition
will be used if the expression defined by the enabled-by attribute evaluates to true. In
generated header files, the expression is evaluated by the C preprocessor.

enabled-by The attribute value shall be an Interface Enabled-By Expression.

This type is used by the following types:

• Interface Compound Member Definition Directive

© 2019, 2020, 2021 embedded brains GmbH 148

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.52 Interface Definition
A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the definition. On the definition a context-sensitive
substitution of item variables is performed.

This type is used by the following types:

• Interface Definition Directive

• Interface Definition Variant

6.2.2.3.53 Interface Definition Directive
This set of attributes specifies an interface definition directive. All explicit attributes shall be
specified. The explicit attributes for this type are:

default The attribute value shall be an Interface Definition. The default definition will be used
if no variant-specific definition is enabled.

variants The attribute value shall be a list. Each list element shall be an Interface Definition
Variant.

This type is used by the following types:

• Interface Define Item Type

• Interface Enumerator Item Type

• Interface Macro Item Type

• Interface Typedef Item Type

• Interface Variable Item Type

6.2.2.3.54 Interface Definition Variant
This set of attributes specifies an interface definition variant. All explicit attributes shall be
specified. The explicit attributes for this type are:

definition The attribute value shall be an Interface Definition. The definition will be used if
the expression defined by the enabled-by attribute evaluates to true. In generated header
files, the expression is evaluated by the C preprocessor.

enabled-by The attribute value shall be an Interface Enabled-By Expression.

This type is used by the following types:

• Interface Definition Directive

© 2019, 2020, 2021 embedded brains GmbH 149

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.55 Interface Description
A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the description of the interface. The description
should be short and concentrate on the average case. All special cases, usage notes,
constraints, error conditions, configuration dependencies, references, etc. should be de-
scribed in the Interface Notes.

This type is used by the following types:

• Application Configuration Option Item Type

• Interface Compound Item Type

• Interface Compound Member Definition

• Interface Define Item Type

• Interface Enum Item Type

• Interface Enumerator Item Type

• Interface Function Item Type

• Interface Group Item Type

• Interface Macro Item Type

• Interface Parameter

• Interface Return Value

• Interface Typedef Item Type

• Interface Variable Item Type

6.2.2.3.56 Interface Enabled-By Expression
A value of this type shall be an expression which defines under which conditions an interface
definition is enabled. In generated header files, the expression is evaluated by the C preproces-
sor.

A value of this type shall be of one of the following variants:

• The value may be a boolean. It is converted to 0 or 1. It defines a symbol in the expression.

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and The attribute value shall be a list. Each list element shall be an Interface Enabled-By
Expression. The and operator defines a logical and of the expressions in the list.

not The attribute value shall be an Interface Enabled-By Expression. The not operator
defines a logical not of the expression.

© 2019, 2020, 2021 embedded brains GmbH 150

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

or The attribute value shall be a list. Each list element shall be an Interface Enabled-By
Expression. The or operator defines a logical or of the expressions in the list.

• The value may be a list. Each list element shall be an Interface Enabled-By Expression. It
defines a logical or of the expressions in the list.

• The value may be a string. It defines a symbol in the expression.

This type is used by the following types:

• Interface Compound Member Definition Variant

• Interface Definition Variant

• Interface Enabled-By Expression

• Interface Function Definition Variant

6.2.2.3.57 Interface Enum Definition Kind
The value shall be a string. It specifies how the enum is defined. It may be a typedef only, the
enum only, or a typedef with an enum definition. The value shall be an element of

• “enum-only”,

• “typedef-and-enum”, and

• “typedef-only”.

This type is used by the following types:

• Interface Enum Item Type

6.2.2.3.58 Interface Enumerator Link Role
This type refines the Link through the role attribute if the value is interface-enumerator. It
defines the interface enumerator role of links.

6.2.2.3.59 Interface Function Definition
This set of attributes specifies a function definition. All explicit attributes shall be specified. The
explicit attributes for this type are:

attributes The attribute value shall be an optional string. If the value is present, then it shall be
the function attributes. On the attributes a context-sensitive substitution of item variables
is performed. A function attribute is for example the indication that the function does not
return to the caller.

body The attribute value shall be an optional string. If the value is present, then it shall be
the definition of a static inline function. On the function definition a context-sensitive
substitution of item variables is performed. If no value is present, then the function is
declared as an external function.

© 2019, 2020, 2021 embedded brains GmbH 151

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

params The attribute value shall be a list of strings. It shall be the list of parameter declarations
of the function. On the function parameter declarations a context-sensitive substitution
of item variables is performed.

return The attribute value shall be a string. It shall be the function return type. On the return
type a context-sensitive substitution of item variables is performed.

This type is used by the following types:

• Interface Function Definition Directive

• Interface Function Definition Variant

6.2.2.3.60 Interface Function Definition Directive
This set of attributes specifies a function definition directive. All explicit attributes shall be
specified. The explicit attributes for this type are:

default The attribute value shall be an Interface Function Definition. The default definition will
be used if no variant-specific definition is enabled.

variants The attribute value shall be a list. Each list element shall be an Interface Function
Definition Variant.

This type is used by the following types:

• Interface Function Item Type

6.2.2.3.61 Interface Function Definition Variant
This set of attributes specifies a function definition variant. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

definition The attribute value shall be an Interface Function Definition. The definition will be
used if the expression defined by the enabled-by attribute evaluates to true. In generated
header files, the expression is evaluated by the C preprocessor.

enabled-by The attribute value shall be an Interface Enabled-By Expression.

This type is used by the following types:

• Interface Function Definition Directive

6.2.2.3.62 Interface Function Link Role
This type refines the Link through the role attribute if the value is interface-function. It
defines the interface function role of links. It is used to indicate that a Action Requirement
Item Type item specifies functional requirements of an Interface Function Item Type or a Interface
Macro Item Type item.

© 2019, 2020, 2021 embedded brains GmbH 152

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.63 Interface Group Identifier
The value shall be a string. It shall be the identifier of the interface group. The value shall
match with the regular expression “^[A-Z][a-zA-Z0-9]*$”.

This type is used by the following types:

• Design Group Requirement Item Type

• Interface Group Item Type

6.2.2.3.64 Interface Group Membership Link Role
This type refines the Link through the role attribute if the value is interface-ingroup. It
defines the interface group membership role of links.

6.2.2.3.65 Interface Include Link Role
This type refines the Link through the role attribute if the value is interface-include. It
defines the interface include role of links and is used to indicate that an interface container
includes another interface container. For example, one header file includes another header file.
All explicit attributes shall be specified. The explicit attributes for this type are:

enabled-by The attribute value shall be an Enabled-By Expression. It shall define under which
conditions the interface container is included.

6.2.2.3.66 Interface Notes
A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It shall be the notes for the interface.

This type is used by the following types:

• Application Configuration Option Item Type

• Interface Compound Item Type

• Interface Define Item Type

• Interface Enumerator Item Type

• Interface Function Item Type

• Interface Macro Item Type

• Interface Typedef Item Type

• Interface Variable Item Type

© 2019, 2020, 2021 embedded brains GmbH 153

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.67 Interface Parameter
This set of attributes specifies an interface parameter. All explicit attributes shall be specified.
The explicit attributes for this type are:

description The attribute value shall be an Interface Description.

dir The attribute value shall be an Interface Parameter Direction.

name The attribute value shall be a string. It shall be the interface parameter name.

This type is used by the following types:

• Interface Function Item Type

• Interface Macro Item Type

6.2.2.3.68 Interface Parameter Direction
A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string. It specifies the interface parameter direction. The value shall
be an element of

– “in”,

– “out”, and

– “inout”.

This type is used by the following types:

• Interface Parameter

• Test Run Parameter

6.2.2.3.69 Interface Placement Link Role
This type refines the Link through the role attribute if the value is interface-placement. It
defines the interface placement role of links. It is used to indicate that an interface definition is
placed into an interface container, for example a header file.

6.2.2.3.70 Interface References Set
This set of attributes defines references for the interface. Generic attributes may be specified.
Each generic attribute key shall be a Name. Each generic attribute value shall be a string. The
key defines the reference kind. The value shall be a kind-specific reference target.

This type is used by the following types:

• Interface Unspecified Item Type

© 2019, 2020, 2021 embedded brains GmbH 154

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.71 Interface Return Directive
This set of attributes specifies an interface return. All explicit attributes shall be specified. The
explicit attributes for this type are:

return The attribute value shall be an optional string. It shall describe the interface return for
unspecified return values.

return-values The attribute value shall be a list. Each list element shall be an Interface Return
Value.

This type is used by the following types:

• Interface Function Item Type

• Interface Macro Item Type

6.2.2.3.72 Interface Return Value
This set of attributes specifies an interface return value. All explicit attributes shall be specified.
The explicit attributes for this type are:

description The attribute value shall be an Interface Description.

value The attribute value shall be a Boolean or Integer or String. It shall be the described
interface return value.

This type is used by the following types:

• Interface Return Directive

6.2.2.3.73 Interface Target Link Role
This type refines the Link through the role attribute if the value is interface-target. It defines
the interface target role of links. It is used for interface forward declarations.

6.2.2.3.74 Link
This set of attributes specifies a link from one specification item to another specification item.
The links in a list are ordered. The first link in the list is processed first. All explicit attributes
shall be specified. The explicit attributes for this type are:

role The attribute value shall be a Name. It shall be the role of the link.

uid The attribute value shall be an UID. It shall be the absolute or relative UID of the link target
item.

This type is refined by the following types:

• Application Configuration Group Member Link Role

• Build Dependency Link Role

• Constraint Link Role

© 2019, 2020, 2021 embedded brains GmbH 155

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Glossary Membership Link Role

• Interface Enumerator Link Role

• Interface Function Link Role

• Interface Group Membership Link Role

• Interface Include Link Role

• Interface Placement Link Role

• Interface Target Link Role

• Placement Order Link Role

• Requirement Refinement Link Role

• Requirement Validation Link Role

• Runtime Measurement Request Link Role

• Specification Member Link Role

• Specification Refinement Link Role

• Unit Test Link Role

This type is used by the following types:

• Root Item Type

• Test Case Action

• Test Case Check

6.2.2.3.75 Name
The value shall be a string. A string is a valid name if it matches with the
^([a-z][a-z0-9-]*|SPDX-License-Identifier)$ regular expression.

This type is used by the following types:

• Application Configuration Option Item Type

• Build Item Type

• Build Option Set Test State Action

• Functional Requirement Item Type

• Glossary Item Type

• Interface Item Type

• Interface References Set

• Link

• Non-Functional Requirement Item Type

• Requirement Item Type

© 2019, 2020, 2021 embedded brains GmbH 156

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Root Item Type

• Runtime Measurement Parameter Set

• Runtime Performance Parameter Set

• Specification Attribute Value

• Specification Explicit Attributes

• Specification Generic Attributes

• Specification Item Type

• Specification List

• Specification Refinement Link Role

6.2.2.3.76 Optional String
A value of this type shall be of one of the following variants:

• There may by be no value (null).

• The value may be a string.

6.2.2.3.77 Placement Order Link Role
This type refines the Link through the role attribute if the value is placement-order. This link
role defines the placement order of items in a container item (for example an interface function
in a header file or a documentation section).

6.2.2.3.78 Requirement Reference
This set of attributes specifies a requirement reference. All explicit attributes shall be specified.
The explicit attributes for this type are:

identifier The attribute value shall be a string. It shall be the type-specific identifier of the
reference target. For group references use the Doxygen group identifier.

type The attribute value shall be a Requirement Reference Type.

This type is used by the following types:

• Requirement Item Type

© 2019, 2020, 2021 embedded brains GmbH 157

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.79 Requirement Reference Type
The value shall be a string. It specifies the type of a requirement reference. The value shall be
an element of

• “define”,

• “file”,

• “function”,

• “group”,

• “macro”, and

• “variable”.

This type is used by the following types:

• Requirement Reference

6.2.2.3.80 Requirement Refinement Link Role
This type refines the Link through the role attribute if the value is requirement-refinement. It
defines the requirement refinement role of links.

6.2.2.3.81 Requirement Text
The value shall be a string. It shall state a requirement or constraint. The value shall not contain
an element of

• “acceptable”,

• “adequate”,

• “almost always”,

• “and/or”,

• “appropriate”,

• “approximately”,

• “as far as possible”,

• “as much as practicable”,

• “best”,

• “best possible”,

• “easy”,

• “efficient”,

• “e.g.”,

• “enable”,

© 2019, 2020, 2021 embedded brains GmbH 158

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• “enough”,

• “etc.”,

• “few”,

• “first rate”,

• “flexible”,

• “generally”,

• “goal”,

• “graceful”,

• “great”,

• “greatest”,

• “ideally”,

• “i.e.”,

• “if possible”,

• “in most cases”,

• “large”,

• “many”,

• “maximize”,

• “minimize”,

• “most”,

• “multiple”,

• “necessary”,

• “numerous”,

• “optimize”,

• “ought to”,

• “probably”,

• “quick”,

• “rapid”,

• “reasonably”,

• “relevant”,

• “robust”,

• “satisfactory”,

• “several”,

• “shall be included but not limited to”,

© 2019, 2020, 2021 embedded brains GmbH 159

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• “simple”,

• “small”,

• “some”,

• “state of the art”,

• “sufficient”,

• “suitable”,

• “support”,

• “systematically”,

• “transparent”,

• “typical”,

• “user friendly”,

• “usually”,

• “versatile”, and

• “when necessary”.

This type is used by the following types:

• Action Requirement State

• Application Configuration Group Item Type

• Constraint Item Type

• Interface Group Item Type

• Requirement Item Type

6.2.2.3.82 Requirement Validation Link Role
This type refines the Link through the role attribute if the value is validation. It defines the
requirement validation role of links.

6.2.2.3.83 Requirement Validation Method
The value shall be a string. This value type characterizes a requirement validation method
(except validation by test). The value shall be an element of

• “by-analysis”,

• “by-inspection”, and

• “by-review-of-design”.

This type is used by the following types:

• Requirement Validation Item Type

© 2019, 2020, 2021 embedded brains GmbH 160

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.84 Runtime Measurement Environment
The value shall be a string. It specifies the runtime measurement environment. The value

• shall be an element of

– “FullCache”,

– “HotCache”, and

– “DirtyCache”,

• or, shall match with the regular expression “^Load/[1-9][0-9]*$”.

This type is used by the following types:

• Runtime Measurement Environment Table

6.2.2.3.85 Runtime Measurement Environment Table
This set of attributes provides runtime performance limits for a set of runtime measurement
environments. Generic attributes may be specified. Each generic attribute key shall be a Runtime
Measurement Environment. Each generic attribute value shall be a Runtime Measurement Value
Table.

This type is used by the following types:

• Runtime Performance Limit Table

6.2.2.3.86 Runtime Measurement Parameter Set
This set of attributes defines parameters of the runtime measurement test case. All explicit
attributes shall be specified. The explicit attributes for this type are:

sample-count The attribute value shall be an integer number. It shall be the sample count of
the runtime measurement context.

In addition to the explicit attributes, generic attributes may be specified. Each generic attribute
key shall be a Name. The attribute value may have any type.

This type is used by the following types:

• Runtime Measurement Test Item Type

© 2019, 2020, 2021 embedded brains GmbH 161

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.87 Runtime Measurement Request Link Role
This type refines the Link through the role attribute if the value is
runtime-measurement-request. It defines the runtime measurement request role of links.
The link target shall be a Runtime Measurement Test Item Type item.

6.2.2.3.88 Runtime Measurement Value Kind
The value shall be a string. It specifies the kind of a runtime measurement value. The value
shall be an element of

• “max-lower-bound”,

• “max-upper-bound”,

• “mean-lower-bound”,

• “mean-upper-bound”,

• “min-lower-bound”, and

• “min-upper-bound”.

This type is used by the following types:

• Runtime Measurement Value Table

6.2.2.3.89 Runtime Measurement Value Table
This set of attributes provides a set of runtime measurement values each of a specified kind.
The unit of the values shall be one second. Generic attributes may be specified. Each generic
attribute key shall be a Runtime Measurement Value Kind. Each generic attribute value shall be
a floating-point number.

This type is used by the following types:

• Runtime Measurement Environment Table

6.2.2.3.90 Runtime Performance Limit Table
This set of attributes provides runtime performance limits for BSP variants specified by "<arch>/
<bsp>" with <arch> being the architecture of the BSP and <bsp> being the base name of the
BSP. Generic attributes may be specified. Each generic attribute key shall be a string. Each
generic attribute value shall be a Runtime Measurement Environment Table.

This type is used by the following types:

• Runtime Performance Requirement Item Type

© 2019, 2020, 2021 embedded brains GmbH 162

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.91 Runtime Performance Parameter Set
This set of attributes defines parameters of the runtime performance requirement. Generic
attributes may be specified. Each generic attribute key shall be a Name. The attribute value
may have any type.

This type is used by the following types:

• Runtime Performance Requirement Item Type

6.2.2.3.92 SPDX License Identifier
The value shall be a string. It defines the license of the item expressed though an SPDX License
Identifier. The value

• shall be equal to “CC-BY-SA-4.0 OR BSD-2-Clause”,

• or, shall be equal to “BSD-2-Clause”,

• or, shall be equal to “CC-BY-SA-4.0”.

This type is used by the following types:

• Root Item Type

6.2.2.3.93 Specification Attribute Set
This set of attributes specifies a set of attributes. The following explicit attributes are manda-
tory:

• attributes

• description

• mandatory-attributes

The explicit attributes for this type are:

attributes The attribute value shall be a Specification Explicit Attributes. It shall specify the
explicit attributes of the attribute set.

description The attribute value shall be an optional string. It shall be the description of the
attribute set.

generic-attributes The attribute value shall be a Specification Generic Attributes. It shall specify
the generic attributes of the attribute set.

mandatory-attributes The attribute value shall be a Specification Mandatory Attributes. It shall
specify the mandatory attributes of the attribute set.

This type is used by the following types:

• Specification Information

© 2019, 2020, 2021 embedded brains GmbH 163

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.94 Specification Attribute Value
This set of attributes specifies an attribute value. All explicit attributes shall be specified. The
explicit attributes for this type are:

description The attribute value shall be an optional string. It shall be the description of the
attribute value.

spec-type The attribute value shall be a Name. It shall be the specification type of the attribute
value.

This type is used by the following types:

• Specification Explicit Attributes

6.2.2.3.95 Specification Boolean Value
This attribute set specifies a boolean value. Only the description attribute is mandatory. The
explicit attributes for this type are:

assert The attribute value shall be a boolean. This optional attribute defines the value con-
straint of the specified boolean value. If the value of the assert attribute is true, then
the value of the specified boolean value shall be true. If the value of the assert attribute
is false, then the value of the specified boolean value shall be false. In case the assert
attribute is not present, then the value of the specified boolean value may be true or false.

description The attribute value shall be an optional string. It shall be the description of the
specified boolean value.

This type is used by the following types:

• Specification Information

6.2.2.3.96 Specification Explicit Attributes
Generic attributes may be specified. Each generic attribute key shall be a Name. Each generic
attribute value shall be a Specification Attribute Value. Each generic attribute specifies an explicit
attribute of the attribute set. The key of the each generic attribute defines the attribute key of
the explicit attribute.

This type is used by the following types:

• Specification Attribute Set

© 2019, 2020, 2021 embedded brains GmbH 164

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.97 Specification Floating-Point Assert
A value of this type shall be an expression which asserts that the floating-point value of the
specified attribute satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and The attribute value shall be a list. Each list element shall be a Specification Floating-
Point Assert. The and operator evaluates to the logical and of the evaluation results
of the expressions in the list.

eq The attribute value shall be a floating-point number. The eq operator evaluates to true,
if the value to check is equal to the value of this attribute, otherwise to false.

ge The attribute value shall be a floating-point number. The ge operator evaluates to true,
if the value to check is greater than or equal to the value of this attribute, otherwise
to false.

gt The attribute value shall be a floating-point number. The gt operator evaluates to true,
if the value to check is greater than the value of this attribute, otherwise to false.

le The attribute value shall be a floating-point number. The le operator evaluates to true,
if the value to check is less than or equal to the value of this attribute, otherwise to
false.

lt The attribute value shall be a floating-point number. The lt operator evaluates to true,
if the value to check is less than the value of this attribute, otherwise to false.

ne The attribute value shall be a floating-point number. The ne operator evaluates to true,
if the value to check is not equal to the value of this attribute, otherwise to false.

not The attribute value shall be a Specification Floating-Point Assert. The not operator
evaluates to the logical not of the evaluation results of the expression.

or The attribute value shall be a list. Each list element shall be a Specification Floating-
Point Assert. The or operator evaluates to the logical or of the evaluation results of
the expressions in the list.

• The value may be a list. Each list element shall be a Specification Floating-Point Assert. This
list of expressions evaluates to the logical or of the evaluation results of the expressions in
the list.

This type is used by the following types:

• Specification Floating-Point Assert

• Specification Floating-Point Value

© 2019, 2020, 2021 embedded brains GmbH 165

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.98 Specification Floating-Point Value
This set of attributes specifies a floating-point value. Only the description attribute is manda-
tory. The explicit attributes for this type are:

assert The attribute value shall be a Specification Floating-Point Assert. This optional attribute
defines the value constraints of the specified floating-point value. In case the assert at-
tribute is not present, then the value of the specified floating-point value may be every
valid floating-point number.

description The attribute value shall be an optional string. It shall be the description of the
specified floating-point value.

This type is used by the following types:

• Specification Information

6.2.2.3.99 Specification Generic Attributes
This set of attributes specifies generic attributes. Generic attributes are attributes which are not
explicitly specified by Specification Explicit Attributes. They are restricted to uniform attribute
key and value types. All explicit attributes shall be specified. The explicit attributes for this type
are:

description The attribute value shall be an optional string. It shall be the description of the
generic attributes.

key-spec-type The attribute value shall be a Name. It shall be the specification type of the
generic attribute keys.

value-spec-type The attribute value shall be a Name. It shall be the specification type of the
generic attribute values.

This type is used by the following types:

• Specification Attribute Set

6.2.2.3.100 Specification Information
This set of attributes specifies attribute values. At least one of the explicit attributes shall be
specified. The explicit attributes for this type are:

bool The attribute value shall be a Specification Boolean Value. It shall specify a boolean value.

dict The attribute value shall be a Specification Attribute Set. It shall specify a set of attributes.

float The attribute value shall be a Specification Floating-Point Value. It shall specify a floating-
point value.

int The attribute value shall be a Specification Integer Value. It shall specify an integer value.

list The attribute value shall be a Specification List. It shall specify a list of attributes or values.

none The attribute shall have no value. It specifies that no value is required.

© 2019, 2020, 2021 embedded brains GmbH 166

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

str The attribute value shall be a Specification String Value. It shall specify a string.

This type is used by the following types:

• Specification Item Type

6.2.2.3.101 Specification Integer Assert
A value of this type shall be an expression which asserts that the integer value of the specified
attribute satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and The attribute value shall be a list. Each list element shall be a Specification Integer
Assert. The and operator evaluates to the logical and of the evaluation results of the
expressions in the list.

eq The attribute value shall be an integer number. The eq operator evaluates to true, if
the value to check is equal to the value of this attribute, otherwise to false.

ge The attribute value shall be an integer number. The ge operator evaluates to true, if
the value to check is greater than or equal to the value of this attribute, otherwise to
false.

gt The attribute value shall be an integer number. The gt operator evaluates to true, if
the value to check is greater than the value of this attribute, otherwise to false.

le The attribute value shall be an integer number. The le operator evaluates to true, if the
value to check is less than or equal to the value of this attribute, otherwise to false.

lt The attribute value shall be an integer number. The lt operator evaluates to true, if the
value to check is less than the value of this attribute, otherwise to false.

ne The attribute value shall be an integer number. The ne operator evaluates to true, if
the value to check is not equal to the value of this attribute, otherwise to false.

not The attribute value shall be a Specification Integer Assert. The not operator evaluates
to the logical not of the evaluation results of the expression.

or The attribute value shall be a list. Each list element shall be a Specification Integer
Assert. The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

• The value may be a list. Each list element shall be a Specification Integer Assert. This list
of expressions evaluates to the logical or of the evaluation results of the expressions in the
list.

This type is used by the following types:

• Specification Integer Assert

• Specification Integer Value

© 2019, 2020, 2021 embedded brains GmbH 167

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.102 Specification Integer Value
This set of attributes specifies an integer value. Only the description attribute is mandatory.
The explicit attributes for this type are:

assert The attribute value shall be a Specification Integer Assert. This optional attribute defines
the value constraints of the specified integer value. In case the assert attribute is not
present, then the value of the specified integer value may be every valid integer number.

description The attribute value shall be an optional string. It shall be the description of the
specified integer value.

This type is used by the following types:

• Specification Information

6.2.2.3.103 Specification List
This set of attributes specifies a list of attributes or values. All explicit attributes shall be speci-
fied. The explicit attributes for this type are:

description The attribute value shall be an optional string. It shall be the description of the
list.

spec-type The attribute value shall be a Name. It shall be the specification type of elements of
the list.

This type is used by the following types:

• Specification Information

6.2.2.3.104 Specification Mandatory Attributes
It defines which explicit attributes are mandatory.

A value of this type shall be of one of the following variants:

• The value may be a list. Each list element shall be a Name. The list defines the mandatory
attributes through their key names.

• The value may be a string. It defines how many explicit attributes are mandatory. If none
is used, then none of the explicit attributes is mandatory, they are all optional. The value
shall be an element of

– “all”,

– “at-least-one”,

– “at-most-one”,

– “exactly-one”, and

– “none”.

This type is used by the following types:

© 2019, 2020, 2021 embedded brains GmbH 168

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Specification Attribute Set

6.2.2.3.105 Specification Member Link Role
This type refines the Link through the role attribute if the value is spec-member. It defines the
specification membership role of links.

6.2.2.3.106 Specification Refinement Link Role
This type refines the Link through the role attribute if the value is spec-refinement. It defines
the specification refinement role of links. All explicit attributes shall be specified. The explicit
attributes for this type are:

spec-key The attribute value shall be a Name. It shall be the specification type refinement
attribute key of the specification refinement.

spec-value The attribute value shall be a Name. It shall be the specification type refinement
attribute value of the specification refinement.

6.2.2.3.107 Specification String Assert
A value of this type shall be an expression which asserts that the string of the specified attribute
satisfies the required constraints.

A value of this type shall be of one of the following variants:

• The value may be a set of attributes. Each attribute defines an operator. Exactly one of
the explicit attributes shall be specified. The explicit attributes for this type are:

and The attribute value shall be a list. Each list element shall be a Specification String
Assert. The and operator evaluates to the logical and of the evaluation results of the
expressions in the list.

contains The attribute value shall be a list of strings. The contains operator evaluates to
true, if the string to check converted to lower case with all white space characters
converted to a single space character contains a string of the list of strings of this
attribute, otherwise to false.

eq The attribute value shall be a string. The eq operator evaluates to true, if the string to
check is equal to the value of this attribute, otherwise to false.

ge The attribute value shall be a string. The ge operator evaluates to true, if the string to
check is greater than or equal to the value of this attribute, otherwise to false.

gt The attribute value shall be a string. The gt operator evaluates to true, if the string to
check is greater than the value of this attribute, otherwise to false.

in The attribute value shall be a list of strings. The in operator evaluates to true, if the
string to check is contained in the list of strings of this attribute, otherwise to false.

le The attribute value shall be a string. The le operator evaluates to true, if the string to
check is less than or equal to the value of this attribute, otherwise to false.

© 2019, 2020, 2021 embedded brains GmbH 169

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

lt The attribute value shall be a string. The lt operator evaluates to true, if the string to
check is less than the value of this attribute, otherwise to false.

ne The attribute value shall be a string. The ne operator evaluates to true, if the string to
check is not equal to the value of this attribute, otherwise to false.

not The attribute value shall be a Specification String Assert. The not operator evaluates
to the logical not of the evaluation results of the expression.

or The attribute value shall be a list. Each list element shall be a Specification String
Assert. The or operator evaluates to the logical or of the evaluation results of the
expressions in the list.

re The attribute value shall be a string. The re operator evaluates to true, if the string to
check matches with the regular expression of this attribute, otherwise to false.

uid The attribute shall have no value. The uid operator evaluates to true, if the string is
a valid UID, otherwise to false.

• The value may be a list. Each list element shall be a Specification String Assert. This list of
expressions evaluates to the logical or of the evaluation results of the expressions in the
list.

This type is used by the following types:

• Specification String Assert

• Specification String Value

6.2.2.3.108 Specification String Value
This set of attributes specifies a string. Only the description attribute is mandatory. The explicit
attributes for this type are:

assert The attribute value shall be a Specification String Assert. This optional attribute defines
the constraints of the specified string. In case the assert attribute is not present, then the
specified string may be every valid string.

description The attribute value shall be an optional string. It shall be the description of the
specified string attribute.

This type is used by the following types:

• Specification Information

6.2.2.3.109 Test Case Action
This set of attributes specifies a test case action. All explicit attributes shall be specified. The
explicit attributes for this type are:

action-brief The attribute value shall be an optional string. It shall be the test case action brief
description.

action-code The attribute value shall be a string. It shall be the test case action code.

© 2019, 2020, 2021 embedded brains GmbH 170

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

checks The attribute value shall be a list. Each list element shall be a Test Case Check.

links The attribute value shall be a list. Each list element shall be a Link. The links should
use the Requirement Validation Link Role for validation tests and the Unit Test Link Role for
unit tests.

This type is used by the following types:

• Test Case Item Type

6.2.2.3.110 Test Case Check
This set of attributes specifies a test case check. All explicit attributes shall be specified. The
explicit attributes for this type are:

brief The attribute value shall be an optional string. It shall be the test case check brief descrip-
tion.

code The attribute value shall be a string. It shall be the test case check code.

links The attribute value shall be a list. Each list element shall be a Link. The links should
use the Requirement Validation Link Role for validation tests and the Unit Test Link Role for
unit tests.

This type is used by the following types:

• Test Case Action

6.2.2.3.111 Test Context Member
A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines an action requirement
test context member. All explicit attributes shall be specified. The explicit attributes for
this type are:

brief The attribute value shall be an optional string. It shall be the test context member
brief description.

description The attribute value shall be an optional string. It shall be the test context
member description.

member The attribute value shall be a string. It shall be the test context member defini-
tion. It shall be a valid C structure member definition without a trailing ;.

• There may by be no value (null).

This type is used by the following types:

• Action Requirement Item Type

• Runtime Measurement Test Item Type

• Test Case Item Type

© 2019, 2020, 2021 embedded brains GmbH 171

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.112 Test Header
A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes specifies a test header. In case
a test header is specified, then instead of a test case a test run function will be generated.
The test run function will be declared in the test header target file and defined in the
test source target file. The test run function can be used to compose test cases. The test
header file is not automatically included in the test source file. It should be added to the
includes or local includes of the test. All explicit attributes shall be specified. The explicit
attributes for this type are:

code The attribute value shall be an optional string. If the value is present, then it shall
be the test header code. The header code is placed at file scope after the general test
declarations and before the test run function declaration.

includes The attribute value shall be a list of strings. It shall be a list of header files
included by the header file via #include <...>.

local-includes The attribute value shall be a list of strings. It shall be a list of header files
included by the header file via #include "...".

run-params The attribute value shall be a list. Each list element shall be a Test Run
Parameter.

target The attribute value shall be a string. It shall be the path to the generated test
header file.

• There may by be no value (null).

This type is used by the following types:

• Action Requirement Item Type

• Test Case Item Type

6.2.2.3.113 Test Run Parameter
This set of attributes specifies a parameter for the test run function. In case this parameter is
used in an Action Requirement Item Type item, then the parameter is also added as a member to
the test context, see Test Context Member. All explicit attributes shall be specified. The explicit
attributes for this type are:

description The attribute value shall be a string. It shall be the description of the parameter.

dir The attribute value shall be an Interface Parameter Direction.

name The attribute value shall be a string. It shall be the parameter name.

specifier The attribute value shall be a string. It shall be the complete function parameter
specifier. Use ${.:name} for the parameter name, for example "int ${.:name}".

This type is used by the following types:

• Test Header

© 2019, 2020, 2021 embedded brains GmbH 172

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.2.3.114 Test Support Method
A value of this type shall be of one of the following variants:

• The value may be a set of attributes. This set of attributes defines an action requirement
test support method. All explicit attributes shall be specified. The explicit attributes for
this type are:

brief The attribute value shall be an optional string. It shall be the test support method
brief description.

code The attribute value shall be a string. It shall be the test support method code. The
code may use a local variable ctx which points to the test context, see Test Context
Member.

description The attribute value shall be an optional string. It shall be the test support
method description.

• There may by be no value (null).

This type is used by the following types:

• Action Requirement Item Type

• Runtime Measurement Test Item Type

• Runtime Performance Requirement Item Type

• Test Case Item Type

6.2.2.3.115 UID
The value shall be a string. The string shall be a valid absolute or relative item UID.

This type is used by the following types:

• Link

6.2.2.3.116 Unit Test Link Role
This type refines the Link through the role attribute if the value is unit-test. It defines the
unit test role of links. For unit tests the link target should be the Interface Domain Item Type
containing the software unit. All explicit attributes shall be specified. The explicit attributes for
this type are:

name The attribute value shall be a string. It shall be the name of the tested software unit.

© 2019, 2020, 2021 embedded brains GmbH 173

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.3 Traceability of Specification Items
The standard ECSS-E-ST-10-06C demands that requirements shall be under configuration man-
agement, backwards-traceable and forward-traceable [ECS09a]. Requirements are a specializa-
tion of specification items in RTEMS.

6.2.3.1 History of Specification Items
The RTEMS specification items should placed in the RTEMS sources using Git for version con-
trol. The history of specification items can be traced with Git. Special commit procedures for
changes in specification item files should be established. For example, it should be allowed to
change only one specification item per commit. A dedicated Git commit message format may
be used as well, e.g. use of Approved-by: or Reviewed-by: lines which indicate an agreed state-
ment (similar to the Linux kernel patch submission guidelines). Git commit procedures may be
ensured through a server-side pre-receive hook. The history of requirements may be also added
to the specification items directly in a revision attribute. This would make it possible to generate
the history information for documents without having the Git repository available, e.g. from an
RTEMS source release archive.

6.2.3.2 Backward Traceability of Specification Items
Providing backward traceability of specification items means that we must be able to find the
corresponding higher level specification item for each refined specification item. A custom tool
needs to verify this.

6.2.3.3 Forward Traceability of Specification Items
Providing forward traceability of specification items means that we must be able to find all
the refined specification items for each higher level specification item. A custom tool needs to
verify this. The links from parent to child specification items are implicitly defined by links from
a child item to a parent item.

6.2.3.4 Traceability between Software Requirements, Architecture and Design
The software requirements are implemented in custom YAML files, see Specification Items. The
software architecture and design is written in Doxygen markup. Doxygen markup is used
throughout all header and source files. A Doxygen filter program may be provided to place
Doxygen markup in assembler files. The software architecture is documented via Doxygen
groups. Each Doxygen group name should have a project-specific name and the name should
be unique within the project, e.g. RTEMSTopLevelMidLevelLowLevel. The link from a Doxygen
group to its parent group is realized through the @ingroup special command. The link from a
Doxygen group or software component to the corresponding requirement is realized through a
@satisfy{req} custom command which needs the identifier of the requirement as its one and
only parameter. Only links to parents are explicitly given in the Doxygen markup. The links
from a parent to its children are only implicitly specified via the link from a child to its par-
ent. So, a tool must process all files to get the complete hierarchy of software requirements,

© 2019, 2020, 2021 embedded brains GmbH 174

https://www.kernel.org/doc/html/latest//process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes
http://www.doxygen.nl/manual/custcmd.html

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

architecture and design. Links from a software component to another software component are
realized through automatic Doxygen references or the @ref and @see special commands.

6.2.4 Requirement Management
6.2.4.1 Change Control Board
Working with requirements usually involves a Change Control Board (CCB). The CCB of the
RTEMS Project is the RTEMS developer mailing list.

There are the following actors involved:

• RTEMS users: Everyone using the RTEMS real-time operating system to design, develop
and build an application on top of it.

• RTEMS developers: The persons developing and maintaining RTEMS. They write patches
to add or modify code, requirements, tests and documentation.

• RTEMS maintainers: They are listed in the MAINTAINERS file and have write access to the
project repositories.

Adding and changing requirements follows the normal patch review process. The normal patch
review process is described in the RTEMS User Manual. Reviews and comments may be submit-
ted by anyone, but a maintainer review is required to approve significant changes. In addition
for significant changes, there should be at least one reviewer with a sufficient independence
from the author which proposes a new requirement or a change of an existing requirement.
Working in another company on different projects is sufficiently independent. RTEMS main-
tainers do not know all the details, so they trust in general people with experience on a certain
platform. Sometimes no review comments may appear in a reasonable time frame, then an
implicit agreement to the proposed changes is assumed. Patches can be sent at anytime, so con-
trolling changes in RTEMS requires a permanent involvement on the RTEMS developer mailing
list.

For a qualification of RTEMS according to certain standards, the requirements may be approved
by an RTEMS user. The approval by RTEMS users is not the concern of the RTEMS Project,
however, the RTEMS Project should enable RTEMS users to manage the approval of require-
ments easily. This information may be also used by a independent authority which comes into
play with an Independent Software Verification and Validation (ISVV). It could be used to se-
lect a subset of requirements, e.g. look only at the ones approved by a certain user. RTEMS
users should be able to reference the determinative content of requirements, test procedures,
test cases and justification reports in their own documentation. Changes in the determinative
content should invalidate all references to previous versions.

© 2019, 2020, 2021 embedded brains GmbH 175

https://lists.rtems.org/mailman/listinfo/devel
https://git.rtems.org/rtems/tree/MAINTAINERS
https://docs.rtems.org/branches/master/user/support/contrib.html#patch-review-process

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.4.2 Add a Requirement

© 2019, 2020, 2021 embedded brains GmbH 176

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.4.3 Modify a Requirement

6.2.4.4 Mark a Requirement as Obsolete
Requirements shall be never removed. They shall be marked as obsolete. This ensures that
requirement identifiers are not reused. The procedure to obsolete a requirement is the same as
the one to modify a requirement.

6.2.5 Tooling
6.2.5.1 Tool Requirements
To manage requirements some tool support is helpful. Here is a list of requirements for the tool:

• The tool shall be open source.

• The tool should be actively maintained during the initial phase of the RTEMS requirements
specification.

• The tool shall use plain text storage (no binary formats, no database).

• The tool shall support version control via Git.

© 2019, 2020, 2021 embedded brains GmbH 177

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• The tool should export the requirements in a human readable form using the Sphinx
documentation framework.

• The tool shall support traceability of requirements to items external to the tool.

• The tool shall support traceability between requirements.

• The tool shall support custom requirement attributes.

• The tool should ensure that there are no cyclic dependencies between requirements.

• The tool should provide an export to ReqIF.

6.2.5.2 Tool Evaluation
During an evaluation phase the following tools were considered:

• aNimble

• Doorstop

• OSRMT

• Papyrus

• ProR

• ReqIF Studio

• Requirement Heap

• rmToo

The tools aNimble, OSRMT and Requirement Heap were not selected since they use a database.
The tools Papyrus, ProR and ReqIF are Eclipse based and use complex XML files for data stor-
age. They were difficult to use and lack good documentation/tutorials. The tools rmToo and
Doorstop turned out to be the best candidates to manage requirements in the RTEMS Project.
The Doorstop tool was selected as the first candidate mainly due a recommendation by an
RTEMS user.

6.2.5.3 Best Available Tool - Doorstop
Doorstop is a requirements management tool. It has a modern, object-oriented and well-
structured implementation in Python 3.6 under the LGPLv3 license. It uses a continuous in-
tegration build with style checkers, static analysis, documentation checks, code coverage, unit
test and integration tests. In 2019, the project was actively maintained. Pull requests for minor
improvements and new features were reviewed and integrated within days. Each requirement
is contained in a single file in YAML format. Requirements are organized in documents and can
be linked to each other [BA14].

Doorstop consists of three main parts

• a stateless command line tool doorstop,

• a file format with a pre-defined set of attributes (YAML), and

• a primitive GUI tool (not intended to be used).

© 2019, 2020, 2021 embedded brains GmbH 178

https://sourceforge.net/projects/nimble/
https://github.com/osrmt/osrmt
https://www.eclipse.org/papyrus/
https://www.eclipse.org/rmf/pror/
https://formalmind.com/tools/studio/
https://sourceforge.net/projects/reqheap/
http://rmtoo.florath.net/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For RTEMS, its scope could be extended to manage specifications in general. The primary
reason for a close consideration of Doorstop as the requirements management tool for the
RTEMS Project was its data format which allows a high degree of customization. Doorstop uses
a directed, acyclic graph (DAG) of items. The items are files in YAML format. Each item has a
set of standard attributes (key-value pairs).

The use case for the standard attributes is requirements management. However, Doorstop is
capable to manage custom attributes as well. We will heavily use custom attributes for the
specification items. Enabling Doorstop to effectively use custom attributes was done specifically
for the RTEMS Project in several patch sets which in the end turned out to be not enough to use
Doorstop for the RTEMS Project.

A key feature of Doorstop is the fingerprint of items. For the RTEMS Project, the fingerprint hash
algorithm was changed from MD5 to SHA256. In 2019, it can be considered cryptographically
secure. The fingerprint should cover the normative values of an item, e.g. comments etc. are
not included. The fingerprint would help RTEMS users to track the significant changes in the
requirements (in contrast to all the changes visible in Git). As an example use case, a user may
want to assign a project-specific status to specification items. This can be done with a table
which contains columns for

1. the UID of the item,

2. the fingerprint, and

3. the project-specific status.

Given the source code of RTEMS (which includes the specification items) and this table, it
can be determined which items are unchanged and which have another status (e.g. unknown,
changed, etc.).

After some initial work with Doorstop some issues surfaced (#471). It turned out that Doorstop
is not designed as a library and contains too much policy. This results in a lack of flexibility
required for the RTEMS Project.

1. Its primary use case is requirements management. So, it has some standard attributes
useful in this domain, like derived, header, level, normative, ref, reviewed, and text. How-
ever, we want to use it more generally for specification items and these attributes make
not always sense. Having them in every item is just overhead and may cause confusion.

2. The links cannot have custom attributes, e.g. role, enabled-by. With link-specific attributes
you could have multiple DAGs formed up by the same set of items.

3. Inside a document (directory) items are supposed to have a common type (set of at-
tributes). We would like to store at a hierarchy level also distinct specializations.

4. The verification of the items is quite limited. We need verification with type-based rules.

5. The UIDs in combination with the document hierarchy lead to duplication, e.g. a/b/c/a-
b-c-d.yml. You have the path (a/b/c) also in the file name (a-b-c). You cannot have
relative UIDs in links (e.g. ../parent-req) . The specification items may contain multiple
requirements, e.g. min/max attributes. There is no way to identify them.

6. The links are ordered by Doorstop alphabetically by UID. For some applications, it would
be better to use the order specified by the user. For example, we want to use specification
items for a new build system. Here it is handy if you can express things like this: A is
composed of B and C. Build B before C.

© 2019, 2020, 2021 embedded brains GmbH 179

https://doorstop.readthedocs.io/en/latest/reference/item/
https://doorstop.readthedocs.io/en/latest/reference/item/#reviewed
https://github.com/doorstop-dev/doorstop/issues/471

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.5.4 Custom Requirements Management Tool
No requirements management tool was available that fits the need of the RTEMS Qualification
Project. The decision was to develop a custom requirements management tool written in Python
3.6 or later. The design for it is heavily inspired by Doorstop.

6.2.6 How-To
6.2.6.1 Getting Started
The RTEMS specification items and qualification tools are work in progress. The first step to
work with the RTEMS specification and the corresponding tools is a clone of the following
repository:

git clone git://git.rtems.org/rtems-central.git
git submodule init
git submodule update

The tools need a virtual Python 3 environment. To set it up use:

cd rtems-central
make env

Each time you want to use one of the tools, you have to activate the environment in your shell:

cd rtems-central
. env/bin/activate

6.2.6.2 Application Configuration Options
The application configuration options and groups are maintained by specification items in the
directory spec/if/acfg. Application configuration options are grouped by Application Configu-
ration Group Item Type items which should be stored in files using the spec/if/acfg/group-*.
yml pattern. Each application configuration option shall link to exactly one group item with the
Application Configuration Group Member Link Role. There are four application option item types
available which cover all existing options:

• The feature enable options let the application enable a feature option. If the option is not
defined, then the feature is simply not available or active. There should be no feature-
specific code linked to the application if the option is not defined. Examples are options
which enable a device driver like CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER. These
options are specified by Application Configuration Feature Enable Option Item Type items.

• The feature options let the application enable a specific feature option. If the op-
tion is not defined, then a default feature option is used. Regardless whether the
option is defined or not defined, feature-specific code may be linked to the applica-
tion. Examples are options which disable a feature if the option is defined such as
CONFIGURE_APPLICATION_DISABLE_FILESYSTEM and options which provide a stub imple-
mentation of a feature by default and a full implementation if the option is defined such

© 2019, 2020, 2021 embedded brains GmbH 180

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

as CONFIGURE_IMFS_ENABLE_MKFIFO. These options are specified by Application Configura-
tion Feature Option Item Type items.

• The integer value options let the application define a specific value for a system parameter.
If the option is not defined, then a default value is used for the system parameter. Exam-
ples are options which define the maximum count of objects available for application use
such as CONFIGURE_MAXIMUM_TASKS. These options are specified by Application Configura-
tion Value Option Item Type items.

• The initializer options let the application define a specific initializer for a system parameter.
If the option is not defined, then a default setting is used for the system parameter. An
example option of this type is CONFIGURE_INITIAL_EXTENSIONS. These options are specified
by Application Configuration Value Option Item Type items.

Sphinx documentation sources and header files with Doxygen markup are generated from
the specification items. The descriptions in the items shall use a restricted Sphinx format-
ting. Emphasis via one asterisk (“*”), strong emphasis via two asterisk (“**”), code sam-
ples via blockquotes (“``”), code blocks (“.. code-block:: c”) and lists are allowed. Refer-
ences to interface items are also allowed, for example “${appl-needs-clock-driver:/name}” and
“${../rtems/tasks/create:/name}”. References to other parts of the documentation are possible,
however, they are currently provided by hard-coded tables in rtemsspec/applconfig.py.

6.2.6.2.1 Modify an Existing Group
Search for the group by its section header and edit the specification item file. For example:

$ grep -rl "name: General System Configuration" spec/if/acfg
spec/if/acfg/group-general.yml
$ vi spec/if/acfg/group-general.yml

6.2.6.2.2 Modify an Existing Option
Search for the option by its C preprocessor define name and edit the specification item file. For
example:

$ grep -rl CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER spec/if/acfg
spec/if/acfg/appl-needs-clock-driver.yml
$ vi spec/if/acfg/appl-needs-clock-driver.yml

6.2.6.2.3 Add a New Group
Let new be the UID name part of the new group. Create the file spec/if/acfg/group-new.yml
and provide all attributes for an Application Configuration Group Item Type item. For example:

$ vi spec/if/acfg/group-new.yml

© 2019, 2020, 2021 embedded brains GmbH 181

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.2.6.2.4 Add a New Option
Let my-new-option be the UID name of the option. Create the file if/acfg/my-new-option.yml
and provide all attributes for an appropriate refinement of Application Configuration Option Item
Type. For example:

$ vi spec/if/acfg/my-new-option.yml

6.2.6.2.5 Generate Content after Changes
Once you are done with the modifications of an existing item or the creation of a new item, the
changes need to be propagated to generated source files. This is done by the spec2modules.py
script. Before you call this script, make sure the Git submodules are up-to-date.

$./spec2dmodules.py

The script modifies or creates source files in modules/rtems and modules/rtems-docs. Create
patch sets for these changes just as if these were work done by a human and follow the normal
patch review process described in the RTEMS User Manual. When the changes are integrated,
update the Git submodules and check in the changed items.

6.2.6.3 Glossary Specification
The glossary of terms for the RTEMS Project is defined by Glossary Term Item Type items in the
spec/glossary directory. For a new glossary term add a glossary item to this directory. As the
file name use the term in lower case with all white space and special characters removed or
replaced by alphanumeric characters, for example spec/glossary/magicpower.yml for the term
magic power.

Use ${uid:/attribute} substitutions to reference other parts of the specification.

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by: true
glossary-type: term
links:
- role: glossary-member
uid: ../glossary-general

term: magic power
text: |

Magic power enables a caller to create magic objects using a
${magicwand:/term}.

type: glossary

Define acronyms with the phrase This term is an acronym for *. in the text attribute:

...
term: MP
...

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 182

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

text: |
This term is an acronym for Magic Power.

...

Once you are done with the glossary items, run the script spec2modules.py to generate the
derived documentation content. Send patches for the generated documentation and the speci-
fication to the Developers Mailing List and follow the normal patch review process.

6.2.6.4 Interface Specification
6.2.6.4.1 Specify an API Header File
The RTEMS API header files are specified under spec:/if/rtems/*. Create a subdirectory with
a corresponding name for the API, for example in spec/if/rtems/foo for the foo API. In this
new subdirectory place an Interface Header File Item Type item named header.yml (spec/if/
rtems/foo/header.yml) and populate it with the required attributes.

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by: true
interface-type: header-file
links:
- role: interface-placement
uid: /if/domains/api

path: rtems/rtems/foo.h
prefix: cpukit/include
type: interface

6.2.6.4.2 Specify an API Element
Figure out the corresponding header file item. If it does not exist, see Specify an API Header File.
Place a specialization of an Interface Item Type item into the directory of the header file item,
for example spec/if/rtems/foo/bar.yml for the bar() function. Add the required attributes
for the new interface item. Do not hard code interface names which are used to define the new
interface. Use ${uid-of-interface-item:/name} instead. If the referenced interface is specified
in the same directory, then use a relative UID. Using interface references creates implicit depen-
dencies and helps the header file generator to resolve the interface dependencies and header file
includes for you. Use Interface Unspecified Item Type items for interface dependencies to other
domains such as the C language, the compiler, the implementation, or user-provided defines.
To avoid cyclic dependencies between types you may use an Interface Forward Declaration Item
Type item.

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
brief: Tries to create a magic object and returns it.
copyrights:
- Copyright (C) 2020 embedded brains GmbH (http://www.embedded-brains.de)

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 183

https://lists.rtems.org/mailman/listinfo/devel/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

definition:
default:
body: null
params:
- ${magic-wand:/name} ${.:/params[0]/name}
return: ${magic-type:/name} *

variants: []
description: |
The magic object is created out of nothing with the help of a magic wand.

enabled-by: true
interface-type: function
links:
- role: interface-placement
uid: header

- role: interface-ingroup
uid: /groups/api/classic/foo

name: bar
notes: null
params:
- description: is the magic wand.
dir: null
name: magic_wand

return:
return: Otherwise, the magic object is returned.
return-values:
- description: The caller did not have enough magic power.
value: ${/if/c/null}

type: interface

6.2.6.5 Requirements Depending on Build Configuration Options
Use the enabled-by attribute of items or parts of an item to make it dependent on
build configuration options such as RTEMS_SMP or architecture-specific options such as
CPU_ENABLE_ROBUST_THREAD_DISPATCH, see Enabled-By Expression. With this attribute the speci-
fication can be customized at the level of an item or parts of an item. If the enabled-by attribute
evaluates to false for a particular configuration, then the item or the associated part is disabled
in the specification. The enabled-by attribute acts as a formalized where clause, see recom-
mended requirements syntax.

Please have a look at the following example which specifies the transition map of
rtems_signal_catch():

transition-map:
- enabled-by: true
post-conditions:
Status: Ok
ASRInfo:
- if:

pre-conditions:
Handler: Valid

then: New

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 184

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

- else: Inactive
pre-conditions:
Pending: all
Handler: all
Preempt: all
Timeslice: all
ASR: all
IntLvl: all

- enabled-by: CPU_ENABLE_ROBUST_THREAD_DISPATCH
post-conditions:
Status: NotImplIntLvl
ASRInfo: NopIntLvl

pre-conditions:
Pending: all
Handler:
- Valid
Preempt: all
Timeslice: all
ASR: all
IntLvl:
- Positive

- enabled-by: RTEMS_SMP
post-conditions:
Status: NotImplNoPreempt
ASRInfo: NopNoPreempt

pre-conditions:
Pending: all
Handler:
- Valid
Preempt:
- 'No'
Timeslice: all
ASR: all
IntLvl: all

6.2.6.6 Requirements Depending on Application Configuration Options
Requirements which depend on application configuration options such as
CONFIGURE_MAXIMUM_PROCESSORS should be written in the following syntax:

Where <feature is included>, the <system name> shall <system response>.

Use these clauses with care. Make sure all feature combinations are covered. Using a truth table
may help. If a requirement depends on multiple features, use:

Where <feature 0>, where <feature 1>, where <feature . . . >, the <system
name> shall <system response>.

For application configuration options, use the clauses like this:

CONFIGURE_MAXIMUM_PROCESSORS equal to one

Where the system was configured with a processor maximum of exactly one, . . .

© 2019, 2020, 2021 embedded brains GmbH 185

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CONFIGURE_MAXIMUM_PROCESSORS greater than one

Where the system was configured with a processor maximum greater than one, . . .

Please have a look at the following example used to specify rtems_signal_catch(). The exam-
ple is a post-condition state specification of an action requirement, so there is an implicit set of
pre-conditions and the trigger:

While <pre-condition(s)>, when rtems_signal_catch() is called, . . .

The where clauses should be mentally placed before the while clauses.

post-conditions:
- name: ASRInfo
states:
- name: NopNoPreempt
test-code: |
if (rtems_configuration_get_maximum_processors() > 1) {
CheckNoASRChange(ctx);

} else {
CheckNewASRSettings(ctx);

}
text: |

Where the scheduler does not support the no-preempt mode, the ASR
information of the caller of ${../if/catch:/name} shall not be
changed by the ${../if/catch:/name} call.

Where the scheduler does support the no-preempt mode, the ASR
processing for the caller of ${../if/catch:/name} shall be done using
the handler specified by ${../if/catch:/params[0]/name} in the mode
specified by ${../if/catch:/params[1]/name}.

6.2.6.7 Action Requirements
Action Requirement Item Type items may be used to specify and validate directive calls. They are
a generator for event-driven requirements. Event-driven requirements should be written in the
following syntax:

While <pre-condition 0>, while <pre-condition 1>, . . . , while <pre-condition
n>, when <trigger>, the <system name> shall <system response>.

The list of while <pre-condition i> clauses for i from 1 to n in the EARS notation is generated
by n pre-condition states in the action requirement item, see the pre-condition attribute in the
Action Requirement Item Type.

The <trigger> in the EARS notation is defined for an action requirement item by the link to
an Interface Function Item Type or an Interface Macro Item Type item using the Interface Function
Link Role. The code provided by the test-action attribute defines the action code which should
invoke the trigger directive in a particular set of pre-condition states.

Each post-condition state of the action requirement item generates a <system name> shall
<system response> clause in the EARS notation, see the post-condition attribute in the Action
Requirement Item Type.

© 2019, 2020, 2021 embedded brains GmbH 186

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Each entry in the transition map is an event-driven requirement composed of the pre-condition
states, the trigger defined by the link to a directive, and the post-condition states. The transition
map is defined by a list of Action Requirement Transition descriptors.

Use CamelCase for the pre-condition names, post-condition names, and state names in action
requirement items. The more conditions a directive has, the shorter should be the names. The
transition map may be documented as a table and more conditions need more table columns.
Use item attribute references in the text attributes. This allows context-sensitive substitutions.

6.2.6.7.1 Example
Lets have a look at an example of an action requirement item. We would like to specify and
validate the behaviour of the

rtems_status_code rtems_timer_create(rtems_name name, rtems_id *id);

directive which is particularly simple. For a more complex example see the specification of
rtems_signal_catch() or rtems_signal_send() in spec:/rtems/signal/req/catch or spec:/
rtems/signal/send respectively.

The event triggers are calls to rtems_timer_create(). Firstly, we need the list of pre-conditions
relevant to this directive. Good candidates are the directive parameters, this gives us the Name
and Id conditions. A system condition is if an inactive timer object is available so that we can
create a timer, this gives us the Free condition. Secondly, we need the list of post-conditions
relevant to this directive. They are the return status of the directive, Status, the validity of a
unique object name, Name, and the value of an object identifier variable, IdVar. Each condition
has a set of states, see the YAML data below for the details. The specified conditions and states
yield the following transition map:

Entry Descriptor Name Id Free Status Name IdVar
0 0 Valid Valid Yes Ok Valid Set
1 0 Valid Valid No TooMany Invalid Nop
2 0 Valid Null Yes InvAddr Invalid Nop
3 0 Valid Null No InvAddr Invalid Nop
4 0 Invalid Valid Yes InvName Invalid Nop
5 0 Invalid Valid No InvName Invalid Nop
6 0 Invalid Null Yes InvName Invalid Nop
7 0 Invalid Null No InvName Invalid Nop

Not all transition maps are that small, the transition map of rtems_task_mode() has more than
8000 entries. We can construct requirements from the clauses of the entries. For example,
the three requirements of entry 0 (Name=Valid, Id=Valid, and Free=Yes results in Status=Ok,
Name=Valid, and IdVar=Set) are:

While the name parameter is valid, while the id parameter references an object of
type rtems_id, while the system has at least one inactive timer object available,
when rtems_timer_create() is called, the return status of rtems_timer_create() shall
be RTEMS_SUCCESSFUL.

While the name parameter is valid, while the id parameter references an object of

© 2019, 2020, 2021 embedded brains GmbH 187

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

type rtems_id, while the system has at least one inactive timer object available,
when rtems_timer_create() is called, the unique object name shall identify the timer
created by the rtems_timer_create() call.

While the name parameter is valid, while the id parameter references an object of
type rtems_id, while the system has at least one inactive timer object available,
when rtems_timer_create() is called, the value of the object referenced by the id
parameter shall be set to the object identifier of the created timer after the return of
the rtems_timer_create() call.

Now we will have a look at the specification item line by line. The top-level attributes are
normally in alphabetical order in an item file. For this presentation we use a structured order.

SPDX-License-Identifier: CC-BY-SA-4.0 OR BSD-2-Clause
copyrights:
- Copyright (C) 2021 embedded brains GmbH (http://www.embedded-brains.de)
enabled-by: true
functional-type: action
rationale: null
references: []
requirement-type: functional

The specification items need a bit of boilerplate to tell you what they are, who wrote them, and
what their license is.

text: ${.:text-template}

Each requirement item needs a text attribute. For the action requirements, we do not have a
single requirement. There is just a template indicator and no plain text. Several event-driven
requirements are defined by the pre-conditions, the trigger, and the post-conditions.

pre-conditions:
- name: Name
states:
- name: Valid
test-code: |
ctx->name = NAME;

text: |
While the ${../if/create:/params[0]/name} parameter is valid.

- name: Invalid
test-code: |
ctx->name = 0;

text: |
While the ${../if/create:/params[0]/name} parameter is invalid.

test-epilogue: null
test-prologue: null

- name: Id
states:
- name: Valid
test-code: |
ctx->id = &ctx->id_value;

text: |
While the ${../if/create:/params[1]/name} parameter references an object
of type ${../../type/if/id:/name}.

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 188

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

- name: 'Null'
test-code: |
ctx->id = NULL;

text: |
While the ${../if/create:/params[1]/name} parameter is
${/c/if/null:/name}.

test-epilogue: null
test-prologue: null

- name: Free
states:
- name: 'Yes'
test-code: |
/* Ensured by the test suite configuration */

text: |
While the system has at least one inactive timer object available.

- name: 'No'
test-code: |
ctx->seized_objects = T_seize_objects(Create, NULL);

text: |
While the system has no inactive timer object available.

test-epilogue: null
test-prologue: null

This list defines the pre-conditions. Each pre-condition has a list of states and corresponding
validation test code.

links:
- role: interface-function
uid: ../if/create

test-action: |
ctx->status = rtems_timer_create(ctx->name, ctx->id);

The link to the rtems_timer_create() interface specification item with the interface-function
link role defines the trigger. The test-action defines the how the triggering directive is invoked
for the validation test depending on the pre-condition states. The code is not always as simple
as in this example. The validation test is defined in this item along with the specification.

post-conditions:
- name: Status
states:
- name: Ok
test-code: |
T_rsc_success(ctx->status);

text: |
The return status of ${../if/create:/name} shall be
${../../status/if/successful:/name}.

- name: InvName
test-code: |
T_rsc(ctx->status, RTEMS_INVALID_NAME);

text: |
The return status of ${../if/create:/name} shall be
${../../status/if/invalid-name:/name}.

- name: InvAddr
(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 189

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

test-code: |
T_rsc(ctx->status, RTEMS_INVALID_ADDRESS);

text: |
The return status of ${../if/create:/name} shall be
${../../status/if/invalid-address:/name}.

- name: TooMany
test-code: |

T_rsc(ctx->status, RTEMS_TOO_MANY);
text: |

The return status of ${../if/create:/name} shall be
${../../status/if/too-many:/name}.

test-epilogue: null
test-prologue: null

- name: Name
states:
- name: Valid
test-code: |
id = 0;
sc = rtems_timer_ident(NAME, &id);
T_rsc_success(sc);
T_eq_u32(id, ctx->id_value);

text: |
The unique object name shall identify the timer created by the
${../if/create:/name} call.

- name: Invalid
test-code: |
sc = rtems_timer_ident(NAME, &id);
T_rsc(sc, RTEMS_INVALID_NAME);

text: |
The unique object name shall not identify a timer.

test-epilogue: null
test-prologue: |
rtems_status_code sc;
rtems_id id;

- name: IdVar
states:
- name: Set
test-code: |
T_eq_ptr(ctx->id, &ctx->id_value);
T_ne_u32(ctx->id_value, INVALID_ID);

text: |
The value of the object referenced by the ${../if/create:/params[1]/name}
parameter shall be set to the object identifier of the created timer
after the return of the ${../if/create:/name} call.

- name: Nop
test-code: |
T_eq_u32(ctx->id_value, INVALID_ID);

text: |
Objects referenced by the ${../if/create:/params[1]/name} parameter in
past calls to ${../if/create:/name} shall not be accessed by the
${../if/create:/name} call.

test-epilogue: null
test-prologue: null

© 2019, 2020, 2021 embedded brains GmbH 190

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

This list defines the post-conditions. Each post-condition has a list of states and corresponding
validation test code.

skip-reasons: {}
transition-map:
- enabled-by: true
post-conditions:
Status:
- if:

pre-conditions:
Name: Invalid

then: InvName
- if:

pre-conditions:
Id: 'Null'

then: InvAddr
- if:

pre-conditions:
Free: 'No'

then: TooMany
- else: Ok
Name:
- if:

post-conditions:
Status: Ok

then: Valid
- else: Invalid
IdVar:
- if:

post-conditions:
Status: Ok

then: Set
- else: Nop

pre-conditions:
Name: all
Id: all
Free: all

type: requirement

This list of transition descriptors defines the transition map. For the post-conditions, you can use
expressions to ease the specification, see Action Requirement Transition Post-Condition State. The
skip-reasons can be used to skip entire entries in the transition map, see Action Requirement
Skip Reasons.

test-brief: null
test-description: null

The item contains the validation test code. The validation test in general can be described by
these two attributes.

test-target: testsuites/validation/tc-timer-create.c

This is the target file for the generated validation test code. Make sure this file is included in
the build specification, otherwise the test code generation will fail.

© 2019, 2020, 2021 embedded brains GmbH 191

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

test-includes:
- rtems.h
- string.h
test-local-includes: []

You can specify a list of includes for the validation test.

test-header: null

A test header may be used to create a parameterized validation test, see Test Header. This is an
advanced topic, see the specification of rtems_task_ident() for an example.

test-context-support: null
test-context:
- brief: |

This member is used by the T_seize_objects() and T_surrender_objects()
support functions.

description: null
member: |
void *seized_objects

- brief: |
This member may contain the object identifier returned by
rtems_timer_create().

description: null
member: |
rtems_id id_value

- brief: |
This member specifies the ${../if/create:/params[0]/name} parameter for the
action.

description: null
member: |
rtems_name name

- brief: |
This member specifies the ${../if/create:/params[1]/name} parameter for the
action.

description: null
member: |
rtems_id *id

- brief: |
This member contains the return status of the action.

description: null
member: |
rtems_status_code status

You can specify a list of validation test context members which can be used to maintain the
state of the validation test. The context is available through an implicit ctx variable in all code
blocks except the support blocks. The context support code can be used to define test-specific
types used by context members. Do not use global variables.

test-support: |
#define NAME rtems_build_name('T', 'E', 'S', 'T')

#define INVALID_ID 0xffffffff

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 192

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

static rtems_status_code Create(void *arg, uint32_t *id)
{
return rtems_timer_create(rtems_build_name('S', 'I', 'Z', 'E'), id);

}

The support code block can be used to provide functions, data structures, and constants for the
validation test.

test-prepare: null
test-cleanup: |
if (ctx->id_value != INVALID_ID) {
rtems_status_code sc;

sc = rtems_timer_delete(ctx->id_value);
T_rsc_success(sc);

ctx->id_value = INVALID_ID;
}

T_surrender_objects(&ctx->seized_objects, rtems_timer_delete);

The validation test basically executes a couple of nested for loops to iterate over each pre-
condition and each state of the pre-conditions. These two optional code blocks can be used
to prepare the pre-condition state preparations and clean up after the post-condition checks in
each loop iteration.

test-setup:
brief: null
code: |
memset(ctx, 0, sizeof(*ctx));
ctx->id_value = INVALID_ID;

description: null
test-stop: null
test-teardown: null

These optional code blocks correspond to test fixture methods, see the RTEMS Test Framework.

6.2.6.7.2 Pre-Condition Templates
Specify all directive parameters as separate pre-conditions. Use the following syntax for direc-
tive object identifier parameters:

- name: Id
states:
- name: NoObj
test-code: |
ctx->id = 0xffffffff;

text: |
While the ${../if/directive:/params[0]/name} parameter is not
associated with a thing.

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 193

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

- name: ClassA
test-code: |
ctx->id = ctx->class_a_id;

text: |
While the ${../if/directive:/params[0]/name} parameter is associated
with a class A thing.

- name: ClassB
test-code: |
ctx->id = ctx->class_b_id;

text: |
While the ${../if/directive:/params[0]/name} parameter is associated
with a class B thing.

test-epilogue: null
test-prologue: null

Do not add specifications for invalid pointers. In general, there are a lot of invalid pointers and
the use of an invalid pointer is in almost all cases undefined behaviour in RTEMS. There may be
specifications for special cases which deal with some very specific invalid pointers such as the
NULL pointer or pointers which do not satisfy a range or boundary condition. Use the following
syntax for directive pointer parameters:

- name: Id
states:
- name: Valid
test-code: |
ctx->id = &ctx->id_value;

text: |
While the ${../if/directive:/params[3]/name} parameter references an
object of type ${../../type/if/id:/name}.

- name: 'Null'
test-code: |
ctx->id = NULL;

text: |
While the ${../if/directive:/params[3]/name} parameter is
${/c/if/null:/name}.

test-epilogue: null
test-prologue: null

Use the following syntax for other directive parameters:

- name: Name
states:
- name: Valid
test-code: |
ctx->name = NAME;

text: |
While the ${../if/directive:/params[0]/name} parameter is valid.

- name: Invalid
test-code: |
ctx->name = 0;

text: |
While the ${../if/directive:/params[0]/name} parameter is invalid.

test-epilogue: null
(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 194

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

test-prologue: null

6.2.6.7.3 Post-Condition Templates
Do not mix different things into one post-condition. If you write multiple sentences to describe
what happened, then think about splitting up the post-condition. Keep the post-condition simple
and focus on one testable aspect which may be changed by a directive call.

For directives returning an rtems_status_code use the following post-condition states. Specify
only status codes which may be returned by the directive. Use it as the first post-condition. The
first state shall be Ok. The other states shall be listed in the order in which they can occur.

- name: Status
states:
- name: Ok
test-code: |
T_rsc_success(ctx->status);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/successful:/name}.

- name: IncStat
test-code: |
T_rsc(ctx->status, RTEMS_INCORRECT_STATE);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/incorrect-state:/name}.

- name: InvAddr
test-code: |
T_rsc(ctx->status, RTEMS_INVALID_ADDRESS);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/invalid-address:/name}.

- name: InvName
test-code: |
T_rsc(ctx->status, RTEMS_INVALID_NAME);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/invalid-name:/name}.

- name: InvNum
test-code: |
T_rsc(ctx->status, RTEMS_INVALID_NUMBER);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/invalid-number:/name}.

- name: InvSize
test-code: |
T_rsc(ctx->status, RTEMS_INVALID_SIZE);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/invalid-size:/name}.

- name: InvPrio

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 195

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

test-code: |
T_rsc(ctx->status, RTEMS_INVALID_PRIORITY);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/invalid-priority:/name}.

- name: NotConf
test-code: |

T_rsc(ctx->status, RTEMS_NOT_CONFIGURED);
text: |

The return status of ${../if/directive:/name} shall be
${../../status/if/not-configured:/name}.

- name: NotDef
test-code: |
T_rsc(ctx->status, RTEMS_NOT_DEFINED);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/not-defined:/name}.

- name: NotImpl
test-code: |
T_rsc(ctx->status, RTEMS_NOT_IMPLEMENTED);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/not-implemented:/name}.

- name: TooMany
test-code: |
T_rsc(ctx->status, RTEMS_TOO_MANY);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/too-many:/name}.

- name: Unsat
test-code: |
T_rsc(ctx->status, RTEMS_UNSATISFIED);

text: |
The return status of ${../if/directive:/name} shall be
${../../status/if/unsatisfied:/name}.

test-epilogue: null
test-prologue: null

For values which are returned by reference through directive parameters, use the following
post-condition states.

- name: SomeParamVar
states:
- name: Set
test-code: |
/* Add code to check that the object value was set to X */

text: |
The value of the object referenced by the
${../if/directive:/params[0]/name} parameter shall be set to X after
the return of the ${../if/directive:/name} call.

- name: Nop
test-code: |
/* Add code to check that the object was not modified */

(continues on next page)

© 2019, 2020, 2021 embedded brains GmbH 196

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

(continued from previous page)

text: |
Objects referenced by the ${../if/directive:/params[0]/name}
parameter in past calls to ${../if/directive:/name} shall not be
accessed by the ${../if/directive:/name} call.

6.3 Applicable and Reference Documents
The “Applicable and reference documents” sections of the QDP documentation set will use the
following template:

Applicable and reference documents

Applicable documents
====================

If there are no applicable documents, then this template will be used:

There are no :term:`applicable documents <applicable document>`.

If there are applicable documents, then this template will be used:

The following are :term:`applicable documents <applicable document>`:

* :cite:`ABC`

* :cite:`XYZ`

Reference documents
===================

.. raw:: latex

For reference documents see the
{\hyperref[\detokenize{rtemssmp:bibliography}]{\sphinxcrossref{\DUrole{std,std-ref}

→˓{bibliography}}}}.

.. only:: html

For reference documents see the :ref:`bibliography <Bibliography>`.

© 2019, 2020, 2021 embedded brains GmbH 197

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.4 Terms, Definitions and Abbreviated Terms
The “Terms, definitions and abbreviated terms” sections of the QDP documentation set will use
the following template:

.. include:: ../path/to/glossary.rst

Each document of the QDP will include a QDP-specific glossary.

Terms, definitions and abbreviated terms
**

.. glossary::
:sorted:

ABC
And so on

6.5 Work Packages
Oct 0

9
Oct 1

0
Oct 1

1
Oct 1

2
Oct 1

3
Oct 1

4
Oct 1

5
Oct 1

6
Oct 1

7
Oct 1

8
Oct 1

9
Oct 2

0
Oct 2

1
Oct 2

2
Oct 2

3
Oct 2

4
Oct 2

5
Oct 2

6
Oct 2

7
Oct 2

8
Oct 2

9
Oct 3

0
Oct 3

1
Nov 01

Nov 02
Nov 03

Nov 04
Nov 05

Nov 06

Sprint 0
Specify Build System

Implement Build System
Software User Manual (SUM)

Nov 06
Nov 07

Nov 08
Nov 09

Nov 10
Nov 11

Nov 12
Nov 13

Nov 14
Nov 15

Nov 16
Nov 17

Nov 18
Nov 19

Nov 20
Nov 21

Nov 22
Nov 23

Nov 24
Nov 25

Nov 26
Nov 27

Nov 28
Nov 29

Nov 30
Dec 01

Dec 02
Dec 03

Dec 04

Sprint 1
Specify Application Configuration
Design Application Configuration

Test Application Configuration
SUITP

SVS for TS

Dec 04
Dec 05

Dec 06
Dec 07

Dec 08
Dec 09

Dec 10
Dec 11

Dec 12
Dec 13

Dec 14
Dec 15

Dec 16
Dec 17

Dec 18
Dec 19

Dec 20
Dec 21

Dec 22
Dec 23

Dec 24
Dec 25

Dec 26
Dec 27

Dec 28
Dec 29

Dec 30
Dec 31

Jan 01

Sprint 2
Specify Object Support
Design Object Support

Test Object Support
Specify Partition Manager
Design Partition Manager

Test Partition Manager

Jan 01
Jan 02

Jan 03
Jan 04

Jan 05
Jan 06

Jan 07
Jan 08

Jan 09
Jan 10

Jan 11
Jan 12

Jan 13
Jan 14

Jan 15
Jan 16

Jan 17
Jan 18

Jan 19
Jan 20

Jan 21
Jan 22

Jan 23
Jan 24

Jan 25
Jan 26

Jan 27
Jan 28

Jan 29

Sprint 3
Specify Barrier Manager
Design Barrier Manager

Test Barrier Manager

© 2019, 2020, 2021 embedded brains GmbH 198

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Jan 29
Jan 30

Jan 31
Feb 01

Feb 02
Feb 03

Feb 04
Feb 05

Feb 06
Feb 07

Feb 08
Feb 09

Feb 10
Feb 11

Feb 12
Feb 13

Feb 14
Feb 15

Feb 16
Feb 17

Feb 18
Feb 19

Feb 20
Feb 21

Feb 22
Feb 23

Feb 24
Feb 25

Feb 26

Sprint 4
Specify Event Manager
Design Event Manager

Test Event Manager

Feb 26
Feb 27

Feb 28
Feb 29

Mar 01
Mar 02

Mar 03
Mar 04

Mar 05
Mar 06

Mar 07
Mar 08

Mar 09
Mar 10

Mar 11
Mar 12

Mar 13
Mar 14

Mar 15
Mar 16

Mar 17
Mar 18

Mar 19
Mar 20

Mar 21
Mar 22

Mar 23
Mar 24

Mar 25

Sprint 5
Specify Timer Manager
Design Timer Manager

Test Timer Manager

Mar 25
Mar 26

Mar 27
Mar 28

Mar 29
Mar 30

Mar 31
Apr 01

Apr 02
Apr 03

Apr 04
Apr 05

Apr 06
Apr 07

Apr 08
Apr 09

Apr 10
Apr 11

Apr 12
Apr 13

Apr 14
Apr 15

Apr 16
Apr 17

Apr 18
Apr 19

Apr 20
Apr 21

Apr 22

Sprint 6
Specify Message Queue Manager
Design Message Queue Manager

Test Message Queue Manager

Apr 22
Apr 23

Apr 24
Apr 25

Apr 26
Apr 27

Apr 28
Apr 29

Apr 30
May 01

May 02
May 03

May 04
May 05

May 06
May 07

May 08
May 09

May 10
May 11

May 12
May 13

May 14
May 15

May 16
May 17

May 18
May 19

May 20

Sprint 7
Specify Extension Manager
Design Extension Manager

Test Extension Manager

May 20
May 21

May 22
May 23

May 24
May 25

May 26
May 27

May 28
May 29

May 30
May 31

Jun 01
Jun 02

Jun 03
Jun 04

Jun 05
Jun 06

Jun 07
Jun 08

Jun 09
Jun 10

Jun 11
Jun 12

Jun 13
Jun 14

Jun 15
Jun 16

Jun 17

Sprint 8
Specify Semaphore Manager
Design Semaphore Manager

Test Semaphore Manager

Jun 17
Jun 18

Jun 19
Jun 20

Jun 21
Jun 22

Jun 23
Jun 24

Jun 25
Jun 26

Jun 27
Jun 28

Jun 29
Jun 30

Jul 01
Jul 02

Jul 03
Jul 04

Jul 05
Jul 06

Jul 07
Jul 08

Jul 09
Jul 10

Jul 11
Jul 12

Jul 13
Jul 14

Jul 15

Sprint 9
Specify Task Manager
Design Task Manager

Test Task Manager

Jul 15
Jul 16

Jul 17
Jul 18

Jul 19
Jul 20

Jul 21
Jul 22

Jul 23
Jul 24

Jul 25
Jul 26

Jul 27
Jul 28

Jul 29
Jul 30

Jul 31
Aug 01

Aug 02
Aug 03

Aug 04
Aug 05

Aug 06
Aug 07

Aug 08
Aug 09

Aug 10
Aug 11

Aug 12

Sprint 10
Specify Scheduler Manager
Design Scheduler Manager

Test Scheduler Manager

Aug 12
Aug 13

Aug 14
Aug 15

Aug 16
Aug 17

Aug 18
Aug 19

Aug 20
Aug 21

Aug 22
Aug 23

Aug 24
Aug 25

Aug 26
Aug 27

Aug 28
Aug 29

Aug 30
Aug 31

Sep 01
Sep 02

Sep 03
Sep 04

Sep 05
Sep 06

Sep 07
Sep 08

Sep 09

Sprint 11
Specify Clock Manager
Design Clock Manager

Test Clock Manager

Sep 09
Sep 10

Sep 11
Sep 12

Sep 13
Sep 14

Sep 15
Sep 16

Sep 17
Sep 18

Sep 19
Sep 20

Sep 21
Sep 22

Sep 23
Sep 24

Sep 25
Sep 26

Sep 27
Sep 28

Sep 29
Sep 30

Oct 0
1

Oct 0
2

Oct 0
3

Oct 0
4

Oct 0
5

Oct 0
6

Oct 0
7

Sprint 12
Specify Rate Monotonic Manager
Design Rate Monotonic Manager

Test Rate Monotonic Manager

© 2019, 2020, 2021 embedded brains GmbH 199

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Oct 0
7

Oct 0
8

Oct 0
9

Oct 1
0

Oct 1
1

Oct 1
2

Oct 1
3

Oct 1
4

Oct 1
5

Oct 1
6

Oct 1
7

Oct 1
8

Oct 1
9

Oct 2
0

Oct 2
1

Oct 2
2

Oct 2
3

Oct 2
4

Oct 2
5

Oct 2
6

Oct 2
7

Oct 2
8

Oct 2
9

Oct 3
0

Oct 3
1

Nov 01
Nov 02

Nov 03
Nov 04

Sprint 13
Specify C Standard Support

Implement C Standard Support
Test C Standard Support

Nov 04
Nov 05

Nov 06
Nov 07

Nov 08
Nov 09

Nov 10
Nov 11

Nov 12
Nov 13

Nov 14
Nov 15

Nov 16
Nov 17

Nov 18
Nov 19

Nov 20
Nov 21

Nov 22
Nov 23

Nov 24
Nov 25

Nov 26
Nov 27

Nov 28
Nov 29

Nov 30
Dec 01

Dec 02

Sprint 14
Specify System Initialization
Design System Initialization

Test System Initialization

Dec 02
Dec 03

Dec 04
Dec 05

Dec 06
Dec 07

Dec 08
Dec 09

Dec 10
Dec 11

Dec 12
Dec 13

Dec 14
Dec 15

Dec 16
Dec 17

Dec 18
Dec 19

Dec 20
Dec 21

Dec 22
Dec 23

Dec 24
Dec 25

Dec 26
Dec 27

Dec 28
Dec 29

Dec 30

Sprint 15
Specify System Termination
Design System Termination

Test System Termination

Dec 30
Dec 31

Jan 01
Jan 02

Jan 03
Jan 04

Jan 05
Jan 06

Jan 07
Jan 08

Jan 09
Jan 10

Jan 11
Jan 12

Jan 13
Jan 14

Jan 15
Jan 16

Jan 17
Jan 18

Jan 19
Jan 20

Jan 21
Jan 22

Jan 23
Jan 24

Jan 25
Jan 26

Jan 27

Sprint 16
Software Configuration File (SCF)

Software Reuse File (SRF)

Jan 27
Jan 28

Jan 29
Jan 30

Jan 31
Feb 01

Feb 02
Feb 03

Feb 04
Feb 05

Feb 06
Feb 07

Feb 08
Feb 09

Feb 10
Feb 11

Feb 12
Feb 13

Feb 14
Feb 15

Feb 16
Feb 17

Feb 18
Feb 19

Feb 20
Feb 21

Feb 22
Feb 23

Feb 24

Sprint 17
Specify Board Support Package
Design Board Support Package

Test Board Support Package
Specify SPARC Support
Design SPARC Support

Test SPARC Support

Feb 24
Feb 25

Feb 26
Feb 27

Feb 28
Mar 01

Mar 02
Mar 03

Mar 04
Mar 05

Mar 06
Mar 07

Mar 08
Mar 09

Mar 10
Mar 11

Mar 12
Mar 13

Mar 14
Mar 15

Mar 16
Mar 17

Mar 18
Mar 19

Mar 20
Mar 21

Mar 22
Mar 23

Mar 24

Sprint 18
Specify UART Driver
Design UART Driver

Implement UART Driver
Test UART Driver

Specify GPIO Driver
Design GPIO Driver

Implement GPIO Driver
Test GPIO Driver

Mar 24
Mar 25

Mar 26
Mar 27

Mar 28
Mar 29

Mar 30
Mar 31

Apr 01
Apr 02

Apr 03
Apr 04

Apr 05
Apr 06

Apr 07
Apr 08

Apr 09
Apr 10

Apr 11
Apr 12

Apr 13
Apr 14

Apr 15
Apr 16

Apr 17
Apr 18

Apr 19
Apr 20

Apr 21

Sprint 19
Specify SpaceWire Driver
Design SpaceWire Driver

Implement SpaceWire Driver
Test SpaceWire Driver

Apr 21
Apr 22

Apr 23
Apr 24

Apr 25
Apr 26

Apr 27
Apr 28

Apr 29
Apr 30

May 01
May 02

May 03
May 04

May 05
May 06

May 07
May 08

May 09
May 10

May 11
May 12

May 13
May 14

May 15
May 16

May 17
May 18

May 19

Sprint 20

© 2019, 2020, 2021 embedded brains GmbH 200

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.1 Specify Build System
This work package has a planned duration of 5 days.

6.5.1.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.1.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

• Add ticket for the Build System to the RTEMS ticket system.

• Keep the ticket up to date.

6.5.1.3 Outputs
• Build System Specification

6.5.2 Implement Build System
This work package has a planned duration of 10 days.

6.5.2.1 Inputs
• Build System Specification

6.5.2.2 Activities
• Implement the solution according to the specification.

• Maintain the ticket for the Build System in the RTEMS ticket system.

© 2019, 2020, 2021 embedded brains GmbH 201

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.2.3 Outputs
• Build System

6.5.3 Software User Manual (SUM)
This work package has a planned duration of 5 days.

6.5.3.1 Inputs
• This technical note.

6.5.3.2 Activities
• Set up a document structure and add it to the documentation build.

• Write the manual content.

6.5.3.3 Outputs
• Software User Manual (SUM)

6.5.4 Specify Application Configuration
This work package has a planned duration of 5 days.

6.5.4.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.4.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

• Add ticket for the Application Configuration to the RTEMS ticket system.

• Keep the ticket up to date.

© 2019, 2020, 2021 embedded brains GmbH 202

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.4.3 Outputs
• Application Configuration Specification

6.5.5 Design Application Configuration
This work package has a planned duration of 3 days.

6.5.5.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Application Configuration Specification

6.5.5.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

• Maintain the ticket for the Application Configuration in the RTEMS ticket system.

6.5.5.3 Outputs
• Application Configuration Doxygen Markup

6.5.6 Test Application Configuration
This work package has a planned duration of 2 days.

6.5.6.1 Inputs
• Application Configuration Specification

6.5.6.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

• Maintain the ticket for the Application Configuration in the RTEMS ticket system.

© 2019, 2020, 2021 embedded brains GmbH 203

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.6.3 Outputs
• Application Configuration Test Specification

• Application Configuration Test Code

6.5.7 SUITP
This work package has a planned duration of 5 days.

6.5.7.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.7.2 Activities
• Set up a document structure and add it to the documentation build.

• Write the manual content.

6.5.7.3 Outputs
• Software Unit and Integration Test Plan (SUITP)

6.5.8 SVS for TS
This work package has a planned duration of 5 days.

6.5.8.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.8.2 Activities
• Set up a document structure and add it to the documentation build.

• Write the manual content.

© 2019, 2020, 2021 embedded brains GmbH 204

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.8.3 Outputs
• Software Validation Specification (SVS) with Respect to TS

6.5.9 Specify Object Support
This work package has a planned duration of 5 days.

6.5.9.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.9.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.9.3 Outputs
• Object Support Specification

6.5.10 Design Object Support
This work package has a planned duration of 2 days.

6.5.10.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Object Support Specification

© 2019, 2020, 2021 embedded brains GmbH 205

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.10.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.10.3 Outputs
• Object Support Doxygen Markup

6.5.11 Test Object Support
This work package has a planned duration of 3 days.

6.5.11.1 Inputs
• Object Support Specification

6.5.11.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.11.3 Outputs
• Object Support Test Specification

• Object Support Test Code

6.5.12 Specify Partition Manager
This work package has a planned duration of 5 days.

© 2019, 2020, 2021 embedded brains GmbH 206

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.12.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.12.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.12.3 Outputs
• Partition Manager Specification

6.5.13 Design Partition Manager
This work package has a planned duration of 2 days.

6.5.13.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Partition Manager Specification

6.5.13.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.13.3 Outputs
• Partition Manager Doxygen Markup

© 2019, 2020, 2021 embedded brains GmbH 207

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.14 Test Partition Manager
This work package has a planned duration of 3 days.

6.5.14.1 Inputs
• Partition Manager Specification

6.5.14.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.14.3 Outputs
• Partition Manager Test Specification

• Partition Manager Test Code

6.5.15 Specify Barrier Manager
This work package has a planned duration of 5 days.

6.5.15.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.15.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

© 2019, 2020, 2021 embedded brains GmbH 208

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.15.3 Outputs
• Barrier Manager Specification

6.5.16 Design Barrier Manager
This work package has a planned duration of 5 days.

6.5.16.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Barrier Manager Specification

6.5.16.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.16.3 Outputs
• Barrier Manager Doxygen Markup

6.5.17 Test Barrier Manager
This work package has a planned duration of 5 days.

6.5.17.1 Inputs
• Barrier Manager Specification

6.5.17.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

© 2019, 2020, 2021 embedded brains GmbH 209

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.17.3 Outputs
• Barrier Manager Test Specification

• Barrier Manager Test Code

6.5.18 Specify Event Manager
This work package has a planned duration of 5 days.

6.5.18.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.18.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.18.3 Outputs
• Event Manager Specification

6.5.19 Design Event Manager
This work package has a planned duration of 5 days.

6.5.19.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Event Manager Specification

© 2019, 2020, 2021 embedded brains GmbH 210

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.19.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.19.3 Outputs
• Event Manager Doxygen Markup

6.5.20 Test Event Manager
This work package has a planned duration of 5 days.

6.5.20.1 Inputs
• Event Manager Specification

6.5.20.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.20.3 Outputs
• Event Manager Test Specification

• Event Manager Test Code

6.5.21 Specify Timer Manager
This work package has a planned duration of 5 days.

© 2019, 2020, 2021 embedded brains GmbH 211

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.21.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.21.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.21.3 Outputs
• Timer Manager Specification

6.5.22 Design Timer Manager
This work package has a planned duration of 5 days.

6.5.22.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Timer Manager Specification

6.5.22.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.22.3 Outputs
• Timer Manager Doxygen Markup

© 2019, 2020, 2021 embedded brains GmbH 212

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.23 Test Timer Manager
This work package has a planned duration of 5 days.

6.5.23.1 Inputs
• Timer Manager Specification

6.5.23.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.23.3 Outputs
• Timer Manager Test Specification

• Timer Manager Test Code

6.5.24 Specify Message Queue Manager
This work package has a planned duration of 5 days.

6.5.24.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.24.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

© 2019, 2020, 2021 embedded brains GmbH 213

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.24.3 Outputs
• Message Queue Manager Specification

6.5.25 Design Message Queue Manager
This work package has a planned duration of 5 days.

6.5.25.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Message Queue Manager Specification

6.5.25.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.25.3 Outputs
• Message Queue Manager Doxygen Markup

6.5.26 Test Message Queue Manager
This work package has a planned duration of 5 days.

6.5.26.1 Inputs
• Message Queue Manager Specification

6.5.26.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

© 2019, 2020, 2021 embedded brains GmbH 214

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.26.3 Outputs
• Message Queue Manager Test Specification

• Message Queue Manager Test Code

6.5.27 Specify Extension Manager
This work package has a planned duration of 5 days.

6.5.27.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.27.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.27.3 Outputs
• Extension Manager Specification

6.5.28 Design Extension Manager
This work package has a planned duration of 5 days.

6.5.28.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Extension Manager Specification

© 2019, 2020, 2021 embedded brains GmbH 215

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.28.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.28.3 Outputs
• Extension Manager Doxygen Markup

6.5.29 Test Extension Manager
This work package has a planned duration of 5 days.

6.5.29.1 Inputs
• Extension Manager Specification

6.5.29.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.29.3 Outputs
• Extension Manager Test Specification

• Extension Manager Test Code

6.5.30 Specify Semaphore Manager
This work package has a planned duration of 5 days.

© 2019, 2020, 2021 embedded brains GmbH 216

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.30.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.30.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.30.3 Outputs
• Semaphore Manager Specification

6.5.31 Design Semaphore Manager
This work package has a planned duration of 5 days.

6.5.31.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Semaphore Manager Specification

6.5.31.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.31.3 Outputs
• Semaphore Manager Doxygen Markup

© 2019, 2020, 2021 embedded brains GmbH 217

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.32 Test Semaphore Manager
This work package has a planned duration of 5 days.

6.5.32.1 Inputs
• Semaphore Manager Specification

6.5.32.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.32.3 Outputs
• Semaphore Manager Test Specification

• Semaphore Manager Test Code

6.5.33 Specify Task Manager
This work package has a planned duration of 5 days.

6.5.33.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.33.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

© 2019, 2020, 2021 embedded brains GmbH 218

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.33.3 Outputs
• Task Manager Specification

6.5.34 Design Task Manager
This work package has a planned duration of 5 days.

6.5.34.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Task Manager Specification

6.5.34.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.34.3 Outputs
• Task Manager Doxygen Markup

6.5.35 Test Task Manager
This work package has a planned duration of 5 days.

6.5.35.1 Inputs
• Task Manager Specification

6.5.35.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

© 2019, 2020, 2021 embedded brains GmbH 219

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.35.3 Outputs
• Task Manager Test Specification

• Task Manager Test Code

6.5.36 Specify Scheduler Manager
This work package has a planned duration of 5 days.

6.5.36.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.36.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.36.3 Outputs
• Scheduler Manager Specification

6.5.37 Design Scheduler Manager
This work package has a planned duration of 5 days.

6.5.37.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Scheduler Manager Specification

© 2019, 2020, 2021 embedded brains GmbH 220

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.37.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.37.3 Outputs
• Scheduler Manager Doxygen Markup

6.5.38 Test Scheduler Manager
This work package has a planned duration of 5 days.

6.5.38.1 Inputs
• Scheduler Manager Specification

6.5.38.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.38.3 Outputs
• Scheduler Manager Test Specification

• Scheduler Manager Test Code

6.5.39 Specify Clock Manager
This work package has a planned duration of 5 days.

© 2019, 2020, 2021 embedded brains GmbH 221

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.39.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.39.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.39.3 Outputs
• Clock Manager Specification

6.5.40 Design Clock Manager
This work package has a planned duration of 5 days.

6.5.40.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Clock Manager Specification

6.5.40.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.40.3 Outputs
• Clock Manager Doxygen Markup

© 2019, 2020, 2021 embedded brains GmbH 222

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.41 Test Clock Manager
This work package has a planned duration of 5 days.

6.5.41.1 Inputs
• Clock Manager Specification

6.5.41.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.41.3 Outputs
• Clock Manager Test Specification

• Clock Manager Test Code

6.5.42 Specify Rate Monotonic Manager
This work package has a planned duration of 5 days.

6.5.42.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.42.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

© 2019, 2020, 2021 embedded brains GmbH 223

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.42.3 Outputs
• Rate Monotonic Manager Specification

6.5.43 Design Rate Monotonic Manager
This work package has a planned duration of 5 days.

6.5.43.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Rate Monotonic Manager Specification

6.5.43.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.43.3 Outputs
• Rate Monotonic Manager Doxygen Markup

6.5.44 Test Rate Monotonic Manager
This work package has a planned duration of 5 days.

6.5.44.1 Inputs
• Rate Monotonic Manager Specification

6.5.44.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

© 2019, 2020, 2021 embedded brains GmbH 224

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.44.3 Outputs
• Rate Monotonic Manager Test Specification

• Rate Monotonic Manager Test Code

6.5.45 Specify C Standard Support
This work package has a planned duration of 5 days.

6.5.45.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• [ISO10]

6.5.45.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.45.3 Outputs
• C Standard Support Specification

6.5.46 Implement C Standard Support
This work package has a planned duration of 5 days.

6.5.46.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• C Standard Support Specification

© 2019, 2020, 2021 embedded brains GmbH 225

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.46.2 Activities
• Implement the solution according to the specification.

6.5.46.3 Outputs
• C Standard Support Source Code

6.5.47 Test C Standard Support
This work package has a planned duration of 5 days.

6.5.47.1 Inputs
• C Standard Support Specification

6.5.47.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.47.3 Outputs
• C Standard Support Test Specification

• C Standard Support Test Code

6.5.48 Specify System Initialization
This work package has a planned duration of 5 days.

6.5.48.1 Inputs
• RTEMS Documentation

• RTEMS Sources

© 2019, 2020, 2021 embedded brains GmbH 226

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.48.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.48.3 Outputs
• System Initialization Specification

6.5.49 Design System Initialization
This work package has a planned duration of 5 days.

6.5.49.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• System Initialization Specification

6.5.49.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.49.3 Outputs
• System Initialization Doxygen Markup

6.5.50 Test System Initialization
This work package has a planned duration of 5 days.

© 2019, 2020, 2021 embedded brains GmbH 227

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.50.1 Inputs
• System Initialization Specification

6.5.50.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.50.3 Outputs
• System Initialization Test Specification

• System Initialization Test Code

6.5.51 Specify System Termination
This work package has a planned duration of 5 days.

6.5.51.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.51.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

© 2019, 2020, 2021 embedded brains GmbH 228

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.51.3 Outputs
• System Termination Specification

6.5.52 Design System Termination
This work package has a planned duration of 5 days.

6.5.52.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• System Termination Specification

6.5.52.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.52.3 Outputs
• System Termination Doxygen Markup

6.5.53 Test System Termination
This work package has a planned duration of 5 days.

6.5.53.1 Inputs
• System Termination Specification

6.5.53.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

© 2019, 2020, 2021 embedded brains GmbH 229

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.53.3 Outputs
• System Termination Test Specification

• System Termination Test Code

6.5.54 Software Configuration File (SCF)
This work package has a planned duration of 5 days.

6.5.54.1 Inputs
• Specify Build System

6.5.54.2 Activities
• Set up a document structure and add it to the documentation build.

• Write the manual content.

6.5.54.3 Outputs
• Software Configuration File (SCF)

6.5.55 Software Reuse File (SRF)
This work package has a planned duration of 5 days.

6.5.55.1 Inputs
• RTEMS Documentation

• RTEMS Sources

6.5.55.2 Activities
• Set up a document structure and add it to the documentation build.

• Write the manual content.

© 2019, 2020, 2021 embedded brains GmbH 230

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.55.3 Outputs
• Software Reuse File (SRF)

6.5.56 Specify Board Support Package
This work package has a planned duration of 4 days.

6.5.56.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• [Gai18a]

• [Gai18b]

• [Gai18c]

• [Gai19]

6.5.56.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Discuss the specification with Gaisler.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.56.3 Outputs
• Board Support Package Specification

6.5.57 Design Board Support Package
This work package has a planned duration of 2 days.

© 2019, 2020, 2021 embedded brains GmbH 231

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.57.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• Board Support Package Specification

6.5.57.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.57.3 Outputs
• Board Support Package Doxygen Markup

6.5.58 Test Board Support Package
This work package has a planned duration of 4 days.

6.5.58.1 Inputs
• Board Support Package Specification

6.5.58.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.58.3 Outputs
• Board Support Package Test Specification

• Board Support Package Test Code

© 2019, 2020, 2021 embedded brains GmbH 232

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.59 Specify SPARC Support
This work package has a planned duration of 4 days.

6.5.59.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• [SPA91]

• [SPA96]

• [SPA02]

6.5.59.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Discuss the specification with Gaisler.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.59.3 Outputs
• SPARC Support Specification

6.5.60 Design SPARC Support
This work package has a planned duration of 2 days.

6.5.60.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• SPARC Support Specification

© 2019, 2020, 2021 embedded brains GmbH 233

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.60.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.60.3 Outputs
• SPARC Support Doxygen Markup

6.5.61 Test SPARC Support
This work package has a planned duration of 4 days.

6.5.61.1 Inputs
• SPARC Support Specification

6.5.61.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.61.3 Outputs
• SPARC Support Test Specification

• SPARC Support Test Code

6.5.62 Specify UART Driver
This work package has a planned duration of 3 days.

© 2019, 2020, 2021 embedded brains GmbH 234

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.62.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• [Gai18a]

• [Gai18b]

• [Gai18c]

• [Gai19]

6.5.62.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Discuss the specification with Gaisler.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.62.3 Outputs
• UART Driver Specification

6.5.63 Design UART Driver
This work package has a planned duration of 2 days.

6.5.63.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• UART Driver Specification

© 2019, 2020, 2021 embedded brains GmbH 235

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.63.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.63.3 Outputs
• UART Driver Doxygen Markup

6.5.64 Implement UART Driver
This work package has a planned duration of 2 days.

6.5.64.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• UART Driver Specification

6.5.64.2 Activities
• Implement the solution according to the specification.

6.5.64.3 Outputs
• UART Driver Source Code

6.5.65 Test UART Driver
This work package has a planned duration of 2 days.

6.5.65.1 Inputs
• UART Driver Specification

© 2019, 2020, 2021 embedded brains GmbH 236

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.65.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.65.3 Outputs
• UART Driver Test Specification

• UART Driver Test Code

6.5.66 Specify GPIO Driver
This work package has a planned duration of 3 days.

6.5.66.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• [Gai18a]

• [Gai18b]

• [Gai18c]

• [Gai19]

6.5.66.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Discuss the specification with Gaisler.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

© 2019, 2020, 2021 embedded brains GmbH 237

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.66.3 Outputs
• GPIO Driver Specification

6.5.67 Design GPIO Driver
This work package has a planned duration of 2 days.

6.5.67.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• GPIO Driver Specification

6.5.67.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.67.3 Outputs
• GPIO Driver Doxygen Markup

6.5.68 Implement GPIO Driver
This work package has a planned duration of 2 days.

6.5.68.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• GPIO Driver Specification

© 2019, 2020, 2021 embedded brains GmbH 238

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.68.2 Activities
• Implement the solution according to the specification.

6.5.68.3 Outputs
• GPIO Driver Source Code

6.5.69 Test GPIO Driver
This work package has a planned duration of 2 days.

6.5.69.1 Inputs
• GPIO Driver Specification

6.5.69.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.69.3 Outputs
• GPIO Driver Test Specification

• GPIO Driver Test Code

6.5.70 Specify SpaceWire Driver
This work package has a planned duration of 5 days.

6.5.70.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• [Gai18a]

• [Gai18b]

• [Gai18c]

• [Gai19]

© 2019, 2020, 2021 embedded brains GmbH 239

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.70.2 Activities
• Do a reverse engineering of the RTEMS documentation and source code.

• Discuss the specification on the RTEMS developer mailing list.

• Discuss the specification with Gaisler.

• Write Specification Items.

• Carry out the patch review process for specification items on the RTEMS development
mailing list.

6.5.70.3 Outputs
• SpaceWire Driver Specification

6.5.71 Design SpaceWire Driver
This work package has a planned duration of 5 days.

6.5.71.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• SpaceWire Driver Specification

6.5.71.2 Activities
• Update Doxygen markup for the Software Design Document (SDD).

• Carry out patch review process for documentation changes on the RTEMS development
mailing list.

6.5.71.3 Outputs
• SpaceWire Driver Doxygen Markup

6.5.72 Implement SpaceWire Driver
This work package has a planned duration of 5 days.

© 2019, 2020, 2021 embedded brains GmbH 240

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5.72.1 Inputs
• RTEMS Documentation

• RTEMS Sources

• SpaceWire Driver Specification

6.5.72.2 Activities
• Implement the solution according to the specification.

6.5.72.3 Outputs
• SpaceWire Driver Source Code

6.5.73 Test SpaceWire Driver
This work package has a planned duration of 5 days.

6.5.73.1 Inputs
• SpaceWire Driver Specification

6.5.73.2 Activities
• Write test designs, see Specification Items.

• Write test specifications (includes test plans), see Specification Items.

• Write test cases as source code.

• Carry out patch review process for test changes on the RTEMS development mailing list.

6.5.73.3 Outputs
• SpaceWire Driver Test Specification

• SpaceWire Driver Test Code

© 2019, 2020, 2021 embedded brains GmbH 241

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019, 2020, 2021 embedded brains GmbH 242

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
SEVEN

RTEMS IMPROVEMENT QUALIFICATION DATA PACKAGE

This section will perform the analysis of the RTEMS Improvement Data Package content. The
following subsections contain a description of each deliverable present in RTEMS Improvement
product.

7.1 RTEMS Managers Candidate Evaluation Report
This document presents the RTEMS Managers Candidate Evaluation Report. It describes the
RTEMS Managers present in the RTEMS Improvement project Statement of Work and proposed
a subset of RTEMS Managers that were covered in this project. In addition, inside a proposed
RTEMS Manager, there were some functionalities that were not required for space applications
and hence they were not covered. In summary, this document present the tailored performed
from the original OAR RTEMS 4.8.0 version to the RTEMS Improvement version.

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope and overview.

• Section 2: General Description, presents the general description of the RTEMS Managers.

• Section 3: RTEMS Managers Evaluation, presents the evaluation of the RTEMS Managers.

7.2 RTEMS Improvement Requirement Document
This document presents the RTEMS Software Requirements. It describes the software require-
ments of the selected managers of the RTEMS Operating System, according with RTEMS Man-
agers Candidate Evaluation Report document. This document contains the complete list of
software requirements for the RTEMS Improvement and its subsequent projects: RTEMS LEON
Upgrade project and RTEMS Qualification Extensions.

The requirements placed in this document were gathered from the projects referred above State-
ments of Work, from the RTEMS 4.8.0 source code, RTEMS 4.8.0 C User’s Guide (with the re-
strictions made in the RTEMS Managers Candidate Evaluation Report) and RTEMS 4.11 source
code for the AMBA, SpaceWire and MIL-STD-1553 drivers.

This document is used to assess if the RTEMS Operating System is adequate in terms of func-
tionality, performance, quality, testability, design, implementation, test constraints, installation
and dependability to the production of application.

© 2019, 2020, 2021 embedded brains GmbH 243

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The document is laid out in the following sections:

• Section 1: Introduction, Presents the document purpose, scope and overview.

• Section 2: General Description, presents the general software context and results of the
requirement analysis.

• Section 3: Specific Requirements, presents the requirements for the RTEMS product;

• Section 4: Verification and Validation, presents the verification, validation and acceptance
requirements of delivered software product. It also presents the verification, validation
and acceptance methods for each requirement;

• Section 5: Interface Definition, presents the definition of the interfaces;

• Section 6: Requirements Removed presents the requirements removed from the project;

• Section 7: Traceability Model, makes the traceability between the document requirements
with the model of RTEMS;

• Section 8: Traceability Matrix between Software Requirements and RTEMS Improvement
Statement of Work Requirements, presents the traceability between SoW and this docu-
ment requirements;

• Section 9: Traceability Matrix between RLU Proposal and Software Requirements,
presents the traceability between the software requirements document and the proposal
of RTEMS LEON Upgrade project;

• Section 10: Traceability Matrix between SCAR Requirements and Software Requirements,
presents the traceability between the software requirements document and the SCAR re-
quirements.

• Section 11: Traceability Matrix between Software Requirements and RTEMS Qualification
Extensions Statement of Work Requirements, presents the traceability between SoW and
this document requirements;

7.3 RTEMS Improvement User Manual and Design Notes
This document presents the RTEMS Improvement User Manual and Design Notes. It describes
how to install, configure and use the RTEMS Operating System, including the device drivers
for the 1553 and SpaceWire communication interfaces. This document is limited to the API
defined in RTEMS Managers Candidate Evaluation Report, where it is defined the RTEMS Man-
agers Candidates evaluated in the RTEMS Improvement project. This document is a subset of
RTEMS C User Guide, truncated by the conclusions taken in RTEMS Managers Candidate Re-
port, reviewed and cross-checked with the RTEMS source code implementation. Some of the
information presented in this document has been selected and corrected from RTEMS C User
Guide and Getting Started with RTEMS (version 4.8.0).

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope and overview.

• Section 2: RTEMS General Description, presents a general overview of the RTEMS Oper-
ating System.

© 2019, 2020, 2021 embedded brains GmbH 244

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Section 3: Host Requirements, presents the hardware and software requirements of the
Host computer

• Section 4: RTEMS Installation and Configuration, presents a guide on how to install and
configure RTEMS;

• Section 5: RTEMS API User’s Guide, presents an overall look at RTEMS API and how to
use it from the user’s point of view;

• Section 6: RTEMS Communication Interface drivers, presents an overall look at RTEMS
1553 and SpW drivers and how to use them from the user’s point of view;

• Section 7: Interrupts Handlers, Presents the RTEMS default interrupt handlers and
SpaceWire and 1553 interrupt handlers;

• Section 8: Notes, presents the API directives that blocks tasks and change the ready task;

• Section 9: Warnings, presents the warnings to be considered by the user;

• Section 10: Configuration of the Application, explains the configuration main topics of an
application.

• Section 11: RTEMS Tailoring, presents a short description of the RTEMS Tailoring results;

• Section 12: Compiling the Application, presents an overview of the configuration and
compilation of a RTEMS Tailored application

• Section 13: RTEMS Test Suite, describes the organization, compilation and running of the
testsuites;

7.4 RTEMS Improvement Verification Report
This document presents RTEMS Improvement Verification Report, one of the outputs of Man-
agement & Configuration Task. This document follows closely the structure suggested in the
Galileo Software Standards, Appendix 18. The report presented in this document is based in
the directions provided in the Software Development Plan, section 10 (Software Verification).
The current version of this document considers the RTEMS Tailored version that resulted from
the code merged of the implemented SW-FMECAs in the scope of the RTEMS LEON Upgrade
Project and the code merged of the implemented MIL-STD-1553 and SpaceWire communication
interfaces in the scope of the RTEMS Qualification Extensions project.

The document is laid out in the following sections:

• Section 1: Introduction, including this subsection and the acronyms

• Section 2: Documents, including applicable and reference documents;

• Section 3: Software Overview, providing an overview of the software, the architecture of
RTEMS, the managers to be analysed and all the tasks defined to develop the work;

• Section 4: Verification Report presenting the results of the verification actions taken in
every task of the project;

• Appendix A: Phase Documentation, presenting the phase documentation verification;

© 2019, 2020, 2021 embedded brains GmbH 245

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Appendix B: SRD Requirements Verification, presenting the verification of the require-
ments;

• Appendix C: SRS Verification, presenting the requirement standard verification;

• Appendix D: SDS Verification, presenting the design standard verification;

• Appendix E: SCS Verification, presenting the coding standard verification;

• Appendix F: Source Code modifications Verification, presenting the verification of the
source code modifications;

• Appendix G: Code Coverage Verification, presenting the coverage verification.

7.5 Software Budget Report
The purpose of the software budget report is to capture all information concerning margins
and technical budgets of the software items related with the RTEMS Improvement Project. The
objective of this document is to register the Software Budget Report of RTEMS Tailored in the
conclusion of every Task related with the first phase of the project. This document is one of
the outputs of Validation Phase and Acceptance Phase Tasks. This document follows closely the
structure suggested in the Galileo Software Standards, Appendix 10.

The current version of this document considers the RTEMS Tailored version that resulted from
the code merged of the implemented SW-FMECAs in the scope of the RTEMS LEON Upgrade
Project and of the implemented MIL-STD-1553 and SpaceWire communication interfaces in the
scope of the RTEMS Qualification Extensions project.

The document is laid out in the following sections:

• Section 1: Introduction, this section contains a description of the purpose, objective, con-
tent and the reason prompting its preparation. It also includes a brief description of the
sections of the Document and the additional terms, definition or abbreviated terms that
are used in this document;

• Section 2: Documents, this section shall list the applicable and reference documents to
support the generation of the document;

• Section 3: Software Overview provides a brief description of the software system and its
context. This includes a summary of the software functionality, software configuration,
operational environment and external interfaces that describe the context of the software
items;

• Section 4: Technical Budget and Margin, describes the analysis done with respect to
schedulability. This section is continuously updated with more detailed information as
it becomes available and provides budgeting estimation (e.g., memory or processing time
allocation), in accordance with the applicable software development life cycle;

© 2019, 2020, 2021 embedded brains GmbH 246

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.6 Product Software Justification File
The purpose of this document is to describe the Selected Software Products in the RTEMS Im-
provement project and also give information about the reused software items. This description
includes information about the Software Product main characteristics and its purpose in the
project. One of the outputs of the RTEMS Improvement project is RTEMS Improvement which
is considered to be procured operational software since it preserves its main characteristics
(functionality and performance). Each Software Item developed by Edisoft is listed in this doc-
ument and information about each one is described in terms of availability (this Software Items
takes in account the Software Items version and the shortcomings of the Produced Software
available). This document is one of the outputs of Planning Phase, Specification Phase, Design
Phase, Implementation Phase, Integration Phase, Validation Phase and Acceptance Phase Tasks.
The current document considers the RTEMS Tailored version improved with SpaceWire and
MIL-STD-1553 communication interfaces and also a RTEMS kernel monitoring tool (not part of
RTEMS itself).

The document is laid out in the following sections:

• Section 1: Introduction, describes the document purpose and gives a overview of the
context where is produced;

• Section 2: Applicable and reference documents, states the applicable and reference docu-
ments used;

• Section 3: Terms, definition and abbreviated terms, describes the terms, acronyms and
abbreviation used in the documents;

• Section 4: Presentation of the software, describes the technical and management informa-
tion of the Software in the RTEMS Improvement Project. This section includes information
about the software items of the RTEMS Improvement Project;

• Section 5: Compatibility of existing software with project requirements, describes the
reuse software items in terms of availability and quality;

• Section 6: Software reuse analysis conclusion, describes the results of the software items
reuse decisions, with a description of the level of reuse and the methods applied when
estimating its reuse level;

• Section 7: Detailed results of evaluation, describes the result of the evaluation performed
with the information collected in the previous chapters, and presents the developed soft-
ware by Edisoft to overcome the Procured Software evaluated shortcomings;

• Section 8: Corrective actions, lists the problems reports related to the Procured Software
and the decisions taken by Edisoft in relation to each one;

• Section 9: Configuration status, describes the configurations undertaken to ensure the
software items are under Software Versioning Configuration;

• Section 10: Annexes, provide a list of the level of reuse of RTEMS documentation and
source code and problem reports.

© 2019, 2020, 2021 embedded brains GmbH 247

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.7 RTEMS Improvement Design Document
This document presents the Software Design Document, one of the outputs of Architectural
Phase, Specification Phase, Design Phase, Implementation Phase and Integration Phase Tasks.
This document follows closely the structure suggested in the Galileo Software Standards, Ap-
pendix A.6. The current version of this document considers the RTEMS Tailored version that
resulted from the code merged of the implemented SW-FMECAs in the scope of the RTEMS
LEON Upgrade Project and the code merged of the implemented MIL-STD-1553 and SpaceWire
communication interfaces in the scope of the RTEMS Qualification Extensions project.

The document is laid out in the following sections:

• Section 1: Introduction, including the acronyms and the applicable and reference docu-
ments;

• Section 2: Overview, providing an overview of the system context, the architecture, the
processors used, Hardware/Software interfaces and safety features;

• Section 3: System Environment, describing the hardware where the system will operate,
the design method followed and the error processing techniques used.

• Section 4: Architectural Design, presenting the RTEMS architectural design, including the
Hardware Drivers, BSP, Super Core, API Layer and Support Libraries;

• Section 5: Detailed Design, presenting the RTEMS detailed design, organized by com-
ponents (modules) or by source files, data structures and functions descriptions for each
component identified in the architecture;

• Section 6: Source Code, presenting where to find the source code, including the base
releases from OAR and the patches released from this project, as well as a description of
the procedures for applying the patches and configuring a development installation;

• Section 7: Traceability, providing the traceability matrices from requirements to architec-
ture, from architecture to detailed design, from detailed design to source code and from
requirements to detailed design.

7.8 RTEMS Improvement Configuration File
This document contains the RTEMS Improvement Configuration File for the RTEMS Improve-
ment project. It is responsible for defining the items that are used in the development of the
RTEMS Improvement project. The purpose of this document is to ensure that all of the crucial
software and items used in the RTEMS Improvement project and the respective versions are
recorded. This ensures that the working conditions that are used can be reproduced in an easy
and clear way. This document is one of the outputs of Management & Configuration Task, it
includes the implementations performed in the RQE project, the RTEMS LEON Upgrade project
and RTEMS Improvement project. This document follows closely the structure suggested in the
Galileo Software Standards, Appendix 8.

The document is laid out in the following sections:

• Section 1: Introduction, this includes the list of the acronyms used;

• Section 2: Documents, this refers to applicable and reference documents used;

© 2019, 2020, 2021 embedded brains GmbH 248

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Section 3: Software Release Description, presents the description of how the software
shall be released;

• Section 4: Released Documentation, describes the functional, development, product base-
lines and releases for the documents developed in the RTEMS Improvement project;

• Section 5: Software Facilities Description, describes the development and target environ-
ment for the RTEMS Improvement project;

• Section 6: Change Control Status, has a list for the implemented changes and its status in
the RTEMS Improvement project, it also has a list of pending or known problems verified
that may constrain the environment or operations of the project;

• Section 7: Adaptation Data, this section contains the identification of any data that may
vary from one installation to another;

• Section 8: Building, Loading and Installation Instructions, in this section it is described
the building, loading and installation instructions for the RTEMS Improvement project;

• Section 9: Software Characteristics, this section describes the software characteristics for
RTEMS Improvement project.

7.9 RTEMS Improvement Integration Test Plan
This document specifies the Integration Test Plan. It is one of the deliverables of Design Phase,
Implementation Phase and Integration Phase Tasks of RTEMS Improvement Project. All this
phases are described in Software Development Plan document (referred in section). The cur-
rent version of this document considers the RTEMS Tailored version that resulted from the code
merged of the implemented SW-FMECAs in the scope of the RTEMS LEON Upgrade Project and
the code merged of the implemented MIL-STD-1553 and SpaceWire communication interfaces
in the scope of the RTEMS Qualification Extensions project. The Integration test Plan aims
to demonstrate that a software component works correctly as a result of the integration of its
software elements.

The document is laid out in the following sections:

• Section 1: Introduction, this section presents the document purpose, scope and overview.

• Section 2: Applicable and Reference Documents, this section shows the applicable and
reference documents.

• Section 3: Integration Test Plan, description of the Test Designs, Test Case Specifications
and Test Procedures. Integration tests verify that a software component works correctly
as a result of the integration of its SW elements. This section is divided in Organization
and resource, Schedule and Integration Approach.

• Section 4: Integration Test Definition, describes all tests to testing unit against the design.
Integration tests are performed with the objective to validate all internal interfaces as
defined in the SDD and SWICD as applicable depending on the level of integration testing.
This section is composed by Test designs, Test case specifications and Test procedures
regarding each test.

• Section 5: Test Coverage Matrix, From/to SDD(DDD) to/from Integration Test Cases.

© 2019, 2020, 2021 embedded brains GmbH 249

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Annex A, presenting the test templates used in the document.

• Annex B, presenting the test configuration parameters.

7.10 RTEMS Improvement Unit Test Plan
This document specifies the Unit Test Plan. It is one of the deliverables of Design Phase, Imple-
mentation Phase and Integration Phase Tasks of RTEMS Improvement Project. All this phases
are described in Software Development Plan. The Unit Test Plan aims to identify and specify the
Unit Tests to demonstrate that each element of the software component works correctly when
isolated from the complementary software elements of the software architecture. The current
version of this document considers the RTEMS Tailored version that resulted from the code
merged of the implemented SW-FMECAs in the scope of the RTEMS LEON Upgrade Project and
the code merged of the implemented MIL-STD-1553 and SpaceWire communication interfaces
in the scope of the RTEMS Qualification Extensions project.

The document is laid out in the following sections:

• Section 1: Introduction, this section presents the document purpose, scope and overview.

• Section 2: Applicable and Reference Documents, this section shows the applicable and
reference documents.

• Section 3: Unit Test Plan, describes how to verify that each component of the software
works as expected when isolated from the remaining software components. This section
is subdivided in “Organization and resources” and “Software verification approach” sub-
sections.

• Section 4: Unit Test Definition, Notification for individual software elements or group
of related elements of the Test Design, Test Case Specification and Test Procedure. This
section is subdivided in Test Designs, Test Cases and Test Procedures.

• Section 5: Test Coverage Matrix, this section defines the traceability between unit test
cases and Software code.

• Section 6: Unitary tests configuration parameters, presenting the configuration of the unit
tests.

• Annex A, presents the unitary test case and procedure templates.

7.11 RTEMS Improvement Validation Testing Specification
This document specifies the Validation Testing Specification. It is one of the deliverables of De-
sign Phase, Implementation Phase and Integration Phase Tasks of RTEMS Improvement Project.
All this phases are described in Software Development Plan. The Validation Testing Specifica-
tion aims to describe all tests to validate that the software is compliant with the requirements
defined in RTEMS Improvement Software Requirements Specification. The current version of
this document considers the RTEMS Tailored version that resulted from the code merged of
the implemented SW-FMECAs in the scope of the RTEMS LEON Upgrade Project and the code
merged of the implemented MIL-STD-1553 and SpaceWire communication interfaces in the
scope of the RTEMS Qualification Extensions project.

© 2019, 2020, 2021 embedded brains GmbH 250

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The document is laid out in the following sections:

• Section 1: Introduction, this section presents the document purpose, scope and overview.

• Section 2: Applicable and Reference Documents, this section shows the applicable and
reference documents.

• Section 3: Validation Test Definition, describes all tests to validate that the software is
compliant with the requirements defined by Software Requirements Document.

• Section 4: Test Coverage Matrix, displays two tables that allow the trace between valida-
tion test cases and software requirements, with a case for every requirement.

• Appendix A: Templates, tests and test procedures templates used in the document.

• Appendix B: Additional Sequence Diagrams, supportive sequence diagram to the tests
cases.

• Appendix C: Configuration Parameters, tests configuration parameters.

7.12 RTEMS Tailoring Plan
This document presents the RTEMS Tailoring Plan and Report. It describes the plan to tailor
the RTEMS source code to the specific characteristics of the application. This document also
contains the RTEMS Tailoring Report, specifying the actions/SPR/NCR/etc that created the
need for the change, the rationale and the change description. The files changed are also
presented.

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope and overview.

• Section 2: General Description, presents the general software context and results of the
requirement analysis.

• Section 3: RTEMS Tailoring, presents the plan to tailor the RTEMS source code to the
specific characteristics of the application; presents the tailoring report of the changes
made

7.13 RTEMS Improvement Validation, Integration and Unit Test Report
This deliverable presents the Validation, Unit and Integration Test Reports, one of the outputs
of Implementation Phase, Integration Phase of RTEMS, Validation Phase and Acceptance Phase
Tasks of RTEMS Improvement Project. This deliverable is subdivided into three documents
presented in the following subsections.

© 2019, 2020, 2021 embedded brains GmbH 251

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.13.1 RTEMS Improvement Validation Test Report
This document presents the Validation Test Report, containing the results of the validation tests.

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope, overview, applicable and
reference documents.

• Section 2: Non Regression Approach, describes the approach of non-regression tests for
validation and acceptance;

• Section 3: Test Platform Configuration, describes the RTEMS improvement test platform;

• Section 4: Test Scripts used, describes the test scripts used to gather the test reports

• Section 5: Validation Test reports, describes the report of validation test reports;

• Section 6: TS/RB Requirements Coverage Matrix, provides the requirements traceability
with the validation tests performed.

• ANNEX: provides the test reports of all platforms.

7.13.2 RTEMS Improvement Integration Test Report
This document presents the Integration Test Report, containing the results of the Integration
tests.

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope, overview, applicable and
reference documents.

• Section 2: Non Regression Approach, describes the approach of non-regression tests for
validation and acceptance;

• Section 3: Test Platform Configuration, describes the RTEMS improvement test platform;

• Section 4: Test Scripts used, describes the test scripts used to gather the test reports;

• Section 5: Integration Test reports, describes the report of integration test reports;

• Section 6: TS/RB Requirements Coverage Matrix, provides the requirements traceability
with the integration tests performed;

• ANNEX: provides the test reports in all platforms.

© 2019, 2020, 2021 embedded brains GmbH 252

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.13.3 RTEMS Improvement Unit Test Report
This document presents the Unit Test Report, containing the results of the unit tests.

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope, overview, applicable and
reference documents.

• Section 2: Non Regression Approach, describes the approach of non-regression tests for
validation and acceptance;

• Section 3: Test Platform Configuration, describes the RTEMS improvement test platform;

• Section 4: Test Scripts used, describes the test scripts used to gather the test reports;

• Section 5: Unit Test reports, describes the report of unit test reports;

• Section 6: TS/RB Requirements Coverage Matrix, provides the requirements traceability
with the unit tests performed;

• ANNEX: attaches the unit test reports for all the platforms.

7.14 RTEMS Test Suite
The RTEMS Test Suite contains all the tests and auxiliary files to run the testsuite. It is formed
by the following main folders (the folders not described contains makefiles and other files used
to compile the testsuite):

• 1553Tests: Auxiliary procedures that run in SCOC3 EGSE which allow to validate the
gr712rc MIL-STD-1553 interface

• testsuites/validation: Contains the validation tests and respective makefiles

• testsuites/integration: Contains the integration tests and respective makefiles

• testsuites/unit: Contains the unit tests and respective makefiles

• testsuites/gcov: Contains the files necessary to run the coverage tests

• testsuites/performance: Contains the files necessary to run the performance tests

• testsuites/support: Contains the support files to run the testsuite: test output printing
functions, timer for performance measurements, scripts to execute the testsuite and pro-
cedures lists.

© 2019, 2020, 2021 embedded brains GmbH 253

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.15 RTEMS Improvement Acceptance Test Plan
This document specifies the Acceptance Test Plan of the RTEMS Improvement, RTEMS LEON
Upgrade and RTEMS Qualification Extensions projects. It is one of the deliverables of the Vali-
dation Phase Task, described at Software Development Plan document.

The document is laid out in the following sections:

• Section 1: Introduction, including the acronyms and the applicable and reference docu-
ments;

• Section 2: Acceptance Test Plan, providing the organisation and resources to be used in
the acceptance test campaign and the software verification approach;

• Section 3: Acceptance Test Definition, describing the test campaign description, design,
test cases specification and test procedures;

• Section 4: Test Coverage Matrix, presenting the traceability from/to requirements baseline
(defined in the RTEMS Improvement Statement Of Work) to the acceptance test cases;

7.16 RTEMS Improvement Maintenance Plan
This document contains the Maintenance Plan for the RTEMS Improvement project. It defines
the scope and responsibilities of the maintenance phase 2 of the RTEMS Improvement project.
This plan also describes the maintenance procedures to be used. This document is one of the
outputs of RTEMS Implementation and Execution and RTEMS Tailoring Test Suite Re-Execution
Tasks of RTEMS Improvement Implementation Phase. This document follows closely the struc-
ture suggested in the Galileo Software Standards, Appendix A.33. This plan and the referred
procedures for its implementation, is applicable to the Maintenance Phase of the RTEMS Im-
provement Project.

The document is laid out in the following sections:

• Section 1: Introduction, includes the list of the acronyms used;

• Section 2: Documents, refers to applicable and reference documents used;

• Section 3: Scope and Purpose, includes the description of the processes and procedures
necessary to provide the corrective and preventive maintenance to the RTEMS Improve-
ment deliverables. The boundaries of the maintenance process are also defined here.
In addition, the difference between maintenance and development are addressed at this
point;

• Section 4: Application of the Plan, provides the description of the overall flow of work.
It includes the description of each process step and their interfaces, the data flow be-
tween processes. Definition how each step in the process is controlled and measured, the
expected levels of performance are also here addressed;

• Section 5: General Requirements, provide the description of the policies and responsibili-
ties of the project team as its plans for software maintenance are here defined;

© 2019, 2020, 2021 embedded brains GmbH 254

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Section 6: Maintenance Concept, provides the description of the maintenance concepts,
this includes: the scope of software maintenance; the tailoring of the post-delivery pro-
cess; the designation of who will provide maintenance; and an estimate of life-cycle costs;

• Section 7: Maintenance Activities, specifies the specific maintenance activities as well as
the general software engineering activities that are performed during pre-delivery and
post-delivery;

• Section 8: Resources, describes the hardware and software needs for the maintenance
activities, this includes a description about the development, maintenance and target en-
vironments. Methods adopted are also described here;

• Section 9: Maintenance Process, describes the various phases how modification request
are evaluated to determine its classification and handling priority and assignment for
implementation as a block of modifications that will be released to the user, reference
about the Software Configuration Control Board is also included;

• Section 10: Training Requirements, identifies the training activities necessary to meet the
needs of the SMP.

• Section 11: Software Product Assurance Activities, describes the of software product
assurance activities for maintenance if not covered by SPAP, including NCRs handling.
Description of how qualification status w.r.t. the GSWS requirement is maintained and
provided.

• Section 12: Software Configuration Management, describes the software configuration
management activities for maintenance, including SPRs/SMRs handling, NCR’s, CRs and
RFWs handling.

• Section 13. Records, Reports and Sample Request Form describes the rules for submission
of maintenance reports.

7.17 RTEMS Improvement Installation Report
This document presents the Installation Report of RTEMS Tailored and the results of the instal-
lation of the RTEMS testsuite. This document is one of the outputs of RTEMS Tailoring Test
Suite Re-execution Task.

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope and overview.

• Section 2: Installation Report, presents the installation reports.

© 2019, 2020, 2021 embedded brains GmbH 255

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.18 RTEMS Improvement Acceptance Data Package
This document presents the Acceptance Data Package, one of the outputs of Management, Re-
porting, Meetings and Configuration Management Tasks.

The document is laid out in the following sections:

• Section 1: Introduction, presents the document purpose, scope and overview.

• Section 2: Acceptance Data Package, presents the list of items delivered.

7.19 RTEMS Tailored
This deliverable contains all the files of RTEMS Improvement software. It is formed by the
following main folders (the folders not described contains makefiles and other files used to
compile the testsuite):

• c/src: This directory is the source code root for those RTEMS components which must
be compiled or linked in a way that is specific to a particular CPU model or board. It
encompasses the following subdirectories:

– c/src/lib: This directory contains the directories “libbsp” and “libcpu” which contain
the source code for the Board Support Packages and CPU model platform specific
source code for RTEMS. These two directories are organized based upon the CPU
family and boards. In RTEMS Improvement project, this folder only contains the
source code related to SPARC ERC32, LEON2 and LEON3.

– c/src/optman: This directory contains stubs for the RTEMS Classic API Managers
which are considered optional and whose use may be explicitly forbidden by an
application. When RTEMS, as library, is built, each of the dummy managers present
in this directory is translated into a no-<manager>.rel object file. When the RTEMS
user application is built, and according to the application’s requirements, dummy
managers are linked to the executable image file instead of real managers in order
to reduce the memory footprint.

• cpukit: this directory contains a set of subdirectories which hold the source files compris-
ing the executive portion of the RTEMS development environment as well as the portable
support libraries, such as the C Library. The routines internal to RTEMS, located in the
“score” subdirectory are separated from the API specific source code files. The following
subdirectories are incorporated in it:

• cpukit/include: This directory contains the header files that are private to RTEMS and are
not considered to be owned by any other component.

• cpukit/rtems: This directory contains the implementation of the RTEMS Classic API.

• cpukit/sapi: This directory contains the implementation of RTEMS services which are
required but beyond the realm of any standardization efforts. It includes initialization,
shutdown, and I/O services.

• cpukit/score: This directory contains the SuperCore part of RTEMS. Classic API is imple-
mented in terms of SuperCore services. This provides a common infrastructure and a high
degree of interoperability between the other APIs. For example, services from all APIs may

© 2019, 2020, 2021 embedded brains GmbH 256

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

be used by any task independent of the API used to create it. Within the score directory
there is also a subdirectory for each CPU family that contains the CPU dependent code
necessary to host RTEMS.

According with the explanation above, RTEMS Improvement is composed by three main com-
ponents:

• RTEMS API

• RTEMS Core

• RTEMS BSP

The RTEMS API allows the interaction with the application, providing a well-defined interface.
This interface allows the management of tasks, inter-task synchronization/communication, er-
ror recovery, etc. The RTEMS Core contains all the main functionality of RTEMS, such as the
scheduler, dispatcher, time management, inter-task synchronization and communication. The
RTEMS BSP contains hardware dependent code, such as handling interrupts, hardware devices
(clock device driver) and initialization routines. For this project, there are three relevant BSP
architectures: ERC32, LEON2 and LEON3.

The RTEMS Classic APIs considered in the RTEMS Tailored version are:

• Initialization Manager: Responsible for initiating and shutting down RTEMS. Initiating
RTEMS involves creating and starting all configured initialization tasks and invoking the
initialization routine for each user-supplied device driver. In a multiprocessor configura-
tion, this manager also initializes the inter-processor communications layer.

• Task Manager: Provides a comprehensive set of directives to create, delete, and administer
tasks.

• Interrupt Manager: Any real time executive must provide a mechanism for quick response
to externally generated interrupts to satisfy the critical time constraints of the application.
The interrupt manager provides this mechanism for RTEMS. This manager permits quick
interrupt response times by providing the critical ability to alter task execution which
allows a task to be preempted upon exit from an ISR.

• Clock Manager: Provides support for time of day and other time related capabilities.

• Timer Manager: Provides support for timer facilities.

• Event Manager: Presents a high performance method of inter-task communication and
synchronization.

• Message Queue Manager: Makes available communication and synchronization capabili-
ties using RTEMS message queues.

• Semaphore Manager: This manager uses the standard Dijkstra counting semaphores to
provide synchronization and mutual exclusion capabilities.

• Rate Monotonic Manager: Provides facilities to implement tasks which execute in a peri-
odic fashion.

• I/O Manager: The Input/Output interface manager provides a well defined mechanism
for accessing device drivers and a structured methodology for organizing device drivers.

• Error Manager: Processes fatal or irrecoverable errors and non-fatal errors.

© 2019, 2020, 2021 embedded brains GmbH 257

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• User Extension Manager: Allows the application developer to augment the executive by
allowing him to supply extension routines which are invoked at critical system events.

7.20 Software Development Plan
This document presents RTEMS Improvement Software Development Plan, one of the outputs
of Management, Reporting, Meetings and Configuration Management Task of the RTEMS Im-
provement Implementation Phase. This document follows closely the structure suggested in the
Galileo Software Standards, Appendix 39.

The document is laid out in the following sections:

• Section 1: Introduction, including the acronyms and the applicable and reference docu-
ments;

• Section 2: System Overview, providing an overview of the system context, the architec-
ture, the processors used, Hardware/Software interfaces and safety features;

• Section 3: Software Overview, describing the software functions with emphasis on the
proposed partitioning concepts. It also describes the software to be delivered, major ac-
tivities and major deliverables;

• Section 4: Development Management, presenting the project organisation and resources
(contractor facilities, organisation structure, personnel and responsibilities), schedule and
milestones (software reviews planning, activities and activity network), risk management,
security, interface with associated contractors, subcontractors, corrective action process,
problem/change report and progress reporting;

• Section 5: Software Engineering, describing the software development approach, the soft-
ware engineering environment (software items, hardware items, installation, control and)
and software standards and procedures (requirement standards, design standards, coding
standards, standard tailoring, testing, software programmatic and critical software);

• Section 6: Document Plan, listing the documents to be produced, documents approval,
delivery processes, time schedule for documents;

• Section 7: Acceptance – Installation, identifying the activities and procedures necessary to
integrate the software products into its operational environment for determining whether
or not the product satisfies its acceptance criteria, enabling the agency to determine
whether or not to accept the product and how the quality staff will check that the ac-
tivities have been implemented.

• Section 8: Maintenance - Migration, identifying the activities and procedures necessary
to modify the software after delivery, to correct faults, improve performance or adapt
to a changed environment and how quality staff will check that the activities have been
implemented.

• Section 9: Qualification Basis, including means showing the applicability of software DAL-
B. Including categories and software level, software safety and potential software contri-
butions to failure conditions and additional considerations.

• Section 10: Software Verification, describes the topics related with verification activities,
organisation and resources, schedule and administrative procedures.

© 2019, 2020, 2021 embedded brains GmbH 258

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Section 11: Software Validation, describes the topics with verification activities, organisa-
tion and resources, schedule and activities.

• Section 12: Software FMECA and Safety Verification, provides a description of Reliability,
Availability, Maintainability and Safety.

7.21 Review Plan
This document was issued in every review of RTEMS Improvement, providing description of
every review. This document follows the points suggested in the Galileo Software Standards,
Appendix A.41, and RTEMS Improvement Software Development Plan.

The document is laid out in the following sections (according with each RTEMS Improvement
reviews):

• Section 1: Introduction, including this subsection, the acronyms and the applicable and
reference documents;

• Section 2: RTEMS Improvement – Preliminary Design Review, providing the full descrip-
tion of the Preliminary Design Review of the RTEMS Improvement project.

• Section 3: RTEMS Improvement – Detailed Design Review, providing the full description
of the Detailed Design Review of the RTEMS Improvement project.

• Section 4: RTEMS Improvement – Test Readiness Review, providing the full description of
the Test Readiness Review and Delta TRR of the RTEMS Improvement project.

• Section 5: RTEMS Improvement – Critical Design Review, providing the full description of
the Critical Design Review of the RTEMS Improvement project.

• Section 6: RTEMS Improvement – Acceptance Review, providing the full description of
the Acceptance Review of the RTEMS Improvement project.

7.22 Final Report
This document makes a brief presentation of the RTEMS Improvement deliverables and final
product, the RTEMS Tailored, the Testsuite, the documentation and the results. The Final Report
is one of the outputs of Management, Reporting, Meetings and Configuration Management
Tasks of the RTEMS Improvement Implementation Phase.

The document is laid out in the following sections:

• Section 1: Introduction, including this subsection, the acronyms and the applicable and
reference documents;

• Section 2: Overview, providing an overview of the system context, the RTEMS overview
and RTEMS Improvement (API Managers, BSPs, modifications made, the testsuite and
documentation);

• Section 3: Validation, Unit and Integration Tests, providing an overview of the tests results
and tests results contents;

© 2019, 2020, 2021 embedded brains GmbH 259

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Section 4: Software Budget Report, highlighting the RTEMS Improvement timing charac-
teristics, memory occupancy and CPU usage;

• Section 5: Product Assurance, providing an overview to the product assurance activities
and latest quality metrics collected in the RTEMS Improvement deliverables;

• Section 6: Study Conclusions and Future Work, listing the project conclusions, lessons
learned, the intended work of the five-year maintenance phase and evolutionary mainte-
nance of the next RTEMS LEON Upgrade project.

7.23 RTEMS Improvement Product Assurance Plan
This document presents RTEMS Improvement Software Product Assurance Plan, one of the out-
puts of Product Assurance and Quality Task of the RTEMS Improvement Implementation Phase.
This document follows closely the structure suggested in the Galileo Software Standards, Ap-
pendix 31. This plan specifies the policies and objectives for the organisation, implementation
and control of the Product Assurance Program for the RTEMS Improvement. The SPAP de-
fines how EDISOFT will fulfil the requirements of the Galileo Software Standards. It covers the
following disciplines:

• Quality Assurance;

• Dependability;

• Software PA.

For all the applicable disciplines, this plan defines:

• The PA organisation, including responsibilities, internal and external interfaces, reporting
scheme;

• The tasks to be performed in the scope of the applicable phase of the project;

• The procedures to be followed and tools to be used to support the performance of the
planned activities.

The document is laid out in the following sections:

• Section 1: Introduction, including the purpose and scope of this plan;

• Section 2: Documents, including the acronyms, applicable and reference documents;

• Section 3: Organization, presenting the project organisation and resources (organisation
structure, tasks and responsibilities and the interfaces);

• Section 4: Software Quality Assurance, presenting the processes for the organisation,
implementation and control of the PA programme for the RTEMS Improvement;

• Section 5: Traceability Matrix, including a traceability matrix from the GSWS to the SPAP.

© 2019, 2020, 2021 embedded brains GmbH 260

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.24 RTEMS Improvement Product Assurance Report
This document presents RTEMS Improvement Software Product Assurance Report, one of the
outputs of Product Assurance and Quality Task, regarding the RTEMS Improvement project.
This document follows closely the structure suggested in the Galileo Software Standards, Ap-
pendix 32. The Software Product Assurance Report was prepared for the RTEMS Improvement
project reviews, reporting the activities planned and performed for the project’s phases.

The document is laid out in the following sections:

• Section 1: Introduction, including the document’s purpose, scope and overview;

• Section 2: Documents, including the acronyms and the applicable and reference docu-
ments;

• Section 3: Software Overview, presenting the overview of the RTEMS Improvement
project;

• Section 4: Software Assessment, presenting the list of Software Assessment activities;

• Section 5: Metrics Reports, presenting the Metrics Report for software products and pro-
cesses;

• Section 6: Tools, presenting the list of tools used for developing;

• Section 7: Audits, presenting the list of audits performed to date;

• Section 8: FCV and PCV, presenting the FCV and PCV reports;

• Section 9: Dependability, presenting the result of Dependability audits performed to date;

• Section 10: Lessons Learned Report, presenting the Lessons Learned Report.

• Section 11: Training records, presenting the training performed by the team

7.25 RTEMS Improvement Configuration Management Plan
This document contains the Configuration and Documentation Management Plan for the RTEMS
Improvement project. It allows the identification of the software product through the systematic
control of its composing items and changes (due to modifications, evolution, etc.) in order
to keep the integrity and traceability of the product through the life cycle phases. This plan
describes the Configuration and Documentation Management (CADM) organisation, disciplines
and procedures to be used within this project. The purpose of this plan is to ensure that all
documents which define the functional and physical characteristics of the end item (RTEMS
Improvement-RI) be uniquely identified and related to the end item (RI) throughout its lifecycle.

• The end item (RI) design standard can be defined at any point of the program and can be
correlated to the end item (RI) built status;

• An efficient change control is established and maintained;

• All involved participants are aware of the changes impact and participate to their evalua-
tion.

© 2019, 2020, 2021 embedded brains GmbH 261

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The document herein defined provides for maximum utilisation of the internal existing iden-
tification, control, status accounting, and verification procedures. This is one of the outputs
of Management, Review, Reporting and Configuration Management Task of the RTEMS Im-
provement Implementation Phase. This document follows closely the structure suggested in the
Galileo Software Standards, Appendix 40.

This plan and the referred procedures for its implementation, is applicable to all configurable
items developed/procured during the project life cycle (e.g., Hardware, Software including soft-
ware configuration files, Documentation and data files, RID, NCRs, SPRs, off-the-shelf products
and re-used products).

The document is laid out in the following sections:

• Section 1: Introduction, this includes the list of the acronyms used;

• Section 2: Documentation, this refers to applicable and reference documents used;

• Section 3: Configuration Management for overall SW Engineering Process, presents the
description of the Configuration Management concept for the Software Engineering Pro-
cess throughout all phases of the software lifecycle;

• Section 4: Software Build, Load and Installation, describes the configuration management
procedures for building, loading and installing each version of the software produced;

• Section 5: Software Archive, Backup and Retrieval, describes the configuration manage-
ment procedures for the archive, backup and retrieval of the software code and associated
data sets, for both the development and target environment;

• Section 6: Software Release, describes the configuration management procedures for the
release of the software code and associated data sets;

• Section 7: Configuration Management Provisions for Software Intended for re-use, de-
scribes the configuration management procedures to be applied to the software intended
for re-use;

7.26 RTEMS Improvement SOC with GSWS
This document contains the compliance matrix of RTEMS Improvement project with GSWS
requirements. This document contains the following information for each GSWS requirement:

• GSWS Requirement Id.: GSWS Requirement identifier number

• SW-DAL A: indicates if the requirement is mandatory for software criticality level A

• SW-DAL B: indicates if the requirement is mandatory for software criticality level B

• SW-DAL C: indicates if the requirement is mandatory for software criticality level C

• SW-DAL D: indicates if the requirement is mandatory for software criticality level D

• SW-DAL E: indicates if the requirement is mandatory for software criticality level E

• Description: Requirement text as in GSWS document

• GSWS Document: expected output(s) for the requirement in object

• Planning: indicates if the requirement is applicable to Planning phase of the project (SRR)

© 2019, 2020, 2021 embedded brains GmbH 262

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Specification: indicates if the requirement is applicable to Specification phase of the
project (SW-PDR)

• Design: indicates if the requirement is applicable to Design phase of the project (SW-DDR)

• Implementation: indicates if the requirement is applicable to Implementation phase of the
project (SW-TRR)

• Integration & TS-Validation: indicates if the requirement is applicable to Integration &
TS-Validation phase of the project (SW-CDR)

• RB-Validation: indicates if the requirement is applicable to RB-Validation phase of the
project (SW-QR)

• Acceptance: indicates if the requirement is applicable to Acceptance phase of the project
(SW-AR)

• Maintenance: indicates if the requirement is applicable to Maintenance phase of the
project

• Operation: indicates if the requirement is applicable to Operation phase of the project

• OtherReviews: indicates if the requirement is applicable to any other phase of the project
not specified previously

• TXT: indicates if the RTEMS Improvement project is compliant with the requirement text

• DAL: indicates if the RTEMS Improvement project is compliant with the requirement DAL
level

• Ver: indicates if the RTEMS Improvement project is compliant with the target milestone

• DoC: indicates if the RTEMS Improvement project is compliant with the target deliverable

• Compliance Justification/Comments: Justification of the RTEMS Improvement compli-
ance to the GSWS requirement

7.27 RTEMS Improvement Software Criticality Analysis
The SCAR Software Criticality Analysis Report is a Software component document whose con-
tents are described in GSWS. This document contains the report of the software criticality analy-
ses carried out as part of RAMS activities. Their conclusions relative to safety recommendations
are included in this document. As part of the software development, SW DAL allocation was
carried out using the SW-FMECA to assign a DAL to each component failure. The conclusions of
this process are also included in this document. The preliminary SW-FMECA analyses are pro-
vided at the second design decomposition level of the Software architecture (SW Components
and Sub-Components) identified in Software Design Document.

The document is laid out in the following sections:

• Section 1: Introduction, including the scope and the acronyms.

• Section 2: Documents, presents the list of applicable and reference documents.

• Section 3: Context, providing an overview of the System context, the architecture, the
processors used, Hardware/Software interfaces and safety features. Provides also, an

© 2019, 2020, 2021 embedded brains GmbH 263

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

overview of the Software, describing the software functions with emphasis on the pro-
posed safety and partitioning concepts.

• Section 4: Criticality Analysis, presents the Safety Analysis of the SW Items, including
the approach for the criticality analysis, SW-FMECA Analysis and results with the DAL
Allocation of RTEMS Improvement SW Components/Sub-Components.

• Section 5: Safety Recommendations: presenting the Safety Recommendations derived
from RAMS activities and their status.

7.28 EDILIB
Although RTEMS Tailored has no dependencies to external libraries, the testsuite, and some
applications, has external dependencies to some libc functions, like memset or memcpy, GCC
uses these functions to copy or initialize variables like structs and arrays. To cover these de-
pendencies, in the testsuite, Edisoft provides the edilib package which contains a small subset
of, well tested, libc functions. The edilib is built independently from RTEMS Improvement and
then it is linked with RTEMS application.

The following list presents the functions and signatures contained in the edilib:

• void *memcpy(void *dst0 , const void *src0 , size_t len0)

• void *memset(void *m , int c , size_t n)

• struct tm *_mktm_r(const time_t *tim_p , struct tm *res)

• int strncmp(const char *s1 , const char *s2 , size_t n)

7.29 Conclusion
It is noted that RTEMS SMP project will follow a different deliverable structure than the RTEMS
Improvement, because RTEMS Improvement project followed the GSWS standard. Also, since
RTEMS SMP diverged from original RTEMS (and hence from RTEMS Improvement), most of
the technical information in RTEMS Improvement deliverables will not be applicable to RTEMS
SMP. As a consequence of the points above, it was decided to not reuse RTEMS Improvement
deliverables into RTEMS SMP project.

© 2019, 2020, 2021 embedded brains GmbH 264

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
EIGHT

ANALYSIS OF OTHER STANDARDS

The aim of the Qualification toolchain is automate as much as possible the pre-qualification of
the RTEMS project. The use-case for this tool will be RTEMS SMP, which is a subset of RTEMS
for multicore processors, which operate in Symmetric MultiProcessing configuration. This sub-
set of RTEMS will be pre-qualified using the produced toolchain for space applications. This
document describes the study undertaken to compare the content of the applicable standards
for the RTEMS SMP Project, ECSS-E-ST-40C and ECSS-Q-ST-80C, with the following standards,
highlighting the major differences:

• GSWS, [GSW04]

• DO-178C, [S20511b]

• DO-330, [S20511c]

• DO-333, [S20511a]

• IEC 60158-1, [IEC10a]

• IEC 60158-3, [IEC10b]

• ISO 26262, [ISO11]

This aims to guarantee the minimization of future possible qualification in these standards or if
there is an impediment to do so.

In order to allow for a better understanding of how each standard deals with (functional) safety
aspects, throughout this document, specifically, in the respective sections where the analysis of
the standards are performed, the titles of the sections and subsections were kept identical or
similar to the ones found in each of the standards. These titles and the quoted sentences are
surrounded by a square through this sections.

8.1 GSWS Analysis
In this section it is presented the study performed to assess the compatibility of GSWS with
ECSS. The study was performed considering the GSWS sections and assessing if each section’s
requirements are/are not compatible with ECSS. The equivalent section in ECSS is pointed out
(when applicable) and the differences between the two standards are highlighted. The study is
presented below:

3 SYSTEM LEVEL CONSIDERATIONS WRT SOFTWARE

© 2019, 2020, 2021 embedded brains GmbH 265

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

This section does not contain requirements.

3.1 GALILEO SYSTEM DECOMPOSITION

This section does not contain requirements.

3.2 UPPER-LEVEL LIFE CYCLE AND SW LIFE CYCLE SYNCHRONIZATION

This section does not contain requirements.

3.3 UPPER-LEVEL RAMS

The requirement in this section are according with ECSS standard (see 6.2.2 ECSS-Q-ST-80),
which also defines the necessary relations between System and Software teams regarding the
RAMS requirements.

3.3.1 SW-DALs Allocation

The requirements in this section are according with ECSS standard (see 6.2.8 and 5.6 ECSS-Q-
ST-80), which also specifies that automatic development/verification/validation tools shall be
in accordance with the project required standards and rules.

3.3.2 Contribution of Software to upper-level RAMS Analyses

This section does not contain requirements.

3.4 SECURITY REQUIREMENTS

The ECSS defines also the need for security requirements (see 6.3.2.4 ECSS-Q-ST-80). However,
it does not define the rules to define these security requirements, being up to the SW supplier
to do it. The GSWS is more specific regarding this point, pointing to security standards. If
GSWS qualification is required for RTEMS SMP, these security standards shall be applied to the
project.

3.5 SOFTWARE ACTIVITIES AT UPPER-LEVEL

This section does not contain requirements.

3.5.1 Upper-level Database Definition

The ECSS defines that the costumer shall specify a database (see 5.2.4.4 ECSS-E-ST-40). How-
ever, the GSWS is more detailed in what kind of information shall be in the database specifica-
tion.

3.5.2 RB Definition as part of the Upper-level Requirements Folder

The ECSS also defines requirements for the Requirement Baseline (Upper-Level) definition (see
5.2 ECSS-E-ST-40).

3.6 COMMON SOFTWARE APPROACH AT SYSTEM AND SEGMENT LEVEL

These requirements are related with interface/integration between the software and the whole
system. This is defined in the ECSS (see 5.2 ECSS-E-ST-40, more specifically 5.2.4).

© 2019, 2020, 2021 embedded brains GmbH 266

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4 SOFTWARE LIFE CYCLES

4.1 INTRODUCTION

This section does not contain requirements.

4.2 SELECTING SW LIFE CYCLE MODELS

ECSS provides requirements on life cycle definition and management (see 5.3.2 ECSS-E-ST-
40C, 6.1 ECSS-Q-ST-80C and ECSS-M-ST-10C), however it does not specify which life cycle the
project should take as in GSWS.

4.3 SW LIFE CYCLE MODELS REQUIREMENTS

4.3.1 Reference Life Cycles for Generic Software

This section does not contain requirements.

4.3.2 Waterfall Model

The ECSS does not define the model for Waterfall lifecycle, but instead defines a model appli-
cable to all lifecycles which is slightly different from the one presented in GSWS in therms on
when begin producing and baseline certain deliverables (see Table A-1 ECSS-E-ST-40).

4.3.3 Incremental Model

The ECSS does not define the model for Incremental lifecycle, but instead defines a model
applicable to all lifecycles which is slightly different from the one presented in GSWS in therms
on when begin producing and baseline certain deliverables (see Table A-1 ECSS-E-ST-40).

4.3.4 Reference Life Cycle for Databases

The ECSS does not define life cycle for Databases.

4.3.5 Reference Life Cycle for the Development of MMI Applications

The MMI requirements are defined in ECSS (see 5.2.2.3 ECSS-E-ST-40C, which redirects to
ECSS-E-ST-10-11). The ECSS does not define life cycle development for MMI Applications.

4.3.6 Reference Life Cycle for Test Software

The ECSS does not define life cycle development for Test Software.

4.3.7 Reference Life Cycle for Simulators

The ECSS specifies simulators requirements (see ECSS-E-TM-40-07A) with more detail than
GSWS. The ECSS does not define life cycle development for Simulators.

4.3.8 Algorithms

The ECSS does not contain requirements specific to algorithms implementation and life cycle.

© 2019, 2020, 2021 embedded brains GmbH 267

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

5 SOFTWARE REVIEWS

5.1 GENERAL REQUIREMENTS FOR SW REVIEWS

5.1.1 Review Description and Scope

The ECSS specifies the review plan (see 5.3.3.2 ECSS-E-ST-40, which also redirects to ECSS-M-
ST-10-01).

5.1.2 Review Schedule

The ECSS Review Plan (see 5.3.3.2 ECSS-E-ST-40) describes the existence of a review schedule.
However, GSWS is more detailed for what activities and their dates should be on the Review
Plan.

5.1.3 Review Objectives

The ECSS Review Plan (see 5.3.3.2 ECSS-E-ST-40) describes the review objectives.

5.1.3.1 System Requirements Review (SRR)

The ECSS defines the System Requirements Review objectives (see 5.3.4.1 ECSS-E-ST-40C),
however with less level of detail rather than GSWS. See also the comment in sections 4.3.2 and
4.3.3, regarding the deliverables discrepancy in project phases.

5.1.3.2 SW Preliminary Design Review (SW-PDR)

The ECSS defines the SW Preliminary Design Review objectives (see 5.3.4.2 ECSS-E-ST-40C).
GSWS details more points rather than ECSS, but it is missing a reference that the interfaces
shall also be reviewed (this is a typo, since this is implicitly referred in sections 4.3.2 and 4.3.3.
The ECSS also states that in case the software requirements are baselined before the start of
the architectural design, the part of the PDR addressing the software requirements specification
and the interfaces specification shall be held in a separate joint review anticipating the PDR,
in a software requirements review (SWRR). See also the comment in sections 4.3.2 and 4.3.3,
regarding the deliverables discrepancy in project phases.

5.1.3.3 SW Detailed Design Review (SW-DDR)

In the ECSS this phase shall be only taken in case the software detailed design is baselined
before the start of the coding, otherwise, it will be merged in the CDR (see 5.3.4.3 ECSS-E-ST-
40C). GSWS is more detailed concerning the objectives of the DDR, however it does not refer
to address the software budget as in ECSS. See also the comment in sections 4.3.2 and 4.3.3,
regarding the deliverables discrepancy in project phases.

5.1.3.4 SW Test Readiness Review (SW-TRR)

The ECSS does not specify when the TRR shall be held. It is just is stated that it shall be held
before the start of test activities and after the test activities, a TRB (Test Review Board) shall take
place to approve the test results in the end of test activities (see 5.3.5 ECSS-E-ST-40). However,
it is implicit that the TRR shall take place between DDR and CDR, which is in accordance with

© 2019, 2020, 2021 embedded brains GmbH 268

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

GSWS. The TRR objectives are more detailed in GSWS. See also the comment in sections 4.3.2
and 4.3.3, regarding the deliverables discrepancy in project phases.

5.1.3.5 SW Critical Design Review (SW-CDR)

The ECSS defines the Critical Design Review objectives (see 5.3.4.3 ECSS-E-ST-40C), however
with less level of detail rather than GSWS. See also the comment in sections 4.3.2 and 4.3.3,
regarding the deliverables discrepancy in project phases.

5.1.3.6 SW Qualification Review (SW-QR)

The ECSS defines the Qualification Review objectives (see 5.3.4.4 ECSS-E-ST-40C), however
with less level of detail rather than GSWS. See also the comment in sections 4.3.2 and 4.3.3,
regarding the deliverables discrepancy in project phases.

5.1.3.7 SW Acceptance Review (SW-AR)

The ECSS defines the Acceptance Review objectives (see 5.3.4.5 ECSS-E-ST-40C), however with
less level of detail rather than GSWS. See also the comment in sections 4.3.2 and 4.3.3, regard-
ing the deliverables discrepancy in project phases.

5.1.4 Review Participants

The ECSS defines the review participants (see 5.2 ECSS-M-ST-10-01C) similar as in GSWS.

5.1.5 Review Data Package

As stated in 4.3.2 and 4.3.3 the ECSS defines slightly different the data package delivery and
review, but these differences have no impact in project structure.

5.1.6 Review Success Criteria

The ECSS defines the reviews success criteria (see Annex P, P.2 <7> ECSS-E-ST-40C) in a
similar form as GSWS. The GSWS requires compliance verification of the project at every review,
whereas in the ECSS, the compliance matrix is elaborated and then the project shall comply
with it (see 5.3.9 ECSS-E-ST-40 and 5.2.1.5 ECSS-Q-ST-80). In practice, GSWS requires an
extra effort to show evidence of its requirements compliance.

5.1.7 Review Conclusion

The ECSS defines the reviews conclusion (see Annex P, P.2 <7> ECSS-E-ST-40C) in a similar
form as GSWS.

5.2 GENERAL REQUIREMENTS FOR BUILD PROGRESS POINTS

This section does not contain requirements.

5.2.1 Build Progress Points Description and Scope

This section does not contain requirements.

© 2019, 2020, 2021 embedded brains GmbH 269

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

5.2.2 Build Progress Points Participants

The ECSS specifies that the progress meetings shall be between the costumers and suppliers
(see 5.2.2 ECSS-M-ST-10C). The GSWS has further level of detail regarding this, but there is no
incompatibility with ECSS.

5.2.3 Build Progress Points Data Package

The ECSS does not define data package for progress report (see 5.2.2 ECSS-M-ST-10C).

5.2.4 Build Progress Points Success Criteria

The ECSS does not define success criteria for progress report (see 5.2.2 ECSS-M-ST-10C).

5.2.5 Build Progress Point Conclusion

The ECSS does not define conclusion type for progress report (see 5.2.2 ECSS-M-ST-10C). In
ECSS, the results of the meeting shall be documented, including the actions raised from the
meeting to be implemented. However, as already stated, the progress reports in ECSS have
no objective to pass/fail any work development, but instead to make clear what is the cur-
rent progress of the project and the necessary actions to be undertaken until the next progress
meeting/review.

6 SW ENGINEERING

6.1 INTRODUCTION

There is no currently a ECSS standard for ISVV. However, there is an guide - ESA Guide for Inde-
pendent Software Verification and Validation - which defines guidelines to perform an ISVV. See
next GSWS section 11 for the comparison between the ESA Guide and the GSWS requirements
for ISVV.

6.2 SOFTWARE PLANNING PHASE

6.2.1 Phase Description

The ECSS defines the planning phase which includes the System Requirements review Planning
activities definition (see 5.2 and 5.3 ECSS-E-ST-40). However in some points, the GSWS is more
detailed. See the sections below.

6.2.2 Methods, Standards and Tools

6.2.2.1 Galileo Methods List

This section does not contain requirements.

6.2.2.2 SW Requirements Standard

The ECSS states that the development standard shall be defined by the costumer (see 5.2.4.5
ECSS-E-ST-40), but there is total freedom in the choice of the Requirement Standards. If a

© 2019, 2020, 2021 embedded brains GmbH 270

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

future qualification for the GSWS is required, at least the Standards chosen should be the more
closest possible with GSWS to reduce the effort on a possible GSWS qualification.

6.2.2.3 SW Design Standards

The ECSS states that the development standard shall be defined by the costumer (see 5.2.4.5
ECSS-E-ST-40), but there is total freedom in the choice of the Design Standards. If a future
qualification for the GSWS is required, at least the Standards chosen should be the more closest
possible with GSWS to reduce the effort on a possible GSWS qualification, specially it shall be
ensured that the software developed (RTEMS) will cope with the following GSWS requirements:

• [GSWS-SWENG-0930]

• [GSWS-SWENG-0940]

• [GSWS-SWENG-1000]

• [GSWS-SWENG-1010]

• [GSWS-SWENG-1040]

• [GSWS-SWENG-1050] (unless the database design can be translated to Entity Relation-
ship modelling)

Otherwise, these GSWS requirements will be violated, preventing the qualification into this
standard.

6.2.2.4 Tools

In the ECSS is specified that the tools and supporting environment shall be defined (see 5.6
ECSS-Q-ST-80C) and is according with written in the GSWS.

6.2.3 Verification requirements

The ECSS verifications for procedures for this phase (see 5.8.3 ECSS-E-ST-40C and 6.2.6 ECSS-
Q-ST-80) are according with the GSWS.

6.3 SOFTWARE SPECIFICATION PHASE

6.3.1 Phase Description

The Phase requirements described for the Specification phase are according with the ECSS
requirements (see 5.4 and 5.8.3 ECSS-E-ST-40C). Note that the User Manual, as indicated in
[GSWS-SWENG-1090], is not to be specified in this phase, according to the ECSS.

6.3.2 Methods, Standards and Tools

6.3.2.1 Galileo Methods List

This section does not contain requirements.

6.3.2.2 SW Coding Standards

© 2019, 2020, 2021 embedded brains GmbH 271

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.3.2.2.1 Requirements

The ECSS states that the Coding Standards shall be defined (see 6.3.4 ECSS-Q-ST-80C), how-
ever there are no specification of how these coding standards should be. Also there are re-
quirements for critical software (see 6.2.3 ECSS-Q-ST-80C), but in ECSS it is up to the user the
definitions of the measures for the critical software. As a consequence, the following GSWS re-
quirements may become incompatible with software developed under ECSS requirement, which
are less restrictive:

• [GSWS-SWENG-1180]

• [GSWS-SWENG-1200]

• [GSWS-SWENG-1210] - this requirement may work as a turn around to the requirement
[GSWS-SWENG-1180]

• [GSWS-SWENG-1240] - referred as a suggestion in ECSS, not mandatory

• [GSWS-SWENG-1250]

• [GSWS-SWENG-1260]

• [GSWS-SWENG-1270]

• [GSWS-SWENG-1280]

• [GSWS-SWENG-1290]

• [GSWS-SWENG-1310]

• [GSWS-SWENG-1330]

• [GSWS-SWENG-1340]

• [GSWS-SWENG-1360]

• [GSWS-SWENG-1370]

• [GSWS-SWENG-1380]

• [GSWS-SWENG-1390]

• [GSWS-SWENG-1400]

• [GSWS-SWENG-1410]

• [GSWS-SWENG-1420]

• [GSWS-SWENG-1430]

• [GSWS-SWENG-1440]

• [GSWS-SWENG-1450]

• [GSWS-SWENG-1460]

6.3.2.2.2 Recommendations

This section does not contain requirements.

© 2019, 2020, 2021 embedded brains GmbH 272

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.3.3 Verification Requirements

The ECSS describes the verification requirements for the specification phase (see 5.8.3.2 and
5.8.3.3 of ECSS-E-ST-40C). The Conformance with GSWS templates defined in [GSWS-SWENG-
1470] may be not assured following the ECSS. In the remaining topics, the ECSS and GSWS
are in accordance.

6.3.3.1 Verification of the TS

The ECSS describes the verification requirements for the TS (see 5.8.3.2 of ECSS-E-ST-40C). The
ECSS requirements are more exhaustive in what shall be assured in TS, but they are according
with GSWS.

6.3.3.2 Verification of the SDD (architectural design section)

The ECSS describes the verification requirements for the SDD - Architectural Design section (see
5.8.3.3 of ECSS-E-ST-40C) and they are according with GSWS. In this section it is not referred
the verification of compliance with design standards ([GSWS-SWENG-1580]), in ECSS this is
only required at Detailed Design level.

6.4 SOFTWARE DESIGN PHASE

6.4.1 Phase Description

The Phase requirements described for the Design phase are according with the ECSS require-
ments (see 5.5.2 and 5.8.3 ECSS-E-ST-40C). Note that the User Manual (referred in [GSWS-
SWENG-1620]), following the ECSS, is begun at this phase.

6.4.2 Methods, Standards and Tools

This section does not contain requirements.

6.4.3 Verification Requirements

The ECSS Verification requirements described for the Design Phase are in accordance with
GSWS (see 5.8.3.4 of ECSS-E-ST-40C). GSWS templates and Configuration management proce-
dures slightly differ from ECSS.

6.4.3.1 Verification of the SDD (detailed design section)

The ECSS describes the verification requirements for the SDD (see 5.8.3.4 of ECSS-E-ST-40C)
and they are according with GSWS.

6.5 SOFTWARE IMPLEMENTATION PHASE

6.5.1 Phase Description

The Phase requirements described for the Implementation phase are according with the ECSS
requirements (see 5.5.3, 5.5.4 and 5.8.3 ECSS-E-ST-40C). In ECSS it is not mandatory to de-
fine the traceability between SDD (ADD section) and integration test ([GSWS-SWENG-1770])

© 2019, 2020, 2021 embedded brains GmbH 273

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

and traceability between TS and TS-Validation test cases ([GSWS-SWENG-1780]) at imple-
mentation phase, although the Integration Test Plan shall be already available at this phase (as
Release).

6.5.2 Methods, Standards and Tools

This section does not contain requirements.

6.5.2.1 Structural Coverage Requirements

The Structural coverage requirements defined in ECSS are the same for GSWS, concerning high
critical software, DAL A and DAL B, (see 5.8.3.5 of ECSS-E-ST-40C). For less critical software
there are slight differences in source code coverage specifications.

6.5.2.2 Tests Methods Requirements

The ECSS defines Test Methods requirements according with GSWS. See 5.5.3 and 5.8.3.6 of
ECSS-E-ST-40C (although some equivalent GSWS requirements may be also scattered through
5.5 and 5.8.3 remaining subsections). See also 6.2.3, 6.2.6.5 and 7.3.6 ECSS-Q-ST-80C, which
contains requirements traced to this section.

6.5.3 Verification Requirements

The ECSS Verification requirements described for the Implementation Phase are in accordance
with GSWS (see 5.8.3, more specifically 5.8.3.5, 5.8.3.6 and 5.8.3.10 of ECSS-E-ST-40C).

6.5.3.1 Verification of Source and Executable Object Code

The ECSS defines the Verification requirements for the source/object code mostly according
with ECSS (see 5.8.3, specially 5.8.3.5 ECSS-E-ST-40C). In ECSS, there is no separation between
source and object code definitions, except for the coverage, when traceability between source
code and object code cannot be verified. There are some remarks in the following requirements:

• [GSWS-SWENG-1990] - ECSS allows the existence the deactivated code, providing that it
is shown that the code cannot be executed (see 6.2.3.2 ECSS-Q-ST-80C)

• [GSWS-SWENG-2000] to [GSWS-SWENG-2050] - The ECSS does not define the percent-
age of SCS verifications, so it is assumed that even, if the SCS verifications are made by
hand, they need to be done for all software. In RTEMS, they will be done automatically,
so the compatibility with GSWS will be automatically met.

• [GSWS-SWENG-2060] to [GSWS-SWENG-2090] - The ECSS does not define the percent-
age for implementation of detail design verification. It is assumed that for all criticality
levels it has to 100 %, according to ECSS, so these requirements will be automatically
met.

• [GSWS-SWENG-2110] - No explicit reference in ECSS, but covered by the verification of
security in source code.

• [GSWS-SWENG-2120] and [GSWS-SWENG-2130] - No requirements on ECSS on
when/how frequently static code analysis, inspection and walkthroughs shall be per-
formed, except for that they shall be made before the reviews. However, this does not
constitute an incompatibility between GSWS and ECSS, since for both standards, before

© 2019, 2020, 2021 embedded brains GmbH 274

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

each review the verifications shall be performed. These requirements constitute indeed a
common practice of verifying code to correct possible errors as upstream as possible.

6.5.3.2 Verification of SUP

These requirements are according with ECSS (see 5.8.3.6 ECSS-E-ST-40C).

6.5.3.3 Verification of SIP

These requirements are according with ECSS (see 5.8.3.7 ECSS-E-ST-40C).

6.5.3.4 Verification of VTS-TS

These requirements are according with ECSS (see 5.8.3.8 ECSS-E-ST-40C).

6.5.3.5 Verification of GTR(UT)

These requirements are according with ECSS (see 5.8.3.5 and 5.8.3.6 ECSS-E-ST-40C).

6.6 SOFTWARE INTEGRATION AND TS-VALIDATION PHASE

6.6.1 Phase Description

The requirements described for Integration and Validation are in accordance with ECSS (see
5.6, 5.8.3.7, 5.8.3.8 and 5.8.3.9 of ECSS-E-ST-40C).

The Maintenance Planning requirements they are according with ECSS (see 5.10.2 ECSS-E-ST-
40C and 6.3.8 ECSS-Q-ST-80C).

6.6.2 Methods, Standards and Tools

Already analyzed, regarding requirement [GSWS-SWENG-2305], it is according with ECSS (see
6.2.2.10 ECSS-Q-ST-80C). ECSS goes further stating that if failures from lower criticality com-
ponents cannot be isolated from other components, then these components criticality shall be
promoted to highest criticality among the software components.

6.6.2.1 Non-regression Req.'s during Integration and TS-Validation

The non-regression requirements presented are in accordance with ECSS (see 5.6.2 of ECSS-E-
ST-40C and 6.2.3.4, 6.3.5.15, 6.3.5.16, 6.3.5.17 and 6.3.5.18 of ECSS-Q-ST-80C).

6.6.3 Verification Requirements

The requirements presented here are in accordance with ECSS (see 5.6, 5.8.3.5, 5.8.3.7, 5.8.3.8,
5.8.3.9 and 5.8.3.10 of ECSS-E-ST-40C and see 6.3.5 ECSS-Q-ST-80). A remark on requirements
[GSWS-SWENG-2400] and [GSWS-SWENG-2410] - As stated above in ECSS there is no distinc-
tion between source and object code. Since, in practice, it is the object code that will be tested,
these requirements are automatically according with ECSS.

6.6.3.1 Verification of VTS-RB

These requirements are according with ECSS (see 5.6 and 5.8.3.8 ECSS-E-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 275

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.6.3.2 Verification of GTR(IT)

These requirements are according with ECSS (see 5.8.3.7 ECSS-E-ST-40C).

6.6.3.3 Verification of GTR (TS)

These requirements are according with ECSS (see 5.8.3.8 ECSS-E-ST-40C).

6.7 SOFTWARE RB-VALIDATION PHASE

6.7.1 Phase Description

These requirements are according with ECSS (scattered in 5.6.4, 5.7, 5.8.3.8, 5.8.3.9, 5.8.3.12,
5.10 ECSS-E-ST-40C).

6.7.2 Methods, Standards and Tools

This section does not contain requirements.

6.7.2.1 Non-regression Req.'s during RB-Validation

The non-regression requirement presented is in accordance with ECSS (see 5.6.2 of ECSS-E-ST-
40C and 6.2.3.4, 6.3.5.15, 6.3.5.16, 6.3.5.17 and 6.3.5.18 of ECSS-Q-ST-80C).

6.7.3 Verification requirements

The requirements presented here are in accordance with ECSS (see 5.8.3.8 of ECSS-E-ST-40C
and see 6.3.5 ECSS-Q-ST-80). GSWS templates and Configuration management procedures
slightly differ from ECSS.

6.7.3.1 Verification of SATP

These requirements are according with ECSS (see 5.8.3.8 ECSS-E-ST-40C).

6.7.3.2 Verification of GTR (RB)

These requirements are according with ECSS (see 5.8.3.8 ECSS-E-ST-40C).

6.8 SOFTWARE ACCEPTANCE PHASE

The requirements presented here are in accordance with ECSS (see 5.6.4, 5.7, 5.8.3.12 and
5.10 ECSS-E-ST-40C).

6.8.2 Methods, Standards and Tools

This section does not contain requirements.

6.8.2.1 Non-regression Req.'s during Acceptance

The non-regression requirement presented is in accordance with ECSS (see 6.2.3.4, 6.3.5.15,
6.3.5.16, 6.3.5.17 and 6.3.5.18 of ECSS-Q-ST-80C, this is also applicable for the Acceptance
tests).

© 2019, 2020, 2021 embedded brains GmbH 276

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.8.3 Verification requirements

The requirements presented here are in accordance with ECSS (see 5.7 ECSS-E-ST-40C, 6.3.5
and 6.3.6 ECSS-Q-ST-80C, Testing and validation procedures are applicable for acceptance test-
ing).

6.8.3.1 Verification of GTR (AT)

This requirement is in accordance with ECSS (see 5.7.3 ECSS-E-ST-40C).

6.9 SOFTWARE OPERATION PHASE

6.9.1 Phase Description

The requirements in this section are in accordance with ECSS (5.9, 5.10.6 and 5.10.7 ECSS-E-
ST-40C). Note that migration ([GSWS-SWENG-2700]) and retirement ([GSWS-SWENG-2710])
is described in Maintenance phase in ECSS standard.

6.9.2 Methods, Standards and Tools

This section does not contain requirements.

6.9.3 Verification Requirements

This requirement is implicitly according with ECSS (see 5.9 ECSS-E-ST-40C). There are no ex-
plicit requirements for the verification of operation phase documentation, but they shall comply
with ECSS standard and they shall be verified in Operational Readiness Review phase. GSWS
templates and Configuration management procedures slightly differ from ECSS.

6.10 SOFTWARE MAINTENANCE PHASE

6.10.1 Phase Description

This requirement is in accordance with ECSS (see 5.10 ECSS-E-ST-40C).

6.10.2 Methods, Standards and Tools

This section does not contain requirements.

6.10.2.1 Non-regression for Revisions

The non-regression requirements presented are in accordance with ECSS (see 6.2.3.4, 6.3.5.15,
6.3.5.16, 6.3.5.17 and 6.3.5.18 of ECSS-Q-ST-80C, this ia also applicable for maintenance). In
ECSS there is no reference on the possibility to reduce the Non-regression activities on main-
tenance (as in [GSWS-SWENG-2760]), however this does not have impact in qualifying ECSS
software to GSWS standard.

6.10.3 Verification Requirements

These requirements are according with ECSS (see 5.10 ECSS-E-ST-40C). Regarding [GSWS-
SWENG-2770] there is no explicit requirements for the verification of maintenance phase doc-
umentation, but they shall e verified each time a maintenance activity is undertaken.

© 2019, 2020, 2021 embedded brains GmbH 277

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7 SOFTWARE CONFIGURATION MANAGEMENT

7.1 GENERAL

These requirements are according with ECSS (see 5.3.7, 5.2.1 and 5.2.2 ECSS-M-ST-40C).

7.2 CONFIGURATION IDENTIFICATION AND VERSION CONTROL

7.2.1 SW Configuration Items

These requirements are partially in accordance with ECSS (see 5.3.1 ECSS-M-ST-40C). There
are differences on the criteria to consider at item Configuration Item and on the identifiers to
be used (ECSS does not define an identifier format).

7.2.2 Versions and Revisions

The ECSS does not specify a format to represent version and revision numbers (see 5.3.1 ECSS-
M-ST-40C).

7.2.3 Documentation Release and Baseline

The requirement [GSWS-CM-2920] is according with ECSS (see 5.3.1 ECSS-M-ST-40C).
[GSWS-CM-2900] and [GSWS-CM-2910] were already analyzed, see against Table A-1: ECSS-
E-ST-40 and ECSS-Q-ST-80 Document requirements list (DRL).

7.3 PROBLEM REPORTING AND CHANGE CONTROL

7.3.1 SW Change Control Board

The ECSS does define the need for Configuration change procedure (see 5.3.2.1 ECSS-M-ST-
40C), but it is up to the stakeholder the procedures definitions.

7.3.2 SPR and SMR Handling Process

These requirements are in accordance with ECSS (see 5.2.5 and 6.2.4 ECSS-Q-ST-80C and 5.3.2
ECSS-M-ST-40C). There are slight differences as depicted below:

• There is no SMR in ECSS, it is merged into SPR as stated in GSWS:

Note: SPR and SMR can be merged in one single document.

• [GSWS-CM-3000] and [GSWS-CM-3010] - The GSWS is more strict requiring that there
shall be specific verifications/tests to verify that the SPR has been solved. ECSS requires
only re-execution of the tests of affected software.

7.4 CONFIGURATION STATUS ACCOUNTING

The requirements presented here are in accordance with ECSS (see ECSS-M-ST-40C). [GSWS-
CM-3080] is implicit in ECSS, since

© 2019, 2020, 2021 embedded brains GmbH 278

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The purpose of configuration status accounting reports is to provide a reliable source of␣
→˓configuration information to support all programme or project activities.

7.5 CONFIGURATION VERIFICATION

The ECSS defines also the need for FCV and PCV. However in ECSS the FCV shall be performed
at QR and the PCV shall be performed at AR (see 5.3.4.2 ECSS-M-ST-40C).

7.5.1 Functional Configuration Verification

ECSS does not define what should be verified at FCV, which shall be agreed between the supplier
and costumer (see 5.3.1.3 and 5.3.1.4 ECSS-M-ST-40C).

7.5.2 Physical Configuration Verification

ECSS does not define what should be verified at PCV, which shall be agreed between the supplier
and costumer (see 5.3.1.3 and 5.3.1.4 ECSS-M-ST-40C).

7.6 SCM TOOLS AND TECHNIQUES

This requirement is according with ECSS (see 5.2.1.1 which redirects to <6.2> Annex A ECSS-
M-ST-40C).

7.7 RETENTION AND ARCHIVE

These requirements are according with ECSS (see 5.3.7.6 and all topics of ECSS-M-ST-40C,
which describe the necessary archiving features). There is no ECSS specification on what con-
cerns the requirement [GSWS-CM-3240].

7.8 DELIVERY

• Regarding requirements [GSWS-CM-3270] to [GSWS-CM-3290], the ECSS is more spe-
cific and restrictive on the format of deliveries and the electronic transmission require-
ments (see 5.3.7.4 ECSS-M-ST-40C) than GSWS, hence the GSWS can use the ECSS for-
mats.

• Regarding requirements [GSWS-CM-3295] to [GSWS-CM-3390], most of requirements
are according with ECSS (see 6.3.6 and 6.3.8 ECSS-Q-ST-80C and 5.9 and 5.10 ECSS-E-
ST-40C), with exceptions:

• [GSWS-CM-3310] - Certificate of Conformance for developed software not defined in
ECSS.

• [GSWS-CM-3320] - Inputs to Upper-level Operation Manual and Migration Justification
File not defined in ECSS. Migration Plan and Retirement Plan does not have a defined
phase to be delivered (see Table A-1: ECSS-E-ST-40 and ECSS-Q-ST-80 Document re-
quirements list (DRL)).

• [GSWS-CM-3340] - According with ECSS, any changes performed during the Maintenance
phase shall follow the same procedures as used in development (see 5.10.2.1 ECSS-E-ST-
40C). Work-around solutions may given to the product users before a permanent solution
is delivered, but ECSS does not define a revision change in the software when doing this
(see 5.9.5.3 ECSS-E-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 279

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• [GSWS-CM-3350] - According with ECSS (see 6.3.5.20 ECSS-Q-ST-80C)

• [GSWS-CM-3360] - There is no revision concept in ECSS.

• [GSWS-CM-3370] and [GSWS-CM-3390] - In ECSS there is no concept of non formal
deliveries.

8 DEPENDABILITY AND SAFETY MANAGEMENT

8.1 SW RAMS ANALYSES

In ECSS it is defined that the RAMS analysis need shall be assessed depending the type of the
project (see section 8 ECSS-Q-ST-30C and Annex F ECSS-Q-ST-40C) and then the analysis will
derive the software criticality. [GSWS-RAMS-3410] is according with ECSS (see 6.2.2 ECSS-Q-
ST-80C).

8.2 SW-DAL REDUCTION PROCEDURE

In ECSS measures to reduce the number of critical components shall be applied and justified
(see 6.2.2.4, which redirects to 6.2.3 ECSS-Q-ST-80C). Regarding [GSWS-RAMS-3420] and
[GSWS-RAMS-3430], they are according with ECSS (see 7.3 ECSS-Q-HB-80-01A and 6.4 ECSS-
Q-HB-80-03A).

9 SW PRODUCT ASSURANCE

9.1 INTRODUCTION

This section does not contain requirements.

9.2 ORGANIZATION AND RESPONSIBILITIES

These requirements are according with ECSS (see 5.1.2, 5.1.4 and 5.2.1.3 ECSS-Q-ST-80C).

9.3 SW PRODUCT ASSURANCE ACTIVITIES

9.3.1 Contractual Participation

The ECSS states implicitly that the Product Assurance representative has the authority to pro-
pose and maintain a software product assurance programme (see 5.1.4.2 and 5.2.1 ECSS-Q-ST-
80C). ECSS does not specify that the SPA representative shall shall participate in the review of
all changes to the contractual requirements ([GSWS-PA-3520]).

9.3.2 Software Product Assurance Planning

These requirements are according with ECSS, apart that the plan/compliance is according with
GSWS and not ECSS (see 5.2.1 and 5.1.5 ECSS-Q-ST-80C).

9.3.3 Software Product Assurance Verification Tasks

9.3.3.1 Recurrent Phase Independent SW PA Verification Tasks

© 2019, 2020, 2021 embedded brains GmbH 280

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The requirements presented here are almost according with ECSS (see 6.2.6 ECSS-Q-ST-80C),
apart that the verifications shall be made against GSWS standard and not ECSS. The require-
ment [GSWS-PA-3570] is not specified in ECSS.

9.3.3.2 Phase Dependent SW PA Verification Tasks

The requirement [GSWS-PA-3670] is not specified in ECSS.

9.3.3.2.1 SW Specification Phase

The ECSS is not specific on what shall be verified by SPA representative in TS. It is stated
what shall be verified (see 5.8.3.2 ECSS-E-ST-40C) and that SPA representative shall verify the
outputs of this activity (see 6.2.6.2 ECSS-Q-ST-80C). The TS sampling verification is not defined
in ECSS.

9.3.3.2.2 SW Design Phase

The requirement is according with ECSS, except that ECSS does not define level of sampling
(see 6.3.3.4 ECSS-Q-ST-80C). All requirements shall be verified.

9.3.3.2.3 SW Implementation Phase

The requirement is according with ECSS (see 6.3.4 ECSS-Q-ST-80C), apart that the verification
shall be made against GSWS standard and not ECSS.

9.3.3.2.4 SW Integration and TS-Validation Phase

These requirements are partially according with ECSS (see 6.3.5 ECSS-Q-ST-80C). The follow-
ing requirements are not according with ECSS:

• [GSWS-PA-3730] - ECSS does not forbid having major NCRs/SPRs open at CDR

• [GSWS-PA-3740] - ECSS states that whenever a change is made to the software, all af-
fected areas shall be retested (see 6.3.5.15 ECSS-Q-ST-80C). Hence ECSS does not define
the possibility of not performing a validation test campaign in an updated software subject
to delivery.

• [GSWS-PA-3760] - No FCV/PCV enviasaged for CDR in ECSS (see 5.3.4.2 ECSS-M-ST-
40C).

9.3.3.2.5 SW RB-Validation Phase

These requirements are partially according with ECSS (see 6.3.5 ECSS-Q-ST-80C). The follow-
ing requirements are not according with ECSS:

• [GSWS-PA-3770] - ECSS does not forbid having major NCRs/SPRs open at QR

• [GSWS-PA-3780] - ECSS states that whenever a change is made to the software, all af-
fected areas shall be retested (see 6.3.5.15 ECSS-Q-ST-80C). Hence ECSS does not define
the possibility of not performing a validation test campaign in an updated software subject
to delivery.

• [GSWS-PA-3800] - ECSS enviasages the need for only FCV for QR (see 5.3.4.2 ECSS-M-
ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 281

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• [GSWS-PA-3810] - The ECSS does not define the need for a test for the User Manual

9.3.3.2.6 SW Acceptance Phase

These requirements are partially according with ECSS (see 6.2.4, 6.3.5, 6.3.6 and 7.3.7 ECSS-
Q-ST-80C). The following requirements are not according with ECSS:

• [GSWS-PA-3820] - ECSS does not forbid having major NCRs/SPRs open at AR

• [GSWS-PA-3850] - The ECSS does not define the need for a verification that the User
Manual is executed by the end-user.

9.3.3.2.7 SW Maintenance Phase

These requirements are according with ECSS (see 5.10.2 ECSS-E-ST-40C and 6.3.8 ECSS-Q-ST-
80C), except that these maintenance activities are performed according with GSWS and not
ECSS.

9.3.4 SW Product Assurance Sub-contractors Monitoring

These requirements are according with ECSS (see 5.4.3 ECSS-Q-ST-80C), except that the con-
formance shall be verified against GSWS and ECSS. Some remarks on the following require-
ments:

• [GSWS-PA-3930] - Not specified in ECSS, but may be considered as normal activity of
Contractor SPA

• [GSWS-PA-3940] - Not specified in ECSS

• [GSWS-PA-3950] - Not specified in ECSS

9.3.5 Non Conformances

These requirements are mostly according with ECSS (see 5.2.5 and 5.2.6 ECSS-Q-ST-80C),
apart that the non-conformance control system is compliant with GSWS and not ECSS. Some
remarks on the following requirements:

• [GSWS-PA-3990] and [GSWS-PA-4000] - In ECSS is not mandatory to have a SW tool to
manage non conformances, but it is a recommendation (see 5.5.2 ECSS-Q-ST-10-09).

9.3.6 Risk Management and Critical Item Control

ECSS defines its own standards for Risk management and critical item control (see 5.3 ECSS-
Q-ST-80C).

9.3.7 Alert Procedure

ECSS defines its own requirements for Alerts (see 5.2.4 ECSS-Q-ST-80C).

9.3.8 SW Product Assurance Reporting

These requirements are according with ECSS (see 5.2.2 ECSS-Q-ST-80C). Some remarks:

• [GSWS-PA-4030] and [GSWS-PA-4040] - There are slight discrepancies between the
GSWS and ECSS Software product Assurance Report

© 2019, 2020, 2021 embedded brains GmbH 282

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• [GSWS-PA-4050] - The ECSS does not define lessons learned report for SW.

9.4 SOFTWARE METRICS

This section does not contain requirements.

9.4.1 The Galileo Software Quality Model Framework

This section does not contain requirements.

9.4.2 Galileo Software Quality Model

This section does not contain requirements.

9.4.2.1 Metrics and Target Value w.r.t. SW-DALs

This section does not contain requirements.

9.4.2.2 Metrication Planning

The ECSS defines Metrics to be used, with slight differences from GSWS also, the values pre-
sented are just recommendations (see 6.2.5, 7.1.4 ECSS-Q-ST-80C, recommended values are
defined in 5.3 ECSS-Q-HB-80-04A).

9.4.2.3 Metric Collecting and Reporting

These requirements are according with ECSS (see 6.2.5 and 7.1.6 ECSS-Q-ST-80C), except
[GSWS-PA-4090] which is not specified in ECSS.

9.4.2.4 Procedures, Tools, Resources and Methods

This requirement is according with ECSS (see 6.2.5, 7.1.4 ECSS-Q-ST-80C), except this infor-
mation in ECSS is placed in Software Product Assurance Plan.

9.5 SUB-CONTRACTOR AUDITS

This section does not contain requirements.

9.5.1 Audit Policy

ECSS defines its own requirements for Audits (see 5.2.3 ECSS-Q-ST-80C).

9.5.2 Audit Checklists

The ECSS does not define Audits template.

9.6 SOFTWARE PROCESS ASSESSMENT AND IMPROVEMENT

This section does not contain requirements.

9.6.1 Process Assessment

© 2019, 2020, 2021 embedded brains GmbH 283

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• [GSWS-PA-4130] - The ECSS also defines a S4S assessment model, but it is presented as
a suggestion (see 5.7.1 and 5.7.2 ECSS-Q-ST-80C, which redirects to ECSS-Q-HB-80-02),
the user may choose its own model, as long as it is in conformance with ISO/IEC 15504.

• [GSWS-PA-4140] - The ECSS does not require the assessment to be made by a higher
level contractor or a third party, as long as performed by a competent assessor (see 5.7.2.4
ECSS-Q-ST-80C)

• [GSWS-PA-4150] - Nothing specified in ECSS

9.6.2 Process Improvement

These requirements are according with ECSS (see 5.7.3 ECSS-Q-ST-80C), except that in ECSS
the results of assessment/evidence of improvement shall be Software Process Assessment
Records document.

10 PROCUREMENT AND REUSE OF SOFTWARE PRODUCTS

This section does not contain requirements.

10.1 APPLICABILITY

These requirements are according with ECSS (see 6.2.7 ECSS-Q-ST-80C). In ECSS there is no
specific requirement for algorithm prototypes ([GSWS-PR-4200]), but it shall follow the same
procedures as Procured Operational Software.

10.2 DEFINITION OF ROLES

The ECSS does not specify Purchasing ContractorContractor relationships.

10.3 PROCURED SOFTWARE RELATED DOCUMENTS

These requirements are partially in conformance with ECSS (see 5.5, 5.6 and 6.2.7 ECSS-Q-ST-
80C). There are some aspects specified in GSWS, specified in ECSS and vice versa.

• [GSWS-PR-4220] - ECSS defines the criteria to decide if a tool needs or not to be qualified
(see 6 ECSS-Q-HB-80-01A). Regarding the Operational Software, in ECSS, this informa-
tion is placed in Software Reuse File.

• [GSWS-PR-4230] - Not specified in ECSS.

• [GSWS-PR-4240] - The ECSS does not specify that a list of procured Operational Software
should be part of SDD.

• [GSWS-PR-4250] - Not specified in ECSS.

10.4 PROCESS PHASES

10.4.1 Requirement Phase

These requirements are partially according with ECSS:

• [GSWS-PR-4260] - Not specified in ECSS.

• [GSWS-PR-4270] - According to ECSS, but more detailed (see 5.5 ECSS-Q-ST-80C).

© 2019, 2020, 2021 embedded brains GmbH 284

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• [GSWS-PR-4280] - According to ECSS, but more detailed (see 5.5 ECSS-Q-ST-80C).

• [GSWS-PR-4290] - Not specified in ECSS.

• [GSWS-PR-4300] - According with ECSS (see 6.2.7.8 ECSS-Q-ST-80C)

10.4.2 Procurement Phase

ESCROW policy and agreement not specified in ECSS.

10.4.2.1 Short list selection phase

This phase and its requirements are not specified in ECSS. The ECSS process just requires that
the procured software is analysed and the choice justified (see 5.5, 5.6 and 6.2.7 ECSS-Q-ST-
80C).

10.4.2.2 Final selection phase

This phase and its requirements are not specified in ECSS. The ECSS process just requires that
the procured software is analysed and the choice justified (see 5.5, 5.6 and 6.2.7 ECSS-Q-ST-
80C).

10.4.3 Transfer Phase

This phase is not explicitly specified in ECSS. The ECSS process requires that the procured
software is inspected and, for Procured Operational Software, corrective actions and reverse
engineering techniques shall be applied to reach the required verification and validation level
(see 5.5, 5.6 and 6.2.7 ECSS-Q-ST-80C).

10.4.4 Qualification phase

This section does not contain requirements.

10.4.4.1 Procured Software-Tools

Requirements not specified by ECSS.

10.4.4.2 Procured Operational Software

Requirements not specified by ECSS.

10.4.5 Maintenance Phase

This phase is not explicitly specified in ECSS.

10.5 PROCESS MILESTONES

This section does not contain requirements.

10.6 PRODUCT SERVICE HISTORY

This section is according with ECSS (see 6.2.7 ECSS-Q-ST-80C, 7.6 and Annex B ECSS-Q-HB-
80-01A).

© 2019, 2020, 2021 embedded brains GmbH 285

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

11 INDEPENDENT SW V&V PROCESS

The ECSS contains the requirements 5.6.2.2 ECSS-E-ST-40C and 6.2.6.13 6.3.5.28 ECSS-Q-
ST-80C which state that an Independent organization shall be selected to perform the ISVV,
when the risks associated with the project justify the costs involved. Besides these requirements
there are no official requirements for ISVV. Instead, ESA has developed a guide, ESA Guide
for Independent Software Verification and Validation, which contains the detailed guidelines to
perform the ISVV activity.

11.1 GENERAL

This section does not contain requirements.

11.2 ISVV POLICY

This section is according with ESA ISVV Guide, except the following requirements:

• [GSWS-ISVV-4640] - Not specified

• [GSWS-ISVV-4680] - GSWS template differ from ECSS template

11.3 ISVV ACTIVITIES AND MILESTONES

This section is according with ESA ISVV Guide, except the following requirements:

• [GSWS-ISVV-4750] - Not required by ECSS

• [GSWS-ISVV-4780] - According to ECSS, the ISVV activity shall finish before AR (it lasts
beyond CDR)

11.3.1 Software Specification Activities

This section is according with ESA ISVV Guide, except the following requirements:

• [GSWS-ISVV-4850] - In ECSS this verification is applicable to all software criticality levels

• [GSWS-ISVV-4860] - In ECSS this verification is applicable to all software criticality levels

11.3.2 Software Design

This section is according with ESA ISVV Guide, except the following requirement:

• [GSWS-ISVV-4900] - In ECSS this activity is performed during code analysis.

11.3.3 Implementation Activities

• [GSWS-ISVV-4920] - In ECSS there is no need to re-execute unit tests, but just to verify
their specification and results

• [GSWS-ISVV-4930] - The ECSS does not specify specific verification to partitioning in-
tegrity

11.3.4 Software Integration and TS-Validation Activities

© 2019, 2020, 2021 embedded brains GmbH 286

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

This section is according with ESA ISVV Guide, note however that the ECSS ISVV is more
focused in the ISVV supplier to specify and ru nits own validation tests (Independent Validation)
rather than verify the Validation Specification of the costumer.

12 DOCUMENTATION REQUIREMENTS

12.1 GENERAL DOCUMENTATION STANDARDS

Although similar, there are few differences in documentation between GSWS and ECSS (see
Table A-1: ECSS-E-ST-40 and ECSS-Q-ST-80 Document requirements list (DRL) and Annexes,
which contains each document, if any, template).

12.2 PROJECT ARCHIVE

12.2.1 Requirements Baseline

This section does not contain requirements.

12.2.2 Technical Specification

This section does not contain requirements.

12.2.3 Design Definition File

This section does not contain requirements.

12.2.4 Design Justification File

This section does not contain requirements.

12.2.5 Algorithms File

This section does not contain requirements.

12.2.6 Product Assurance File

This section does not contain requirements.

12.2.7 Maintenance File

This section does not contain requirements.

12.2.8 Management File

This section does not contain requirements.

12.3 CONTRACTUAL APPLICABILITY OF SW DELIVERABLES

This section does not contain requirements.

© 2019, 2020, 2021 embedded brains GmbH 287

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

8.1.1 Conclusions
As a generic conclusion, it was found that both standards are compatible, apart of minor differ-
ences and what is explained next. GSWS is more specific and contains more restrictions in what
approach to be used in certain topics (ex: Design and Coding standards), whereas the ECSS
just states that these topics shall be covered, but it is up to the software developer the definition
how it will be covered. That means that in ECSS there is more freedom in certain requirements
application. As a result, some effort to make the software compatible with GSWS may be re-
quired if the application of the ECSS requirement is not according with the correspondent, more
specific GSWS requirement.

8.2 DO Analysis
In this section it is presented the study performed to assess the compatibility of DO standard
with ECSS. The study was performed considering the DO sections and assessing if each section’s
requirements are/are not compatible with ECSS. The equivalent section in ECSS is pointed out
(when applicable) and the differences between the two standards are highlighted. The study is
presented below:

8.2.1 DO-178
2.0 SYSTEM ASPECTS RELATING TO SOFTWARE DEVELOPMENT

Introductory section. No requirements here.

2.1 System Requirements Allocation to Software

This section is according with ECSS (see section 5.2 ECSS-E-ST-40C). Note however that ECSS
does not explicitly define the need Certification requirements, although a need for a specific
Certification could be considered as a constraint.

2.2 Information Flow Between System and Software Life Cycle Processes

This section does not contain requirements.

2.2.1 Information Flow from System Processes to Software Processes

This section is partially according with ECSS (see section 5.2 ECSS-E-ST-40C). In ECSS there is
no possibility of having iterations in software caused by the system during software life-cycle,
after SRR (the Software System Specification shall be baselined at this stage).

2.2.2 Information Flow from Software Processes to System Processes

In ECSS, it is referred an interaction from Software Processes to System Processes as sending
the results of the software dependability and safety analysis for integration into the system-level
(see 6.2.2.7 ECSS-Q-ST-80C). This is the only case of such interaction specified in ECSS.

© 2019, 2020, 2021 embedded brains GmbH 288

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

2.2.3 Information Flow between Software Processes and Hardware Processes

In ECSS, the hardware it is considered to be part of the system and hence, the considerations
described for sections 2.2.1 and 2.2.2 apply here.

2.3 System Safety Assessment Process and Software Level

This section is according with ECSS (see section 6.2.2 of ECSS-Q-ST-80C).

2.3.1 Relationship between Software Errors and Failure Conditions

This section is according with ECSS (see section 6.2.2 of ECSS-Q-ST-80C).

2.3.2 Failure Condition Categorization

There are slight differences in DO and ECSS Failure Condition Category (see the table presented
here, against Table 5-1: Severity categories, ECSS-Q-ST-30C). The equivalence of severity cate-
gories between both standards is as follows:

Table 1: DO and ECSS severity correspondence

DO-178 ECSS
Catastrophic, Hazardous Catastrophic
Major Critical
Minor Major
No Safety Effect Minor or Negligible

2.3.3 Software Level Definition

Apart from the differences outlined for section 2.3.2, this section is in accordance with ECSS
(see Table D-1 of ECSS-Q-ST-80C, also 5.4.2 ECSS-Q-ST-30C). ECSS is more detailed with the
relation of software criticality evaluation in relation with the remaining system. Note also that
DO-178 requires proper certification of Software Level definition

The applicant should always consider the appropriate certification...

, which is not required by ECSS.

2.3.4 Software Level Determination

This section is according with ECSS (see section 6.2.2 of ECSS-Q-ST-80C).

2.4 Architectural Considerations

This section is according with ECSS (see sections 6.2.3 and 6.2.2.10 of ECSS-Q-ST-80C).

2.4.1 Partitioning

This section is according with ECSS (see 7.3 ECSS-Q-HB-80-01A), except that the point e. is
not addressed, since it is at hardware level.

© 2019, 2020, 2021 embedded brains GmbH 289

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

2.4.2 Multiple-Version Dissimilar Software

The ECSS does not contain specific requirements for Multiple-Version Dissimilar Software. As
stated in ECSS

The use of N-version programming as a fault tolerance mechanism is controversial (see␣
→˓[IEEE-Trans-99], [DASC-93]) and it is not listed among the methods recommended by the␣
→˓ECSS Standards.

(see 6.4 ECSS-Q-HB-80-03A).

2.4.3 Safety Monitoring

The ECSS does not contain specific requirements for Safety Monitoring. Note however, accord-
ing with ECSS, safety monitoring is mandatory for manned space systems (see section 6.3.6
ECSS-Q-ST-40C).

2.5 Software Considerations in System Life Cycle Processes

This section does not contain requirements.

2.5.1 Parameter Data Items

The Parameter Data Item is equivalent to the ECSS configurable code (see 3.2.5 configurable
code ECSS-Q-ST-80). The expression

should be addressed

should be more specified in this standard. However, it can be considered that the requirements
in this section to be in accordance with ECSS (see sections 6.2.6.6 and 6.3.5.7 of ECSS-Q-ST-
80C). This will be re-assessed on section 6.6 analysis.

2.5.2 User-Modifiable Software

There is no concept of User-Modifiable Software/Component in ECSS at the same sense of this
standard. More details are given when analysing section 5.2.3 of DO-178.

2.5.3 Commercial-Off-The-Shelf Software

This section is according with ECSS (see section 6.2.7 of ECSS-Q-ST-80C). The actions to over-
come possible deficiencies in COTS will be analysed in the respective sections (12.1.4 and
12.3.4).

2.5.4 Option-Selectable Software

The guidance for deactivated code will be analysed further. This section is more restrictive
rather than the ECSS. In ECSS admits the an

accidental activation

of deactivated code, but this cannot harm the system (see sections 6.2.6.5 and 6.3.5.30 of
ECSS-Q-ST-80C).

© 2019, 2020, 2021 embedded brains GmbH 290

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

2.5.5 Field-Loadable Software

The ECSS does not define requirements or considerations for software loading function.

2.5.6 Software Considerations in System Verification

This section does not constitute any requirement. Still it is according with ECSS (see 5.2.3.1
ECSS-E-ST-40C).

2.6 System Considerations in Software Life Cycle Processes

In ECSS it is found a specific particular case of the described in this section. It concerns with
complementary system level validation (see 5.8.3.9 ECSS-E-ST-40C), when there are software
requirements which needs to be validated at system level. This activity shall follow the same
procedures for the validation of these requirements, so in this case this standard is according
with ECSS.

3.0 SOFTWARE LIFE CYCLE

This section does not contain requirements

3.1 Software Life Cycle Processes

This section is according with ECSS. All these life cycle processes are also defined in ECSS:

• software planning considerations are present in ECSS-M-ST-10C, ECSS-E-ST-40C and
ECSS-Q-ST-80C

• software development processes considerations are present in ECSS-E-ST-40C and ECSS-
Q-ST-80C

• integral processes considerations are present in ECSS-E-ST-40C (SOFTWARE VERIFICA-
TION PROCESS), ECSS-M-ST-40C (CONFIGURATION MANAGEMENT) and ECSS-Q-ST-
80C (SOFTWARE QUALITY ASSURANCE PROCESS), except CERTIFICATION LIAISON
PROCESS. Certification is not defined in ECSS.

A more detailed analysis of the compatibility with ECSS for all these processes will be provided
in the next sections.

3.2 Software Life Cycle Definition

This is a descriptive section, but this content is in line with ECSS (see 4.4.1 ECSS-M-ST-10C
descriptive section), apart from that the example provided differs. Note that the definition of a
Life Cycle is mandatory in ECSS (see 6.1.1 ECSS-Q-ST-80C).

3.3 Transition Criteria Between Processes

This requirement is according with ECSS (see 6.2.6.2 ECSS-Q-ST-80C). There is no specific
reference to partial inputs, but it is implicit that a partial input as a complete input should
provide enough and correct information to proceed the next process.

4.0 SOFTWARE PLANNING PROCESS

© 2019, 2020, 2021 embedded brains GmbH 291

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

This section does not contain requirements. As referred in Annex A, the tables presented do not
provide complete information (the body of the section should be used as a complete description
of the standard).

4.1 Software Planning Process Objectives

This section is according with ECSS (see 5.3.2.1 ECSS-E-ST-40C and 5.1 ECSS-M-ST-10C).

4.2 Software Planning Process Activities

This section is according with ECSS (see 5.3 ECSS-E-ST-40C). The points f, h, i and j are not
referred in ECSS to be part of Software Planning Process Activities. Regarding point l, the
supplier oversight is performed by Joint reviews.

4.3 Software Plans

The Plan for Software Aspects of Certification is not defined in ECSS. The Software Develop-
ment Plan, Software Verification Plan, Software Configuration Management Plan and Software
Quality Assurance Plan (equivalent to ECSS Software product assurance plan) are defined in
ECSS with the same objectives as this standard. The content of these four documents against
ECSS will be analysed in section 11. For the remaining content of this section, it is according
with ECSS (see each of the above four documents content in ECSS-E-ST-40C, ECSS-M-ST-40
and ECSS-Q-ST-80C). Regarding point c, the ECSS does not contain specific requirements for
certified products.

4.4 Software Life Cycle Environment Planning

This section does not contain requirements.

4.4.1 Software Development Environment

This section is partially according with ECSS (see 5.6.2 ECSS-Q-ST-80C). The points from b to
f are not explicitly required in ECSS.

4.4.2 Language and Compiler Considerations

This section is according with ECSS (see 5.8.3.5 ECSS-E-ST-40C and 6.2.3.4/6.3.5 ECSS-Q-ST-
80C).

4.4.3 Software Test Environment

The ECSS does not specify that the emulator or simulator shall be qualified nor that differences
between emulator/simulator should be considered. However, according to ECSS, prior deliver-
ing the product, it shall be validated under conditions similar to the application environment
(see 6.3.5.26 ECSS-Q-ST-80C). This means that, although simulators may be used in ECSS, the
software shall be also validated in the hardware platform.

4.5 Software Development Standards

The ECSS defines the need for definition of Software Development Standards (see 5.2.4.5 and
5.3.2.1 ECSS-E-ST-40C). However, the ECSS does not provide any norms to define these stan-
dards as opposed to this standard.

© 2019, 2020, 2021 embedded brains GmbH 292

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.6 Review of the Software Planning Process

This section is according with ECSS (see 5.1 ECSS-M-ST-10C). However, the ECSS does not
provide any restriction regarding the content of the Planning Process output.

5.0 SOFTWARE DEVELOPMENT PROCESSES

This is an introductory section, which is according with ECSS, except that the text starting at

Each software development process may produce derived requirements.

is not compatible with ECSS. In ECSS, the high-level requirements and low-level requirements
are baselined respectively at SRR and PDR. They cannot change in later phases of the project,
which means that, contrary to this standard, no requirement can be derived from later phases
of software development.

5.1 Software Requirements Process

This is an introductory section. This is according with ECSS (see 5.2 ECSS-E-ST-40C). Note that
regarding requirements, the following correspondence between DO-178 and ECSS applies:

Table 2: DO and ECSS requirements definitions correspon-
dence

DO-178 ECSS
System Requirements SYSTEM (no specific definition)
High-level requirements System requirements

5.1.1 Software Requirements Process Objectives

This section is according with ECSS (see 5.2.2.1 ECSS-E-ST-40C).

5.1.2 Software Requirements Process Activities

This section is partially according with ECSS. See the following comments:

a. ECSS does not assign the responsibility to analyse the system inputs.

b. ECSS does not assign the responsibility to analyse the system inputs.

c. ECSS does not specify the need to have traceability between high-level requirements and
system.

d. This is according with ECSS (see 5.2.2.1 ECSS-E-ST-40C).

e. This is according with ECSS (see 5.2.4.5 ECSS-E-ST-40C and 5.8.3.1 ECSS-Q-ST-80C).

f. This is according with ECSS (see 7.2.1.2 ECSS-Q-ST-80C). Note that referring that the
requirements should be expressed in quantitative terms is equivalent to referring that
they are unambiguous. Tolerances for requirements is not explicitly specified in ECSS.
However, some requirements needs tolerance to be correct, hence ECSS implicitly covers
this topic.

© 2019, 2020, 2021 embedded brains GmbH 293

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

g. ECSS does not forbid the description of design or verification detail.

h. ECSS does not require explicit justification for derived high-level requirements.

i. ECSS does not require that the derived requirements to be provided to the system level.

j. ECSS does not specify requirements for data items.

5.2 Software Design Process

This section is in accordance with ECSS (see 5.4 and 5.5.2 ECSS-E-ST-40C).

5.2.1 Software Design Process Objectives

This section is partially according with ECSS (see 5.4 and 5.5.2 ECSS-E-ST-40C). The differences
between DO-178 and ECSS regarding this phase are outlined below:

• in ECSS the architecture is resulted from low level requirements, whereas in DO-178, the
architecture is resulted from high-level requirements.

• in DO-178 there is no division into Architectural and Detail Design phase as in ECSS. Both
of these phases belong to Software Design Process.

Regarding point b., ECSS admits the existence of derived low-level requirements as

the software requirements that are not traced to the system requirements allocated to␣
→˓software are justified;

(see 5.8.3.2 ECSS-E-ST-40C).

5.2.2 Software Design Process Activities

This section is partially according with ECSS. See below:

a. This is according with ECSS (see 5.8.3 ECSS-E-ST-40C and 6.3 ECSS-Q-ST-80C).

b. This is according with ECSS (see 5.8.3.2 ECSS-E-ST-40C). In ECSS it is implicit that the
low-level requirements should not compromise the high-level requirements. This would
result that there would be inconsistent low-level requirements.

c. This is according with ECSS, which states that dependability and safety analysis at each
software development milestone shall be updated and the results provided to the system
level (see 6.2.2 ECSS-Q-ST-80C).

d. This is according with ECSS (see 5.4.3.5 and 5.5.2.2 ECSS-E-ST-40C).

e. This is not specified in ECSS. If not implemented in ECSS software, it may be incompatible
with DO-178.

f. This according with ECSS (see 5.8.3.3 ECSS-E-ST-40C).

g. Not specified in ECSS. ECSS assumes that the inputs to this phase are correct.

5.2.3 Designing for User-Modifiable Software

User-Modifiable Software not defined in ECSS at the same sense of this standard. ECSS does not
allow software changes by the user and any changes in general without following the regression
testing (see 6.3.5.15 ECSS-Q-ST-80C and 5.10.2.1 ECSS-E-ST-40C). These changes can occur at

© 2019, 2020, 2021 embedded brains GmbH 294

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Maintenance (5.10 ECSS-E-ST-40C) or in flight modification (see 5.2.2.1 and 5.4.2.2 ECSS-E-
ST-40C), but they shall follow the regression approach.

5.2.4 Designing for Deactivated Code

This section is partially in accordance with ECSS. In ECSS admits the an

accidental activation

of deactivated code, but this cannot harm the system (see sections 6.2.6.5 and 6.3.5.30 of
ECSS-Q-ST-80C). Regarding point c., the ECSS does not contain an explicit similar requirement.
However, looking at the definition of deactivated code in ECSS, it can be inferred that it is in
accordance with the point c.

5.3 Software Coding Process

This section does not contain requirements.

5.3.1 Software Coding Process Objectives

This section in not in accordance with ECSS, since in ECSS, the source code is produced from
detailed design (see 5.5.3.1 ECSS-E-ST-40C).

5.3.2 Software Coding Process Activities

This section is partially according with ECSS. See below:

a. This is according with ECSS (see 5.5.3.1 and 5.8.3.5 ECSS-E-ST-40C).

b. This is according with ECSS (see 5.8.3.5 ECSS-E-ST-40C).

c. Not specified in ECSS. ECSS assumes that the inputs to this phase are correct.

d. This is according with ECSS (see 5.3.2.4 ECSS-E-ST-40C and 6.2.8 ECSS-Q-ST-80C).

5.4 Integration Process

This section does not contain requirements. The term integration has a different meaning in
this standard from the ECSS, as depicted in the below table:

Table 3: DO Integration definition ECSS correspondence

DO-178 ECSS
Integration Installation

5.4.1 Integration Process Objectives

This section is according with ECSS (see 5.7.2 ECSS-E-ST-40C).

5.4.2 Integration Process Activities

This section is partially according with ECSS. See below:

a. This is according with ECSS (see 5.7.2.4 ECSS-E-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 295

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

b. This is according with ECSS (see 5.7.2.1 ECSS-E-ST-40C).

c. This is according with ECSS (see 5.7.2.1 and 5.7.2.3 ECSS-E-ST-40C). Note: ECSS does
not separate the integration and loading activities.

d. Not specified in ECSS. ECSS assumes that the inputs to this phase are correct.

e. This is implicitly according with ECSS (see 6.2.3.4, 6.2.3.5 and 6.3.5 ECSS-Q-ST-80C).
When the software or target/compiling environment is changed, the software shall un-
dergo the regression approach

f. ECSS does not specify the need for the points 1 and 3. However, as depicted in point e.
the patched software shall undergo the regression approach, meaning that the point 2 is
met.

5.5 Software Development Process Traceability

This section is partially according with ECSS. See below:

a. ECSS does not require traceability between high-level and system requirements.

b. This is according with ECSS (see 5.8.3.2 ECSS-E-ST-40C).

c. ECSS requires that source code to be traced to units (see 5.8.3.5 ECSS-E-ST-40C) and not
to the requirements. However, following ECSS traceability flow: low-level requirements
to design to to source code, it is possible to derive the traceability of source code to low-
level requirements.

6.0 SOFTWARE VERIFICATION PROCESS

This section does not contain requirements.

6.1 Purpose of Software Verification

This section is according with ECSS (see 5.8 ECSS-E-ST-40C and 6.2.6 ECSS-Q-ST-80C). Note
that regarding point b., ECSS does not specify more than 1 level for low-level requirements.

6.2 Overview of Software Verification Process Activities

This section is partially according with ECSS. See below:

a. ECSS does not allow that the airborne software to be not identical to the tested software.

b. This is according with ECSS (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C).

c. Not specified in ECSS. ECSS does not specify that errors from one phase to be feedbacked
to previous phases.

d. This is according with ECSS (see 6.3.5.15 ECSS-Q-ST-80C).

e. This is according with ECSS (see 6.3.5.19 ECSS-Q-ST-80C). As a side note, it seems that
there is a gap in both standards in the sense that independence of alternative methods
(ex: inspection, analysis) for requirements verification is not covered.

6.3 Software Reviews and Analyses

© 2019, 2020, 2021 embedded brains GmbH 296

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

This section is according with ECSS (see 5.8.2). Note that the terms inspection and analysis
definitions are according with ECSS (see ECSS-S-ST-00-01C).

6.3.1 Reviews and Analyses of High-Level Requirements

This section is according with ECSS (see 5.8.3.1 and 5.8.3.13 ECSS-E-ST-40C). Point e. can be
implicitly derived from ECSS (see 5.3.3.1 ECSS-E-ST-40C and 6.2.1 ECSS-Q-ST-80C). Point f. is
not applicable (see analysis of DO-178 5.1.2).

6.3.2 Reviews and Analyses of Low-Level Requirements

This section is according with ECSS (see 5.8.3.2 and 5.8.3.13 ECSS-E-ST-40C). Point e. can be
implicitly derived from ECSS (see 5.3.3.1 ECSS-E-ST-40C and 6.2.1 ECSS-Q-ST-80C).

6.3.3 Reviews and Analyses of Software Architecture

This section is according with ECSS (see 5.8.3.3, 5.8.3.4 ECSS-E-ST-40C and 6.3.3.4 ECSS-Q-
ST-80C). Some remarks:

a. In ECSS, the architecture is verified against the low-level requirements.

b. In ECSS the protection mechanisms are referred at code level (see 5.8.3.5 ECSS-E-ST-
40C).

6.3.4 Reviews and Analyses of Source Code

This section is according with ECSS (see 5.8.3.5, 5.8.3.11 and 5.8.3.12 ECSS-E-ST-40C).

6.3.5 Reviews and Analyses of the Outputs of the Integration Process

This section is according with ECSS (see 6.3.6 ECSS-Q-ST-80C).

6.4 Software Testing and corresponding subsections

This overall approach is different ECSS (see against 5.5.3.2, 5.5.4, 5.6 and 5.8.3 ECSS-E-ST-
40C). The following list will outline the main observations taken from analysing this subsection
(from 6.4.1 to 6.4.4):

• Contrary to ECSS, DO-178 admits some requirements to not be tested in the target com-
puter environment (case of Software integration testing and Low-level testing), although
this is still the preferred solution according with 6.4.1.

• As for 6.4.2, 6.4.2.1 and 6.4.2.2, also ECSS specifies the need for Nominal and Robustness
tests.

• ECSS approach for testing is to start by Unit Tests with the goal to test all the software
Units. Then, integration tests are developed and exercised in the software to analyse the
interactions between software components. Note that regarding integration tests, ECSS
does not impose any goal to be achieved. The level of integration test to perform on the
software depends on what was agreed between the supplier and customer and is docu-
mented in the Integration Plan. Finally, the validation tests shall be specified and they
shall cover all low-level requirements (ECSS Technical specification) and high-level re-
quirements (ECSS Requirements baseline). This means that in ECSS the tests follow the

© 2019, 2020, 2021 embedded brains GmbH 297

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

software development cycle, by starting with the less complex type of tests (unit) and fol-
lowing to more complex type of tests (integration and then validation). This philosophy
assures that the next step of software can only start when the previous is successful (inte-
gration testing starts when unit test is successful and validation starts when integration is
met). ECSS states that both requirement and code coverage shall be 100 %, but does not
provide guidelines to achieve this goal.

The DO-178 approach is to define Hardware/Software Integration Testing, Soft-
ware/Software Integration Testing for testing high-level level requirements and achieve
code coverage (see 6.4.3). These tests are equivalent to the ECSS validation/integration
(although in ECSS integration do not aim to cover requirements) tests. Low-level testing
(see also 6.4.3) targets to verify the implementation of low-level requirements, by testing
each software Unit (similar to ECSS unit tests, although they do not aim to cover require-
ments). Although not preferred, DO-178 offers the possibility to substitute Low-level re-
quirement coverage by high-level test(s). DO-178 emphasis is on the correct coverage of
the requirements by the tests from start of test specification. This standard also states that
both requirement and code coverage shall be 100 % and provides guidelines to achieve
that goal (see 6.4.4 and subsections).

Note that since the final goal is the same, it is possible to translate the work done in test specifi-
cations from ECSS to DO-178, as explained following. The validation and integration tests are
equivalent to Hardware/Software Integration Testing or Software/Software Integration Testing
(ECSS validation tests may be seen as a more complex ECSS integration tests). The traceabil-
ity of integration tests to requirements has to be performed. The unit tests are equivalent to
Low-level testing. The traceability of unit tests to low-level requirements has to be performed.

6.4.5 Reviews and Analyses of Test Cases, Procedures, and Results

This section is according with ECSS (see 5.8.3 ECSS-E-ST-40C).

6.5 Software Verification Process Traceability

This section is partially according with ECSS (see 5.8.3, Software [unit/integration] test plan
and Software validation specification templates in ECSS-E-ST-40C). This point c is not required
by ECSS.

6.6 Verification of Parameter Data Items

This section is partially according with ECSS, being ECSS more restrictive. ECSS does not offer
the possibility to test parameter data items separately (see 6.2.6.6, 6.3.5.7 and 6.3.5.31 ECSS-
Q-ST-80C). Hence, software developed under ECSS, will met this section.

7.0 SOFTWARE CONFIGURATION MANAGEMENT PROCESS

This section is an introductory section and does not contain requirements. Its content is accord-
ing with ECSS description for Software Configuration Management Process (see 4.1 ECSS-M-
ST-40C).

7.1 Software Configuration Management Process Objectives

This section is a descriptive section and does not contain requirements. Its content is according
with ECSS Software Configuration Management Process Objectives (see 4.3 ECSS-M-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 298

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.2 Software Configuration Management Process Activities

This section is a descriptive section and does not contain requirements. Its content is according
with ECSS Software Configuration Management Process Activities (see 4.1.1 and 4.1.2 ECSS-
M-ST-40C).

7.2.1 Configuration Identification

This section is partially according with ECSS (see 5.3.1 Configuration management plan - DRD
and ECSS-M-ST-40C). Points a. and b. are according with ECSS. Points c. and d. are implicit in
ECSS. Point e. is not covered by ECSS.

7.2.2 Baselines and Traceability

This section is according with ECSS (see 5.3.1 ECSS-M-ST-40C).

7.2.3 Problem Reporting, Tracking, and Corrective Action

This section is in accordance with ECSS, although the Problem Report content differ slightly (see
5.2.5.2 ECSS-Q-ST-80C, 5.9.2.1 and 5.10.2.1 ECSS-E-ST-40C). Problem Report content will be
analyzed further in 11.17.

7.2.4 Change Control

This section is according with ECSS (see 5.3.1.5, 5.3.2 ECSS-M-ST-40C and 6.2.4 ECSS-Q-ST-
80C). Point b. is implicit (5.3.1.5 ECSS-M-ST-40C) in ECSS, since any change will cause the
change of Version and/or revision number.

7.2.5 Change Review

This section is according with ECSS (see 5.3.2.4 ECSS-M-ST-40C).

7.2.6 Configuration Status Accounting

This section is according with ECSS (see 5.3.3 ECSS-M-ST-40C).

7.2.7 Archive, Retrieval, and Release

This section is according with ECSS (see 5.3.7 ECSS-M-ST-40C, the need for back-ups is refer-
enced on the descriptive section 4.3.1).

7.3 Data Control Categories

ECSS does not define Software Control Categories for which the some activities of Configuration
Management does not apply. However, ECSS allow the Configuration Management Standards
to be tailored, according with project needs (see section 1 ECSS-M-ST-40C).

7.4 Software Load Control

The software Load Control is not defined in ECSS. Note however that the point b. is automati-
cally assured by ECSS (see 6.3.5.26 ECSS-Q-ST-80C).

© 2019, 2020, 2021 embedded brains GmbH 299

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.5 Software Life Cycle Environment Control

This section is partially according with ECSS (see 5.3.1.3 ECSS-M-ST-40C, 5.3.2.1 ECSS-E-ST-
40C and 7.3.5 ECSS-Q-ST-80C). ECSS states that the description development environment
shall be under configuration control. ECSS does not define specific Configuration Management
Process for (qualified) environment tools.

8.0 SOFTWARE QUALITY ASSURANCE PROCESS

This section does not contain requirements. It is an introductory section, which is according
with ECSS (see 4.1 ECSS-Q-ST-80C).

8.1 Software Quality Assurance Process Objectives

This is a descriptive section and does not contain requirements. The Software Quality Assurance
Process Objectives for this standard are in line with the ECSS (see 4.1 and, in general, all ECSS-
Q-ST-80C document). A note that the ECSS equivalent to conformity review is as follows:

Table 4: DO and ECSS conformity review correspondence

DO-178 ECSS
Conformity review Acceptance review

8.2 Software Quality Assurance Process Activities

The points below analyse the compatibility of this section with ECSS:

a. This is implicitly according with ECSS (see 6.1 ECSS-Q-ST-80C).

b. This is according with ECSS (see 5.2.1.5 and 6.2.6 ECSS-Q-ST-80C), part that the verifi-
cation of compliance is made against ECSS.

c. This is according with ECSS (see 5.8.2.1 ECSS-E-ST-40C and 6.2.6 ECSS-Q-ST-80C).

d. This list specify with more detail the Audit activities rather than in ECSS (see 5.2.3 ECSS-
Q-ST-80C). However, it is implicit that ECSS shall also perform these listed activities.

e. This is according with ECSS (see 6.2.6 ECSS-Q-ST-80C).

f. This is partially according with ECSS (see 6.2.4 and 6.3 ECSS-Q-ST-80C). ECSS states that
configuration management of life cycle data shall be controlled, but there is no definition
of control categories as in this standard.

g. This is partially according with ECSS (see 5.3.4.5 ECSS-E-ST-40C). In ECSS the software
is delivered to the customer, which shall install and run the acceptance tests. Upon suc-
cessful completion of this activity, the software is considered accepted.

h. This is according with ECSS (see 5.2.2 ECSS-Q-ST-80C).

i. This is according with ECSS (see 5.2.1 and 6.2.6 ECSS-Q-ST-80C).

8.3 Software Conformity Review

© 2019, 2020, 2021 embedded brains GmbH 300

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

This section is according with ECSS (see 6.3.6 ECSS-Q-ST-80C). The point i. is not specified in
ECSS in terms of certification, but in ECSS the re-used software shall be complemented in order
to met the project qualification needs (see 6.2.7 ECSS-Q-ST-80C).

9.0 CERTIFICATION LIAISON PROCESS

Certification Liaison Process is not defined in ECSS. This means that a software developed under
ECSS shall undergo this certification to be compliant with DO-178.

10.0 OVERVIEW OF CERTIFICATION PROCESS

Certification not specified in ECSS.

11.0 SOFTWARE LIFE CYCLE DATA

The points below analyse the compatibility of this section with ECSS:

a. This is implicitly according with ECSS (see 5.8.3 ECSS-E-ST-40C). No generic characteris-
tics for life cycle data are defined, but the correctness of the software outputs imply that
the listed characteristics are met.

b. This is according with ECSS (see 5.3.7 ECSS-M-ST-40C).

c. No configuration control levels is specified in ECSS. All life cycle data shall follow the
same configuration management procedures.

d. To be analysed against ECSS DRD - Document Requirements Definition in the following
subsections. The following subsections will be analysed against the ECSS DRD

11.1 Plan for Software Aspects of Certification

This document is not specified in ECSS. However, in ECSS some of these topics are covered by
other documents, as following:

a. Covered by ECSS (for example see SSS Annex B ECSS-E-ST-40C).

b. Covered by ECSS (for example see SSS Annex B ECSS-E-ST-40C). Note that it is not ex-
plicitly specified that the this introductory section shall emphasise safety and partitioning
concepts.

c. Certification not covered by ECSS. Software level and safety assessment are covered by
Software dependability and safety analysis report - Criticality classification of software
components (see 6.2.2 ECSS-Q-ST-80C).

d. Covered by ECSS (see SDP Annex O ECSS-E-ST-40C), except certification liaison.

e. Covered by ECSS (see SDP Annex O ECSS-E-ST-40C), except information regarding certi-
fication.

f. Covered by ECSS (see SDP Annex O ECSS-E-ST-40C).

g. Covered by ECSS (in ECSS standard these additional considerations shall be part of SDP,
Annex O ECSS-E-ST-40C).

h. Covered by ECSS (see SDP Annex O ECSS-E-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 301

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

11.2 Software Development Plan

The SDP is defined as a project deliverable in ECSS (see Annex O ECSS-E-ST-40C). Below is the
compatibility assessment between DO-178 and ECSS regarding the SDP topics:

a. Covered by ECSS (see Annex O ECSS-E-ST-40C), except references to the standards for
previously developed software.

b. Covered by ECSS (see Annex O ECSS-E-ST-40C).

c. Covered by ECSS (see Annex O ECSS-E-ST-40C).

11.3 Software Verification Plan

The SVP is defined as a project deliverable in ECSS (see Annex I ECSS-E-ST-40C). Below is the
compatibility assessment between DO-178 and ECSS regarding the SVP topics:

a. Covered by ECSS (see Annex I ECSS-E-ST-40C).

b. Covered by ECSS (see Annex I ECSS-E-ST-40C).

c. Covered by ECSS (see Annex I ECSS-E-ST-40C).

d. Covered by ECSS (see Annex I ECSS-E-ST-40C).

e. Covered by ECSS (see Annex I ECSS-E-ST-40C).

f. ECSS does not specify the need for an explicit section covering Partitioning Considera-
tions.

g. In ECSS this information is not in SVP, but in SDP (see Annex O ECSS-E-ST-40C).

h. This is implicitly covered by ECSS (see Annex I ECSS-E-ST-40C taking into account 6.3.5
ECSS-Q-ST-80C). Since the modified areas should be subjected to regression approach (i.e
reverified), they shall follow the methods described for the verification of software.

i. In ECSS this information is not in SVP, but in SRF (see Annex N ECSS-E-ST-40C).

j. Not explicitly specified by ECSS.

11.4 Software Configuration Management Plan

The SCM is defined as a project deliverable in ECSS (see Annex A ECSS-M-ST-40C). Below is
the compatibility assessment between DO-178 and ECSS regarding the SCM topics:

a. Covered by ECSS (see Annex A ECSS-M-ST-40C).

b. Covered by ECSS (see Annex A ECSS-M-ST-40C), apart that ECSS does not define Config-
uration Control levels.

c. Covered by ECSS (see Annex A ECSS-M-ST-40C).

d. Covered by ECSS (see Annex A ECSS-M-ST-40C). The later subsections will analyse if
ECSS also defines each of the SCM data items as in DO-178.

e. Covered by ECSS (see Annex A ECSS-M-ST-40C).

11.5 Software Quality Assurance Plan

© 2019, 2020, 2021 embedded brains GmbH 302

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

The SQA is defined as a project deliverable in ECSS, but designated as Software Product As-
surance Plan (see Annex B ECSS-Q-ST-80C). Below is the compatibility assessment between
DO-178 and ECSS regarding the SQA topics:

a. Covered by ECSS (see Annex B ECSS-Q-ST-80C).

b. Covered by ECSS (see Annex B ECSS-Q-ST-80C).

c. Covered by ECSS (see Annex B ECSS-Q-ST-80C).

d. This is implicit in ECSS (see 5.2 ECSS-Q-ST-80C). The SQA activities shall start along with
the project activities.

e. Covered by ECSS (see Annex B ECSS-Q-ST-80C).

f. Covered by ECSS (see Annex B ECSS-Q-ST-80C).

g. Covered by ECSS (see Annex B ECSS-Q-ST-80C).

11.6 Software Requirements Standards

In ECSS the Software Requirements Standards to be used in the project are to be placed in SDP
(see Annex O ECSS-E-ST-40C) and SPAP (see Annex B ECSS-Q-ST-80C). The points referred in
this section are not explicitly outlined in ECSS.

11.7 Software Design Standards

In ECSS the Software Design Standards to be used in the project are to be placed in SDP (see
Annex O ECSS-E-ST-40C), SPAP (see Annex B ECSS-Q-ST-80C) and SDD (see Annex F ECSS-E-
ST-40C). The points a., b. (see Annex F ECSS-E-ST-40C) and f. (see Annex B ECSS-Q-ST-80C)
are specified in ECSS. The points c. to e. are not specified in ECSS.

11.8 Software Code Standards

In ECSS the Software Code Standards to be used in the project are to be placed in SDP (see
Annex O ECSS-E-ST-40C) and SPAP (see Annex B ECSS-Q-ST-80C). The point a. is specified in
ECSS (see Annex O ECSS-E-ST-40C). The points b. to e. are not specified in ECSS.

11.9 Software Requirements Data

The Software Requirements Data is defined as a project deliverable in ECSS (see Annex B and
Annex C ECSS-E-ST-40C). Below is the compatibility assessment between DO-178 and ECSS
regarding the Software Requirements Data topics:

a. Covered by ECSS (see Annex B ECSS-E-ST-40C).

b. Covered by ECSS (see Annex B ECSS-E-ST-40C).

c. Covered by ECSS (see Annex B ECSS-E-ST-40C).

d. Covered by ECSS (see Annex B ECSS-E-ST-40C).

e. Covered by ECSS (see Annex B ECSS-E-ST-40C).

f. Covered by ECSS (see Annex B and Annex C ECSS-E-ST-40C).

g. Covered by ECSS (see Annex B ECSS-E-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 303

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

h. Not explicitly specified by ECSS.

11.10 Design Description

The Design Description is defined as a project deliverable in ECSS (see Annex D, Annex E and
Annex F ECSS-E-ST-40C). Below is the compatibility assessment between DO-178 and ECSS
regarding the Software Requirements Data topics:

a. Covered by ECSS (see Annex D ECSS-E-ST-40C). As stated in ECSS

SRS shall provide where applicable the link between the requirements and the system␣
→˓states and modes.

b. Covered by ECSS (see Annex F ECSS-E-ST-40C).

c. Covered by ECSS (see Annex E and Annex F ECSS-E-ST-40C).

d. Covered by ECSS (see Annex F ECSS-E-ST-40C).

e. Covered by ECSS (see Annex D ECSS-E-ST-40C).

f. Covered by ECSS (see Annex F ECSS-E-ST-40C).

g. Covered by ECSS (see Annex F ECSS-E-ST-40C).

h. Not specified in ECSS.

i. Covered by ECSS (see Annex F ECSS-E-ST-40C).

j. Covered by ECSS (see Annex D ECSS-E-ST-40C). It is explicit from requirements trace-
ability.

k. Not specified in ECSS Design Description. The deactivated code is verified in the ECSS
Software Verification Report (see Annex M ECSS-E-ST-40C).

l. Covered by ECSS (see Annex F ECSS-E-ST-40C).

11.11 Source Code

The requirement in this section is implicit in ECSS (see Annex E ECSS-M-ST-40C).

11.12 Executable Object Code

This section does not contain requirements.

11.13 Software Verification Cases and Procedures

The Software Verification Cases and Procedures can be found in the ECSS documents Software
validation plan (see Annex J ECSS-E-ST-40C), Software [unit/integration] test plan (see Annex
K ECSS-E-ST-40C) and Software validation specification (see Annex L ECSS-E-ST-40C). The
content in this section is according with ECSS (see the ECSS Annexes outlined above).

11.14 Software Verification Results

The Software Verification Results is defined as a project deliverable in ECSS (see Software
verification report - Annex M ECSS-E-ST-40C). The content of this section is according with
ECSS (see the ECSS Annex outlined above).

© 2019, 2020, 2021 embedded brains GmbH 304

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

11.15 Software Life Cycle Environment Configuration Index

The Software Life Cycle Environment Configuration Index information is on the ECSS Software
Configuration File (see Annex E ECSS-M-ST-40C). The content of this section is according with
ECSS (see the ECSS Annex outlined above).

11.16 Software Configuration Index

The Software Configuration Index information is on the ECSS Software Configuration File (see
Annex E ECSS-M-ST-40C). The content of this section is according with ECSS (see the ECSS
Annex outlined above).

11.17 Problem Reports

ECSS does not define a template (DRD) for the software problem reports format. However, the
information which shall be in a problem report is defined (see 5.2.5 ECSS-Q-ST-80C) and is
according with this standard.

11.18 Software Configuration Management Records

ECSS does not define Software Configuration Management Records document. However some
contents for the Software Configuration Management Records are defined in ECSS (see ECSS-
M-ST-40C).

11.19 Software Quality Assurance Records

The Software Quality Assurance Records information is present in ECSS in form of Software
Product Assurance Reports (see 5.2.2 ECSS-Q-ST-80C), including the Software Product Assur-
ance Milestone Reports (see Annex C ECSS-Q-ST-80C).

11.20 Software Accomplishment Summary

This document is not specified in ECSS.

11.21 Trace Data

Below is the compatibility assessment between DO-178 and ECSS regarding the Trace Data:

a. Not specified in ECSS.

b. Specified in ECSS (see Annex D and Annex E ECSS-E-ST-40C).

c. Not specified in ECSS.

d. Specified in ECSS (see Annex L ECSS-E-ST-40C).

e. Specified in ECSS (see Annex K and Annex L ECSS-E-ST-40C).

f. Not specified in ECSS.

Note that ECSS defines other traceabilities which can be used to derive the traceabilities not
specified.

© 2019, 2020, 2021 embedded brains GmbH 305

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

11.22 Parameter Data Item File

This is not in accordance with ECSS. ECSS only requires that each configuration to be tested
(see 6.3.5 ECSS-Q-ST-80C). In addition, in ECSS, the Parameter Data Item File is not considered
a separated Software Life Cycle Data, but as part of the code.

12.0 ADDITIONAL CONSIDERATIONS

This is an introductory section. The requirement in this section

The use of additional considerations and the proposed impact on the guidance provided in␣
→˓the other sections of this document should be agreed on a case-by-case basis with the␣
→˓certification authorities.

cannot be linked to ECSS, since no certification is defined there.

12.1 Use of Previously Developed Software

The requirement in this section is according with ECSS (see 6.2.7 ECSS-Q-ST-80C).

12.1.1 Modifications to Previously Developed Software

This section is according with ECSS (see 6.2.7 ECSS-Q-ST-80C). Analysis against section 12.1.4
of this standard is done below.

12.1.2 Change of Aircraft Installation

This section is according with ECSS (see 6.2.3, 6.3.5 and 6.2.7 ECSS-Q-ST-80C).

12.1.3 Change of Application or Development Environment

Although this section is more detailed, it is according with with ECSS (see 5.6, 6.2.3 and 6.3.5
ECSS-Q-ST-80C). The points not specified in ECSS are implicit that they shall be met.

12.1.4 Upgrading a Development Baseline

This section is according with ECSS (see 6.2.7 ECSS-Q-ST-80C), apart that ECSS does not spec-
ify certification aspects.

12.1.5 Software Configuration Management Considerations

Not specified in ECSS.

12.1.6 Software Quality Assurance Considerations

This section is according with ECSS (see 6.2.7 ECSS-Q-ST-80C), although ECSS just requires
that the changes to be documented in the reuse file.

12.2 Tool Qualification

No text in this section.

© 2019, 2020, 2021 embedded brains GmbH 306

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

12.2.1 Determining if Tool Qualification is Needed

This is according with ECSS (see 6 ECSS-Q-HB-80-01A). ECSS text is based on this standard.

12.2.2 Determining the Tool Qualification Level

This is according with ECSS (see 6 ECSS-Q-HB-80-01A). ECSS text is based on this standard.

12.2.3 Tool Qualification Process

To be analysed in DO-330 section.

12.3 Alternative Methods

This is according with ECSS (see 5.6 ECSS-Q-ST-80C), in the sense that any method to be used
shall be evaluated regarding its suitability. In ECSS there is no concept of

Alternative Method

Note that, also, the methods in ECSS are agreed by the customer (no certification authority
involved, as in this standard).

12.3.1 Exhaustive Input Testing

This is according with ECSS (see 6.3.5.29 ECSS-Q-ST-80C).

12.3.2 Considerations for Multiple-Version Dissimilar Software Verification

Multiple-Version Dissimilar Software is not specified in ECSS. The subsections of 12.3.2 are
skipped.

12.3.3 Software Reliability Models

This section does not contain requirements. Also in ECSS, ECSS advises to not use reliability
models for space software (see ECSS-Q-HB-80-03A).

12.3.4 Product Service History

This section is according with ECSS (see 6.2.7.8 ECSS-Q-ST-80C and 7.6 ECSS-Q-HB-80-01A).
Note that more details are in ECSS HandBook.

12.3.4.1 Relevance of Service History

This section is partially according with ECSS (see 7.6 and Annex B ECSS-Q-HB-80-01A). The
points a. and f. are not pointed out by ECSS.

12.3.4.2 Sufficiency of Accumulated Service History

This section is according with ECSS (see 7.6 ECSS-Q-HB-80-01A). ECSS is more complete in
what is required to assess the Sufficiency of the accumulated Service History.

© 2019, 2020, 2021 embedded brains GmbH 307

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

12.3.4.3 Collection, Reporting, and Analysis of Problems Found During Service History

This section is partially according with ECSS (see 7.6 ECSS-Q-HB-80-01A). The points a.1.vi.,
a.2. and a.3. are not specified in ECSS. The point c. is implicit in ECSS (these safety-related
problems are the major problems).

12.3.4.4 Service History Information to be Included in the Plan for Software Aspects of␣
→˓Certification

The Plan for Software Aspects of Certification is not specified in ECSS. In ECSS the rationale
for the applicability for the parameters of the Product Service History of a software product to
be used shall be defined in the Software Reuse File (see 7.6 ECSS-Q-HB-80-01A and 6.2.7.8
ECSS-Q-ST-80C). Below is the compatibility assessment between DO-178 and ECSS regarding
the points of this section.

a. Partially covered by ECSS

b. Covered by ECSS

c. Not covered by ECSS

d. Not covered by ECSS

e. Covered by ECSS

f. Implicitly covered by ECSS

g. Covered by ECSS

h. Implicitly covered by ECSS.

8.2.1.1 Conclusions
Both standards are compatible, except for the main differences pointed out below:

• Life-cycle differ slightly between DO and ECSS:

– In ECSS the low-level requirements definition is separate from Design phase.

– In ECSS earlier phases in the project cannot be reentred (once a document is base-
lined, it shall not change).

– in ECSS no derived requirements can come from later phases after low-level require-
ments definition.

• Verification approach: the DO focuses on testing the integrated product first and then test-
ing by unit, when coverage cannot be achieved by a validation test, ECSS starts testing at
unit level and going-up as soon as the units begin to integrate and ending in the validation
tests (following the product incremental development). Note also in DO every test needs
to be traced for a requirement, whereas in ECSS this is only required for the validation
tests.

• In ECSS there is no definition of Configuration Control levels

• In ECSS certification is not considered

© 2019, 2020, 2021 embedded brains GmbH 308

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• DO-178 covers (has requirements) for some software-specific topics not covered by ECSS
(ex: Multiple-Version Dissimilar Software)

The differences in Life-cycle and verification approach does not have implications in the final
product of a DO software against ECSS software (these are different paths to achieve the same
goal). Hence for a qualification of a ECSS software to DO-178 standard, it is necessary to take
into account the topics not covered by ECSS and that the ECSS software, in this case, will
require certification as described in DO-178.

8.2.2 DO-330
ECSS provides considerations on Tool Qualification, particularly the level assignment and qual-
ification method to be applied according with this standard (see section 6 ECSS-Q-HB-80-01A),
but there is no specific standard for tool qualification in ECSS. In ECSS at tool to be qualified
shall follow the normal software development standards and guidelines (ECSS-E-ST-40C and
ECSS-Q-ST-80C). Since this standard follows the philosophy of the DO-178 standard, the over-
all main differences between this one and ECSS are the same as outlined for the DO-178, in the
previous section. Hence, the considerations for qualifying a Tool developed under ECSS to DO
are the same for the tool’s project qualification from ECSS to DO.

8.2.3 DO-333
In ECSS, formal methods are described as a mean to apply the ECSS-E-ST-40C standard (see
Annex B ECSS-E-HB-40A). ECSS does not provide specific requirements on formal methods
usage, but only states the possibility to use this approach on the following situations:

• Logical Model Description (see 6.2.3 ECSS-Q-ST-80C and Annex D ECSS-E-ST-40C).

• Software quality requirements verification (see 6.2.6 ECSS-Q-ST-80C and Annex I ECSS-
E-ST-40C).

This standard does not contain requirements which are contradictory to the ECSS standard.
However, software developed under ECSS standard and using formal methods, shall have in
consideration this standard, if a qualification for DO is foreseen.

8.3 ISO 26262 Analysis
The increase of technological complexity in electrical and/or electronic (E/E) systems raises
the risks from systematic and random failures. Thus, a standardized set of practices emerged to
avoid risk by providing a set of requirements and processes that allows one to minimize failures.
ISO 26262 appeared as the adaptation of IEC 61508 (the generic functional safety standard for
electrical and electronic (E/E) systems) to comply with the needs of the automotive industry
with respect to electrical and/or electronic (E/E) systems within road vehicles.

This section presents the analysis of compatibility between ISO 26262 and ECSS. The applied
methodology was to analyse each section of the ISO 26262 standard and evaluate the cor-
responding clauses, if there is correspondence, on the ECSS. Furthermore, the compatibility
of ISO 26262 work products (that represents the expected output of one or more associated
requirements) with the ECSS artifacts is presented at the end of each corresponding part.

© 2019, 2020, 2021 embedded brains GmbH 309

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

ISO 26262 lifecycle

ISO 26262 is divided into three phases: concept phase, product development and start of pro-
duction as depicted in figure ISO 26262 Lifecycle.

During the concept phase, the item shall be defined, hazard analysis and risk assessment per-
formed based on the item (hazards are classified and assigned with an Automotive Safety In-
tegrity Level). Safety goals are derived from the hazards and are assigned with the hazard
Automotive Safety Integrity Level (ASIL) classification. Functional safety requirements are es-
tablished based on the safety goals (inheriting the ASIL classification) and are allocated to
preliminary architectural elements of the item or to external measures.

In the product development phase at the system level, the item is developed from a system level
perspective upon the V-model approach. Concerning the V-model, on the left branch of the
V, the technical safety requirements, system architecture, system design and implementation
are specified. On the right branch of the V, the system integration, verification, validation and
functional safety assessment are specified.

Being developed at the system level, it is implied that both software and hardware are con-
sidered. Again a V-model is used in which, the specific (software or hardware) requirements,
design and implementation are on the left branch, and on the right branch, specific (software
or hardware) integration, testing and verification are performed.

Finally, in the start of production phase the production processes related to the functional safety
goals of the item are specified, e.g., safety-related special characteristics, and the development
and management of instructions for the maintenance, repair and decommissioning of the item.

1 ISO 26262 - Part 1: Vocabulary

This part of the standard describes the terms and definitions used in all parts of ISO 26262.
The equivalent of this part in ECSS standards is found in ECSS-S-ST-00-01C [ECS12b] and
specific definitions for software systems are detailed in Section 3 of ECSS-E-ST-40C [ECS09b]
and ECSS-Q-ST-80C [ECS17d].

2 ISO 26262 - Part 2: Management of functional safety

This part of ISO 26262 specifies the requirements for functional safety management for auto-
motive applications, covering the following clauses (each of the clauses is detailed in the next
subsections):

• Overall safety management;

• Safety management during the concept phase and the product development;

• Safety Management after the item’s release for production.

2.1 Overall safety management

This clause defines the requirements for the organizations that either are responsible for the
safety lifecycle or that perform safety activities in the safety lifecycle. The organizations shall
comply with the following sub-clauses: safety culture, competence management, quality man-
agement during the safety lifecycle and project tailoring of the safety lifecycle.

© 2019, 2020, 2021 embedded brains GmbH 310

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Fig. 1: ISO 26262 Lifecycle

© 2019, 2020, 2021 embedded brains GmbH 311

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

2.1.1 Safety culture

ISO 26262 presents requirements to the organizations and personnel involved in safety activities
in order to foster support and achieve the functional safety of the specified items.

ECSS follows the same mindset and specifies requirements for organizations and personnel
involved in product development, such as: (i) responsibilities of the involved personnel and
organizations; and (ii) guaranteeing that the resources involved in the project have the required
skills, etc. (see 5.1.1 ECSS-Q-ST-10C [ECS16]).

2.1.2 Competence management

Both ECSS and ISO 26262 define competence requirements (i.e., skills, competences and qual-
ifications).

ECSS specifies the personnel working in all product disciplines (see 5.1.1.1 ECSS-Q-ST-10C).
Additionally, an assessment shall be performed jointly by the customer and the supplier to verify
if additional skills, resources, or facilities are needed to complete the project (see 4.1.5 ECSS-
M-ST-10C [ECS09c]).

2.1.3 Quality management during the safety lifecycle

For this sub-clause, ISO 26262 defines that the organizations executing a safety lifecycle shall
have an operational quality management system that complies with a quality standard (as for
instance ISO 9001).

Concerning the quality assurance requirements, ECSS specifies them in ECSS-Q-ST-20C
[ECS18b].

2.1.4 Project-independent tailoring of the safety lifecycle

ISO 26262 allows the tailoring of the safety lifecycle across different item developments. How-
ever, such tailoring does not contemplate the removal of sub-phases, tasks or activities from the
lifecycle.

With respect to tailoring, ECSS allows the tailoring of activities as long as in the case of require-
ments not being applicable without change, the modifications must be recorded and justified
(see 7.3 ECSS-S-ST-00C [ECS08e]). Moreover, the tailoring of activities can be performed based
on software criticality (see annex R ECSS-E-ST-40C).

2.2 Safety management during the concept phase and the product development

This clause has the following two objectives: (i) define the safety management roles and re-
sponsibilities; and (ii) specify the requirements for the safety management during the concept
phase and the development phases.

2.2.1 Roles and responsibilities in safety management

ISO 26262 specifies that a project manager shall be appointed at the initiation of the item
development and shall be given the corresponding authority and responsibility to perform safety
management.

© 2019, 2020, 2021 embedded brains GmbH 312

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

In ECSS, each supplier shall appoint a product assurance manager with sufficient authority and
independence to ensure their responsibilities (see 5.1.1 ECSS-Q-ST-10C). Moreover, a safety
manager shall equally be appointed by the supplier (see 5.2.1.2 ECSS-M-ST-10C and 5.4.2
ECSS-Q-ST-40C [ECS17c]). The safety manager role can be fulfilled by the product assurance
manager as long as the customer agrees.

2.2.2 Planning and coordination of the safety activities

ISO 26262 specifies the safety manager responsibilities concerning the planning and coordina-
tion of the functional safety activities in the development phases of the safety lifecycle. Besides
the safety manager responsibilities, this sub-clause additionally presents what shall be included
in the safety plan.

ECSS specifies partially the same for both the safety manager responsibilities (see 5.4 ECSS-
Q-ST-40C) and what shall be included in the safety plan (see 5 ECSS-Q-ST-40C). However, in
ECSS the safety plan is referred as the safety programme plan and may be included as part of
an overall project product assurance plan.

2.2.3 Progression of the safety life cycle

ISO 26262 specifies that safety activities in subsequent sub-phases of the safety lifecycle shall
be started only when there is sufficient information from the pertinent sub-phases.

ECSS defines that all plans concerning the lifecycle shall be finalized before the start of the re-
lated activities. Additionally, any activity shall start only when each procedure and/or standard
of an activity shall be reviewed (see 6.2.1 ECSS-Q-ST-80C). Moreover, ECSS specifies a progress
report (see annex E ECSS-M-ST-10C), where the actual information concerning the status of the
project shall be provided to all actors.

2.2.4 Tailoring of the safety activities

Just as mentioned in Section 3.1.4 Project-independent tailoring of the safety lifecycle, the
tailoring of safety activities is supported in ECSS as long as the modifications are recorded
and justified. In this sub-clause, the modifications shall be performed according to the change
management (see 5.3.2 ECSS-M-ST-40C [ECS09d]).

2.2.5 Safety case

In this sub-clause, ISO 26262 establishes that item’s with at least one safety goal with an ASIL
classification shall have a safety case.

ECSS complies with this requirement through 7 ECSS-Q-ST-40C (Safety analysis requirements
and techniques), specifically through 7.3 Assessment and allocation of requirements.

2.2.6 Confirmation measures: types, independency and authority

ISO 26262 specifies the confirmation measures required by the safety plan to review, verify and
validate if the safety plan is sufficiently complete and complies with the standard requirements.

Concerning the confirmation measures, ECSS specifies them in the safety and dependability
standards (ECSS-Q-ST-40C and ECSS-Q-ST-30C [ECS17b]) and defines that to successfully com-
plete the safety process, a positive evaluation shall be given to all verification items associated
with a given hazard.

© 2019, 2020, 2021 embedded brains GmbH 313

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

2.2.7 Functional safety audit

ECSS specifies safety audits (see 5.4.3 ECSS-Q-ST-40C). However, safety audits shall be in com-
pliance with ECSS-Q-ST-10 and the general requirements of project audits (ECSS-M-ST-10C).

2.2.8 Functional safety assessment

ISO is in accordance to what is specified for the safety risk assessment (5.5 ECSS-Q-ST-40C)
and with the assessment of safety requirements (see 7.3 ECSS-Q-ST-40C).

2.3 Safety Management after the item's release for production

The intention of this clause is to define the responsibilities of the organizations and persons
responsible for functional safety after the item’s release for production.

2.3.1 Responsibilities, planning and required processes

In ECSS, it is described that the supplier shall identity the necessary personnel for all product
assurance disciplines, including the product maintenance (see 5.1.1 ECSS-Q-ST-10C). Moreover,
the safety manager shall have the required authority to maintain the safety programme plan
(see 5.4 ECSS-Q-ST-40C).

2.4 Work products

ISO 26262 Part 2: Management for functional safety requires the following work products:

• Organization-specific rules and processes for functional safety. In ECSS, the objective of
this work product is described in the safety programme plan (see annex B ECSS-Q-ST-
40C). However, general requirements for the organizations are defined in the PAP (annex
A ECSS-Q-ST-10C) and the PMP (annex A ECSS-M-ST-10C).

• Evidence of competence. In the PAP, the organization shall specify the personnel working
on product assurance disciplines and their respective skills, demonstrating their compe-
tence for the execution of the proposed activities.

• Evidence of quality management. In ECSS, the evidence of quality management is ensured
through the quality assurance plan (see annex A ECSS-Q-ST-20C).

• Safety plan. In ECSS, the correspondent artifact is the safety programme plan, where in
annex B of ECSS-Q-ST-40C its content is specified. Moreover, the safety programme plan
may be incorporated within the product assurance plan if agreed between the relevant
parties.

• Safety case. In ECSS, the objective of this work product is spread throughout the safety
programme plan, safety verification tracking log (see annex C ECSS-Q-ST-40C) and the
safety analysis report (see annex D ECSS-Q-ST-40C).

• Project plan. ECSS specifies the project management plan (PMP) to state the purpose
and provide an introduction for the project management system, thus, following the same
mindset as ISO 26262.

• Functional safety assessment plan. In ECSS, the objective of this work product is covered
by the safety programme plan, the risk management plan (see annex B ECSS-M-ST-80C

© 2019, 2020, 2021 embedded brains GmbH 314

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

[ECS08d]), safety analysis report (see annex D ECSS-Q-ST-40C) and the risk assessment
report (see annex C ECSS-M-ST-80C).

• Confirmation measures reports. In ECSS, this work product is spread throughout the
following work products: (i) safety programme plan; (ii) dependability plan (see annex C
ECSS-Q-ST-30C); (iii) Audit plan and schedule (see PAF); and (iv) the risk management
plan (see annex B ECSS-M-ST-80C).

• Evidence of field monitoring. ECSS complies with this work product by specifying on-
board monitoring, where the capability to monitor on-board a set of on-board parameters
specified by ground segment shall be provided (see 5.8.6 ECSS-E-ST-70-11C [ECS08a]).

3 ISO 26262 - Part 3: Concept phase

Part 3 of ISO 26262 specifies the requirements for the concept phase of the automotive applica-
tions development. The following clauses are detailed in this part:

• Item definition;

• Initiation of the safety lifecycle;

• Hazard analysis and risk assessment;

• Functional safety concept.

3.1 Item Definition

This clause specifies how an item shall be described such that subsequent activities in the life-
cycle can progress. This includes the description of the functional and non-functional require-
ments, its dependencies with other items and the environment.

For software items, ECSS follows the same approach in the system requirement process by con-
sidering the following activities: system requirements analysis, system verification and system
integration and control. These are defined in 5.2 ECSS-E-ST-40C, 5.4.2 ECSS-E-ST-40C and
6.3.2.4 ECSS-Q-ST-80C.

3.2 Initiation of the safety life cycle

In this clause, ISO 26262 establishes the difference between the development of a new item
and the modification of an existing item, by defining additional requirements in case of an item
modification.

ECSS covers the modification of a software product in 5.10.4 ECSS-E-ST-40C and the reuse of
existing software in the development of a new item in 5.4.3.7 ECSS-E-ST-40C.

3.3 Hazard Analysis and Risk Assessment

The goal of this clause is to identify and categorize the hazards that malfunctions in the item
under definition can trigger and formulate safety goals that allows one to prevent or mitigate
such events. ISO 26262 divides the analysis of hazards and risk assessment into different topics,
namely:

• Initiation of the hazard analysis and risk assessment;

• Situation analysis and hazard identification;

© 2019, 2020, 2021 embedded brains GmbH 315

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Classification of hazardous events;

• Determination of ASIL and safety goals;

• Verification.

In ISO 26262 the risk assessment of hazardous events considers three parameters, namely sever-
ity, likelihood and controllability, while in ECSS the parameters considered are severity and
likelihood. The results of this analysis are taken into account into the determination of the ASIL
level (mapped from the list of possible values in Table 4) and the respective safety goals for the
item under analysis, which inherit the highest ASIL level of the hazardous event.

ECSS-Q-ST-80C (see 5.3.1) specifies that risk management for software shall be performed by
cross-referencing to the project risk policy, as specified in ECSS-M-ST-80 (this standard defines
the principles and requirements for integrated risk management of space projects, where in
section 5.2 the steps and tasks are identified).

The analysis and classification of hazardous events shall be performed according to the follow-
ing standards: (i) in ECSS-M-ST-80 (see 5.2.1), the risk index and magnitude are established
through the combination of the severity and the likelihood of events; (ii) ECSS-Q-ST-40C (see
5.5), the steps to perform the safety risk assessment and control are detailed.

In ECSS the severity of potential consequences of the hazardous events are identified and cate-
gorized in Table 6-1 of ECSS-Q-ST-40C (see 6.4) (the criteria shall be agreed between the cos-
tumer and supplier). Furthermore, the criticality of the functions of critical functions, hardware
and operations must be assigned following the categories defined in Table 5-2 of ECSS-Q-ST-30,
in which criticality is related to the severity of hazardous events. Then, the criticality category
of a software product (A,B,C,D) is assigned based on the criticality assigned to the most critical
function it implements and meeting the criteria defined in Table 5-3 of ECSS-Q-ST-30 and the
requirements in 5.4.2.

3.4 Functional Safety Concept

ISO 26262 expects that functional safety requirements are derived from the safety goals and
then allocated to preliminary architectural elements or to external measures.

The correspondent clause in ECSS is detailed in ECSS-Q-ST-40C, chapter 6 and 7, where the
requirements for Safety Engineering are detailed, for instance requiring their identification and
traceability from system level into the design. Concerning software, the safety requirements
must be specified in the Software System Specification (SSS) and Software Requirements Spec-
ification documents, as specified in ECSS-E-ST-40C.

3.4.1 Validation criteria

ISO 26262 specifies that the acceptance criteria for safety validation shall be specified consid-
ering the functional safety requirements.

ECSS validation is performed by tests that shall include the demonstration of nominal, contin-
gency and emergency operational modes (see 8.4.1 ECSS-Q-ST-40C).

Furthermore, the acceptance criteria should be defined in the project risk management policy
and considered in the tailoring of the project specific safety requirements.

© 2019, 2020, 2021 embedded brains GmbH 316

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

3.4.2 Verification of the functional safety concept

ECSS follows the same mindset as ISO 26262 for the verification of the functional safety concept
(see 8 ECSS-Q-ST-40C).

3.5 Work products

ISO 26262 Part 3: Concept Phase requires the following work products:

• Item definition. In this work product, the item functional and non-functional requirements
and dependencies between other items and the environment are specified. In ECSS, this
information is covered by the requirements baseline. For software, this is part of the
software system specification (annex B ECSS-E-ST-40C) where the system requirements
are defined by the customer and delivered to the supplier, and the technical specification,
specifically the software requirements specification (annex D ECSS-E-ST-40C) where the
software requirements are specified by the supplier as a response for the requirements
baseline.

• Hazard analysis and risk assessment. In ECSS, hazard analysis and risk assessment are
specified throughout the following artefacts: (i) safety programme plan, where the plan-
ning and execution of safety analysis is specified; (ii) safety analysis report including
hazards reports (annex D ECSS-Q-ST-40C), which contains the results of the systematic
identification, evaluation, reduction, verification and tracking of hazards; (iii) the risk
management plan (annex B ECSS-M-ST-80C), where it is described the identification and
assessment process and procedures for evaluating the critical risk items and domains; and
(iv) the risk assessment report (annex C ECSS-M-ST-80C) that describes what was done
during the identification and assessment exercise.

• Impact analysis. In ISO 26262, this work product specifies the analysis carried out to iden-
tify, describe and assess the impact a modification has on the item. In ECSS, this is part of
the following artefacts: (i) the configuration management plan (see annex A ECSS-M-ST-
40C), where change assessments shall be carried out; (ii) the software dependability and
safety analysis report; and (iii) the modification documentation (included in the mainte-
nance file).

• Safety plan. See safety plan work product in Section 2.4.

• Safety goals. The term safety goal encompasses the top-level safety requirements that are
derived from the safety analysis and risk assessments. Thus, in ECSS the safety goals are
specified in the safety analysis report and hazards reports and the risk assessment report.

• Verification review report of the hazard analysis and risk assessment and the safety goals.
In ECSS, although the verification process of the hazard analysis and risk assessment is
specified in the safety programme plan and in the risk management plan, the correspon-
dent verification reports and follow up actions are presented in the risk assessment report
and in the safety verification tracking log (annex C ECSS-Q-ST-40C).

• Functional safety concept. In ECSS, the objectives of the functional safety concept is
spread throughout various artefacts such as: (i) the safety programme plan; and (ii)
safety analysis report including hazard reports. In these artefacts, the safety requirements
are derived from the safety analysis, specified and then traced from system level into the
design. Concerning software, the following artefacts specify the safety requirements and

© 2019, 2020, 2021 embedded brains GmbH 317

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

trace them to software elements: (i) the software requirements specification; and (ii) the
software system specification; and (iii) the software design document.

• Verification report of the functional safety concept. This ISO 26262 work product is cov-
ered in ECSS throughout the safety verification tracking log (annex C ECSS-Q-ST-40C).
Concerning software, this work product is covered by the software verification report (see
annex M ECSS-E-ST-40C).

4 ISO 26262 - Part 4: System level

This part specifies the requirements for product development at system level for automotive
applications, it includes the following clauses:

• Initiation of product development at the system level;

• Specification of the technical safety requirements;

• System design;

• Item integration and testing;

• Safety validation;

• Functional safety assessment;

• Release for Production.

ECSS follows a project based approach that is defined in ECSS-M-ST.10C (see 4), which is
equivalent to the lifecycle proposed by ISO 26262 for product development at the system level,
in order to plan and execute a space project from initiation to completion at all levels in the
customer-supplier chain.

4.1 Initiation of product development at the system level

This clause focuses on the determination and planning of the functional safety activities during
the individual sub-phases of the system development.

ECSS follows the same concept and includes the specification and planning of safety activities
that shall be performed during the defined lifecycle (see 5.7 ECSS-Q-ST-40C where each project
phase and the respective safety activities that shall be done in each phase are specified).

4.2 Specification of the technical safety requirements

In this clause, the goal is to specify the technical safety requirements based on the functional
safety concept and the preliminary architectural assumptions. Moreover, it also contemplates
the verification that the technical safety requirements comply with the functional safety require-
ments.

ECSS contemplates this clause through the specification of the technical safety requirements
(see 6 ECSS-Q-ST-40C).

4.2.1 Safety mechanisms

In ISO 26262, this clause defines that the technical safety requirements shall specify the system
response to events that may affect the accomplishment of safety goals.

© 2019, 2020, 2021 embedded brains GmbH 318

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Concerning the system response to hazardous events, ECSS specifies a set of mechanisms and
requirements to erase, minimize and control these events (see 6.3.3 ECSS-Q-ST-40C and 6.2.3
ECSS-Q-ST-80C).

4.2.2 ASIL decomposition

ECSS standards do not contemplate the ASIL decomposition. However, ECSS criticality level
categorization shall be applied (see Section 4.3 Hazard Analysis and Risk Assessment).

4.2.3 Avoidance of latent faults

The avoidance of latent faults, hazard elimination, mitigation and control shall be performed
according to the clauses mentioned in Section 5.2.1 Safety mechanisms and 7 ECSS-Q-ST-40C.

4.2.4 Production, operation, maintenance and decommissioning

ECSS specifies general and safety requirements for the processes of production, operation, main-
tenance and decommissioning. See 4.4.3 ECSS-M-ST-10C for the processes’ requirements and
recommendations throughout the ECSS lifecycle (specially phases D, E and F). Regarding the
software and safety requirements for the concerned processes, see 5.7, 5.9, 5.10 ECSS-E-ST-
40C; 6.3.6, 6.3.7, 6.3.8 ECSS-Q-ST-80C and 5.7.1 ECSS-Q-ST-40C.

4.2.5 Verification and validation

The criteria for safety validation and the verification of the compliance between the techni-
cal safety requirements and both the safety concept and the preliminary architectural design
assumptions is specified in clause 8 of ECSS-Q-ST-40C.

4.3 System Design

4.3.1 System design specification and technical safety concept

In this subclause, the system design shall be established according to the functional concept,
the preliminary architectural assumptions and the technical safety requirements.

ECSS specifies that the system design shall be developed based on the functional architecture,
the allocation requirements and the selected technology (see 5.4.1 ECSS-E-ST-10C [ECS17a]).
Regarding software requirements and architectural design, see 5.4 and 5.5.2 ECSS-E-ST-40C.

4.3.2 Measures for the avoidance of systematic failures

In ISO 26262, this subclause specifies the requirements and recommendations for both the
design and the execution of safety analysis over the system design to identify and mitigate
systematic failures. Considering safety analyses, they shall be performed in compliance with
deductive and inductive analysis methods in order to assist the design.

ECSS define safety analysis that complies with deductive and inductive methods to mitigate
systematic faults. Concerning their requirements, safety analysis requirements are presented in
clause 7.5 of ECSS-Q-ST-40C and the analysis methods in 6.4.2 of ECSS-Q-ST-30C. For system
design requirements and properties see Section 5.3.1 System design specification and technical
safety concept.

© 2019, 2020, 2021 embedded brains GmbH 319

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.3.3 Measures for control of random hardware failures during operation

In this clause, ISO 26262 specifies requirements for the detection and control of random hard-
ware failures considering the system design.

ECSS follows partially the same mindset, as measures shall be provided as result of safety anal-
ysis (see clause 6 and 7 of ECSS-Q-ST-40C). As part of the analyses, ECSS specifies a hardware-
software interaction analysis (HSIA) to ensure that the software reacts in an acceptable way to
hardware failures (see 6.4.2.3 ECSS-Q-ST-30C). For specific hardware details and its analysis,
5 ISO 26262 - Part 5: Hardware level.

4.3.4 Allocation to hardware and software

This clause specifies the allocation of the technical safety requirements to hardware and/or
software elements.

ECSS specifies that requirements shall be identified and traced from the system level into the
design and allocate them to lower level (see 6.2 ECSS-Q-ST-40C). Moreover, in 4.2 ECSS-E-ST-
40C (Overview of space system software engineering processes) it is stated that the customer
is responsible for deriving the functional and performance requirements for the hardware and
software according to system engineering principles and methods. Considering the allocation
of software requirements to software elements see 5.2.2.1 ECSS-E-ST-40C.

Moreover, in ISO 26262 this clause also specifies that an adequate development process com-
bining hardware and software requirements shall be defined for custom hardware elements that
incorporate programmable behaviour.

In the same line of thought, ECSS defines a set of requirements for the development of digital,
analog and mixed analog-digital custom designed integrated circuits (see ECSS-Q-ST-60-02C).

4.3.5 Hardware-software interface specification

In ISO 26262, this clause presents the requirements to the specification of the hardware and
software interaction and its compliance with the technical safety concept.

According to 5.3 ECSS-E-ST-10-24C [ECS15], the interface requirements should be conformant
with Annex A of the same document. Moreover, with respect to hardware and software inter-
faces, in 6.4.2.3 ECSS-Q-ST-30C it is mentioned how hardware to software interaction analysis
shall be performed, which is further specified in 6.2.2.8 and 6.2.2.9 ECSS-Q-ST-80C. Moreover,
in Annex K ECSS-E-ST-40C it is also mention how the integration testing activities (as part of
the SUITP) shall be carried.

4.3.6 Requirements for production, operation, service and decommissioning

For requirements for the processes of production, operation, service and decommissioning see
Section 5.2.4 Production, operation, maintenance and decommissioning.

4.3.7 Verification of system design

ECSS specifies various verification activities, see general verification requirements in ECSS-E-
ST-10-02C [ECS18a], product verification in 5.5 ECSS-E-ST-10C, safety verification in 8 ECSS-
Q-ST-40C and software verification in 8.8 ECSS-E-ST-40C and 6.2.6 ECSS-Q-ST-80C.

© 2019, 2020, 2021 embedded brains GmbH 320

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

4.4 Item integration and testing

In this clause, ISO 26262 specifies requirements for the following three integration phases: (i)
integration of the hardware and software elements that compose the item; (ii) integration of the
elements that compose an item to form a complete system; and finally, (iii) the item integration
with other systems within the vehicle and with the vehicle itself.

Furthermore, this clause contains the following objectives: (i) verify that the system design
covering the safety requirements are correctly implemented by the entire item; (ii) test the
compliance between each safety requirements and its specification and ASIL specification.

In ECSS, testing requirements are described in ECSS-E-ST-10-03C [ECS12a]. In particular, test
management is described in 4.3 of the same standard. In this clause, it is referenced that
there should be an assembly, integration and test plan (AITP) (see annex A ECSS-E-ST-10-03C).
The AITP shall be established by the supplier and must provide a complete description of the
AIT processes and shall determine along with the verification plan (the verification plan and
the AITP can be combined in one single AIV Plan) how the requirements are verified through
inspection and test.

The AIT processes and their safety activities (e.g., the monitoring and control of project assem-
bly, integration, testing and handling operations which are potentially hazardous to personnel
or hardware) are included in phase C of the ECSS lifecycle (see 5.7.1.4 ECSS-Q-ST-40C).

Moreover, the integration capability performing its intended function in terms of performance
and calibration shall be verified as part of the overall integration (see 5.6.2, 5.7.4.2 and 5.7.4.3
ECSS-Q-ST-20-07C [ECS14]). Concerning software integration, see 5.5.4 ECSS-E-ST-40C and
5.6 for software validation (see Section 5.3.5 Hardware-software interface specification for
more details).

4.5 Safety validation

This clause contains the following two objectives: (i) provide evidence of compliance with the
safety goals and that the functional safety concepts are appropriate for the functional safety of
the item; and (ii) provide evidence that the safety goals are correct, complete and fully achieved
at the vehicle level. The goal is to provide evidence that the results of each activity complies
with the specified requirements.

ECSS-E-ST-10-03C provides the requirements for verification using testing for space elements
and space segment equipment prior to launch. Statement of compliance between space system
elements and safety requirements shall be demonstrated as required by 5.8 ECSS-Q-ST-40C.

For software, the validation and verification processes are described in 4.2.6 and 4.2.8 ECSS-E-
ST-40C, respectively, and the requirements for each phase are detailed in 5.6 and 5.8 of ECSS-E-
ST-40C. Moreover, 6.2.6 ECSS-Q-ST-80C describes the activities that are part of the verification
plan and 6.3.5 ECSS-Q-ST-80C presents the requirements for testing and validation.

4.6 Functional safety assessment

For functional safety assessment requirements see Section 3.2.8 Functional safety assessment.

4.7 Release for production

© 2019, 2020, 2021 embedded brains GmbH 321

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

In ISO 26262, this clause specifies the requirements for the specification of the release for
production criteria at the completion of the item development and the confirmation that the
item complies with the requirements for functional safety at the vehicle level.

ECSS follows the same approach through the execution of the acceptance process (see phase
D of ECSS lifecycle, 4.4.3.6 ECSS-M-ST-10C), where the customer shall perform an acceptance
review (AR) with the supplier support. In 4.4.3.6.4 of ECSS-M-ST-10C, ECSS specifies the AR
objectives. Regarding software acceptance, see 5.7.3 ECSS-E-ST-40C and 6.3.6 ECSS-Q-ST-80C.

4.8 Work products

This section presents the study concerning the compatibility of ISO 26262 work products related
with product development at system level with ECSS artefacts. The study is shown below:

• Project plan. See Section 2.4.

• Safety plan. See Section 2.4.

• Validation plan and report. ECSS follows roughly the same mindset for these work prod-
ucts though the specification of the safety validation in the safety verification activity (see
the safety artefacts, such as the safety programme plan and the safety verification tracking
log. For software, it specifies these expected output for software items in the software val-
idation plan (see annex J ECSS-E-ST-40C) and the software validation report (see annex
M ECSS-E-ST-40C).

• Item integration and testing plan and report. In ECSS, the item integration and test-
ing activities are specified in the assembly, integration and test plan (annex A ECSS-
E-ST-10-03C). However, software integration and testing is covered by the software
[unit/integration] test plan (SUITP) (see annex K ECSS-E-ST-40C) and the software inte-
gration strategy (included in the design justification file).

• Functional safety assessment report. In ECSS, this work product is covered through the
safety analysis report (see annex D ECSS-Q-ST-40C) and the risk assessment report (see
annex C ECSS-M-ST-80C).

• System verification report. The system verification report is covered in ECSS through the
verification report (see annex F ECSS-E-ST-10-02C).

• Technical safety concept and requirements specification. ECSS specifies this work prod-
uct objective throughout its artefacts, mainly in the safety programme plan (see annex
B ECSS-Q-ST-40C) and in the technical specification. Moreover, the verification of the
technical safety requirements is covered in the safety verification tracking log (see an-
nex C ECSS-Q-ST-40C) and the safety analysis report including hazard reports (see annex
ECSS-Q-ST-40C). Considering the verification of software, this work product is covered
in the software verification plan (see annex I ECSS-E-ST-40C) and report (see annex M
ECSS-E-ST-40C).

• System design specification. In ECSS, system and software design specification and jus-
tification activities are defined in the design definition file (see annex G ECSS-E-ST-10C)
and in the design justification file (see annex K ECSS-E-ST-10C).

• HSI specification. Software and hardware interfaces are specified in the interface control
document (annex E ECSS-E-ST-40C) and in the software interface requirements document
(annex C ECSS-E-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 322

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Safety analysis report. The ISO 26262 safety analysis report is in accordance with ECSS
safety analysis report including hazards reports (see annex D ECSS-Q-ST-40C).

• Release for production. In ECSS, this work product is specified in the acceptance review
and the acceptance test plan and report. Concerning software, ECSS specifies the software
release document.

5 ISO 26262 - Part 5: Hardware level

ISO 26262 specifies requirements recommendations for the following hardware development
stages:

• Initiation of product development at the hardware level;

• Specification of hardware safety requirements;

• Hardware design;

• Evaluation of the hardware architectural metrics;

• Evaluation of safety goal violations due to random hardware failures;

• Hardware integration and testing.

ECSS defines the processes and the respective requirements related to hardware development in
ECSS-E-ST-60-XXX and ECSS-Q-ST-60-XXX, where XXX varies according to the type of hardware
being developed. As hardware development is out of scope of RTEMS-SMP and is very specific
for each of the domains (automotive vs. space), this part of ISO was not directly compared with
ECSS standards.

6 ISO 26262 - Part 6: Software level

This part presents the requirements concerning product development at the software level for
automotive applications. The following clauses are detailed in the following subsections:

• Initiation of product development at the software level.

• Specification of the software safety requirements.

• Software architectural design.

• Software unit design and implementation.

• Software unit testing.

• Software integration and testing.

• Verification of software safety requirements.

ECSS has two documents that focus on software development, namely ECSS-E-ST-40C and
ECSS-Q-ST-80C. The software related processes in ECSS standards are mapped in figure 4.1 of
ECSS-E-ST-40C and the software life cycle process is depicted in figure 4.2 of the same standard.

6.1 Initiation of product development at the software level

This sub-clause has the objective of planning and initiating the functional safety activities for
the sub-phases of the software development. This involves the determination of the methods
(which include guidelines and tools) that have to comply with requirements and integrity levels.

© 2019, 2020, 2021 embedded brains GmbH 323

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

In ECSS, the software management process is described in clause 5.3 ECSS-E-ST-40C. This pro-
cess specifies among other tasks, the software life cycle management process in sec. 5.3.2.
Moreover, the requirements that are applicable to all software engineering processes are de-
scribed in 6.2 ECSS-Q-ST-80C, which include guidelines for handling critical software (see 6.2.3
ECSS-Q-ST-80C).

6.2 Specification of software safety requirements

In ISO 26262, this clause specifies the software safety requirements and details the hardware-
software interfaces (HSI) and verifies the both the software safety requirements and hardware-
software interfaces are consistent with with the technical safety concept and system design
specification.

ECSS follows a similar approach as the specification of the software safety requirements and its
verification are performed according to the requirements defined in 5.4 and of 5.8.3.2 ECSS-E-
ST-40C, 6.3.2 ECSS-Q-ST-80C and clause 6 and 8 of ECSS-Q-ST-40C. Regarding HSI specifica-
tion, see the software interface requirement document (annex C ECSS-E-ST-40C).

6.3 Software architectural design

In this clause, ISO 26262 specifies the requirements the development of the software architec-
tural design (which includes all software components and their interactions) that accomplishes
the software safety requirements and the verification of the software architectural design.

The software architectural design activities are described in 5.4.3 ECSS-E-ST-40C. This sub-
clause covers the transformation of software requirements into a software architecture; the
software design method (a method to produce software components and their interfaces); the
software model and their behaviour. Moreover, the software verification process requirements
and activities are described in 5.8 ECSS-E-ST-40C, specifically, in 5.8.3, verification activities
are described.

Concerning the safety design objectives and the hazard reduction, the activities in 6.3 ECSS-
Q-ST-40C should be considered. In addition, the software process assurance should also be
considered, as described in 6 ECSS-Q-ST-80C, and in particular for this ISO sub-clause, 6.3.3
(Software architectural design and design of software items) should be taken into account.

In ECSS-Q-HB-80-02_Part2A [ECS10], the process ENG.5 Software design, detailed in
4.1.2.4.5, should also be considered.

6.4 Software unit design and implementation

This clause specifies the design, implementation and verification of the software units according
to the software architectural design.

ECSS follows the same mindset as ISO 26262, specifying in 5.5 ECSS-E-ST-40C (Software design
and implementation engineering process) and in 6.3 ECSS-Q-ST-80C the processes for software
item design (6.3.3) and implementation (6.3.4). The design and implementation processes are
under the supplier responsibility, however, the customer shall agree in both on the adopted
coding standards. Regarding the verification, ECSS specifies the detailed design and coding
verification in 5.8.3.4 and 5.8.3.5 ECSS-E-ST-40C.

In ECSS-Q-HB-80-02_Part2A, the process ENG.6 Software construction, detailed in 4.1.2.4.6,
should also be considered.

© 2019, 2020, 2021 embedded brains GmbH 324

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

6.5 Software unit testing

In this clause, ISO 26262 specifies requirements and recommendations to demonstrate that
software units obey to their design specifications and do not contain undesired functionality. It
focus on the following topics: (i) planning of software unit testing; (ii) methods that shall be
applied; (iii) use of structural metrics to evaluate the test cases completeness; and (iv) for the
test environment.

In ECSS, these requirements are defined 5.5.3 ECSS-E-ST-40C, where the process of software
unit testing is described (see 5.5.3.2), and in 6.3.5 ECSS-Q-ST-80C where the requirements
corresponding to those defined in ISO 26262 are specified. ECSS additionally dictates that it
is the supplier responsibility to perform and verify the software unit tests under the customer
acceptance (for critical software, witnessed or independent testing shall be performed according
to 6.2.3 ECSS-Q-ST-80C).

In ECSS-Q-HB-80-02_Part2A, the process ENG.8 Software testing, detailed in 4.1.2.4.8, should
also be considered.

6.6 Software integration and testing

Such as the previous clause, ISO 26262 specifies requirements for the following topics: (i)
the planning of software integration and testing; (ii) methods that shall be applied for the
integration and to the derivation of the test cases; (iii) structural coverage metrics; and (iv) test
environment.

ECSS follows the same mindset as ISO 26262, specifying the planning and methods that shall
be applied for the software integration and testing (see 5.5.4 of ECSS-E-ST-40C and ECSS-E-
HB-40A [ECS13]), the methods to be applied during the integration testing are defined in 6.4
ECSS-E-HB-40A.

Regarding the software verification report refinement, ECSS defines the verification of software
integration in 5.8.3.7 ECSS-E-ST-40C.

In ECSS-Q-HB-80-02_Part2A, the process ENG.7 Software integration, detailed in 4.1.2.4.7,
should also be considered.

6.7 Verification of software safety requirements

In ISO 26262, the purpose of this clause is to demonstrate that the embedded software fulfils
the software safety requirements.

Regarding ECSS, the correspondent to this clause is 5.8.3.8 of ECSS-E-ST-40C, where it is spec-
ified that the supplier shall verify that all software requirements of the technical specification
and/or the requirements baseline are covered, and the clause 8.4 of ECSS-Q-ST-40C, that de-
fines that all safety-critical functions shall be verified and qualified. As a side note, the veri-
fication process requirements for software, as an engineering process applied to the software
development life cycle, are detailed in 6.2.6 ECSS-Q-ST-80C.

6.8 Work products

This section specifies the compatibility of the ISO 26262 work products related to the software
level with the ECSS artefacts. The study is presented below:

© 2019, 2020, 2021 embedded brains GmbH 325

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Safety plan. See Section 2.4.

• Design and coding guidelines for modeling, programming languages and tool application
guidelines. In ECSS, these work products are included in the specification of the software
engineering standards and techniques of the software development process artefact (see
annex Q ECSS-E-ST-40C), where it is described the applied methodologies and standards
for each software development process.

• Software safety requirements specification. In ECSS, the software safety requirements are
specified in the software requirements specification (see annex D ECSS-E-ST-40C) and in
the software system specification (see annex B ECSS-E-ST-40C).

• HSI specification. See Section 4.8.

• Software architectural design and software unit design specification. In ECSS, the artefact
that specifies the software architectural design and unit design specification is the design
definition file, specifically the software design document (see annex F ECSS-E-ST-40C).

• Safety analysis report. ECSS defines roughly the same as ISO 26262 concerning safety
analysis report by specifying the safety analysis report including hazard reports (see an-
nex D ECSS-Q-ST-40C). Concerning software safety analysis, ECSS specifies the software
dependability and safety analysis report that is included in the SPAP (see annex B ECSS-
Q-ST-80C).

• Dependent failures analysis report. In ECSS, this work product is included in the common-
cause analysis (see annex I ECSS-Q-ST-30C) and the safety analysis report, as the analysis
of dependent failures is integrated in the safety analysis.

• Software unit implementation. In ECSS, the software source code shall be provided in
the design definition file (see annex G ECSS-E-ST-10C), specifically in the software source
code and media labels clause.

• Software verification. ECSS follows the same mindset for the software verification activi-
ties, as it specifies the software verification plan (SVerP) (annex I ECSS-E-ST-40C), where
software verification activities are specified and their approach and the organization as-
pects in order to be performed are described, and the software verification report (SVR)
(annex M ECSS-E-ST-40C) that gathers the results of all software verification activities
executed according to the SVerP.

• Embedded software. In ISO 26262, this work product consists in the planning of software
integration, where it shall be described the steps for integrating the individual software
units hierarchically into software components until the embedded software is fully inte-
grated. In ECSS, this work product corresponds to the following artefacts: (i) Software
integration strategy; (ii) the software integration test plan; and (iii) the software integra-
tion test report.

• Configuration data, configuration data specification, calibration data and calibration data
specification. In ECSS, all project items subject to the configuration management process
shall be included in the configuration item list (see annex B ECSS-M-ST-40C) and in the
configuration item data list (see annex C ECSS-M-ST-40C), where the current design status
of a configuration item is provided. Concerning specific software configuration, ECSS
specifies the software configuration file (who is a constituent of the design definition file,
see annex E ECSS-M-ST-40C), where all software content related with configuration and
calibration data is presented. Moreover, the software static architecture clause in the

© 2019, 2020, 2021 embedded brains GmbH 326

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

design definition file (see annex F ECSS-E-ST-40C) shall specify the separated mission
and configuration data, such as: (i) data resulting from the mission (data specific to
each mission); (ii) reference data which are specific to a family or software product; (iii)
reference data that do not change from mission to mission; (iv) data depending only on
the specific mission requirements (e.g. calibration of sensors); and (v) data required for
the software operation which only vary the higher level system design is changed.

7 ISO 26262 - Part 7: Production and operation

7.1 Production

In this clause, ISO 26262 specifies the production process requirements to achieve the following
objectives:

• Develop and maintain a production process for safety-related elements or item that will
be installed in road vehicles;

• Ensure that the responsible entities for the production process achieve functional safety
during its execution.

ISO 26262 production process objectives are covered in the phase D(Qualification and Pro-
duction) of ECSS lifecycle (see 4.4.3.6 ECSS-M-ST-10C). Regarding specific software product
requirements for software delivery, installation and acceptance process see 5.7 ECSS-E-ST-40C
and 6.3.6 ECSS-Q-ST-80C. In 4.3.2.4 ECSS-M-ST-40, ECSS specifies the product configuration
baseline (PCB) (established at the functional configuration verification and the physical config-
uration verification) for serial production.

7.2 Operation service (maintenance and repair), and decommissioning

ECSS follows partially the same concept as ISO 26262 for the planning and execution of the
processes of operation, maintenance, repair and decommissioning concerning the item, system
or element. ECSS requirements and recommendations for these processes are specified in the
phase E and F of the lifecycle (see 4.4.3.7 and 4.4.3.8 of ECSS-M-ST-10C). Concerning specific
software requirements for these processes, see 5.9 and 5.10 of ECSS-E-ST-40C, and 6.3.7 and
6.3.8 of ECSS-Q-ST-80C.

7.3 Work products

ISO 26262 Part 7: Production and operation specifies the following work products:

• Safety-related content of the production and production control plan. In ECSS, general
and software content of the production plan is specified in the production plan (referred
in the system engineering plan, annex D ECSS-E-ST-10C), the software release document
(see annex G ECSS-E-ST-40C) and the installation procedures and report. Regarding spe-
cific safety-related content, see the safety programme plan (annex B ECSS-Q-ST-40C)
where safety activities are defined for each step of the product lifecycle.

• Control measures report. The equivalent artifact in ECSS is the Quality Assurance Plan
(see annex A ECSS-Q-ST-20C).

• Assessment report for capability of the production process. ECSS, in 5.5.1a ECSS-Q-ST-
20C, states that there should exist a manufacturing plan or flow chart for the product,
where the information required by this ISO artifact shall be detailed.

© 2019, 2020, 2021 embedded brains GmbH 327

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Safety-related content of the maintenance plan. In ECSS, although the maintenance plan
is specified in the maintenance file, most of the safety content is described in the safety
programme plan.

• Repair instruction. In ECSS, this work product is covered by the maintenance file.

• Safety-related content of the information made available to the user. In ECSS, all safety
warnings that shall be made available to the end user are detailed in the product user
manual (see annex P ECSS-E-ST-10C).

• Instruction regarding field observations. In ECSS, the artefact that has a similar purpose is
the Operations Anomaly Report (see annex H ECSS-E-ST-70C [ECS08b]) which exists to
document a departure from expected performance during operation of the system, either
in the space and ground segment.

• Safety-related content of the instructions for decommissioning. This work product is cov-
ered in ECSS through the maintenance file where the decommissioning phase is defined.
In addition, in the safety programme plan the safety concerns and activities regarding this
phase are specified.

• Specification of requirements on the producibility, operation, service and decommission-
ing at system, hardware or software development level. Although these processes are de-
scribed throughout the artefacts mentioned in this section, their individual requirements
specification for product development at system or software level are also included in the
following ECSS artefacts: (i) the system engineering plan (see annex D ECSS-E-ST-10C);
(ii) the PAP (see annex A ECSS-Q-ST-10C) and SPAP (see annex B ECSS-Q-ST-80C); (iii)
the software system specification (see annex B ECSS-Q-ST-40C); (iv) the software require-
ments specification (see annex D ECSS-Q-ST-40C); (v) the software operational support
plan; and (vi) the software maintenance plan (see annex C ECSS-E-HB-40A). Regarding
specific requirements for the product development at hardware level, see Section 5 ISO
26262 - Part 5: Hardware level.

8 ISO 26262 - Part 8: Supporting processes

This section contains the supporting processes requirements, covering the following clauses
(each of the clauses is detailed in the next subsections):

• Interfaces within distributed developments;

• Specification and management of safety requirements;

• Configuration management;

• Change management;

• Verification;

• Documentation;

• Confidence in the use of software tools;

• Qualification of software components;

• Qualification of hardware components;

• Proven in use argument.

© 2019, 2020, 2021 embedded brains GmbH 328

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

8.1 Interfaces within distributed developments

This clause objective is to describe the procedures and to allocate associated responsibilities
within distributed developments for items and elements, presenting requirements for the fol-
lowing topics:

• Supplier selection criteria;

• Initiation and planning of distributed development;

• Execution of distributed development;

• Functional safety assessment at supplier’s premise;

• After release for production.

These requirements are covered throughout ECSS-M-ST-10C, where the requirements for the
customer and the supplier regarding the project planning and organization are specified. Busi-
ness agreements (RFQ’s,ITT’s or RFP’s), shall be specified in the project requirements docu-
ments and shall be included in the project planning as the customer responsibility (see 4.1.10
and 5.1 ECSS-M-ST-10C). In the acquisition process group of ECSS-Q-HB-80-02_Part2A, the
supplier selection process is specified.

Concerning the interfaces between customer and supplier see 5.2.2 ECSS-M-ST-10C, where the
requirements for communication and reporting between customer-supplier are defined. More-
over, each supplier in the costumer-supplier chain shall prepare and submit the PMP to his
costumer for approval. The PMP shall state the purpose and provide a introduction to the
project management system covering the topics defined in annex A of ECSS-M-ST-10C.

8.2 Specification and management of safety requirements

This clause defines the requirements for the correct specification and management of the safety
requirements throughout the complete safety lifecycle.

In 5 of ECSS-Q-ST-40C, ECSS specifies the organizations safety responsibilities and the safety
activities that shall be performed during the lifecycle. These ECSS requirements ensure a consis-
tent management of the safety requirements throughout the lifecycle. Moreover, requirements
and recommendations for a correct specification of the safety requirements are defined through-
out ECSS-Q-ST-40C, specially clause 6 and 7.

8.3 Configuration and change management

ECSS specifies both the configuration and the change management in the project management
plan (see 4.1.11 ECSS-M-ST-10C). ECSS-M-ST-40C present the requirements for these man-
agement processes, covering the ISO 26262 requirements (see clause 5 for the configuration
management and clause 5.3.2 for the changes). ECSS specifies additionally that changes may
be initiated by the customer (a change request shall be established) or by the supplier (change
proposal). Regarding specific software implementation modification and configuration, require-
ments specified in 5.10.4 ECSS-E-ST-40C and in 6.2.4 ECSS-Q-ST-80C shall also be applied.

8.4 Verification

ECSS is in accordance with ISO 26262 for the verification process, specifying partially the same
general requirements for the planning, specification, execution and evaluation of verification ac-

© 2019, 2020, 2021 embedded brains GmbH 329

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

tivities (see ECSS-E-ST-10-02C). Regarding software verification, see the requirements specified
in 6.2.6 ECSS-Q-ST-80C and 5.8 ECSS-E-ST-40C.

8.5 Documentation

ECSS specifies the documentation management as defined in ISO 26262 (see 4.3.8 and 5.3.7
ECSS-M-ST-40C). Moreover, this management process shall also be included in the project man-
agement plan.

8.6 Confidence in the use of software tools

ECSS specifies slightly different requirements for this clause, as ISO 26262 is more strict re-
garding the software tool evaluation and qualification. Tools involved in any activity of the
development phase shall be identified by the supplier and agreed by the customer (see 5.6.1
ECSS-Q-ST-80C and 5.3.4 ECSS-E-ST-10C).

8.7 Qualification of software components

In ECSS, the qualification of components is specified in phase D of ECSS lifecycle (see 4.4.3.6
ECSS-M-ST-10C), where it is specified that a complete qualification testing and associated verifi-
cation activities shall be performed, e.g., a qualification review. Regarding qualification reviews
for software components see 5.3.4.4 ECSS-E-ST-40C.

8.8 Qualification of hardware components

For more information about the requirements regarding hardware components see Section 5
ISO 26262 - Part 5: Hardware level.

8.9 Proven in use argument

This clause specifies an alternative method of compliance with ISO 26262 for the reuse of
existing items or elements when field data is available, i.e., the compliance with ISO 26262 can
be applied to any type of product whose definition and conditions of use are identical or highly
similar to a product that is already released and in operation.

In ECSS, regarding the reuse of existing software clause 6.2.7 of ECSS-Q-ST-80C shall be ap-
plied. This ECSS clause present the requirements for the reuse of existing software, specifying
the analysis, assessments and methods that shall be applied to identify the level of compliance
with the project requirements.

8.10 Work products

ISO 26262 Part 8: Supporting processes specifies the following work products:

• Supplier selection report. In ECSS, the supplier selection process and all the required
and specified work products are described in the acquisition process group (see 4.1.2.1
ECSS-Q-HB-80-02_Part2A).

• Development interface agreement (DIA). For interface definition, ECSS requires the Inter-
face Control Document which is specified in annex B ECSS-E-ST-10-24.

• Supplier’s project and safety plan. These work products correspond to the supplier’s PMP
and safety programme plan.

© 2019, 2020, 2021 embedded brains GmbH 330

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Functional safety assessment report. See the acquisition process group of 4.1.2.1 ECSS-
Q-HB-80-02_Part2A.

• Supply agreement. See the acquisition process group of 4.1.2.1 ECSS-Q-HB-80-
02_Part2A.

• Configuration management plan. ECSS follows the same approach as ISO 26260 for its
configuration management plan (see annex A ECSS-M-ST-40C).

• Change management, request plan and report. In ECSS, the change management plan
is integrated in the configuration management plan and it follows the same approach as
ISO 26262. Moreover, Change requests and proposals are specified in their respective
artefacts (see annexes G and H ECSS-M-ST-40C).

• Impact analysis. See section 3.5.

• Change request plan. In ISO 26262, this work product corresponds to the change eval-
uation in accordance with the impact analysis and follow up action, such as who shall
perform the change and when. ECSS covers this work product in the configuration man-
agement plan, as it describes the change evaluation and follow up actions (change ap-
proval and implementation).

• Verification plan, specification and report. The objective of these ISO 26262 work products
is in accordance with the following ECSS artefacts: (i) the verification plan (see annex A
ECSS-E-ST-10-02C), where the verification activities are planned and specified; and (ii)
the verification report (see annex F ECSS-E-ST-10-02C).

• Documentation management plan. In the configuration management plan, ECSS specifies
roughly the same as ISO 26262 concerning the documentation management.

• Document guideline requirements. ECSS follows the same mindset as ISO 26262 as it
specifies document guidelines in the information/documentation management clause of
the configuration management plan.

• Software tool criteria evaluation report and software tool qualification report. ECSS fol-
lows a distinct mindset concerning software tools, as it shall be identified in the product
assurance file all the tools that will be used for the product development lifecycle (the
tools are identified by the supplier and agreed by the customer). Moreover, the tools se-
lection shall also be justified in the product assurance file, where the following items shall
be demonstrated though testing or documented assessment: (i) the development team has
the appropriate experience or training to apply them; (ii) the tools are appropriate for the
functional and operational characteristics of the product; and (iii) the tools are available
in a appropriate environment for the entire lifetime of the development and maintenance
processes of the product. As a side note, the product assurance file shall also include the
verification and report for the correct use of the software tools.

• Software component documentation. This work product specifies all the documents re-
lated to the software component. In ECSS, this corresponds to annex A of ECSS-E-ST-40,
where all software documents are identified.

• Software component qualification report. In ISO 26262, this work product shall document
a set of information that is covered in the following ECSS artefacts and activities: (i)
qualification review; (ii) software verification report; (iii) software configuration file; and
(iv) in the configuration item.

© 2019, 2020, 2021 embedded brains GmbH 331

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• Safety plan. See Section 2.4.

• Qualification plan and report. In this ISO 26262 part, these work products are specific
to the qualification of hardware components. Thus, see Section 5 ISO 26262 - Part 5:
Hardware level.

• Hardware component test plan. For specific hardware information see Section 5 ISO
26262 - Part 5: Hardware level.

• Description of a candidate for proven in use argument. In ECSS, this work product is
covered by the software reuse file (see annex N ECSS-E-ST-40C), where it is described the
technical and management information about each item intended to be reused.

• Proven in use analysis reports. In ECSS, the software reuse file (SRF) documents the re-
sults of the software reuse analysis, where it shall be provided for each software item the
information related with the decision to reuse or not, the level of reuse and the assump-
tions and methods applied when estimating the level of reuse. Moreover, the SRF shall
also detail the evaluation results.

9 ISO 26262 - Part 9: Automotive Safety Integrity Level (ASIL) - oriented and safety␣
→˓oriented analyses

9.1 Requirements decomposition with respect to ASIL tailoring

When performing ECSS criticality classification, continuing functional decomposition into
lower-level functions is not considered as creating compensating provisions. Furthermore, soft-
ware product criticality category is assigned according to the criticality of the most critical
function that it implements (see 5.4 ECSS-Q-ST-40C).

9.2 Criteria for coexistence of elements

For the coexistence of mixed criticality components, ECSS specifies that all the involved com-
ponents shall be classified at the highest criticality category among them (see 6.2.2.10 ECSS-Q-
ST-80C).

9.3 Analysis of dependent failures

ISO 26262 specifies the analysis of dependent failures in order to identify single events or
single causes that could neglect or invalidate a given requirements. ISO 26262 additionally
defines that the potential of dependent failures shall be shall identified according with the
safety analysis results.

ECSS dictates in the safety analysis the identification and analyse of multiple failures resulting
from common-cause or common-mode (6.4.2 ECSS-Q-ST-40C) and due to failure propagation,
all components shall be assigned with the highest criticality category among them (see 6.2.2.10
ECSS-Q-ST-80C).

As a side note, for analyses lower than system level, the severity due to possible failure propa-
gation shall be identified as level 1 according to the dependability criteria (see 5.3.2 ECSS-Q-
ST-30C).

9.4 Safety analysis

© 2019, 2020, 2021 embedded brains GmbH 332

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

ECSS covers the ISO 26262 requirements concerning the safety analyses (see 7 ECSS-Q-ST-40C)
by specifying requirements and methods that achieve the following ISO 26262 objectives:

• Evaluation of the consequences of faults and failures on the functions, behaviour and
design of items and elements;

• Produce information on conditions and causes that could trigger the violation of safety
goals or safety requirements;

• Identification of new hazards that were not identified during hazard analysis and risk
assessment.

9.5 Work products

ISO 26262 Part 9: ASIL oriented and safety oriented analysis specifies the following work prod-
ucts:

• Update of architectural information. In ECSS, upon the modification of architectural in-
formation, the design definition file and design justification file shall be updated.

• Update of ASIL as attribute of safety requirements and elements, and of sub-elements of
elements. In ECSS, although ASIL classification is not applied, ECSS criticality categoriza-
tion level shall be updated upon mixed criticality and decomposition. Thus, the safety
analysis report, the risk assessment report and the FMEA/FMECA report shall be updated.

• Safety analyses. This work product is an activity defined by the safety programme plan
(see annex B ECSS-Q-ST-40C) and its results are presented in the safety analysis report
(see annex D ECSS-Q-ST-40C).

• Analysis of dependent failures. In ECSS, this work product is included in the safety anal-
ysis activity (see Section 6.8).

8.3.1 Conclusions
Even though the application domain is different, there is a high degree of compatibility between
both standards. ISO 26262 lifecycle is centered around the concept of an item, which can
be interpreted as a system or a system of systems that implement a function at the vehicle
level, while ECSS focuses on all the aspects pertaining to a space project from initiation to
completion at all levels in the customer-supplier chain. Safety aspects are covered in both
standards, however, ISO 26262 is more focused into the safety activities and requirements of
each item than ECSS standards. Besides safety activities, ECSS also focuses on the processes.

Regarding the lifecycle tailoring, a minor discrepancy between both standards is observed, as
ISO 26262 does not allow the removal of sub-phases, tasks or activities from the lifecycle (only
the modification or the inclusion of new sub-phases, tasks or activities is allowed). Whereas
ECSS allows their removal as long as it correctly recorded and justified.

In ISO 26262, the level of concern regarding the safety mechanisms and measures for the
avoidance and control of systematic failures and random hardware failures during operation is
higher when compared with the ECSS requirements. Moreover, in the glossary/vocabulary part
ISO 26262 differs from ECSS by being more precise and less ambiguous (this can be observed
in the definitions of similar terms).

© 2019, 2020, 2021 embedded brains GmbH 333

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Concerning the development of hardware parts, even though it was not analysed, in part be-
cause of the differences in the application domain and the target of this project, ISO 26262 is
more focused than ECSS standards. This happens because in space projects the hardware used
involves many components that are part of different segments (i.e., ground segment and space
segment).

Besides the specific application domain and the development of hardware parts, another ma-
jor discrepancy between both standards is the criticality classification. ISO 26262 follows the
ASIL classification, where the following parameters are considered: (i) severity; (ii) likelihood;
and (iii) controllability. ECSS specifies the function criticality according to the severity and
likelihood of the related hazardous events.

In conclusion, despite the above mentioned differences, a final product that complies with ISO
26262 will not diverge from an ECSS final product with respect to safety aspects.

8.4 IEC Analysis
This section will perform the compatibility assessment between IEC 61508 and ECSS. It will
start with the general requirements applicable to electrical/electronic/programmable electronic
systems developed under IEC standard (IEC 61508-1) and then it will describe the specific
requirements for software (IEC 61508-3). The IEC 61508-1 section requirements analysis is
made in a summary manner, unless an higher level of detailed is required (when IEC 61508-3
does not cover the specific topic and it is also addressed in ECSS-E-ST-40C/ECSS-Q-ST-80C).

8.4.1 IEC 61508-1
4 Conformance to this standard

These clauses states that compliance to the relevant requirements of this standard shall be
demonstrated. And also states the possibility for a tailoring of the standard, according with
the project complexity. This is addressed in ECSS at system level (see ECSS-S-ST-00C, ECSS-E-
ST-10C, ECSS-Q-ST-10C and ECSS-M-ST-10C). For software, this is according with ECSS, which
has similar requirements, requesting for compliance with its own requirements (see 5.3.9 ECSS-
E-ST-40C and 5.2.1.5 ECSS-Q-ST-80C). Also, in ECSS software standards, it is presented the
possible tailoring, according with the software criticality (see Annex R of ECSS-E-ST-40C and
Annex D.2 of ECSS-Q-ST-80C).

5 Documentation

5.1 Objectives

This section does not contain requirements.

5.2 Requirements

These clauses relate with the quality of the produced documentation and generic configuration
management requirements. They are according with with ECSS, which addresses this topic

© 2019, 2020, 2021 embedded brains GmbH 334

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

together for both system and software level (see 5 ECSS-M-ST-40C). For software, ECSS spec-
ify additional requirements (see 5.8.3.10 ECSS-E-ST-40C), which are also according with this
section.

6 Management of functional safety

6.1 Objectives

This section does not contain requirements.

6.2 Requirements

These clauses relate with the project organization with emphasis on the measures to be under-
taken to assure that the project is developed with the necessary safety level. This is addressed
in ECSS at system level (see 5 ECSS-Q-ST-10C). Also, at software level, all these requirements
are according with ECSS, which also presents similar requirements to assure the safety aspects
of the software (see section 5 ECSS-Q-ST-80C).

7 Overall safety lifecycle requirements

7.1 General

7.1.1 Introduction

This section does not contain requirements.

7.1.2 Objectives and requirements \- general

This section does not contain requirements.

7.1.3 Objectives

This section does not contain requirements.

7.1.4 Requirements

These requirements specify the necessary steps for the safety life-cycle of the project at sys-
tem level. This is addressed in ECSS at system level (see 5.4 ECSS-E-ST-10C, which re-directs
to ECSS-M-ST-10C). See analysis in 8.4.2, section 7.1.2 for the specific requirements for the
software life-cycle.

7.2 Concept

7.2.1 Objective

This section does not contain requirements.

7.2.2 Requirements

These requirements state that the environment in which the system operates shall be assessed
and taken into account when performing the hazard and possible failures analysis. At system

© 2019, 2020, 2021 embedded brains GmbH 335

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

level this is addressed in ECSS (see 5.3.2 ECSS-E-ST-10C and standards ECSS-Q-ST-30C, ECSS-
Q-ST-40C and ECSS-Q-ST-40-02C). For software this analysis is also required in ECSS (see 6.2.2
ECSS-Q-ST-80C, which also re-directs to ECSS-Q-ST-30C and ECSS-Q-ST-40C).

7.3 Overall scope definition

7.3.1 Objectives

This section does not contain requirements.

7.3.2 Requirements

These requirements are in line with section 7.2.2, but with more emphasis on the interactions
between the environment and the system to be developed. This is according with ECSS at
system (see 5.3.2 ECSS-E-ST-10C, ECSS-Q-ST-30C and ECSS-Q-ST-40C) and software levels
(see 6.2.2 ECSS-Q-ST-80C, which also re-directs to ECSS-Q-ST-30C and ECSS-Q-ST-40C).

7.4 Hazard and risk analysis

7.4.1 Objectives

This section does not contain requirements.

7.4.2 Requirements

These requirements define what content shall be present in hazard analysis. This is according
with ECSS (see ECSS-Q-ST-40-02C). Note also the hazard analysis shall include the software
contribution (see 6.2.2 ECSS-Q-ST-80C).

7.5 Overall safety requirements

7.5.1 Objective

This section does not contain requirements.

7.5.2 Requirements

This section describes the requirements to specify the overall system requirements, with em-
phasis in hazard functions. This is addressed in ECSS at system level (see 5.2 ECSS-E-ST-10C
and ECSS-E-ST-10-06C). For software level see analysis in 8.4.2, sections 7.1.2 and 7.2.2.

7.6 Overall safety requirements allocation

7.6.1 Objectives

This section does not contain requirements.

7.6.2 Requirements

This section describes the necessary requirements to translate the system requirements into
system design. This addressed in ECSS at system level (see 5.4 ECSS-E-ST-10C). For software

© 2019, 2020, 2021 embedded brains GmbH 336

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

level see analysis in 8.4.2, sub-sections of 7.4. Note that ECSS does not define targets for failures
probability after applying the hazard reduction measures. This has to be taken into account, if
a future qualification to this standard is foreseen.

7.7 Overall operation and maintenance planning

7.7.1 Objective

This section does not contain requirements.

7.7.2 Requirements

This section targets the necessary requirements to be taken into account for operation and
maintenance of the system planning. This is addressed in ECSS at system level (see ECSS-E-
ST-10C Annexes, which require the operation and maintenance to be described in the system
documents). For software level see analysis in 8.4.2, section 7.8.2.

7.8 Overall safety validation planning

7.8.1 Objective

This section does not contain requirements.

7.8.2 Requirements

This section requirements address the validation planning. This is addressed in ECSS at system
level (see 5.5 ECSS-E-ST-10C and ECSS-E-ST-10-03C). For software level see analysis in 8.4.2,
section 7.3.2.

7.9 Overall installation and commissioning planning

7.9.1 Objectives

This section does not contain requirements.

7.9.2 Requirements

This section specifies the necessary requirements for the system installation and commissioning
(acceptance) planning. This is addressed in ECSS at system level (see ECSS-E-ST-10C Annexes,
which require the installation and commissioning to be described in the system documents).
Since IEC 61508-3 does not provide specific requirements for installation, these system-level
requirements are analyzed against the ECSS software requirements:

• 7.9.2.1 - This is according with ECSS (see 5.7.2.3 ECSS-E-ST-40C and 6.3.6.1 and 6.3.6.1
ECSS-Q-ST-80C).

• 7.9.2.2 - This is according with ECSS (see 5.7.3.1 ECSS-E-ST-40C and 6.3.6.3 ECSS-Q-ST-
80C), although more detailed in this standard.

• 7.9.2.3 - This is according with ECSS (see 5.7.2.3 and 5.7.3.1 ECSS-E-ST-40C).

© 2019, 2020, 2021 embedded brains GmbH 337

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.10 E/E/PE system safety requirements specification

7.10.1 Objective

This section does not contain requirements.

7.10.2 Requirements

This section specify the requirements for the requirements which result of a refinement (lower-
level requirements) of the project high-level requirements (section 7.6). This is addressed in
ECSS at system level (see 5.2 ECSS-E-ST-10C and ECSS-E-ST-10-06C). For software level see
analysis in 8.4.2, section 7.2.2.

7.11 E/E/PE safety-related systems \- realisation

7.11.1 Objective

This section does not contain requirements.

7.11.2 Requirements

See section 8.4.2.

7.12 Other risk reduction measures specification and realisation

7.12.1 Objective

This section does not contain requirements.

7.12.2 Requirements

This section does not contain requirements. As stated in this section other risk reduction mea-
sures, which are based on other technology which is not electrical/electronic/programmable
electronic equipment, is out of scope of this standard and also is not covered by ECSS software
standards.

7.13 Overall installation and commissioning

7.13.1 Objectives

This section does not contain requirements.

7.13.2 Requirements

This section specifies the necessary requirements for the system installation and commissioning
(acceptance) execution. This is addressed in ECSS at system level (see ECSS-E-ST-10C Annexes
- the installation and commissioning shall follow the plans referred in these Annexes). Again,
since IEC 61508-3 does not provide specific requirements for installation, these system-level
requirements are analyzed against the ECSS software requirements:

• 7.13.2.1 - This is according with ECSS (see 6.3.6.2 ECSS-Q-ST-80C).

© 2019, 2020, 2021 embedded brains GmbH 338

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• 7.13.2.2 - This is according with ECSS (see 5.7.2.4 ECSS-E-ST-40C).

• 7.13.2.3 - This is according with ECSS (see 6.3.6.4 ECSS-Q-ST-80C).

• 7.13.2.4 - This is according with ECSS (see 6.3.6.7 and 6.3.6.9 ECSS-Q-ST-80C).

7.14 Overall safety validation

7.14.1 Objective

This section does not contain requirements.

7.14.2 Requirements

This section describes the requirements for the validation activities. This is addressed in ECSS
at system level (see 5.5 ECSS-E-ST-10C and ECSS-E-ST-10-03C). For software level see analysis
in 8.4.2, section 7.7.2.

7.15 Overall operation, maintenance and repair

7.15.1 Objective

This section does not contain requirements.

7.15.2 Requirements

This section describe the requirements to be applied during operation and maintenance activ-
ities. This is addressed in ECSS at system level (see ECSS-E-ST-10C Annexes - the operation,
maintenance and repair shall follow the procedures described in the system documents). For
software level see analysis in 8.4.2, section 7.8.2.

7.16 Overall modification and retrofit

7.16.1 Objective

This section does not contain requirements.

7.16.2 Requirements

This section specifies the requirements when performing modifications to the product. In ECSS
this falls also in maintenance. This is addressed in ECSS at system level (see ECSS-E-ST-10C
Annexes - the modification and retrofit shall follow the procedures described in the system
documents). For software level see analysis in 8.4.2, section 7.8.2.

7.17 Decommissioning or disposal

7.17.1 Objective

This section does not contain requirements.

7.17.2 Requirements

© 2019, 2020, 2021 embedded brains GmbH 339

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

This section specifies the requirements when performing decommissioning (retirement) of the
product. This is addressed in ECSS at system level (see 4.3.8 ECSS-E-ST-10C). In ECSS, at
system level, this activity is referred as end of life Since IEC 61508-3 does not provide spe-
cific requirements for Decommissioning/disposal, these system-level requirements are analyzed
against the ECSS software requirements (in ECSS software standard, this activity is referred as
Software retirement):

• 7.17.2.1 - From a software point of view, this is according with ECSS (see 5.10.7.1 ECSS-
E-ST-40C).

• 7.17.2.2 - This is according with ECSS (see 5.10.7.1 ECSS-E-ST-40C).

• 7.17.2.3 - This is implicit in ECSS (see 5.10.7.2 ECSS-E-ST-40C, note the output of this
clause is a “Retirement notification”).

• 7.17.2.4 - This is implicit in ECSS (see 5.10.7.2 ECSS-E-ST-40C).

• 7.17.2.5 - From a software point of view, this is according with ECSS (see 5.10.7.1 ECSS-
E-ST-40C).

• 7.17.2.6 - This is implicit in ECSS. Although ECSS (software) only specifies that a re-
placing software to be identified (see 5.10.7.2 ECSS-E-ST-40C), but does not provide any
requirement which relates the software with other systems.

• 7.17.2.7 - This is implicit in ECSS (see 5.10.7.2 ECSS-E-ST-40C).

7.18 Verification

7.18.1 Objective

This section does not contain requirements.

7.18.2 Requirements

This section describes the requirements for the verification planning and execution. This is
addressed in ECSS at system level (see 5.5 ECSS-E-ST-10C and ECSS-E-ST-10-02C). For software
level see analysis in 8.4.2, section 7.9.2.

8 Functional safety assessment

8.1 Objective

This section does not contain requirements.

8.2 Requirements

This section specifies the requirements to perform independent verification of the product. For
system level it was not found any document addressing this topic. From software point of view,
this section is according with ECSS (see 6.2.6.13 ECSS-Q-ST-80C and ESA Guide for Indepen-
dent Software Verification and Validation). Note that ECSS standard is more strict and specific
in what concerns the necessary independence and the necessary work to be performed in terms
of verification. The IEC consequences B, C and D all of them fall in the ECSS Catastrophic
category and consequence A (the least severe in IEC) falls into ECSS Critical category (see 4.2

© 2019, 2020, 2021 embedded brains GmbH 340

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

ECSS-Q-ST-30-02C). ECSS also defines levels of independent verification, which require dif-
ferent level of verification depth (for example ECSS ISVV level 2 requires the requirements
consistency to be verified using modeling or formal methods, whereas in level 1 inspection is
enough) when performing the analysis. For the remaining topics, as stated above, they are
according with ECSS, with the ECSS being more complete and specific on what work shall be
done. As a conclusion, since ECSS is more restrict, an independent verification performed under
ECSS will be compatible with an IEC independent verification.

8.4.2 IEC 61508-3
4 Conformance to this standard

See section 8.4.1.

5 Documentation

See section 8.4.1.

6 Additional requirements for management of safety-related software

6.1 Objectives

This section does not contain requirements.

6.2 Requirements

These clauses specify the requirements for the Configuration Management of a software project.
See below the analysis of each of these clauses against the ECSS standard.

• 6.2.1 - See 8.4.1, section 6.2 analysis.

• 6.2.2 - This is according with ECSS (see 5.3 ECSS-E-ST-40C), which also requires a plan-
ning for the software development. In ECSS, this planning is realised in the Software
Development Plan (see Annex O ECSS-E-ST-40C).

• 6.2.3 - See each point below:

a. This is according with ECSS (see 5.3.2.1, 5.3.2.4 and 5.3.2.5 ECSS-M-ST-40C and
6.2.4.6 ECSS-Q-ST-80C), which also requires software changes procedures to be de-
fined and applied through the software project life-cycle.

b. This is according with ECSS (see 5.3.4 ECSS-M-ST-40C), which also requires the
verification of the software product from a configuration management point of view.

c. This is according with ECSS (see 5.3.1 ECSS-M-ST-40C and 6.2.4.11 ECSS-Q-ST-
80C), which also requires correct labeling of all software items.

d. This is according with ECSS (see 5.3.2.1 ECSS-M-ST-40C and 6.2.4.6 ECSS-Q-ST-
80C), which also requires software changes to be authorized and controlled.

e. This is implicit in ECSS (see 5.3.1.3 ECSS-M-ST-40C and 6.2.4.7 ECSS-Q-ST-80C),
which requires that the information on how to install/operate shall be available.

© 2019, 2020, 2021 embedded brains GmbH 341

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

f. This is according with ECSS, although more detailed. The ECSS only states that the
necessary information for performing audits shall be available (see 5.3.5 and <4.8>,
Annex A ECSS-M-ST-40C and 5.2.3 ECSS-Q-ST-80C).

g. This according with ECSS (see 5.3.7.5 and 5.3.7.6 ECSS-M-ST-40C and 6.2.4.2 ECSS-
Q-ST-80C), which also requires means of permanent storage of the software product.

7 Software safety lifecycle requirements

7.1 General

7.1.1 Objective

This section does not contain requirements.

7.1.2 Requirements

These clauses specify the requirements to define and apply a life cycle to software development.
See below the analysis of each of these clauses against the ECSS standard. Note that ECSS
specifies, in addition, specific life cycle requirements for autocoded software.

• 7.1.2.1 - See 8.4.1, section 6.2 analysis.

• 7.1.2.2 - This is according with ECSS (see 5.3.2.1 ECSS-E-ST-40C), which states that the
life-cycle shall be chosen according with it is more appropriate for the project.

• 7.1.2.3 - This is according with ECSS (see 5.3.2.1 ECSS-E-ST-40C and 6.1.1 ECSS-Q-ST-
80C), which also requires each phase of the project life-cycle to be detailed specified.

• 7.1.2.4 - This is implicit in ECSS (see 5.3.2.1 ECSS-E-ST-40C), the software life-cycle may
be adapted according with the project needs, but still the ECSS requirements shall be meet
within the project.

• 7.1.2.5 - This is implicit in ECSS (see 5.3.2.1 ECSS-E-ST-40C), the tailoring of the software
life-cycle shall be justified taking into account the project criticality level.

• 7.1.2.6 - This is according with ECSS (see 5.2.2.1, 5.2.4.8 and 5.4.2.1 ECSS-E-ST-40C and
5.2.7, 6.1.2 and 6.2.2 ECSS-Q-ST-80C), which also requires the project to have quality
and safety requirements and procedures.

• 7.1.2.7 - This is according with ECSS (see 5.3.2.1 ECSS-E-ST-40C and 6.2.3 ECSS-Q-
ST-80C), which states also that the techniques and measures should be defined, with
special emphasis to to critical software. However ECSS does not specify explicitly which
techniques are applicable, depending on the software criticality level, as in Annexes A and
B of this document.

• 7.1.2.8 - This is according with ECSS (see 5.3.2.1 ECSS-E-ST-40C), which requires the
documentation of the outcome of each life cycle activity.

• 7.1.2.9 - This is implicit in ECSS (see in general 5.3.2 ECSS-E-ST-40C and 6.1 ECSS-
Q-ST-80C). Since some outputs of life cycle phases are inputs of later phases, then a
re-assessment of a later phase activity may require the respective adaptation of its depen-
dent(s) earlier phases.

© 2019, 2020, 2021 embedded brains GmbH 342

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.2 Software safety requirements specification

7.2.1 Objectives

This section does not contain requirements.

7.2.2 Requirements

These clauses specify the requirements for the software requirements with emphasis in safety
requirements. See below the analysis of each of these clauses against the ECSS standard.

• 7.2.2.1 - This is implicit in ECSS (see 5.2.2.1 ECSS-E-ST-40C), if the software system re-
quirements are already specified in the system requirements, the Software System Spec-
ification (see Annex B) should point to the System Requirements. However, it should be
verified if the software requirements in System requirements covers what is required by
ECSS-E-ST-40C Annex B.

• 7.2.2.2 - This is according with ECSS (see 5.2.2.1 ECSS-E-ST-40C).

• 7.2.2.3 - This is according with ECSS (see 5.4.2.1 ECSS-E-ST-40C), referring to the Tech-
nical specification.

• 7.2.2.4 - This is according with ECSS (see 5.2.2.1 ECSS-E-ST-40C and 6.3.1.3 ECSS-Q-ST-
80C), which requires also a failure analysis.

• 7.2.2.5 - This clause states the type of requirements that should present in the require-
ments specification. These type of requirements are also present in ECSS (see), as follows:

a. <5.13> Software safety requirements (Annex D ECSS-E-ST-40C)

b. <5.7> Design requirements and implementation constraints (Annex D ECSS-E-ST-
40C)

c. <5.5> Operational requirements/<5.6> Resources requirements (Annex D ECSS-E-
ST-40C). Although in ECSS it is not intended to provide pure hardware requirements,
but requirements which concerns the relation between hardware and software.

d. <5.2> Functional requirements (Annex D ECSS-E-ST-40C)

e. <5.3> Performance requirements (Annex D ECSS-E-ST-40C)

f. <5.4> Interface requirements/<5.16> Human factors related requirements (Annex
D ECSS-E-ST-40C)

• 7.2.2.6 - This is according with ECSS (see 5.4.2.1 and Operational requirements in Annex
D, ECSS-E-ST-40C)

• 7.2.2.7 - This is according with ECSS (see 5.4.2.1 and safety requirements and Design
requirements and implementation constraints in Annex D, ECSS-E-ST-40C)

• 7.2.2.8 - The points a. and b. are in accordance with ECSS (see 5.2.2.2 and 5.8.3.1
ECSS-E-ST-40C and 6.2.3 ECSS-Q-ST-80C) The points c., d. and e. are partially according
with ECSS (see same sections above). ECSS states for the need for capabilities monitoring
and fault recovery mechanisms, but does not specify that the software shall have testing
functions embedded in the software itself (i.e: testing code in the software).

© 2019, 2020, 2021 embedded brains GmbH 343

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• 7.2.2.9 - This is according with ECSS (see 6.3.1.3 and 6.3.2.4 ECSS-Q-ST-80C), although
ECSS states this requirement in the opposite direction: the safety requirements shall be
clearly identified.

• 7.2.2.10 - See analysis below

a. This is according with ECSS (see 5.8.3.1 ECSS-E-ST-40C), although more detailed in
this standard.

b. This is according with ECSS (see 6.2.2.10 ECSS-Q-ST-80C), in addition in ECSS it is
stated if this independence is not possible, “then all the involved components shall
be classified at the highest criticality category among them”.

• 7.2.2.11 - This is according with ECSS (see 5.8.3.1 ECSS-E-ST-40C). In ECSS, this is ma-
terialized in the interface definitions (see 5.4.3.5 and Annex E ECSS-E-ST-40C)

• 7.2.2.12 - This according with ECSS (see 5.2.4.4, 5.4.3.5 and Annex E ECSS-E-ST-40C).
The points c., d. and e. are implicit in ECSS.

• 7.2.2.13 - This is according with ECSS (see 6.2.3.2 and 6.2.4 ECSS-Q-ST-80C), being ECSS
more generic and not specifying this measures only to operational parameters.

7.3 Validation plan for software aspects of system safety

7.3.1 Objective

This section does not contain requirements.

7.3.2 Requirements

These clauses specify the requirements to for the software validation plan. See below the anal-
ysis of each of these clauses against the ECSS standard.

• 7.3.2.1 - This is according with ECSS (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C and 7.2.3
ECSS-Q-ST-80C). Note that ECSS requires a test plan for both Technical Specification
(lower level requirements) and Requirements Baseline (upper level requirements).

• 7.3.2.2 - See analysis below:

a. In ECSS it is specified that the validation shall take place in specific phases of the
software development:

– CDR - Technical Specification validation (see 5.6.3.4 ECSS-E-ST-40C)

– QR - Requirements Baseline validation (see 5.6.4.4 ECSS-E-ST-40C)

Having the possibility to have other validation life-cycle strategy is acceptable, as
long as in the end of the project the validation activity goals are achieved.

b. ECSS is more specific and restrictive on the personal who shall perform the valida-
tion, specially on what concerns the level of independence (see 5.6.2.1 and 5.6.2.2
ECSS-E-ST-40C and 6.3.5.19 ECSS-Q-ST-80C)

c. This is according with ECSS (see 7.2.3.5 ECSS-Q-ST-80C)

d. This is according with ECSS. In ECSS the validation takes place before the commis-
sioning (operational phase), see point a. analysis. In addition ECSS states that the

© 2019, 2020, 2021 embedded brains GmbH 344

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

validation shall take place in a configuration which replicates the operational sce-
nario (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C)

e. This is according with ECSS (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C)

f. See point e.

g. This is according with ECSS (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C and 7.2.3.5
ECSS-Q-ST-80C)

h. This is according with ECSS (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C)

i. This is according with ECSS (see 6.3.5.6, 6.3.5.8 and 7.2.3.3 ECSS-Q-ST-80C)

• 7.3.2.3 - This is according with ECSS (see 5.6.2.1 ECSS-E-ST-40C and 7.2.3.1 ECSS-Q-
ST-80C), although this standard is more specific on the option strategies which may be
followed.

• 7.3.2.4 - This is according with ECSS, in general all activities workflow shall be agreed
with the customer/assessor (see 5.6.1.1 ECSS-Q-ST-80C). ECSS foresees an Acceptance
Test phase, where the customer/assessor performs the tests itself (see 5.7.3.1 and 5.7.3.2
ECSS-E-ST-40C)

• 7.3.2.5 - This is according with ECSS (see 5.6.3.1, 5.6.4.1 and Annex J ECSS-E-ST-40C)

7.4 Software design and development

7.4.1 Objectives

This section does not contain requirements

7.4.2 General requirements

These clauses specify the guidelines for software development and reuse. See below the analysis
of each of these clauses against the ECSS standard.

• 7.4.2.1 - This requirement is not specified in ECSS. Although, this is implicit, since the
project may decide for each functionality whether it is more appropriate to implement at
hardware or at software level

• 7.4.2.2 - This is according with ECSS (see 6.3.3 ECSS-Q-ST-80C), although more detailed
in this standard what should be considered in the design of software

• 7.4.2.3 - This is implicit in ECSS (see 6.3.3 ECSS-Q-ST-80C), the software shall be testable
and programming practices which difficult software maintenance shall be avoided.

• 7.4.2.4 - This is implicit in ECSS (see 5.2.7.2 ECSS-Q-ST-80C). The software shall be
designed to allow maintainability, this is part of ECSS project’s Quality Model.

• 7.4.2.5 - This is implicit in ECSS for design (see 6.3.3.2 ECSS-Q-ST-80C) and referred for
the coding phase (see 6.3.4.1 ECSS-Q-ST-80C).

• 7.4.2.6 - This is according with ECSS (see 6.3.3.5 and 6.3.3.6 ECSS-Q-ST-80C).

• 7.4.2.7 - This is according with ECSS (see 6.2.3.2 ECSS-Q-ST-80C), for the critical soft-
ware design techniques. Note that ECSS provides this measure as a suggestion, although

© 2019, 2020, 2021 embedded brains GmbH 345

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

it is implicit that for critical software it shall be applied, unless justified that it may/can
not be applied and the necessary measures are taken to compensate.

• 7.4.2.8 - This is according with ECSS (see 6.2.2.10 ECSS-Q-ST-80C)

• 7.4.2.9 - This is related with the previous point, and again according with ECSS (see
6.2.2.10 ECSS-Q-ST-80C). Note however, that ECSS requires that the critical components
to be reduced the minimum possible (see 6.2.2.4 ECSS-Q-ST-80C).

• 7.4.2.10 - This is according with ECSS (see 6.2.2.1 ECSS-Q-ST-80C, which redirects to
6.5.6.3 ECSS-Q-ST-40).

• 7.4.2.11 - This project does not have access to IEC 61508-2, however this clause is re-
lated to the previous one, so it can be assumed that the IEC 61508-2 requirements are
in accordance with ECSS in what concerns using elements to compensate software mod-
ules with level lower than the required by the project. This is a common practice in ESA
projects, since in most projects, implementing SCC A (maximum criticality) software is
much resource consuming.

• 7.4.2.12 - See analysis below:

a. Each route is treated in ECSS as below:

– For route1, this is according with ECSS (see see 6.2.7.3, 6.2.7.4 and 6.2.7.6
ECSS-Q-ST-80C)

– For route2, this is according with ECSS, with ECSS requiring additionally gener-
ation of “validation and verification documents” and “execution of tests in order
to achieve the required level of test coverage” (see 6.2.7.8 ECSS-Q-ST-80C)

– For route3, this standard specifies in clause 7.4.2.13, the minimum requirements
for the non-compliant software to be still admissible to use. ECSS is more re-
strict, by requiring for a non-compliant software to perform reverse engineering,
in order for the reused software to meet the project requirements (see 6.2.7.7).

b. This is according with ECSS (see 6.2.7.5 ECSS-Q-ST-80C). The reused software shall
be documented in the Software Reuse File document (see Annex N ECSS-E-ST-40),
which contains all relevant information of the reused software.

• 7.4.2.13 - This clause was already discussed in point above (see 7.4.2.12 a. third point).

• 7.4.2.14 - This specific case is not addressed explicitly by ECSS. However, any configu-
ration data for hardware shall be considered as software and follow the same rules as
“normal” software.

7.4.3 Requirements for software architecture design

These clauses specify the guidelines for the software architectural. See below the analysis of
each of these clauses against the ECSS standard.

• 7.4.3.1 - This clause is repeated of 7.4.4.19. See analysis in respective section.

• 7.4.3.2 - See analysis below:

a. This is according with ECSS (see 5.4.3.1 and 5.4.3.2 ECSS-E-ST-40C and 6.3.3.2 and
6.3.3.5 ECSS-Q-ST-80C).

© 2019, 2020, 2021 embedded brains GmbH 346

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

b. This is implicit in ECSS (see 5.4.3.1 and 5.8.3.3 ECSS-E-ST-40C). See specific com-
ments to the points below:

1. This is not explicitly stated in ECSS, however the information about external el-
ements/subsystems shall be available and comply with the whole software spec-
ifications (see also 5.4.3.6 and 5.4.3.7 for activities for software reuse)

2. This can be deduced from the requirements allocated to the elements. Compo-
nents implementing critical requirements inherit the criticality of the respective
requirements.

3. According with ECSS, as stated above.

c. This is according with ECSS (see 5.4.3.1 ECSS-E-ST-40C).

d. This is implicit in ECSS, with the choice of design standard (see 5.4.3.2 ECSS-E-ST-
40C and 6.3.3.2 and 6.3.3.4 ECSS-Q-ST-80C).

e. This according with ECSS (see 5.8.3.3 ECSS-E-ST-40C).

f. This is according with ECSS (see 5.4.3.8 ECSS-E-ST-40C).

• 7.4.3.3 - This is implicit in ECSS, which allows changes to baseline to be performed, but
controlled by the configuration management (see 5.3.2.5 and 5.3.3.1 ECSS-E-ST-40C).

7.4.4 Requirements for support tools, including programming languages

These clauses specify the requirements for the software support tools.

Introductory note: in the absence of the IEC 61508-4 for this work, a search in google was
performed to clarify the meaning of on-line, off-line tools and the Tx categories used. This is
what was taken from EngineerZone:

• “Online tools which run as part of the application and offline tools used during the devel-
opment or manufacturing phases.”

• “T1 - tools which have no impact on the executable code. The examples given in IEC
61508-4:2010 include text editors and requirements management tools. Perhaps a de-
scription more consistent with the examples given in the text are tools that are not used
to produce the code or verify the code but even then it is hard to argue that a text editor
is only a T1 tool.”

• “T2 - tools which only impact on the verification of the executable code and can’t inject an
error into the code but could cause an error to be missed e.g. static timing analysis tools”

• “T3 - tools which can put an error in the code e.g. compilers”

See below the analysis of each of these clauses against the ECSS standard.

• 7.4.4.1 - This is according with ECSS (see 6.2.7.1 ECSS-Q-ST-80C). Software on-line tools
are considered as reused software (clause 6.2.7.1 applies to all software except tools and
software development environment).

• 7.4.4.2 - This is according with ECSS (see 5.6.1.2 ECSS-Q-ST-80C).

• 7.4.4.3 - This is according with ECSS (see 5.6.1.2 ECSS-Q-ST-80C).

• 7.4.4.4 - This is according with ECSS (see 5.6.2.1 ECSS-Q-ST-80C).

© 2019, 2020, 2021 embedded brains GmbH 347

https://ez.analog.com/b/engineerzone-spotlight/posts/software-tools

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• 7.4.4.5 - This is according with ECSS (see 5.6.1.2 and 5.6.2.1 ECSS-Q-ST-80C).

• 7.4.4.6 - This is according with ECSS (see 5.6.2.1 ECSS-Q-ST-80C).

• 7.4.4.7 - This standard is more specific in what information should be available on the
tool performed validation (see against 5.6.2.1 ECSS-Q-ST-80C). However, since this infor-
mation is in line with the ECSS necessary validation information for a normal software
development.

• 7.4.4.8 - This clause is not foreseen in ECSS (i.e: ECSS does not foresees compensating
measures to be applicable to the software itself due to a potential bug in the tool). If
the tool has potential failures that could impact the software, techniques as described in
6.3 ECSS-Q-HB-80-01A shall be applied, in order to make the tool compliant with the
software under development.

• 7.4.4.9 - This is according with ECSS (see 5.6.2.1 ECSS-Q-ST-80C).

• 7.4.4.10 - This is according with ECSS, although more detailed in this standard (see
5.6.1.2, 5.6.2.1, 5.6.2.2 and 6.2.3.2 ECSS-Q-ST-80C). Note in addition, ECSS requires
the justification of low-level languages usage (see 6.3.4.5 ECSS-Q-ST-80C)

• 7.4.4.11 - This is implicit in ECSS (see 5.6.1.2, 5.6.2.1, 5.6.2.2 ECSS-Q-ST-80C). If the
language by itself is not alone fully adequate for the software project, the necessary com-
pensating measures shall be identified and justified.

• 7.4.4.12 - This is according with ECSS (see 6.3.4.1 and 6.3.4.2 ECSS-Q-ST-80C).

• 7.4.4.13 - This is according with ECSS (see 6.3.4.1, 6.3.4.2 and 6.2.3.2 ECSS-Q-ST-80C),
except that for the specific required information in the source code listed in this require-
ment, ECSS is not specific.

• 7.4.4.14 - This is according with ECSS (see 6.2.8.1 ECSS-Q-ST-80C).

• 7.4.4.15 - This according with ECSS (see 5.3.1.3 ECSS-M-ST-40C and 6.2.4.5 ECSS-Q-
ST-80C), although less detailed in ECSS. Since the goal of configuration management
is to allow to reproduce any software version (see 6.2.4.2 ECSS-Q-ST-80C), all means
necessary to do it, shall be available.

• 7.4.4.16 - In ECSS this requirement does not fall into the scope of the configuration man-
agement, but instead on the quality assurance, in addition, they should be agreed with
the customer (see 5.6.1.1, 5.6.1.2 and 5.6.2.1 ECSS-Q-ST-80C)

• 7.4.4.17 - As with clause 7.4.4.16, in ECSS this task is within the quality assurance domain
(see 5.6.2.1 ECSS-Q-ST-80C)

• 7.4.4.18 - This is not explicitly stated in ECSS. However, the updated tool shall be consid-
ered as new tool and follow the same verification as the old version tool. This however,
does not eliminate the possibility of reusing verification done for the old version tool.
Note that a word is worthwhile to provide here: the re-verification process of updated
tools shall be done with the same rigor as done for the earlier version. Even an apparently
minor change may have the impact to introduce bugs or change the behavior of the tool.

• 7.4.4.19 - This is implicit in ECSS, where the definition of the tools and the necessary
verification to make sure they meet the project needs is made by the engineering team.
The quality assurance team shall verify if the choices and the necessary measures to make
sure the tools meet the project needs are applied.

© 2019, 2020, 2021 embedded brains GmbH 348

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

More detailed information about tools can be also found in ECSS-Q-HB-80-01A.

7.4.5 Requirements for detailed design and development software system design

These clauses specify the guidelines for the software detailed design and development. See
below the analysis of each of these clauses against the ECSS standard.

• 7.4.5.1 - This is implicit in ECSS: the engineering team is responsible to apply the nec-
essary measures for the correct detailed design and the quality assurance to verify the
compliance of detailed design with the project specifications (see 6.3.3.5 and 6.3.3.6
ECSS-Q-ST-80C).

• 7.4.5.2 - This is according with ECSS: the specification of requirements (see 5.4.2.1 ECSS-
E-ST-40C), the software architecture design (see 5.4.3.1 ECSS-E-ST-40C) and the valida-
tion plan (see 5.6.2.1 ECSS-E-ST-40C) shall be made available in the Preliminary Design
Review phase which is held immediately before the Detailed Design Review phase (in the
indicated ECSS sections see “EXPECTED OUTPUT”, where it is indicated the document
output of the activities and the respective phase).

• 7.4.5.3 - This is according with ECSS (see 5.8.3.4 ECSS-E-ST-40C).

• 7.4.5.4 - This is according with ECSS (see 5.5.2.1 and 5.5.2.9 ECSS-E-ST-40C).

• 7.4.5.5 - This is according with ECSS (see 5.5.4.1 ECSS-E-ST-40C).

7.4.6 Requirements for code implementation

This clause specifies the guideline for the software coding. See below the analysis of each of
these clauses against the ECSS standard.

• 7.4.6.1 - This is according with ECSS, although less detailed in this standard (see 5.8.3.5
ECSS-E-ST-40C). For 7.4.4 and 7.4.2 analysis report, see the respective sections.

7.4.7 Requirements for software module testing

These clauses specify the guidelines for the software module testing. See below the analysis of
each of these clauses against the ECSS standard.

• 7.4.7.1 - This is according with ECSS (see 5.5.3.2 ECSS-E-ST-40C)

• 7.4.7.2 - This is according with ECSS (see 5.5.3.2 ECSS-E-ST-40C)

• 7.4.7.3 - This is according with ESSS (see 5.8.3.6 ECSS-E-ST-40C)

• 7.4.7.4 - This is according with ECSS (see 7.2.3.3 ECSS-Q-ST-80C)

7.4.8 Requirements for software integration testing

These clauses specify the guidelines for the software integration testing. See below the analysis
of each of these clauses against the ECSS standard.

• 7.4.8.1 - This is according with ECSS (see 5.5.4.1 ECSS-E-ST-40C, this activity is within
section 5.5 Software design and implementation engineering process)

• 7.4.8.2 - This is according with ECSS (see 5.5.4.1, 5.5.4.2 and 5.8.3.7 ECSS-E-ST-40C)

• 7.4.8.3 - This is according with ECSS (see 5.5.4.2 and 5.8.3.7 ECSS-E-ST-40C)

© 2019, 2020, 2021 embedded brains GmbH 349

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• 7.4.8.4 - This is according with ECSS (see 5.8.3.7 ECSS-E-ST-40C and 7.2.3 ECSS-Q-ST-
80C)

• 7.4.8.5 - This is implicit in ECSS (see 6.2.1.3, 6.2.4.5, 6.2.4.6 and 6.3.2.5 ECSS-Q-ST-
80C), note specially all changed components shall be re-tested (see 6.2.3.4 ECSS-Q-ST-
80C).

7.5 Programmable electronics integration (hardware and software)

7.5.1 Objectives

This section does not contain requirements.

7.5.2 Requirements

These clauses specify the guidelines for the software integration with hardware.

Note: The ECSS integration clauses apply both to software-software and software-hardware
(ECSS definition of integration testing: “testing in which software components, hardware com-
ponents, or both are combined and tested to evaluate the interaction between them”). However,
for the hardware, the ECSS software documents needs to be complemented other discipline
ECSS documents (e.x: E-10 and E-20). See below the analysis of each of these clauses against
the ECSS standard.

• 7.5.2.1 - This is according with ECSS (see 5.5.4.1 ECSS-E-ST-40C, this activity is within
section 5.5 Software design and implementation engineering process)

• 7.5.2.2 - This is according with ECSS (see 5.5.4.1, 5.5.4.2 and 5.8.3.7 ECSS-E-ST-40C)

• 7.5.2.3 - This is according with ECSS (see 5.8.3.9 ECSS-Q-ST-80C)

• 7.5.2.4 - This is implicit in ECSS, the integration testing shall distinguish between hard-
ware and software integration.

• 7.5.2.5 - This is according with ECSS (see 5.5.4.1, 5.5.4.2 and 5.8.3.7 ECSS-E-ST-40C).
Note that although the integration with hardware is not explicitly stated in these clauses,
hardware is a possible interface for the software (see <5.3> Annex C ECSS-E-ST-40C).

• 7.5.2.6 - The same analysis made in 7.4.8.5 apply to this clause, with the addition that
ECSS states that a change in hardware requires also re-testing (see 6.2.3.4, 6.2.3.5 and
6.3.5.17 ECSS-Q-ST-80C)

• 7.5.2.7 - This is according with ECSS (see 5.5.4.1 ECSS-E-ST-40C 6.3.5.11 ECSS-Q-ST-
80C)

• 7.5.2.8 - This is according with ECSS (see 5.5.4.1 ECSS-E-ST-40C 6.3.5.11 ECSS-Q-ST-
80C)

7.6 Software operation and modification procedures

7.6.1 Objective

This section does not contain requirements.

© 2019, 2020, 2021 embedded brains GmbH 350

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.6.2 Requirements

See analysis of this standard, section 7.8

7.7 Software aspects of system safety validation

7.7.1 Objective

This section does not contain requirements.

7.7.2 Requirements

These clauses specify the guidelines for the software validation. See below the analysis of each
of these clauses against the ECSS standard.

• 7.7.2.1 - This is not according with ECSS. ECSS is more restrict, requiring both a system
validation and software validation (see 5.2.3.1, 5.2.3.2).

• 7.7.2.2 - This is according with ECSS (see 5.6.3.2 and 5.6.4.2 ECSS-E-ST-40C).

• 7.7.2.3 - This is according with ECSS (see 5.6.2.1 ECSS-E-ST-40C), with ECSS being more
strict in this point, requiring that validation to be taken by personnel not involved in the
software coding (see 6.3.5.19 ECSS-Q-ST-80C).

• 7.7.2.4 - This is according with ECSS (see 5.8.3.8 ECSS-E-ST-40C).

• 7.7.2.5 - This is according with ECSS (see 6.3.5.11, 6.3.5.12, 6.3.5.21, 6.3.5.22, 6.3.5.23,
6.3.5.24 and 6.3.5.25 ECSS-Q-ST-80C).

• 7.7.2.6 - This is according with ECSS (see 6.3.5.6 and 6.3.5.8 ECSS-Q-ST-80C).

• 7.7.2.7 - See analysis below:

a. This is according with ECSS (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C).

b. This is according with ECSS (see 5.6.3.1 and 5.6.4.1 ECSS-E-ST-40C).

c. This is implicit in ECSS, the validation results shall be documented (see 6.3.5.11
ECSS-Q-ST-80C) and the results shall be made available to the interested parts. Typ-
ically, the results would be available in CDR (for technical specification validation,
see 5.6.3.4 ECSS-E-ST-40C) and QR (for requirements baseline, see 5.6.4.4 ECSS-E-
ST-40C).

• 7.7.2.8 - This is according with ECSS (see 6.3.5.23 and 6.3.5.24 ECSS-Q-ST-80C).

• 7.7.2.9 - See analysis below:

a. This is according with ECSS (see 5.6.3.1, 5.6.4.1 and 5.8.3.8 ECSS-E-ST-40C).

b. This is implicit in ECSS (see 5.6.2.2 ECSS-E-ST-40C and 6.3.5.28 ECSS-Q-ST-80C),
the independent assessment shall have access to all relevant documentation.

c. This is according with ECSS (see 6.3.5.11 and 6.3.5.13 ECSS-Q-ST-80C).

7.8 Software modification

© 2019, 2020, 2021 embedded brains GmbH 351

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

7.8.1 Objective

This section does not contain requirements.

7.8.2 Requirements

These clauses specify the guidelines for the software modification (maintenance of the software
product). See below the analysis of each of these clauses against the ECSS standard.

• 7.8.2.1 - This is according with ECSS (see 5.10.2.1 ECSS-E-ST-40C).

• 7.8.2.2 - This is according with ECSS (see 5.10.3.1 ECSS-E-ST-40C and 6.3.8.7 ECSS-Q-
ST-80C).

• 7.8.2.3 - This is implicit in ECSS (see 5.10.3.1 ECSS-E-ST-40C and 6.3.8.4 ECSS-Q-ST-
80C).

• 7.8.2.4 - This is according with ECSS (see 5.10.3.1 ECSS-E-ST-40C and 6.3.8.7 ECSS-Q-
ST-80C).

• 7.8.2.5 - This is according with ECSS (see 5.10.4.3 ECSS-E-ST-40C).

• 7.8.2.6 - This is according with ECSS (see 6.3.8.4 and 6.3.8.7 ECSS-Q-ST-80C).

• 7.8.2.7 - This is implicit in ECSS (see 6.3.8.4 ECSS-Q-ST-80C).

• 7.8.2.8 - This is according with ECSS (see 6.3.8.6 and 6.3.8.7 ECSS-Q-ST-80C).

• 7.8.2.9 - This is according with ECSS (see 5.10.4.3 ECSS-E-ST-40C and 6.3.8.7 ECSS-Q-
ST-80C).

• 7.8.2.10 - This is according with ECSS (see 5.10.3.1 ECSS-E-ST-40C).

7.9 Software verification

7.9.1 Objective

This section does not contain requirements.

7.9.2 Requirements

These clauses specify the guidelines for the software verification. See below the analysis of each
of these clauses against the ECSS standard.

• 7.9.2.1 - This is according with ECSS (see 5.8.2.1 ECSS-E-ST-40C and 6.2.6.2 ECSS-Q-ST-
80C).

• 7.9.2.2 - This is according with ECSS (see 5.8.2.1 ECSS-E-ST-40C).

• 7.9.2.3 - This is according with ECSS (see 6.2.6.7 ECSS-Q-ST-80C).

• 7.9.2.4 - This is according with ECSS (see 6.2.6.2 and 6.2.6.7 ECSS-Q-ST-80C).

• 7.9.2.5 - This is according with ECSS (see 6.2.6.10 and 6.2.6.11 ECSS-Q-ST-80C).

• 7.9.2.6 - This is according with ECSS (see 6.2.6.2 and 6.2.6.7 ECSS-Q-ST-80C), although
more detailed in this standard. It is implicit that the information described in this clause
for phase N shall be also available for phase N+1 in ECSS standard.

© 2019, 2020, 2021 embedded brains GmbH 352

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• 7.9.2.7 - See below the report for the verification activities:

a. Verification activity foreseen by ECSS (see 5.8.3.1 and 5.8.3.2 ECSS-E-ST-40C).

b. Verification activity foreseen by ECSS (see 5.8.3.3 ECSS-E-ST-40C).

c. Verification activity foreseen by ECSS (see 5.8.3.4 ECSS-E-ST-40C).

d. Verification activity foreseen by ECSS (see 5.8.3.5 ECSS-E-ST-40C).

e. Verification activity foreseen by ECSS (see 5.8.3.5 ECSS-E-ST-40C).

f. Verification activity foreseen by ECSS (see 5.8.3.5 ECSS-E-ST-40C).

g. Verification activity foreseen by ECSS (see 5.8.3.11 and 5.8.3.12 ECSS-E-ST-40C).

h. Verification activity foreseen by ECSS (see 5.8.3.6 ECSS-E-ST-40C).

i. Verification activity foreseen by ECSS (see 5.8.3.7 ECSS-E-ST-40C).

j. Verification activity foreseen by ECSS (see 5.8.3.7, 5.8.3.8 and 5.8.3.9 ECSS-E-ST-
40C).

k. Verification activity foreseen by ECSS (see 5.8.3.8 ECSS-E-ST-40C).

• 7.9.2.8 - This is according with ECSS (see 5.8.3.1 and 5.8.3.2 ECSS-E-ST-40C).

• 7.9.2.9 - This is according with ECSS (see 5.8.3.3 and 5.8.3.7 ECSS-E-ST-40C).

• 7.9.2.10 - This is according with ECSS (see 5.8.3.4 and 5.8.3.7 ECSS-E-ST-40C).

• 7.9.2.11 - This is according with ECSS (see 5.8.3.5 and 5.8.3.6 ECSS-E-ST-40C).

• 7.9.2.12 - This is according with ECSS (see 5.8.3.5 ECSS-E-ST-40C).

• 7.9.2.13 - This is according with ECSS (see 5.8.3.5 ECSS-E-ST-40C), but more detailed in
this standard.

• 7.9.2.14 - This is according with ECSS (see 5.8.3.11 and 5.8.3.12 ECSS-E-ST-40C). Note
that in ECSS clauses, it is required also the memory budget verification.

8 Functional safety assessment

These clauses specify the guidelines for the functional safety assessment (independent verifica-
tion). See below the analysis of each of these clauses against the ECSS standard.

• 8.1 - See Clause 8 analysis of IEC 61508-1 in section 8.4.1.

• 8.2 - See Clause 8 analysis of IEC 61508-1 in section 8.4.1.

• 8.3 - The techniques presented in table A.10 are in accordance with the ECSS techniques
for the functional safety assessment (see ESA Guide for Independent Software Verification
and Validation).

© 2019, 2020, 2021 embedded brains GmbH 353

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

8.4.3 Conclusions
The philosophy of IEC standard is the same as the ECSS: the quality and assurance targets
that the software products under development shall achieve is the same. This standard focuses
more in safety, which is also an important aspect of the ECSS standards, but which is more
generic regarding this topic and assumes that the safety is a consequence of applying correctly
the standard (ECSS does not provide as much specific safety requirements as this standard).
The main differences found between the two standards are the following:

• Software criticality classification, although there is no impact in a possible ECSS to IEC
qualification, since ECSS is more strict in criticality assignment (see analysis in 8.2 IEC
61508-1);

• There are topics that are either more detailed in ECSS or in this standard, but it should be
considered that the level of compliance is equivalent in these topics.

• Life-cycle definition (see analysis in 7.1.4 IEC 61508-1);

• Failures probability specification (see analysis in 7.6.2, IEC 61508-1);

• Responsibility of the application software of meeting the requirements for software devel-
opment (see analysis in 7.4.2, IEC 61508-3);

• ECSS does not recommend specific activities on software depending on the Software In-
tegrity Level (as in IEC 61508-3 Annex A tables), being that some activities are always
necessary regardless the Software Integrity Level (ex: traceability), whereas others are
under the decision of software supplier/customer (ex: the use of formal methods).

Despite the indicated differences, both standards share a common guideline and hence, it can
be concluded that an ECSS developed product can be adapted to this standard without major
effort.

© 2019, 2020, 2021 embedded brains GmbH 354

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

CHAPTER
NINE

TAILORING OF ECSS STANDARDS FOR THE QDP

The following sections present the tailoring of the ECSS standards ECSS-E-ST-40C [ECS09b]
and ECSS-Q-ST-80C Rev.1 [ECS17d] for the QDP.

For the standard tailoring status the following notation is used:

Y: The product is fully compliant to the clause.

Ye: The product is compliant to the clause with exceptions.

N: The product is not compliant at all to the clause.

N/A: The clause is not applicable to the product.

US: The status User-Specified (US) indicates that compliance to this clause is out of scope of
the product. A user of the product may have to ensure compliance to the clause if the
product is used to build a complete system.

9.1 Tailoring of ECSS-E-ST-40C
Table 1: Compliance Matrix of ECSS-E-ST-40C to QDP

Clause QDP Status Clause QDP Status Clause QDP Status
5.2.2.1a US 5.2.2.2a US 5.2.2.3a US
5.2.3.1a US 5.2.3.2a US 5.2.3.3a US
5.2.4.1a US 5.2.4.1b US 5.2.4.2a US
5.2.4.3a US 5.2.4.4a US 5.2.4.5a US
5.2.4.6a US 5.2.4.7a US 5.2.4.8a US
5.2.4.9a US 5.2.5a US 5.3.2.1a Y
5.3.2.1b Y 5.3.2.1c Y 5.3.2.1d Y
5.3.2.2a US 5.3.2.3a N/A 5.3.2.4a N
5.3.2.4b N 5.3.2.4c N 5.3.2.4d N
5.3.2.4e N 5.3.2.5a Y 5.3.3.1a Y
5.3.3.2a Y 5.3.3.2b Y 5.3.3.3a Ye
5.3.3.3b Y 5.3.3.3c Ye 5.3.4.1a US
5.3.4.2a Ye 5.3.4.2b N/A 5.3.4.3a Ye
5.3.4.3b N/A 5.3.4.4a Ye 5.3.4.5a Ye
5.3.5.1a N 5.3.5.2a N 5.3.6.1a N/A

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 355

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 1 – continued from previous pageClause QDP Status Clause QDP Status Clause QDP Status
5.3.6.1b N/A 5.3.6.2a N/A 5.3.7.1a US
5.3.8.1a Ye 5.3.8.2a Ye 5.3.9.1a Y
5.3.9.2a Y 5.4.2.1a Ye 5.4.2.2a N/A
5.4.2.3a N 5.4.2.3b N 5.4.2.3c N
5.4.2.4a N/A 5.4.3.1a Ye 5.4.3.2a Ye
5.4.3.3a N 5.4.3.4a Ye 5.4.3.5a Ye
5.4.3.6a Ye 5.4.3.6b Ye 5.4.3.6c Ye
5.4.3.7a US 5.4.3.8a Ye 5.4.4a Ye
5.5.2.1a Ye 5.5.2.1b Ye 5.5.2.1c Ye
5.5.2.2a Ye 5.5.2.3a Ye 5.5.2.4a Ye
5.5.2.5a N 5.5.2.5b Ye 5.5.2.5c Ye
5.5.2.5d Ye 5.5.2.5e Ye 5.5.2.6a Ye
5.5.2.7a N 5.5.2.8a Ye 5.5.2.9a Ye
5.5.2.10a N/A 5.5.3.1a Ye 5.5.3.2a Ye
5.5.3.2b Ye 5.5.3.2c Ye 5.5.4.1a Ye
5.5.4.2a Ye 5.6.2.1a Ye 5.6.2.1b Ye
5.6.2.1c Ye 5.6.2.2a N 5.6.2.2b N
5.6.3.1a Ye 5.6.3.1b Y 5.6.3.1c Y
5.6.3.2a Y 5.6.3.3a Y 5.6.3.4a Ye
5.6.4.1a US 5.6.4.1b US 5.6.4.1c US
5.6.4.2a US 5.6.4.2b US 5.6.4.3a US
5.6.4.4a Ye 5.7.2.1a Ye 5.7.2.2a US
5.7.2.3a Ye 5.7.2.4a US 5.7.2.4b US
5.7.2.4c US 5.7.2.4d US 5.7.3.1a US
5.7.3.2a US 5.7.3.3a US 5.7.3.4a US
5.7.3.4b US 5.7.3.5a US 5.7.3.6a Ye
5.8.2.1a Ye 5.8.2.1b Ye 5.8.2.1c Ye
5.8.2.1d Ye 5.8.2.2a N 5.8.2.2b N
5.8.3.1a US 5.8.3.2a Ye 5.8.3.3a Ye
5.8.3.4a Ye 5.8.3.5a Ye 5.8.3.5b Ye
5.8.3.5c Y 5.8.3.5d Y 5.8.3.5e N/A
5.8.3.5f Y 5.8.3.6a Ye 5.8.3.7a Ye
5.8.3.8a Ye 5.8.3.8b Ye 5.8.3.9a US
5.8.3.10a Ye 5.8.3.11a N/A 5.8.3.11b N/A
5.8.3.11c N/A 5.8.3.12a Ye 5.8.3.12b Ye
5.8.3.12c Ye 5.8.3.13a N 5.8.3.13b N
5.8.3.13c N 5.9.2.1a US 5.9.2.2a US
5.9.2.3a US 5.9.3.1a US 5.9.3.2a US
5.9.3.3a US 5.9.4.1a US 5.9.4.2a US
5.9.5.1a US 5.9.5.1b US 5.9.5.2a US
5.9.5.2b US 5.9.5.2c US 5.9.5.3a US
5.9.5.3b US 5.10.2.1a US 5.10.2.1b US
5.10.2.1c US 5.10.2.1d US 5.10.2.1e US
5.10.2.2a US 5.10.3.1a US 5.10.3.1b US
5.10.3.1c US 5.10.3.1d US 5.10.3.1e US

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 356

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 1 – continued from previous pageClause QDP Status Clause QDP Status Clause QDP Status
5.10.4.1a US 5.10.4.2a US 5.10.4.3a US
5.10.4.3b US 5.10.4.3c US 5.10.4.3d US
5.10.4.3e US 5.10.5.1a US 5.10.5.2a US
5.10.6.1a US 5.10.6.2a US 5.10.6.3a US
5.10.6.4a US 5.10.6.5a US 5.10.6.5b US
5.10.6.6a US 5.10.6.6b US 5.10.6.7a US
5.10.7.1a US 5.10.7.2a US 5.10.7.3a US
5.10.7.4a US

9.1.1 Specification of system requirements allocated to software (5.2.2.1a)
ECSS-E-ST-40C Clause 5.2.2.1a

The customer shall derive system requirements allocated to software from an analysis of the
specific intended use of the system, and from the results of the safety and dependability
analysis.

Expected Output: a. Functions and performance system requirements allocated to software
[RB, SSS; SRR]; b. Verification and validation product requirements [RB, SSS; SRR]; c.
Software operations requirements [RB, SSS; SRR]; d. Software maintenance requirements
[RB, SSS; SRR]; e. Requirements for in flight modification capabilities [RB, SSS; SRR]; f.
Requirements for real-time [RB, SSS; SRR]; g. Requirements for security [RB, SSS, SRR]; h.
Quality requirements [RB, SSS, SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.2 Identification of observability requirements (5.2.2.2a)
ECSS-E-ST-40C Clause 5.2.2.2a

The customer shall specify all software observability requirements to monitor the software
behaviour and to facilitate the system integration and failure investigation.

Expected Output: System and software observability requirements [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

© 2019, 2020, 2021 embedded brains GmbH 357

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.3 Specification of HMI requirements (5.2.2.3a)
ECSS-E-ST-40C Clause 5.2.2.3a

The customer shall specify HMI requirements, following the human factor engineering pro-
cess specified in ECSS-E-ST-10-11.

Expected Output: HMI requirements [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.4 Verification and validation process requirements (5.2.3.1a)
ECSS-E-ST-40C Clause 5.2.3.1a

The customer shall specify the requirements needed for planning and setting up the system
verification and validation process related to software.

Expected Output: Verification and validation process requirements [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.4.1a (Development and documentation of a software validation specifi-
cation with respect to the requirements baseline)

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.5 System input for software validation (5.2.3.2a)
ECSS-E-ST-40C Clause 5.2.3.2a

The customer shall specify requirements for the validation of the software against the re-
quirements baseline and technical specification, in particular mission representative data and
scenarios, and operational procedures to be used.

Expected Output: Validation requirements and scenario [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

© 2019, 2020, 2021 embedded brains GmbH 358

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.6 System input for software installation and acceptance (5.2.3.3a)
ECSS-E-ST-40C Clause 5.2.3.3a

The customer shall specify requirements for the installation and acceptance of the software.

Expected Output: Installation and acceptance requirements at the operational and mainte-
nance sites [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.7 Identification of software versions for software integration into the system(5.2.4.1a)
ECSS-E-ST-40C Clause 5.2.4.1a

The customer shall identify the software versions to be delivered and associate each require-
ment of the requirements baseline to a version.

Expected Output: Association of requirements to versions [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.8 Identification of software versions for software integration into the system(5.2.4.1b)
ECSS-E-ST-40C Clause 5.2.4.1b

The customer shall specify the content and media of the delivery.

Expected Output: Delivery content and media [RB, SSS; SRR]

© 2019, 2020, 2021 embedded brains GmbH 359

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.9 Supplier support to system integration (5.2.4.2a)
ECSS-E-ST-40C Clause 5.2.4.2a

The customer shall specify the support to be provided by the software supplier in order to
integrate the software at system level. {NOTE: For example: Raining, maintenance, configu-
ration and test support.}

Expected Output: System level integration support requirements [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.10 Interface requirement specification (5.2.4.3a)
ECSS-E-ST-40C Clause 5.2.4.3a

The customer shall specify the external interfaces of the software, including the static and
dynamic aspects, for nominal and degraded modes.

Expected Output: External interface requirements specification [RB, IRD; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

© 2019, 2020, 2021 embedded brains GmbH 360

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.11 System database (5.2.4.4a)
ECSS-E-ST-40C Clause 5.2.4.4a

The customer shall specify the content of the system database for the supplier in order to
ensure the consistency of common data and to define the allowed operational range of the
data.

Expected Output: System database content and allowed operational range [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.12 Development constraints (5.2.4.5a)
ECSS-E-ST-40C Clause 5.2.4.5a

The customer shall define specific development and design constraints on the supplier, in-
cluding the use of development standards.

Expected Output: Design and development constraints [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.13 On board control procedures (5.2.4.6a)
ECSS-E-ST-40C Clause 5.2.4.6a

The customer shall specify the requirements to be implemented by OBCP. {NOTE: See ECSS-
E-ST-70-01.}

Expected Output: OBCP requirements [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

© 2019, 2020, 2021 embedded brains GmbH 361

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.14 Development of software to be reused (5.2.4.7a)
ECSS-E-ST-40C Clause 5.2.4.7a

The customer shall specify the reusability requirements that apply to the development, to
enable the future reuse of the software (including models used to generate the software), or
customization for mission (e.g. in a family of spacecraft or launcher).

Expected Output: Requirements for ’software to be reused’ [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

• ECSS-Q-ST-80C-R1 7.3.1a (Software reuse/Customer requirements)

9.1.15 Software safety and dependability requirements (5.2.4.8a)
ECSS-E-ST-40C Clause 5.2.4.8a

The customer shall specify the software safety and dependability requirements in accordance
with ECSS-Q-ST-80 clauses 5.4.4, 6.2.2 and 6.2.3, based on the results of the safety and
dependability analysis performed at system level.

Expected Output: Software safety and dependability requirements [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.4.4a (Criticality classification)

• ECSS-Q-ST-80C-R1 6.2.2.1a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.2a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.3a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.3b (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.5a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.6a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.7a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.8a (Software dependability and safety)

© 2019, 2020, 2021 embedded brains GmbH 362

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-Q-ST-80C-R1 6.2.2.9a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.10a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.3.1a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.1b (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.2a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.3a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.4a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.5a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.6a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.7a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.8a (Handling of criticality software)

This clause is referenced by the following clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.16 Format and data medium (5.2.4.9a)
ECSS-E-ST-40C Clause 5.2.4.9a

The customer shall specify the format and the delivery medium of the exchanged data, in
particular the interface and the system database.

Expected Output: Format and delivery medium of exchanged data [RB, SSS; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

9.1.17 System requirements review (5.2.5a)
ECSS-E-ST-40C Clause 5.2.5a

The customer shall conduct a system requirements review (SRR) in accordance with 5.3.4.1a.

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.1.1a (Software related system requirements process)

© 2019, 2020, 2021 embedded brains GmbH 363

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.18 Software life cycle identification (5.3.2.1a)
ECSS-E-ST-40C Clause 5.3.2.1a

The software supplier shall define and follow a software life cycle including phases, their
inputs and outputs, and joint reviews, in accordance with the overall project constraints and
with ECSS-M-ST-10.

Expected Output: Software life cycle definition [MGT, SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.19 Software life cycle identification (5.3.2.1b)
ECSS-E-ST-40C Clause 5.3.2.1b

The life cycle shall be chosen, assessing the specifics of the project technical approaches and
the relevant project risks.

Expected Output: Software life cycle definition [MGT, SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.20 Software life cycle identification (5.3.2.1c)
ECSS-E-ST-40C Clause 5.3.2.1c

The software supplier shall define the development strategy, the software engineering stan-
dards and techniques, the software development and the software testing environment.

Expected Output: Development strategy, standards, techniques, development and testing
environment [MGT, SDP; PDR]

QDP Status (Y): See [EDI19c].

© 2019, 2020, 2021 embedded brains GmbH 364

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.21 Software life cycle identification (5.3.2.1d)
ECSS-E-ST-40C Clause 5.3.2.1d

The output of each phase and their status of completion, submitted as input to joint reviews,
shall be specified in the software life cycle definition, including documents in complete or
outline versions, and the results of verification of the outputs of the phase.

Expected Output: Software life cycle definition [MGT, SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.22 Identification of interfaces between development and maintenance (5.3.2.2a)
ECSS-E-ST-40C Clause 5.3.2.2a

The interfaces between development and maintenance (e.g. documents to be handed over,
tools to be kept for maintenance) shall be identified in the software life cycle.

Expected Output: Identification of interface between development and maintenance [MGT,
SDP; PDR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

© 2019, 2020, 2021 embedded brains GmbH 365

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.23 Software procurement process implementation (5.3.2.3a)
ECSS-E-ST-40C Clause 5.3.2.3a

The supplier shall document and implement the software procurement process as specified in
ECSS-Q-ST-80 clause 5.5.

Expected Output: Software procurement process documentation and implementation [MGT,
SDP; SRR, PDR]

QDP Status (N/A): Software procurement is not forecasted in the execution of this project.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.5.1a (Procurement documents)

• ECSS-Q-ST-80C-R1 5.5.2a (Review of procured software component list)

• ECSS-Q-ST-80C-R1 5.5.3a (Procurement details)

• ECSS-Q-ST-80C-R1 5.5.4a (Identification)

• ECSS-Q-ST-80C-R1 5.5.5a (Inspection)

• ECSS-Q-ST-80C-R1 5.5.6a (Exportability)

This clause is referenced by the following clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.24 Automatic code generation (5.3.2.4a)
ECSS-E-ST-40C Clause 5.3.2.4a

The autocode input models shall be reviewed together with the rest of the software specifi-
cation, architecture and design. {NOTE: The autocode input models are integral part of the
software specification, architecture and design.}

Expected Output: Autocode input model review [MGT, SDP; SRR, PDR]

QDP Status (N): No Automatic code generation

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

© 2019, 2020, 2021 embedded brains GmbH 366

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.25 Automatic code generation (5.3.2.4b)
ECSS-E-ST-40C Clause 5.3.2.4b

In the case of coexisting autocoded and manually written parts, the software development
plan shall include the definition of a clear interface definition and resource allocation (mem-
ory, CPU) at PDR.

Expected Output: Autocode interface definition and resource allocation [MGT, SDP; SRR,
PDR]

QDP Status (N): No Automatic code generation

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.26 Automatic code generation (5.3.2.4c)
ECSS-E-ST-40C Clause 5.3.2.4c

The input model management, the code generation process and supporting tools shall be
documented in the SDP.

Expected Output: Automatic code generation development process and tools [MGT, SDP;
SRR, PDR]

QDP Status (N): No Automatic code generation

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.27 Automatic code generation (5.3.2.4d)
ECSS-E-ST-40C Clause 5.3.2.4d

The supplier shall define in the SDP the verification and validation strategy for automatic
code generation as a result of the trade off between the qualification of the code generation
toolchain and the end to end validation strategy of the software item, or any combination
thereof, in relation with ECSS-Q-ST-80 clause 6.2.8.

© 2019, 2020, 2021 embedded brains GmbH 367

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Expected Output: Automatic code generation verification and validation strategy [MGT,
SDP; SRR, PDR]

QDP Status (N): No Automatic code generation

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.8.1a (Automatic code generation)

• ECSS-Q-ST-80C-R1 6.2.8.2a (Automatic code generation)

• ECSS-Q-ST-80C-R1 6.2.8.3a (Automatic code generation)

• ECSS-Q-ST-80C-R1 6.2.8.4a (Automatic code generation)

• ECSS-Q-ST-80C-R1 6.2.8.5a (Automatic code generation)

• ECSS-Q-ST-80C-R1 6.2.8.6a (Automatic code generation)

• ECSS-Q-ST-80C-R1 6.2.8.7a (Automatic code generation)

This clause is referenced by the following clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.28 Automatic code generation (5.3.2.4e)
ECSS-E-ST-40C Clause 5.3.2.4e

The configuration management of the automatic code generation related elements shall be
defined in the SCMP.

Expected Output: Automatic code generation configuration management [MGT, SCMP; SRR,
PDR]

QDP Status (N): No Automatic code generation

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

© 2019, 2020, 2021 embedded brains GmbH 368

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.29 Changes to baselines (5.3.2.5a)
ECSS-E-ST-40C Clause 5.3.2.5a

Changes to baselines shall be handled by the configuration management process described in
clause 6.2.4 of ECSS-Q-ST-80.

Expected Output: Changes to baselines procedures [MGT, SCMP; SRR, PDR]

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.4.1a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.2a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.3a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.4a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.5a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.5b (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.6a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.7a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.8a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.9a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.10a (Software configuration management)

• ECSS-Q-ST-80C-R1 6.2.4.11a (Software configuration management)

This clause is referenced by the following clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.30 Joint reviews (5.3.3.1a)
ECSS-E-ST-40C Clause 5.3.3.1a

Joint reviews shall be held to evaluate the progress and outputs of a project process or activity
and provide evidence that: 1. the output are complete; 2. the output conforms to applicable
standards and specifications; 3. any changes are properly implemented and impact only
those areas identified by the configuration management process; 4. the output conforms to
applicable schedules; 5. the output are in such a status that the next activity can start; 6.
the activity is being conducted according to the plans, schedules, standards, and guidelines
laid down for the project. {NOTE: The joint review process is a process for evaluating the

© 2019, 2020, 2021 embedded brains GmbH 369

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

status and products of an activity of a project as appropriate. This process is employed by
two parties, where one party (reviewing party) reviews another party (reviewed party).For
project reviews, the two parties are the customer and the supplier. Joint reviews are held
throughout the life cycle of the software.}

Expected Output: Joint review reports [DJF, - ; SRR, PDR, CDR, QR, AR]

QDP Status (Y): -

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.31 Software project reviews (5.3.3.2a)
ECSS-E-ST-40C Clause 5.3.3.2a

Software project reviews (i.e. joint reviews organized under the responsibility of the customer
aiming at defining a customer approved technical baseline) shall be included in the software
life cycle, with as a minimum SRR, PDR, CDR, QR and AR as specified in 5.3.4.

Expected Output: Software project reviews included in the software life cycle definition
[MGT, SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.32 Software project reviews (5.3.3.2b)
ECSS-E-ST-40C Clause 5.3.3.2b

The review process specified in ECSS-M-ST-10-01 shall apply to all software project reviews,
including the agreement on a review plan before the review process is started.

Expected Output: Review Plan [MGT, SRevP; SRR, PDR]

QDP Status (Y): See [EDI19f].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

© 2019, 2020, 2021 embedded brains GmbH 370

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.33 Software technical reviews (5.3.3.3a)
ECSS-E-ST-40C Clause 5.3.3.3a

In addition to the software project reviews, software technical reviews (i.e. joint reviews or-
ganized under the responsibility of the customer or the supplier aiming at defining a technical
baseline) shall be defined.

Expected Output: Software technical reviews included in the software life cycle definition
[MGT, SDP; SRR, PDR]

QDP Status (Ye): See [EDI19c] and [EDI19h].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.34 Software technical reviews (5.3.3.3b)
ECSS-E-ST-40C Clause 5.3.3.3b

The applicable technical review process shall be specified by the supplier.

Expected Output: Technical reviews process [MGT; SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.35 Software technical reviews (5.3.3.3c)
ECSS-E-ST-40C Clause 5.3.3.3c

The supplier shall use the software technical reviews to implement intermediate reviews,
in particular for incremental life cycle. {AIM: - this enables to cope with any alternative
life cycle not necessarily waterfall. - in the case of incremental life cycle in particular, this

© 2019, 2020, 2021 embedded brains GmbH 371

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

enables to hold formal reviews on the last increments, and to have those technical reviews in
anticipation for each of the increment.}

Expected Output: Software technical reviews included in the software life cycle definition
[MGT, SDP; SRR, PDR]

QDP Status (Ye): See [EDI19c] and [EDI19h].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.9a (Verification)

9.1.36 System requirement review (5.3.4.1a)
ECSS-E-ST-40C Clause 5.3.4.1a

After completion of the software requirements baseline specification, a system requirements
review (SRR) shall take place. {AIM: Reach the approval of the software requirements base-
line by all stakeholders.}

Expected Output: Approved requirements baseline [RB; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.37 Preliminary design review (5.3.4.2a)
ECSS-E-ST-40C Clause 5.3.4.2a

After completion of the software requirement analysis and architectural design, and the verifi-
cation and validation processes implementation, a preliminary design review (PDR) shall take
place. {AIM: To review compliance of the technical specification (TS) with the requirements
baseline, to review the software architecture and interfaces, to review the development, ver-
ification and validation plans.}

Expected Output: Approved technical specification and interface, architecture and plans [TS,
DDF, DJF, MGT; PDR]

QDP Status (Ye): The technical specification of the QDP is the QT-109, see also [EDI19c].

© 2019, 2020, 2021 embedded brains GmbH 372

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.4.4a (Conducting a preliminary design review)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.38 Preliminary design review (5.3.4.2b)
ECSS-E-ST-40C Clause 5.3.4.2b

In case the software requirements are baselined before the start of the architectural design,
the part of the PDR addressing the software requirements specification and the interfaces
specification shall be held in a separate joint review anticipating the PDR, in a software re-
quirements review (SWRR). {AIM: e.g. in case of software intensive system or when an early
baseline of the requirements is required.}

Expected Output: Approved technical specification and interface [TS; PDR]

QDP Status (N/A): The software requirements are not baselined before the start of the archi-
tectural design.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.4.2.4a (Conducting a software requirement review)

• ECSS-E-ST-40C 5.4.4a (Conducting a preliminary design review)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.39 Critical design review (5.3.4.3a)
ECSS-E-ST-40C Clause 5.3.4.3a

After completion of the design of software items, coding and testing, integration and vali-
dation with respect to the technical specification, a critical design review (CDR) shall take
place. {AIM: -To review the design definition file, including software architectural design,
detailed design, code and users manual; - To review the design justification file, including
the completeness of the software unit testing, integration and validation with respect to the
technical specification.}

Expected Output: Approved design definition file and design justification file [DDF, DJF;
CDR]

QDP Status (Ye): See [EDI19c] and [EDI19h].

© 2019, 2020, 2021 embedded brains GmbH 373

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.3.4a (Conducting a critical design review)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.40 Critical design review (5.3.4.3b)
ECSS-E-ST-40C Clause 5.3.4.3b

In case the software detailed design is baselined before the start of the coding, the part of the
CDR addressing the software detailed design, the interfaces design and the software budget
shall be held in a separate joint review anticipating the CDR, in a detailed design review
(DDR).

Expected Output: Approved detailed design, interface design and budget [DDF, DJF; CDR]

QDP Status (N/A): The software detailed design is not baselined before the start of the coding.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.5.2.10a (Conducting a detailed design review)

• ECSS-E-ST-40C 5.6.3.4a (Conducting a critical design review)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.41 Qualification review (5.3.4.4a)
ECSS-E-ST-40C Clause 5.3.4.4a

After completion of the software validation against the requirements baseline, and the verifi-
cation activities, a qualification review (QR) shall take place.

Expected Output: Qualified software product [RB, TS, DDF, DJF, MGT, MF; QR]

QDP Status (Ye): See No Requirements Baseline (RB), No Maintenance (MF), [EDI19c], and
[EDI19h].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.4.4a (Conducting a qualification review)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

© 2019, 2020, 2021 embedded brains GmbH 374

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.42 Acceptance review (5.3.4.5a)
ECSS-E-ST-40C Clause 5.3.4.5a

After completion of the software delivery and installation, and software acceptance, an ac-
ceptance review (AR) shall take place. {AIM: To accept the software product in the intended
operational environment.}

Expected Output: Accepted software product [RB, TS, DDF, DJF, MGT, MF; AR]

QDP Status (Ye): See No Requirements Baseline (RB), No Maintenance (MF), [EDI19c], and
[EDI19h].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.7.3.6a (Conducting an acceptance review)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.43 Test readiness reviews (5.3.5.1a)
ECSS-E-ST-40C Clause 5.3.5.1a

Test readiness reviews (TRR) shall be held before the beginning of test activities, as defined
in the software development plan.

Expected Output: Confirmation of readiness of test activities [DJF; TRR]

QDP Status (N): TRR will not be performed in this project.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.1.5a (Software validation process schedule)

9.1.44 Test review board (5.3.5.2a)
ECSS-E-ST-40C Clause 5.3.5.2a

The test review board (TRB) shall approve test results at the end of test activities, as defined
in the software development plan.

Expected Output: Approved test results[DJF; TRB]

© 2019, 2020, 2021 embedded brains GmbH 375

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (N): TRR will not be performed in this project.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.45 Review phasing for flight software (5.3.6.1a)
ECSS-E-ST-40C Clause 5.3.6.1a

For flight software, the phasing of the software life cycle to the system life cycle shall be cho-
sen, assessing the following driving aspects: 1. the system model philosophy (e.g. proto-flight
model, versus utilization of engineering qualification model) 2. the system verification and
qualification approach and constraints 3. the capability to baseline the system design at sys-
tem CDR, by knowing enough information about software design, in particular consolidated
sizing and timing budgets, consistent hardware design and software design.

Expected Output: Flight software review phasing [MGT, SDP;SRR, PDR]

QDP Status (N/A): Phasing of software life cycle to system life cycle not part of this project.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.46 Review phasing for flight software (5.3.6.1b)
ECSS-E-ST-40C Clause 5.3.6.1b

For flight software the following software versus system level reviews synchronisation shall
be planned as follows: 1. the software SRR not later than the system PDR 2. the software
PDR between the system PDR and the system CDR 3. the detailed design of the software
reviewed before the system CDRe.g. in a DDR 4. the software CDR before the system QR 5.
the software QR within system QR

Expected Output: Flight software review phasing [MGT, SDP;SRR, PDR]

QDP Status (N/A): Phasing of software life cycle to system life cycle not part of this project.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

© 2019, 2020, 2021 embedded brains GmbH 376

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.47 Review phasing for ground software (5.3.6.2a)
ECSS-E-ST-40C Clause 5.3.6.2a

For ground segment software, the software life cycle shall be chosen assessing the following
constraints for the ground reviews phasing: 1. the baseline of the software requirements (e.g.
SWRR) is performed before the ground segment PDR , 2. the software PDR is performed
before the ground segment CDR 3. all the other software reviews are performed before the
ground segment QR.

Expected Output: Ground software review phasing [MGT, SDP;SRR, PDR]

QDP Status (N/A): There is no ground software in the QDP.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.48 Interface management procedures (5.3.7.1a)
ECSS-E-ST-40C Clause 5.3.7.1a

Interface management procedures shall be defined in accordance with ECSS-M-ST-40 require-
ments. {AIM: Define procedures that guarantee the consistency of the system interfaces.}

Expected Output: Interface management procedures [MGT, - ; SRR];

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.49 Software technical budget and margin philosophy definition (5.3.8.1a)
ECSS-E-ST-40C Clause 5.3.8.1a

Technical budget targets and margin philosophy dedicated to the software shall be specified
by the customer in the requirements baseline in order to define the limits of software budgets
associated with computer and network resources (such as: CPU load, maximum memory size,
deadline fulfilment, communication, archiving needs, remote access needs) and performance
requirements (such as data throughput). {AIM: This allows anticipating: - Expected changes

© 2019, 2020, 2021 embedded brains GmbH 377

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

in the requirements baseline - Requirements on reprogramming of the system during opera-
tional use - Required budget for temporary copies of software images - Constraints on state
transitions, especially when recovery from a faulty state is concerned - Constraints on physi-
cal CPU type and memory (e.g. driven by radiation levels) and expected processor capacity,
wait states, interfaces, caching and pipelining, etc - Equipment, communication and perfor-
mances aspects (e.g. buses, protocols, acceptable errors, bus capacity usage by other sources,
etc) - Accuracy aspects, such as conversion to/from analogue signals, and accuracy of timing
signals - Budgets for OS kernel characterisation, such as context switch latency or deadlines
for tasking - Mission and system operation characteristics and reference operational scenar-
ios} {NOTE 1: The following CPU load margin reference values are often considered: 50 %
at PDR, 35 % at DDR or TRR, 25 % at CDR, QR or AR.} {NOTE 2: The following memory
margin reference values in RAM or EEPROM are often considered: 50 % at PDR, 40 % at
DDR or TRR, 35 % at CDR and 25 % at QR or AR.}

Expected Output: Technical budgets and margin philosophy for the project [RB, SSS; SRR]

QDP Status (Ye): See No Requirements Baseline (RB) and Resources and Performance.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.50 Technical budget and margin computation (5.3.8.2a)
ECSS-E-ST-40C Clause 5.3.8.2a

The way to compute the technical budgets and margin shall be agreed between the customer
and the supplier.

Expected Output: Technical budgets and margin computation [DJF, SVR; SRR, PDR]

QDP Status (Ye): See Resources and Performance.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

© 2019, 2020, 2021 embedded brains GmbH 378

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.51 Compliance matrix (5.3.9.1a)
ECSS-E-ST-40C Clause 5.3.9.1a

The supplier shall provide a compliance matrix documenting conformance with the individual
software engineering process requirements (Clause 5) applicable to the project or business
agreement, as per ECSS-S-ST-00.

Expected Output: ECSS-E-ST-40 compliance matrix [MGT, SDP; SRR, PDR]

QDP Status (Y): A compliance matrix for the QDP will be provided with respect to ECSS-E-ST-
40C and ECSS-Q-ST-80C Rev.1 in the QT-109 with detailed tailoring information and in
[EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.52 Documentation compliance (5.3.9.2a)
ECSS-E-ST-40C Clause 5.3.9.2a

The compliance to each of the individual software engineering process requirements shall
make reference to the document where the expected output is placed, if it is not placed in
this Standard’s DRDs in annexes of this document. {NOTE: A general statement of compliance
to this Standard’s DRDs is acceptable.}

Expected Output: ECSS-E-ST-40 compliance matrix [MGT, SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

9.1.53 Establishment and documentation of software requirements (5.4.2.1a)
ECSS-E-ST-40C Clause 5.4.2.1a

The supplier shall establish and document software requirements, including the software
quality requirements, as part of the technical specification.

© 2019, 2020, 2021 embedded brains GmbH 379

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Expected Output: a. Functional and performance specifications, including hardware char-
acteristics, and environmental conditions under which the software item executes, includ-
ing budgets requirements [TS, SRS; PDR]; b. Operational, reliability, safety, maintainabil-
ity, portability, configuration, delivery, adaptation and installation requirements, design con-
straints [TS, SRS; PDR]; c. Software product quality requirements (see ECSS-Q-ST-80 clause
7.2) [TS, SRS; PDR]; d. Security specifications, including those related to factors which
can compromise sensitive information [TS, SRS; PDR]; e. Human factors engineering (er-
gonomics including HMI usability) specifications, following the human factor engineering
process specified in ECSS-E-ST-10-11 [TS, SRS; PDR]; f. Data definition and database re-
quirements [TS, SRS; PDR]; g. Validation requirements [TS, SRS, ICD; PDR] h. Interfaces
external to the software item [TS, ICD; PDR]; i. Reuse requirements (see ECSS-Q-ST-80
clause 6.2.7) [TS, SRS; PDR]

QDP Status (Ye): No human factors, no database, no security and no reuse requirements shall
be established. See Specification Items.

For an overview of all clauses, see the tailoring table.

9.1.54 Definition of functional and performance requirements for in flight modifica-tion (5.4.2.2a)
ECSS-E-ST-40C Clause 5.4.2.2a

When in flight modification is specified for flight software, the supplier shall perform analysis
of the specific implications for the software design and validation processes and include the
functional and performance requirements in the technical specification, including in case of
use of automatic code generation.

Expected Output: Specifications for in flight software modifications [TS, SRS; PDR]

QDP Status (N/A): Software product does not provide in flight modification.

For an overview of all clauses, see the tailoring table.

9.1.55 Construction of a software logical model (5.4.2.3a)
ECSS-E-ST-40C Clause 5.4.2.3a

The supplier shall construct a logical model of the functional requirements of the software
product.

Expected Output: Software logical model [TS, SRS; PDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 380

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.56 Construction of a software logical model (5.4.2.3b)
ECSS-E-ST-40C Clause 5.4.2.3b

The supplier shall use a method to support the construction of the logical model.

Expected Output: Software logical model method [TS, SRS; PDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table.

9.1.57 Construction of a software logical model (5.4.2.3c)
ECSS-E-ST-40C Clause 5.4.2.3c

The logical model shall include a behavioural view.

Expected Output: Behavioural view in software logical model [TS, SRS; PDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.8.3.13a (Behaviour modelling verification)

9.1.58 Conducting a software requirement review (5.4.2.4a)
ECSS-E-ST-40C Clause 5.4.2.4a

The supplier shall conduct a software requirement review (SWRR) as anticipation of the PDR,
in conformance with 5.3.4.2b.

QDP Status (N/A): The software requirements are not baselined before the start of the archi-
tectural design.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.3.4.2b (Preliminary design review)

© 2019, 2020, 2021 embedded brains GmbH 381

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.59 Transformation of software requirements into a software architecture(5.4.3.1a)
ECSS-E-ST-40C Clause 5.4.3.1a

The supplier shall transform the requirements for the software item into an architecture that:
1. describes its top-level structure; 2. identifies the software components, ensuring that all
the requirements for the software item are allocated to its software components and later re-
fined to facilitate detailed design; 3. covers as a minimum hierarchy, dependency, interfaces
and operational usage for the software components; 4. documents the process, data and con-
trol aspects of the product; 5. describes the architecture static decomposition into software
elements such as packages, classes or units; 6. describes the dynamic architecture, which
involves the identification of active objects such as threads, tasks and processes; 7. describes
the software behaviour.

Expected Output: Software architectural design [DDF, SDD; PDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.60 Software design method (5.4.3.2a)
ECSS-E-ST-40C Clause 5.4.3.2a

The supplier shall use a method (e.g. object oriented or functional) to produce the static
and dynamic architecture including: 1. software elements, their interfaces, and; 2. software
elements relationships.

Expected Output: Software architectural design method [DDF, SDD; PDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.61 Selection of a computational model for real-time software (5.4.3.3a)
ECSS-E-ST-40C Clause 5.4.3.3a

The dynamic architecture design shall be described according to an analysable computational
model.

Expected Output: Computational model [DDF, SDD; PDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 382

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.62 Description of software behaviour (5.4.3.4a)
ECSS-E-ST-40C Clause 5.4.3.4a

The software architecture design shall also describe the behaviour of the software, by means
of description techniques using automata and scenarios.

Expected Output: Software behaviour [DDF, SDD; PDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.8.3.13b (Behaviour modelling verification)

9.1.63 Development and documentation of the software interfaces (5.4.3.5a)
ECSS-E-ST-40C Clause 5.4.3.5a

The supplier shall develop and document a software preliminary design for the interfaces
external to the software item and between the software components of the software item.

Expected Output: a. Preliminary external interfaces design [TS, ICD; PDR]; b. Preliminary
internal interfaces design [DDF, SDD; PDR]

QDP Status (Ye): See Software Interface Control Document (ICD), Software Design Document
(SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.64 Definition of methods and tools for software intended for reuse (5.4.3.6a)
ECSS-E-ST-40C Clause 5.4.3.6a

The supplier shall define procedures, methods and tools for reuse, and apply these to the
software engineering processes to comply with the reusability requirements for the software
development.

Expected Output: Software intended for reuse - justification of methods and tools [DJF, SRF;
PDR]

QDP Status (Ye): See Software Reuse File (SRF) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.3.1a (Software reuse/Customer requirements)

© 2019, 2020, 2021 embedded brains GmbH 383

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.65 Definition of methods and tools for software intended for reuse (5.4.3.6b)
ECSS-E-ST-40C Clause 5.4.3.6b

An evaluation of the reuse potential of the software shall be performed at PDR and CDR.

Expected Output: Software intended for reuse - evaluation of reuse potential [DJF, SRF;
PDR, CDR]

QDP Status (Ye): See Software Reuse File (SRF) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.3.1a (Software reuse/Customer requirements)

9.1.66 Definition of methods and tools for software intended for reuse (5.4.3.6c)
ECSS-E-ST-40C Clause 5.4.3.6c

The supplier shall design the software such that mission and configuration dependant data
are separatede.g. in a database.

Expected Output: Software architectural design with configuration data - [DDF, SDD; PDR,
CDR]

QDP Status (Ye): Mission data will not be used by the software product. The application con-
figuration of the software product is defined at link-time through a user provided config-
uration object. See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.3.1a (Software reuse/Customer requirements)

9.1.67 Reuse of existing software (5.4.3.7a)
ECSS-E-ST-40C Clause 5.4.3.7a

The analysis of the potential reusability of existing software components shall be performed
through: 1. identification of the reuse components and models with respect to the functional
requirements baseline, and; 2. a quality evaluation of these components, applying ECSS-Q-
ST-80 clause 6.2.7.

Expected Output: Justification of reuse with respect to requirements baseline [DJF, SRF;
PDR]

QDP Status (US): See No Requirements Baseline (RB).

© 2019, 2020, 2021 embedded brains GmbH 384

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.7.2a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.3a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.4a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.5a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.6a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.7a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.8a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.8b (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.9a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.10a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.11a (Reuse of existing software)

9.1.68 Definition and documentation of the software integration requirements andplan (5.4.3.8a)
ECSS-E-ST-40C Clause 5.4.3.8a

The supplier shall define and document the preliminary software integration strategy in terms
of responsibility and schedule, control procedures and testing approach (goals to be achieved,
sequence, environment and criteria).

Expected Output: Software integration strategy [DJF, SUITP; PDR]

QDP Status (Ye): See Software Unit and Integration Test Plan (SUITP) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.69 Conducting a preliminary design review (5.4.4a)
ECSS-E-ST-40C Clause 5.4.4a

The supplier shall conduct a preliminary design review (PDR) in accordance with clause
5.3.4.2. {NOTE: The successful completion of the review establishes a baseline for the devel-
opment of the software item.}

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

© 2019, 2020, 2021 embedded brains GmbH 385

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.3.4.2a (Preliminary design review)

• ECSS-E-ST-40C 5.3.4.2b (Preliminary design review)

9.1.70 Detailed design of each software component (5.5.2.1a)
ECSS-E-ST-40C Clause 5.5.2.1a

The supplier shall develop a detailed design for each component of the software and docu-
ment it.

Expected Output: Software components design documents [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.71 Detailed design of each software component (5.5.2.1b)
ECSS-E-ST-40C Clause 5.5.2.1b

Each software component shall be refined into lower levels containing software units that can
be coded, compiled, and tested.

Expected Output: Software components design documents [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.72 Detailed design of each software component (5.5.2.1c)
ECSS-E-ST-40C Clause 5.5.2.1c

It shall be ensured that all the software requirements are allocated from the software compo-
nents to software units.

Expected Output: Software components design documents [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 386

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.73 Development and documentation of the software interfaces detailed design(5.5.2.2a)
ECSS-E-ST-40C Clause 5.5.2.2a

The supplier shall develop and document a detailed design for the interfaces external to the
software item, between the software components, and between the software units, in order
to allow coding without requiring further information.

Expected Output: a. External interfaces design (update) [TS, ICD; CDR]; b. Internal inter-
faces design (update) [DDF, SDD; CDR]

QDP Status (Ye): See Software Interface Control Document (ICD), Software Design Document
(SDD), and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.74 Production of the detailed design model (5.5.2.3a)
ECSS-E-ST-40C Clause 5.5.2.3a

The supplier shall produce the detailed design model of the software components defined
during the software architectural design, including their static, dynamic and behavioural
aspects.

Expected Output: a. Software static design model [DDF, SDD; CDR]; b. Software dynamic
design model [DDF, SDD; CDR]; c. Software behavioural design model [DDF, SDD; CDR];

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.8.3.13c (Behaviour modelling verification)

9.1.75 Software detail design method (5.5.2.4a)
ECSS-E-ST-40C Clause 5.5.2.4a

The supplier shall use a design method (e.g. object oriented or functional method) to produce
the detailed design including: 1. software units, their interfaces, and; 2. software units
relationships.

Expected Output: Software design method [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

© 2019, 2020, 2021 embedded brains GmbH 387

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table.

9.1.76 Detailed design of real-time software (5.5.2.5a)
ECSS-E-ST-40C Clause 5.5.2.5a

The dynamic design model shall be compatible with the computational model selected during
the software architectural design model.

Expected Output: Real-time software dynamic design model [DDF, SDD; CDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table.

9.1.77 Detailed design of real-time software (5.5.2.5b)
ECSS-E-ST-40C Clause 5.5.2.5b

The supplier shall document and justify all timing and synchronization mechanisms.

Expected Output: Real-time software dynamic design model [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.78 Detailed design of real-time software (5.5.2.5c)
ECSS-E-ST-40C Clause 5.5.2.5c

The supplier shall document and justify all the design mutual exclusion mechanisms to man-
age access to the shared resources.

Expected Output: Real-time software dynamic design model [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 388

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.79 Detailed design of real-time software (5.5.2.5d)
ECSS-E-ST-40C Clause 5.5.2.5d

The supplier shall document and justify the use of dynamic allocation of resources.

Expected Output: Real-time software dynamic design model [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.80 Detailed design of real-time software (5.5.2.5e)
ECSS-E-ST-40C Clause 5.5.2.5e

The supplier shall ensure protection against problems that can be induced by the use of
dynamic allocation of resources,e.g. memory leaks.

Expected Output: Real-time software dynamic design model [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.81 Utilization of description techniques for the software behaviour (5.5.2.6a)
ECSS-E-ST-40C Clause 5.5.2.6a

The behavioural design of the software units shall be described by means of techniques using
automata and scenarios.

Expected Output: Software behavioural design model techniques [DDF, SDD; CDR]

QDP Status (Ye): See Software Design Document (SDD) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.8.3.13c (Behaviour modelling verification)

© 2019, 2020, 2021 embedded brains GmbH 389

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.82 Determination of design method consistency for real-time software (5.5.2.7a)
ECSS-E-ST-40C Clause 5.5.2.7a

It shall be ensured that all the methods utilized for different item of the same software are,
from a dynamic stand-point, consistent among themselves and consistent with the selected
computational model.

Expected Output: Compatibility of real-time design methods with the computational model
[DDF, SDD; CDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table.

9.1.83 Development and documentation of the software user manual (5.5.2.8a)
ECSS-E-ST-40C Clause 5.5.2.8a

The supplier shall develop and document the software user manual.

Expected Output: Software user manual [DDF, SUM; CDR]

QDP Status (Ye): See Software User Manual (SUM) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.84 Definition and documentation of the software unit test requirements and plan(5.5.2.9a)
ECSS-E-ST-40C Clause 5.5.2.9a

The supplier shall define and document responsibility and schedule, control procedures, test-
ing approach, test design and test case specification for testing software units.

Expected Output: Software unit test plan [DJF, SUITP; CDR]

QDP Status (Ye): See Software Unit and Integration Test Plan (SUITP) and [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 390

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.85 Conducting a detailed design review (5.5.2.10a)
ECSS-E-ST-40C Clause 5.5.2.10a

The supplier shall conduct a detailed design review (DDR) as anticipation of the CDR, in
conformance with 5.3.4.3b.

QDP Status (N/A): The software detailed design is not baselined before the start of the coding.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.3.4.3b (Critical design review)

9.1.86 Development and documentation of the software units (5.5.3.1a)
ECSS-E-ST-40C Clause 5.5.3.1a

The supplier shall develop and document the following: 1. the coding of each software unit;
2. the build procedures to compile and link software units;

Expected Output: a. Software component design documents and code (update) [DDF, SDD,
source code; CDR]; b. Software configuration file - build procedures [DDF, SCF; CDR].

QDP Status (Ye): See Software Design Document (SDD), Software Configuration File (SCF), and
[EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.87 Software unit testing (5.5.3.2a)
ECSS-E-ST-40C Clause 5.5.3.2a

The supplier shall develop and document the test procedures and data for testing each soft-
ware unit.

Expected Output: a. Software component design document and code (update) [DDF, SDD,
source code; CDR]; b. Software unit test plan (update) [DJF, SUITP; CDR]

QDP Status (Ye): See On Demand Unit and Integration Testing, Software Unit and Integration
Test Plan (SUITP), and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

© 2019, 2020, 2021 embedded brains GmbH 391

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.88 Software unit testing (5.5.3.2b)
ECSS-E-ST-40C Clause 5.5.3.2b

The supplier shall test each software unit ensuring that it satisfies its requirements and docu-
ment the test results.

Expected Output: a. Software component design document and code (update) [DDF, SDD,
source code; CDR]; b. Software unit test reports [DJF, - ; CDR]

QDP Status (Ye): See On Demand Unit and Integration Testing, Software Unit and Integration
Test Plan (SUITP), and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.89 Software unit testing (5.5.3.2c)
ECSS-E-ST-40C Clause 5.5.3.2c

The unit test shall exercise: 1. code using boundaries at n-1, n, n+1 including looping
instructions, while, for and tests that use comparisons; 2. all the messages and error cases
defined in the design document; 3. the access of all global variables as specified in the design
document; 4. out of range values for input data, including values that can cause erroneous
results in mathematical functions; 5. the software at the limits of its requirements (stress
testing).

Expected Output: Software unit test reports [DJF, - ; CDR]

QDP Status (Ye): See On Demand Unit and Integration Testing, Software Unit and Integration
Test Plan (SUITP), and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 392

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.90 Software integration test plan development (5.5.4.1a)
ECSS-E-ST-40C Clause 5.5.4.1a

The supplier shall complement the software integration test plan to define the integration of
the software units and software components into the software item, providing the following
data: 1. test design; 2. test case specification; 3. test procedures; 4. test data.

Expected Output: Software integration test plan (update) [DJF, SUITP; CDR]

QDP Status (Ye): See On Demand Unit and Integration Testing, Software Unit and Integration
Test Plan (SUITP), and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.91 Software units and software component integration and testing (5.5.4.2a)
ECSS-E-ST-40C Clause 5.5.4.2a

The supplier shall integrate the software units and software components, and test them, as
the aggregates are developed, in accordance with the integration plan, ensuring that each
aggregate satisfies the requirements of the software item and that the software item is inte-
grated at the conclusion of the integration activity.

Expected Output: Software integration test report [DJF, - ; CDR]

QDP Status (Ye): See On Demand Unit and Integration Testing, Software Unit and Integration
Test Plan (SUITP), and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.92 Establishment of a software validation process (5.6.2.1a)
ECSS-E-ST-40C Clause 5.6.2.1a

The validation process shall be established to validate the software product.

Expected Output: Software validation plan - validation process identification [DJF, SValP;
PDR]

QDP Status (Ye): See [EDI19c].

© 2019, 2020, 2021 embedded brains GmbH 393

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.93 Establishment of a software validation process (5.6.2.1b)
ECSS-E-ST-40C Clause 5.6.2.1b

Validation tasks defined in clauses 5.6.3 and 5.6.4 including associated methods, techniques,
and tools for performing the tasks, shall be selected and the regression test strategy specified.

Expected Output: Software validation plan - methods and tools [DJF, SValP; PDR]

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.6.3.1a (Development and documentation of a software validation specifi-
cation with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.1b (Development and documentation of a software validation specifi-
cation with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.1c (Development and documentation of a software validation specifica-
tion with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.2a (Conducting the validation with respect to the technical specifica-
tion)

• ECSS-E-ST-40C 5.6.3.3a (Updating the software user manual)

• ECSS-E-ST-40C 5.6.3.4a (Conducting a critical design review)

• ECSS-E-ST-40C 5.6.4.1a (Development and documentation of a software validation specifi-
cation with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.1b (Development and documentation of a software validation specifi-
cation with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.1c (Development and documentation of a software validation specifica-
tion with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.2a (Conducting the validation with respect to the requirements base-
line)

• ECSS-E-ST-40C 5.6.4.2b (Conducting the validation with respect to the requirements base-
line)

• ECSS-E-ST-40C 5.6.4.3a (Updating the software user manual)

• ECSS-E-ST-40C 5.6.4.4a (Conducting a qualification review)

This clause is referenced by the following clause:

© 2019, 2020, 2021 embedded brains GmbH 394

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.94 Establishment of a software validation process (5.6.2.1c)
ECSS-E-ST-40C Clause 5.6.2.1c

The validation effort and the degree of organizational independence of that effort shall be
determined, coherent with ECSS-Q-ST-80 clause 6.3.5.19.

Expected Output: Software validation plan - effort and independence [DJF, SValP; PDR]

QDP Status (Ye): No organizational independence shall be established, see [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-Q-ST-80C-R1 6.3.5.19a (Testing and validation)

This clause is referenced by the following clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.95 Selection of an ISVV organization (5.6.2.2a)
ECSS-E-ST-40C Clause 5.6.2.2a

If the project warrants an independent validation effort, a qualified organization responsible
for conducting the effort shall be selected.

Expected Output: Independent software validation plan - organization selection [DJF, - ;
PDR]

QDP Status (N): See No Independent Software Verification and Validation.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.96 Selection of an ISVV organization (5.6.2.2b)
ECSS-E-ST-40C Clause 5.6.2.2b

The conductor shall be assured of the independence and authority to perform the valida-
tion tasks. {NOTE 1: This clause is applied with ECSS-M-ST-10 and ECSS-Q-ST-80, clause
6.3.5.28.} {NOTE 2: The conductor is the person or the entity that takes in charge the vali-
dation tasks (e.g. test cases specification, design, execution and management).}

© 2019, 2020, 2021 embedded brains GmbH 395

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Expected Output: Independent software validation plan - level of independence [DJF, - ;
PDR]

QDP Status (N): See No Independent Software Verification and Validation.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-Q-ST-80C-R1 6.3.5.28a (Testing and validation)

This clause is referenced by the following clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.97 Development and documentation of a software validation specification withrespect to the technical specification (5.6.3.1a)
ECSS-E-ST-40C Clause 5.6.3.1a

The supplier shall develop and document, for each requirement of the software item in TS
(including ICD), a set of tests, test cases (inputs, outputs, test criteria) and test procedures in-
cluding: 1. testing with stress, boundary, and singular inputs; 2. testing the software product
for its ability to isolate and reduce the effect of errors; {NOTE: For example: This reduction
is done by graceful degradation upon failure, request for operator assistance upon stress,
boundary and singular conditions.} 3. testing that the software product can perform suc-
cessfully in a representative operational environment; 4. external interface testing including
boundaries, protocols and timing test; 5. testing HMI applications as per ECSS-E-ST-10-11.

Expected Output: Software validation specification with respect to the technical specification
[DJF, SVS; CDR]

QDP Status (Ye): HMI is not present in software product. See Software Validation Specification
(SVS) with Respect to TS.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.3.2a (Conducting the validation with respect to the technical specifica-
tion)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 396

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.98 Development and documentation of a software validation specification withrespect to the technical specification (5.6.3.1b)
ECSS-E-ST-40C Clause 5.6.3.1b

Validation shall be performed by test.

Expected Output: Software validation specification with respect to the technical specification
[DJF, SVS; CDR]

QDP Status (Y): See Requirement Validation and Software Validation Specification (SVS) with
Respect to TS.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.3.2a (Conducting the validation with respect to the technical specifica-
tion)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.99 Development and documentation of a software validation specification withrespect to the technical specification (5.6.3.1c)
ECSS-E-ST-40C Clause 5.6.3.1c

If it can be justified that validation by test cannot be performed, validation shall be performed
by either analysis, inspection or review of design.

Expected Output: Software validation specification with respect to the technical specification
[DJF, SVS; CDR]

QDP Status (Y): See Requirement Validation and Software Validation Specification (SVS) with
Respect to TS.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.3.2a (Conducting the validation with respect to the technical specifica-
tion)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 397

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.100 Conducting the validationwith respect to the technical specification (5.6.3.2a)
ECSS-E-ST-40C Clause 5.6.3.2a

The validation tests shall be conducted as specified in the output of clause 5.6.3.1.

Expected Output: Software validation report with respect to the technical specification [DJF,
- ; CDR]

QDP Status (Y): -

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.6.3.1a (Development and documentation of a software validation specifi-
cation with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.1b (Development and documentation of a software validation specifi-
cation with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.1c (Development and documentation of a software validation specifica-
tion with respect to the technical specification)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.101 Updating the software user manual (5.6.3.3a)
ECSS-E-ST-40C Clause 5.6.3.3a

The supplier shall update the software user manual in accordance with the results of the
validation activities with respect to the technical specification.

Expected Output: Software user manual (update) [DDF, SUM; CDR]

QDP Status (Y): -

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 398

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.102 Conducting a critical design review (5.6.3.4a)
ECSS-E-ST-40C Clause 5.6.3.4a

The supplier shall conduct a critical design review (CDR) in accordance with clause 5.3.4.3.

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.3.4.3a (Critical design review)

• ECSS-E-ST-40C 5.3.4.3b (Critical design review)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.103 Development and documentation of a software validation specification withrespect to the requirements baseline (5.6.4.1a)
ECSS-E-ST-40C Clause 5.6.4.1a

The supplier shall develop and document, for each requirement of the software item in RB
(including IRD) , a set of tests, test cases (inputs, outputs, test criteria) and test procedures
including: 1. testing against the mission data and scenario specified by the customer in
5.2.3.1 2. testing with stress, boundary, and singular inputs; 3. testing the software product
for its ability to isolate and reduce the effect of errors; {NOTE: For example: This reduction
is done by graceful degradation upon failure, request for operator assistance upon stress,
boundary and singular conditions.} 4. testing that the software product can perform success-
fully in a representative operational and non-intrusive environment. 5. external interface
testing including boundaries, protocols and timing test; 6. testing HMI applications as per
ECSS-E-ST-10-11.

Expected Output: Software validation specification with respect to the requirements baseline
[DJF, SVS; QR, AR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.2.3.1a (Verification and validation process requirements)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.4.2a (Conducting the validation with respect to the requirements base-
line)

© 2019, 2020, 2021 embedded brains GmbH 399

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.104 Development and documentation of a software validation specification withrespect to the requirements baseline (5.6.4.1b)
ECSS-E-ST-40C Clause 5.6.4.1b

Validation shall be performed by test.

Expected Output: Software validation specification with respect to the requirements baseline
[DJF, SVS; QR, AR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.4.2a (Conducting the validation with respect to the requirements base-
line)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.105 Development and documentation of a software validation specification withrespect to the requirements baseline (5.6.4.1c)
ECSS-E-ST-40C Clause 5.6.4.1c

If it can be justified that validation by test cannot be performed, validation shall be performed
by either analysis, inspection or review of design.

Expected Output: Software validation specification with respect to the requirements baseline
[DJF, SVS; QR, AR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.4.2a (Conducting the validation with respect to the requirements base-
line)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 400

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.106 Conducting the validationwith respect to the requirements baseline (5.6.4.2a)
ECSS-E-ST-40C Clause 5.6.4.2a

The validation tests shall be conducted as specified in the output of clause 5.6.4.1.

Expected Output: Software validation report with respect to the requirements baseline [DJF,
- ; QR, AR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.6.4.1a (Development and documentation of a software validation specifi-
cation with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.1b (Development and documentation of a software validation specifi-
cation with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.1c (Development and documentation of a software validation specifica-
tion with respect to the requirements baseline)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.107 Conducting the validationwith respect to the requirements baseline (5.6.4.2b)
ECSS-E-ST-40C Clause 5.6.4.2b

The validation tests shall be “black box”,i.e. performed on the final software product to be
delivered , without any modification of the code or of the data. {NOTE: In particular, this
is essential when an mission database is used to customize the final product, and when late
versions of the database are used to update the software.}

Expected Output: Software validation report with respect to the requirements baseline [DJF,
- ; QR, AR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 401

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.108 Updating the software user manual (5.6.4.3a)
ECSS-E-ST-40C Clause 5.6.4.3a

The supplier shall update the software user manual in accordance with the results of the
validation activities with respect to the requirements baseline.

Expected Output: Software user manual (update) [DDF, SUM; QR, AR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.109 Conducting a qualification review (5.6.4.4a)
ECSS-E-ST-40C Clause 5.6.4.4a

The qualification review (QR) shall be conducted in accordance with clause 5.3.4.4.

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.3.4.4a (Qualification review)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.110 Preparation of the software product (5.7.2.1a)
ECSS-E-ST-40C Clause 5.7.2.1a

The supplier shall prepare the deliverable software product for its installation in the target
platform.

Expected Output: a. Software product [DDF, - ; QR, AR]; b. Software release document
[DDF, SRelD; QR, AR]

QDP Status (Ye): See Software Release Document (SRelD) and [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 402

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.111 Supplier’s provision of training and support (5.7.2.2a)
ECSS-E-ST-40C Clause 5.7.2.2a

The supplier shall provide initial and continuing training and support to the customer if
specified in the requirements baseline.

Expected Output: Training material [DDF, - ; QR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table.

9.1.112 Installation procedures (5.7.2.3a)
ECSS-E-ST-40C Clause 5.7.2.3a

The supplier shall develop procedures to install the software product in the target environ-
ment.

Expected Output: Installation procedures [DDF, SCF ; AR]

QDP Status (Ye): See Software Configuration File (SCF) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.1.113 Installation activities reporting (5.7.2.4a)
ECSS-E-ST-40C Clause 5.7.2.4a

The resources and information to install the software product shall be determined and be
available.

Expected Output: Installation report [DJF, - ; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 403

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.114 Installation activities reporting (5.7.2.4b)
ECSS-E-ST-40C Clause 5.7.2.4b

The supplier shall assist the customer with the set-up activities.

Expected Output: Installation report [DJF, - ; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.1.115 Installation activities reporting (5.7.2.4c)
ECSS-E-ST-40C Clause 5.7.2.4c

It shall be ensured that the software code and databases initialize, execute and terminate as
specified in the installation plan.

Expected Output: Installation report [DJF, - ; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.1.116 Installation activities reporting (5.7.2.4d)
ECSS-E-ST-40C Clause 5.7.2.4d

The installation events and results shall be documented.

Expected Output: Installation report [DJF, - ; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.1.117 Acceptance test planning (5.7.3.1a)
ECSS-E-ST-40C Clause 5.7.3.1a

The customer shall establish an acceptance test plan specifying the intended acceptance tests
with tests suited to the target environment.

Expected Output: Acceptance test plan [DJF, - ; QR, AR]

© 2019, 2020, 2021 embedded brains GmbH 404

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.6.3a (Software delivery and acceptance)

9.1.118 Acceptance test execution (5.7.3.2a)
ECSS-E-ST-40C Clause 5.7.3.2a

The customer shall perform the acceptance testing.

Expected Output: Acceptance test report [DJF, - ; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.3.6.4a (Software delivery and acceptance)

9.1.119 Executable code generation and installation (5.7.3.3a)
ECSS-E-ST-40C Clause 5.7.3.3a

The acceptance shall include generation of the executable code from configuration managed
source code components and its installation on the target environment.

Expected Output: Software product [DDF, - ; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.1.120 Supplier’s support to customer’s acceptance (5.7.3.4a)
ECSS-E-ST-40C Clause 5.7.3.4a

The supplier shall support the customer’s acceptance reviews and testing of the software
product in preparation of the AR.

Expected Output: Joint review reports [DJF, -; AR]. {NOTE: Acceptance reviews and testing
considers the results of the joint reviews (see 5.3.3), audits , testing and validation (see
ECSS-Q-ST-80 clauses 5.2.3 and 6.3.5), and system validation testing (if performed)}

QDP Status (US): See No Installation and Acceptance.

© 2019, 2020, 2021 embedded brains GmbH 405

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table.

9.1.121 Supplier’s support to customer’s acceptance (5.7.3.4b)
ECSS-E-ST-40C Clause 5.7.3.4b

The results of the acceptance reviews and testing shall be documented.

Expected Output: Joint review reports [DJF, -; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.1.122 Evaluation of acceptance testing (5.7.3.5a)
ECSS-E-ST-40C Clause 5.7.3.5a

The acceptance tests shall be traced to the requirements baseline.

Expected Output: Traceability of acceptance tests to the requirements baseline [DJF, SVR;
AR]

QDP Status (US): See No Requirements Baseline (RB) and No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.1.123 Conducting an acceptance review (5.7.3.6a)
ECSS-E-ST-40C Clause 5.7.3.6a

The acceptance review (AR) shall be conducted in accordance with clause 5.3.4.5.

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.3.4.5a (Acceptance review)

© 2019, 2020, 2021 embedded brains GmbH 406

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.124 Establishment of the software verification process (5.8.2.1a)
ECSS-E-ST-40C Clause 5.8.2.1a

The verification process shall be established by the supplier to verify the software products.

Expected Output: Software verification plan - verification process identification [DJF, SVerP;
PDR]

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.125 Establishment of the software verification process (5.8.2.1b)
ECSS-E-ST-40C Clause 5.8.2.1b

Life cycle activities and software products needing verification shall be determined based
upon the scope, magnitude, complexity, and criticality analysis.

Expected Output: Software verification plan - software products identification [DJF, SVerP;
PDR]

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 407

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.126 Establishment of the software verification process (5.8.2.1c)
ECSS-E-ST-40C Clause 5.8.2.1c

Verification activities and tasks defined in clause 5.8.3, including associated methods, tech-
niques, and tools for performing the tasks, shall be selected for the life cycle activities and
software products.

Expected Output: Software verification plan - activities, methods and tools [DJF, SVerP;
PDR]

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.8.3.1a (Verification of requirements baseline)

• ECSS-E-ST-40C 5.8.3.2a (Verification of the technical specification)

• ECSS-E-ST-40C 5.8.3.3a (Verification of the software architectural design)

• ECSS-E-ST-40C 5.8.3.4a (Verification of the software detailed design)

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-E-ST-40C 5.8.3.5b (Verification of code)

• ECSS-E-ST-40C 5.8.3.5c (Verification of code)

• ECSS-E-ST-40C 5.8.3.5d (Verification of code)

• ECSS-E-ST-40C 5.8.3.5e (Verification of code)

• ECSS-E-ST-40C 5.8.3.5f (Verification of code)

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-E-ST-40C 5.8.3.7a (Verification of software integration)

• ECSS-E-ST-40C 5.8.3.8a (Verification of software validation with respect to the technical
specifications and the requirements baseline)

• ECSS-E-ST-40C 5.8.3.8b (Verification of software validation with respect to the technical
specifications and the requirements baseline)

• ECSS-E-ST-40C 5.8.3.9a (Evaluation of validation: complementary system level validation)

• ECSS-E-ST-40C 5.8.3.10a (Verification of software documentation)

• ECSS-E-ST-40C 5.8.3.11a (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11b (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11c (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.12a (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.12b (Technical budgets management)

© 2019, 2020, 2021 embedded brains GmbH 408

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.8.3.12c (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.13a (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13b (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13c (Behaviour modelling verification)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.127 Establishment of the software verification process (5.8.2.1d)
ECSS-E-ST-40C Clause 5.8.2.1d

A determination shall be made concerning the verification effort, the identification of risks
and the degree of organizational independence.

Expected Output: Software verification plan - organizational independence, risk and effort
identification [DJF, SVerP; PDR]

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.128 Selection of the organization responsible for conducting the verification(5.8.2.2a)
ECSS-E-ST-40C Clause 5.8.2.2a

If the project warrants an independent verification effort, a qualified organization shall be
selected for conducting the verification.

Expected Output: Independent software verification plan - organization selection [DJF, - ;
PDR]

QDP Status (N): See No Independent Software Verification and Validation.

© 2019, 2020, 2021 embedded brains GmbH 409

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.129 Selection of the organization responsible for conducting the verification(5.8.2.2b)
ECSS-E-ST-40C Clause 5.8.2.2b

This organization shall have the independence and authority needed to perform the verifi-
cation activities. {NOTE: ECSS-Q-ST-80 clause 6.2.6.13 (independent software verification)
and ECSS-M-ST-10 (project planning and implementation) contain further requirements rele-
vant for this clause.} {AIM: A coherent and consistent approach to project organization within
each project.}

Expected Output: Independent software verification plan - level of independence [DJF, - ;
PDR]

QDP Status (N): See No Independent Software Verification and Validation.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.6.13a (Verification)

• ECSS-Q-ST-80C-R1 6.2.6.13b (Verification)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.130 Verification of requirements baseline (5.8.3.1a)
ECSS-E-ST-40C Clause 5.8.3.1a

The customer shall verify that the requirements baseline, including the interface requirements
document: 1. specifies a clear description of the environment in which the software operates;
2. specifies the characteristics of all external systems (e.g. bus, computer, ground interface) in
interaction with the software product; 3. specifies the controllability and observability points

© 2019, 2020, 2021 embedded brains GmbH 410

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

for each application; 4. specifies the fault detection, identification, and recovery strategy to
be implemented, and that the strategy is coherent with the dependability and safety level of
the software under consideration; 5. specifies the modes/submodes and transition between
modes (modes automaton); 6. specifies telemetries date management occurrences; 7. iden-
tifies the configuration data of the software; 8. identifies and justifies the margins policy in
terms of memory and CPU allocation; 9. defines operational scenario; 10. includes consistent
and verifiable requirements.

Expected Output: Requirements baseline verification report [DJF, SVR; SRR]

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.131 Verification of the technical specification (5.8.3.2a)
ECSS-E-ST-40C Clause 5.8.3.2a

The supplier shall verify the technical specification including the interface control document
ensuring that: 1. software requirements and interface are externally and internally consistent
(not implying formal proof consistency); 2. the traceability between system requirements
and software requirements is complete; 3. the software requirements that are not traced to
the system requirements allocated to software are justified; 4. software requirements are
verifiable; 5. software design is feasible; 6. operations and maintenance are feasible; 7. the
software requirements related to safety, security, and criticality are correct; 8. the hardware
environment constraints are identified; 9. the implementation constraints are identified; 10.
the requirement verification method as specified in ECSS-Q-ST-80 clause 7.2.1.3 is feasible.
11. the logical model has been checked;

Expected Output: a. Requirements traceability matrices [DJF, SVR or (SRS and ICD); PDR];
b. Requirements verification report [DJF, SVR; PDR]

QDP Status (Ye): See No Requirements Baseline (RB), No Maintenance (MF), No Operational
Phase (OP), No Logical and Computational Model, Software Verification Report (SVR), Soft-
ware Requirements Specification (SRS), Software Interface Control Document (ICD), and
[EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-Q-ST-80C-R1 7.2.1.3a (Requirements baseline and technical specification)

This clause is referenced by the following clauses:

© 2019, 2020, 2021 embedded brains GmbH 411

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.132 Verification of the software architectural design (5.8.3.3a)
ECSS-E-ST-40C Clause 5.8.3.3a

The supplier shall verify the architecture of the software item and the interface design en-
suring that: 1. architecture and interface are externally consistent with the requirements of
the software item; 2. there is internal consistency between the software components; 3. the
traceability between the requirements and the software components is complete; 4. the soft-
ware components that are not traced to the software requirements are justified; 5. producing
a detailed design is feasible; 6. operations and maintenance are feasible; 7. the design is cor-
rect with respect to the requirements and the interfaces, including safety, security and other
critical requirements; 8. the design implements proper sequence of events, inputs, outputs,
interfaces, logic flow, allocation of timing and sizing budgets, and error handling; 9. the
hierarchical breakdown from high level components to terminal ones is provided; 10. the dy-
namic features (tasks definition and priorities, synchronization mechanisms, shared resources
management) are provided and the real-time choices are justified; 11. the synchronisation
between external interface and internal timing is achieved.

Expected Output: a. Software architectural design to requirements traceability matrices
[DJF, SVR or SDD; PDR]; b. Software architectural design and interface verification report
[DJF, SVR; PDR]

QDP Status (Ye): See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 412

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.133 Verification of the software detailed design (5.8.3.4a)
ECSS-E-ST-40C Clause 5.8.3.4a

The supplier shall verify the software detailed design ensuring that: 1. detailed design is
externally consistent with the architecture; 2. there is internal consistency between software
components and software units; 3. the traceability between the architecture and the detailed
design is complete; 4. the software units that are not traced to the components are justified;
5. testing is feasible, by assessing that: (a) commandability and observability features are
identified and included in the detailed design in order to prepare the effective testing of the
performance requirements; (b) computational invariant properties and temporal properties
are added within the design; (c) fault injection is possible. 6. operation and maintenance
are feasible; 7. the design is correct with respect to requirements and interfaces, including
safety, security, and other critical requirements; 8. the design implements proper sequence
of events, inputs, outputs, interfaces, logic flow, allocation of timing and sizing budgets, and
error handling; 9. the design model has been checked; 10. 1the hierarchical breakdown
from high level components to terminal ones is provided; 11. 1the dynamic features (tasks
definition and priorities, synchronization mechanisms, shared resources management) are
provided and the real-time choices are justified; 12. 1the synchronisation between external
interface and internal timing is achieved;

Expected Output: a. Detailed design traceability matrices [DJF, SVR or SDD; CDR]; b.
Detailed design verification report [DJF, SVR; CDR]

QDP Status (Ye): See Software Verification Report (SVR), Software Design Document (SDD), and
[EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.134 Verification of code (5.8.3.5a)
ECSS-E-ST-40C Clause 5.8.3.5a

The supplier shall verify the software code ensuring that: 1. the code is externally consistent
with the requirements and design of the software item; 2. there is internal consistency be-
tween software units; 3. the code is traceable to design and requirements, testable, correct,
and in conformity to software requirements and coding standards; 4. the code that is not
traced to the units is justified; 5. the code implements proper events sequences, consistent
interfaces, correct data and control flow, completeness, appropriate allocation of timing and

© 2019, 2020, 2021 embedded brains GmbH 413

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

sizing budgets, and error handling; 6. the code implements safety, security, and other critical
requirements correctly as shown by appropriate methods; 7. the effects of run-time errors
are controlled; 8. there are no memory leaks; 9. numerical protection mechanisms are im-
plemented. {NOTE: “AM” means that the value is agreed with the customer and measured as
per ECSS-Q-ST-80 clause 6.3.5.2.}

Expected Output: a. Software code traceability matrices [DJF, SVR; CDR]; b. Software code
verification report [DJF, SVR; CDR]

QDP Status (Ye): See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.3.5.2a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.20a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.21a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.22a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.23a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.24a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.25a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.26a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.27a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.28a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.29a (Testing and validation)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.135 Verification of code (5.8.3.5b)
ECSS-E-ST-40C Clause 5.8.3.5b

The supplier shall verify that the following code coverage is achieved (category=coverage).
Source code statement coverage: A=100% B=100% C=AM D=AM. Source code decision
coverage: A=100% B=100% C=AM D=AM. Source code modified condition and decision
coverage: A=100% B=AM C=AM D=AM. {NOTE: This requirement is met by running unit,

© 2019, 2020, 2021 embedded brains GmbH 414

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

integration and validation tests, measuring the code coverage, and achieving the code cover-
age by additional (requirement based) tests, inspection or analysis.}

Expected Output: Code coverage verification report [DJF, SVR; CDR, QR, AR]

QDP Status (Ye): The QDP will aim at 100% source code statement coverage and 100% source
code decision coverage.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.136 Verification of code (5.8.3.5c)
ECSS-E-ST-40C Clause 5.8.3.5c

Code coverage shall be measured by analysis of the results of the execution of tests.

Expected Output: Code coverage verification report [DJF, SVR; CDR, QR, AR]

QDP Status (Y): See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.137 Verification of code (5.8.3.5d)
ECSS-E-ST-40C Clause 5.8.3.5d

If it can be justified that the required percentage cannot be achieved by test execution, then
analysis, inspection or review of design shall be applied to the non covered code. {AIM: The
goal of the complementary analysis is to assess that the non covered code behaviour is as
expected.}

© 2019, 2020, 2021 embedded brains GmbH 415

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Expected Output: Code coverage verification report [DJF, SVR; CDR, QR, AR]

QDP Status (Y): See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.138 Verification of code (5.8.3.5e)
ECSS-E-ST-40C Clause 5.8.3.5e

In case the traceability between source code and object code cannot be verified (e.g. use
of compiler optimization), the supplier shall perform additional code coverage analysis on
object code level as follows (category=coverage). Object code coverage: A=100% B=N/A
C=N/A D=N/A. {NOTE: N/A means not applicable.}

Expected Output: Code coverage verification report [DJF, SVR; CDR, QR, AR]

QDP Status (N/A): No traceability between source code and object code required for criticality
B, C, and D.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.139 Verification of code (5.8.3.5f)
ECSS-E-ST-40C Clause 5.8.3.5f

The supplier shall verify source code robustness (e.g. resource sharing, division by zero,
pointers, run-time errors). {AIM: use static analysis for the errors that are difficult to detect
at run-time.}

© 2019, 2020, 2021 embedded brains GmbH 416

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Expected Output: Robustness verification report [DJF, SVR; CDR]

QDP Status (Y): Static analysis tools will be used to verify the robustness of the source code.
See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.140 Verification of software unit testing (plan and results) (5.8.3.6a)
ECSS-E-ST-40C Clause 5.8.3.6a

The supplier shall verify the unit tests results ensuring that: 1. the unit tests are consistent
with detailed design and requirements; 2. the unit tests are traceable to software require-
ments, design and code; {NOTE: The trace to requirements is used to design the unit test
cases in order to predict meaningful expected results.} 3. software integration and testing
are feasible; 4. operation and maintenance are feasible; 5. all activities defined in clause
5.5.3 are performed; 6. test results conform to expected results; 7. test results, test logs, test
data, test cases and procedures, and test documentation are maintained under configuration
management; 8. normal termination (i.e. the test end criteria defined in the unit test plan) is
achieved; 9. abnormal termination of testing process (e.g. incorrect major fault, out of time)
is reported; 10. 1abnormal termination condition is documented in summary section of the
unit test report, together with the unfinished testing and any uncorrected faults.

Expected Output: a. Software unit tests traceability matrices [DJF, SVR; CDR]; b. Software
unit testing verification report [DJF, SVR; CDR]

QDP Status (Ye): See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.5.3.1a (Development and documentation of the software units)

• ECSS-E-ST-40C 5.5.3.2a (Software unit testing)

• ECSS-E-ST-40C 5.5.3.2b (Software unit testing)

• ECSS-E-ST-40C 5.5.3.2c (Software unit testing)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

© 2019, 2020, 2021 embedded brains GmbH 417

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.141 Verification of software integration (5.8.3.7a)
ECSS-E-ST-40C Clause 5.8.3.7a

The supplier shall verify that the integration has been performed according to the strategy
specified in the software integration test plan, and the integration activities ensuring: 1.
traceability to software architectural design; 2. internal consistency; 3. interface testing
goals; 4. conformance to expected results.

Expected Output: Software integration verification report [DJF, SVR; CDR]

QDP Status (Ye): See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.142 Verification of software validation with respect to the technical specificationsand the requirements baseline (5.8.3.8a)
ECSS-E-ST-40C Clause 5.8.3.8a

The supplier shall verify the software validation results ensuring that the test requirements,
test cases, test specifications, analysis, inspection and review of design cover all software
requirements of the technical specification or the requirements baseline.

Expected Output: a. Traceability of the requirements baseline to the validation specification
[DJF, SVR or SVS; QR, AR]; b. Traceability of the technical specification to the validation
specification [DJF, SVR or SVS; CDR]

QDP Status (Ye): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

© 2019, 2020, 2021 embedded brains GmbH 418

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.143 Verification of software validation with respect to the technical specificationsand the requirements baseline (5.8.3.8b)
ECSS-E-ST-40C Clause 5.8.3.8b

The supplier shall verify the software validation results ensuring conformance to expected
results.

Expected Output: a. Validation report evaluation with respect to the technical specification
[DJF, SVR; CDR]; b. Validation report evaluation with respect to the requirements baseline
[DJF, SVR; QR]

QDP Status (Ye): See No Requirements Baseline (RB), Software Verification Report (SVR), and
[EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.144 Evaluation of validation: complementary system level validation (5.8.3.9a)
ECSS-E-ST-40C Clause 5.8.3.9a

The supplier shall identify the requirements of the technical specification and the require-
ments baseline that cannot be tested in its own environment, and shall forward to the cus-
tomer a request to validate them at system level. {NOTE: For example: Some of the require-
ments cannot be verified because the test environment used for the validation does not allow
it. These requirements can only be tested when the software is integrated within the system
(e.g. satellite and launcher).}

Expected Output: Complement of validation at system level [DJF, SValP; PDR]

QDP Status (US): See No Requirements Baseline (RB).

© 2019, 2020, 2021 embedded brains GmbH 419

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.145 Verification of software documentation (5.8.3.10a)
ECSS-E-ST-40C Clause 5.8.3.10a

The supplier shall verify the software documentation ensuring that: 1. the documentation is
adequate, complete, and consistent; 2. documentation preparation is timely; 3. configuration
management of documents follows specified procedures.

Expected Output: Software documentation verification report [DJF, SVR; PDR, CDR, QR]

QDP Status (Ye): See Software Verification Report (SVR) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.146 Schedulability analysis for real-time software (5.8.3.11a)
ECSS-E-ST-40C Clause 5.8.3.11a

As part of the verification of the software requirements and architectural design , the supplier
shall use an analytical model (or use modelling and simulation if it can be demonstrated
that no analytical model exists) to perform a schedulability analysis and prove that the de-
sign is feasible. {NOTE: The schedulability analysis proves that the real-time behaviour is
predictable,i.e. that all the tasks complete before their deadline in the worst case condition.}

Expected Output: Schedulability analysis [DJF, SVR; PDR]

QDP Status (N/A): See No Schedulability Analysis.

© 2019, 2020, 2021 embedded brains GmbH 420

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.147 Schedulability analysis for real-time software (5.8.3.11b)
ECSS-E-ST-40C Clause 5.8.3.11b

As part of the verification of the software detailed design , the supplier shall refine the schedu-
lability analysis performed during the software architectural design on the basis of the soft-
ware detailed design documentation.

Expected Output: Schedulability analysis (update) [DJF, SVR; CDR]

QDP Status (N/A): See No Schedulability Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.148 Schedulability analysis for real-time software (5.8.3.11c)
ECSS-E-ST-40C Clause 5.8.3.11c

As part of the verification of the software coding and testing , the supplier shall update
the schedulability analysis performed during the software detailed design with the actual
information extracted from the code.

Expected Output: Schedulability analysis (update) [DJF, SVR; CDR]

QDP Status (N/A): See No Schedulability Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

© 2019, 2020, 2021 embedded brains GmbH 421

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.149 Technical budgets management (5.8.3.12a)
ECSS-E-ST-40C Clause 5.8.3.12a

As part of the verification of the software requirements and architectural design, the supplier
shall estimate the technical budgets including memory size, CPU utilization and the way the
deadline are met.

Expected Output: Technical budgets - memory and CPU estimation [DJF, SVR; PDR]

QDP Status (Ye): See No Requirements Baseline (RB) and Resources and Performance.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.150 Technical budgets management (5.8.3.12b)
ECSS-E-ST-40C Clause 5.8.3.12b

As part of the verification of the software detailed design, the supplier shall update the esti-
mation of the technical budgets.

Expected Output: Technical budgets (update) - memory and CPU estimation [DJF, SVR;
CDR]

QDP Status (Ye): See No Requirements Baseline (RB) and Resources and Performance.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

© 2019, 2020, 2021 embedded brains GmbH 422

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.151 Technical budgets management (5.8.3.12c)
ECSS-E-ST-40C Clause 5.8.3.12c

As part of the verification of the coding, testing and validation, the technical budgets shall be
updated with the measured values and shall be compared to the margins.

Expected Output: Technical budgets (update) - memory and CPU calculation [DJF, SVR;
CDR, QR, AR]

QDP Status (Ye): See No Requirements Baseline (RB) and Resources and Performance.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.152 Behaviour modelling verification (5.8.3.13a)
ECSS-E-ST-40C Clause 5.8.3.13a

As support to the verification of the software requirements, the supplier shall verify the soft-
ware behaviour using the behavioural view of the logical model produced in 5.4.2.3c.

Expected Output: Software behaviour verification [DJF, SVR; PDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.4.2.3c (Construction of a software logical model)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 423

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.153 Behaviour modelling verification (5.8.3.13b)
ECSS-E-ST-40C Clause 5.8.3.13b

As support to the verification of the software architectural design, the supplier shall verify the
software behaviour using the behavioural view of the architecture produced in clause 5.4.3.4

Expected Output: Software behaviour verification [DJF, SVR; PDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.4.3.4a (Description of software behaviour)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.154 Behaviour modelling verification (5.8.3.13c)
ECSS-E-ST-40C Clause 5.8.3.13c

As support to the verification of the software detailed design, the supplier shall verify the
software behaviour using the software behavioural design model produced in 5.5.2.3a. eoc.,
by means of the techniques defined in 5.5.2.6.

Expected Output: Software behaviour verification [DJF, SVR;CDR]

QDP Status (N): See No Logical and Computational Model.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.5.2.3a (Production of the detailed design model)

• ECSS-E-ST-40C 5.5.2.6a (Utilization of description techniques for the software behaviour)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-Q-ST-80C-R1 6.2.6.12a (Verification)

© 2019, 2020, 2021 embedded brains GmbH 424

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.1.155 Operational testing definition (5.9.2.1a)
ECSS-E-ST-40C Clause 5.9.2.1a

The SOS entity shall establish procedures for: 1. testing the software product in its oper-
ational environment; 2. entering problem reports and modification requests to the main-
tenance process (see clause 5.10), and; 3. releasing the software product for operational
use in accordance with the change control established and maintained in conformance with
ECSS-M-ST-40.

Expected Output: Software operation support plan - operational testing specifications [OP, -
; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.10.2.1a (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1b (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1c (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1d (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.2a (Long term maintenance for flight software)

• ECSS-E-ST-40C 5.10.3.1a (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1b (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1c (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1d (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1e (Problem analysis)

• ECSS-E-ST-40C 5.10.4.1a (Analysis and documentation of product modification)

• ECSS-E-ST-40C 5.10.4.2a (Documentation of software product changes)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-E-ST-40C 5.10.4.3b (Invoking of software engineering processes for modification im-
plementation)

• ECSS-E-ST-40C 5.10.4.3c (Invoking of software engineering processes for modification imple-
mentation)

• ECSS-E-ST-40C 5.10.4.3d (Invoking of software engineering processes for modification im-
plementation)

© 2019, 2020, 2021 embedded brains GmbH 425

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.10.4.3e (Invoking of software engineering processes for modification imple-
mentation)

• ECSS-E-ST-40C 5.10.5.1a (Maintenance reviews)

• ECSS-E-ST-40C 5.10.5.2a (Baseline for change)

• ECSS-E-ST-40C 5.10.6.1a (Applicability of this Standard to software migration)

• ECSS-E-ST-40C 5.10.6.2a (Migration planning and execution)

• ECSS-E-ST-40C 5.10.6.3a (Contribution to the migration plan)

• ECSS-E-ST-40C 5.10.6.4a (Preparation for migration)

• ECSS-E-ST-40C 5.10.6.5a (Notification of transition to migrated system)

• ECSS-E-ST-40C 5.10.6.5b (Notification of transition to migrated system)

• ECSS-E-ST-40C 5.10.6.6a (Post-operation review)

• ECSS-E-ST-40C 5.10.6.6b (Post-operation review)

• ECSS-E-ST-40C 5.10.6.7a (Maintenance and accessibility of data of former system)

• ECSS-E-ST-40C 5.10.7.1a (Retirement planning)

• ECSS-E-ST-40C 5.10.7.2a (Notification of retirement plan)

• ECSS-E-ST-40C 5.10.7.3a (Identification of requirements for software retirement)

• ECSS-E-ST-40C 5.10.7.4a (Maintenance and accessibility to data of the retired product)

9.1.156 Software operation support plans and procedures development (5.9.2.2a)
ECSS-E-ST-40C Clause 5.9.2.2a

The SOS entity shall complement the software user manual with the additional plans and
procedures necessary to support the operation of the software and to perform the user sup-
port.

Expected Output: Software operation support plan - plans and procedures [OP, - ; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 426

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.157 Problem handling procedures definition (5.9.2.3a)
ECSS-E-ST-40C Clause 5.9.2.3a

The SOS entity shall establish procedures for receiving, recording, resolving, tracking prob-
lems, and providing feedback. {NOTE: ECSS-Q-ST-80 clause 5.2.6 (nonconformances) and
clause 5.2.5 (software problems) contain further requirements relevant for this clause.}

Expected Output: Software operation support plan - procedures for problem handling [OP,
- ; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.2.5.1a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.2a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.3a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.4a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.6.1a (Nonconformances)

• ECSS-Q-ST-80C-R1 5.2.6.1b (Nonconformances)

• ECSS-Q-ST-80C-R1 5.2.6.1c (Nonconformances)

• ECSS-Q-ST-80C-R1 5.2.6.2a (Nonconformances)

9.1.158 Operational testing execution (5.9.3.1a)
ECSS-E-ST-40C Clause 5.9.3.1a

For each release of the software product, the SOS entity shall perform operational testing in
accordance with the applicable procedures.

Expected Output: Operational testing results [OP, - ; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 427

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.159 Software operational requirements demonstration (5.9.3.2a)
ECSS-E-ST-40C Clause 5.9.3.2a

The customer shall ensure that, prior to the first operations, the software is capable of im-
plementing the operational requirements, testing the software in the following conditions: 1.
the operating hardware environment, 2. the cases in which the software is designed to be
fault tolerant, 3. the system configuration, 4. the sequence of operations, and; 5. the SOS
entity interventions. {NOTE: This demonstration can be part of the acceptance tests of the
system.}

Expected Output: Operational testing results [OP, - ; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.160 Software release (5.9.3.3a)
ECSS-E-ST-40C Clause 5.9.3.3a

The software product shall be released for operational use.

Expected Output: Software product [DDF, - ; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.161 Software operation support performance (5.9.4.1a)
ECSS-E-ST-40C Clause 5.9.4.1a

The software operation support plan shall be executed.

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 428

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.162 Problem handling (5.9.4.2a)
ECSS-E-ST-40C Clause 5.9.4.2a

Encountered problems shall be recorded and handled in accordance with the applicable pro-
cedures.

Expected Output: Problem and nonconformance report [OP, - ; -]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.163 Assistance to the user (5.9.5.1a)
ECSS-E-ST-40C Clause 5.9.5.1a

The SOS entity shall provide assistance and consultation to the users.

Expected Output: User’s request record - user’s request and subsequent actions [OP, - ; -]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.164 Assistance to the user (5.9.5.1b)
ECSS-E-ST-40C Clause 5.9.5.1b

The SOS entity shall record and monitor user’s requests and subsequent actions.

Expected Output: User’s request record - user’s request and subsequent actions [OP, - ; -]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.165 Handling of user’s requests (5.9.5.2a)
ECSS-E-ST-40C Clause 5.9.5.2a

The SOS entity shall forward user requests to the maintenance process for resolution.

Expected Output: User’s request record - actions [OP, - ; -]

© 2019, 2020, 2021 embedded brains GmbH 429

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.166 Handling of user’s requests (5.9.5.2b)
ECSS-E-ST-40C Clause 5.9.5.2b

The SOS entity shall address user’s requests.

Expected Output: User’s request record - actions [OP, - ; -]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.167 Handling of user’s requests (5.9.5.2c)
ECSS-E-ST-40C Clause 5.9.5.2c

The SOS entity shall report to the originators of the requests the actions that are planned and
taken.

Expected Output: User’s request record - actions [OP, - ; -]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.1.168 Provisions of work-around solutions (5.9.5.3a)
ECSS-E-ST-40C Clause 5.9.5.3a

If a reported problem has a temporary work-around solution before a permanent solution can
be released, the SOS entity shall give to the originator of the problem report the option to use
it.

Expected Output: User’s request record - work around solution [OP, - ; -]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 430

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.169 Provisions of work-around solutions (5.9.5.3b)
ECSS-E-ST-40C Clause 5.9.5.3b

Permanent corrections, releases that include previously omitted functions or features, and
system improvements shall be applied to the operational software product using the mainte-
nance process as specified in clause 5.10.

Expected Output: User’s request record - work around solution [OP, - ; -]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.10.2.1a (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1b (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1c (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1d (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

• ECSS-E-ST-40C 5.10.2.2a (Long term maintenance for flight software)

• ECSS-E-ST-40C 5.10.3.1a (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1b (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1c (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1d (Problem analysis)

• ECSS-E-ST-40C 5.10.3.1e (Problem analysis)

• ECSS-E-ST-40C 5.10.4.1a (Analysis and documentation of product modification)

• ECSS-E-ST-40C 5.10.4.2a (Documentation of software product changes)

• ECSS-E-ST-40C 5.10.4.3a (Invoking of software engineering processes for modification im-
plementation)

• ECSS-E-ST-40C 5.10.4.3b (Invoking of software engineering processes for modification im-
plementation)

• ECSS-E-ST-40C 5.10.4.3c (Invoking of software engineering processes for modification imple-
mentation)

• ECSS-E-ST-40C 5.10.4.3d (Invoking of software engineering processes for modification im-
plementation)

• ECSS-E-ST-40C 5.10.4.3e (Invoking of software engineering processes for modification imple-
mentation)

• ECSS-E-ST-40C 5.10.5.1a (Maintenance reviews)

• ECSS-E-ST-40C 5.10.5.2a (Baseline for change)

© 2019, 2020, 2021 embedded brains GmbH 431

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.10.6.1a (Applicability of this Standard to software migration)

• ECSS-E-ST-40C 5.10.6.2a (Migration planning and execution)

• ECSS-E-ST-40C 5.10.6.3a (Contribution to the migration plan)

• ECSS-E-ST-40C 5.10.6.4a (Preparation for migration)

• ECSS-E-ST-40C 5.10.6.5a (Notification of transition to migrated system)

• ECSS-E-ST-40C 5.10.6.5b (Notification of transition to migrated system)

• ECSS-E-ST-40C 5.10.6.6a (Post-operation review)

• ECSS-E-ST-40C 5.10.6.6b (Post-operation review)

• ECSS-E-ST-40C 5.10.6.7a (Maintenance and accessibility of data of former system)

• ECSS-E-ST-40C 5.10.7.1a (Retirement planning)

• ECSS-E-ST-40C 5.10.7.2a (Notification of retirement plan)

• ECSS-E-ST-40C 5.10.7.3a (Identification of requirements for software retirement)

• ECSS-E-ST-40C 5.10.7.4a (Maintenance and accessibility to data of the retired product)

9.1.170 Establishment of the software maintenance process (5.10.2.1a)
ECSS-E-ST-40C Clause 5.10.2.1a

The maintainer shall develop, document, and execute plans and procedures for conducting
the activities and tasks of the maintenance process.

Expected Output: Maintenance plan - plans and procedures [MF, - ; QR, AR, ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.171 Establishment of the software maintenance process (5.10.2.1b)
ECSS-E-ST-40C Clause 5.10.2.1b

Software maintenance shall be performed using the same procedures, methods, tools and
standards as used for the development.

Expected Output: Maintenance plan - applicability of development process procedures,
methods, tools and standards [MF, - ; QR, AR, ORR]

© 2019, 2020, 2021 embedded brains GmbH 432

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.172 Establishment of the software maintenance process (5.10.2.1c)
ECSS-E-ST-40C Clause 5.10.2.1c

The maintainer shall implement (or establish the organizational interface with) the configu-
ration management process (ECSS-M-ST-40) for managing modifications.

Expected Output: Maintenance plan - configuration management process [MF, - ; QR, AR,
ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.173 Establishment of the software maintenance process (5.10.2.1d)
ECSS-E-ST-40C Clause 5.10.2.1d

The maintainer shall establish procedures for receiving, recording and tracking problem re-
ports and modification requests, providing feedback to the requester.

Expected Output: Maintenance plan - problem reporting and handling [MF, - ; QR, AR,
ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

© 2019, 2020, 2021 embedded brains GmbH 433

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.174 Establishment of the software maintenance process (5.10.2.1e)
ECSS-E-ST-40C Clause 5.10.2.1e

Whenever problems are encountered, they shall be recorded and entered in accordance with
the change control established and maintained in conformance with ECSS-M-ST-40. {NOTE:
ECSS-Q-ST-80 clause 5.2.6 (nonconformances) and clause 5.2.5 (software problems) contain
further requirements relevant for this clause.}

Expected Output: Problem and nonconformance report [MF, - ; QR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.2.5.1a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.2a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.3a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.4a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.6.1a (Nonconformances)

• ECSS-Q-ST-80C-R1 5.2.6.1b (Nonconformances)

• ECSS-Q-ST-80C-R1 5.2.6.1c (Nonconformances)

• ECSS-Q-ST-80C-R1 5.2.6.2a (Nonconformances)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.175 Long term maintenance for flight software (5.10.2.2a)
ECSS-E-ST-40C Clause 5.10.2.2a

If the spacecraft lifetime goes after the expected obsolescence date of the software engi-
neering environment, then the maintainer shall propose solutions to be able to produce and
upload modifications to the spacecraft up to its end of life.

Expected Output: Maintenance plan - long term maintenance solutions [MF, - ; QR, AR,
ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

© 2019, 2020, 2021 embedded brains GmbH 434

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.176 Problem analysis (5.10.3.1a)
ECSS-E-ST-40C Clause 5.10.3.1a

The maintainer shall analyse the problem report or modification requests for its impact on the
organization, the existing system, and the interfacing systems for the following: 1. type (e.g.
corrective, improvement, preventive, or adaptive to new environment); 2. scope (e.g. size of
modification, cost involved, and time to modify); 3. criticality (e.g. impact on performance,
safety, or security).

Expected Output: Modification analysis report and problem analysis report [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.177 Problem analysis (5.10.3.1b)
ECSS-E-ST-40C Clause 5.10.3.1b

The maintainer shall reproduce or verify the problem.

Expected Output: Modification analysis report and problem analysis report [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

© 2019, 2020, 2021 embedded brains GmbH 435

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.178 Problem analysis (5.10.3.1c)
ECSS-E-ST-40C Clause 5.10.3.1c

Based upon the analysis, the maintainer shall develop options for implementing the modifi-
cation.

Expected Output: Modification analysis report and problem analysis report [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.179 Problem analysis (5.10.3.1d)
ECSS-E-ST-40C Clause 5.10.3.1d

The maintainer shall document the problem or the modification request, the analysis results,
the priorities (in terms of operation needs, risk, effort) and implementation options in the
problem analysis report or in the modification analysis report, respectively.

Expected Output: Modification analysis report and problem analysis report [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.180 Problem analysis (5.10.3.1e)
ECSS-E-ST-40C Clause 5.10.3.1e

The maintainer shall obtain approval for the selected modification option in accordance with
procedures agreed with the customer.

Expected Output: Modification approval [MF; -]

QDP Status (US): See No Maintenance (MF).

© 2019, 2020, 2021 embedded brains GmbH 436

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.181 Analysis and documentation of product modification (5.10.4.1a)
ECSS-E-ST-40C Clause 5.10.4.1a

The maintainer shall conduct and document an analysis to determine which documentation,
models, software units, and their versions shall be modified.

Expected Output: Modification documentation [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.182 Documentation of software product changes (5.10.4.2a)
ECSS-E-ST-40C Clause 5.10.4.2a

All changes to the software product shall be documented in accordance with the procedures
for document control and configuration management.

Expected Output: Modification documentation [MF, - ;-]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

© 2019, 2020, 2021 embedded brains GmbH 437

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.183 Invoking of software engineering processes for modification implementation(5.10.4.3a)
ECSS-E-ST-40C Clause 5.10.4.3a

The maintainer shall apply the software engineering processes as specified in clauses 5.3 to
5.8 while implementing the modifications:

Expected Output: Modification documentation [MF, - ;-]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.3.2.1a (Software life cycle identification)

• ECSS-E-ST-40C 5.3.2.1b (Software life cycle identification)

• ECSS-E-ST-40C 5.3.2.1c (Software life cycle identification)

• ECSS-E-ST-40C 5.3.2.1d (Software life cycle identification)

• ECSS-E-ST-40C 5.3.2.2a (Identification of interfaces between development and maintenance)

• ECSS-E-ST-40C 5.3.2.3a (Software procurement process implementation)

• ECSS-E-ST-40C 5.3.2.4a (Automatic code generation)

• ECSS-E-ST-40C 5.3.2.4b (Automatic code generation)

• ECSS-E-ST-40C 5.3.2.4c (Automatic code generation)

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

• ECSS-E-ST-40C 5.3.2.4e (Automatic code generation)

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

• ECSS-E-ST-40C 5.3.3.1a (Joint reviews)

• ECSS-E-ST-40C 5.3.3.2a (Software project reviews)

• ECSS-E-ST-40C 5.3.3.2b (Software project reviews)

• ECSS-E-ST-40C 5.3.3.3a (Software technical reviews)

• ECSS-E-ST-40C 5.3.3.3b (Software technical reviews)

• ECSS-E-ST-40C 5.3.3.3c (Software technical reviews)

• ECSS-E-ST-40C 5.3.4.1a (System requirement review)

• ECSS-E-ST-40C 5.3.4.2a (Preliminary design review)

• ECSS-E-ST-40C 5.3.4.2b (Preliminary design review)

• ECSS-E-ST-40C 5.3.4.3a (Critical design review)

• ECSS-E-ST-40C 5.3.4.3b (Critical design review)

© 2019, 2020, 2021 embedded brains GmbH 438

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.3.4.4a (Qualification review)

• ECSS-E-ST-40C 5.3.4.5a (Acceptance review)

• ECSS-E-ST-40C 5.3.5.1a (Test readiness reviews)

• ECSS-E-ST-40C 5.3.5.2a (Test review board)

• ECSS-E-ST-40C 5.3.6.1a (Review phasing for flight software)

• ECSS-E-ST-40C 5.3.6.1b (Review phasing for flight software)

• ECSS-E-ST-40C 5.3.6.2a (Review phasing for ground software)

• ECSS-E-ST-40C 5.3.7.1a (Interface management procedures)

• ECSS-E-ST-40C 5.3.8.1a (Software technical budget and margin philosophy definition)

• ECSS-E-ST-40C 5.3.8.2a (Technical budget and margin computation)

• ECSS-E-ST-40C 5.3.9.1a (Compliance matrix)

• ECSS-E-ST-40C 5.3.9.2a (Documentation compliance)

• ECSS-E-ST-40C 5.8.2.1a (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1b (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1d (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.2a (Selection of the organization responsible for conducting the verifi-
cation)

• ECSS-E-ST-40C 5.8.2.2b (Selection of the organization responsible for conducting the verifi-
cation)

• ECSS-E-ST-40C 5.8.3.1a (Verification of requirements baseline)

• ECSS-E-ST-40C 5.8.3.2a (Verification of the technical specification)

• ECSS-E-ST-40C 5.8.3.3a (Verification of the software architectural design)

• ECSS-E-ST-40C 5.8.3.4a (Verification of the software detailed design)

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-E-ST-40C 5.8.3.5b (Verification of code)

• ECSS-E-ST-40C 5.8.3.5c (Verification of code)

• ECSS-E-ST-40C 5.8.3.5d (Verification of code)

• ECSS-E-ST-40C 5.8.3.5e (Verification of code)

• ECSS-E-ST-40C 5.8.3.5f (Verification of code)

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-E-ST-40C 5.8.3.7a (Verification of software integration)

• ECSS-E-ST-40C 5.8.3.8a (Verification of software validation with respect to the technical
specifications and the requirements baseline)

© 2019, 2020, 2021 embedded brains GmbH 439

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.8.3.8b (Verification of software validation with respect to the technical
specifications and the requirements baseline)

• ECSS-E-ST-40C 5.8.3.9a (Evaluation of validation: complementary system level validation)

• ECSS-E-ST-40C 5.8.3.10a (Verification of software documentation)

• ECSS-E-ST-40C 5.8.3.11a (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11b (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11c (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.12a (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.12b (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.12c (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.13a (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13b (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13c (Behaviour modelling verification)

This clause is referenced by the following clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.184 Invoking of software engineering processes for modification implementation(5.10.4.3b)
ECSS-E-ST-40C Clause 5.10.4.3b

Test and evaluation criteria for testing and evaluating the modified and the unmodified parts
(models, software units, components, and configuration items) of the system shall be defined
and documented.

Expected Output: Modification documentation [MF, - ;-]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

© 2019, 2020, 2021 embedded brains GmbH 440

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.185 Invoking of software engineering processes for modification implementation(5.10.4.3c)
ECSS-E-ST-40C Clause 5.10.4.3c

The complete and correct implementation of the new and modified requirements shall be
ensured.

Expected Output: Modification documentation [MF, - ;-]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.186 Invoking of software engineering processes for modification implementation(5.10.4.3d)
ECSS-E-ST-40C Clause 5.10.4.3d

It also shall be ensured that the original, unmodified requirements have not been affected.

Expected Output: Modification documentation [MF, - ;-]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.187 Invoking of software engineering processes for modification implementation(5.10.4.3e)
ECSS-E-ST-40C Clause 5.10.4.3e

The test results shall be documented.

Expected Output: Modification documentation [MF, - ;-]

QDP Status (US): See No Maintenance (MF).

© 2019, 2020, 2021 embedded brains GmbH 441

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.188 Maintenance reviews (5.10.5.1a)
ECSS-E-ST-40C Clause 5.10.5.1a

The maintainer shall conduct joint reviews with the organization authorizing the modification
to determine the integrity of the modified system.

Expected Output: Joint review reports [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.189 Baseline for change (5.10.5.2a)
ECSS-E-ST-40C Clause 5.10.5.2a

Upon successful completion of the reviews, a baseline for the change shall be established.

Expected Output: Baseline for changes [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

© 2019, 2020, 2021 embedded brains GmbH 442

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.190 Applicability of this Standard to software migration (5.10.6.1a)
ECSS-E-ST-40C Clause 5.10.6.1a

If a system or software product (including data) is migrated from an old to a new operational
environment, it shall be ensured that any software product or data produced or modified
during migration conform to this Standard.

Expected Output: Migration plan [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.191 Migration planning and execution (5.10.6.2a)
ECSS-E-ST-40C Clause 5.10.6.2a

A migration plan shall be developed, documented, and executed, including the following
items: 1. requirements analysis and definition of migration; 2. development of migration
tools; 3. conversion of software product and data; 4. migration execution; 5. migration
verification; 6. support for the old environment in the future; 7. operator involvement in the
activities.

Expected Output: Migration plan [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.192 Contribution to the migration plan (5.10.6.3a)
ECSS-E-ST-40C Clause 5.10.6.3a

The maintainer shall contribute to the migration plan and justification including the following
items: 1. statement of why the old environment is no longer to be supported; 2. description
of the new environment with its date of availability; 3. description of other support options

© 2019, 2020, 2021 embedded brains GmbH 443

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

available, once support for the old environment has been removed; 4. the date as of which
the transition takes place.

Expected Output: Migration plan [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.193 Preparation for migration (5.10.6.4a)
ECSS-E-ST-40C Clause 5.10.6.4a

If parallel operations of the old and new environments are conducted for transition to the
new environment, training shall be provided and specified in the operational plan.

Expected Output: Migration plan [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.194 Notification of transition to migrated system (5.10.6.5a)
ECSS-E-ST-40C Clause 5.10.6.5a

When the scheduled migration takes place, notification shall be sent to all parties involved.

Expected Output: Migration notification [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

© 2019, 2020, 2021 embedded brains GmbH 444

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.195 Notification of transition to migrated system (5.10.6.5b)
ECSS-E-ST-40C Clause 5.10.6.5b

All associated old environment’s documentation, logs, and code shall be placed in archives.

Expected Output: Migration notification [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.196 Post-operation review (5.10.6.6a)
ECSS-E-ST-40C Clause 5.10.6.6a

A post-operation review shall be performed to assess the impact of changing to the new
environment.

Expected Output: Post operation review report [OP, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.197 Post-operation review (5.10.6.6b)
ECSS-E-ST-40C Clause 5.10.6.6b

The results of the review shall be sent to the appropriate authorities for information, guid-
ance, and action.

Expected Output: Post operation review report [OP, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

© 2019, 2020, 2021 embedded brains GmbH 445

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.198 Maintenance and accessibility of data of former system (5.10.6.7a)
ECSS-E-ST-40C Clause 5.10.6.7a

Data used by or associated with the old environment shall be accessible in accordance with
the requirements for data protection and audit applicable to the data.

Expected Output: Migration plan [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.199 Retirement planning (5.10.7.1a)
ECSS-E-ST-40C Clause 5.10.7.1a

Upon customer’s request to retire a software product, a retirement plan to remove active sup-
port by the operator and maintainer shall be developed, documented and executed, ensuring:
1. cessation of full or partial support after the period of time specified by the customer; 2.
archiving of the software product and its associated documentation; 3. responsibility for any
future residual support issues; 4. transition to the new software product; 5. accessibility of
archive copies of data.

Expected Output: Retirement plan [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

© 2019, 2020, 2021 embedded brains GmbH 446

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.1.200 Notification of retirement plan (5.10.7.2a)
ECSS-E-ST-40C Clause 5.10.7.2a

The maintainer shall notify the retirement plan and related activities, including the following
items: 1. description of the replacement or upgrade with its date of availability; 2. statement
of why the software product is no longer to be supported; 3. description of other support
options available, once support is removed.

Expected Output: Retirement notification [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.201 Identification of requirements for software retirement (5.10.7.3a)
ECSS-E-ST-40C Clause 5.10.7.3a

If parallel operations of the retiring and the new software product are conducted for transition
to the new system, user training shall be provided as specified in the business agreement.

Expected Output: Retirement plan [MF, - ; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.1.202 Maintenance and accessibility to data of the retired product (5.10.7.4a)
ECSS-E-ST-40C Clause 5.10.7.4a

Data used by or associated with the retired software product shall be accessible in accordance
with the business agreement requirements for data protection and audit applicable to the
data.

Expected Output: Retirement plan [MF, - ; -]

© 2019, 2020, 2021 embedded brains GmbH 447

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.1a (Operational testing definition)

• ECSS-E-ST-40C 5.9.5.3b (Provisions of work-around solutions)

9.2 Tailoring of ECSS-Q-ST-80C Rev.1
Table 2: Compliance Matrix of ECSS-Q-ST-80C Rev.1 to QDP

Clause QDP Status Clause QDP Status Clause QDP Status
5.1.1a Y 5.1.2.1a Y 5.1.2.2a Y
5.1.2.3a Y 5.1.3.1a Y 5.1.3.2a Y
5.1.4.1a Y 5.1.4.2a Y 5.1.5.1a Y
5.1.5.2a Y 5.1.5.3a Y 5.1.5.4a Y
5.2.1.1a Y 5.2.1.1b Y 5.2.1.2a Y
5.2.1.3a Y 5.2.1.4a N 5.2.1.5a Y
5.2.1.5b Y 5.2.2.1a Y 5.2.2.2a Y
5.2.2.3a Y 5.2.3a Y 5.2.4a Y
5.2.5.1a Y 5.2.5.2a Y 5.2.5.3a Y
5.2.5.4a Y 5.2.6.1a Y 5.2.6.1b Y
5.2.6.1c Y 5.2.6.2a Y 5.2.7.1a Y
5.2.7.2a Ye 5.3.1a Y 5.3.2.1a N/A
5.3.2.2a N/A 5.4.1.1a N/A 5.4.1.2a N/A
5.4.2.1a Y 5.4.2.2a Y 5.4.3.1a Y
5.4.3.2a Ye 5.4.3.3a Y 5.4.3.4a N/A
5.4.4a N 5.5.1a N/A 5.5.2a N/A
5.5.3a N/A 5.5.4a N/A 5.5.5a N/A
5.5.6a Y 5.6.1.1a Y 5.6.1.2a Y
5.6.1.3a Y 5.6.2.1a Y 5.6.2.2a Y
5.6.2.3a Y 5.7.1a Y 5.7.2.1a N
5.7.2.2a N 5.7.2.3a N 5.7.2.4a N
5.7.3.1a N 5.7.3.1b N 5.7.3.2a N
5.7.3.3a N 6.1.1a Y 6.1.1b Ye
6.1.2a Y 6.1.3a Y 6.1.4a Y
6.1.5a N 6.2.1.1a Ye 6.2.1.2a Y
6.2.1.3a Y 6.2.1.4a Y 6.2.1.5a Y
6.2.1.6a Y 6.2.1.7a Y 6.2.1.8a Y
6.2.1.9a Y 6.2.2.1a N 6.2.2.2a N
6.2.2.3a N 6.2.2.3b N 6.2.2.4a N
6.2.2.5a N 6.2.2.6a N 6.2.2.7a N
6.2.2.8a N 6.2.2.9a N 6.2.2.10a Y
6.2.3.1a N/A 6.2.3.1b N/A 6.2.3.2a N
6.2.3.3a N 6.2.3.4a Y 6.2.3.5a Y

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 448

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageClause QDP Status Clause QDP Status Clause QDP Status
6.2.3.6a Y 6.2.3.7a Y 6.2.3.8a Y
6.2.4.1a Y 6.2.4.2a Y 6.2.4.3a Y
6.2.4.4a Y 6.2.4.5a Y 6.2.4.5b Y
6.2.4.6a Y 6.2.4.7a Ye 6.2.4.8a Y
6.2.4.9a Y 6.2.4.10a Y 6.2.4.11a Y
6.2.5.1a Y 6.2.5.2a Y 6.2.5.3a Y
6.2.5.4a Y 6.2.5.5a Y 6.2.6.1a Ye
6.2.6.2a Y 6.2.6.2b Y 6.2.6.3a Y
6.2.6.4a Y 6.2.6.5a Y 6.2.6.6a Y
6.2.6.7a Y 6.2.6.8a Ye 6.2.6.9a Y
6.2.6.10a Y 6.2.6.11a Y 6.2.6.12a Y
6.2.6.13a N 6.2.6.13b N 6.2.7.2a N/A
6.2.7.3a Y 6.2.7.4a Y 6.2.7.5a Y
6.2.7.6a Y 6.2.7.7a Y 6.2.7.8a Y
6.2.7.8b Y 6.2.7.9a Y 6.2.7.10a Y
6.2.7.11a Y 6.2.8.1a Y 6.2.8.2a Y
6.2.8.3a Y 6.2.8.4a Y 6.2.8.5a Y
6.2.8.6a Y 6.2.8.7a Y 6.3.1.1a US
6.3.1.2a US 6.3.1.3a US 6.3.2.1a US
6.3.2.2a Y 6.3.2.3a N 6.3.2.4a Ye
6.3.2.5a Y 6.3.3.1a Y 6.3.3.2a Y
6.3.3.3a N/A 6.3.3.4a Y 6.3.3.5a Y
6.3.3.5b Y 6.3.3.6a Y 6.3.3.7a US
6.3.4.1a Y 6.3.4.2a Y 6.3.4.3a Ye
6.3.4.4a Y 6.3.4.5a Y 6.3.4.6a Y
6.3.4.6b Ye 6.3.4.7a Y 6.3.4.8a Y
6.3.5.1a Y 6.3.5.2a Y 6.3.5.3a Y
6.3.5.4a N/A 6.3.5.5a Y 6.3.5.5b Y
6.3.5.6a Y 6.3.5.7a Y 6.3.5.8a Y
6.3.5.9a Y 6.3.5.10a Y 6.3.5.11a Y
6.3.5.12a Y 6.3.5.13a N 6.3.5.14a Y
6.3.5.15a Y 6.3.5.16a Y 6.3.5.17a Y
6.3.5.18a Y 6.3.5.19a Ye 6.3.5.20a US
6.3.5.21a Y 6.3.5.22a Ye 6.3.5.23a Ye
6.3.5.24a N/A 6.3.5.25a Ye 6.3.5.26a US
6.3.5.27a US 6.3.5.28a N 6.3.5.29a Ye
6.3.5.30a Y 6.3.5.31a Y 6.3.5.32a Y
6.3.6.1a Y 6.3.6.2a US 6.3.6.3a US
6.3.6.4a US 6.3.6.5a Y 6.3.6.6a US
6.3.6.7a US 6.3.6.8a US 6.3.6.9a US
6.3.7.1a US 6.3.7.2a US 6.3.7.3a US
6.3.8.1a US 6.3.8.2a US 6.3.8.3a US
6.3.8.4a US 6.3.8.5a US 6.3.8.6a US
6.3.8.7a US 7.1.1a US 7.1.2a Ye
7.1.3a Y 7.1.4a Y 7.1.5a Ye

continues on next page

© 2019, 2020, 2021 embedded brains GmbH 449

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Table 2 – continued from previous pageClause QDP Status Clause QDP Status Clause QDP Status
7.1.6a Y 7.1.7a N/A 7.1.8a Y
7.2.1.1a Ye 7.2.1.2a Y 7.2.1.3a Ye
7.2.2.1a Y 7.2.2.2a Y 7.2.2.3a Y
7.2.3.1a Y 7.2.3.2a Y 7.2.3.3a Y
7.2.3.4a Y 7.2.3.5a Y 7.2.3.6a Y
7.3.1a Y 7.3.2a Y 7.3.3a Ye
7.3.4a Y 7.3.5a Y 7.3.6a Y
7.3.7a Y 7.4.1a N/A 7.4.2a US
7.4.3a US 7.4.4a N/A 7.4.5a US
7.5.1a N/A 7.5.2a N/A 7.5.3a N/A

9.2.1 Organization (5.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.1a

The supplier shall ensure that an organizational structure is defined for software develop-
ment, and that individuals have defined tasks and responsibilities.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.2 Responsibility and authority (5.1.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.2.1a

The responsibility, the authority and the interrelation of personnel who manage, perform and
verify work affecting software quality shall be defined and documented.

Expected Output: Software product assurance plan [PAF, SPAP; SRR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 450

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.3 Responsibility and authority (5.1.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.2.2a

The responsibilities and the interfaces of each organisation, either external or internal, in-
volved in a project shall be defined and documented.

Expected Output: Software product assurance plan [PAF, SPAP; SRR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.4 Responsibility and authority (5.1.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.2.3a

The delegation of software product assurance tasks by a supplier to a lower level supplier shall
be done in a documented and controlled way, with the supplier retaining the responsibility
towards the customer.

Expected Output: Software product assurance plan [PAF, SPAP; SRR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.5 Resources (5.1.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.3.1a

The supplier shall provide adequate resources to perform the required software product as-
surance tasks.

Expected Output: Software product assurance plan [PAF, SPAP; SRR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 451

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.6 Resources (5.1.3.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.3.2a

Reviews and audits of processes and of products shall be carried out by personnel not directly
involved in the work being performed.

QDP Status (Y): Patches for RTEMS are reviewed by members of the RTEMS mailing list. See
[EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.7 Software product assurance manager/engineer (5.1.4.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.4.1a

The supplier shall identify the personnel responsible for software product assurance for the
project (SW PA manager/engineer).

Expected Output: Software product assurance plan [PAF, SPAP; SRR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.8 Software product assurance manager/engineer (5.1.4.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.4.2a

The software product assurance manager/engineer shall 1. report to the project manager
(through the project product assurance manager, if any); 2. have organisational author-
ity and independence to propose and maintain a software product assurance programme in
accordance with the project software product assurance requirements; 3. have unimpeded
access to higher management as necessary to fulfil his/her duties.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 452

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.9 Training (5.1.5.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.5.1a

The supplier shall review the project requirements to establish and make timely provision for
acquiring or developing the resources and skills for the management and technical staff.

Expected Output: Training plan [MGT, -; SRR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.10 Training (5.1.5.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.5.2a

The supplier shall maintain training records.

Expected Output: Records of training and experience [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.11 Training (5.1.5.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.5.3a

The supplier shall ensure that the right composition and categories of appropriately trained
personnel are available for the planned activities and tasks in a timely manner.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.12 Training (5.1.5.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.1.5.4a

The supplier shall determine the training subjects based on the specific tools, techniques,
methodologies and computer resources to be used in the development and management of
the software product. {NOTE: Personnel can undergo training to acquire skills and knowledge
relevant to the specific field with which the software is to deal.}

© 2019, 2020, 2021 embedded brains GmbH 453

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.13 Software product assurance planning and control (5.2.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.1.1a

The supplier shall develop a software product assurance plan in response to the software
product assurance requirements in conformance with DRD in annex B.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.14 Software product assurance planning and control (5.2.1.1b)
ECSS-Q-ST-80C Rev.1 Clause 5.2.1.1b

The software product assurance plan shall be either a standalone document or a section of
the supplier overall product assurance plan.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.15 Software product assurance planning and control (5.2.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.1.2a

Any internal manuals, standards or procedures referred to by the software product assurance
plan shall become an integral part of the supplier’s software product assurance programme.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 454

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.16 Software product assurance planning and control (5.2.1.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.1.3a

The software product assurance plan shall be revisited and updated as needed at each mile-
stone to ensure that the activities to be undertaken in the following phase are fully defined.

Expected Output: Software product assurance plan [PAF, SPAP; CDR, QR, AR, ORR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.17 Software product assurance planning and control (5.2.1.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.1.4a

Before acceptance review, the supplier shall either supplement the software product assurance
plan to specify the quality measures related to the operations and maintenance processes, or
issue a specific software product assurance plan.

Expected Output: Software product assurance plan [PAF, SPAP; AR]

QDP Status (N): See No Maintenance (MF) and No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.2.18 Software product assurance planning and control (5.2.1.5a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.1.5a

The supplier shall provide with the software product assurance plan a compliance matrix
documenting conformance with the individual software product assurance requirements ap-
plicable for the project or business agreement.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 455

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.19 Software product assurance planning and control (5.2.1.5b)
ECSS-Q-ST-80C Rev.1 Clause 5.2.1.5b

For each software product assurance requirement, the compliance matrix shall provide a
reference to the document where the expected output of that requirement is located. {NOTE:
For compliance with the required DRDs a general statement of compliance is acceptable.}

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.20 Software product assurance reporting (5.2.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.2.1a

The supplier shall report on a regular basis on the status of the software product assurance
programme implementation, if appropriate as part of the overall product assurance reporting
of the project.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.21 Software product assurance reporting (5.2.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.2.2a

The software product assurance report shall include: 1. an assessment of the current quality
of the product and processes, based on measured properties, with reference to the metrication
as defined in the software product assurance plan; 2. verifications undertaken; 3. problems
detected; 4. problems resolved.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 456

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.22 Software product assurance reporting (5.2.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.2.3a

The supplier shall deliver at each milestone review a software product assurance milestone
report, covering the software product assurance activities performed during the past project
phases.

Expected Output: Software product assurance milestone report [PAF, SPAMR; SRR, PDR,
CDR, QR, AR, ORR]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.23 Audits (5.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.3a

For software audits, ECSS-Q-ST-10 clause 5.2.3 shall apply.

Expected Output: Audit plan and schedule [PAF, -; SRR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.24 Alerts (5.2.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.4a

For software alerts, ECSS-Q-ST-10 clause 5.2.9 shall apply.

Expected Output: a. Preliminary alert information [PAF, -; -]; b. Alert information [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 457

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.25 Software problems (5.2.5.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.5.1a

The supplier shall define and implement procedures for the logging, analysis and correction
of all software problems encountered during software development.

Expected Output: Software problem reporting procedures [PAF, -; PDR]

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

• ECSS-Q-ST-80C-R1 6.2.5.4a (Process metrics)

9.2.26 Software problems (5.2.5.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.5.2a

The software problem report shall contain the following information: 1. identification of the
software item; 2. description of the problem; 3. recommended solution; 4. final disposition;
5. modifications implemented (e.g. documents, code, and tools); 6. tests re-executed.

Expected Output: Software problem reporting procedures [PAF, -; PDR]

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

• ECSS-Q-ST-80C-R1 6.2.5.4a (Process metrics)

9.2.27 Software problems (5.2.5.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.5.3a

The procedures for software problems shall define the interface with the nonconformance
system (i.e. the circumstances under which a problem qualifies as a nonconformance).

Expected Output: Software problem reporting procedures [PAF, -; PDR]

© 2019, 2020, 2021 embedded brains GmbH 458

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

• ECSS-Q-ST-80C-R1 6.2.5.4a (Process metrics)

9.2.28 Software problems (5.2.5.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.5.4a

The supplier shall ensure the correct application of problem reporting procedures.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

• ECSS-Q-ST-80C-R1 6.2.5.4a (Process metrics)

9.2.29 Nonconformances (5.2.6.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.6.1a

For software nonconformance handling, ECSS-Q-ST-10-09 shall apply

Expected Output: a. NCR SW procedure as part of the Software product assurance plan
[PAF, SPAP; SRR]; b. Nonconformance reports [DJF, -; -]

QDP Status (Y): See [EDI19b] and [EDI19d].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

© 2019, 2020, 2021 embedded brains GmbH 459

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.30 Nonconformances (5.2.6.1b)
ECSS-Q-ST-80C Rev.1 Clause 5.2.6.1b

When dealing with software nonconformance, the NRB shall include, at least, a representative
from the software product assurance and the software engineering organizations.

Expected Output: Identification of SW experts in NRB [MGT, -; SRR]

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

9.2.31 Nonconformances (5.2.6.1c)
ECSS-Q-ST-80C Rev.1 Clause 5.2.6.1c

The NRB shall dispose software nonconformances according to the following criteria: 1. use
“as-is”, when the software is found to be usable without eliminating the nonconformance; 2.
fix, when the software product can be made fully in conformance with all specified require-
ments, by: (a) correction of the software, (b) addition of software patches, or (c) re-design.
3. return to supplier, for procured software products (e.g. COTS).

Expected Output: Nonconformance reports [DJF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

9.2.32 Nonconformances (5.2.6.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.6.2a

The software product assurance plan shall specify the point in the software life cycle from
which the nonconformance procedures apply.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

© 2019, 2020, 2021 embedded brains GmbH 460

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.9.2.3a (Problem handling procedures definition)

• ECSS-E-ST-40C 5.10.2.1e (Establishment of the software maintenance process)

9.2.33 Quality requirements and quality models (5.2.7.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.7.1a

Quality models shall be used to specify the software quality requirements.

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.5.1a (Process metrics)

• ECSS-Q-ST-80C-R1 6.3.4.2a (Coding)

• ECSS-Q-ST-80C-R1 7.1.4a (Product metrics)

9.2.34 Quality requirements and quality models (5.2.7.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.2.7.2a

The following characteristics shall be used to specify the quality model: 1. functionality; 2.
reliability; 3. maintainability; 4. reusability; 5. suitability for safety; 6. security; 7. usability;
8. efficiency; 9. portability; 10. software development effectiveness. {NOTE 1: Quality
models are the basis for the identification of process metrics (see clause 6.2.5) and product
metrics (see clause 7.1.4).} {NOTE 2: quality models are also addressed by ISO/IEC 9126 or
ECSS-Q-HB-80-04.}

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (Ye): Quality models for security are excluded for the QDP. See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.5.1a (Process metrics)

• ECSS-Q-ST-80C-R1 6.3.4.2a (Coding)

• ECSS-Q-ST-80C-R1 7.1.4a (Product metrics)

© 2019, 2020, 2021 embedded brains GmbH 461

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.35 Risk management (5.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.3.1a

Risk management for software shall be performed by cross-reference to the project risk policy,
as specified in ECSS-M-ST-80.

QDP Status (Y): See [EDI19c] and [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.36 Critical item control (5.3.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.3.2.1a

For critical item control, ECSS-Q-ST-10-04 shall apply.

QDP Status (N/A): No critical items are foreseen.

For an overview of all clauses, see the tailoring table.

9.2.37 Critical item control (5.3.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.3.2.2a

The supplier shall identify the characteristics of the software items that qualify them for
inclusion in the Critical Item List.

QDP Status (N/A): No critical items are foreseen.

For an overview of all clauses, see the tailoring table.

9.2.38 Supplier selection (5.4.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.1.1a

For supplier selection ECSS-Q-ST-20 clause 5.4.1 shall apply.

Expected Output: a. Results of pre-award audits and assessments [PAF, -; -]; b. Records of
procurement sources [PAF, -; -]

QDP Status (N/A): No supplier selection is foreseen.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 462

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.39 Supplier selection (5.4.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.1.2a

For the selection of suppliers of existing software, including software contained in OTS equip-
ments and units, the expected output of clauses 6.2.7.2 to 6.2.7.6 shall be made available.

Expected Output: Software reuse file [DJF, SRF; -]

QDP Status (N/A): No supplier selection is foreseen.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.7.2a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.3a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.4a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.5a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.6a (Reuse of existing software)

9.2.40 Supplier requirements (5.4.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.2.1a

The supplier shall establish software product assurance requirements for the next level sup-
pliers, tailored to their role in the project, including a requirement to produce a software
product assurance plan.

Expected Output: Software product assurance requirements for suppliers [PAF, -; SRR]

QDP Status (Y): The SPAP produced by EDISOFT will be used in the project. All the product
assurance requirements are placed in the EDISOFT’s SPAP. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.41 Supplier requirements (5.4.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.2.2a

The supplier shall provide the software product assurance requirements applicable to the next
level suppliers for customer’s acceptance.

Expected Output: Software product assurance requirements for suppliers [PAF, -; SRR]

© 2019, 2020, 2021 embedded brains GmbH 463

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (Y): The SPAP produced by EDISOFT will be used in the project. All the product
assurance requirements are placed in the EDISOFT’s SPAP. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.42 Supplier monitoring (5.4.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.3.1a

The supplier shall monitor the next lower level suppliers’ conformance to the product assur-
ance requirements.

QDP Status (Y): The SPAP produced by EDISOFT will be used in the project. All the product
assurance requirements are placed in the EDISOFT’s SPAP. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.43 Supplier monitoring (5.4.3.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.3.2a

The monitoring process shall include the review and approval of the next lower level suppli-
ers’ product assurance plans, the continuous verification of processes and products, and the
monitoring of the final validation of the product.

QDP Status (Ye): The SPAP produced by EDISOFT will be used in the project. All the product
assurance requirements are placed in the EDISOFT’s SPAP. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.44 Supplier monitoring (5.4.3.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.3.3a

The supplier shall ensure that software development processes are defined and applied by the
next lower level suppliers in conformance with the software product assurance requirements
for suppliers.

Expected Output: Next level suppliers’ software product assurance plan [PAF, SPAP; PDR]

QDP Status (Y): The SPAP produced by EDISOFT will be used in the project. All the product
assurance requirements are placed in the EDISOFT’s SPAP. See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 464

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.45 Supplier monitoring (5.4.3.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.3.4a

The supplier shall provide the next lower level suppliers’ software product assurance plan for
customer’s acceptance.

Expected Output: Next level suppliers’ software product assurance plan [PAF, SPAP; PDR]

QDP Status (N/A): The SPAP produced by EDISOFT will be used in the project. All the product
assurance requirements are placed in the EDISOFT’s SPAP. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.46 Criticality classification (5.4.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.4.4a

The supplier shall provide the lower level suppliers with the relevant results of the safety and
dependability analyses performed at higher and his level (ref. clauses 6.2.2.1 and 6.2.2.2),
including: 1. the criticality classification of the software products to be developed; 2. infor-
mation about the failures that can be caused at higher level by the software products to be
developed.

Expected Output: Safety and dependability analyses results for lower level suppliers [RB, -;
SRR]

QDP Status (N): Safety and Dependability analysis will not be performed. Criticality classified
by contract.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.2.1a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.2a (Software dependability and safety)

• ECSS-Q-ST-80C-R1 6.2.2.10a (Software dependability and safety)

This clause is referenced by the following clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

© 2019, 2020, 2021 embedded brains GmbH 465

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.47 Procurement documents (5.5.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.5.1a

For procurement documents, ECSS-Q-ST-20 clause 5.4.2 shall apply.

QDP Status (N/A): No procurement is planned.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.3a (Software procurement process implementation)

9.2.48 Review of procured software component list (5.5.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.5.2a

The choice of procured software shall be described and submitted for customer review.

Expected Output: Software development plan [MGT, SDP; SRR, PDR]

QDP Status (N/A): No procurement is planned.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.3a (Software procurement process implementation)

9.2.49 Procurement details (5.5.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.5.3a

For each of the software items the following data shall be provided: 1. ordering criteria;
2. receiving inspection criteria; 3. back-up solutions if the product becomes unavailable; 4.
contractual arrangements with the supplier for the development, maintenance and upgrades
to new releases. {NOTE: Examples of ordering criteria are: versions, options and extensions.}

Expected Output: Procurement data [MGT, -; SRR, PDR]

QDP Status (N/A): No procurement is planned.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.3a (Software procurement process implementation)

© 2019, 2020, 2021 embedded brains GmbH 466

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.50 Identification (5.5.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.5.4a

All the procured software shall be identified and registered by configuration management.

QDP Status (N/A): No procurement is planned.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.3a (Software procurement process implementation)

9.2.51 Inspection (5.5.5a)
ECSS-Q-ST-80C Rev.1 Clause 5.5.5a

The supplier shall subject the procured software to a planned receiving inspection, in accor-
dance with ECSS-Q-ST-20 clause 5.4.4, and the receiving inspection criteria as required by
clause 5.5.3.

Expected Output: Receiving inspection report [PAF, -; PDR, CDR, QR]

QDP Status (N/A): No procurement is planned.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.3a (Software procurement process implementation)

9.2.52 Exportability (5.5.6a)
ECSS-Q-ST-80C Rev.1 Clause 5.5.6a

Exportability constraints shall be identified.

QDP Status (Y): -

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.3a (Software procurement process implementation)

© 2019, 2020, 2021 embedded brains GmbH 467

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.53 Methods and tools (5.6.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.6.1.1a

Methods and tools to be used for all the activities of the development cycle, (including re-
quirements analysis, software specification, modelling, design, coding, validation, testing,
configuration management, verification and product assurance) shall be identified by the
supplier and agreed by the customer.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.54 Methods and tools (5.6.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.6.1.2a

The choice of development methods and tools shall be justified by demonstrating through
testing or documented assessment that: 1. the development team has appropriate experi-
ence or training to apply them, 2. the tools and methods are appropriate for the functional
and operational characteristics of the product, and 3. the tools are available (in an appro-
priate hardware environment) throughout the development and maintenance lifetime of the
product.

Expected Output: Software product assurance milestone report [PAF, SPAMR; SRR, PDR]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.55 Methods and tools (5.6.1.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.6.1.3a

The correct use of methods and tools shall be verified and reported.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 468

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.56 Development environment selection (5.6.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.6.2.1a

The software development environment shall be selected according to the following criteria:
1. availability; 2. compatibility; 3. performance; 4. maintenance; 5. durability and technical
consistency with the operational equipment; 6. the assessment of the product with respect
to requirements, including the criticality category; 7. the available support documentation;
8. the acceptance and warranty conditions; 9. the conditions of installation, preparation,
training and use; 10. the maintenance conditions, including the possibilities of evolutions;
11. copyright and intellectual property rights constraints; 12. dependence on one specific
supplier.

Expected Output: Software development plan [MGT, SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.57 Development environment selection (5.6.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.6.2.2a

The suitability of the software development environment shall be justified.

Expected Output: Software development plan [MGT, SDP; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.58 Development environment selection (5.6.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.6.2.3a

The availability of the software development environment to developers and other users shall
be verified before the start of each development phase.

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 469

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.59 Process assessment (5.7.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.1a

The supplier shall monitor and control the effectiveness of the processes used during the
development of the software, including the relevant processes corresponding to the services
called from other organizational entities outside the project team. {NOTE: The process as-
sessment and improvement performed at organization level can be used to provide evidence
of compliance for the project.}

Expected Output: Software process assessment records: Overall assessments and improve-
ment programme plan [PAF, -; -]

QDP Status (Y): See [EDI19e] and [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.60 Assessment process (5.7.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.2.1a

The process assessment model and method to be used when performing any software process
assessment shall be documented.

Expected Output: a. Software process assessment record: assessment model [PAF, -; -]; b.
Software process assessment record: assessment method [PAF, -; -]

QDP Status (N): Process assessment is not foreseen to be performed in this project.

For an overview of all clauses, see the tailoring table.

9.2.61 Assessment process (5.7.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.2.2a

Assessments performed and process assessment models used shall be in conformance with
ISO/IEC 15504 (Part 2). {NOTE 1: The model and method documented in ECSS-Q- HB-80-
02 are conformant to ISO/IEC 15504 (Part 2).} {NOTE 2: Currently the CMMI model is not
fully conformant to ISO/IEC 15504, however it can be used, provided that the SCAMPI A
method is applied.}

Expected Output: a. Software process assessment record: evidence of conformance of the
process assessment model [PAF, -; -]; b. Software process assessment record: assessment
method [PAF, -; -].

QDP Status (N): Process assessment is not foreseen to be performed in this project.

© 2019, 2020, 2021 embedded brains GmbH 470

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table.

9.2.62 Assessment process (5.7.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.2.3a

The process assessment model, the method, the assessment scope, the results and the asses-
sors shall be verified as complying with the project requirements. {NOTE 1: Examples of
assessment scopes are: organizational unit evaluated, and processes evaluated.} {NOTE 2:
ECSS-Q-HB-80-02 provides space specific process reference model and their indicators.}

Expected Output: Software process assessment record: Software process assessment recog-
nition evidence [PAF, -; -]

QDP Status (N): Process assessment is not foreseen to be performed in this project.

For an overview of all clauses, see the tailoring table.

9.2.63 Assessment process (5.7.2.4a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.2.4a

Assessments, carried out in accordance with ECSS-Q-HB-80-02, shall be performed by a com-
petent assessor, whereas the other assessment team members can be either competent asses-
sor or provisional assessor. {NOTE 1: For other assessment schemes conformant to ISO/IEC
15504 (Part 2), assessors certified under INTRSA are competent assessors.} {NOTE 2: When
using CMMI/SCAMPI A, SEI authorized lead appraisers are competent assessors.}

Expected Output: Software process assessment record: competent assessor justification
[PAF, -; -]

QDP Status (N): Process assessment is not foreseen to be performed in this project.

For an overview of all clauses, see the tailoring table.

9.2.64 Process improvement (5.7.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.3.1a

The results of the assessment shall be used as feedback to improve as necessary the performed
processes, to recommend changes in the direction of the project, and to determine technology
advancement needs.

QDP Status (N): Process assessment is not foreseen to be performed in this project.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 471

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.65 Process improvement (5.7.3.1b)
ECSS-Q-ST-80C Rev.1 Clause 5.7.3.1b

The suppliers shall ensure that the results of previous assessments are used in its project
activity

Expected Output: Software process assessment records: improvement plan [PAF, -; -]

QDP Status (N): Process assessment is not foreseen to be performed in this project.

For an overview of all clauses, see the tailoring table.

9.2.66 Process improvement (5.7.3.2a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.3.2a

The process improvement shall be conducted according to a documented process improve-
ment process. {NOTE 1: For the definition of the process improvement process, see ECSS-Q-
HB-80-02.} {NOTE 2: For CMMI, the process improvement is described in the OPF (Organi-
zational Process Focus) process area.}

Expected Output: Software process assessment records: improvement process [PAF, -; -]

QDP Status (N): Process assessment is not foreseen to be performed in this project.

For an overview of all clauses, see the tailoring table.

9.2.67 Process improvement (5.7.3.3a)
ECSS-Q-ST-80C Rev.1 Clause 5.7.3.3a

Evidence of the improvement in performed processes or in project documentation shall be
provided. {NOTE: See ECSS-Q-HB-80-02.}

Expected Output: Software process assessment records: evidence of improvements [PAF, -;
-]

QDP Status (N): Process assessment is not foreseen to be performed in this project.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 472

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.68 Life cycle definition (6.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.1.1a

The software development life cycle shall be defined or referenced in the software product
assurance plan.

QDP Status (Y): See [EDI19e] and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.69 Life cycle definition (6.1.1b)
ECSS-Q-ST-80C Rev.1 Clause 6.1.1b

The following characteristics of the software life cycle shall be defined: 1. phases; 2. input
and output of each phase; 3. status of completion of phase output; 4. milestones; 5. depen-
dencies; 6. responsibilities; 7. role of the customer at each milestone review, in conformance
with ECSS-M-ST-10 and ECSS-M-ST-10-01.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.70 Process quality objectives (6.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.1.2a

In the definition of the life cycle and associated milestones and documents, the quality objec-
tives shall be used.

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 473

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.71 Life cycle definition review (6.1.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.1.3a

The software life cycle shall be reviewed against the contractual software engineering and
product assurance requirements.

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.72 Life cycle resources (6.1.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.1.4a

The software life cycle shall be reviewed for suitability and for the availability of resources to
implement it by all functions involved in its application.

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.73 Software validation process schedule (6.1.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.1.5a

A milestone (SW TRR as defined in ECSS-E-ST-40 clause 5.3.5.1) shall be scheduled imme-
diately before the software validation process starts, to check that: 1. the software status
is compatible with the commencement of validation activities; 2. the necessary resources,
software product assurance plans, test and validation documentation, simulators or other
technical means are available and ready for use.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (N): TRR is not foreseen in this project.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.3.5.1a (Test readiness reviews)

© 2019, 2020, 2021 embedded brains GmbH 474

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.74 Documentation of processes (6.2.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.1a

The following activities shall be covered either in software-specific plans or in project general
plans: 1. development; 2. specification, design and customer documents to be produced;
3. configuration and documentation management; 4. verification, testing and validation
activities; 5. maintenance.

Expected Output: Software project plans [MGT, MF, DJF]

QDP Status (Ye): See No Maintenance (MF) and [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.75 Documentation of processes (6.2.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.2a

All plans shall be finalized before the start of the related activities.

Expected Output: Software project plans [MGT, MF, DJF]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.76 Documentation of processes (6.2.1.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.3a

All plans shall be updated for each milestone to reflect any changes during development.

Expected Output: Software project plans [MGT, MF, DJF]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 475

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.77 Documentation of processes (6.2.1.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.4a

The software product assurance plan shall identify all plans to be produced and used, the
relationship between them and the time-scales for their preparation and update.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.78 Documentation of processes (6.2.1.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.5a

Each plan shall be reviewed against the relevant contractual requirements.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.79 Documentation of processes (6.2.1.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.6a

Procedures and project standards shall address all types of software products included in the
project.

Expected Output: Procedures and standards [PAF, -; PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.80 Documentation of processes (6.2.1.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.7a

All procedures and project standards shall be finalized before starting the related activities.

Expected Output: Procedures and standards [PAF, -; PDR]

QDP Status (Y): See [EDI19e].

© 2019, 2020, 2021 embedded brains GmbH 476

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table.

9.2.81 Documentation of processes (6.2.1.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.8a

Each procedure or standard shall be reviewed against the relevant plans and contractual
requirements.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.82 Documentation of processes (6.2.1.9a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.1.9a

Before any activity is started, each procedure or standard for that activity shall be reviewed
by all functions involved in its application, for suitability and for the availability of resources
to implement it.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.83 Software dependability and safety (6.2.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.1a

For the system-level analyses leading to the criticality classification of software products based
on the severity of failures consequences, ECSS-Q-ST-40 clause 6.5.6.3, and ECSS-Q-ST-30
clause 5.4, shall apply.

Expected Output: Criticality classification of software products [PAF, -; SRR, PDR]

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 5.4.4a (Criticality classification)

© 2019, 2020, 2021 embedded brains GmbH 477

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.84 Software dependability and safety (6.2.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.2a

The supplier shall perform a software dependability and safety analysis of the software prod-
ucts, using the results of system-level safety and dependability analyses, in order to determine
the criticality of the individual software components.

Expected Output: Software dependability and safety analysis report [PAF, -; PDR]

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 5.4.4a (Criticality classification)

9.2.85 Software dependability and safety (6.2.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.3a

The supplier shall identify the methods and techniques for the software dependability and
safety analysis to be performed at technical specification and design level.

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.86 Software dependability and safety (6.2.2.3b)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.3b

Methods and techniques for software dependability and safety analysis shall be agreed be-
tween the supplier and customer. {NOTE: ECSS-Q-HB-80-03 provides indication on methods
and techniques that can be applied such as: • software failure modes, effects and criticality
analysis (for the performing of this analysis, see also ECSS-Q-ST-30-02); • software fault tree
analysis; • software common cause failure analysis.}

Expected Output: Criticality classification of software components [PAF, -; PDR]

QDP Status (N): See No Software Dependability and Safety Analysis.

© 2019, 2020, 2021 embedded brains GmbH 478

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.87 Software dependability and safety (6.2.2.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.4a

Based on the results of the software criticality analysis, the supplier shall apply engineer-
ing measures to reduce the number of critical software components and mitigate the risks
associated with the critical software (ref. clause 6.2.3).

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.3.1a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.1b (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.2a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.3a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.4a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.5a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.6a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.7a (Handling of criticality software)

• ECSS-Q-ST-80C-R1 6.2.3.8a (Handling of criticality software)

This clause is referenced by the following clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.88 Software dependability and safety (6.2.2.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.5a

The supplier shall report on the status of the implementation and verification of the SW
dependability and safety analysis recommendations.

Expected Output: Software dependability and safety analysis report [PAF, -; CDR, QR, AR]

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

© 2019, 2020, 2021 embedded brains GmbH 479

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.89 Software dependability and safety (6.2.2.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.6a

The supplier shall update the software dependability and safety analysis at each software
development milestone, to confirm the criticality category of software components.

Expected Output: Software dependability and safety analysis report [PAF, -; CDR, QR, AR]

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.90 Software dependability and safety (6.2.2.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.7a

The supplier shall provide the results of the software dependability and safety analysis for in-
tegration into the system-level dependability and safety analyses, addressing in particular: 1.
additional failure modes identified at software design level; 2. recommendations for system-
level activities. {NOTE: For example: introduction of hardware inhibits, and modifications of
the system architecture.}

Expected Output: Software dependability and safety analysis report [PAF, -; PDR, CDR]

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.91 Software dependability and safety (6.2.2.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.8a

As part of the software requirements analysis activities (ref. clause 6.3.2), the supplier shall
contribute to the Hardware-Software Interaction Analysis (HSIA) by identifying, for each
hardware failure included in the HSIA, the requirements that specify the software behaviour
in the event of that hardware failure.

© 2019, 2020, 2021 embedded brains GmbH 480

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.3.2.1a (Software requirements analysis)

• ECSS-Q-ST-80C-R1 6.3.2.2a (Software requirements analysis)

• ECSS-Q-ST-80C-R1 6.3.2.3a (Software requirements analysis)

• ECSS-Q-ST-80C-R1 6.3.2.4a (Software requirements analysis)

• ECSS-Q-ST-80C-R1 6.3.2.5a (Software requirements analysis)

This clause is referenced by the following clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.92 Software dependability and safety (6.2.2.9a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.9a

During the verification and validation of the software requirements resulting from the
Hardware-Software Interaction Analysis, the supplier shall verify that the software reacts cor-
rectly to hardware failures, and no undesired software behaviour occurs that lead to system
failures.

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

9.2.93 Software dependability and safety (6.2.2.10a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.2.10a

If it cannot be prevented that software components cause failures of higher criticality compo-
nents, due to failure propagation or use of shared resources, then all the involved components
shall be classified at the highest criticality category among them. {NOTE: Failures of higher-
criticality software components caused by lower-criticality components can be prevented by
design measures such as separate hardware platforms, isolation of software processes or pro-
hibition of shared memory (segregation and partitioning).}

Expected Output: The following outputs are expected: a. Software product assurance plan
[PAF, SPAP; PDR, CDR]; b. Software dependability and safety analysis report [PAF, -; PDR,
CDR, QR, AR]

QDP Status (Y): Criticality category classified by contract.

© 2019, 2020, 2021 embedded brains GmbH 481

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 5.4.4a (Criticality classification)

9.2.94 Handling of criticality software (6.2.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.1a

<<deleted>>

QDP Status (N/A): All components have the same criticality.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.95 Handling of criticality software (6.2.3.1b)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.1b

<<deleted>>

QDP Status (N/A): All components have the same criticality.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.96 Handling of criticality software (6.2.3.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.2a

The supplier shall define, justify and apply measures to assure the dependability and safety of
critical software. {NOTE:These measures can include: • use of software design or methods
that have performed successfully in a similar application; • insertion of features for failure
isolation and handling (ref. ECSS-Q-HB-80-03, software failure modes and effects analysis);
• defensive programming techniques, such as input verification and consistency checks; •
use of a “safe subset” of programming language; • use of formal design language for formal

© 2019, 2020, 2021 embedded brains GmbH 482

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

proof; • 100 % code branch coverage at unit testing level; • full inspection of source code;
• witnessed or independent testing; • gathering and analysis of failure statistics; • removing
deactivated code or showing through a combination of analysis and testing that the means by
which such code can be inadvertently executed are prevented, isolated, or eliminated. }

Expected Output: Software product assurance plan [PAF, SPAP; PDR, CDR]

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.97 Handling of criticality software (6.2.3.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.3a

The application of the chosen measures to handle the critical software shall be verified.

Expected Output: Software product assurance milestone report [PAF, SPAMR; PDR, CDR,
QR, AR]

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.98 Handling of criticality software (6.2.3.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.4a

Critical software shall be subject to regression testing after: 1. any change of functionality of
the underlying platform hardware; 2. any change of the tools that affect directly or indirectly
the generation of the executable code. {NOTE 1: In case of minor changes in tools that affect
the generation of the executable code, a binary comparison of the executable code generated
by the different tools can be used to verify that no modifications are introduced. NOTE 2:
Example for item 1: instruction set of a processor.}

Expected Output: Software product assurance plan [PAF, SPAP; PDR, CDR]

QDP Status (Y): See [EDI19e].

© 2019, 2020, 2021 embedded brains GmbH 483

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.99 Handling of criticality software (6.2.3.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.5a

The need for additional verification and validation of critical software shall be analysed after:
1. any change of functionality or performance of the underlying platform hardware; 2. any
change in the environment in which the software or the platform hardware operate.

Expected Output: Software product assurance plan [PAF, SPAP; PDR, CDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.100 Handling of criticality software (6.2.3.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.6a

Identified unreachable code shall be removed and the need for re-verification and re-
validation shall be analysed.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

© 2019, 2020, 2021 embedded brains GmbH 484

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.101 Handling of criticality software (6.2.3.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.7a

Unit and integration testing shall be (re-)executed on non-instrumented code.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.102 Handling of criticality software (6.2.3.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.3.8a

Validation testing shall be (re-)executed on non-instrumented code.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-Q-ST-80C-R1 6.2.2.4a (Software dependability and safety)

9.2.103 Software configuration management (6.2.4.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.1a

ECSS-M-ST-40 shall be applied for software configuration management, complemented by
the following requirements.

QDP Status (Y): The “Following requirements” are not specified. See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

© 2019, 2020, 2021 embedded brains GmbH 485

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.104 Software configuration management (6.2.4.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.2a

The software configuration management system shall allow any reference version to be re-
generated from backups.

Expected Output: Software configuration management plan [MGT, SCMP; SRR, PDR]

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.105 Software configuration management (6.2.4.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.3a

The software configuration file and the software release document shall be provided with
each software delivery.

Expected Output: a. Software configuration file [DDF, SCF; -]; b. Software release document
[DDF, SRelD; -]

QDP Status (Y): See Software Configuration File (SCF) and Software Release Document (SRelD).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.106 Software configuration management (6.2.4.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.4a

The software configuration file shall be available and up to date for each project milestone.

Expected Output: Software configuration file [DDF, SCF; CDR, QR, AR, ORR]

QDP Status (Y): See Software Configuration File (SCF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

© 2019, 2020, 2021 embedded brains GmbH 486

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.107 Software configuration management (6.2.4.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.5a

Any components of the code generation tool that are customizable by the user shall be put
under configuration control.

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.108 Software configuration management (6.2.4.5b)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.5b

The change control procedures defined for the project shall address the specific aspects of
these components.

Expected Output: a. Software configuration file [DDF, SCF; CDR, QR, AR, ORR]; b. Software
configuration management plan [MGT, SCMP; SRR, PDR].

QDP Status (Y): See Software Configuration File (SCF) and [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.109 Software configuration management (6.2.4.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.6a

The supplier shall ensure that all authorized changes are implemented in accordance with
the software configuration management plan.

Expected Output: Authorized changes - Software configuration file [DDF, SCF; CDR, QR,
AR, ORR]

QDP Status (Y): See Software Configuration File (SCF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

© 2019, 2020, 2021 embedded brains GmbH 487

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.110 Software configuration management (6.2.4.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.7a

The following documents shall be controlled (see ECSS-Q-ST-10 clause 5.2.5): 1. procedural
documents describing the quality system to be applied during the software life cycle; 2. plan-
ning documents describing the planning and progress of the activities; 3. documents describ-
ing a particular software product, including: (a) development phase inputs, (b) development
phase outputs, (c) verification and validation plans and results, (d) test case specifications,
test procedures and test reports, (e) traceability matrices, (f) documentation for the software
and system operators and users, and (g) maintenance documentation.

QDP Status (Ye): See No Maintenance (MF) and [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.111 Software configuration management (6.2.4.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.8a

The supplier shall identify a method and tool to protect the supplied software against corrup-
tion. {NOTE: For example: source, executable and data.}

Expected Output: a. Software product assurance plan [PAF, SPAP; SRR, PDR]; b. Software
configuration file [DDF, SCF; CDR, QR, AR, ORR]

QDP Status (Y): See Software Configuration File (SCF) and See [EDI19b].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.112 Software configuration management (6.2.4.9a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.9a

The supplier shall define a checksum-type key calculation for the delivered operational soft-
ware. {NOTE: For example: executable binary, database.}

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

© 2019, 2020, 2021 embedded brains GmbH 488

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.113 Software configuration management (6.2.4.10a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.10a

The checksum value shall be provided in the software configuration file with each software
delivery.

Expected Output: Software configuration file [DDF, SCF; -]

QDP Status (Y): See Software Configuration File (SCF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.114 Software configuration management (6.2.4.11a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.4.11a

The media through which the software is delivered to the customer shall be marked by the
supplier indicating the following information as a minimum: 1. the software name; 2. the
version number; 3. the reference to the software configuration file.

Expected Output: a. Software product assurance plan [PAF, SPAP; SRR, PDR]; b. Labels
[DDF, -; -]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.5a (Changes to baselines)

9.2.115 Process metrics (6.2.5.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.5.1a

Metrics shall be used to manage the development and to assess the quality of the development
processes. {NOTE: Process metrics are based on quality models (see clause 5.2.7).}

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

© 2019, 2020, 2021 embedded brains GmbH 489

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.2.7.1a (Quality requirements and quality models)

• ECSS-Q-ST-80C-R1 5.2.7.2a (Quality requirements and quality models)

9.2.116 Process metrics (6.2.5.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.5.2a

Process metrics shall be collected, stored and analysed on a regular basis by applying quality
models and procedures.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.117 Process metrics (6.2.5.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.5.3a

The following basic process metrics shall be used within the supplier’s organization: 1. dura-
tion: how phases and tasks are being completed versus the planned schedule; 2. effort: how
much effort is consumed by the various phases and tasks compared to the plan.

Expected Output: Internal metrics report

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.118 Process metrics (6.2.5.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.5.4a

Process metrics shall be used within the supplier’s organization and reported to the customer,
including: 1. number of problems detected during verification; 2. number of problems de-
tected during integration and validation testing and use. {NOTE: See also software problem
reporting described in clause 5.2.5.}

Expected Output: Software product assurance reports [PAF, -; -]

© 2019, 2020, 2021 embedded brains GmbH 490

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.2.5.1a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.2a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.3a (Software problems)

• ECSS-Q-ST-80C-R1 5.2.5.4a (Software problems)

9.2.119 Process metrics (6.2.5.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.5.5a

Metrics reports shall be included in the software product assurance reports.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.120 Verification (6.2.6.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.1a

Activities for the verification of the quality requirements shall be specified in the definition
of the verification plan. {NOTE: Verification includes various techniques such as review,
inspection, testing, walk-through, cross-reading, desk-checking, model simulation, and many
types of analysis such as traceability analysis, formal proof or fault tree analysis.}

Expected Output: Software verification plan [DJF, SVerP; PDR]

QDP Status (Ye): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.121 Verification (6.2.6.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.2a

The outputs of each development activity shall be verified for conformance against pre-
defined criteria.

QDP Status (Y): See [EDI19c].

© 2019, 2020, 2021 embedded brains GmbH 491

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table.

9.2.122 Verification (6.2.6.2b)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.2b

Only outputs which have been subjected to planned verifications shall be used as inputs for
subsequent activities.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.123 Verification (6.2.6.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.3a

A summary of the assurance activities concerning the verification process and their findings
shall be included in software product assurance reports.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.124 Verification (6.2.6.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.4a

The completion of actions related to software problem reports generated during verification
shall be verified and recorded.

Expected Output: Software problem reports [DJF, -; SRR, PDR, CDR, QR, AR, ORR]

QDP Status (Y): Use of RTEMS project ticket system and project internal ticket system.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 492

https://devel.rtems.org/
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.125 Verification (6.2.6.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.5a

Software containing deactivated code shall be verified specifically to ensure that the deacti-
vated code cannot be activated or that its accidental activation cannot harm the operation of
the system.

Expected Output: Software verification report [DJF, SVR; CDR, QR, AR]

QDP Status (Y): See Software Verification Report (SVR).

For an overview of all clauses, see the tailoring table.

9.2.126 Verification (6.2.6.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.6a

Software containing configurable code shall be verified specifically to ensure that any unin-
tended configuration cannot be activated at run time or included during code generation.

Expected Output: Software verification report [DJF, SVR; CDR, QR, AR]

QDP Status (Y): See Software Verification Report (SVR).

For an overview of all clauses, see the tailoring table.

9.2.127 Verification (6.2.6.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.7a

The supplier shall ensure that: 1. the planned verification activities are adequate to con-
firm that the products of each phase are conformant to the applicable requirements; 2. the
verification activities are performed according to the plan.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 493

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.128 Verification (6.2.6.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.8a

Reviews and inspections shall be carried out according to defined criteria, and according to
the defined level of independence of the reviewer from the author of the reviewed item.

QDP Status (Ye): Large parts of the source code was produced in a different project by the
same staff that does now the reviews. Due to the elapse of more than one year between
writing of the code and the reviews carried out in this project, sufficient independence is
ensured by the pass of time. In general, changes in the RTEMS project are reviewed by
persons on the RTEMS developer mailing list. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.129 Verification (6.2.6.9a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.9a

Each review and inspection shall be based on a written plan or procedure. {NOTE: For
projects reviews, ECSS-E-ST-40 clause 5.3.3.3, bullet b and Annex P are applicable.}

Expected Output: Review and inspection plans or procedures [PAF, -; -]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.3.3.3c (Software technical reviews)

9.2.130 Verification (6.2.6.10a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.10a

The review or inspection plans or procedures shall specify: 1. the reviewed or inspected
items; 2. the person in charge; 3. the participants; 4. the means of review or inspection (e.g.
tools or check list); 5. the nature of the report.

Expected Output: Review and inspection plans or procedures [PAF, -; -]

QDP Status (Y): See Requirement Validation and see :ref:[EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 494

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.131 Verification (6.2.6.11a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.11a

Review and inspection reports shall: 1. refer to the corresponding review/inspection proce-
dure or plan; 2. identify the reviewed item, the author, the reviewer, the review criteria and
the findings of the review.

Expected Output: Review and inspection reports [PAF, -; -]

QDP Status (Y): See Requirement Validation and see :ref:[EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.132 Verification (6.2.6.12a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.12a

Traceability matrices (as defined in ECSS-E-ST-40 clause 5.8) shall be verified at each mile-
stone.

Expected Output: Software product assurance milestone report [PAF, SPAMR; SRR, PDR,
CDR, QR, AR, ORR]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.8.2.1a (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1b (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1d (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.2a (Selection of the organization responsible for conducting the verifi-
cation)

• ECSS-E-ST-40C 5.8.2.2b (Selection of the organization responsible for conducting the verifi-
cation)

• ECSS-E-ST-40C 5.8.3.1a (Verification of requirements baseline)

• ECSS-E-ST-40C 5.8.3.2a (Verification of the technical specification)

• ECSS-E-ST-40C 5.8.3.3a (Verification of the software architectural design)

• ECSS-E-ST-40C 5.8.3.4a (Verification of the software detailed design)

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-E-ST-40C 5.8.3.5b (Verification of code)

© 2019, 2020, 2021 embedded brains GmbH 495

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.8.3.5c (Verification of code)

• ECSS-E-ST-40C 5.8.3.5d (Verification of code)

• ECSS-E-ST-40C 5.8.3.5e (Verification of code)

• ECSS-E-ST-40C 5.8.3.5f (Verification of code)

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-E-ST-40C 5.8.3.7a (Verification of software integration)

• ECSS-E-ST-40C 5.8.3.8a (Verification of software validation with respect to the technical
specifications and the requirements baseline)

• ECSS-E-ST-40C 5.8.3.8b (Verification of software validation with respect to the technical
specifications and the requirements baseline)

• ECSS-E-ST-40C 5.8.3.9a (Evaluation of validation: complementary system level validation)

• ECSS-E-ST-40C 5.8.3.10a (Verification of software documentation)

• ECSS-E-ST-40C 5.8.3.11a (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11b (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11c (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.12a (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.12b (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.12c (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.13a (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13b (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13c (Behaviour modelling verification)

9.2.133 Verification (6.2.6.13a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.13a

Independent software verification shall be performed by a third party.

QDP Status (N): See No Independent Software Verification and Validation.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.8.2.2b (Selection of the organization responsible for conducting the verifi-
cation)

© 2019, 2020, 2021 embedded brains GmbH 496

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.134 Verification (6.2.6.13b)
ECSS-Q-ST-80C Rev.1 Clause 6.2.6.13b

Independent software verification shall be a combination of reviews, inspections, analyses,
simulations, testing and auditing. {NOTE: This requirement is applicable where the risks as-
sociated with the project justify the costs involved. The customer can consider a less rigorous
level of independence, e.g. an independent team in the same organization.}

Expected Output: a. ISVV plan [DJF, -; SRR, PDR]; b. ISVV report [DJF, -; PDR, CDR, QR,
AR]

QDP Status (N): See No Independent Software Verification and Validation.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.8.2.2b (Selection of the organization responsible for conducting the verifi-
cation)

9.2.135 Reuse of existing software (6.2.7.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.2a

Analyses of the advantages to be obtained with the selection of existing software (ref. 3.2.11)
instead of new development shall be carried out.

Expected Output: a. Software reuse approach, including approach to delta qualification
[PAF, SPAP; SRR, PDR]; b. Software reuse file [DJF, SRF; SRR, PDR]

QDP Status (N/A): No selection will be performed.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 5.4.1.2a (Supplier selection)

• ECSS-Q-ST-80C-R1 6.2.7.7a (Reuse of existing software)

© 2019, 2020, 2021 embedded brains GmbH 497

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.136 Reuse of existing software (6.2.7.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.3a

The existing software shall be assessed with regards to the applicable functional, performance
and quality requirements.

Expected Output: a. Software reuse approach, including approach to delta qualification
[PAF, SPAP; SRR, PDR]; b. Software reuse file [DJF, SRF; SRR, PDR]

QDP Status (Y): See Software Reuse File (SRF) and see [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 5.4.1.2a (Supplier selection)

• ECSS-Q-ST-80C-R1 6.2.7.7a (Reuse of existing software)

9.2.137 Reuse of existing software (6.2.7.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.4a

The quality level of the existing software shall be analysed with respect to the project require-
ments, according to the criticality of the system function implemented, taking into account
the following aspects: 1. software requirements documentation; 2. software architectural
and detailed design documentation; 3. forward and backward traceability between system
requirements, software requirements, design and code; 4. unit tests documentation and cov-
erage; 5. integration tests documentation and coverage; 6. validation documentation and
coverage; 7. verification reports; 8. performance; 9. operational performances; 10. residual
nonconformances and waivers; 11. user operational documentation; {NOTE 1: Examples of
performance are memory occupation, CPU load. NOTE 2: Example of user operation docu-
mentation is a user manual.).

Expected Output: a. Software reuse approach, including approach to delta qualification
[PAF, SPAP; SRR, PDR]; b. Software reuse file [DJF, SRF; SRR, PDR]

QDP Status (Y): See Software Reuse File (SRF) and see [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 5.4.1.2a (Supplier selection)

• ECSS-Q-ST-80C-R1 6.2.7.7a (Reuse of existing software)

© 2019, 2020, 2021 embedded brains GmbH 498

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.138 Reuse of existing software (6.2.7.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.5a

The results of the reused software analysis shall be recorded in the software reuse file, to-
gether with an assessment of the possible level of reuse and a description of the assumptions
and the methods applied when estimating the level of reuse. {NOTE: Results of the reused
software analysis, such as detailed reference to requirement and design documents, test re-
ports and coverage results.}

Expected Output: a. Software reuse approach, including approach to delta qualification
[PAF, SPAP; SRR, PDR]; b. Software reuse file [DJF, SRF; SRR, PDR]

QDP Status (Y): See Software Reuse File (SRF) and see [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 5.4.1.2a (Supplier selection)

• ECSS-Q-ST-80C-R1 6.2.7.7a (Reuse of existing software)

9.2.139 Reuse of existing software (6.2.7.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.6a

The analysis of the suitability of existing software for reuse shall be complemented by an
assessment of the following aspects: 1. the acceptance and warranty conditions; 2. the
available support documentation; 3. the conditions of installation, preparation, training and
use; 4. the identification and registration by configuration management; 5. maintenance
responsibility and conditions, including the possibilities of changes; 6. the durability and
validity of methods and tools used in the initial development, that are envisaged to be used
again; 7. the copyright and intellectual property rights constraints (modification rights); 8.
the licensing conditions; 9. exportability constraints.

Expected Output: Software reuse file [DJF, SRF; SRR, PDR]

QDP Status (Y): See Software Reuse File (SRF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 5.4.1.2a (Supplier selection)

• ECSS-Q-ST-80C-R1 6.2.7.7a (Reuse of existing software)

© 2019, 2020, 2021 embedded brains GmbH 499

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.140 Reuse of existing software (6.2.7.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.7a

Corrective actions shall be identified, documented in the reuse file and applied to the reused
software not meeting the applicable requirements related to the aspects as specified in clauses
6.2.7.2 to 6.2.7.6.

Expected Output: Software reuse file [DJF, SRF; SRR, PDR]

QDP Status (Y): See Software Reuse File (SRF).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 6.2.7.2a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.3a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.4a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.5a (Reuse of existing software)

• ECSS-Q-ST-80C-R1 6.2.7.6a (Reuse of existing software)

This clause is referenced by the following clause:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

9.2.141 Reuse of existing software (6.2.7.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.8a

Reverse engineering techniques shall be applied to generate missing documentation and to
reach the required verification and validation coverage.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

© 2019, 2020, 2021 embedded brains GmbH 500

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.142 Reuse of existing software (6.2.7.8b)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.8b

For software products whose life cycle data from previous development are not available and
reverse engineering techniques are not fully applicable, the following methods shall be ap-
plied: 1. generation of validation and verification documents based on the available user
documentation (e.g. user manual) and execution of tests in order to achieve the required
level of test coverage; 2. use of the product service history to provide evidence of the prod-
uct’s suitability for the current application, including information about: (a) relevance of the
product service history for the new operational environment; (b) configuration management
and change control of the software product; (c) effectiveness of problem reporting; (d) actual
error rates and maintenance records; (e) impact of modifications.

Expected Output: Software reuse file [DJF, SRF; SRR, PDR]

QDP Status (Y): See Software Reuse File (SRF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

9.2.143 Reuse of existing software (6.2.7.9a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.9a

The software reuse file shall be updated at project milestones to reflect the results of the
identified corrective actions for reused software not meeting the project requirements.

Expected Output: Software reuse file [DJF, SRF; CDR, QR, AR]

QDP Status (Y): See Software Reuse File (SRF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

9.2.144 Reuse of existing software (6.2.7.10a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.10a

All the reused software shall be kept under configuration control.

QDP Status (Y): See [EDI19b].

© 2019, 2020, 2021 embedded brains GmbH 501

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

9.2.145 Reuse of existing software (6.2.7.11a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.7.11a

The detailed configuration status of the reused software baseline shall be provided to the
customer in the reuse file for acceptance.

Expected Output: Software reuse file [DJF, SRF; SRR, PDR, CDR, QR, AR]

QDP Status (Y): See Software Reuse File (SRF).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.4.3.7a (Reuse of existing software)

9.2.146 Automatic code generation (6.2.8.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.8.1a

For the selection of tools for automatic code generation, the supplier shall evaluate the fol-
lowing aspects: 1. evolution of the tools in relation to the tools that use the generated code
as an input; 2. customization of the tools to comply with project standards; 3. portability
requirements for the generated code; 4. collection of the required design and code metrics;
5. verification of software components containing generated code; 6. configuration control
of the tools including the parameters for customisation; 7. compliance with open standards.
{NOTE: Examples for item 1: compilers or code management systems.}

QDP Status (Y): No use of automatically generated code is planned

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

© 2019, 2020, 2021 embedded brains GmbH 502

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.147 Automatic code generation (6.2.8.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.8.2a

The requirements on testing applicable to the automatically generated code shall ensure the
achievement of the same objectives as those for manually generated code.

Expected Output: Validation and testing documentation [DJF, SValP; PDR], [DJF, SVS; CDR,
QR, AR], [DJF, SUITP; PDR, CDR]

QDP Status (Y): No use of automatically generated code is planned

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

9.2.148 Automatic code generation (6.2.8.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.8.3a

The required level of verification and validation of the automatic generation tool shall be at
least the same as the one required for the generated code, if the tool is used to skip verification
or testing activities on the target code.

QDP Status (Y): No use of automatically generated code is planned

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

9.2.149 Automatic code generation (6.2.8.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.8.4a

Modelling standards for automatic code generation tools shall be defined and applied.

Expected Output: Modelling standards [PAF, -; SRR, PDR]

QDP Status (Y): No use of automatically generated code is planned

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

© 2019, 2020, 2021 embedded brains GmbH 503

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.150 Automatic code generation (6.2.8.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.8.5a

Adherence to modelling standards shall be verified.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): No use of automatically generated code is planned

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

9.2.151 Automatic code generation (6.2.8.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.8.6a

Clause 6.3.4 shall apply to automatically generated code, unless the supplier demonstrates
that the automatically generated code does not need to be manually modified.

QDP Status (Y): No use of automatically generated code is planned

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

9.2.152 Automatic code generation (6.2.8.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.2.8.7a

The verification and validation documentation shall address separately the activities to be
performed for manually and automatically generated code.

Expected Output: Validation and testing documentation [DJF, SValP; PDR], [DJF, SVS; CDR,
QR, AR], [DJF, SUITP; PDR, CDR]

QDP Status (Y): No use of automatically generated code is planned

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.3.2.4d (Automatic code generation)

© 2019, 2020, 2021 embedded brains GmbH 504

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.153 Software related system requirements process (6.3.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.1.1a

For the definition of the software related system requirements to be specified in the require-
ments baseline, ECSS-E-ST-40 clause 5.2 shall apply.

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.2.2.1a (Specification of system requirements allocated to software)

• ECSS-E-ST-40C 5.2.2.2a (Identification of observability requirements)

• ECSS-E-ST-40C 5.2.2.3a (Specification of HMI requirements)

• ECSS-E-ST-40C 5.2.3.1a (Verification and validation process requirements)

• ECSS-E-ST-40C 5.2.3.2a (System input for software validation)

• ECSS-E-ST-40C 5.2.3.3a (System input for software installation and acceptance)

• ECSS-E-ST-40C 5.2.4.1a (Identification of software versions for software integration into the
system)

• ECSS-E-ST-40C 5.2.4.1b (Identification of software versions for software integration into the
system)

• ECSS-E-ST-40C 5.2.4.2a (Supplier support to system integration)

• ECSS-E-ST-40C 5.2.4.3a (Interface requirement specification)

• ECSS-E-ST-40C 5.2.4.4a (System database)

• ECSS-E-ST-40C 5.2.4.5a (Development constraints)

• ECSS-E-ST-40C 5.2.4.6a (On board control procedures)

• ECSS-E-ST-40C 5.2.4.7a (Development of software to be reused)

• ECSS-E-ST-40C 5.2.4.8a (Software safety and dependability requirements)

• ECSS-E-ST-40C 5.2.4.9a (Format and data medium)

• ECSS-E-ST-40C 5.2.5a (System requirements review)

© 2019, 2020, 2021 embedded brains GmbH 505

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.154 Software related system requirements process (6.3.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.1.2a

The requirements baseline shall be subject to documentation control and configuration man-
agement as part of the development documentation.

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table.

9.2.155 Software related system requirements process (6.3.1.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.1.3a

For the definition of the requirements baseline, all results from the safety and dependability
analyses (including results from the HSIA ECSS-Q-ST-30 clause 6.4.2.3) shall be used.

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table.

9.2.156 Software requirements analysis (6.3.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.2.1a

The requirements baseline shall be analyzed to fully and unambiguously define the software
requirements in the technical specification.

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.2.2.8a (Software dependability and safety)

9.2.157 Software requirements analysis (6.3.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.2.2a

The technical specification shall be subject to documentation control and configuration man-
agement as part of the development documentation.

QDP Status (Y): See [EDI19b].

© 2019, 2020, 2021 embedded brains GmbH 506

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.2.2.8a (Software dependability and safety)

9.2.158 Software requirements analysis (6.3.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.2.3a

For the definition of the technical specification, all results from the safety and dependability
analyses (including results from the HSIA ECSS-Q-ST-30 clause 6.4.2.3) shall be used.

QDP Status (N): See No Software Dependability and Safety Analysis.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.2.2.8a (Software dependability and safety)

9.2.159 Software requirements analysis (6.3.2.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.2.4a

In addition to the functional requirements, the technical specification shall include all non-
functional requirements necessary to satisfy the requirements baseline, including, as a min-
imum, the following: 1. performance, 2. safety, 3. reliability, 4. robustness, 5. quality, 6.
maintainability, 7. configuration management, 8. security, 9. privacy, 10. metrication, and
11. verification and validation. {NOTE: Performance requirements include requirements on
numerical accuracy.}

Expected Output: Software requirements specification [TS, SRS; PDR]

QDP Status (Ye): Security and privacy will not be considered. TS will be done by reverse
engineering of RTEMS. See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.2.2.8a (Software dependability and safety)

© 2019, 2020, 2021 embedded brains GmbH 507

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.160 Software requirements analysis (6.3.2.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.2.5a

Prior to the technical specification elaboration, customer and supplier shall agree on the fol-
lowing principles and rules as a minimum: 1. assignment of persons (on both sides) respon-
sible for establishing the technical specification; 2. methods for agreeing on requirements
and approving changes; 3. efforts to prevent misunderstandings such as definition of terms,
explanations of background of requirements; 4. recording and reviewing discussion results
on both sides.

QDP Status (Y): See [EDI19c] and [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 6.2.2.8a (Software dependability and safety)

9.2.161 Software architectural design and design of software items (6.3.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.1a

The design definition file shall be subject to documentation control and configuration man-
agement.

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table.

9.2.162 Software architectural design and design of software items (6.3.3.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.2a

Mandatory and advisory design standards shall be defined and applied.

Expected Output: Design standards [PAF, -; SRR, PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 508

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.163 Software architectural design and design of software items (6.3.3.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.3a

For software in which numerical accuracy is relevant to mission success specific rules on
design and code shall be defined to ensure that the specified level of accuracy is obtained.
{NOTE: For example: for an attitude and orbit control subsystem, scientific data generation
components.}

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (N/A): Numerical accuracy is irrelevant to the RTEMS real-time operating system.

For an overview of all clauses, see the tailoring table.

9.2.164 Software architectural design and design of software items (6.3.3.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.4a

Adherence to design standards shall be verified.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.165 Software architectural design and design of software items (6.3.3.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.5a

The supplier shall define means, criteria and tools to ensure that the complexity and modu-
larity of the design meet the quality requirements.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 509

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.166 Software architectural design and design of software items (6.3.3.5b)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.5b

The design evaluation shall be performed in parallel with the design process, in order to
provide feedback to the software design team.

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.167 Software architectural design and design of software items (6.3.3.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.6a

Synthesis of the results obtained in the software complexity and modularity evaluation and
corrective actions implemented shall be described in the software product assurance reports.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): Software product (RTEMS) already exits, modifications to design shall be con-
strained. See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.168 Software architectural design and design of software items (6.3.3.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.3.7a

The supplier shall review the design documentation to ensure that it contains the appropriate
level of information for maintenance activities.

Expected Output: a. Software product assurance plan [PAF, SPAP; PDR]; b. Software prod-
uct assurance reports [PAF, -; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 510

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.169 Coding (6.3.4.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.1a

Coding standards (including consistent naming conventions and adequate commentary rules)
shall be specified and observed.

Expected Output: Coding standards [PAF, -; PDR]

QDP Status (Y): Coding standard implicitly defined by static analysis tools such as Cover-
ity Scan (https://scan.coverity.com/projects/rtems), sonarcloud (https://sonarcloud.io/
about), cppcheck (http://cppcheck.sourceforge.net/); coding conventions defined by
RTEMS (https://devel.rtems.org/wiki/Developer/Coding/Conventions)

For an overview of all clauses, see the tailoring table.

9.2.170 Coding (6.3.4.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.2a

The standards shall be consistent with the product quality requirements. {NOTE: Coding
standards depend on the software quality objectives (see clause 5.2.7).}

Expected Output: Coding standards [PAF, -; PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.2.7.1a (Quality requirements and quality models)

• ECSS-Q-ST-80C-R1 5.2.7.2a (Quality requirements and quality models)

9.2.171 Coding (6.3.4.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.3a

The tools to be used in implementing and checking conformance with coding standards shall
be identified in the product assurance plan before coding activities start.

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (Ye): Source code already exists. See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 511

https://scan.coverity.com/projects/rtems
https://sonarcloud.io/about
https://sonarcloud.io/about
http://cppcheck.sourceforge.net/
https://devel.rtems.org/wiki/Developer/Coding/Conventions

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.172 Coding (6.3.4.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.4a

Coding standards shall be reviewed with the customer to ensure that they reflect product
quality requirements.

Expected Output: Coding standards and description of tools [PAF, -; PDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

9.2.173 Coding (6.3.4.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.5a

Use of low-level programming languages shall be justified.

Expected Output: Software development plan [MGT, SDP; PDR]

QDP Status (Y): Part of RTEMS architecture support and BSPs are developed in assembly code.

For an overview of all clauses, see the tailoring table.

9.2.174 Coding (6.3.4.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.6a

The supplier shall define measurements, criteria and tools to ensure that the software code
meets the quality requirements.

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 512

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.175 Coding (6.3.4.6b)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.6b

The code evaluation shall be performed in parallel with the coding process, in order to provide
feedback to the software programmers.

QDP Status (Ye): Source code already exists. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.176 Coding (6.3.4.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.7a

Synthesis of the code analysis results and corrective actions implemented shall be described
in the software product assurance reports.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.177 Coding (6.3.4.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.4.8a

The code shall be put under configuration control immediately after successful unit testing.

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table.

9.2.178 Testing and validation (6.3.5.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.1a

Testing shall be performed in accordance with a strategy for each testing level (i.e. unit,
integration, validation against the technical specification, validation against the requirements
baseline, acceptance), which includes: 1. the types of tests to be performed; 2. the tests to be
performed in accordance with the plans and procedures; 3. the means and organizations to
perform assurance function for testing and validation. {NOTE: For examples for item 1 are:
functional, boundary, performance, and usability tests.}

© 2019, 2020, 2021 embedded brains GmbH 513

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Expected Output: Software product assurance plan [PAF, SPAP; PDR, CDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.179 Testing and validation (6.3.5.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.2a

Based on the criticality of the software, test coverage goals for each testing level shall be
agreed between the customer and the supplier and their achievement monitored by metrics:
1. for unit level testing; 2. for integration level testing; 3. for validation against the technical
specification and validation against the requirements baseline.

Expected Output: Software product assurance plan [PAF, SPAP; PDR, CDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.180 Testing and validation (6.3.5.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.3a

The supplier shall ensure through internal review that the test procedures and data are ade-
quate, feasible and traceable and that they satisfy the requirements.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 514

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.181 Testing and validation (6.3.5.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.4a

Test readiness reviews shall be held before the commencement of test activities, as defined in
the software development plan.

Expected Output: Test readiness review reports [DJF, -; TRR]

QDP Status (N/A): No TRR will be performed.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.182 Testing and validation (6.3.5.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.5a

Test coverage shall be checked with respect to the stated goals.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.183 Testing and validation (6.3.5.5b)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.5b

Feedback from the results of test coverage evaluation shall be continuously provided to the
software developers.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 515

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.184 Testing and validation (6.3.5.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.6a

The supplier shall ensure that nonconformances and software problem reports detected dur-
ing testing are properly documented and reported to those concerned.

Expected Output: Nonconformance reports and software problem reports [DJF, -; CDR, QR,
AR, ORR]

QDP Status (Y): Use of RTEMS project ticket system and project internal ticket system.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.185 Testing and validation (6.3.5.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.7a

The test coverage of configurable code shall be checked to ensure that the stated requirements
are met in each tested configuration.

Expected Output: Statement of compliance with test plans and procedures [PAF, -; CDR, QR,
AR, ORR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.186 Testing and validation (6.3.5.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.8a

The completion of actions related to software problem reports generated during testing and
validation shall be verified and recorded.

Expected Output: Software problem reports [DJF, -; SRR, PDR, CDR, QR, AR, ORR]

QDP Status (Y): Use of RTEMS project ticket system and project internal ticket system.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

© 2019, 2020, 2021 embedded brains GmbH 516

https://devel.rtems.org/
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues
https://devel.rtems.org/
https://gitrepos.estec.esa.int/external/rtems-smp-qualification/issues

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.187 Testing and validation (6.3.5.9a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.9a

Provisions shall be made to allow witnessing of tests by the customer.

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.188 Testing and validation (6.3.5.10a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.10a

Provisions shall be made to allow witnessing of tests by supplier personnel independent of
the development. {NOTE: For example: specialist software product assurance personnel.}

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.189 Testing and validation (6.3.5.11a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.11a

The supplier shall ensure that: 1. tests are conducted in accordance with approved test
procedures and data, 2. the configuration under test is correct, 3. the tests are properly
documented, and 4. the test reports are up to date and valid.

Expected Output: Statement of compliance with test plans and procedures [PAF, -; CDR, QR,
AR, ORR]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 517

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.190 Testing and validation (6.3.5.12a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.12a

The supplier shall ensure that tests are repeatable by verifying the storage and recording
of tested software, support software, test environment, supporting documents and problems
found.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.191 Testing and validation (6.3.5.13a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.13a

The supplier shall confirm in writing that the tests are successfully completed.

Expected Output: Testing and validation reports [DJF, -; CDR, QR, AR, ORR]

QDP Status (N): Not sure how “in writing” should work practically.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.192 Testing and validation (6.3.5.14a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.14a

Review boards looking to engineering and product assurance aspects shall be convened after
the completion of test phases, as defined in the software development plan.

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 518

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.193 Testing and validation (6.3.5.15a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.15a

Areas affected by any modification shall be identified and re-tested (regression testing).

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.194 Testing and validation (6.3.5.16a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.16a

In case of re-testing, all test related documentation (test procedures, data and reports) shall
be updated accordingly.

Expected Output: Updated test documentation [DJF, -; CDR, QR, AR, ORR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.195 Testing and validation (6.3.5.17a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.17a

The need for regression testing and additional verification of the software shall be analysed
after any change of the platform hardware.

Expected Output: Updated test documentation [DJF, -; CDR, QR, AR, ORR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 519

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.196 Testing and validation (6.3.5.18a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.18a

The need for regression testing and additional verification of the software shall be analysed
after a change or update of any tool used to generate it. {NOTE: For example: source code
or object code.}

Expected Output: Updated test documentation [DJF, -; CDR, QR, AR, ORR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.197 Testing and validation (6.3.5.19a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.19a

Validation shall be carried out by staff who have not taken part in the design or coding of
the software being validated. {NOTE: This can be achieved at the level of the whole software
product, or on a component by component basis.}

QDP Status (Ye): Large parts of the source code was produced in a different project by the
same staff that does now the validation tests. Due to the elapse of more than one year
between writing of the code and the validation tests carried out in this project, sufficient
independence is ensured by the pass of time. In general, changes (this includes test cases)
in the RTEMS project are reviewed by persons on the RTEMS developer mailing list. See
[EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.1c (Establishment of a software validation process)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.198 Testing and validation (6.3.5.20a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.20a

Validation of the flight software against the requirement baseline on the flight equipment
model shall be performed on a software version without any patch.

QDP Status (US): See No Requirements Baseline (RB).

© 2019, 2020, 2021 embedded brains GmbH 520

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.199 Testing and validation (6.3.5.21a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.21a

The supplier shall review the test documentation to ensure that it is up to date and organized
to facilitate its reuse for maintenance.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.200 Testing and validation (6.3.5.22a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.22a

Tests shall be organized as activities in their own right in terms of planning, resources and
team composition.

Expected Output: Test and validation documentation [DJF, SValP; PDR], [DJF, SUITP; PDR,
CDR]

QDP Status (Ye): See Software Unit and Integration Test Plan (SUITP) and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 521

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.201 Testing and validation (6.3.5.23a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.23a

The necessary resources for testing shall be identified early in the life cycle, taking into ac-
count the operating and maintenance requirements.

Expected Output: Test and validation documentation [DJF, SValP; PDR], [DJF, SUITP; PDR,
CDR]

QDP Status (Ye): See No Maintenance (MF), No Operational Phase (OP), Software Unit and
Integration Test Plan (SUITP), and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.202 Testing and validation (6.3.5.24a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.24a

Test tool development or acquisition (hardware and software) shall be planned for in the
overall project plan.

Expected Output: Test and validation documentation [DJF, SValP; PDR], [DJF, SUITP; PDR,
CDR]

QDP Status (N/A): No acquisition is foreseen.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.203 Testing and validation (6.3.5.25a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.25a

The supplier shall establish and review the test procedures and data before starting testing
activities and also document the constraints of the tests concerning physical, performance,
functional, controllability and observability limitations.

© 2019, 2020, 2021 embedded brains GmbH 522

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Expected Output: Test and validation documentation [DJF, SValP; PDR], [DJF, SVS; CDR,
QR, AR], [DJF, SUITP; PDR, CDR]

QDP Status (Ye): See Software Verification Report (SVR), Software Unit and Integration Test Plan
(SUITP), and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.204 Testing and validation (6.3.5.26a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.26a

Before offering the product for delivery and customer acceptance, the supplier shall validate
its operation as a complete product, under conditions similar to the application environment
as specified in the requirements baseline.

QDP Status (US): See No Requirements Baseline (RB).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.205 Testing and validation (6.3.5.27a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.27a

When testing under the operational environment is performed, the following concerns shall
be addressed: 1. the features to be tested in the operational environment; 2. the specific re-
sponsibilities of the supplier and customer for carrying out and evaluating the test; 3. restora-
tion of the previous operational environment (after test).

Expected Output: Test and validation documentation [DJF, -; AR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 523

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.206 Testing and validation (6.3.5.28a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.28a

Independent software validation shall be performed by a third party. {NOTE: This require-
ment is applicable where the risks associated with the project justify the costs involved. The
customer can consider a less rigorous level of independence, e.g. an independent team in the
same organization.}

Expected Output: a. ISVV plan [DJF, -; SRR, PDR]; b. ISVV report [DJF, -; PDR, CDR, QR,
AR]

QDP Status (N): See No Independent Software Verification and Validation.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.6.2.2b (Selection of an ISVV organization)

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.207 Testing and validation (6.3.5.29a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.29a

The validation shall include testing in the different configurations possible or in a represen-
tative set of them when it is evident that the number of possible configurations is too high to
allow validation in all of them.

Expected Output: Test and validation documentation [DJF, SValP; PDR], [DJF, SVS; CDR,
QR, AR]

QDP Status (Ye): See Software Validation Specification (SVS) with Respect to TS and [EDI19c].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clauses:

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 524

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.208 Testing and validation (6.3.5.30a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.30a

Software containing deactivated code shall be validated specifically to ensure that the deacti-
vated code cannot be activated or that its accidental activation cannot harm the operation of
the system.

Expected Output: Testing and validation reports [DJF, -; CDR, QR, AR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.209 Testing and validation (6.3.5.31a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.31a

Software containing configurable code shall be validated specifically to ensure that unin-
tended configuration cannot be activated at run time or included during code generation.

Expected Output: Testing and validation reports [DJF, -; CDR, QR, AR]

QDP Status (Y): See Software Validation Specification (SVS) with Respect to TS.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

9.2.210 Testing and validation (6.3.5.32a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.5.32a

Activities for the validation of the quality requirements shall be specified in the definition of
the validation specification.

Expected Output: Software validation specification [DJF, SVS; CDR, QR, AR]

QDP Status (Y): See Software Validation Specification (SVS) with Respect to TS.

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-Q-ST-80C-R1 7.2.3.1a (Test and validation documentation)

© 2019, 2020, 2021 embedded brains GmbH 525

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.211 Software delivery and acceptance (6.3.6.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.1a

The roles, responsibilities and obligations of the supplier and customer during installation
shall be established.

Expected Output: Installation procedure [DDF, SCF; AR]

QDP Status (Y): See Software User Manual (SUM).

For an overview of all clauses, see the tailoring table.

9.2.212 Software delivery and acceptance (6.3.6.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.2a

The installation shall be performed in accordance with the installation procedure.

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.2.213 Software delivery and acceptance (6.3.6.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.3a

The customer shall establish an acceptance test plan specifying the intended acceptance tests
including specific tests suited to the target environment (see ECSS-E-ST-40 clause 5.7.3.1).
{NOTE 1: The acceptance tests can be partly made up of tests used during previous test activ-
ities.} {NOTE 2: The acceptance test plan takes into account the requirement for operational
demonstration, either as part of acceptance or after acceptance.}

Expected Output: Acceptance test plan [DJF, -; QR, AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.7.3.1a (Acceptance test planning)

© 2019, 2020, 2021 embedded brains GmbH 526

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.214 Software delivery and acceptance (6.3.6.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.4a

The customer shall ensure that the acceptance tests are performed in accordance with the
approved acceptance test plan (see ECSS-E-ST-40 clause 5.7.3.2).

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table. This clause references the following clause:

• ECSS-E-ST-40C 5.7.3.2a (Acceptance test execution)

9.2.215 Software delivery and acceptance (6.3.6.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.5a

Before the software is presented for customer acceptance, the supplier shall ensure that: 1.
the delivered software complies with the contractual requirements (including any specified
content of the software acceptance data package); 2. the source and object code supplied
correspond to each other; 3. all agreed changes are implemented; 4. all nonconformances
are either resolved or declared.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.216 Software delivery and acceptance (6.3.6.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.6a

The customer shall verify that the executable code was regenerated from configuration man-
aged source code components and installed in accordance with predefined procedures on the
target environment.

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 527

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.217 Software delivery and acceptance (6.3.6.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.7a

Any discovered problems shall be documented in nonconformance reports.

Expected Output: Nonconformance reports [DJF, -; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.2.218 Software delivery and acceptance (6.3.6.8a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.8a

On completion of the acceptance tests, a report shall be drawn up and be signed by the
supplier’s representatives, the customer’s representatives, the software quality engineers of
both parties and the representative of the organization charged with the maintenance of the
software product.

Expected Output: Acceptance test report [DJF, -; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

9.2.219 Software delivery and acceptance (6.3.6.9a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.6.9a

The customer shall certify conformance to the procedures and state the conclusion concerning
the test result for the software product under test (accepted, conditionally accepted, rejected).

Expected Output: Acceptance test report [DJF, -; AR]

QDP Status (US): See No Installation and Acceptance.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 528

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.220 Operations (6.3.7.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.7.1a

During operations, the quality of the mission products related to software shall be agreed
with the customer and users. {NOTE: Quality of mission products can include parameters
such as: error-free data, availability of data and permissible outages; permissible information
degradation}.

Expected Output: Software operation support plan [OP, -; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.2.221 Operations (6.3.7.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.7.2a

During the demonstration that the software conforms to the operational requirements, the
following shall be covered as a minimum: 1. availability and maintainability of the host
system (including reboot after maintenance interventions); 2. safety features; 3. human-
computer interface; 4. operating procedures; 5. ability to meet the mission product quality
requirements.

Expected Output: Validation of the operational requirements [PAF, -; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.2.222 Operations (6.3.7.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.7.3a

The product assurance plan for system operations shall include consideration of software.

Expected Output: Input to product assurance plan for systems operation [PAF, -; ORR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 529

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.223 Maintenance (6.3.8.1a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.8.1a

The organization responsible for maintenance shall be identified to allow a smooth transition
into the operations and maintenance. {NOTE: An organization, with representatives from
both supplier and customer, can be set up to support the maintenance activities. Attention is
drawn to the importance of the flexibility of this organization to cope with the unexpected
occurrence of problems and the identification of facilities and resources to be used for the
maintenance activities.}

Expected Output: Maintenance plan [MF, -; QR, AR, ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

9.2.224 Maintenance (6.3.8.2a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.8.2a

The maintenance organization shall specify the assurance, verification and validation activi-
ties applicable to maintenance interventions.

Expected Output: Maintenance plan [MF, -; QR, AR, ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

9.2.225 Maintenance (6.3.8.3a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.8.3a

The maintenance plans shall be verified against specified requirements for maintenance of
the software product. {NOTE: The maintenance plans and procedures can address correc-
tive, improving, adaptive and preventive maintenance, differentiating between “routine” and
“emergency” maintenance activities.}

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 530

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.226 Maintenance (6.3.8.4a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.8.4a

The maintenance plans and procedures shall include the following as a minimum: 1. scope
of maintenance; 2. identification of the first version of the software product for which main-
tenance is to be done; 3. support organization; 4. maintenance life cycle; 5. maintenance
activities; 6. quality measures to be applied during the maintenance; 7. maintenance records
and reports.

Expected Output: Maintenance plan [MF, -; QR, AR, ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

9.2.227 Maintenance (6.3.8.5a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.8.5a

Rules for the submission of maintenance reports shall be established and agreed as part of
the maintenance plan.

Expected Output: Maintenance plan [MF, -; QR, AR, ORR]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

9.2.228 Maintenance (6.3.8.6a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.8.6a

All maintenance activities shall be logged in predefined formats and retained.

Expected Output: Maintenance records [MF, -; -]

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 531

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.229 Maintenance (6.3.8.7a)
ECSS-Q-ST-80C Rev.1 Clause 6.3.8.7a

Maintenance records shall be established for each software product, including, as a minimum,
the following information,: 1. list of requests for assistance or problem reports that have been
received and the current status of each; 2. organization responsible for responding to requests
for assistance or implementing the appropriate corrective actions; 3. priorities assigned to the
corrective actions; 4. results of the corrective actions; 5. statistical data on failure occurrences
and maintenance activities. {NOTE: The record of the maintenance activities can be utilized
for evaluation and enhancement of the software product and for improvement of the quality
system itself}.

Expected Output: Maintenance records [MF, -; -]. Software product quality assurance

QDP Status (US): See No Maintenance (MF).

For an overview of all clauses, see the tailoring table.

9.2.230 Deriving of requirements (7.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.1a

The software quality requirements (including safety and dependability requirements) shall
be derived from the requirements defined at system level.

Expected Output: a. Requirement baseline [RB, SSS; SRR]; b. Technical specification [TS,
SRS; PDR]

QDP Status (US): See No Software Dependability and Safety Analysis and No Requirements Base-
line (RB).

For an overview of all clauses, see the tailoring table.

9.2.231 Quantitative definition of quality requirements (7.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.2a

Quality requirements shall be expressed in quantitative terms or constraints.

Expected Output: a. Requirement baseline [RB, SSS; SRR]; b. Technical specification [TS,
SRS; PDR]

QDP Status (Ye): Only expected output b. See Software Requirements Engineering and Software
Requirements Specification (SRS).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 532

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.232 Assurance activities for product quality requirements (7.1.3a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.3a

The supplier shall define assurance activities to ensure that the product meets the quality
requirements as specified in the technical specification.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.233 Product metrics (7.1.4a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.4a

In order to verify the implementation of the product quality requirements, the supplier shall
define a metrication programme based on the identified quality model (see clause 5.2.7),
specifying: 1. the metrics to be collected and stored; 2. the means to collect metrics (mea-
surements); 3. the target values, with reference to the product quality requirements; 4. the
analyses to be performed on the collected metrics, including the ones to derive: (a) descrip-
tive statistics; (b) trend analysis (such as trends in software problems). 5. how the results
of the analyses performed on the collected metrics are fed back to the development team
and used to identify corrective actions; 6. the schedule of metrics collection, storing, analysis
and reporting, with reference to the whole software life cycle. {NOTE 1: Guidance for soft-
ware metrication programme implementation can be found in ECSS-Q-HB-80-04. NOTE 2:
Example to item 4(a): the number of units at each level of complexity.}

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-Q-ST-80C-R1 5.2.7.1a (Quality requirements and quality models)

• ECSS-Q-ST-80C-R1 5.2.7.2a (Quality requirements and quality models)

© 2019, 2020, 2021 embedded brains GmbH 533

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.234 Basic metrics (7.1.5a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.5a

The following basic products metrics shall be used: 1. size (code); 2. complexity (design,
code); 3. fault density and failure intensity; 4. test coverage; 5. number of failures.

Expected Output: Software product assurance plan [PAF, SPAP; SRR, PDR]

QDP Status (Ye): Only 1., 2. (code), and 4. See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.235 Reporting of metrics (7.1.6a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.6a

The results of metrics collection and analysis shall be included in the software product as-
surance reports, in order to provide the customer with an insight into the level of quality
obtained.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.236 Numerical accuracy (7.1.7a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.7a

Numerical accuracy shall be estimated and verified.

Expected Output: Numerical accuracy analysis [DJF, SVR; PDR, CDR, QR]

QDP Status (N/A): Numerical accuracy is irrelevant to the RTEMS real-time operating system.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 534

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.237 Analysis of software maturity (7.1.8a)
ECSS-Q-ST-80C Rev.1 Clause 7.1.8a

The supplier shall define the organization and means implemented to collect and analyse
data required for the study of software maturity. {NOTE: For example: failures, corrections,
duration of runs}.

Expected Output: Software product assurance reports [PAF, -; -]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.238 Requirements baseline and technical specification (7.2.1.1a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.1.1a

The software quality requirements shall be documented in the requirements baseline and
technical specification.

Expected Output: a. Requirement baseline [RB, SSS; SRR]; b. Technical specification [TS,
SRS; PDR]

QDP Status (Ye): Only expected output b. See Software Requirements Engineering and Software
Requirements Specification (SRS).

For an overview of all clauses, see the tailoring table.

9.2.239 Requirements baseline and technical specification (7.2.1.2a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.1.2a

The software requirements shall be: 1. correct; 2. unambiguous; 3. complete; 4. consistent;
5. verifiable; 6. traceable.

QDP Status (Y): See Software Requirements Engineering and Software Requirements Specifica-
tion (SRS).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 535

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.240 Requirements baseline and technical specification (7.2.1.3a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.1.3a

For each requirement the method for verification and validation shall be specified.

Expected Output: a. Requirement baseline [RB, SSS; SRR]; b. Technical specification [TS,
SRS; PDR]

QDP Status (Ye): Only expected output b. See Software Requirements Engineering and Software
Requirements Specification (SRS).

For an overview of all clauses, see the tailoring table. This clause is referenced by the following
clause:

• ECSS-E-ST-40C 5.8.3.2a (Verification of the technical specification)

9.2.241 Design and related documentation (7.2.2.1a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.2.1a

The software design shall meet the non-functional requirements as documented in the tech-
nical specification.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.242 Design and related documentation (7.2.2.2a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.2.2a

The software shall be designed to facilitate testing.

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 536

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.243 Design and related documentation (7.2.2.3a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.2.3a

Software with a long planned lifetime shall be designed with minimum dependency on the
operating system and the hardware, in order to aid portability. {NOTE: This requirement is
applicable to situations where the software lifetime can lead to the obsolescence and non-
availability of the original operating system and/or hardware, thereby jeopardizing the main-
tainability the software.}

Expected Output: a. Software product assurance plan [PAF, SPAP; SRR, PDR]; b. Justifica-
tion of design choices [DDF, SDD; PDR, CDR]

QDP Status (Y): See Software Design Document (SDD) and [EDI19e].

For an overview of all clauses, see the tailoring table.

9.2.244 Test and validation documentation (7.2.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.3.1a

Detailed test and validation documentation (data, procedures and expected results) defined
in the ECSS-E-ST-40 DJF shall be consistent with the defined test and validation strategy (see
clause 6.3.5 and ECSS-E-ST-40 clauses 5.5.3, 5.5.4, 5.6 and 5.8).

QDP Status (Y): See [EDI19e].

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.5.3.1a (Development and documentation of the software units)

• ECSS-E-ST-40C 5.5.3.2a (Software unit testing)

• ECSS-E-ST-40C 5.5.3.2b (Software unit testing)

• ECSS-E-ST-40C 5.5.3.2c (Software unit testing)

• ECSS-E-ST-40C 5.5.4.1a (Software integration test plan development)

• ECSS-E-ST-40C 5.5.4.2a (Software units and software component integration and testing)

• ECSS-E-ST-40C 5.6.2.1a (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.2.1b (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.2.1c (Establishment of a software validation process)

• ECSS-E-ST-40C 5.6.2.2a (Selection of an ISVV organization)

• ECSS-E-ST-40C 5.6.2.2b (Selection of an ISVV organization)

© 2019, 2020, 2021 embedded brains GmbH 537

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.6.3.1a (Development and documentation of a software validation specifi-
cation with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.1b (Development and documentation of a software validation specifi-
cation with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.1c (Development and documentation of a software validation specifica-
tion with respect to the technical specification)

• ECSS-E-ST-40C 5.6.3.2a (Conducting the validation with respect to the technical specifica-
tion)

• ECSS-E-ST-40C 5.6.3.3a (Updating the software user manual)

• ECSS-E-ST-40C 5.6.3.4a (Conducting a critical design review)

• ECSS-E-ST-40C 5.6.4.1a (Development and documentation of a software validation specifi-
cation with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.1b (Development and documentation of a software validation specifi-
cation with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.1c (Development and documentation of a software validation specifica-
tion with respect to the requirements baseline)

• ECSS-E-ST-40C 5.6.4.2a (Conducting the validation with respect to the requirements base-
line)

• ECSS-E-ST-40C 5.6.4.2b (Conducting the validation with respect to the requirements base-
line)

• ECSS-E-ST-40C 5.6.4.3a (Updating the software user manual)

• ECSS-E-ST-40C 5.6.4.4a (Conducting a qualification review)

• ECSS-E-ST-40C 5.8.2.1a (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1b (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1c (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.1d (Establishment of the software verification process)

• ECSS-E-ST-40C 5.8.2.2a (Selection of the organization responsible for conducting the verifi-
cation)

• ECSS-E-ST-40C 5.8.2.2b (Selection of the organization responsible for conducting the verifi-
cation)

• ECSS-E-ST-40C 5.8.3.1a (Verification of requirements baseline)

• ECSS-E-ST-40C 5.8.3.2a (Verification of the technical specification)

• ECSS-E-ST-40C 5.8.3.3a (Verification of the software architectural design)

• ECSS-E-ST-40C 5.8.3.4a (Verification of the software detailed design)

• ECSS-E-ST-40C 5.8.3.5a (Verification of code)

• ECSS-E-ST-40C 5.8.3.5b (Verification of code)

• ECSS-E-ST-40C 5.8.3.5c (Verification of code)

© 2019, 2020, 2021 embedded brains GmbH 538

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-E-ST-40C 5.8.3.5d (Verification of code)

• ECSS-E-ST-40C 5.8.3.5e (Verification of code)

• ECSS-E-ST-40C 5.8.3.5f (Verification of code)

• ECSS-E-ST-40C 5.8.3.6a (Verification of software unit testing (plan and results))

• ECSS-E-ST-40C 5.8.3.7a (Verification of software integration)

• ECSS-E-ST-40C 5.8.3.8a (Verification of software validation with respect to the technical
specifications and the requirements baseline)

• ECSS-E-ST-40C 5.8.3.8b (Verification of software validation with respect to the technical
specifications and the requirements baseline)

• ECSS-E-ST-40C 5.8.3.9a (Evaluation of validation: complementary system level validation)

• ECSS-E-ST-40C 5.8.3.10a (Verification of software documentation)

• ECSS-E-ST-40C 5.8.3.11a (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11b (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.11c (Schedulability analysis for real-time software)

• ECSS-E-ST-40C 5.8.3.12a (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.12b (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.12c (Technical budgets management)

• ECSS-E-ST-40C 5.8.3.13a (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13b (Behaviour modelling verification)

• ECSS-E-ST-40C 5.8.3.13c (Behaviour modelling verification)

• ECSS-Q-ST-80C-R1 6.3.5.1a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.2a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.3a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.4a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.5a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.5b (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.6a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.7a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.8a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.9a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.10a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.11a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.12a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.13a (Testing and validation)

© 2019, 2020, 2021 embedded brains GmbH 539

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

• ECSS-Q-ST-80C-R1 6.3.5.14a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.15a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.16a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.17a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.18a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.19a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.20a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.21a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.22a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.23a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.24a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.25a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.26a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.27a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.28a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.29a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.30a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.31a (Testing and validation)

• ECSS-Q-ST-80C-R1 6.3.5.32a (Testing and validation)

9.2.245 Test and validation documentation (7.2.3.2a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.3.2a

The test documentation shall cover the test environment, tools and test software, personnel
required and associated training requirements.

QDP Status (Y): See Software Requirements Engineering.

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 540

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.246 Test and validation documentation (7.2.3.3a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.3.3a

The criteria for completion of each test and any contingency steps shall be specified.

QDP Status (Y): See Software Requirements Engineering.

For an overview of all clauses, see the tailoring table.

9.2.247 Test and validation documentation (7.2.3.4a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.3.4a

Test procedures, data and expected results shall be specified.

QDP Status (Y): See Software Requirements Engineering.

For an overview of all clauses, see the tailoring table.

9.2.248 Test and validation documentation (7.2.3.5a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.3.5a

The hardware and software configuration shall be identified and documented as part of the
test documentation.

QDP Status (Y): See Software Requirements Engineering.

For an overview of all clauses, see the tailoring table.

9.2.249 Test and validation documentation (7.2.3.6a)
ECSS-Q-ST-80C Rev.1 Clause 7.2.3.6a

For any requirements not covered by testing a verification report shall be drawn up docu-
menting or referring to the verification activities performed.

Expected Output: Software verification report [DJF, SVR; CDR, QR, AR]

QDP Status (Y): See Software Requirements Engineering and Software Verification Report (SVR).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 541

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.250 Software reuse/Customer requirements (7.3.1a)
ECSS-Q-ST-80C Rev.1 Clause 7.3.1a

For the development of software intended for reuse, ECSS-E-ST-40 clauses 5.2.4.7 and 5.4.3.6
shall apply.

QDP Status (Y): See ECSS-E-ST-40C tailoring.

For an overview of all clauses, see the tailoring table. This clause references the following
clauses:

• ECSS-E-ST-40C 5.2.4.7a (Development of software to be reused)

• ECSS-E-ST-40C 5.4.3.6a (Definition of methods and tools for software intended for reuse)

• ECSS-E-ST-40C 5.4.3.6b (Definition of methods and tools for software intended for reuse)

• ECSS-E-ST-40C 5.4.3.6c (Definition of methods and tools for software intended for reuse)

9.2.251 Software reuse/Separate documentation (7.3.2a)
ECSS-Q-ST-80C Rev.1 Clause 7.3.2a

The information related to the components developed for reuse shall be separated from the
others in the technical specification, design justification file, design definition file and product
assurance file.

QDP Status (Y): The other components do not exist. The complete RTEMS real-time operating
system is intended to be reused.

For an overview of all clauses, see the tailoring table.

9.2.252 Software reuse/Self-contained information (7.3.3a)
ECSS-Q-ST-80C Rev.1 Clause 7.3.3a

The information related to components developed for reuse in the technical specification,
the design justification file, the design definition file and the product assurance file shall be
self-contained.

QDP Status (Ye): The product assurance file contains documents used by the overall project.
See [EDI19e].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 542

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.253 Software reuse/Requirements for intended reuse (7.3.4a)
ECSS-Q-ST-80C Rev.1 Clause 7.3.4a

The technical specification of components developed for reuse shall include requirements for
maintainability, portability and verification of those components.

Expected Output: Technical specification for reusable components [TS, -; PDR]

QDP Status (Y): See Software Requirements Engineering.

For an overview of all clauses, see the tailoring table.

9.2.254 Software reuse/Configuration management for intended reuse (7.3.5a)
ECSS-Q-ST-80C Rev.1 Clause 7.3.5a

The configuration management system shall include provisions for handling specific aspects
of software developed for reuse, such as: 1. longer lifetime of the components developed
for reuse compared to the other components of the project; 2. evolution or change of the
development environment for the next project that intends to use the components; 3. transfer
of the configuration and documentation management information to the next project reusing
the software.

Expected Output: Software configuration management plan [MGT, SCMP; SRR, PDR]

QDP Status (Y): See [EDI19b].

For an overview of all clauses, see the tailoring table.

9.2.255 Software reuse/Testing on different platforms (7.3.6a)
ECSS-Q-ST-80C Rev.1 Clause 7.3.6a

Where the components developed for reuse are developed to be reusable on different plat-
forms, the testing of the software shall be performed on all those platforms.

Expected Output: Verification and validation documentation for reusable components [DJF,
-; CDR]

QDP Status (Y): See [EDI19c].

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 543

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.256 Software reuse/Certificate of conformance (7.3.7a)
ECSS-Q-ST-80C Rev.1 Clause 7.3.7a

The supplier shall provide a certificate of conformance that the tests have been successfully
completed on all the relevant platforms. {NOTE: In case not all platforms are available, the
certificate of conformance states the limitations of the validation performed.}

Expected Output: Verification and validation documentation for reusable components [DJF,
-; CDR]

QDP Status (Y): See [EDI19d].

For an overview of all clauses, see the tailoring table.

9.2.257 Operational system/Hardware procurement (7.4.1a)
ECSS-Q-ST-80C Rev.1 Clause 7.4.1a

The subcontracting and procurement of hardware shall be carried out according to the re-
quirements of ECSS-Q-ST-20 clause 5.4.

Expected Output: a. Justification of selection of operational ground equipment [DJF, -; SRR,
PDR]; b. Receiving inspection reports [PAF, -; SRR, PDR]

QDP Status (N/A): No hardware procurement or subcontracting are planned.

For an overview of all clauses, see the tailoring table.

9.2.258 Operational system/Service procurement (7.4.2a)
ECSS-Q-ST-80C Rev.1 Clause 7.4.2a

The procurement of support services to be used in operational phases shall be justified as
covering service level agreements, quality of services and escalation procedures, as needed
for system exploitation and maintenance.

Expected Output: Justification of selection of operational support services [DJF, -; SRR,
PDR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 544

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.259 Operational system/Constraints (7.4.3a)
ECSS-Q-ST-80C Rev.1 Clause 7.4.3a

The choice of procured hardware and services shall address the constraints associated with
both the development and the actual use of the software.

Expected Output: Justification of selection of operational ground equipment [DJF, -; SRR,
PDR]

QDP Status (US): See No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

9.2.260 Operational system/Selection (7.4.4a)
ECSS-Q-ST-80C Rev.1 Clause 7.4.4a

The ground computer equipment and supporting services for implementing the final system
shall be selected according to the project requirements regarding: 1. performance; 2. mainte-
nance; 3. durability and technical consistency with the operational equipment; 4. the assess-
ment of the product with respect to requirements, including the criticality category; 5. the
available support documentation; 6. the acceptance and warranty conditions; 7. the condi-
tions of installation, preparation, training and use; 8. the maintenance conditions, including
the possibilities of evolutions; 9. copyright constraints; 10. availability; 11. compatibility;
12. site operational constraints.

Expected Output: Justification of selection of operational ground equipment [DJF, -; SRR,
PDR]

QDP Status (N/A): No ground computer equipment.

For an overview of all clauses, see the tailoring table.

9.2.261 Operational system/Maintenance (7.4.5a)
ECSS-Q-ST-80C Rev.1 Clause 7.4.5a

Taking account of the provider’s maintenance and product policy, it shall be ensured that the
hardware and support services can be maintained throughout the specified life of the software
product within the operational constraints.

QDP Status (US): See No Maintenance (MF) and No Operational Phase (OP).

For an overview of all clauses, see the tailoring table.

© 2019, 2020, 2021 embedded brains GmbH 545

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.2.262 Firmware/Device programming (7.5.1a)
ECSS-Q-ST-80C Rev.1 Clause 7.5.1a

The supplier shall establish procedures for firmware device programming and duplication of
firmware devices.

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (N/A): No firmware support.

For an overview of all clauses, see the tailoring table.

9.2.263 Firmware/Marking (7.5.2a)
ECSS-Q-ST-80C Rev.1 Clause 7.5.2a

The firmware device shall be indelibly marked to allow the identification (by reference) of
the hardware component and of the software component.

Expected Output: Software product assurance plan [PAF, SPAP; PDR]

QDP Status (N/A): No firmware support.

For an overview of all clauses, see the tailoring table.

9.2.264 Firmware/Calibration (7.5.3a)
ECSS-Q-ST-80C Rev.1 Clause 7.5.3a

The supplier shall ensure that the firmware programming equipment is calibrated.

QDP Status (N/A): No firmware support.

For an overview of all clauses, see the tailoring table.

9.3 Tailoring of SOWQDP Requirements
9.3.1 RS-1
RS-1

RTEMS shall be qualified to software criticality level “B” without performing ISVV.

© 2019, 2020, 2021 embedded brains GmbH 546

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Note: this effectively means qualification at criticality level “C”, which is sufficient for the
typical RTEMS-SMP applications (i.e. data processing on instruments). However, by ensuring
that all QA processes are in place for category-“B”, it would be possible to scale up to include
ISVV, in case there is a future mission requirement to do so.

QDP Status (Ye): The pre-qualification of RTEMS will be done according to the Tailoring of
ECSS-E-ST-40C and Tailoring of ECSS-Q-ST-80C Rev.1 and only for the RTEMS components
defined by the space profile proposal, see [eb19].

9.3.2 RS-2
RS-2

The qualification data pack shall be approved by ESA.

Note: The approved qualification data pack shall be digitally signed by ESA and released
under the Creative Commons BY-NC-ND 4.0 license, with ESA as the copyright owner. Usage
of the qualification data pack outside ESA missions or ESA member states, or usage outside
the space domain, or in commercial projects needs to be agreed with ESA separately.

QDP Status (Ye): The ESA copyright can only cover an approved QDP as a container with items
which have other copyright holders.

9.3.3 RS-3
RS-3

The qualification data pack shall be distributable through the European Space Software
Repository.

Note: The qualification data pack shall be free of any proprietary information, or information
with a restrictive use license.

QDP Status (Y): Yes.

9.3.4 RS-4
RS-4

The qualification of RTEMS with SMP disabled at compilation time (referred to as “classic
RTEMS”) shall be demonstrated on the LEON3FT and LEON4FT processor architectures.

QDP Status (Y): Yes, see Variants.

© 2019, 2020, 2021 embedded brains GmbH 547

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.3.5 RS-5
RS-5

The qualification environment shall be used to produce the qualification data pack for classic
RTEMS on the GR712RC (using a single core).

QDP Status (Y): Yes, see Variants.

9.3.6 RS-6
RS-6

The qualification environment shall be used to produce the qualification data pack for classic
RTEMS on the GR740 (using a single core).

QDP Status (Y): Yes, see Variants.

9.3.7 RS-7
RS-7

The qualification of RTEMS with SMP enabled at compilation time (referred to as “RTEMS-
SMP”) shall be demonstrated on the LEON3FT and LEON4FT processor architectures.

QDP Status (Y): Yes, see Variants.

9.3.8 RS-8
RS-8

The qualification environment shall be used to produce the qualification data pack for
RTEMS-SMP on the GR712RC (using both cores).

QDP Status (Ye): The number of cores which are utilized by the RTEMS software product of
the corresponding QDP variant will be determined by the application configuration. This
can be one or two cores. See Variants.

© 2019, 2020, 2021 embedded brains GmbH 548

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.3.9 RS-9
RS-9

The qualification environment shall be used to produce the qualification data pack for
RTEMS-SMP on the GR740 (using two, three or all four cores).

QDP Status (Ye): The number of cores which are utilized by the RTEMS software product of
the corresponding QDP variant will be determined by the application configuration. This
can be one, two, three, or four cores. See Variants.

9.3.10 RS-10
RS-10

The qualification shall consider all on-chip peripherals and take into account all known
System-on-Chip and board errata.

Note: during Task 2.1, a decision must be made in agreement with ESA, which peripherals
are included in the scope of this qualification activity.

QDP Status (Ye): The supported on-chip peripherals are determined by the space profile pro-
posal, see [eb19].

9.3.11 RS-11
RS-11

The baseline hardware target for the GR712RC shall be http://www.gaisler.com/index.php/
products/boards/gr712rc-board.

QDP Status (Y): Yes.

9.3.12 RS-12
RS-12

The baseline hardware target for the GR740 shall be http://www.gaisler.com/index.php/
products/boards/gr-cpci-gr740.

QDP Status (Y): Yes.

© 2019, 2020, 2021 embedded brains GmbH 549

http://www.gaisler.com/index.php/products/boards/gr712rc-board
http://www.gaisler.com/index.php/products/boards/gr712rc-board
http://www.gaisler.com/index.php/products/boards/gr-cpci-gr740
http://www.gaisler.com/index.php/products/boards/gr-cpci-gr740

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.3.13 RS-13
RS-13

The qualification shall be performed with the following cross-compilers, or their future evo-
lutions if they appear during the execution of this project:

• The GCC compiler built automatically via the RTEMS source builder

• GCC 7.2.0 as part of Gaisler RCC

• LLVM/Clang 4.0.0 as part of Gaisler RCC

QDP Status (Ye): The compiler of the Gaisler RCC will only be used if they work out of the
box.

9.3.14 RS-14
RS-14

The qualified mathematical library shall be used as the baseline for all qualification configu-
rations.

Note: The library will be delivered by ESA or made available on ESSR website.

QDP Status (Y): Yes.

9.3.15 RS-15
RS-15

Dedicated qualification configurations shall be created to qualify OpenMP and MTAPI on
RTEMS-SMP.

QDP Status (N): OpenMP and MTAPI are not included in the space profile proposal, see
[eb19].

© 2019, 2020, 2021 embedded brains GmbH 550

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.4 Justifications of Tailoring Decisions
9.4.1 No Requirements Baseline (RB)
The RB (SSS and IRD) will not be produced, since the system requirements are to be defined by
the end user of the QDP. RTEMS is designed as a reusable software product which can be utilized
by application designers to ease the development of their applications. The requirements of the
end system (system requirements) using RTEMS are only known to the application designer.
RTEMS itself is developed by the RTEMS maintainers and they do not know the requirements
of a particular end system in general. RTEMS is designed as a real-time operating system to
meet typical system requirements for a wide range of applications. Its suitability for a particular
application must be determined by the application designer based on the technical specification
provided by RTEMS accompanied with performance data for a particular target platform.

9.4.2 No Installation and Acceptance
The actual installation and acceptance of the QDP is not included in the task to create the QDP.
This is done by the end user of the QDP. In this project, this is a part of Task 4 carried out by
Jena-Optronik.

9.4.3 No Maintenance (MF)
The maintenance software life cycle state is outside the scope of this project. The RTEMS
development will continue independently. One goal of this project is to establish procedures in
the RTEMS community so that the quality level achieved by this activity can be maintained in
the future development of RTEMS.

9.4.4 No Operational Phase (OP)
The operational software life cycle state is outside the scope of this project. The end users of
the QDP will have an operational phase if the software product is used in their applications.

9.4.5 On Demand Unit and Integration Testing
The RTEMS design and development started in the 1980s. The software industry discovered
the value of unit tests after this decade. The initial RTEMS test suite contained not unit tests
and currently there are only a couple of unit tests in the RTEMS test suite. The approach of the
RTEMS Project was always to do the testing at the API level even for tests which target internal
implementation functions, see for example this discussion on the RTEMS development mailing
list: [PATCH 3/3] smpschedsem01: New test Test to verify task priority is inherited from a
semaphore. The main reason for this is to find code which is not used by an API through code
coverage analysis. The purpose of RTEMS is to provide an API. All code which is not needed by
an API is superfluous and should be removed or deactivated.

The spirit of the RTEMS test suite is to do unit tests of internal functions through API level
calls. This is also the benchmark for the validation tests developed by this activity. The Action

© 2019, 2020, 2021 embedded brains GmbH 551

https://lists.rtems.org/pipermail/devel/2014-June/035043.html
https://lists.rtems.org/pipermail/devel/2014-June/035043.html

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

Requirement Item Type specification items allow a very detailed specification of functions. For
directives, not only the function parameters are considered, but also states of the system rele-
vant to the directive call. Examples are the state of threads which are affected by the directive,
the execution context and mode of the caller, interrupts which happen during the directive call,
activity on other processors during the directive call, and the state of the object accessed by the
directive. The RTEMS Test Framework which was developed for this activity provides support
for Interrupt Tests.

The goal of this activity is to reach 100% statement and branch coverage through validation
tests. Once this is achieved, this will show that everything in the implementation serves a
purpose defined at API level. One problem with this approach is that it is not immediately clear
for a given software unit to which requirements it belongs. It would be very labour intensive
to explicitly link each unit to a set of requirements. It would be also hard to maintain this
information. For a given unit, the source code and SDD could be used to manually get this
information. A verification activity could do this for a random sample set of units.

For an operating system, there are some difficulties if unit tests for all units should be carried
out. Some units change the state of the processor at register level. This makes mocking difficult.
The inputs to units are no only passed as parameters, there is a considerable amount of global
state in the system. The test execution may be controlled by the system under test. For an
operation system which is developed from scratch it would make sense to write a mocking
framework to do unit tests right from the beginning of the development. However, RTEMS is a
fully designed, developed, and tested software product. In this case, it is more efficient to avoid
any mocking and instead set up the pre-conditions for tests through the already existing API
level functions. This is what we do for the validation tests.

Unit and integration tests will only be performed on a subset of units in case validation tests
are difficult to carry out or insufficient. For example, unit tests may be done for the chain and
red-black tree data structures.

9.4.6 Combined Unit and Integration Testing
Unit and integration tests will be combined into a single Software Unit and Integration Test
Plan (SUITP) and Software Unit and Integration Test Report. The boundaries between unit and
integration tests for a software product which ships as a single library are vague. To avoid the
trouble of giving a precise definition of what unit and integration tests are with respect to each
other they are combined into one set of tests.

9.4.7 No Logical and Computational Model
As per negotiation item ESA-14, ESA agreed to downgrade in the logical and computational
model requirement to criticality category C (not requiring the logical and computational mod-
elling of RTEMS architecture and design). The formal verification task (Task 3) carried out by
Lero in this activity should compensate for this. In addition, the RTEMS real-time operating-
system itself has no active components (e.g. threads). It is entirely event driven (application,
interrupts). It provides the means to instantiate active components by the application.

© 2019, 2020, 2021 embedded brains GmbH 552

https://docs.rtems.org/branches/master/eng/test-framework.html#interrupt-tests

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

9.4.8 No Schedulability Analysis
Schedulability analysis can only be performed at application level.

9.4.9 No Software Dependability and Safety Analysis
Software dependability and safety activities and reports will not be produced. RTEMS Improve-
ment SCAR report and findings will be used in this project as inputs.

9.4.10 No Independent Software Verification and Validation
The ISVV is excluded from the project by the SOW.

9.4.11 No Numerical Accuracy Analysis
As operating system RTEMS does not use floating-point numbers. Therefore, no numerical
accuracy analysis can be performed.

© 2019, 2020, 2021 embedded brains GmbH 553

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

© 2019, 2020, 2021 embedded brains GmbH 554

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

BIBLIOGRAPHY

[RTEa] RTEMS Classic API Guide. URL: https://docs.rtems.org/branches/master/c-user.
pdf.

[RTEb] RTEMS Software Engineering. URL: https://docs.rtems.org/branches/master/eng.
pdf.

[Bra97] Scott Bradner. Key words for use in RFCs to Indicate Requirement Levels. BCP 14,
RFC Editor, March 1997. http://www.rfc-editor.org/rfc/rfc2119.txt. URL: http://
www.rfc-editor.org/rfc/rfc2119.txt.

[BA14] Jace Browning and Robert Adams. Doorstop: Text-Based Requirements Manage-
ment Using Version Control. Journal of Software Engineering and Applications,
7:187–194, 2014. URL: http://www.scirp.org/pdf/JSEA_2014032713545074.pdf.

[ECS08a] ECSS. ECSS-E-ST-70-11C – Space segment operability. European Cooper-
ation for Space Standardization, 2008. URL: https://ecss.nl/standard/
ecss-e-st-70-11c-space-segment-operability/.

[ECS08b] ECSS. ECSS-E-ST-70C – Ground systems and operations. European Coop-
eration for Space Standardization, 2008. URL: https://ecss.nl/standard/
ecss-e-st-70c-ground-systems-and-operations/.

[ECS08c] ECSS. ECSS-M-ST-10-01C – Organization and conduct of reviews. European
Cooperation for Space Standardization, 2008. URL: https://ecss.nl/standard/
ecss-m-st-10-01c-organization-and-conduct-of-reviews/.

[ECS08d] ECSS. ECSS-M-ST-80C – Risk management. European Cooperation
for Space Standardization, 2008. URL: https://ecss.nl/standard/
ecss-m-st-80c-risk-management/.

[ECS08e] ECSS. ECSS-S-ST-00C – Description, implementation and general requirements. Euro-
pean Cooperation for Space Standardization, 2008. URL: https://ecss.nl/standard/
ecss-s-st-00c-description-implementation-and-general-requirements-31-july-2008/.

[ECS09a] ECSS. ECSS-E-ST-10-06C - Technical requirements specification. European Co-
operation for Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-e-st-10-06c-technical-requirements-specification/.

[ECS09b] ECSS. ECSS-E-ST-40C - Software general requirements. European Coop-
eration for Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-e-st-40c-software-general-requirements/.

© 2019, 2020, 2021 embedded brains GmbH 555

https://docs.rtems.org/branches/master/c-user.pdf
https://docs.rtems.org/branches/master/c-user.pdf
https://docs.rtems.org/branches/master/eng.pdf
https://docs.rtems.org/branches/master/eng.pdf
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.scirp.org/pdf/JSEA_2014032713545074.pdf
https://ecss.nl/standard/ecss-e-st-70-11c-space-segment-operability/
https://ecss.nl/standard/ecss-e-st-70-11c-space-segment-operability/
https://ecss.nl/standard/ecss-e-st-70c-ground-systems-and-operations/
https://ecss.nl/standard/ecss-e-st-70c-ground-systems-and-operations/
https://ecss.nl/standard/ecss-m-st-10-01c-organization-and-conduct-of-reviews/
https://ecss.nl/standard/ecss-m-st-10-01c-organization-and-conduct-of-reviews/
https://ecss.nl/standard/ecss-m-st-80c-risk-management/
https://ecss.nl/standard/ecss-m-st-80c-risk-management/
https://ecss.nl/standard/ecss-s-st-00c-description-implementation-and-general-requirements-31-july-2008/
https://ecss.nl/standard/ecss-s-st-00c-description-implementation-and-general-requirements-31-july-2008/
https://ecss.nl/standard/ecss-e-st-10-06c-technical-requirements-specification/
https://ecss.nl/standard/ecss-e-st-10-06c-technical-requirements-specification/
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

[ECS09c] ECSS. ECSS-M-ST-10C Rev.1 – Project planning and implementation. European
Cooperation for Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-m-st-10c-rev-1-project-planning-and-implementation/.

[ECS09d] ECSS. ECSS-M-ST-40C Rev.1 - Configuration and information management. Euro-
pean Cooperation for Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-m-st-40c-rev-1-configuration-and-information-management/.

[ECS09e] ECSS. ECSS-Q-ST-30-02C – Failure modes, effects (and crit-
icality) analysis (FMEA/FMECA). European Cooperation for
Space Standardization, 2009. URL: https://ecss.nl/standard/
ecss-q-st-30-02c-failure-modes-effects-and-criticality-analysis-fmeafmeca/.

[ECS10] ECSS. ECSS-Q-HB-80-02 Part 2A – Software process assessment and
improvement – Part 2: Assessor instrument. European Coopera-
tion for Space Standardization, 2010. URL: https://ecss.nl/hbstms/
ecss-q-hb-80-02-part-2a-software-process-assessment-and-improvement-part-2-assessor-instrument/.

[ECS11] ECSS. ECSS-Q-HB-80-04A – Software metrication programme definition and im-
plementation. European Cooperation for Space Standardization, 2011. URL: http:
//ecss.nl/hbstms/ecss-q-hb-80-04a-software-metrication-handbook/.

[ECS12a] ECSS. ECSS-E-ST-10-03C - Space engineering - Testing. European Coop-
eration for Space Standardization, 2012. URL: https://ecss.nl/standard/
ecss-e-st-10-03c-testing/.

[ECS12b] ECSS. ECSS-S-ST-00-01C - Glossary of terms. European Coopera-
tion for Space Standardization, 2012. URL: https://ecss.nl/standard/
ecss-s-st-00-01c-glossary-of-terms-1-october-2012/.

[ECS13] ECSS. ECSS-E-HB-40A – Software engineering handbook. European Coop-
eration for Space Standardization, 2013. URL: https://ecss.nl/hbstms/
ecss-e-hb-40a-software-engineering-handbook-11-december-2013/.

[ECS14] ECSS. ECSS-Q-ST-20-07C – Quality and safety assurance for space test centres. Euro-
pean Cooperation for Space Standardization, 2014. URL: https://ecss.nl/standard/
ecss-q-st-20-07c-quality-and-safety-assurance-for-space-test-centres-1-october-2014/.

[ECS15] ECSS. ECSS-E-ST-10-24C - Space Engineering - Interface Management. European
Cooperation for Space Standardization, 2015. URL: https://ecss.nl/standard/
ecss-e-st-10-24c-interface-management-1-june-2015/.

[ECS16] ECSS. ECSS-Q-ST-10C Rev.1 – Product assurance management. European Co-
operation for Space Standardization, 2016. URL: https://ecss.nl/standard/
ecss-q-st-10c-rev-1-product-assurance-management-15-march-2016/.

[ECS17a] ECSS. ECSS-E-ST-10C Rev.1 - System engineering general requirements. European
Cooperation for Space Standardization, 2017. URL: https://ecss.nl/standard/
ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/.

[ECS17b] ECSS. ECSS-Q-ST-30C Rev.1 – Dependability. European Coopera-
tion for Space Standardization, 2017. URL: https://ecss.nl/standard/
ecss-q-st-30c-rev-1-space-product-assurance-dependability-15-february-2017/.

© 2019, 2020, 2021 embedded brains GmbH 556

https://ecss.nl/standard/ecss-m-st-10c-rev-1-project-planning-and-implementation/
https://ecss.nl/standard/ecss-m-st-10c-rev-1-project-planning-and-implementation/
https://ecss.nl/standard/ecss-m-st-40c-rev-1-configuration-and-information-management/
https://ecss.nl/standard/ecss-m-st-40c-rev-1-configuration-and-information-management/
https://ecss.nl/standard/ecss-q-st-30-02c-failure-modes-effects-and-criticality-analysis-fmeafmeca/
https://ecss.nl/standard/ecss-q-st-30-02c-failure-modes-effects-and-criticality-analysis-fmeafmeca/
https://ecss.nl/hbstms/ecss-q-hb-80-02-part-2a-software-process-assessment-and-improvement-part-2-assessor-instrument/
https://ecss.nl/hbstms/ecss-q-hb-80-02-part-2a-software-process-assessment-and-improvement-part-2-assessor-instrument/
http://ecss.nl/hbstms/ecss-q-hb-80-04a-software-metrication-handbook/
http://ecss.nl/hbstms/ecss-q-hb-80-04a-software-metrication-handbook/
https://ecss.nl/standard/ecss-e-st-10-03c-testing/
https://ecss.nl/standard/ecss-e-st-10-03c-testing/
https://ecss.nl/standard/ecss-s-st-00-01c-glossary-of-terms-1-october-2012/
https://ecss.nl/standard/ecss-s-st-00-01c-glossary-of-terms-1-october-2012/
https://ecss.nl/hbstms/ecss-e-hb-40a-software-engineering-handbook-11-december-2013/
https://ecss.nl/hbstms/ecss-e-hb-40a-software-engineering-handbook-11-december-2013/
https://ecss.nl/standard/ecss-q-st-20-07c-quality-and-safety-assurance-for-space-test-centres-1-october-2014/
https://ecss.nl/standard/ecss-q-st-20-07c-quality-and-safety-assurance-for-space-test-centres-1-october-2014/
https://ecss.nl/standard/ecss-e-st-10-24c-interface-management-1-june-2015/
https://ecss.nl/standard/ecss-e-st-10-24c-interface-management-1-june-2015/
https://ecss.nl/standard/ecss-q-st-10c-rev-1-product-assurance-management-15-march-2016/
https://ecss.nl/standard/ecss-q-st-10c-rev-1-product-assurance-management-15-march-2016/
https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/
https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements-15-february-2017/
https://ecss.nl/standard/ecss-q-st-30c-rev-1-space-product-assurance-dependability-15-february-2017/
https://ecss.nl/standard/ecss-q-st-30c-rev-1-space-product-assurance-dependability-15-february-2017/

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

[ECS17c] ECSS. ECSS-Q-ST-40C Rev.1 – Safety. European Cooperation
for Space Standardization, 2017. URL: https://ecss.nl/standard/
ecss-q-st-40c-rev-1-safety-15-february-2017/.

[ECS17d] ECSS. ECSS-Q-ST-80C Rev.1 - Software product assurance. European Co-
operation for Space Standardization, 2017. URL: https://ecss.nl/standard/
ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/.

[ECS18a] ECSS. ECSS-E-ST-10-02C - Space engineering - Verification. European Co-
operation for Space Standardization, 2018. URL: https://ecss.nl/standard/
ecss-e-st-10-02c-rev-1-verification-1-february-2018/.

[ECS18b] ECSS. ECSS-Q-ST-20C Rev.2 – Quality assurance. European Coopera-
tion for Space Standardization, 2018. URL: https://ecss.nl/standard/
ecss-q-st-20c-rev-2-quality-assurance-1-february-2018/.

[EDI19a] EDISOFT. Qualification Toolchain Software Design Document, Release 1. 2019.

[EDI19b] EDISOFT. Software Configuration Management Plan, Release 2. 2019.

[EDI19c] EDISOFT. Software Development Plan, Release 2. 2019.

[EDI19d] EDISOFT. Software Product Assurance Milestone Report, Release 2. 2019.

[EDI19e] EDISOFT. Software Product Assurance Plan, Release 2. 2019.

[EDI19f] EDISOFT. Software Review Plan, Release 1. 2019.

[EDI19g] EDISOFT. Software Review Plan, Release 2. 2019.

[EDI19h] EDISOFT. Technical Note on Agile Process, Release 1. 2019.

[EDI19i] EDISOFT. Tools Identification, Release 2. 2019.

[EDI20] EDISOFT. Software Reuse File, Release 2. 2020.

[eb19] embedded brains. Technical Note: Space Profile, Release 2. embedded brains GmbH,
2019.

[Gai18a] Gaisler. GR712RC, Data Sheet, Version 2.4. Cobham plc, 2018. URL: https://www.
gaisler.com/doc/gr712rc-datasheet.pdf.

[Gai18b] Gaisler. GR712RC, User’s Manual, Version 2.12. Cobham plc, 2018. URL: https://
www.gaisler.com/doc/gr712rc-usermanual.pdf.

[Gai18c] Gaisler. GR740, Data Sheet and User’s Manual, Version 1.10. Cobham plc, 2018. URL:
https://www.gaisler.com/doc/gr740/GR740-UM-DS-1-10.pdf.

[Gai19] Gaisler. GR740, Data Sheet and User’s Manual, Version 2.3. Cobham plc, 2019. URL:
https://www.gaisler.com/doc/gr740/GR740-UM-DS-2-3.pdf.

[GSW04] GSWS. GALILEO SOFTWARE STANDARD. Galileo Industries, 2004.

[IEC10a] IEC. Functional safety of electric/electronic/programmable electronic safety-related
systems - Part 1: General requirements. INTERNATIONAL ELECTROTECHNICAL
COMMISSION, 2010. URL: www.iec.ch.

[IEC10b] IEC. Functional safety of electric/electronic/programmable electronic safety-related
systems - Part 3: Software requirements. INTERNATIONAL ELECTROTECHNICAL
COMMISSION, 2010. URL: www.iec.ch.

© 2019, 2020, 2021 embedded brains GmbH 557

https://ecss.nl/standard/ecss-q-st-40c-rev-1-safety-15-february-2017/
https://ecss.nl/standard/ecss-q-st-40c-rev-1-safety-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-e-st-10-02c-rev-1-verification-1-february-2018/
https://ecss.nl/standard/ecss-e-st-10-02c-rev-1-verification-1-february-2018/
https://ecss.nl/standard/ecss-q-st-20c-rev-2-quality-assurance-1-february-2018/
https://ecss.nl/standard/ecss-q-st-20c-rev-2-quality-assurance-1-february-2018/
https://www.gaisler.com/doc/gr712rc-datasheet.pdf
https://www.gaisler.com/doc/gr712rc-datasheet.pdf
https://www.gaisler.com/doc/gr712rc-usermanual.pdf
https://www.gaisler.com/doc/gr712rc-usermanual.pdf
https://www.gaisler.com/doc/gr740/GR740-UM-DS-1-10.pdf
https://www.gaisler.com/doc/gr740/GR740-UM-DS-2-3.pdf
www.iec.ch
www.iec.ch

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

[ISO10] ISO. ISO/IEC 9899:201x, Programming languages - C. ISO, 2010. URL: http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf.

[ISO11] ISO. ISO 26262 Road vehicles – Functional safety. International Organization for
Standardization, 2011. URL: https://www.iso.org/standard/43464.html.

[MW10] Alistair Mavin and Philip Wilkinson. Big Ears (The Return of Easy Ap-
proach to Requirements Engineering). In 18th Requirements Engineer-
ing Conference, 277–282. 11 2010. URL: https://www.researchgate.net/
profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_
Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/
Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf,
doi:10.1109/RE.2010.39.

[MWGU16] Alistair Mavin, Philip Wilkinson, Sarah Gregory, and Eero Uusitalo.
Listens Learned (8 Lessons Learned Applying EARS). In 24th Interna-
tional Requirements Engineering Conference. September 2016. URL: https:
//www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_
Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/
Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf, doi:10.1109/RE.2016.38.

[MWHN09] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy approach
to requirements syntax (EARS). In 17th Requirements Engineering Conference,
317–322. 10 2009. URL: https://www.researchgate.net/profile/Alistair_Mavin/
publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/
568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf,
doi:10.1109/RE.2009.9.

[Mot88] Motorola. Real Time Executive Interface Definition. Motorola Inc., Microcom-
puter Division and Software Components Group, Inc., January 1988. DRAFT
2.1. URL: https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.
1/RTEID-2_1.pdf.

[S20511a] SC-205. Formal Methods Supplement to DO-178C and DO-278A. RTCA, Inc, 2011.
URL: www.rtca.org.

[S20511b] SC-205. Software Considerations in Airbone Systems and Equipment Certification.
RTCA, Inc, 2011. URL: www.rtca.org.

[S20511c] SC-205. Software Tool Qualification Considerations. RTCA, Inc, 2011. URL: www.
rtca.org.

[SPA91] SPARC. The SPARC Architecture Manual, Version 8. SPARC International, Inc., 1991.
URL: https://www.gaisler.com/doc/sparcv8.pdf.

[SPA96] SPARC. System V Application Binary Interface, SPARC Processor Supplement. The
Santa Cruz Operation, Inc. and AT&T, 3 edition, 1996. URL: https://www.gaisler.
com/doc/sparc-abi.pdf.

[SPA02] SPARC. SPARC Assembly Language Reference Manual. Sun Microsystems, Inc., 2002.
URL: https://docs.oracle.com/cd/E18752_01/pdf/816-1681.pdf.

[VIT90] VITA. Open Real-Time Kernel Interface Definition. VITA, the VMEbus International
Trade Association, August 1990. Draft 2.1. URL: https://ftp.rtems.org/pub/rtems/
publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf.

© 2019, 2020, 2021 embedded brains GmbH 558

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://www.iso.org/standard/43464.html
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224195362_Big_Ears_The_Return_of_Easy_Approach_to_Requirements_Engineering/links/568ce39808ae197e426a075e/Big-Ears-The-Return-of-Easy-Approach-to-Requirements-Engineering.pdf
https://doi.org/10.1109/RE.2010.39
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/308970788_Listens_Learned_8_Lessons_Learned_Applying_EARS/links/5ab0d42caca2721710fe5017/Listens-Learned-8-Lessons-Learned-Applying-EARS.pdf
https://doi.org/10.1109/RE.2016.38
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://www.researchgate.net/profile/Alistair_Mavin/publication/224079416_Easy_approach_to_requirements_syntax_EARS/links/568ce3bf08aeb488ea311990/Easy-approach-to-requirements-syntax-EARS.pdf
https://doi.org/10.1109/RE.2009.9
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/RTEID-2.1/RTEID-2_1.pdf
www.rtca.org
www.rtca.org
www.rtca.org
www.rtca.org
https://www.gaisler.com/doc/sparcv8.pdf
https://www.gaisler.com/doc/sparc-abi.pdf
https://www.gaisler.com/doc/sparc-abi.pdf
https://docs.oracle.com/cd/E18752_01/pdf/816-1681.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf
https://ftp.rtems.org/pub/rtems/publications/RTEID-ORKID/ORKID-2.1/ORKID-2_1.pdf

CISTER
Research Centre in
Real-Time & Embedded
Computing Systems

Technical Note: RTEMS SMP Qualification Target
Release 6 ESA Contract No. 4000125572/18/NL/GLC/as

[WB13] Karl Wiegers and Joy Beatty. Software Requirements. Microsoft Press, 3 edition,
2013. ISBN 0735679665, 9780735679665.

© 2019, 2020, 2021 embedded brains GmbH 559

	Introduction
	Applicable and Reference Documents
	Applicable Documents
	Reference Documents

	Terms, Definitions and Abbreviated Terms
	Artefacts
	Requirements Baseline
	Software System Specification (SSS)
	Interface Requirements Document (IRD)
	Safety and Dependability Analysis Results for Lower Level Suppliers

	Technical Specification (TS)
	Software Requirements Specification (SRS)
	Software Interface Control Document (ICD)

	Design Definition File (DDF)
	Software Design Document (SDD)
	Software Configuration File (SCF)
	Software Release Document (SRelD)
	Software User Manual (SUM)
	Software Source Code and Media Labels
	Software Product and Media Labels
	Training Material

	Design Justification File (DJF)
	Software Verification Plan (SVerP)
	Software Validation Plan (SValP)
	Independent Software Verification & Validation Plan
	Software Unit and Integration Test Plan (SUITP)
	Software Validation Specification (SVS) with Respect to TS
	Software Validation Specification (SVS) with Respect to RB
	Acceptance Test Plan
	Software Unit and Integration Test Report
	Software Validation Report with Respect to TS
	Software Validation Report with Respect to RB
	Acceptance Test Report
	Installation Report
	Software Verification Report (SVR)
	Independent Software Verification & Validation Report
	Software Reuse File (SRF)
	Software Problems Reports and Nonconformance Reports
	Joint Review Reports
	Justification of Selection of Operational Ground Equipment and Support Services

	Management File (MGT)
	Software Development Plan (SDP)
	Software Review Plan (SRevP)
	Software Configuration Management Plan (SCMP)
	Training Plan
	Interface Management Procedures
	Identification of NRB SW and Members
	Procurement Data

	Maintenance File (MF)
	Maintenance Plan
	Maintenance Records
	SPR and NCR
	Modification Analysis Report
	Problem Analysis Report
	Modification Documentation
	Baseline for Change
	Joint Review Reports
	Migration Plan and Notification
	Retirement Plan and Notification

	Operational (OP)
	Software Operation Support Plan
	Operational Testing Results
	SPR and NCR
	User’s Request Record
	Post Operation Review Report

	Product Assurance File (PAF)
	Software Product Assurance Plan (SPAP)
	Software Product Assurance Requirements For Suppliers
	Audit Plan and Schedule
	Review and Inspection Plans or Procedures
	Procedures and Standards
	Modelling and Design Standards
	Coding Standards and Description of Tools
	Software Problem Reporting Procedure
	Software Dependability and Safety Analysis Report
	Criticality Classification of Software Components
	Software Product Assurance Report
	Software Product Assurance Milestone Report (SPAMR)
	Statement of Compliance With Test Plans and Procedures
	Records of Training and Experience
	(Preliminary) Alert Information
	Results of Pre-Award Audits and Assessments, and of Procurement Sources
	Software Process Assessment Plan
	Software Process Assessment Report
	Review and Inspection Reports
	Receiving Inspection Report
	Input to Product Assurance Plan for Systems Operation

	Qualification Data Package
	Variants
	Content

	Work Items
	Traceability
	Software Requirements Engineering
	Requirements for Requirements
	Identification
	Level of Requirements
	Absolute Requirements
	Absolute Prohibitions
	Recommendations
	Permissions
	Possibilities and Capabilities

	Syntax
	Wording Restrictions
	Separate Requirements
	Conflict Free Requirements
	Use of Project-Specific Terms and Abbreviations
	Justification of Requirements
	Requirement Validation
	Resources and Performance

	Specification Items
	Specification Item Hierarchy
	Specification Item Types
	Root Item Type
	Build Item Type
	Build Ada Test Program Item Type
	Build BSP Item Type
	Build Configuration File Item Type
	Build Configuration Header Item Type
	Build Group Item Type
	Build Library Item Type
	Build Objects Item Type
	Build Option Item Type
	Build Script Item Type
	Build Start File Item Type
	Build Test Program Item Type
	Constraint Item Type
	Glossary Item Type
	Glossary Group Item Type
	Glossary Term Item Type
	Interface Item Type
	Application Configuration Group Item Type
	Application Configuration Option Item Type
	Application Configuration Feature Enable Option Item Type
	Application Configuration Feature Option Item Type
	Application Configuration Value Option Item Type
	Interface Compound Item Type
	Interface Container Item Type
	Interface Define Item Type
	Interface Domain Item Type
	Interface Enum Item Type
	Interface Enumerator Item Type
	Interface Forward Declaration Item Type
	Interface Function Item Type
	Interface Group Item Type
	Interface Header File Item Type
	Interface Macro Item Type
	Interface Typedef Item Type
	Interface Unspecified Item Type
	Interface Variable Item Type
	Requirement Item Type
	Functional Requirement Item Type
	Action Requirement Item Type
	Generic Functional Requirement Item Type
	Non-Functional Requirement Item Type
	Design Group Requirement Item Type
	Generic Non-Functional Requirement Item Type
	Runtime Performance Requirement Item Type
	Requirement Validation Item Type
	Runtime Measurement Test Item Type
	Specification Item Type
	Test Case Item Type
	Test Platform Item Type
	Test Procedure Item Type
	Test Suite Item Type

	Specification Attribute Sets and Value Types
	Action Requirement Boolean Expression
	Action Requirement Condition
	Action Requirement Expression
	Action Requirement Expression Condition Set
	Action Requirement Expression State Name
	Action Requirement Expression State Set
	Action Requirement Name
	Action Requirement Skip Reasons
	Action Requirement State
	Action Requirement Transition
	Action Requirement Transition Post-Condition State
	Action Requirement Transition Post-Conditions
	Action Requirement Transition Pre-Condition State Set
	Action Requirement Transition Pre-Conditions
	Application Configuration Group Member Link Role
	Application Configuration Option Name
	Boolean or Integer or String
	Build Assembler Option
	Build C Compiler Option
	Build C Preprocessor Option
	Build C++ Compiler Option
	Build Dependency Link Role
	Build Include Path
	Build Install Directive
	Build Install Path
	Build Link Static Library Directive
	Build Linker Option
	Build Option Action
	Build Option C Compiler Check Action
	Build Option C++ Compiler Check Action
	Build Option Default by Variant
	Build Option Name
	Build Option Set Test State Action
	Build Option Value
	Build Source
	Build Target
	Build Test State
	Build Use After Directive
	Build Use Before Directive
	Constraint Link Role
	Copyright
	Enabled-By Expression
	Glossary Membership Link Role
	Integer or String
	Interface Brief Description
	Interface Compound Definition Kind
	Interface Compound Member Compound
	Interface Compound Member Declaration
	Interface Compound Member Definition
	Interface Compound Member Definition Directive
	Interface Compound Member Definition Variant
	Interface Definition
	Interface Definition Directive
	Interface Definition Variant
	Interface Description
	Interface Enabled-By Expression
	Interface Enum Definition Kind
	Interface Enumerator Link Role
	Interface Function Definition
	Interface Function Definition Directive
	Interface Function Definition Variant
	Interface Function Link Role
	Interface Group Identifier
	Interface Group Membership Link Role
	Interface Include Link Role
	Interface Notes
	Interface Parameter
	Interface Parameter Direction
	Interface Placement Link Role
	Interface References Set
	Interface Return Directive
	Interface Return Value
	Interface Target Link Role
	Link
	Name
	Optional String
	Placement Order Link Role
	Requirement Reference
	Requirement Reference Type
	Requirement Refinement Link Role
	Requirement Text
	Requirement Validation Link Role
	Requirement Validation Method
	Runtime Measurement Environment
	Runtime Measurement Environment Table
	Runtime Measurement Parameter Set
	Runtime Measurement Request Link Role
	Runtime Measurement Value Kind
	Runtime Measurement Value Table
	Runtime Performance Limit Table
	Runtime Performance Parameter Set
	SPDX License Identifier
	Specification Attribute Set
	Specification Attribute Value
	Specification Boolean Value
	Specification Explicit Attributes
	Specification Floating-Point Assert
	Specification Floating-Point Value
	Specification Generic Attributes
	Specification Information
	Specification Integer Assert
	Specification Integer Value
	Specification List
	Specification Mandatory Attributes
	Specification Member Link Role
	Specification Refinement Link Role
	Specification String Assert
	Specification String Value
	Test Case Action
	Test Case Check
	Test Context Member
	Test Header
	Test Run Parameter
	Test Support Method
	UID
	Unit Test Link Role

	Traceability of Specification Items
	History of Specification Items
	Backward Traceability of Specification Items
	Forward Traceability of Specification Items
	Traceability between Software Requirements, Architecture and Design

	Requirement Management
	Change Control Board
	Add a Requirement
	Modify a Requirement
	Mark a Requirement as Obsolete

	Tooling
	Tool Requirements
	Tool Evaluation
	Best Available Tool - Doorstop
	Custom Requirements Management Tool

	How-To
	Getting Started
	Application Configuration Options
	Modify an Existing Group
	Modify an Existing Option
	Add a New Group
	Add a New Option
	Generate Content after Changes

	Glossary Specification
	Interface Specification
	Specify an API Header File
	Specify an API Element

	Requirements Depending on Build Configuration Options
	Requirements Depending on Application Configuration Options
	Action Requirements
	Example
	Pre-Condition Templates
	Post-Condition Templates

	Applicable and Reference Documents
	Terms, Definitions and Abbreviated Terms
	Work Packages
	Specify Build System
	Inputs
	Activities
	Outputs

	Implement Build System
	Inputs
	Activities
	Outputs

	Software User Manual (SUM)
	Inputs
	Activities
	Outputs

	Specify Application Configuration
	Inputs
	Activities
	Outputs

	Design Application Configuration
	Inputs
	Activities
	Outputs

	Test Application Configuration
	Inputs
	Activities
	Outputs

	SUITP
	Inputs
	Activities
	Outputs

	SVS for TS
	Inputs
	Activities
	Outputs

	Specify Object Support
	Inputs
	Activities
	Outputs

	Design Object Support
	Inputs
	Activities
	Outputs

	Test Object Support
	Inputs
	Activities
	Outputs

	Specify Partition Manager
	Inputs
	Activities
	Outputs

	Design Partition Manager
	Inputs
	Activities
	Outputs

	Test Partition Manager
	Inputs
	Activities
	Outputs

	Specify Barrier Manager
	Inputs
	Activities
	Outputs

	Design Barrier Manager
	Inputs
	Activities
	Outputs

	Test Barrier Manager
	Inputs
	Activities
	Outputs

	Specify Event Manager
	Inputs
	Activities
	Outputs

	Design Event Manager
	Inputs
	Activities
	Outputs

	Test Event Manager
	Inputs
	Activities
	Outputs

	Specify Timer Manager
	Inputs
	Activities
	Outputs

	Design Timer Manager
	Inputs
	Activities
	Outputs

	Test Timer Manager
	Inputs
	Activities
	Outputs

	Specify Message Queue Manager
	Inputs
	Activities
	Outputs

	Design Message Queue Manager
	Inputs
	Activities
	Outputs

	Test Message Queue Manager
	Inputs
	Activities
	Outputs

	Specify Extension Manager
	Inputs
	Activities
	Outputs

	Design Extension Manager
	Inputs
	Activities
	Outputs

	Test Extension Manager
	Inputs
	Activities
	Outputs

	Specify Semaphore Manager
	Inputs
	Activities
	Outputs

	Design Semaphore Manager
	Inputs
	Activities
	Outputs

	Test Semaphore Manager
	Inputs
	Activities
	Outputs

	Specify Task Manager
	Inputs
	Activities
	Outputs

	Design Task Manager
	Inputs
	Activities
	Outputs

	Test Task Manager
	Inputs
	Activities
	Outputs

	Specify Scheduler Manager
	Inputs
	Activities
	Outputs

	Design Scheduler Manager
	Inputs
	Activities
	Outputs

	Test Scheduler Manager
	Inputs
	Activities
	Outputs

	Specify Clock Manager
	Inputs
	Activities
	Outputs

	Design Clock Manager
	Inputs
	Activities
	Outputs

	Test Clock Manager
	Inputs
	Activities
	Outputs

	Specify Rate Monotonic Manager
	Inputs
	Activities
	Outputs

	Design Rate Monotonic Manager
	Inputs
	Activities
	Outputs

	Test Rate Monotonic Manager
	Inputs
	Activities
	Outputs

	Specify C Standard Support
	Inputs
	Activities
	Outputs

	Implement C Standard Support
	Inputs
	Activities
	Outputs

	Test C Standard Support
	Inputs
	Activities
	Outputs

	Specify System Initialization
	Inputs
	Activities
	Outputs

	Design System Initialization
	Inputs
	Activities
	Outputs

	Test System Initialization
	Inputs
	Activities
	Outputs

	Specify System Termination
	Inputs
	Activities
	Outputs

	Design System Termination
	Inputs
	Activities
	Outputs

	Test System Termination
	Inputs
	Activities
	Outputs

	Software Configuration File (SCF)
	Inputs
	Activities
	Outputs

	Software Reuse File (SRF)
	Inputs
	Activities
	Outputs

	Specify Board Support Package
	Inputs
	Activities
	Outputs

	Design Board Support Package
	Inputs
	Activities
	Outputs

	Test Board Support Package
	Inputs
	Activities
	Outputs

	Specify SPARC Support
	Inputs
	Activities
	Outputs

	Design SPARC Support
	Inputs
	Activities
	Outputs

	Test SPARC Support
	Inputs
	Activities
	Outputs

	Specify UART Driver
	Inputs
	Activities
	Outputs

	Design UART Driver
	Inputs
	Activities
	Outputs

	Implement UART Driver
	Inputs
	Activities
	Outputs

	Test UART Driver
	Inputs
	Activities
	Outputs

	Specify GPIO Driver
	Inputs
	Activities
	Outputs

	Design GPIO Driver
	Inputs
	Activities
	Outputs

	Implement GPIO Driver
	Inputs
	Activities
	Outputs

	Test GPIO Driver
	Inputs
	Activities
	Outputs

	Specify SpaceWire Driver
	Inputs
	Activities
	Outputs

	Design SpaceWire Driver
	Inputs
	Activities
	Outputs

	Implement SpaceWire Driver
	Inputs
	Activities
	Outputs

	Test SpaceWire Driver
	Inputs
	Activities
	Outputs

	RTEMS Improvement Qualification Data Package
	RTEMS Managers Candidate Evaluation Report
	RTEMS Improvement Requirement Document
	RTEMS Improvement User Manual and Design Notes
	RTEMS Improvement Verification Report
	Software Budget Report
	Product Software Justification File
	RTEMS Improvement Design Document
	RTEMS Improvement Configuration File
	RTEMS Improvement Integration Test Plan
	RTEMS Improvement Unit Test Plan
	RTEMS Improvement Validation Testing Specification
	RTEMS Tailoring Plan
	RTEMS Improvement Validation, Integration and Unit Test Report
	RTEMS Improvement Validation Test Report
	RTEMS Improvement Integration Test Report
	RTEMS Improvement Unit Test Report

	RTEMS Test Suite
	RTEMS Improvement Acceptance Test Plan
	RTEMS Improvement Maintenance Plan
	RTEMS Improvement Installation Report
	RTEMS Improvement Acceptance Data Package
	RTEMS Tailored
	Software Development Plan
	Review Plan
	Final Report
	RTEMS Improvement Product Assurance Plan
	RTEMS Improvement Product Assurance Report
	RTEMS Improvement Configuration Management Plan
	RTEMS Improvement SOC with GSWS
	RTEMS Improvement Software Criticality Analysis
	EDILIB
	Conclusion

	Analysis of other standards
	GSWS Analysis
	Conclusions

	DO Analysis
	DO-178
	Conclusions

	DO-330
	DO-333

	ISO 26262 Analysis
	Conclusions

	IEC Analysis
	IEC 61508-1
	IEC 61508-3
	Conclusions

	Tailoring of ECSS Standards for the QDP
	Tailoring of ECSS-E-ST-40C
	Specification of system requirements allocated to software (5.2.2.1a)
	Identification of observability requirements (5.2.2.2a)
	Specification of HMI requirements (5.2.2.3a)
	Verification and validation process requirements (5.2.3.1a)
	System input for software validation (5.2.3.2a)
	System input for software installation and acceptance (5.2.3.3a)
	Identification of software versions for software integration into the system (5.2.4.1a)
	Identification of software versions for software integration into the system (5.2.4.1b)
	Supplier support to system integration (5.2.4.2a)
	Interface requirement specification (5.2.4.3a)
	System database (5.2.4.4a)
	Development constraints (5.2.4.5a)
	On board control procedures (5.2.4.6a)
	Development of software to be reused (5.2.4.7a)
	Software safety and dependability requirements (5.2.4.8a)
	Format and data medium (5.2.4.9a)
	System requirements review (5.2.5a)
	Software life cycle identification (5.3.2.1a)
	Software life cycle identification (5.3.2.1b)
	Software life cycle identification (5.3.2.1c)
	Software life cycle identification (5.3.2.1d)
	Identification of interfaces between development and maintenance (5.3.2.2a)
	Software procurement process implementation (5.3.2.3a)
	Automatic code generation (5.3.2.4a)
	Automatic code generation (5.3.2.4b)
	Automatic code generation (5.3.2.4c)
	Automatic code generation (5.3.2.4d)
	Automatic code generation (5.3.2.4e)
	Changes to baselines (5.3.2.5a)
	Joint reviews (5.3.3.1a)
	Software project reviews (5.3.3.2a)
	Software project reviews (5.3.3.2b)
	Software technical reviews (5.3.3.3a)
	Software technical reviews (5.3.3.3b)
	Software technical reviews (5.3.3.3c)
	System requirement review (5.3.4.1a)
	Preliminary design review (5.3.4.2a)
	Preliminary design review (5.3.4.2b)
	Critical design review (5.3.4.3a)
	Critical design review (5.3.4.3b)
	Qualification review (5.3.4.4a)
	Acceptance review (5.3.4.5a)
	Test readiness reviews (5.3.5.1a)
	Test review board (5.3.5.2a)
	Review phasing for flight software (5.3.6.1a)
	Review phasing for flight software (5.3.6.1b)
	Review phasing for ground software (5.3.6.2a)
	Interface management procedures (5.3.7.1a)
	Software technical budget and margin philosophy definition (5.3.8.1a)
	Technical budget and margin computation (5.3.8.2a)
	Compliance matrix (5.3.9.1a)
	Documentation compliance (5.3.9.2a)
	Establishment and documentation of software requirements (5.4.2.1a)
	Definition of functional and performance requirements for in flight modification (5.4.2.2a)
	Construction of a software logical model (5.4.2.3a)
	Construction of a software logical model (5.4.2.3b)
	Construction of a software logical model (5.4.2.3c)
	Conducting a software requirement review (5.4.2.4a)
	Transformation of software requirements into a software architecture (5.4.3.1a)
	Software design method (5.4.3.2a)
	Selection of a computational model for real-time software (5.4.3.3a)
	Description of software behaviour (5.4.3.4a)
	Development and documentation of the software interfaces (5.4.3.5a)
	Definition of methods and tools for software intended for reuse (5.4.3.6a)
	Definition of methods and tools for software intended for reuse (5.4.3.6b)
	Definition of methods and tools for software intended for reuse (5.4.3.6c)
	Reuse of existing software (5.4.3.7a)
	Definition and documentation of the software integration requirements and plan (5.4.3.8a)
	Conducting a preliminary design review (5.4.4a)
	Detailed design of each software component (5.5.2.1a)
	Detailed design of each software component (5.5.2.1b)
	Detailed design of each software component (5.5.2.1c)
	Development and documentation of the software interfaces detailed design (5.5.2.2a)
	Production of the detailed design model (5.5.2.3a)
	Software detail design method (5.5.2.4a)
	Detailed design of real-time software (5.5.2.5a)
	Detailed design of real-time software (5.5.2.5b)
	Detailed design of real-time software (5.5.2.5c)
	Detailed design of real-time software (5.5.2.5d)
	Detailed design of real-time software (5.5.2.5e)
	Utilization of description techniques for the software behaviour (5.5.2.6a)
	Determination of design method consistency for real-time software (5.5.2.7a)
	Development and documentation of the software user manual (5.5.2.8a)
	Definition and documentation of the software unit test requirements and plan (5.5.2.9a)
	Conducting a detailed design review (5.5.2.10a)
	Development and documentation of the software units (5.5.3.1a)
	Software unit testing (5.5.3.2a)
	Software unit testing (5.5.3.2b)
	Software unit testing (5.5.3.2c)
	Software integration test plan development (5.5.4.1a)
	Software units and software component integration and testing (5.5.4.2a)
	Establishment of a software validation process (5.6.2.1a)
	Establishment of a software validation process (5.6.2.1b)
	Establishment of a software validation process (5.6.2.1c)
	Selection of an ISVV organization (5.6.2.2a)
	Selection of an ISVV organization (5.6.2.2b)
	Development and documentation of a software validation specification with respect to the technical specification (5.6.3.1a)
	Development and documentation of a software validation specification with respect to the technical specification (5.6.3.1b)
	Development and documentation of a software validation specification with respect to the technical specification (5.6.3.1c)
	Conducting the validation with respect to the technical specification (5.6.3.2a)
	Updating the software user manual (5.6.3.3a)
	Conducting a critical design review (5.6.3.4a)
	Development and documentation of a software validation specification with respect to the requirements baseline (5.6.4.1a)
	Development and documentation of a software validation specification with respect to the requirements baseline (5.6.4.1b)
	Development and documentation of a software validation specification with respect to the requirements baseline (5.6.4.1c)
	Conducting the validation with respect to the requirements baseline (5.6.4.2a)
	Conducting the validation with respect to the requirements baseline (5.6.4.2b)
	Updating the software user manual (5.6.4.3a)
	Conducting a qualification review (5.6.4.4a)
	Preparation of the software product (5.7.2.1a)
	Supplier’s provision of training and support (5.7.2.2a)
	Installation procedures (5.7.2.3a)
	Installation activities reporting (5.7.2.4a)
	Installation activities reporting (5.7.2.4b)
	Installation activities reporting (5.7.2.4c)
	Installation activities reporting (5.7.2.4d)
	Acceptance test planning (5.7.3.1a)
	Acceptance test execution (5.7.3.2a)
	Executable code generation and installation (5.7.3.3a)
	Supplier’s support to customer’s acceptance (5.7.3.4a)
	Supplier’s support to customer’s acceptance (5.7.3.4b)
	Evaluation of acceptance testing (5.7.3.5a)
	Conducting an acceptance review (5.7.3.6a)
	Establishment of the software verification process (5.8.2.1a)
	Establishment of the software verification process (5.8.2.1b)
	Establishment of the software verification process (5.8.2.1c)
	Establishment of the software verification process (5.8.2.1d)
	Selection of the organization responsible for conducting the verification (5.8.2.2a)
	Selection of the organization responsible for conducting the verification (5.8.2.2b)
	Verification of requirements baseline (5.8.3.1a)
	Verification of the technical specification (5.8.3.2a)
	Verification of the software architectural design (5.8.3.3a)
	Verification of the software detailed design (5.8.3.4a)
	Verification of code (5.8.3.5a)
	Verification of code (5.8.3.5b)
	Verification of code (5.8.3.5c)
	Verification of code (5.8.3.5d)
	Verification of code (5.8.3.5e)
	Verification of code (5.8.3.5f)
	Verification of software unit testing (plan and results) (5.8.3.6a)
	Verification of software integration (5.8.3.7a)
	Verification of software validation with respect to the technical specifications and the requirements baseline (5.8.3.8a)
	Verification of software validation with respect to the technical specifications and the requirements baseline (5.8.3.8b)
	Evaluation of validation: complementary system level validation (5.8.3.9a)
	Verification of software documentation (5.8.3.10a)
	Schedulability analysis for real-time software (5.8.3.11a)
	Schedulability analysis for real-time software (5.8.3.11b)
	Schedulability analysis for real-time software (5.8.3.11c)
	Technical budgets management (5.8.3.12a)
	Technical budgets management (5.8.3.12b)
	Technical budgets management (5.8.3.12c)
	Behaviour modelling verification (5.8.3.13a)
	Behaviour modelling verification (5.8.3.13b)
	Behaviour modelling verification (5.8.3.13c)
	Operational testing definition (5.9.2.1a)
	Software operation support plans and procedures development (5.9.2.2a)
	Problem handling procedures definition (5.9.2.3a)
	Operational testing execution (5.9.3.1a)
	Software operational requirements demonstration (5.9.3.2a)
	Software release (5.9.3.3a)
	Software operation support performance (5.9.4.1a)
	Problem handling (5.9.4.2a)
	Assistance to the user (5.9.5.1a)
	Assistance to the user (5.9.5.1b)
	Handling of user’s requests (5.9.5.2a)
	Handling of user’s requests (5.9.5.2b)
	Handling of user’s requests (5.9.5.2c)
	Provisions of work-around solutions (5.9.5.3a)
	Provisions of work-around solutions (5.9.5.3b)
	Establishment of the software maintenance process (5.10.2.1a)
	Establishment of the software maintenance process (5.10.2.1b)
	Establishment of the software maintenance process (5.10.2.1c)
	Establishment of the software maintenance process (5.10.2.1d)
	Establishment of the software maintenance process (5.10.2.1e)
	Long term maintenance for flight software (5.10.2.2a)
	Problem analysis (5.10.3.1a)
	Problem analysis (5.10.3.1b)
	Problem analysis (5.10.3.1c)
	Problem analysis (5.10.3.1d)
	Problem analysis (5.10.3.1e)
	Analysis and documentation of product modification (5.10.4.1a)
	Documentation of software product changes (5.10.4.2a)
	Invoking of software engineering processes for modification implementation (5.10.4.3a)
	Invoking of software engineering processes for modification implementation (5.10.4.3b)
	Invoking of software engineering processes for modification implementation (5.10.4.3c)
	Invoking of software engineering processes for modification implementation (5.10.4.3d)
	Invoking of software engineering processes for modification implementation (5.10.4.3e)
	Maintenance reviews (5.10.5.1a)
	Baseline for change (5.10.5.2a)
	Applicability of this Standard to software migration (5.10.6.1a)
	Migration planning and execution (5.10.6.2a)
	Contribution to the migration plan (5.10.6.3a)
	Preparation for migration (5.10.6.4a)
	Notification of transition to migrated system (5.10.6.5a)
	Notification of transition to migrated system (5.10.6.5b)
	Post-operation review (5.10.6.6a)
	Post-operation review (5.10.6.6b)
	Maintenance and accessibility of data of former system (5.10.6.7a)
	Retirement planning (5.10.7.1a)
	Notification of retirement plan (5.10.7.2a)
	Identification of requirements for software retirement (5.10.7.3a)
	Maintenance and accessibility to data of the retired product (5.10.7.4a)

	Tailoring of ECSS-Q-ST-80C Rev.1
	Organization (5.1.1a)
	Responsibility and authority (5.1.2.1a)
	Responsibility and authority (5.1.2.2a)
	Responsibility and authority (5.1.2.3a)
	Resources (5.1.3.1a)
	Resources (5.1.3.2a)
	Software product assurance manager/engineer (5.1.4.1a)
	Software product assurance manager/engineer (5.1.4.2a)
	Training (5.1.5.1a)
	Training (5.1.5.2a)
	Training (5.1.5.3a)
	Training (5.1.5.4a)
	Software product assurance planning and control (5.2.1.1a)
	Software product assurance planning and control (5.2.1.1b)
	Software product assurance planning and control (5.2.1.2a)
	Software product assurance planning and control (5.2.1.3a)
	Software product assurance planning and control (5.2.1.4a)
	Software product assurance planning and control (5.2.1.5a)
	Software product assurance planning and control (5.2.1.5b)
	Software product assurance reporting (5.2.2.1a)
	Software product assurance reporting (5.2.2.2a)
	Software product assurance reporting (5.2.2.3a)
	Audits (5.2.3a)
	Alerts (5.2.4a)
	Software problems (5.2.5.1a)
	Software problems (5.2.5.2a)
	Software problems (5.2.5.3a)
	Software problems (5.2.5.4a)
	Nonconformances (5.2.6.1a)
	Nonconformances (5.2.6.1b)
	Nonconformances (5.2.6.1c)
	Nonconformances (5.2.6.2a)
	Quality requirements and quality models (5.2.7.1a)
	Quality requirements and quality models (5.2.7.2a)
	Risk management (5.3.1a)
	Critical item control (5.3.2.1a)
	Critical item control (5.3.2.2a)
	Supplier selection (5.4.1.1a)
	Supplier selection (5.4.1.2a)
	Supplier requirements (5.4.2.1a)
	Supplier requirements (5.4.2.2a)
	Supplier monitoring (5.4.3.1a)
	Supplier monitoring (5.4.3.2a)
	Supplier monitoring (5.4.3.3a)
	Supplier monitoring (5.4.3.4a)
	Criticality classification (5.4.4a)
	Procurement documents (5.5.1a)
	Review of procured software component list (5.5.2a)
	Procurement details (5.5.3a)
	Identification (5.5.4a)
	Inspection (5.5.5a)
	Exportability (5.5.6a)
	Methods and tools (5.6.1.1a)
	Methods and tools (5.6.1.2a)
	Methods and tools (5.6.1.3a)
	Development environment selection (5.6.2.1a)
	Development environment selection (5.6.2.2a)
	Development environment selection (5.6.2.3a)
	Process assessment (5.7.1a)
	Assessment process (5.7.2.1a)
	Assessment process (5.7.2.2a)
	Assessment process (5.7.2.3a)
	Assessment process (5.7.2.4a)
	Process improvement (5.7.3.1a)
	Process improvement (5.7.3.1b)
	Process improvement (5.7.3.2a)
	Process improvement (5.7.3.3a)
	Life cycle definition (6.1.1a)
	Life cycle definition (6.1.1b)
	Process quality objectives (6.1.2a)
	Life cycle definition review (6.1.3a)
	Life cycle resources (6.1.4a)
	Software validation process schedule (6.1.5a)
	Documentation of processes (6.2.1.1a)
	Documentation of processes (6.2.1.2a)
	Documentation of processes (6.2.1.3a)
	Documentation of processes (6.2.1.4a)
	Documentation of processes (6.2.1.5a)
	Documentation of processes (6.2.1.6a)
	Documentation of processes (6.2.1.7a)
	Documentation of processes (6.2.1.8a)
	Documentation of processes (6.2.1.9a)
	Software dependability and safety (6.2.2.1a)
	Software dependability and safety (6.2.2.2a)
	Software dependability and safety (6.2.2.3a)
	Software dependability and safety (6.2.2.3b)
	Software dependability and safety (6.2.2.4a)
	Software dependability and safety (6.2.2.5a)
	Software dependability and safety (6.2.2.6a)
	Software dependability and safety (6.2.2.7a)
	Software dependability and safety (6.2.2.8a)
	Software dependability and safety (6.2.2.9a)
	Software dependability and safety (6.2.2.10a)
	Handling of criticality software (6.2.3.1a)
	Handling of criticality software (6.2.3.1b)
	Handling of criticality software (6.2.3.2a)
	Handling of criticality software (6.2.3.3a)
	Handling of criticality software (6.2.3.4a)
	Handling of criticality software (6.2.3.5a)
	Handling of criticality software (6.2.3.6a)
	Handling of criticality software (6.2.3.7a)
	Handling of criticality software (6.2.3.8a)
	Software configuration management (6.2.4.1a)
	Software configuration management (6.2.4.2a)
	Software configuration management (6.2.4.3a)
	Software configuration management (6.2.4.4a)
	Software configuration management (6.2.4.5a)
	Software configuration management (6.2.4.5b)
	Software configuration management (6.2.4.6a)
	Software configuration management (6.2.4.7a)
	Software configuration management (6.2.4.8a)
	Software configuration management (6.2.4.9a)
	Software configuration management (6.2.4.10a)
	Software configuration management (6.2.4.11a)
	Process metrics (6.2.5.1a)
	Process metrics (6.2.5.2a)
	Process metrics (6.2.5.3a)
	Process metrics (6.2.5.4a)
	Process metrics (6.2.5.5a)
	Verification (6.2.6.1a)
	Verification (6.2.6.2a)
	Verification (6.2.6.2b)
	Verification (6.2.6.3a)
	Verification (6.2.6.4a)
	Verification (6.2.6.5a)
	Verification (6.2.6.6a)
	Verification (6.2.6.7a)
	Verification (6.2.6.8a)
	Verification (6.2.6.9a)
	Verification (6.2.6.10a)
	Verification (6.2.6.11a)
	Verification (6.2.6.12a)
	Verification (6.2.6.13a)
	Verification (6.2.6.13b)
	Reuse of existing software (6.2.7.2a)
	Reuse of existing software (6.2.7.3a)
	Reuse of existing software (6.2.7.4a)
	Reuse of existing software (6.2.7.5a)
	Reuse of existing software (6.2.7.6a)
	Reuse of existing software (6.2.7.7a)
	Reuse of existing software (6.2.7.8a)
	Reuse of existing software (6.2.7.8b)
	Reuse of existing software (6.2.7.9a)
	Reuse of existing software (6.2.7.10a)
	Reuse of existing software (6.2.7.11a)
	Automatic code generation (6.2.8.1a)
	Automatic code generation (6.2.8.2a)
	Automatic code generation (6.2.8.3a)
	Automatic code generation (6.2.8.4a)
	Automatic code generation (6.2.8.5a)
	Automatic code generation (6.2.8.6a)
	Automatic code generation (6.2.8.7a)
	Software related system requirements process (6.3.1.1a)
	Software related system requirements process (6.3.1.2a)
	Software related system requirements process (6.3.1.3a)
	Software requirements analysis (6.3.2.1a)
	Software requirements analysis (6.3.2.2a)
	Software requirements analysis (6.3.2.3a)
	Software requirements analysis (6.3.2.4a)
	Software requirements analysis (6.3.2.5a)
	Software architectural design and design of software items (6.3.3.1a)
	Software architectural design and design of software items (6.3.3.2a)
	Software architectural design and design of software items (6.3.3.3a)
	Software architectural design and design of software items (6.3.3.4a)
	Software architectural design and design of software items (6.3.3.5a)
	Software architectural design and design of software items (6.3.3.5b)
	Software architectural design and design of software items (6.3.3.6a)
	Software architectural design and design of software items (6.3.3.7a)
	Coding (6.3.4.1a)
	Coding (6.3.4.2a)
	Coding (6.3.4.3a)
	Coding (6.3.4.4a)
	Coding (6.3.4.5a)
	Coding (6.3.4.6a)
	Coding (6.3.4.6b)
	Coding (6.3.4.7a)
	Coding (6.3.4.8a)
	Testing and validation (6.3.5.1a)
	Testing and validation (6.3.5.2a)
	Testing and validation (6.3.5.3a)
	Testing and validation (6.3.5.4a)
	Testing and validation (6.3.5.5a)
	Testing and validation (6.3.5.5b)
	Testing and validation (6.3.5.6a)
	Testing and validation (6.3.5.7a)
	Testing and validation (6.3.5.8a)
	Testing and validation (6.3.5.9a)
	Testing and validation (6.3.5.10a)
	Testing and validation (6.3.5.11a)
	Testing and validation (6.3.5.12a)
	Testing and validation (6.3.5.13a)
	Testing and validation (6.3.5.14a)
	Testing and validation (6.3.5.15a)
	Testing and validation (6.3.5.16a)
	Testing and validation (6.3.5.17a)
	Testing and validation (6.3.5.18a)
	Testing and validation (6.3.5.19a)
	Testing and validation (6.3.5.20a)
	Testing and validation (6.3.5.21a)
	Testing and validation (6.3.5.22a)
	Testing and validation (6.3.5.23a)
	Testing and validation (6.3.5.24a)
	Testing and validation (6.3.5.25a)
	Testing and validation (6.3.5.26a)
	Testing and validation (6.3.5.27a)
	Testing and validation (6.3.5.28a)
	Testing and validation (6.3.5.29a)
	Testing and validation (6.3.5.30a)
	Testing and validation (6.3.5.31a)
	Testing and validation (6.3.5.32a)
	Software delivery and acceptance (6.3.6.1a)
	Software delivery and acceptance (6.3.6.2a)
	Software delivery and acceptance (6.3.6.3a)
	Software delivery and acceptance (6.3.6.4a)
	Software delivery and acceptance (6.3.6.5a)
	Software delivery and acceptance (6.3.6.6a)
	Software delivery and acceptance (6.3.6.7a)
	Software delivery and acceptance (6.3.6.8a)
	Software delivery and acceptance (6.3.6.9a)
	Operations (6.3.7.1a)
	Operations (6.3.7.2a)
	Operations (6.3.7.3a)
	Maintenance (6.3.8.1a)
	Maintenance (6.3.8.2a)
	Maintenance (6.3.8.3a)
	Maintenance (6.3.8.4a)
	Maintenance (6.3.8.5a)
	Maintenance (6.3.8.6a)
	Maintenance (6.3.8.7a)
	Deriving of requirements (7.1.1a)
	Quantitative definition of quality requirements (7.1.2a)
	Assurance activities for product quality requirements (7.1.3a)
	Product metrics (7.1.4a)
	Basic metrics (7.1.5a)
	Reporting of metrics (7.1.6a)
	Numerical accuracy (7.1.7a)
	Analysis of software maturity (7.1.8a)
	Requirements baseline and technical specification (7.2.1.1a)
	Requirements baseline and technical specification (7.2.1.2a)
	Requirements baseline and technical specification (7.2.1.3a)
	Design and related documentation (7.2.2.1a)
	Design and related documentation (7.2.2.2a)
	Design and related documentation (7.2.2.3a)
	Test and validation documentation (7.2.3.1a)
	Test and validation documentation (7.2.3.2a)
	Test and validation documentation (7.2.3.3a)
	Test and validation documentation (7.2.3.4a)
	Test and validation documentation (7.2.3.5a)
	Test and validation documentation (7.2.3.6a)
	Software reuse/Customer requirements (7.3.1a)
	Software reuse/Separate documentation (7.3.2a)
	Software reuse/Self-contained information (7.3.3a)
	Software reuse/Requirements for intended reuse (7.3.4a)
	Software reuse/Configuration management for intended reuse (7.3.5a)
	Software reuse/Testing on different platforms (7.3.6a)
	Software reuse/Certificate of conformance (7.3.7a)
	Operational system/Hardware procurement (7.4.1a)
	Operational system/Service procurement (7.4.2a)
	Operational system/Constraints (7.4.3a)
	Operational system/Selection (7.4.4a)
	Operational system/Maintenance (7.4.5a)
	Firmware/Device programming (7.5.1a)
	Firmware/Marking (7.5.2a)
	Firmware/Calibration (7.5.3a)

	Tailoring of SOW QDP Requirements
	RS-1
	RS-2
	RS-3
	RS-4
	RS-5
	RS-6
	RS-7
	RS-8
	RS-9
	RS-10
	RS-11
	RS-12
	RS-13
	RS-14
	RS-15

	Justifications of Tailoring Decisions
	No Requirements Baseline (RB)
	No Installation and Acceptance
	No Maintenance (MF)
	No Operational Phase (OP)
	On Demand Unit and Integration Testing
	Combined Unit and Integration Testing
	No Logical and Computational Model
	No Schedulability Analysis
	No Software Dependability and Safety Analysis
	No Independent Software Verification and Validation
	No Numerical Accuracy Analysis

	Bibliography

		2021-06-14T11:40:17+0100
	VALDEZ Jose

		2021-06-15T10:13:55+0200
	Sebastian Huber

		2021-06-15T12:15:31+0000
	CLÁUDIO ROBERTO RIBEIRO MAIA

		2021-06-15T12:49:28+0100
	MATEUS Rute

		2021-06-15T13:13:55+0100
	RAMOS Nuno-Vicente

