RTEMS 4.11Annotated Report
Sat Nov 27 17:59:31 2010
30016c94 <_CORE_message_queue_Broadcast>:
{
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
30016c94: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
30016c98: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
30016c9c: e1530002 cmp r3, r2
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
30016ca0: e1a07000 mov r7, r0
30016ca4: e1a05002 mov r5, r2
30016ca8: e1a08001 mov r8, r1
30016cac: e59da020 ldr sl, [sp, #32]
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
30016cb0: 3a000016 bcc 30016d10 <_CORE_message_queue_Broadcast+0x7c>
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
30016cb4: e5906048 ldr r6, [r0, #72] ; 0x48
30016cb8: e3560000 cmp r6, #0
*count = 0;
30016cbc: 13a00000 movne r0, #0
30016cc0: 158a0000 strne r0, [sl]
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
30016cc4: 18bd85f0 popne {r4, r5, r6, r7, r8, sl, pc}
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016cc8: e1a00007 mov r0, r7
30016ccc: eb000abf bl 300197d0 <_Thread_queue_Dequeue>
30016cd0: e2504000 subs r4, r0, #0
30016cd4: 0a00000a beq 30016d04 <_CORE_message_queue_Broadcast+0x70>
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
30016cd8: e594002c ldr r0, [r4, #44] ; 0x2c
30016cdc: e1a01008 mov r1, r8
30016ce0: e1a02005 mov r2, r5
30016ce4: eb002040 bl 3001edec <memcpy>
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
30016ce8: e5943028 ldr r3, [r4, #40] ; 0x28
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016cec: e1a00007 mov r0, r7
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
30016cf0: e5835000 str r5, [r3]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016cf4: eb000ab5 bl 300197d0 <_Thread_queue_Dequeue>
30016cf8: e2504000 subs r4, r0, #0
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
30016cfc: e2866001 add r6, r6, #1
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016d00: 1afffff4 bne 30016cd8 <_CORE_message_queue_Broadcast+0x44>
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
30016d04: e58a6000 str r6, [sl]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
30016d08: e1a00004 mov r0, r4
30016d0c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE;
30016d10: e3a00001 mov r0, #1 <== NOT EXECUTED
#endif
}
*count = number_broadcasted;
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
}
30016d14: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
3000ac38 <_CORE_mutex_Seize_interrupt_trylock>:
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
3000ac38: e59f215c ldr r2, [pc, #348] ; 3000ad9c <_CORE_mutex_Seize_interrupt_trylock+0x164>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
3000ac3c: e590c050 ldr ip, [r0, #80] ; 0x50
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
3000ac40: e1a03000 mov r3, r0
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
3000ac44: e5922004 ldr r2, [r2, #4]
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
3000ac48: e3a00000 mov r0, #0
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
3000ac4c: e15c0000 cmp ip, r0
3000ac50: e92d40f0 push {r4, r5, r6, r7, lr}
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
3000ac54: e5820034 str r0, [r2, #52] ; 0x34
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
3000ac58: 0a00000e beq 3000ac98 <_CORE_mutex_Seize_interrupt_trylock+0x60>
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
3000ac5c: e593c048 ldr ip, [r3, #72] ; 0x48
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
3000ac60: e5925008 ldr r5, [r2, #8]
the_mutex->nest_count = 1;
3000ac64: e3a04001 mov r4, #1
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
3000ac68: e35c0002 cmp ip, #2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
3000ac6c: e5830050 str r0, [r3, #80] ; 0x50
the_mutex->holder = executing;
3000ac70: e583205c str r2, [r3, #92] ; 0x5c
the_mutex->holder_id = executing->Object.id;
3000ac74: e5835060 str r5, [r3, #96] ; 0x60
the_mutex->nest_count = 1;
3000ac78: e5834054 str r4, [r3, #84] ; 0x54
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
3000ac7c: 0a000013 beq 3000acd0 <_CORE_mutex_Seize_interrupt_trylock+0x98>
3000ac80: e35c0003 cmp ip, #3
3000ac84: 0a000018 beq 3000acec <_CORE_mutex_Seize_interrupt_trylock+0xb4>
3000ac88: e5913000 ldr r3, [r1]
3000ac8c: e129f003 msr CPSR_fc, r3
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
3000ac90: e3a00000 mov r0, #0
3000ac94: e8bd80f0 pop {r4, r5, r6, r7, pc}
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
3000ac98: e593005c ldr r0, [r3, #92] ; 0x5c
3000ac9c: e1520000 cmp r2, r0
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
3000aca0: 13a00001 movne r0, #1
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
3000aca4: 18bd80f0 popne {r4, r5, r6, r7, pc}
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
3000aca8: e5930040 ldr r0, [r3, #64] ; 0x40
3000acac: e3500000 cmp r0, #0
3000acb0: 1a00001e bne 3000ad30 <_CORE_mutex_Seize_interrupt_trylock+0xf8>
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
3000acb4: e5932054 ldr r2, [r3, #84] ; 0x54
3000acb8: e2822001 add r2, r2, #1
3000acbc: e5832054 str r2, [r3, #84] ; 0x54
3000acc0: e5913000 ldr r3, [r1]
3000acc4: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
3000acc8: e3a00000 mov r0, #0
3000accc: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000acd0: e592301c ldr r3, [r2, #28]
3000acd4: e2833001 add r3, r3, #1
3000acd8: e582301c str r3, [r2, #28]
3000acdc: e5913000 ldr r3, [r1]
3000ace0: e129f003 msr CPSR_fc, r3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
3000ace4: e3a00000 mov r0, #0
3000ace8: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000acec: e592c01c ldr ip, [r2, #28]
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
3000acf0: e593704c ldr r7, [r3, #76] ; 0x4c
current = executing->current_priority;
3000acf4: e5926014 ldr r6, [r2, #20]
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000acf8: e08c5004 add r5, ip, r4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
3000acfc: e1570006 cmp r7, r6
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000ad00: e582501c str r5, [r2, #28]
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
3000ad04: 0a000020 beq 3000ad8c <_CORE_mutex_Seize_interrupt_trylock+0x154>
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
3000ad08: 3a000012 bcc 3000ad58 <_CORE_mutex_Seize_interrupt_trylock+0x120>
);
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
3000ad0c: e3a05006 mov r5, #6
3000ad10: e5825034 str r5, [r2, #52] ; 0x34
the_mutex->lock = CORE_MUTEX_UNLOCKED;
3000ad14: e5834050 str r4, [r3, #80] ; 0x50
the_mutex->nest_count = 0; /* undo locking above */
3000ad18: e5830054 str r0, [r3, #84] ; 0x54
executing->resource_count--; /* undo locking above */
3000ad1c: e582c01c str ip, [r2, #28]
3000ad20: e5913000 ldr r3, [r1]
3000ad24: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
3000ad28: e3a00000 mov r0, #0
3000ad2c: e8bd80f0 pop {r4, r5, r6, r7, pc}
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
3000ad30: e3500001 cmp r0, #1
3000ad34: 0a000001 beq 3000ad40 <_CORE_mutex_Seize_interrupt_trylock+0x108>
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
3000ad38: e3a00001 mov r0, #1
3000ad3c: e8bd80f0 pop {r4, r5, r6, r7, pc}
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
3000ad40: e3a03002 mov r3, #2 <== NOT EXECUTED
3000ad44: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED
3000ad48: e5913000 ldr r3, [r1] <== NOT EXECUTED
3000ad4c: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED
_ISR_Enable( *level_p );
return 0;
3000ad50: e3a00000 mov r0, #0 <== NOT EXECUTED
3000ad54: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
3000ad58: e59f2040 ldr r2, [pc, #64] ; 3000ada0 <_CORE_mutex_Seize_interrupt_trylock+0x168>
3000ad5c: e5920000 ldr r0, [r2]
3000ad60: e2800001 add r0, r0, #1
3000ad64: e5820000 str r0, [r2]
3000ad68: e5912000 ldr r2, [r1]
3000ad6c: e129f002 msr CPSR_fc, r2
}
if ( current > ceiling ) {
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
_Thread_Change_priority(
3000ad70: e3a02000 mov r2, #0
3000ad74: e593005c ldr r0, [r3, #92] ; 0x5c
3000ad78: e593104c ldr r1, [r3, #76] ; 0x4c
3000ad7c: ebfff1ff bl 30007580 <_Thread_Change_priority>
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
3000ad80: ebfff338 bl 30007a68 <_Thread_Enable_dispatch>
return 0;
3000ad84: e3a00000 mov r0, #0
3000ad88: e8bd80f0 pop {r4, r5, r6, r7, pc}
3000ad8c: e5913000 ldr r3, [r1]
3000ad90: e129f003 msr CPSR_fc, r3
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
return 0;
3000ad94: e3a00000 mov r0, #0
3000ad98: e8bd80f0 pop {r4, r5, r6, r7, pc}
3000ae18 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ae18: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
3000ae1c: e1a08002 mov r8, r2
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
3000ae20: e5902010 ldr r2, [r0, #16]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ae24: e24dd01c sub sp, sp, #28
3000ae28: e1a05001 mov r5, r1
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
3000ae2c: e2911004 adds r1, r1, #4
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ae30: e1a07000 mov r7, r0
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
3000ae34: e58d1000 str r1, [sp]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ae38: e1a0b003 mov fp, r3
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
3000ae3c: e58d200c str r2, [sp, #12]
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
3000ae40: 2a000078 bcs 3000b028 <_Heap_Allocate_aligned_with_boundary+0x210>
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
3000ae44: e3530000 cmp r3, #0
3000ae48: 1a000074 bne 3000b020 <_Heap_Allocate_aligned_with_boundary+0x208>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
3000ae4c: e5979008 ldr r9, [r7, #8]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000ae50: e1570009 cmp r7, r9
3000ae54: 0a000073 beq 3000b028 <_Heap_Allocate_aligned_with_boundary+0x210>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000ae58: e59d300c ldr r3, [sp, #12]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
3000ae5c: e2651004 rsb r1, r5, #4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000ae60: e2833007 add r3, r3, #7
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000ae64: e3a06001 mov r6, #1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000ae68: e58d3010 str r3, [sp, #16]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
3000ae6c: e58d1014 str r1, [sp, #20]
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
3000ae70: e599a004 ldr sl, [r9, #4]
3000ae74: e59d2000 ldr r2, [sp]
3000ae78: e152000a cmp r2, sl
3000ae7c: 2a00004e bcs 3000afbc <_Heap_Allocate_aligned_with_boundary+0x1a4>
if ( alignment == 0 ) {
3000ae80: e3580000 cmp r8, #0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
3000ae84: 02894008 addeq r4, r9, #8
3000ae88: 0a000051 beq 3000afd4 <_Heap_Allocate_aligned_with_boundary+0x1bc>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
3000ae8c: e5973014 ldr r3, [r7, #20]
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
3000ae90: e59d1014 ldr r1, [sp, #20]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
3000ae94: e59d2010 ldr r2, [sp, #16]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
3000ae98: e3caa001 bic sl, sl, #1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
3000ae9c: e089a00a add sl, r9, sl
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
3000aea0: e081400a add r4, r1, sl
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
3000aea4: e58d3004 str r3, [sp, #4]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
3000aea8: e0633002 rsb r3, r3, r2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
3000aeac: e1a00004 mov r0, r4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000aeb0: e083a00a add sl, r3, sl
3000aeb4: e1a01008 mov r1, r8
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
3000aeb8: e2893008 add r3, r9, #8
3000aebc: e58d3008 str r3, [sp, #8]
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
3000aec0: eb00156c bl 30010478 <__umodsi3>
3000aec4: e0604004 rsb r4, r0, r4
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
3000aec8: e15a0004 cmp sl, r4
3000aecc: 2a000003 bcs 3000aee0 <_Heap_Allocate_aligned_with_boundary+0xc8>
3000aed0: e1a0000a mov r0, sl
3000aed4: e1a01008 mov r1, r8
3000aed8: eb001566 bl 30010478 <__umodsi3>
3000aedc: e060400a rsb r4, r0, sl
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
3000aee0: e35b0000 cmp fp, #0
3000aee4: 0a000026 beq 3000af84 <_Heap_Allocate_aligned_with_boundary+0x16c>
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
3000aee8: e084a005 add sl, r4, r5
3000aeec: e1a0000a mov r0, sl
3000aef0: e1a0100b mov r1, fp
3000aef4: eb00155f bl 30010478 <__umodsi3>
3000aef8: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
3000aefc: e15a0000 cmp sl, r0
3000af00: 93a0a000 movls sl, #0
3000af04: 83a0a001 movhi sl, #1
3000af08: e1540000 cmp r4, r0
3000af0c: 23a0a000 movcs sl, #0
3000af10: e35a0000 cmp sl, #0
3000af14: 0a00001a beq 3000af84 <_Heap_Allocate_aligned_with_boundary+0x16c>
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
3000af18: e59d1008 ldr r1, [sp, #8]
3000af1c: e0813005 add r3, r1, r5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
3000af20: e1530000 cmp r3, r0
3000af24: 958d9018 strls r9, [sp, #24]
3000af28: 91a09003 movls r9, r3
3000af2c: 9a000002 bls 3000af3c <_Heap_Allocate_aligned_with_boundary+0x124>
3000af30: ea000021 b 3000afbc <_Heap_Allocate_aligned_with_boundary+0x1a4>
3000af34: e1590000 cmp r9, r0
3000af38: 8a00003c bhi 3000b030 <_Heap_Allocate_aligned_with_boundary+0x218>
return 0;
}
alloc_begin = boundary_line - alloc_size;
3000af3c: e0654000 rsb r4, r5, r0
3000af40: e1a01008 mov r1, r8
3000af44: e1a00004 mov r0, r4
3000af48: eb00154a bl 30010478 <__umodsi3>
3000af4c: e0604004 rsb r4, r0, r4
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
3000af50: e084a005 add sl, r4, r5
3000af54: e1a0000a mov r0, sl
3000af58: e1a0100b mov r1, fp
3000af5c: eb001545 bl 30010478 <__umodsi3>
3000af60: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
3000af64: e15a0000 cmp sl, r0
3000af68: 93a0a000 movls sl, #0
3000af6c: 83a0a001 movhi sl, #1
3000af70: e1540000 cmp r4, r0
3000af74: 23a0a000 movcs sl, #0
3000af78: e35a0000 cmp sl, #0
3000af7c: 1affffec bne 3000af34 <_Heap_Allocate_aligned_with_boundary+0x11c>
3000af80: e59d9018 ldr r9, [sp, #24]
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
3000af84: e59d2008 ldr r2, [sp, #8]
3000af88: e1520004 cmp r2, r4
3000af8c: 8a00000a bhi 3000afbc <_Heap_Allocate_aligned_with_boundary+0x1a4>
3000af90: e59d100c ldr r1, [sp, #12]
3000af94: e1a00004 mov r0, r4
3000af98: eb001536 bl 30010478 <__umodsi3>
3000af9c: e3e0a007 mvn sl, #7
3000afa0: e069a00a rsb sl, r9, sl
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
3000afa4: e08aa004 add sl, sl, r4
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
3000afa8: e59d1004 ldr r1, [sp, #4]
3000afac: e060300a rsb r3, r0, sl
3000afb0: e15a0000 cmp sl, r0
3000afb4: 11510003 cmpne r1, r3
3000afb8: 9a000005 bls 3000afd4 <_Heap_Allocate_aligned_with_boundary+0x1bc>
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
3000afbc: e5999008 ldr r9, [r9, #8]
3000afc0: e2863001 add r3, r6, #1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000afc4: e1570009 cmp r7, r9
3000afc8: 0a00001d beq 3000b044 <_Heap_Allocate_aligned_with_boundary+0x22c>
3000afcc: e1a06003 mov r6, r3
3000afd0: eaffffa6 b 3000ae70 <_Heap_Allocate_aligned_with_boundary+0x58>
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
3000afd4: e3540000 cmp r4, #0
3000afd8: 0afffff7 beq 3000afbc <_Heap_Allocate_aligned_with_boundary+0x1a4>
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
3000afdc: e5972048 ldr r2, [r7, #72] ; 0x48
stats->searches += search_count;
3000afe0: e597304c ldr r3, [r7, #76] ; 0x4c
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
3000afe4: e2822001 add r2, r2, #1
stats->searches += search_count;
3000afe8: e0833006 add r3, r3, r6
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
3000afec: e5872048 str r2, [r7, #72] ; 0x48
stats->searches += search_count;
3000aff0: e587304c str r3, [r7, #76] ; 0x4c
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
3000aff4: e1a00007 mov r0, r7
3000aff8: e1a01009 mov r1, r9
3000affc: e1a02004 mov r2, r4
3000b000: e1a03005 mov r3, r5
3000b004: ebffee05 bl 30006820 <_Heap_Block_allocate>
3000b008: e1a00004 mov r0, r4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
3000b00c: e5973044 ldr r3, [r7, #68] ; 0x44
3000b010: e1530006 cmp r3, r6
stats->max_search = search_count;
3000b014: 35876044 strcc r6, [r7, #68] ; 0x44
}
return (void *) alloc_begin;
}
3000b018: e28dd01c add sp, sp, #28
3000b01c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
3000b020: e1550003 cmp r5, r3
3000b024: 9a000008 bls 3000b04c <_Heap_Allocate_aligned_with_boundary+0x234>
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000b028: e3a00000 mov r0, #0
3000b02c: eafffff9 b 3000b018 <_Heap_Allocate_aligned_with_boundary+0x200>
3000b030: e59d9018 ldr r9, [sp, #24] <== NOT EXECUTED
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
3000b034: e2863001 add r3, r6, #1 <== NOT EXECUTED
3000b038: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000b03c: e1570009 cmp r7, r9 <== NOT EXECUTED
3000b040: 1affffe1 bne 3000afcc <_Heap_Allocate_aligned_with_boundary+0x1b4><== NOT EXECUTED
3000b044: e3a00000 mov r0, #0
3000b048: eaffffef b 3000b00c <_Heap_Allocate_aligned_with_boundary+0x1f4>
if ( boundary < alloc_size ) {
return NULL;
}
if ( alignment == 0 ) {
alignment = page_size;
3000b04c: e3580000 cmp r8, #0
3000b050: 01a08002 moveq r8, r2
3000b054: eaffff7c b 3000ae4c <_Heap_Allocate_aligned_with_boundary+0x34>
3000b058 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
3000b058: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
3000b05c: e1a04000 mov r4, r0
3000b060: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
3000b064: e1a00001 mov r0, r1
3000b068: e5941010 ldr r1, [r4, #16]
3000b06c: eb001501 bl 30010478 <__umodsi3>
3000b070: e2455008 sub r5, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
3000b074: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
3000b078: e0605005 rsb r5, r0, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000b07c: e1550003 cmp r5, r3
3000b080: 3a00002f bcc 3000b144 <_Heap_Free+0xec>
3000b084: e5941024 ldr r1, [r4, #36] ; 0x24
3000b088: e1550001 cmp r5, r1
3000b08c: 8a00002c bhi 3000b144 <_Heap_Free+0xec>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b090: e595c004 ldr ip, [r5, #4]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
3000b094: e3cc6001 bic r6, ip, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
3000b098: e0852006 add r2, r5, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000b09c: e1530002 cmp r3, r2
3000b0a0: 8a000027 bhi 3000b144 <_Heap_Free+0xec>
3000b0a4: e1510002 cmp r1, r2
3000b0a8: 3a000027 bcc 3000b14c <_Heap_Free+0xf4>
3000b0ac: e5927004 ldr r7, [r2, #4]
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
3000b0b0: e2170001 ands r0, r7, #1
3000b0b4: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
3000b0b8: e1510002 cmp r1, r2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
3000b0bc: e3c77001 bic r7, r7, #1
3000b0c0: 03a08000 moveq r8, #0
3000b0c4: 0a000004 beq 3000b0dc <_Heap_Free+0x84>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b0c8: e0820007 add r0, r2, r7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
3000b0cc: e5900004 ldr r0, [r0, #4]
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
3000b0d0: e3100001 tst r0, #1
3000b0d4: 13a08000 movne r8, #0
3000b0d8: 03a08001 moveq r8, #1
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
3000b0dc: e21c0001 ands r0, ip, #1
3000b0e0: 1a00001b bne 3000b154 <_Heap_Free+0xfc>
uintptr_t const prev_size = block->prev_size;
3000b0e4: e595c000 ldr ip, [r5]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
3000b0e8: e06ca005 rsb sl, ip, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000b0ec: e153000a cmp r3, sl
3000b0f0: 88bd85f0 pophi {r4, r5, r6, r7, r8, sl, pc}
3000b0f4: e151000a cmp r1, sl
3000b0f8: 38bd85f0 popcc {r4, r5, r6, r7, r8, sl, pc}
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
3000b0fc: e59a0004 ldr r0, [sl, #4]
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
3000b100: e2100001 ands r0, r0, #1
3000b104: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
3000b108: e3580000 cmp r8, #0
3000b10c: 0a000039 beq 3000b1f8 <_Heap_Free+0x1a0>
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
3000b110: e5940038 ldr r0, [r4, #56] ; 0x38
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
3000b114: e0867007 add r7, r6, r7
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b118: e5923008 ldr r3, [r2, #8]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
3000b11c: e087c00c add ip, r7, ip
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b120: e592200c ldr r2, [r2, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
3000b124: e2400001 sub r0, r0, #1
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b128: e38c1001 orr r1, ip, #1
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
3000b12c: e5823008 str r3, [r2, #8]
next->prev = prev;
3000b130: e583200c str r2, [r3, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
3000b134: e5840038 str r0, [r4, #56] ; 0x38
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b138: e58a1004 str r1, [sl, #4]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
3000b13c: e78ac00c str ip, [sl, ip]
3000b140: ea00000f b 3000b184 <_Heap_Free+0x12c>
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
3000b144: e3a00000 mov r0, #0
3000b148: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
3000b14c: e3a00000 mov r0, #0 <== NOT EXECUTED
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b150: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
3000b154: e3580000 cmp r8, #0
3000b158: 0a000014 beq 3000b1b0 <_Heap_Free+0x158>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b15c: e5923008 ldr r3, [r2, #8]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
3000b160: e0877006 add r7, r7, r6
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b164: e592200c ldr r2, [r2, #12]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b168: e3871001 orr r1, r7, #1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
3000b16c: e5853008 str r3, [r5, #8]
new_block->prev = prev;
3000b170: e585200c str r2, [r5, #12]
next->prev = new_block;
prev->next = new_block;
3000b174: e5825008 str r5, [r2, #8]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
3000b178: e583500c str r5, [r3, #12]
3000b17c: e5851004 str r1, [r5, #4]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
3000b180: e7857007 str r7, [r5, r7]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
3000b184: e5942040 ldr r2, [r4, #64] ; 0x40
++stats->frees;
3000b188: e5943050 ldr r3, [r4, #80] ; 0x50
stats->free_size += block_size;
3000b18c: e5941030 ldr r1, [r4, #48] ; 0x30
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
3000b190: e2422001 sub r2, r2, #1
++stats->frees;
3000b194: e2833001 add r3, r3, #1
stats->free_size += block_size;
3000b198: e0816006 add r6, r1, r6
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
3000b19c: e5842040 str r2, [r4, #64] ; 0x40
++stats->frees;
3000b1a0: e5843050 str r3, [r4, #80] ; 0x50
stats->free_size += block_size;
3000b1a4: e5846030 str r6, [r4, #48] ; 0x30
return( true );
3000b1a8: e3a00001 mov r0, #1
3000b1ac: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
3000b1b0: e3863001 orr r3, r6, #1
3000b1b4: e5853004 str r3, [r5, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
3000b1b8: e5943038 ldr r3, [r4, #56] ; 0x38
if ( stats->max_free_blocks < stats->free_blocks ) {
3000b1bc: e594c03c ldr ip, [r4, #60] ; 0x3c
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b1c0: e5920004 ldr r0, [r2, #4]
RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after(
Heap_Block *block_before,
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
3000b1c4: e5941008 ldr r1, [r4, #8]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
3000b1c8: e2833001 add r3, r3, #1
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b1cc: e3c00001 bic r0, r0, #1
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
3000b1d0: e153000c cmp r3, ip
new_block->next = next;
3000b1d4: e5851008 str r1, [r5, #8]
new_block->prev = block_before;
3000b1d8: e585400c str r4, [r5, #12]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b1dc: e5820004 str r0, [r2, #4]
block_before->next = new_block;
next->prev = new_block;
3000b1e0: e581500c str r5, [r1, #12]
next_block->prev_size = block_size;
3000b1e4: e7856006 str r6, [r5, r6]
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
3000b1e8: e5845008 str r5, [r4, #8]
/* Statistics */
++stats->free_blocks;
3000b1ec: e5843038 str r3, [r4, #56] ; 0x38
if ( stats->max_free_blocks < stats->free_blocks ) {
stats->max_free_blocks = stats->free_blocks;
3000b1f0: 8584303c strhi r3, [r4, #60] ; 0x3c
3000b1f4: eaffffe2 b 3000b184 <_Heap_Free+0x12c>
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
3000b1f8: e086c00c add ip, r6, ip
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b1fc: e38c3001 orr r3, ip, #1
3000b200: e58a3004 str r3, [sl, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b204: e5923004 ldr r3, [r2, #4]
next_block->prev_size = size;
3000b208: e785c006 str ip, [r5, r6]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b20c: e3c33001 bic r3, r3, #1
3000b210: e5823004 str r3, [r2, #4]
3000b214: eaffffda b 3000b184 <_Heap_Free+0x12c>
300129a8 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
300129a8: e92d40f0 push {r4, r5, r6, r7, lr}
300129ac: e1a04000 mov r4, r0
300129b0: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
300129b4: e1a00001 mov r0, r1
300129b8: e5941010 ldr r1, [r4, #16]
300129bc: e1a07002 mov r7, r2
300129c0: ebfff6ac bl 30010478 <__umodsi3>
300129c4: e2456008 sub r6, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
300129c8: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
300129cc: e0600006 rsb r0, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
300129d0: e1500003 cmp r0, r3
300129d4: 3a000010 bcc 30012a1c <_Heap_Size_of_alloc_area+0x74>
300129d8: e5942024 ldr r2, [r4, #36] ; 0x24
300129dc: e1500002 cmp r0, r2
300129e0: 8a00000d bhi 30012a1c <_Heap_Size_of_alloc_area+0x74>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
300129e4: e5906004 ldr r6, [r0, #4]
300129e8: e3c66001 bic r6, r6, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
300129ec: e0806006 add r6, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
300129f0: e1530006 cmp r3, r6
300129f4: 8a000008 bhi 30012a1c <_Heap_Size_of_alloc_area+0x74>
300129f8: e1520006 cmp r2, r6
300129fc: 3a000008 bcc 30012a24 <_Heap_Size_of_alloc_area+0x7c>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
30012a00: e5960004 ldr r0, [r6, #4]
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
30012a04: e2100001 ands r0, r0, #1
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
30012a08: 12655004 rsbne r5, r5, #4
30012a0c: 10856006 addne r6, r5, r6
30012a10: 15876000 strne r6, [r7]
return true;
30012a14: 13a00001 movne r0, #1
30012a18: e8bd80f0 pop {r4, r5, r6, r7, pc}
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
) {
return false;
30012a1c: e3a00000 mov r0, #0
30012a20: e8bd80f0 pop {r4, r5, r6, r7, pc}
30012a24: e3a00000 mov r0, #0 <== NOT EXECUTED
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
}
30012a28: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
30007580 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
30007580: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
30007584: e59f35cc ldr r3, [pc, #1484] ; 30007b58 <_Heap_Walk+0x5d8>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
30007588: e31200ff tst r2, #255 ; 0xff
if ( !_System_state_Is_up( _System_state_Get() ) ) {
3000758c: e5933000 ldr r3, [r3]
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
30007590: e59f25c4 ldr r2, [pc, #1476] ; 30007b5c <_Heap_Walk+0x5dc>
30007594: e59f95c4 ldr r9, [pc, #1476] ; 30007b60 <_Heap_Walk+0x5e0>
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
30007598: e1a0a001 mov sl, r1
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
3000759c: 11a09002 movne r9, r2
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
300075a0: e5901010 ldr r1, [r0, #16]
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
300075a4: e3530003 cmp r3, #3
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
300075a8: e5902014 ldr r2, [r0, #20]
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
300075ac: e5903024 ldr r3, [r0, #36] ; 0x24
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
300075b0: e24dd038 sub sp, sp, #56 ; 0x38
300075b4: e1a04000 mov r4, r0
uintptr_t const page_size = heap->page_size;
300075b8: e58d1024 str r1, [sp, #36] ; 0x24
uintptr_t const min_block_size = heap->min_block_size;
300075bc: e58d2028 str r2, [sp, #40] ; 0x28
Heap_Block *const first_block = heap->first_block;
300075c0: e5908020 ldr r8, [r0, #32]
Heap_Block *const last_block = heap->last_block;
300075c4: e58d302c str r3, [sp, #44] ; 0x2c
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
300075c8: 0a000002 beq 300075d8 <_Heap_Walk+0x58>
}
block = next_block;
} while ( block != first_block );
return true;
300075cc: e3a00001 mov r0, #1
}
300075d0: e28dd038 add sp, sp, #56 ; 0x38
300075d4: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
300075d8: e594101c ldr r1, [r4, #28]
300075dc: e5900018 ldr r0, [r0, #24]
300075e0: e5942008 ldr r2, [r4, #8]
300075e4: e594300c ldr r3, [r4, #12]
300075e8: e59dc028 ldr ip, [sp, #40] ; 0x28
300075ec: e58d1008 str r1, [sp, #8]
300075f0: e59d102c ldr r1, [sp, #44] ; 0x2c
300075f4: e58d0004 str r0, [sp, #4]
300075f8: e58d1010 str r1, [sp, #16]
300075fc: e58d2014 str r2, [sp, #20]
30007600: e58d3018 str r3, [sp, #24]
30007604: e59f2558 ldr r2, [pc, #1368] ; 30007b64 <_Heap_Walk+0x5e4>
30007608: e58dc000 str ip, [sp]
3000760c: e58d800c str r8, [sp, #12]
30007610: e1a0000a mov r0, sl
30007614: e3a01000 mov r1, #0
30007618: e59d3024 ldr r3, [sp, #36] ; 0x24
3000761c: e1a0e00f mov lr, pc
30007620: e12fff19 bx r9
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
30007624: e59d2024 ldr r2, [sp, #36] ; 0x24
30007628: e3520000 cmp r2, #0
3000762c: 0a000026 beq 300076cc <_Heap_Walk+0x14c>
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
30007630: e59d3024 ldr r3, [sp, #36] ; 0x24
30007634: e2135007 ands r5, r3, #7
30007638: 1a00002a bne 300076e8 <_Heap_Walk+0x168>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
3000763c: e59d0028 ldr r0, [sp, #40] ; 0x28
30007640: e59d1024 ldr r1, [sp, #36] ; 0x24
30007644: ebffe552 bl 30000b94 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
30007648: e250b000 subs fp, r0, #0
3000764c: 1a00002c bne 30007704 <_Heap_Walk+0x184>
30007650: e2880008 add r0, r8, #8
30007654: e59d1024 ldr r1, [sp, #36] ; 0x24
30007658: ebffe54d bl 30000b94 <__umodsi3>
);
return false;
}
if (
3000765c: e2506000 subs r6, r0, #0
30007660: 1a00002f bne 30007724 <_Heap_Walk+0x1a4>
block = next_block;
} while ( block != first_block );
return true;
}
30007664: e598b004 ldr fp, [r8, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
30007668: e21b5001 ands r5, fp, #1
3000766c: 0a0000cd beq 300079a8 <_Heap_Walk+0x428>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
30007670: e59dc02c ldr ip, [sp, #44] ; 0x2c
30007674: e59c3004 ldr r3, [ip, #4]
30007678: e3c33001 bic r3, r3, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
3000767c: e08c3003 add r3, ip, r3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
30007680: e5935004 ldr r5, [r3, #4]
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
30007684: e2155001 ands r5, r5, #1
30007688: 0a000008 beq 300076b0 <_Heap_Walk+0x130>
);
return false;
}
if (
3000768c: e1580003 cmp r8, r3
30007690: 0a00002b beq 30007744 <_Heap_Walk+0x1c4>
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
30007694: e1a0000a mov r0, sl <== NOT EXECUTED
30007698: e3a01001 mov r1, #1 <== NOT EXECUTED
3000769c: e59f24c4 ldr r2, [pc, #1220] ; 30007b68 <_Heap_Walk+0x5e8> <== NOT EXECUTED
300076a0: e1a0e00f mov lr, pc <== NOT EXECUTED
300076a4: e12fff19 bx r9 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300076a8: e1a00006 mov r0, r6 <== NOT EXECUTED
300076ac: eaffffc7 b 300075d0 <_Heap_Walk+0x50> <== NOT EXECUTED
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
300076b0: e1a0000a mov r0, sl
300076b4: e3a01001 mov r1, #1
300076b8: e59f24ac ldr r2, [pc, #1196] ; 30007b6c <_Heap_Walk+0x5ec>
300076bc: e1a0e00f mov lr, pc
300076c0: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300076c4: e1a00005 mov r0, r5
300076c8: eaffffc0 b 300075d0 <_Heap_Walk+0x50>
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
300076cc: e1a0000a mov r0, sl
300076d0: e3a01001 mov r1, #1
300076d4: e59f2494 ldr r2, [pc, #1172] ; 30007b70 <_Heap_Walk+0x5f0>
300076d8: e1a0e00f mov lr, pc
300076dc: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300076e0: e59d0024 ldr r0, [sp, #36] ; 0x24
300076e4: eaffffb9 b 300075d0 <_Heap_Walk+0x50>
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
300076e8: e1a0000a mov r0, sl
300076ec: e3a01001 mov r1, #1
300076f0: e59f247c ldr r2, [pc, #1148] ; 30007b74 <_Heap_Walk+0x5f4>
300076f4: e1a0e00f mov lr, pc
300076f8: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300076fc: e3a00000 mov r0, #0
30007700: eaffffb2 b 300075d0 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
30007704: e1a0000a mov r0, sl
30007708: e3a01001 mov r1, #1
3000770c: e59f2464 ldr r2, [pc, #1124] ; 30007b78 <_Heap_Walk+0x5f8>
30007710: e59d3028 ldr r3, [sp, #40] ; 0x28
30007714: e1a0e00f mov lr, pc
30007718: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
3000771c: e1a00005 mov r0, r5
30007720: eaffffaa b 300075d0 <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
30007724: e1a0000a mov r0, sl
30007728: e3a01001 mov r1, #1
3000772c: e59f2448 ldr r2, [pc, #1096] ; 30007b7c <_Heap_Walk+0x5fc>
30007730: e1a03008 mov r3, r8
30007734: e1a0e00f mov lr, pc
30007738: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
3000773c: e1a0000b mov r0, fp
30007740: eaffffa2 b 300075d0 <_Heap_Walk+0x50>
block = next_block;
} while ( block != first_block );
return true;
}
30007744: e5945008 ldr r5, [r4, #8]
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
30007748: e5947010 ldr r7, [r4, #16]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
3000774c: e1540005 cmp r4, r5
30007750: 05943020 ldreq r3, [r4, #32]
30007754: 0a00000d beq 30007790 <_Heap_Walk+0x210>
block = next_block;
} while ( block != first_block );
return true;
}
30007758: e5943020 ldr r3, [r4, #32]
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000775c: e1530005 cmp r3, r5
30007760: 9a000097 bls 300079c4 <_Heap_Walk+0x444>
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
30007764: e1a0000a mov r0, sl
30007768: e3a01001 mov r1, #1
3000776c: e59f240c ldr r2, [pc, #1036] ; 30007b80 <_Heap_Walk+0x600>
30007770: e1a03005 mov r3, r5
30007774: e1a0e00f mov lr, pc
30007778: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
3000777c: e3a00000 mov r0, #0
30007780: eaffff92 b 300075d0 <_Heap_Walk+0x50>
30007784: e1a03008 mov r3, r8
30007788: e59db034 ldr fp, [sp, #52] ; 0x34
3000778c: e59d8030 ldr r8, [sp, #48] ; 0x30
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
30007790: e1a06008 mov r6, r8
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
30007794: e3cb7001 bic r7, fp, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
30007798: e0875006 add r5, r7, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000779c: e1530005 cmp r3, r5
300077a0: 9a000008 bls 300077c8 <_Heap_Walk+0x248>
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
300077a4: e1a0000a mov r0, sl
300077a8: e58d5000 str r5, [sp]
300077ac: e3a01001 mov r1, #1
300077b0: e59f23cc ldr r2, [pc, #972] ; 30007b84 <_Heap_Walk+0x604>
300077b4: e1a03006 mov r3, r6
300077b8: e1a0e00f mov lr, pc
300077bc: e12fff19 bx r9
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
300077c0: e3a00000 mov r0, #0
300077c4: eaffff81 b 300075d0 <_Heap_Walk+0x50>
300077c8: e5943024 ldr r3, [r4, #36] ; 0x24
300077cc: e1530005 cmp r3, r5
300077d0: 3afffff3 bcc 300077a4 <_Heap_Walk+0x224>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
300077d4: e59d1024 ldr r1, [sp, #36] ; 0x24
300077d8: e1a00007 mov r0, r7
300077dc: ebffe4ec bl 30000b94 <__umodsi3>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
300077e0: e59d102c ldr r1, [sp, #44] ; 0x2c
300077e4: e0563001 subs r3, r6, r1
300077e8: 13a03001 movne r3, #1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
300077ec: e3500000 cmp r0, #0
300077f0: 0a000001 beq 300077fc <_Heap_Walk+0x27c>
300077f4: e3530000 cmp r3, #0
300077f8: 1a0000aa bne 30007aa8 <_Heap_Walk+0x528>
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
300077fc: e59d2028 ldr r2, [sp, #40] ; 0x28
30007800: e1520007 cmp r2, r7
30007804: 9a000001 bls 30007810 <_Heap_Walk+0x290>
30007808: e3530000 cmp r3, #0
3000780c: 1a0000ae bne 30007acc <_Heap_Walk+0x54c>
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
30007810: e1560005 cmp r6, r5
30007814: 3a000001 bcc 30007820 <_Heap_Walk+0x2a0>
30007818: e3530000 cmp r3, #0
3000781c: 1a0000b4 bne 30007af4 <_Heap_Walk+0x574>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
30007820: e5953004 ldr r3, [r5, #4]
30007824: e20bb001 and fp, fp, #1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
30007828: e3130001 tst r3, #1
3000782c: 0a000018 beq 30007894 <_Heap_Walk+0x314>
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
30007830: e35b0000 cmp fp, #0
30007834: 0a00000c beq 3000786c <_Heap_Walk+0x2ec>
(*printer)(
30007838: e58d7000 str r7, [sp]
3000783c: e1a0000a mov r0, sl
30007840: e3a01000 mov r1, #0
30007844: e59f233c ldr r2, [pc, #828] ; 30007b88 <_Heap_Walk+0x608>
30007848: e1a03006 mov r3, r6
3000784c: e1a0e00f mov lr, pc
30007850: e12fff19 bx r9
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
30007854: e1580005 cmp r8, r5
30007858: 0affff5b beq 300075cc <_Heap_Walk+0x4c>
3000785c: e595b004 ldr fp, [r5, #4]
30007860: e5943020 ldr r3, [r4, #32]
30007864: e1a06005 mov r6, r5
30007868: eaffffc9 b 30007794 <_Heap_Walk+0x214>
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
3000786c: e58d7000 str r7, [sp]
30007870: e5963000 ldr r3, [r6]
30007874: e1a0000a mov r0, sl
30007878: e58d3004 str r3, [sp, #4]
3000787c: e1a0100b mov r1, fp
30007880: e59f2304 ldr r2, [pc, #772] ; 30007b8c <_Heap_Walk+0x60c>
30007884: e1a03006 mov r3, r6
30007888: e1a0e00f mov lr, pc
3000788c: e12fff19 bx r9
30007890: eaffffef b 30007854 <_Heap_Walk+0x2d4>
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
30007894: e596200c ldr r2, [r6, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
30007898: e5943008 ldr r3, [r4, #8]
block = next_block;
} while ( block != first_block );
return true;
}
3000789c: e594100c ldr r1, [r4, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
300078a0: e1530002 cmp r3, r2
300078a4: 059f02e4 ldreq r0, [pc, #740] ; 30007b90 <_Heap_Walk+0x610>
300078a8: 0a000003 beq 300078bc <_Heap_Walk+0x33c>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
300078ac: e59f32e0 ldr r3, [pc, #736] ; 30007b94 <_Heap_Walk+0x614>
300078b0: e1540002 cmp r4, r2
300078b4: e59f02dc ldr r0, [pc, #732] ; 30007b98 <_Heap_Walk+0x618>
300078b8: 01a00003 moveq r0, r3
block->next,
block->next == last_free_block ?
300078bc: e5963008 ldr r3, [r6, #8]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
300078c0: e1510003 cmp r1, r3
300078c4: 059f12d0 ldreq r1, [pc, #720] ; 30007b9c <_Heap_Walk+0x61c>
300078c8: 0a000003 beq 300078dc <_Heap_Walk+0x35c>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
300078cc: e59fc2cc ldr ip, [pc, #716] ; 30007ba0 <_Heap_Walk+0x620>
300078d0: e1540003 cmp r4, r3
300078d4: e59f12bc ldr r1, [pc, #700] ; 30007b98 <_Heap_Walk+0x618>
300078d8: 01a0100c moveq r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
300078dc: e58d2004 str r2, [sp, #4]
300078e0: e58d0008 str r0, [sp, #8]
300078e4: e58d300c str r3, [sp, #12]
300078e8: e58d1010 str r1, [sp, #16]
300078ec: e1a03006 mov r3, r6
300078f0: e58d7000 str r7, [sp]
300078f4: e1a0000a mov r0, sl
300078f8: e3a01000 mov r1, #0
300078fc: e59f22a0 ldr r2, [pc, #672] ; 30007ba4 <_Heap_Walk+0x624>
30007900: e1a0e00f mov lr, pc
30007904: e12fff19 bx r9
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
30007908: e5953000 ldr r3, [r5]
3000790c: e1570003 cmp r7, r3
30007910: 1a000011 bne 3000795c <_Heap_Walk+0x3dc>
);
return false;
}
if ( !prev_used ) {
30007914: e35b0000 cmp fp, #0
30007918: 0a00001a beq 30007988 <_Heap_Walk+0x408>
block = next_block;
} while ( block != first_block );
return true;
}
3000791c: e5943008 ldr r3, [r4, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
30007920: e1540003 cmp r4, r3
30007924: 0a000004 beq 3000793c <_Heap_Walk+0x3bc>
if ( free_block == block ) {
30007928: e1560003 cmp r6, r3
3000792c: 0affffc8 beq 30007854 <_Heap_Walk+0x2d4>
return true;
}
free_block = free_block->next;
30007930: e5933008 ldr r3, [r3, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
30007934: e1540003 cmp r4, r3
30007938: 1afffffa bne 30007928 <_Heap_Walk+0x3a8>
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
3000793c: e1a0000a mov r0, sl
30007940: e3a01001 mov r1, #1
30007944: e59f225c ldr r2, [pc, #604] ; 30007ba8 <_Heap_Walk+0x628>
30007948: e1a03006 mov r3, r6
3000794c: e1a0e00f mov lr, pc
30007950: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
30007954: e3a00000 mov r0, #0
30007958: eaffff1c b 300075d0 <_Heap_Walk+0x50>
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
3000795c: e58d3004 str r3, [sp, #4]
30007960: e1a0000a mov r0, sl
30007964: e58d7000 str r7, [sp]
30007968: e58d5008 str r5, [sp, #8]
3000796c: e3a01001 mov r1, #1
30007970: e59f2234 ldr r2, [pc, #564] ; 30007bac <_Heap_Walk+0x62c>
30007974: e1a03006 mov r3, r6
30007978: e1a0e00f mov lr, pc
3000797c: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
30007980: e3a00000 mov r0, #0
30007984: eaffff11 b 300075d0 <_Heap_Walk+0x50>
return false;
}
if ( !prev_used ) {
(*printer)(
30007988: e1a0000a mov r0, sl
3000798c: e3a01001 mov r1, #1
30007990: e59f2218 ldr r2, [pc, #536] ; 30007bb0 <_Heap_Walk+0x630>
30007994: e1a03006 mov r3, r6
30007998: e1a0e00f mov lr, pc
3000799c: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
300079a0: e1a0000b mov r0, fp
300079a4: eaffff09 b 300075d0 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
300079a8: e1a0000a mov r0, sl
300079ac: e3a01001 mov r1, #1
300079b0: e59f21fc ldr r2, [pc, #508] ; 30007bb4 <_Heap_Walk+0x634>
300079b4: e1a0e00f mov lr, pc
300079b8: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300079bc: e1a00005 mov r0, r5
300079c0: eaffff02 b 300075d0 <_Heap_Walk+0x50>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
300079c4: e594c024 ldr ip, [r4, #36] ; 0x24
300079c8: e15c0005 cmp ip, r5
300079cc: 3affff64 bcc 30007764 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
300079d0: e2850008 add r0, r5, #8
300079d4: e1a01007 mov r1, r7
300079d8: e58d3020 str r3, [sp, #32]
300079dc: e58dc01c str ip, [sp, #28]
300079e0: ebffe46b bl 30000b94 <__umodsi3>
);
return false;
}
if (
300079e4: e3500000 cmp r0, #0
300079e8: e59d3020 ldr r3, [sp, #32]
300079ec: e59dc01c ldr ip, [sp, #28]
300079f0: 1a000048 bne 30007b18 <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
300079f4: e5952004 ldr r2, [r5, #4]
300079f8: e3c22001 bic r2, r2, #1
block = next_block;
} while ( block != first_block );
return true;
}
300079fc: e0852002 add r2, r5, r2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
30007a00: e5922004 ldr r2, [r2, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
30007a04: e3120001 tst r2, #1
30007a08: 1a00004a bne 30007b38 <_Heap_Walk+0x5b8>
30007a0c: e58d8030 str r8, [sp, #48] ; 0x30
30007a10: e58db034 str fp, [sp, #52] ; 0x34
30007a14: e1a01004 mov r1, r4
30007a18: e1a06005 mov r6, r5
30007a1c: e1a08003 mov r8, r3
30007a20: e1a0b00c mov fp, ip
30007a24: ea000013 b 30007a78 <_Heap_Walk+0x4f8>
return false;
}
prev_block = free_block;
free_block = free_block->next;
30007a28: e5955008 ldr r5, [r5, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
30007a2c: e1540005 cmp r4, r5
30007a30: 0affff53 beq 30007784 <_Heap_Walk+0x204>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30007a34: e1580005 cmp r8, r5
30007a38: 8affff49 bhi 30007764 <_Heap_Walk+0x1e4>
30007a3c: e155000b cmp r5, fp
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
30007a40: e2850008 add r0, r5, #8
30007a44: e1a01007 mov r1, r7
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30007a48: 8affff45 bhi 30007764 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
30007a4c: ebffe450 bl 30000b94 <__umodsi3>
);
return false;
}
if (
30007a50: e3500000 cmp r0, #0
30007a54: 1a00002f bne 30007b18 <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
30007a58: e5953004 ldr r3, [r5, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
30007a5c: e1a01006 mov r1, r6
30007a60: e3c33001 bic r3, r3, #1
block = next_block;
} while ( block != first_block );
return true;
}
30007a64: e0833005 add r3, r3, r5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
30007a68: e5933004 ldr r3, [r3, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
30007a6c: e1a06005 mov r6, r5
30007a70: e3130001 tst r3, #1
30007a74: 1a00002f bne 30007b38 <_Heap_Walk+0x5b8>
);
return false;
}
if ( free_block->prev != prev_block ) {
30007a78: e595200c ldr r2, [r5, #12]
30007a7c: e1520001 cmp r2, r1
30007a80: 0affffe8 beq 30007a28 <_Heap_Walk+0x4a8>
(*printer)(
30007a84: e58d2000 str r2, [sp]
30007a88: e1a0000a mov r0, sl
30007a8c: e3a01001 mov r1, #1
30007a90: e59f2120 ldr r2, [pc, #288] ; 30007bb8 <_Heap_Walk+0x638>
30007a94: e1a03005 mov r3, r5
30007a98: e1a0e00f mov lr, pc
30007a9c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007aa0: e3a00000 mov r0, #0
30007aa4: eafffec9 b 300075d0 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
30007aa8: e1a0000a mov r0, sl
30007aac: e58d7000 str r7, [sp]
30007ab0: e3a01001 mov r1, #1
30007ab4: e59f2100 ldr r2, [pc, #256] ; 30007bbc <_Heap_Walk+0x63c>
30007ab8: e1a03006 mov r3, r6
30007abc: e1a0e00f mov lr, pc
30007ac0: e12fff19 bx r9
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
30007ac4: e3a00000 mov r0, #0
30007ac8: eafffec0 b 300075d0 <_Heap_Walk+0x50>
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
30007acc: e58d2004 str r2, [sp, #4]
30007ad0: e1a0000a mov r0, sl
30007ad4: e58d7000 str r7, [sp]
30007ad8: e3a01001 mov r1, #1
30007adc: e59f20dc ldr r2, [pc, #220] ; 30007bc0 <_Heap_Walk+0x640>
30007ae0: e1a03006 mov r3, r6
30007ae4: e1a0e00f mov lr, pc
30007ae8: e12fff19 bx r9
block,
block_size,
min_block_size
);
return false;
30007aec: e3a00000 mov r0, #0
30007af0: eafffeb6 b 300075d0 <_Heap_Walk+0x50>
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
30007af4: e1a0000a mov r0, sl
30007af8: e58d5000 str r5, [sp]
30007afc: e3a01001 mov r1, #1
30007b00: e59f20bc ldr r2, [pc, #188] ; 30007bc4 <_Heap_Walk+0x644>
30007b04: e1a03006 mov r3, r6
30007b08: e1a0e00f mov lr, pc
30007b0c: e12fff19 bx r9
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
30007b10: e3a00000 mov r0, #0
30007b14: eafffead b 300075d0 <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
30007b18: e1a0000a mov r0, sl
30007b1c: e3a01001 mov r1, #1
30007b20: e59f20a0 ldr r2, [pc, #160] ; 30007bc8 <_Heap_Walk+0x648>
30007b24: e1a03005 mov r3, r5
30007b28: e1a0e00f mov lr, pc
30007b2c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007b30: e3a00000 mov r0, #0
30007b34: eafffea5 b 300075d0 <_Heap_Walk+0x50>
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
30007b38: e1a0000a mov r0, sl
30007b3c: e3a01001 mov r1, #1
30007b40: e59f2084 ldr r2, [pc, #132] ; 30007bcc <_Heap_Walk+0x64c>
30007b44: e1a03005 mov r3, r5
30007b48: e1a0e00f mov lr, pc
30007b4c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007b50: e3a00000 mov r0, #0
30007b54: eafffe9d b 300075d0 <_Heap_Walk+0x50>
30006964 <_Internal_error_Occurred>:
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
30006964: e59f303c ldr r3, [pc, #60] ; 300069a8 <_Internal_error_Occurred+0x44>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30006968: e201c0ff and ip, r1, #255 ; 0xff
3000696c: e52de004 push {lr} ; (str lr, [sp, #-4]!)
_Internal_errors_What_happened.the_source = the_source;
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
30006970: e1a0100c mov r1, ip
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
30006974: e5830000 str r0, [r3]
_Internal_errors_What_happened.is_internal = is_internal;
30006978: e5c3c004 strb ip, [r3, #4]
_Internal_errors_What_happened.the_error = the_error;
3000697c: e5832008 str r2, [r3, #8]
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30006980: e1a04002 mov r4, r2
_Internal_errors_What_happened.the_source = the_source;
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
30006984: eb000777 bl 30008768 <_User_extensions_Fatal>
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
30006988: e59f301c ldr r3, [pc, #28] ; 300069ac <_Internal_error_Occurred+0x48><== NOT EXECUTED
3000698c: e3a02005 mov r2, #5 <== NOT EXECUTED
30006990: e5832000 str r2, [r3] <== NOT EXECUTED
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
30006994: e10f2000 mrs r2, CPSR <== NOT EXECUTED
30006998: e3823080 orr r3, r2, #128 ; 0x80 <== NOT EXECUTED
3000699c: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
300069a0: e1a00004 mov r0, r4 <== NOT EXECUTED
300069a4: eafffffe b 300069a4 <_Internal_error_Occurred+0x40> <== NOT EXECUTED
30006a6c <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
30006a6c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006a70: e5904034 ldr r4, [r0, #52] ; 0x34
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
30006a74: e24dd014 sub sp, sp, #20
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006a78: e3540000 cmp r4, #0
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
30006a7c: e1a05000 mov r5, r0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006a80: e1d070b8 ldrh r7, [r0, #8]
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006a84: 0a00009b beq 30006cf8 <_Objects_Extend_information+0x28c>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
30006a88: e1d081b4 ldrh r8, [r0, #20]
30006a8c: e1d0a1b0 ldrh sl, [r0, #16]
30006a90: e1a01008 mov r1, r8
30006a94: e1a0000a mov r0, sl
30006a98: eb002630 bl 30010360 <__aeabi_uidiv>
30006a9c: e1a03800 lsl r3, r0, #16
for ( ; block < block_count; block++ ) {
30006aa0: e1b03823 lsrs r3, r3, #16
30006aa4: 0a000099 beq 30006d10 <_Objects_Extend_information+0x2a4>
if ( information->object_blocks[ block ] == NULL ) {
30006aa8: e5949000 ldr r9, [r4]
30006aac: e3590000 cmp r9, #0
30006ab0: 01a01008 moveq r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006ab4: 01a06007 moveq r6, r7
index_base = minimum_index;
block = 0;
30006ab8: 01a04009 moveq r4, r9
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
30006abc: 0a00000c beq 30006af4 <_Objects_Extend_information+0x88>
30006ac0: e1a02004 mov r2, r4
30006ac4: e1a01008 mov r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006ac8: e1a06007 mov r6, r7
index_base = minimum_index;
block = 0;
30006acc: e3a04000 mov r4, #0
30006ad0: ea000002 b 30006ae0 <_Objects_Extend_information+0x74>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
30006ad4: e5b29004 ldr r9, [r2, #4]!
30006ad8: e3590000 cmp r9, #0
30006adc: 0a000004 beq 30006af4 <_Objects_Extend_information+0x88>
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
30006ae0: e2844001 add r4, r4, #1
30006ae4: e1530004 cmp r3, r4
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
30006ae8: e0866008 add r6, r6, r8
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
30006aec: 8afffff8 bhi 30006ad4 <_Objects_Extend_information+0x68>
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
30006af0: e3a09001 mov r9, #1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
30006af4: e08aa001 add sl, sl, r1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
30006af8: e35a0801 cmp sl, #65536 ; 0x10000
30006afc: 2a000063 bcs 30006c90 <_Objects_Extend_information+0x224>
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
30006b00: e5d52012 ldrb r2, [r5, #18]
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
30006b04: e5950018 ldr r0, [r5, #24]
if ( information->auto_extend ) {
30006b08: e3520000 cmp r2, #0
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
30006b0c: e0000091 mul r0, r1, r0
if ( information->auto_extend ) {
30006b10: 1a000060 bne 30006c98 <_Objects_Extend_information+0x22c>
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
30006b14: e58d3000 str r3, [sp]
30006b18: eb000855 bl 30008c74 <_Workspace_Allocate_or_fatal_error>
30006b1c: e59d3000 ldr r3, [sp]
30006b20: e1a08000 mov r8, r0
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
30006b24: e3590000 cmp r9, #0
30006b28: 0a000039 beq 30006c14 <_Objects_Extend_information+0x1a8>
*/
/*
* Up the block count and maximum
*/
block_count++;
30006b2c: e283b001 add fp, r3, #1
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
30006b30: e08b008b add r0, fp, fp, lsl #1
((maximum + minimum_index) * sizeof(Objects_Control *));
30006b34: e08a0000 add r0, sl, r0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
30006b38: e0800007 add r0, r0, r7
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
30006b3c: e1a00100 lsl r0, r0, #2
30006b40: e58d3000 str r3, [sp]
30006b44: eb000840 bl 30008c4c <_Workspace_Allocate>
if ( !object_blocks ) {
30006b48: e2509000 subs r9, r0, #0
30006b4c: e59d3000 ldr r3, [sp]
30006b50: 0a000073 beq 30006d24 <_Objects_Extend_information+0x2b8>
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
30006b54: e1d521b0 ldrh r2, [r5, #16]
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset (
const void *base,
uintptr_t offset
)
{
return (void *)((uintptr_t)base + offset);
30006b58: e089c10b add ip, r9, fp, lsl #2
30006b5c: e1570002 cmp r7, r2
30006b60: e089b18b add fp, r9, fp, lsl #3
30006b64: 3a000051 bcc 30006cb0 <_Objects_Extend_information+0x244>
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
30006b68: e3570000 cmp r7, #0
30006b6c: 13a02000 movne r2, #0
30006b70: 11a0100b movne r1, fp
local_table[ index ] = NULL;
30006b74: 11a00002 movne r0, r2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
30006b78: 0a000003 beq 30006b8c <_Objects_Extend_information+0x120>
30006b7c: e2822001 add r2, r2, #1
30006b80: e1570002 cmp r7, r2
local_table[ index ] = NULL;
30006b84: e4810004 str r0, [r1], #4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
30006b88: 8afffffb bhi 30006b7c <_Objects_Extend_information+0x110>
30006b8c: e1a03103 lsl r3, r3, #2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
30006b90: e1d511b4 ldrh r1, [r5, #20]
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
30006b94: e3a00000 mov r0, #0
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
30006b98: e0861001 add r1, r6, r1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
30006b9c: e1560001 cmp r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
30006ba0: e7890003 str r0, [r9, r3]
inactive_per_block[block_count] = 0;
30006ba4: e78c0003 str r0, [ip, r3]
for ( index=index_base ;
30006ba8: 2a000005 bcs 30006bc4 <_Objects_Extend_information+0x158>
30006bac: e08b2106 add r2, fp, r6, lsl #2
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
30006bb0: e1a03006 mov r3, r6
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
30006bb4: e2833001 add r3, r3, #1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
30006bb8: e1530001 cmp r3, r1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
30006bbc: e4820004 str r0, [r2], #4
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
30006bc0: 3afffffb bcc 30006bb4 <_Objects_Extend_information+0x148>
30006bc4: e10f3000 mrs r3, CPSR
30006bc8: e3832080 orr r2, r3, #128 ; 0x80
30006bcc: e129f002 msr CPSR_fc, r2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
30006bd0: e5952000 ldr r2, [r5]
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
30006bd4: e1d510b4 ldrh r1, [r5, #4]
30006bd8: e1a02c02 lsl r2, r2, #24
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
30006bdc: e1a0a80a lsl sl, sl, #16
30006be0: e3822801 orr r2, r2, #65536 ; 0x10000
30006be4: e1a0a82a lsr sl, sl, #16
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
30006be8: e1822d81 orr r2, r2, r1, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
30006bec: e182200a orr r2, r2, sl
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
30006bf0: e5950034 ldr r0, [r5, #52] ; 0x34
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
30006bf4: e585c030 str ip, [r5, #48] ; 0x30
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
30006bf8: e5859034 str r9, [r5, #52] ; 0x34
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
30006bfc: e585b01c str fp, [r5, #28]
information->maximum = (Objects_Maximum) maximum;
30006c00: e1c5a1b0 strh sl, [r5, #16]
information->maximum_id = _Objects_Build_id(
30006c04: e585200c str r2, [r5, #12]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
30006c08: e129f003 msr CPSR_fc, r3
information->maximum
);
_ISR_Enable( level );
if ( old_tables )
30006c0c: e3500000 cmp r0, #0
_Workspace_Free( old_tables );
30006c10: 1b000813 blne 30008c64 <_Workspace_Free>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
30006c14: e5953034 ldr r3, [r5, #52] ; 0x34
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
30006c18: e28d7008 add r7, sp, #8
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
30006c1c: e7838104 str r8, [r3, r4, lsl #2]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
30006c20: e1a01008 mov r1, r8
30006c24: e1a00007 mov r0, r7
30006c28: e1d521b4 ldrh r2, [r5, #20]
30006c2c: e5953018 ldr r3, [r5, #24]
30006c30: eb000fe7 bl 3000abd4 <_Chain_Initialize>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
30006c34: e1a04104 lsl r4, r4, #2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
30006c38: e2858020 add r8, r5, #32
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
30006c3c: ea000009 b 30006c68 <_Objects_Extend_information+0x1fc>
30006c40: e5953000 ldr r3, [r5]
the_object->id = _Objects_Build_id(
30006c44: e1d520b4 ldrh r2, [r5, #4]
30006c48: e1a03c03 lsl r3, r3, #24
30006c4c: e3833801 orr r3, r3, #65536 ; 0x10000
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
30006c50: e1833d82 orr r3, r3, r2, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
30006c54: e1833006 orr r3, r3, r6
30006c58: e5813008 str r3, [r1, #8]
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
30006c5c: e1a00008 mov r0, r8
30006c60: ebfffce8 bl 30006008 <_Chain_Append>
index++;
30006c64: e2866001 add r6, r6, #1
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
30006c68: e1a00007 mov r0, r7
30006c6c: ebfffcf8 bl 30006054 <_Chain_Get>
30006c70: e2501000 subs r1, r0, #0
30006c74: 1afffff1 bne 30006c40 <_Objects_Extend_information+0x1d4>
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
30006c78: e1d522bc ldrh r2, [r5, #44] ; 0x2c
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
30006c7c: e1d531b4 ldrh r3, [r5, #20]
30006c80: e5951030 ldr r1, [r5, #48] ; 0x30
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
30006c84: e0832002 add r2, r3, r2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
30006c88: e7813004 str r3, [r1, r4]
information->inactive =
30006c8c: e1c522bc strh r2, [r5, #44] ; 0x2c
(Objects_Maximum)(information->inactive + information->allocation_size);
}
30006c90: e28dd014 add sp, sp, #20
30006c94: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
30006c98: e58d3000 str r3, [sp]
30006c9c: eb0007ea bl 30008c4c <_Workspace_Allocate>
if ( !new_object_block )
30006ca0: e2508000 subs r8, r0, #0
30006ca4: e59d3000 ldr r3, [sp]
30006ca8: 1affff9d bne 30006b24 <_Objects_Extend_information+0xb8>
30006cac: eafffff7 b 30006c90 <_Objects_Extend_information+0x224>
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
30006cb0: e1a03103 lsl r3, r3, #2
30006cb4: e5951034 ldr r1, [r5, #52] ; 0x34
30006cb8: e1a02003 mov r2, r3
30006cbc: e88d1008 stm sp, {r3, ip}
30006cc0: eb001a35 bl 3000d59c <memcpy>
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
30006cc4: e89d1008 ldm sp, {r3, ip}
30006cc8: e1a0000c mov r0, ip
30006ccc: e1a02003 mov r2, r3
30006cd0: e5951030 ldr r1, [r5, #48] ; 0x30
30006cd4: eb001a30 bl 3000d59c <memcpy>
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
30006cd8: e1d521b0 ldrh r2, [r5, #16]
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
30006cdc: e1a0000b mov r0, fp
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
30006ce0: e0872002 add r2, r7, r2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
30006ce4: e595101c ldr r1, [r5, #28]
30006ce8: e1a02102 lsl r2, r2, #2
30006cec: eb001a2a bl 3000d59c <memcpy>
30006cf0: e89d1008 ldm sp, {r3, ip}
30006cf4: eaffffa5 b 30006b90 <_Objects_Extend_information+0x124>
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006cf8: e1d0a1b0 ldrh sl, [r0, #16]
30006cfc: e1d011b4 ldrh r1, [r0, #20]
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006d00: e1a06007 mov r6, r7
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
30006d04: e3a09001 mov r9, #1
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
30006d08: e1a03004 mov r3, r4
30006d0c: eaffff78 b 30006af4 <_Objects_Extend_information+0x88>
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
30006d10: e1a01008 mov r1, r8 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006d14: e1a06007 mov r6, r7 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
30006d18: e3a09001 mov r9, #1 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
30006d1c: e1a04003 mov r4, r3 <== NOT EXECUTED
30006d20: eaffff73 b 30006af4 <_Objects_Extend_information+0x88> <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
30006d24: e1a00008 mov r0, r8
30006d28: eb0007cd bl 30008c64 <_Workspace_Free>
return;
30006d2c: eaffffd7 b 30006c90 <_Objects_Extend_information+0x224>
30007074 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
30007074: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
30007078: e1d040b8 ldrh r4, [r0, #8]
block_count = (information->maximum - index_base) /
3000707c: e1d051b4 ldrh r5, [r0, #20]
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
30007080: e1a06000 mov r6, r0
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
30007084: e1d001b0 ldrh r0, [r0, #16]
30007088: e1a01005 mov r1, r5
3000708c: e0640000 rsb r0, r4, r0
30007090: eb0024b2 bl 30010360 <__aeabi_uidiv>
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
30007094: e3500000 cmp r0, #0
30007098: 08bd80f0 popeq {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
3000709c: e5962030 ldr r2, [r6, #48] ; 0x30
300070a0: e5923000 ldr r3, [r2]
300070a4: e1550003 cmp r5, r3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
300070a8: 13a03000 movne r3, #0
if ( information->inactive_per_block[ block ] ==
300070ac: 1a000005 bne 300070c8 <_Objects_Shrink_information+0x54>
300070b0: ea000008 b 300070d8 <_Objects_Shrink_information+0x64> <== NOT EXECUTED
300070b4: e5b21004 ldr r1, [r2, #4]!
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
300070b8: e0844005 add r4, r4, r5
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
300070bc: e1550001 cmp r5, r1
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
300070c0: e1a07103 lsl r7, r3, #2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
300070c4: 0a000004 beq 300070dc <_Objects_Shrink_information+0x68>
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
300070c8: e2833001 add r3, r3, #1
300070cc: e1500003 cmp r0, r3
300070d0: 8afffff7 bhi 300070b4 <_Objects_Shrink_information+0x40>
300070d4: e8bd80f0 pop {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
300070d8: e3a07000 mov r7, #0 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
300070dc: e5960020 ldr r0, [r6, #32]
300070e0: ea000002 b 300070f0 <_Objects_Shrink_information+0x7c>
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
300070e4: e3550000 cmp r5, #0
300070e8: 0a00000b beq 3000711c <_Objects_Shrink_information+0xa8>
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
300070ec: e1a00005 mov r0, r5
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
300070f0: e1d030b8 ldrh r3, [r0, #8]
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
300070f4: e5905000 ldr r5, [r0]
if ((index >= index_base) &&
300070f8: e1530004 cmp r3, r4
300070fc: 3afffff8 bcc 300070e4 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
30007100: e1d621b4 ldrh r2, [r6, #20]
30007104: e0842002 add r2, r4, r2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
30007108: e1530002 cmp r3, r2
3000710c: 2afffff4 bcs 300070e4 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
30007110: ebfffbc7 bl 30006034 <_Chain_Extract>
}
}
while ( the_object );
30007114: e3550000 cmp r5, #0
30007118: 1afffff3 bne 300070ec <_Objects_Shrink_information+0x78>
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
3000711c: e5963034 ldr r3, [r6, #52] ; 0x34
30007120: e7930007 ldr r0, [r3, r7]
30007124: eb0006ce bl 30008c64 <_Workspace_Free>
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
30007128: e1d602bc ldrh r0, [r6, #44] ; 0x2c
3000712c: e1d631b4 ldrh r3, [r6, #20]
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
30007130: e5961034 ldr r1, [r6, #52] ; 0x34
information->inactive_per_block[ block ] = 0;
30007134: e5962030 ldr r2, [r6, #48] ; 0x30
information->inactive -= information->allocation_size;
30007138: e0633000 rsb r3, r3, r0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
3000713c: e7815007 str r5, [r1, r7]
information->inactive_per_block[ block ] = 0;
30007140: e7825007 str r5, [r2, r7]
information->inactive -= information->allocation_size;
30007144: e1c632bc strh r3, [r6, #44] ; 0x2c
return;
30007148: e8bd80f0 pop {r4, r5, r6, r7, pc}
300066d0 <_TOD_Validate>:
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
300066d0: e59f30b0 ldr r3, [pc, #176] ; 30006788 <_TOD_Validate+0xb8>
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
300066d4: e92d4010 push {r4, lr}
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
300066d8: e2504000 subs r4, r0, #0
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
300066dc: e593100c ldr r1, [r3, #12]
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
300066e0: 01a00004 moveq r0, r4
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
300066e4: 08bd8010 popeq {r4, pc}
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
300066e8: e59f009c ldr r0, [pc, #156] ; 3000678c <_TOD_Validate+0xbc>
300066ec: eb0044f8 bl 30017ad4 <__aeabi_uidiv>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
300066f0: e5943018 ldr r3, [r4, #24]
300066f4: e1500003 cmp r0, r3
300066f8: 9a00001e bls 30006778 <_TOD_Validate+0xa8>
(the_tod->ticks >= ticks_per_second) ||
300066fc: e5943014 ldr r3, [r4, #20]
30006700: e353003b cmp r3, #59 ; 0x3b
30006704: 8a00001b bhi 30006778 <_TOD_Validate+0xa8>
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
30006708: e5943010 ldr r3, [r4, #16]
3000670c: e353003b cmp r3, #59 ; 0x3b
30006710: 8a000018 bhi 30006778 <_TOD_Validate+0xa8>
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
30006714: e594300c ldr r3, [r4, #12]
30006718: e3530017 cmp r3, #23
3000671c: 8a000015 bhi 30006778 <_TOD_Validate+0xa8>
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
30006720: e5940004 ldr r0, [r4, #4]
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
30006724: e3500000 cmp r0, #0
30006728: 08bd8010 popeq {r4, pc}
(the_tod->month == 0) ||
3000672c: e350000c cmp r0, #12
30006730: 8a000010 bhi 30006778 <_TOD_Validate+0xa8>
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
30006734: e5943000 ldr r3, [r4]
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
30006738: e59f2050 ldr r2, [pc, #80] ; 30006790 <_TOD_Validate+0xc0>
3000673c: e1530002 cmp r3, r2
30006740: 9a00000c bls 30006778 <_TOD_Validate+0xa8>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
30006744: e5944008 ldr r4, [r4, #8]
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
30006748: e3540000 cmp r4, #0
3000674c: 0a00000b beq 30006780 <_TOD_Validate+0xb0>
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
30006750: e3130003 tst r3, #3
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
30006754: 059f3038 ldreq r3, [pc, #56] ; 30006794 <_TOD_Validate+0xc4>
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
30006758: 159f3034 ldrne r3, [pc, #52] ; 30006794 <_TOD_Validate+0xc4>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
3000675c: 0280000d addeq r0, r0, #13
30006760: 07930100 ldreq r0, [r3, r0, lsl #2]
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
30006764: 17930100 ldrne r0, [r3, r0, lsl #2]
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
30006768: e1500004 cmp r0, r4
3000676c: 33a00000 movcc r0, #0
30006770: 23a00001 movcs r0, #1
30006774: e8bd8010 pop {r4, pc}
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
30006778: e3a00000 mov r0, #0
3000677c: e8bd8010 pop {r4, pc}
30006780: e1a00004 mov r0, r4 <== NOT EXECUTED
if ( the_tod->day > days_in_month )
return false;
return true;
}
30006784: e8bd8010 pop {r4, pc} <== NOT EXECUTED
3000a2d8 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
3000a2d8: e5902000 ldr r2, [r0]
3000a2dc: e5913000 ldr r3, [r1]
3000a2e0: e1520003 cmp r2, r3
return true;
3000a2e4: c3a00001 movgt r0, #1
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
3000a2e8: c12fff1e bxgt lr
return true;
if ( lhs->tv_sec < rhs->tv_sec )
3000a2ec: ba000005 blt 3000a308 <_Timespec_Greater_than+0x30>
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
3000a2f0: e5900004 ldr r0, [r0, #4]
3000a2f4: e5913004 ldr r3, [r1, #4]
3000a2f8: e1500003 cmp r0, r3
3000a2fc: d3a00000 movle r0, #0
3000a300: c3a00001 movgt r0, #1
3000a304: e12fff1e bx lr
{
if ( lhs->tv_sec > rhs->tv_sec )
return true;
if ( lhs->tv_sec < rhs->tv_sec )
return false;
3000a308: e3a00000 mov r0, #0 <== NOT EXECUTED
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
3000a30c: e12fff1e bx lr <== NOT EXECUTED
30008768 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008768: e92d41f0 push {r4, r5, r6, r7, r8, lr}
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
3000876c: e59f5040 ldr r5, [pc, #64] ; 300087b4 <_User_extensions_Fatal+0x4c>
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008770: e1a08000 mov r8, r0
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
30008774: e5954008 ldr r4, [r5, #8]
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008778: e1a07002 mov r7, r2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
3000877c: e1540005 cmp r4, r5
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008780: e20160ff and r6, r1, #255 ; 0xff
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
30008784: 08bd81f0 popeq {r4, r5, r6, r7, r8, pc}
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
30008788: e5943030 ldr r3, [r4, #48] ; 0x30
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
3000878c: e1a00008 mov r0, r8
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
30008790: e3530000 cmp r3, #0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
30008794: e1a01006 mov r1, r6
30008798: e1a02007 mov r2, r7
3000879c: 11a0e00f movne lr, pc
300087a0: 112fff13 bxne r3
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
300087a4: e5944004 ldr r4, [r4, #4]
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
300087a8: e1540005 cmp r4, r5
300087ac: 1afffff5 bne 30008788 <_User_extensions_Fatal+0x20>
300087b0: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED
300087b8 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
300087b8: e92d40f0 push {r4, r5, r6, r7, lr}
return false;
}
}
return true;
}
300087bc: e59f5050 ldr r5, [pc, #80] ; 30008814 <_User_extensions_Thread_create+0x5c>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
300087c0: e1a06000 mov r6, r0
return false;
}
}
return true;
}
300087c4: e4954004 ldr r4, [r5], #4
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
300087c8: e1540005 cmp r4, r5
300087cc: 0a00000e beq 3000880c <_User_extensions_Thread_create+0x54>
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
300087d0: e59f7040 ldr r7, [pc, #64] ; 30008818 <_User_extensions_Thread_create+0x60>
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
300087d4: e5943014 ldr r3, [r4, #20]
status = (*the_extension->Callouts.thread_create)(
300087d8: e1a01006 mov r1, r6
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
300087dc: e3530000 cmp r3, #0
300087e0: 0a000004 beq 300087f8 <_User_extensions_Thread_create+0x40>
status = (*the_extension->Callouts.thread_create)(
300087e4: e5970004 ldr r0, [r7, #4]
300087e8: e1a0e00f mov lr, pc
300087ec: e12fff13 bx r3
_Thread_Executing,
the_thread
);
if ( !status )
300087f0: e3500000 cmp r0, #0
300087f4: 08bd80f0 popeq {r4, r5, r6, r7, pc}
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
300087f8: e5944000 ldr r4, [r4]
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
300087fc: e1540005 cmp r4, r5
30008800: 1afffff3 bne 300087d4 <_User_extensions_Thread_create+0x1c>
if ( !status )
return false;
}
}
return true;
30008804: e3a00001 mov r0, #1
30008808: e8bd80f0 pop {r4, r5, r6, r7, pc}
3000880c: e3a00001 mov r0, #1 <== NOT EXECUTED
}
30008810: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
3000a5f8 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
3000a5f8: e92d41f0 push {r4, r5, r6, r7, r8, lr}
3000a5fc: e1a04000 mov r4, r0
3000a600: e1a05002 mov r5, r2
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
3000a604: e10f3000 mrs r3, CPSR
3000a608: e3832080 orr r2, r3, #128 ; 0x80
3000a60c: e129f002 msr CPSR_fc, r2
}
}
_ISR_Enable( level );
}
3000a610: e1a07000 mov r7, r0
3000a614: e4972004 ldr r2, [r7], #4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
3000a618: e1520007 cmp r2, r7
3000a61c: 0a000018 beq 3000a684 <_Watchdog_Adjust+0x8c>
switch ( direction ) {
3000a620: e3510000 cmp r1, #0
3000a624: 1a000018 bne 3000a68c <_Watchdog_Adjust+0x94>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
3000a628: e3550000 cmp r5, #0
3000a62c: 0a000014 beq 3000a684 <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
3000a630: e5926010 ldr r6, [r2, #16]
3000a634: e1550006 cmp r5, r6
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
3000a638: 23a08001 movcs r8, #1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
3000a63c: 2a000005 bcs 3000a658 <_Watchdog_Adjust+0x60>
3000a640: ea000018 b 3000a6a8 <_Watchdog_Adjust+0xb0> <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
3000a644: e0555006 subs r5, r5, r6
3000a648: 0a00000d beq 3000a684 <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
3000a64c: e5926010 ldr r6, [r2, #16]
3000a650: e1560005 cmp r6, r5
3000a654: 8a000013 bhi 3000a6a8 <_Watchdog_Adjust+0xb0>
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
3000a658: e5828010 str r8, [r2, #16]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
3000a65c: e129f003 msr CPSR_fc, r3
_ISR_Enable( level );
_Watchdog_Tickle( header );
3000a660: e1a00004 mov r0, r4
3000a664: eb0000aa bl 3000a914 <_Watchdog_Tickle>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
3000a668: e10f3000 mrs r3, CPSR
3000a66c: e3832080 orr r2, r3, #128 ; 0x80
3000a670: e129f002 msr CPSR_fc, r2
}
}
_ISR_Enable( level );
}
3000a674: e5941000 ldr r1, [r4]
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
3000a678: e1570001 cmp r7, r1
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First(
Chain_Control *header
)
{
return ( (Watchdog_Control *) _Chain_First( header ) );
3000a67c: e1a02001 mov r2, r1
3000a680: 1affffef bne 3000a644 <_Watchdog_Adjust+0x4c>
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
3000a684: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
3000a688: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
3000a68c: e3510001 cmp r1, #1
3000a690: 1afffffb bne 3000a684 <_Watchdog_Adjust+0x8c>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
3000a694: e5921010 ldr r1, [r2, #16]
3000a698: e0815005 add r5, r1, r5
3000a69c: e5825010 str r5, [r2, #16]
3000a6a0: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
3000a6a4: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
3000a6a8: e0655006 rsb r5, r5, r6
3000a6ac: e5825010 str r5, [r2, #16]
break;
3000a6b0: eafffff3 b 3000a684 <_Watchdog_Adjust+0x8c>
300072e0 <rtems_io_register_driver>:
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
300072e0: e59fc150 ldr ip, [pc, #336] ; 30007438 <rtems_io_register_driver+0x158>
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
300072e4: e59f3150 ldr r3, [pc, #336] ; 3000743c <rtems_io_register_driver+0x15c>
if ( rtems_interrupt_is_in_progress() )
300072e8: e59cc000 ldr ip, [ip]
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
300072ec: e92d4030 push {r4, r5, lr}
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
300072f0: e35c0000 cmp ip, #0
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
300072f4: e1a04000 mov r4, r0
rtems_device_major_number major_limit = _IO_Number_of_drivers;
300072f8: e5930000 ldr r0, [r3]
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
300072fc: 13a00012 movne r0, #18
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
30007300: 18bd8030 popne {r4, r5, pc}
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
30007304: e3520000 cmp r2, #0
30007308: 0a00003f beq 3000740c <rtems_io_register_driver+0x12c>
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
3000730c: e3510000 cmp r1, #0
if ( registered_major == NULL )
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
30007310: e5820000 str r0, [r2]
if ( driver_table == NULL )
30007314: 0a00003c beq 3000740c <rtems_io_register_driver+0x12c>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
30007318: e591c000 ldr ip, [r1]
3000731c: e35c0000 cmp ip, #0
30007320: 0a000036 beq 30007400 <rtems_io_register_driver+0x120>
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
30007324: e1500004 cmp r0, r4
30007328: 9a000027 bls 300073cc <rtems_io_register_driver+0xec>
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
3000732c: e59f010c ldr r0, [pc, #268] ; 30007440 <rtems_io_register_driver+0x160>
30007330: e590c000 ldr ip, [r0]
30007334: e28cc001 add ip, ip, #1
30007338: e580c000 str ip, [r0]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
3000733c: e3540000 cmp r4, #0
30007340: 1a000023 bne 300073d4 <rtems_io_register_driver+0xf4>
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
30007344: e593c000 ldr ip, [r3]
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
30007348: e35c0000 cmp ip, #0
3000734c: 0a000030 beq 30007414 <rtems_io_register_driver+0x134>
30007350: e59fe0ec ldr lr, [pc, #236] ; 30007444 <rtems_io_register_driver+0x164>
30007354: e59e3000 ldr r3, [lr]
30007358: ea000003 b 3000736c <rtems_io_register_driver+0x8c>
3000735c: e2844001 add r4, r4, #1
30007360: e15c0004 cmp ip, r4
30007364: e2833018 add r3, r3, #24
30007368: 9a000005 bls 30007384 <rtems_io_register_driver+0xa4>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
3000736c: e5930000 ldr r0, [r3]
30007370: e3500000 cmp r0, #0
30007374: 1afffff8 bne 3000735c <rtems_io_register_driver+0x7c>
30007378: e5930004 ldr r0, [r3, #4]
3000737c: e3500000 cmp r0, #0
30007380: 1afffff5 bne 3000735c <rtems_io_register_driver+0x7c>
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
30007384: e15c0004 cmp ip, r4
30007388: 1084c084 addne ip, r4, r4, lsl #1
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
3000738c: e5824000 str r4, [r2]
if ( m != n )
30007390: 11a0c18c lslne ip, ip, #3
30007394: 0a00001f beq 30007418 <rtems_io_register_driver+0x138>
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
30007398: e59e5000 ldr r5, [lr]
3000739c: e1a0e001 mov lr, r1
300073a0: e085c00c add ip, r5, ip
300073a4: e8be000f ldm lr!, {r0, r1, r2, r3}
300073a8: e8ac000f stmia ip!, {r0, r1, r2, r3}
300073ac: e89e0003 ldm lr, {r0, r1}
300073b0: e88c0003 stm ip, {r0, r1}
_Thread_Enable_dispatch();
300073b4: eb000759 bl 30009120 <_Thread_Enable_dispatch>
return rtems_io_initialize( major, 0, NULL );
300073b8: e3a01000 mov r1, #0
300073bc: e1a00004 mov r0, r4
300073c0: e1a02001 mov r2, r1
}
300073c4: e8bd4030 pop {r4, r5, lr}
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
300073c8: ea001f1b b 3000f03c <rtems_io_initialize>
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
return RTEMS_INVALID_NUMBER;
300073cc: e3a0000a mov r0, #10
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
300073d0: e8bd8030 pop {r4, r5, pc}
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
300073d4: e59fe068 ldr lr, [pc, #104] ; 30007444 <rtems_io_register_driver+0x164>
300073d8: e0840084 add r0, r4, r4, lsl #1
300073dc: e59e3000 ldr r3, [lr]
300073e0: e1a0c180 lsl ip, r0, #3
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
300073e4: e7930180 ldr r0, [r3, r0, lsl #3]
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
300073e8: e083300c add r3, r3, ip
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
300073ec: e3500000 cmp r0, #0
300073f0: 0a00000b beq 30007424 <rtems_io_register_driver+0x144>
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
300073f4: eb000749 bl 30009120 <_Thread_Enable_dispatch>
return RTEMS_RESOURCE_IN_USE;
300073f8: e3a0000c mov r0, #12
300073fc: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
30007400: e591c004 ldr ip, [r1, #4]
30007404: e35c0000 cmp ip, #0
30007408: 1affffc5 bne 30007324 <rtems_io_register_driver+0x44>
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
3000740c: e3a00009 mov r0, #9
30007410: e8bd8030 pop {r4, r5, pc}
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
30007414: e5824000 str r4, [r2] <== NOT EXECUTED
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
30007418: eb000740 bl 30009120 <_Thread_Enable_dispatch>
*major = m;
if ( m != n )
return RTEMS_SUCCESSFUL;
return RTEMS_TOO_MANY;
3000741c: e3a00005 mov r0, #5
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
return sc;
30007420: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
30007424: e5933004 ldr r3, [r3, #4]
30007428: e3530000 cmp r3, #0
3000742c: 1afffff0 bne 300073f4 <rtems_io_register_driver+0x114>
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
30007430: e5824000 str r4, [r2]
30007434: eaffffd7 b 30007398 <rtems_io_register_driver+0xb8>
3000c864 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
3000c864: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
3000c868: e2525000 subs r5, r2, #0
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
3000c86c: e1a04000 mov r4, r0
3000c870: e1a06001 mov r6, r1
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
3000c874: 03a00009 moveq r0, #9
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
3000c878: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
3000c87c: e59f9148 ldr r9, [pc, #328] ; 3000c9cc <rtems_task_mode+0x168>
3000c880: e5997004 ldr r7, [r9, #4]
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
3000c884: e5d7a074 ldrb sl, [r7, #116] ; 0x74
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
3000c888: e59780f4 ldr r8, [r7, #244] ; 0xf4
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
3000c88c: e597307c ldr r3, [r7, #124] ; 0x7c
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
3000c890: e35a0000 cmp sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
3000c894: e5d8b008 ldrb fp, [r8, #8]
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
3000c898: 03a0ac01 moveq sl, #256 ; 0x100
3000c89c: 13a0a000 movne sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
3000c8a0: e3530000 cmp r3, #0
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
3000c8a4: 138aac02 orrne sl, sl, #512 ; 0x200
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
3000c8a8: e35b0000 cmp fp, #0
3000c8ac: 03a0bb01 moveq fp, #1024 ; 0x400
3000c8b0: 13a0b000 movne fp, #0
old_mode |= _ISR_Get_level();
3000c8b4: ebfff1e0 bl 3000903c <_CPU_ISR_Get_level>
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
3000c8b8: e18bb000 orr fp, fp, r0
old_mode |= _ISR_Get_level();
3000c8bc: e18ba00a orr sl, fp, sl
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
3000c8c0: e3160c01 tst r6, #256 ; 0x100
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
old_mode |= _ISR_Get_level();
*previous_mode_set = old_mode;
3000c8c4: e585a000 str sl, [r5]
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
3000c8c8: 0a000003 beq 3000c8dc <rtems_task_mode+0x78>
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
3000c8cc: e3140c01 tst r4, #256 ; 0x100
3000c8d0: 13a03000 movne r3, #0
3000c8d4: 03a03001 moveq r3, #1
3000c8d8: e5c73074 strb r3, [r7, #116] ; 0x74
if ( mask & RTEMS_TIMESLICE_MASK ) {
3000c8dc: e3160c02 tst r6, #512 ; 0x200
3000c8e0: 1a000028 bne 3000c988 <rtems_task_mode+0x124>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
3000c8e4: e3160080 tst r6, #128 ; 0x80
3000c8e8: 1a00002f bne 3000c9ac <rtems_task_mode+0x148>
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
3000c8ec: e2166b01 ands r6, r6, #1024 ; 0x400
3000c8f0: 0a000012 beq 3000c940 <rtems_task_mode+0xdc>
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
3000c8f4: e3140b01 tst r4, #1024 ; 0x400
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
3000c8f8: e5d82008 ldrb r2, [r8, #8]
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
3000c8fc: 13a03000 movne r3, #0
3000c900: 03a03001 moveq r3, #1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
3000c904: e1520003 cmp r2, r3
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
3000c908: 03a06000 moveq r6, #0
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
3000c90c: 0a00000b beq 3000c940 <rtems_task_mode+0xdc>
asr->is_enabled = is_asr_enabled;
3000c910: e5c83008 strb r3, [r8, #8]
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
3000c914: e10f3000 mrs r3, CPSR
3000c918: e3832080 orr r2, r3, #128 ; 0x80
3000c91c: e129f002 msr CPSR_fc, r2
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
3000c920: e5981018 ldr r1, [r8, #24]
information->signals_pending = information->signals_posted;
3000c924: e5982014 ldr r2, [r8, #20]
information->signals_posted = _signals;
3000c928: e5881014 str r1, [r8, #20]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
3000c92c: e5882018 str r2, [r8, #24]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
3000c930: e129f003 msr CPSR_fc, r3
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
3000c934: e5986014 ldr r6, [r8, #20]
3000c938: e3560000 cmp r6, #0
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
3000c93c: 13a06001 movne r6, #1
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
3000c940: e59f3088 ldr r3, [pc, #136] ; 3000c9d0 <rtems_task_mode+0x16c>
3000c944: e5933000 ldr r3, [r3]
3000c948: e3530003 cmp r3, #3
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
3000c94c: 13a00000 movne r0, #0
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
3000c950: 18bd8ff0 popne {r4, r5, r6, r7, r8, r9, sl, fp, pc}
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
3000c954: e3560000 cmp r6, #0
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
3000c958: e5993004 ldr r3, [r9, #4]
if ( are_signals_pending ||
3000c95c: 1a000015 bne 3000c9b8 <rtems_task_mode+0x154>
3000c960: e59f2064 ldr r2, [pc, #100] ; 3000c9cc <rtems_task_mode+0x168>
3000c964: e5922008 ldr r2, [r2, #8]
3000c968: e1530002 cmp r3, r2
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
3000c96c: 01a00006 moveq r0, r6
3000c970: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
3000c974: e5d33074 ldrb r3, [r3, #116] ; 0x74
3000c978: e3530000 cmp r3, #0
3000c97c: 1a00000d bne 3000c9b8 <rtems_task_mode+0x154>
3000c980: e1a00006 mov r0, r6 <== NOT EXECUTED
}
3000c984: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
3000c988: e2143c02 ands r3, r4, #512 ; 0x200
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
3000c98c: 159f3040 ldrne r3, [pc, #64] ; 3000c9d4 <rtems_task_mode+0x170>
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
3000c990: 13a02001 movne r2, #1
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
3000c994: 15933000 ldrne r3, [r3]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
3000c998: 1587207c strne r2, [r7, #124] ; 0x7c
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
3000c99c: 15873078 strne r3, [r7, #120] ; 0x78
} else
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE;
3000c9a0: 0587307c streq r3, [r7, #124] ; 0x7c
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
3000c9a4: e3160080 tst r6, #128 ; 0x80
3000c9a8: 0affffcf beq 3000c8ec <rtems_task_mode+0x88>
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
3000c9ac: e2040080 and r0, r4, #128 ; 0x80
3000c9b0: ebfff19c bl 30009028 <_CPU_ISR_Set_level>
3000c9b4: eaffffcc b 3000c8ec <rtems_task_mode+0x88>
_Thread_Dispatch_necessary = true;
3000c9b8: e3a03001 mov r3, #1
3000c9bc: e5c93010 strb r3, [r9, #16]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
3000c9c0: ebffebd6 bl 30007920 <_Thread_Dispatch>
}
return RTEMS_SUCCESSFUL;
3000c9c4: e3a00000 mov r0, #0
3000c9c8: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}