=============================================================================== 30016c88 <_CORE_message_queue_Broadcast>: { Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 30016c88: e590304c ldr r3, [r0, #76] ; 0x4c Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 30016c8c: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 30016c90: e1530002 cmp r3, r2 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 30016c94: e1a07000 mov r7, r0 30016c98: e1a05002 mov r5, r2 30016c9c: e1a08001 mov r8, r1 30016ca0: e59da020 ldr sl, [sp, #32] Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 30016ca4: 3a000016 bcc 30016d04 <_CORE_message_queue_Broadcast+0x7c> * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 30016ca8: e5906048 ldr r6, [r0, #72] ; 0x48 30016cac: e3560000 cmp r6, #0 *count = 0; 30016cb0: 13a00000 movne r0, #0 30016cb4: 158a0000 strne r0, [sl] * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 30016cb8: 18bd85f0 popne {r4, r5, r6, r7, r8, sl, pc} /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 30016cbc: e1a00007 mov r0, r7 30016cc0: eb000a12 bl 30019510 <_Thread_queue_Dequeue> 30016cc4: e2504000 subs r4, r0, #0 30016cc8: 0a00000a beq 30016cf8 <_CORE_message_queue_Broadcast+0x70> const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 30016ccc: e594002c ldr r0, [r4, #44] ; 0x2c 30016cd0: e1a01008 mov r1, r8 30016cd4: e1a02005 mov r2, r5 30016cd8: eb002044 bl 3001edf0 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 30016cdc: e5943028 ldr r3, [r4, #40] ; 0x28 /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 30016ce0: e1a00007 mov r0, r7 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 30016ce4: e5835000 str r5, [r3] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 30016ce8: eb000a08 bl 30019510 <_Thread_queue_Dequeue> 30016cec: e2504000 subs r4, r0, #0 _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; 30016cf0: e2866001 add r6, r6, #1 /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 30016cf4: 1afffff4 bne 30016ccc <_CORE_message_queue_Broadcast+0x44> if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 30016cf8: e58a6000 str r6, [sl] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 30016cfc: e1a00004 mov r0, r4 30016d00: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE; 30016d04: e3a00001 mov r0, #1 <== NOT EXECUTED #endif } *count = number_broadcasted; return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; } 30016d08: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED =============================================================================== 3000ab24 <_CORE_mutex_Seize_interrupt_trylock>: { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 3000ab24: e59f215c ldr r2, [pc, #348] ; 3000ac88 <_CORE_mutex_Seize_interrupt_trylock+0x164> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 3000ab28: e590c050 ldr ip, [r0, #80] ; 0x50 #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 3000ab2c: e1a03000 mov r3, r0 { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 3000ab30: e5922004 ldr r2, [r2, #4] executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 3000ab34: e3a00000 mov r0, #0 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 3000ab38: e15c0000 cmp ip, r0 3000ab3c: e92d40f0 push {r4, r5, r6, r7, lr} Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 3000ab40: e5820034 str r0, [r2, #52] ; 0x34 if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 3000ab44: 0a00000e beq 3000ab84 <_CORE_mutex_Seize_interrupt_trylock+0x60> return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 3000ab48: e593c048 ldr ip, [r3, #72] ; 0x48 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 3000ab4c: e5925008 ldr r5, [r2, #8] the_mutex->nest_count = 1; 3000ab50: e3a04001 mov r4, #1 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 3000ab54: e35c0002 cmp ip, #2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 3000ab58: e5830050 str r0, [r3, #80] ; 0x50 the_mutex->holder = executing; 3000ab5c: e583205c str r2, [r3, #92] ; 0x5c the_mutex->holder_id = executing->Object.id; 3000ab60: e5835060 str r5, [r3, #96] ; 0x60 the_mutex->nest_count = 1; 3000ab64: e5834054 str r4, [r3, #84] ; 0x54 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 3000ab68: 0a000013 beq 3000abbc <_CORE_mutex_Seize_interrupt_trylock+0x98> 3000ab6c: e35c0003 cmp ip, #3 3000ab70: 0a000018 beq 3000abd8 <_CORE_mutex_Seize_interrupt_trylock+0xb4> 3000ab74: e5913000 ldr r3, [r1] 3000ab78: e129f003 msr CPSR_fc, r3 executing->resource_count++; } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); return 0; 3000ab7c: e3a00000 mov r0, #0 3000ab80: e8bd80f0 pop {r4, r5, r6, r7, pc} /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 3000ab84: e593005c ldr r0, [r3, #92] ; 0x5c 3000ab88: e1520000 cmp r2, r0 /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; 3000ab8c: 13a00001 movne r0, #1 /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 3000ab90: 18bd80f0 popne {r4, r5, r6, r7, pc} switch ( the_mutex->Attributes.lock_nesting_behavior ) { 3000ab94: e5930040 ldr r0, [r3, #64] ; 0x40 3000ab98: e3500000 cmp r0, #0 3000ab9c: 1a00001e bne 3000ac1c <_CORE_mutex_Seize_interrupt_trylock+0xf8> case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 3000aba0: e5932054 ldr r2, [r3, #84] ; 0x54 3000aba4: e2822001 add r2, r2, #1 3000aba8: e5832054 str r2, [r3, #84] ; 0x54 3000abac: e5913000 ldr r3, [r1] 3000abb0: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; 3000abb4: e3a00000 mov r0, #0 3000abb8: e8bd80f0 pop {r4, r5, r6, r7, pc} _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 3000abbc: e592301c ldr r3, [r2, #28] 3000abc0: e2833001 add r3, r3, #1 3000abc4: e582301c str r3, [r2, #28] 3000abc8: e5913000 ldr r3, [r1] 3000abcc: e129f003 msr CPSR_fc, r3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); return 0; 3000abd0: e3a00000 mov r0, #0 3000abd4: e8bd80f0 pop {r4, r5, r6, r7, pc} _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 3000abd8: e592c01c ldr ip, [r2, #28] */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 3000abdc: e593704c ldr r7, [r3, #76] ; 0x4c current = executing->current_priority; 3000abe0: e5926014 ldr r6, [r2, #20] _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 3000abe4: e08c5004 add r5, ip, r4 Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { 3000abe8: e1570006 cmp r7, r6 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 3000abec: e582501c str r5, [r2, #28] Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { 3000abf0: 0a000020 beq 3000ac78 <_CORE_mutex_Seize_interrupt_trylock+0x154> _ISR_Enable( *level_p ); return 0; } if ( current > ceiling ) { 3000abf4: 3a000012 bcc 3000ac44 <_CORE_mutex_Seize_interrupt_trylock+0x120> ); _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 3000abf8: e3a05006 mov r5, #6 3000abfc: e5825034 str r5, [r2, #52] ; 0x34 the_mutex->lock = CORE_MUTEX_UNLOCKED; 3000ac00: e5834050 str r4, [r3, #80] ; 0x50 the_mutex->nest_count = 0; /* undo locking above */ 3000ac04: e5830054 str r0, [r3, #84] ; 0x54 executing->resource_count--; /* undo locking above */ 3000ac08: e582c01c str ip, [r2, #28] 3000ac0c: e5913000 ldr r3, [r1] 3000ac10: e129f003 msr CPSR_fc, r3 _ISR_Enable( *level_p ); return 0; 3000ac14: e3a00000 mov r0, #0 3000ac18: e8bd80f0 pop {r4, r5, r6, r7, pc} * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { 3000ac1c: e3500001 cmp r0, #1 3000ac20: 0a000001 beq 3000ac2c <_CORE_mutex_Seize_interrupt_trylock+0x108> /* * The mutex is not available and the caller must deal with the possibility * of blocking. */ return 1; 3000ac24: e3a00001 mov r0, #1 3000ac28: e8bd80f0 pop {r4, r5, r6, r7, pc} case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 3000ac2c: e3a03002 mov r3, #2 <== NOT EXECUTED 3000ac30: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED 3000ac34: e5913000 ldr r3, [r1] <== NOT EXECUTED 3000ac38: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED _ISR_Enable( *level_p ); return 0; 3000ac3c: e3a00000 mov r0, #0 <== NOT EXECUTED 3000ac40: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 3000ac44: e59f2040 ldr r2, [pc, #64] ; 3000ac8c <_CORE_mutex_Seize_interrupt_trylock+0x168> 3000ac48: e5920000 ldr r0, [r2] 3000ac4c: e2800001 add r0, r0, #1 3000ac50: e5820000 str r0, [r2] 3000ac54: e5912000 ldr r2, [r1] 3000ac58: e129f002 msr CPSR_fc, r2 } if ( current > ceiling ) { _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); _Thread_Change_priority( 3000ac5c: e3a02000 mov r2, #0 3000ac60: e593005c ldr r0, [r3, #92] ; 0x5c 3000ac64: e593104c ldr r1, [r3, #76] ; 0x4c 3000ac68: ebfff16c bl 30007220 <_Thread_Change_priority> the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 3000ac6c: ebfff2c6 bl 3000778c <_Thread_Enable_dispatch> return 0; 3000ac70: e3a00000 mov r0, #0 3000ac74: e8bd80f0 pop {r4, r5, r6, r7, pc} 3000ac78: e5913000 ldr r3, [r1] 3000ac7c: e129f003 msr CPSR_fc, r3 ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { _ISR_Enable( *level_p ); return 0; 3000ac80: e3a00000 mov r0, #0 3000ac84: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== 3000aac4 <_Chain_Initialize>: count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { 3000aac4: e3520000 cmp r2, #0 Chain_Node *current; Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; 3000aac8: e3a0c000 mov ip, #0 next = starting_address; while ( count-- ) { 3000aacc: 12422001 subne r2, r2, #1 Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 3000aad0: e92d0070 push {r4, r5, r6} Chain_Node *current; Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; 3000aad4: e580c004 str ip, [r0, #4] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Head( Chain_Control *the_chain ) { return (Chain_Node *) the_chain; 3000aad8: e1a04000 mov r4, r0 next = starting_address; while ( count-- ) { 3000aadc: 11a06002 movne r6, r2 Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; 3000aae0: 11a0c001 movne ip, r1 while ( count-- ) { 3000aae4: 1a000003 bne 3000aaf8 <_Chain_Initialize+0x34> 3000aae8: ea000008 b 3000ab10 <_Chain_Initialize+0x4c> <== NOT EXECUTED 3000aaec: e1a0400c mov r4, ip 3000aaf0: e2422001 sub r2, r2, #1 current->next = next; next->previous = current; current = next; next = (Chain_Node *) 3000aaf4: e1a0c005 mov ip, r5 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { 3000aaf8: e3520000 cmp r2, #0 current->next = next; 3000aafc: e584c000 str ip, [r4] next->previous = current; 3000ab00: e58c4004 str r4, [ip, #4] * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( 3000ab04: e08c5003 add r5, ip, r3 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { 3000ab08: 1afffff7 bne 3000aaec <_Chain_Initialize+0x28> 3000ab0c: e0241396 mla r4, r6, r3, r1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 3000ab10: e2803004 add r3, r0, #4 next->previous = current; current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = _Chain_Tail( the_chain ); 3000ab14: e5843000 str r3, [r4] the_chain->last = current; 3000ab18: e5804008 str r4, [r0, #8] } 3000ab1c: e8bd0070 pop {r4, r5, r6} 3000ab20: e12fff1e bx lr =============================================================================== 3000ad04 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 3000ad04: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} 3000ad08: e1a08002 mov r8, r2 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 3000ad0c: e5902010 ldr r2, [r0, #16] Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 3000ad10: e24dd01c sub sp, sp, #28 3000ad14: e1a05001 mov r5, r1 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 3000ad18: e2911004 adds r1, r1, #4 Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 3000ad1c: e1a07000 mov r7, r0 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 3000ad20: e58d1000 str r1, [sp] Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 3000ad24: e1a0b003 mov fp, r3 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 3000ad28: e58d200c str r2, [sp, #12] Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 3000ad2c: 2a000078 bcs 3000af14 <_Heap_Allocate_aligned_with_boundary+0x210> /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 3000ad30: e3530000 cmp r3, #0 3000ad34: 1a000074 bne 3000af0c <_Heap_Allocate_aligned_with_boundary+0x208> if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 3000ad38: e5979008 ldr r9, [r7, #8] do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 3000ad3c: e1570009 cmp r7, r9 3000ad40: 0a000073 beq 3000af14 <_Heap_Allocate_aligned_with_boundary+0x210> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 3000ad44: e59d300c ldr r3, [sp, #12] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 3000ad48: e2651004 rsb r1, r5, #4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 3000ad4c: e2833007 add r3, r3, #7 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 3000ad50: e3a06001 mov r6, #1 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 3000ad54: e58d3010 str r3, [sp, #16] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 3000ad58: e58d1014 str r1, [sp, #20] /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 3000ad5c: e599a004 ldr sl, [r9, #4] 3000ad60: e59d2000 ldr r2, [sp] 3000ad64: e152000a cmp r2, sl 3000ad68: 2a00004e bcs 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4> if ( alignment == 0 ) { 3000ad6c: e3580000 cmp r8, #0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; 3000ad70: 02894008 addeq r4, r9, #8 3000ad74: 0a000051 beq 3000aec0 <_Heap_Allocate_aligned_with_boundary+0x1bc> if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 3000ad78: e5973014 ldr r3, [r7, #20] uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 3000ad7c: e59d1014 ldr r1, [sp, #20] uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 3000ad80: e59d2010 ldr r2, [sp, #16] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 3000ad84: e3caa001 bic sl, sl, #1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 3000ad88: e089a00a add sl, r9, sl uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 3000ad8c: e081400a add r4, r1, sl if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 3000ad90: e58d3004 str r3, [sp, #4] uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 3000ad94: e0633002 rsb r3, r3, r2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 3000ad98: e1a00004 mov r0, r4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 3000ad9c: e083a00a add sl, r3, sl 3000ada0: e1a01008 mov r1, r8 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE; 3000ada4: e2893008 add r3, r9, #8 3000ada8: e58d3008 str r3, [sp, #8] RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 3000adac: eb001556 bl 3001030c <__umodsi3> 3000adb0: e0604004 rsb r4, r0, r4 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 3000adb4: e15a0004 cmp sl, r4 3000adb8: 2a000003 bcs 3000adcc <_Heap_Allocate_aligned_with_boundary+0xc8> 3000adbc: e1a0000a mov r0, sl 3000adc0: e1a01008 mov r1, r8 3000adc4: eb001550 bl 3001030c <__umodsi3> 3000adc8: e060400a rsb r4, r0, sl } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 3000adcc: e35b0000 cmp fp, #0 3000add0: 0a000026 beq 3000ae70 <_Heap_Allocate_aligned_with_boundary+0x16c> /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 3000add4: e084a005 add sl, r4, r5 3000add8: e1a0000a mov r0, sl 3000addc: e1a0100b mov r1, fp 3000ade0: eb001549 bl 3001030c <__umodsi3> 3000ade4: e060000a rsb r0, r0, sl /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 3000ade8: e15a0000 cmp sl, r0 3000adec: 93a0a000 movls sl, #0 3000adf0: 83a0a001 movhi sl, #1 3000adf4: e1540000 cmp r4, r0 3000adf8: 23a0a000 movcs sl, #0 3000adfc: e35a0000 cmp sl, #0 3000ae00: 0a00001a beq 3000ae70 <_Heap_Allocate_aligned_with_boundary+0x16c> alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 3000ae04: e59d1008 ldr r1, [sp, #8] 3000ae08: e0813005 add r3, r1, r5 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 3000ae0c: e1530000 cmp r3, r0 3000ae10: 958d9018 strls r9, [sp, #24] 3000ae14: 91a09003 movls r9, r3 3000ae18: 9a000002 bls 3000ae28 <_Heap_Allocate_aligned_with_boundary+0x124> 3000ae1c: ea000021 b 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4> 3000ae20: e1590000 cmp r9, r0 3000ae24: 8a00003c bhi 3000af1c <_Heap_Allocate_aligned_with_boundary+0x218> return 0; } alloc_begin = boundary_line - alloc_size; 3000ae28: e0654000 rsb r4, r5, r0 3000ae2c: e1a01008 mov r1, r8 3000ae30: e1a00004 mov r0, r4 3000ae34: eb001534 bl 3001030c <__umodsi3> 3000ae38: e0604004 rsb r4, r0, r4 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 3000ae3c: e084a005 add sl, r4, r5 3000ae40: e1a0000a mov r0, sl 3000ae44: e1a0100b mov r1, fp 3000ae48: eb00152f bl 3001030c <__umodsi3> 3000ae4c: e060000a rsb r0, r0, sl /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 3000ae50: e15a0000 cmp sl, r0 3000ae54: 93a0a000 movls sl, #0 3000ae58: 83a0a001 movhi sl, #1 3000ae5c: e1540000 cmp r4, r0 3000ae60: 23a0a000 movcs sl, #0 3000ae64: e35a0000 cmp sl, #0 3000ae68: 1affffec bne 3000ae20 <_Heap_Allocate_aligned_with_boundary+0x11c> 3000ae6c: e59d9018 ldr r9, [sp, #24] boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 3000ae70: e59d2008 ldr r2, [sp, #8] 3000ae74: e1520004 cmp r2, r4 3000ae78: 8a00000a bhi 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4> 3000ae7c: e59d100c ldr r1, [sp, #12] 3000ae80: e1a00004 mov r0, r4 3000ae84: eb001520 bl 3001030c <__umodsi3> 3000ae88: e3e0a007 mvn sl, #7 3000ae8c: e069a00a rsb sl, r9, sl uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 3000ae90: e08aa004 add sl, sl, r4 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 3000ae94: e59d1004 ldr r1, [sp, #4] 3000ae98: e060300a rsb r3, r0, sl 3000ae9c: e15a0000 cmp sl, r0 3000aea0: 11510003 cmpne r1, r3 3000aea4: 9a000005 bls 3000aec0 <_Heap_Allocate_aligned_with_boundary+0x1bc> if ( alloc_begin != 0 ) { break; } block = block->next; 3000aea8: e5999008 ldr r9, [r9, #8] 3000aeac: e2863001 add r3, r6, #1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 3000aeb0: e1570009 cmp r7, r9 3000aeb4: 0a00001d beq 3000af30 <_Heap_Allocate_aligned_with_boundary+0x22c> 3000aeb8: e1a06003 mov r6, r3 3000aebc: eaffffa6 b 3000ad5c <_Heap_Allocate_aligned_with_boundary+0x58> } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 3000aec0: e3540000 cmp r4, #0 3000aec4: 0afffff7 beq 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4> search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 3000aec8: e5972048 ldr r2, [r7, #72] ; 0x48 stats->searches += search_count; 3000aecc: e597304c ldr r3, [r7, #76] ; 0x4c search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 3000aed0: e2822001 add r2, r2, #1 stats->searches += search_count; 3000aed4: e0833006 add r3, r3, r6 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 3000aed8: e5872048 str r2, [r7, #72] ; 0x48 stats->searches += search_count; 3000aedc: e587304c str r3, [r7, #76] ; 0x4c block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 3000aee0: e1a00007 mov r0, r7 3000aee4: e1a01009 mov r1, r9 3000aee8: e1a02004 mov r2, r4 3000aeec: e1a03005 mov r3, r5 3000aef0: ebffee45 bl 3000680c <_Heap_Block_allocate> 3000aef4: e1a00004 mov r0, r4 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 3000aef8: e5973044 ldr r3, [r7, #68] ; 0x44 3000aefc: e1530006 cmp r3, r6 stats->max_search = search_count; 3000af00: 35876044 strcc r6, [r7, #68] ; 0x44 } return (void *) alloc_begin; } 3000af04: e28dd01c add sp, sp, #28 3000af08: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 3000af0c: e1550003 cmp r5, r3 3000af10: 9a000008 bls 3000af38 <_Heap_Allocate_aligned_with_boundary+0x234> do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 3000af14: e3a00000 mov r0, #0 3000af18: eafffff9 b 3000af04 <_Heap_Allocate_aligned_with_boundary+0x200> 3000af1c: e59d9018 ldr r9, [sp, #24] <== NOT EXECUTED if ( alloc_begin != 0 ) { break; } block = block->next; 3000af20: e2863001 add r3, r6, #1 <== NOT EXECUTED 3000af24: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 3000af28: e1570009 cmp r7, r9 <== NOT EXECUTED 3000af2c: 1affffe1 bne 3000aeb8 <_Heap_Allocate_aligned_with_boundary+0x1b4><== NOT EXECUTED 3000af30: e3a00000 mov r0, #0 3000af34: eaffffef b 3000aef8 <_Heap_Allocate_aligned_with_boundary+0x1f4> if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) { alignment = page_size; 3000af38: e3580000 cmp r8, #0 3000af3c: 01a08002 moveq r8, r2 3000af40: eaffff7c b 3000ad38 <_Heap_Allocate_aligned_with_boundary+0x34> =============================================================================== 3000af44 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 3000af44: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr} 3000af48: e1a04000 mov r4, r0 3000af4c: e1a05001 mov r5, r1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 3000af50: e1a00001 mov r0, r1 3000af54: e5941010 ldr r1, [r4, #16] 3000af58: eb0014eb bl 3001030c <__umodsi3> 3000af5c: e2455008 sub r5, r5, #8 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 3000af60: e5943020 ldr r3, [r4, #32] uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 3000af64: e0605005 rsb r5, r0, r5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 3000af68: e1550003 cmp r5, r3 3000af6c: 3a00002f bcc 3000b030 <_Heap_Free+0xec> 3000af70: e5941024 ldr r1, [r4, #36] ; 0x24 3000af74: e1550001 cmp r5, r1 3000af78: 8a00002c bhi 3000b030 <_Heap_Free+0xec> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 3000af7c: e595c004 ldr ip, [r5, #4] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 3000af80: e3cc6001 bic r6, ip, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 3000af84: e0852006 add r2, r5, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 3000af88: e1530002 cmp r3, r2 3000af8c: 8a000027 bhi 3000b030 <_Heap_Free+0xec> 3000af90: e1510002 cmp r1, r2 3000af94: 3a000027 bcc 3000b038 <_Heap_Free+0xf4> 3000af98: e5927004 ldr r7, [r2, #4] if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 3000af9c: e2170001 ands r0, r7, #1 3000afa0: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc} return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 3000afa4: e1510002 cmp r1, r2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 3000afa8: e3c77001 bic r7, r7, #1 3000afac: 03a08000 moveq r8, #0 3000afb0: 0a000004 beq 3000afc8 <_Heap_Free+0x84> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 3000afb4: e0820007 add r0, r2, r7 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 3000afb8: e5900004 ldr r0, [r0, #4] return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) 3000afbc: e3100001 tst r0, #1 3000afc0: 13a08000 movne r8, #0 3000afc4: 03a08001 moveq r8, #1 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 3000afc8: e21c0001 ands r0, ip, #1 3000afcc: 1a00001b bne 3000b040 <_Heap_Free+0xfc> uintptr_t const prev_size = block->prev_size; 3000afd0: e595c000 ldr ip, [r5] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 3000afd4: e06ca005 rsb sl, ip, r5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 3000afd8: e153000a cmp r3, sl 3000afdc: 88bd85f0 pophi {r4, r5, r6, r7, r8, sl, pc} 3000afe0: e151000a cmp r1, sl 3000afe4: 38bd85f0 popcc {r4, r5, r6, r7, r8, sl, pc} block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 3000afe8: e59a0004 ldr r0, [sl, #4] return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 3000afec: e2100001 ands r0, r0, #1 3000aff0: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc} _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 3000aff4: e3580000 cmp r8, #0 3000aff8: 0a000039 beq 3000b0e4 <_Heap_Free+0x1a0> uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 3000affc: e5940038 ldr r0, [r4, #56] ; 0x38 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 3000b000: e0867007 add r7, r6, r7 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 3000b004: e5923008 ldr r3, [r2, #8] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 3000b008: e087c00c add ip, r7, ip --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 3000b00c: e592200c ldr r2, [r2, #12] } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 3000b010: e2400001 sub r0, r0, #1 prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 3000b014: e38c1001 orr r1, ip, #1 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; 3000b018: e5823008 str r3, [r2, #8] next->prev = prev; 3000b01c: e583200c str r2, [r3, #12] } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 3000b020: e5840038 str r0, [r4, #56] ; 0x38 prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 3000b024: e58a1004 str r1, [sl, #4] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 3000b028: e78ac00c str ip, [sl, ip] 3000b02c: ea00000f b 3000b070 <_Heap_Free+0x12c> _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; 3000b030: e3a00000 mov r0, #0 3000b034: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} 3000b038: e3a00000 mov r0, #0 <== NOT EXECUTED --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 3000b03c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 3000b040: e3580000 cmp r8, #0 3000b044: 0a000014 beq 3000b09c <_Heap_Free+0x158> --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 3000b048: e5923008 ldr r3, [r2, #8] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 3000b04c: e0877006 add r7, r7, r6 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 3000b050: e592200c ldr r2, [r2, #12] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 3000b054: e3871001 orr r1, r7, #1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; 3000b058: e5853008 str r3, [r5, #8] new_block->prev = prev; 3000b05c: e585200c str r2, [r5, #12] next->prev = new_block; prev->next = new_block; 3000b060: e5825008 str r5, [r2, #8] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 3000b064: e583500c str r5, [r3, #12] 3000b068: e5851004 str r1, [r5, #4] next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 3000b06c: e7857007 str r7, [r5, r7] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 3000b070: e5942040 ldr r2, [r4, #64] ; 0x40 ++stats->frees; 3000b074: e5943050 ldr r3, [r4, #80] ; 0x50 stats->free_size += block_size; 3000b078: e5941030 ldr r1, [r4, #48] ; 0x30 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 3000b07c: e2422001 sub r2, r2, #1 ++stats->frees; 3000b080: e2833001 add r3, r3, #1 stats->free_size += block_size; 3000b084: e0816006 add r6, r1, r6 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 3000b088: e5842040 str r2, [r4, #64] ; 0x40 ++stats->frees; 3000b08c: e5843050 str r3, [r4, #80] ; 0x50 stats->free_size += block_size; 3000b090: e5846030 str r6, [r4, #48] ; 0x30 return( true ); 3000b094: e3a00001 mov r0, #1 3000b098: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 3000b09c: e3863001 orr r3, r6, #1 3000b0a0: e5853004 str r3, [r5, #4] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 3000b0a4: e5943038 ldr r3, [r4, #56] ; 0x38 if ( stats->max_free_blocks < stats->free_blocks ) { 3000b0a8: e594c03c ldr ip, [r4, #60] ; 0x3c } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 3000b0ac: e5920004 ldr r0, [r2, #4] RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after( Heap_Block *block_before, Heap_Block *new_block ) { Heap_Block *next = block_before->next; 3000b0b0: e5941008 ldr r1, [r4, #8] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 3000b0b4: e2833001 add r3, r3, #1 } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 3000b0b8: e3c00001 bic r0, r0, #1 next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 3000b0bc: e153000c cmp r3, ip new_block->next = next; 3000b0c0: e5851008 str r1, [r5, #8] new_block->prev = block_before; 3000b0c4: e585400c str r4, [r5, #12] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 3000b0c8: e5820004 str r0, [r2, #4] block_before->next = new_block; next->prev = new_block; 3000b0cc: e581500c str r5, [r1, #12] next_block->prev_size = block_size; 3000b0d0: e7856006 str r6, [r5, r6] { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 3000b0d4: e5845008 str r5, [r4, #8] /* Statistics */ ++stats->free_blocks; 3000b0d8: e5843038 str r3, [r4, #56] ; 0x38 if ( stats->max_free_blocks < stats->free_blocks ) { stats->max_free_blocks = stats->free_blocks; 3000b0dc: 8584303c strhi r3, [r4, #60] ; 0x3c 3000b0e0: eaffffe2 b 3000b070 <_Heap_Free+0x12c> prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; 3000b0e4: e086c00c add ip, r6, ip prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 3000b0e8: e38c3001 orr r3, ip, #1 3000b0ec: e58a3004 str r3, [sl, #4] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 3000b0f0: e5923004 ldr r3, [r2, #4] next_block->prev_size = size; 3000b0f4: e785c006 str ip, [r5, r6] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 3000b0f8: e3c33001 bic r3, r3, #1 3000b0fc: e5823004 str r3, [r2, #4] 3000b100: eaffffda b 3000b070 <_Heap_Free+0x12c> =============================================================================== 3001283c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 3001283c: e92d40f0 push {r4, r5, r6, r7, lr} 30012840: e1a04000 mov r4, r0 30012844: e1a05001 mov r5, r1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 30012848: e1a00001 mov r0, r1 3001284c: e5941010 ldr r1, [r4, #16] 30012850: e1a07002 mov r7, r2 30012854: ebfff6ac bl 3001030c <__umodsi3> 30012858: e2456008 sub r6, r5, #8 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 3001285c: e5943020 ldr r3, [r4, #32] uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 30012860: e0600006 rsb r0, r0, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 30012864: e1500003 cmp r0, r3 30012868: 3a000010 bcc 300128b0 <_Heap_Size_of_alloc_area+0x74> 3001286c: e5942024 ldr r2, [r4, #36] ; 0x24 30012870: e1500002 cmp r0, r2 30012874: 8a00000d bhi 300128b0 <_Heap_Size_of_alloc_area+0x74> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 30012878: e5906004 ldr r6, [r0, #4] 3001287c: e3c66001 bic r6, r6, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 30012880: e0806006 add r6, r0, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 30012884: e1530006 cmp r3, r6 30012888: 8a000008 bhi 300128b0 <_Heap_Size_of_alloc_area+0x74> 3001288c: e1520006 cmp r2, r6 30012890: 3a000008 bcc 300128b8 <_Heap_Size_of_alloc_area+0x7c> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 30012894: e5960004 ldr r0, [r6, #4] block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 30012898: e2100001 ands r0, r0, #1 ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 3001289c: 12655004 rsbne r5, r5, #4 300128a0: 10856006 addne r6, r5, r6 300128a4: 15876000 strne r6, [r7] return true; 300128a8: 13a00001 movne r0, #1 300128ac: e8bd80f0 pop {r4, r5, r6, r7, pc} if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) ) { return false; 300128b0: e3a00000 mov r0, #0 300128b4: e8bd80f0 pop {r4, r5, r6, r7, pc} 300128b8: e3a00000 mov r0, #0 <== NOT EXECUTED } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; } 300128bc: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED =============================================================================== 3000756c <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 3000756c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { 30007570: e59f35cc ldr r3, [pc, #1484] ; 30007b44 <_Heap_Walk+0x5d8> uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 30007574: e31200ff tst r2, #255 ; 0xff if ( !_System_state_Is_up( _System_state_Get() ) ) { 30007578: e5933000 ldr r3, [r3] uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 3000757c: e59f25c4 ldr r2, [pc, #1476] ; 30007b48 <_Heap_Walk+0x5dc> 30007580: e59f95c4 ldr r9, [pc, #1476] ; 30007b4c <_Heap_Walk+0x5e0> bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 30007584: e1a0a001 mov sl, r1 uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 30007588: 11a09002 movne r9, r2 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 3000758c: e5901010 ldr r1, [r0, #16] Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { 30007590: e3530003 cmp r3, #3 int source, bool dump ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; 30007594: e5902014 ldr r2, [r0, #20] Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; 30007598: e5903024 ldr r3, [r0, #36] ; 0x24 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 3000759c: e24dd038 sub sp, sp, #56 ; 0x38 300075a0: e1a04000 mov r4, r0 uintptr_t const page_size = heap->page_size; 300075a4: e58d1024 str r1, [sp, #36] ; 0x24 uintptr_t const min_block_size = heap->min_block_size; 300075a8: e58d2028 str r2, [sp, #40] ; 0x28 Heap_Block *const first_block = heap->first_block; 300075ac: e5908020 ldr r8, [r0, #32] Heap_Block *const last_block = heap->last_block; 300075b0: e58d302c str r3, [sp, #44] ; 0x2c Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; if ( !_System_state_Is_up( _System_state_Get() ) ) { 300075b4: 0a000002 beq 300075c4 <_Heap_Walk+0x58> } block = next_block; } while ( block != first_block ); return true; 300075b8: e3a00001 mov r0, #1 } 300075bc: e28dd038 add sp, sp, #56 ; 0x38 300075c0: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 300075c4: e594101c ldr r1, [r4, #28] 300075c8: e5900018 ldr r0, [r0, #24] 300075cc: e5942008 ldr r2, [r4, #8] 300075d0: e594300c ldr r3, [r4, #12] 300075d4: e59dc028 ldr ip, [sp, #40] ; 0x28 300075d8: e58d1008 str r1, [sp, #8] 300075dc: e59d102c ldr r1, [sp, #44] ; 0x2c 300075e0: e58d0004 str r0, [sp, #4] 300075e4: e58d1010 str r1, [sp, #16] 300075e8: e58d2014 str r2, [sp, #20] 300075ec: e58d3018 str r3, [sp, #24] 300075f0: e59f2558 ldr r2, [pc, #1368] ; 30007b50 <_Heap_Walk+0x5e4> 300075f4: e58dc000 str ip, [sp] 300075f8: e58d800c str r8, [sp, #12] 300075fc: e1a0000a mov r0, sl 30007600: e3a01000 mov r1, #0 30007604: e59d3024 ldr r3, [sp, #36] ; 0x24 30007608: e1a0e00f mov lr, pc 3000760c: e12fff19 bx r9 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 30007610: e59d2024 ldr r2, [sp, #36] ; 0x24 30007614: e3520000 cmp r2, #0 30007618: 0a000026 beq 300076b8 <_Heap_Walk+0x14c> (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 3000761c: e59d3024 ldr r3, [sp, #36] ; 0x24 30007620: e2135003 ands r5, r3, #3 30007624: 1a00002a bne 300076d4 <_Heap_Walk+0x168> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 30007628: e59d0028 ldr r0, [sp, #40] ; 0x28 3000762c: e59d1024 ldr r1, [sp, #36] ; 0x24 30007630: ebffe557 bl 30000b94 <__umodsi3> ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 30007634: e250b000 subs fp, r0, #0 30007638: 1a00002c bne 300076f0 <_Heap_Walk+0x184> 3000763c: e2880008 add r0, r8, #8 30007640: e59d1024 ldr r1, [sp, #36] ; 0x24 30007644: ebffe552 bl 30000b94 <__umodsi3> ); return false; } if ( 30007648: e2506000 subs r6, r0, #0 3000764c: 1a00002f bne 30007710 <_Heap_Walk+0x1a4> block = next_block; } while ( block != first_block ); return true; } 30007650: e598b004 ldr fp, [r8, #4] ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 30007654: e21b5001 ands r5, fp, #1 30007658: 0a0000cd beq 30007994 <_Heap_Walk+0x428> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 3000765c: e59dc02c ldr ip, [sp, #44] ; 0x2c 30007660: e59c3004 ldr r3, [ip, #4] 30007664: e3c33001 bic r3, r3, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 30007668: e08c3003 add r3, ip, r3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 3000766c: e5935004 ldr r5, [r3, #4] ); return false; } if ( _Heap_Is_free( last_block ) ) { 30007670: e2155001 ands r5, r5, #1 30007674: 0a000008 beq 3000769c <_Heap_Walk+0x130> ); return false; } if ( 30007678: e1580003 cmp r8, r3 3000767c: 0a00002b beq 30007730 <_Heap_Walk+0x1c4> _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 30007680: e1a0000a mov r0, sl <== NOT EXECUTED 30007684: e3a01001 mov r1, #1 <== NOT EXECUTED 30007688: e59f24c4 ldr r2, [pc, #1220] ; 30007b54 <_Heap_Walk+0x5e8> <== NOT EXECUTED 3000768c: e1a0e00f mov lr, pc <== NOT EXECUTED 30007690: e12fff19 bx r9 <== NOT EXECUTED if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 30007694: e1a00006 mov r0, r6 <== NOT EXECUTED 30007698: eaffffc7 b 300075bc <_Heap_Walk+0x50> <== NOT EXECUTED return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 3000769c: e1a0000a mov r0, sl 300076a0: e3a01001 mov r1, #1 300076a4: e59f24ac ldr r2, [pc, #1196] ; 30007b58 <_Heap_Walk+0x5ec> 300076a8: e1a0e00f mov lr, pc 300076ac: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 300076b0: e1a00005 mov r0, r5 300076b4: eaffffc0 b 300075bc <_Heap_Walk+0x50> first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 300076b8: e1a0000a mov r0, sl 300076bc: e3a01001 mov r1, #1 300076c0: e59f2494 ldr r2, [pc, #1172] ; 30007b5c <_Heap_Walk+0x5f0> 300076c4: e1a0e00f mov lr, pc 300076c8: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 300076cc: e59d0024 ldr r0, [sp, #36] ; 0x24 300076d0: eaffffb9 b 300075bc <_Heap_Walk+0x50> return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 300076d4: e1a0000a mov r0, sl 300076d8: e3a01001 mov r1, #1 300076dc: e59f247c ldr r2, [pc, #1148] ; 30007b60 <_Heap_Walk+0x5f4> 300076e0: e1a0e00f mov lr, pc 300076e4: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 300076e8: e3a00000 mov r0, #0 300076ec: eaffffb2 b 300075bc <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 300076f0: e1a0000a mov r0, sl 300076f4: e3a01001 mov r1, #1 300076f8: e59f2464 ldr r2, [pc, #1124] ; 30007b64 <_Heap_Walk+0x5f8> 300076fc: e59d3028 ldr r3, [sp, #40] ; 0x28 30007700: e1a0e00f mov lr, pc 30007704: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 30007708: e1a00005 mov r0, r5 3000770c: eaffffaa b 300075bc <_Heap_Walk+0x50> } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 30007710: e1a0000a mov r0, sl 30007714: e3a01001 mov r1, #1 30007718: e59f2448 ldr r2, [pc, #1096] ; 30007b68 <_Heap_Walk+0x5fc> 3000771c: e1a03008 mov r3, r8 30007720: e1a0e00f mov lr, pc 30007724: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 30007728: e1a0000b mov r0, fp 3000772c: eaffffa2 b 300075bc <_Heap_Walk+0x50> block = next_block; } while ( block != first_block ); return true; } 30007730: e5945008 ldr r5, [r4, #8] int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 30007734: e5947010 ldr r7, [r4, #16] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 30007738: e1540005 cmp r4, r5 3000773c: 05943020 ldreq r3, [r4, #32] 30007740: 0a00000d beq 3000777c <_Heap_Walk+0x210> block = next_block; } while ( block != first_block ); return true; } 30007744: e5943020 ldr r3, [r4, #32] const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 30007748: e1530005 cmp r3, r5 3000774c: 9a000097 bls 300079b0 <_Heap_Walk+0x444> const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 30007750: e1a0000a mov r0, sl 30007754: e3a01001 mov r1, #1 30007758: e59f240c ldr r2, [pc, #1036] ; 30007b6c <_Heap_Walk+0x600> 3000775c: e1a03005 mov r3, r5 30007760: e1a0e00f mov lr, pc 30007764: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 30007768: e3a00000 mov r0, #0 3000776c: eaffff92 b 300075bc <_Heap_Walk+0x50> 30007770: e1a03008 mov r3, r8 30007774: e59db034 ldr fp, [sp, #52] ; 0x34 30007778: e59d8030 ldr r8, [sp, #48] ; 0x30 ); return false; } if ( _Heap_Is_used( free_block ) ) { 3000777c: e1a06008 mov r6, r8 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 30007780: e3cb7001 bic r7, fp, #1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 30007784: e0875006 add r5, r7, r6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 30007788: e1530005 cmp r3, r5 3000778c: 9a000008 bls 300077b4 <_Heap_Walk+0x248> Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 30007790: e1a0000a mov r0, sl 30007794: e58d5000 str r5, [sp] 30007798: e3a01001 mov r1, #1 3000779c: e59f23cc ldr r2, [pc, #972] ; 30007b70 <_Heap_Walk+0x604> 300077a0: e1a03006 mov r3, r6 300077a4: e1a0e00f mov lr, pc 300077a8: e12fff19 bx r9 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 300077ac: e3a00000 mov r0, #0 300077b0: eaffff81 b 300075bc <_Heap_Walk+0x50> 300077b4: e5943024 ldr r3, [r4, #36] ; 0x24 300077b8: e1530005 cmp r3, r5 300077bc: 3afffff3 bcc 30007790 <_Heap_Walk+0x224> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 300077c0: e59d1024 ldr r1, [sp, #36] ; 0x24 300077c4: e1a00007 mov r0, r7 300077c8: ebffe4f1 bl 30000b94 <__umodsi3> uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 300077cc: e59d102c ldr r1, [sp, #44] ; 0x2c 300077d0: e0563001 subs r3, r6, r1 300077d4: 13a03001 movne r3, #1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 300077d8: e3500000 cmp r0, #0 300077dc: 0a000001 beq 300077e8 <_Heap_Walk+0x27c> 300077e0: e3530000 cmp r3, #0 300077e4: 1a0000aa bne 30007a94 <_Heap_Walk+0x528> ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 300077e8: e59d2028 ldr r2, [sp, #40] ; 0x28 300077ec: e1520007 cmp r2, r7 300077f0: 9a000001 bls 300077fc <_Heap_Walk+0x290> 300077f4: e3530000 cmp r3, #0 300077f8: 1a0000ae bne 30007ab8 <_Heap_Walk+0x54c> ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 300077fc: e1560005 cmp r6, r5 30007800: 3a000001 bcc 3000780c <_Heap_Walk+0x2a0> 30007804: e3530000 cmp r3, #0 30007808: 1a0000b4 bne 30007ae0 <_Heap_Walk+0x574> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 3000780c: e5953004 ldr r3, [r5, #4] 30007810: e20bb001 and fp, fp, #1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 30007814: e3130001 tst r3, #1 30007818: 0a000018 beq 30007880 <_Heap_Walk+0x314> if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 3000781c: e35b0000 cmp fp, #0 30007820: 0a00000c beq 30007858 <_Heap_Walk+0x2ec> (*printer)( 30007824: e58d7000 str r7, [sp] 30007828: e1a0000a mov r0, sl 3000782c: e3a01000 mov r1, #0 30007830: e59f233c ldr r2, [pc, #828] ; 30007b74 <_Heap_Walk+0x608> 30007834: e1a03006 mov r3, r6 30007838: e1a0e00f mov lr, pc 3000783c: e12fff19 bx r9 block->prev_size ); } block = next_block; } while ( block != first_block ); 30007840: e1580005 cmp r8, r5 30007844: 0affff5b beq 300075b8 <_Heap_Walk+0x4c> 30007848: e595b004 ldr fp, [r5, #4] 3000784c: e5943020 ldr r3, [r4, #32] 30007850: e1a06005 mov r6, r5 30007854: eaffffc9 b 30007780 <_Heap_Walk+0x214> "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 30007858: e58d7000 str r7, [sp] 3000785c: e5963000 ldr r3, [r6] 30007860: e1a0000a mov r0, sl 30007864: e58d3004 str r3, [sp, #4] 30007868: e1a0100b mov r1, fp 3000786c: e59f2304 ldr r2, [pc, #772] ; 30007b78 <_Heap_Walk+0x60c> 30007870: e1a03006 mov r3, r6 30007874: e1a0e00f mov lr, pc 30007878: e12fff19 bx r9 3000787c: eaffffef b 30007840 <_Heap_Walk+0x2d4> false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 30007880: e596200c ldr r2, [r6, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 30007884: e5943008 ldr r3, [r4, #8] block = next_block; } while ( block != first_block ); return true; } 30007888: e594100c ldr r1, [r4, #12] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 3000788c: e1530002 cmp r3, r2 30007890: 059f02e4 ldreq r0, [pc, #740] ; 30007b7c <_Heap_Walk+0x610> 30007894: 0a000003 beq 300078a8 <_Heap_Walk+0x33c> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 30007898: e59f32e0 ldr r3, [pc, #736] ; 30007b80 <_Heap_Walk+0x614> 3000789c: e1540002 cmp r4, r2 300078a0: e59f02dc ldr r0, [pc, #732] ; 30007b84 <_Heap_Walk+0x618> 300078a4: 01a00003 moveq r0, r3 block->next, block->next == last_free_block ? 300078a8: e5963008 ldr r3, [r6, #8] Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 300078ac: e1510003 cmp r1, r3 300078b0: 059f12d0 ldreq r1, [pc, #720] ; 30007b88 <_Heap_Walk+0x61c> 300078b4: 0a000003 beq 300078c8 <_Heap_Walk+0x35c> " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 300078b8: e59fc2cc ldr ip, [pc, #716] ; 30007b8c <_Heap_Walk+0x620> 300078bc: e1540003 cmp r4, r3 300078c0: e59f12bc ldr r1, [pc, #700] ; 30007b84 <_Heap_Walk+0x618> 300078c4: 01a0100c moveq r1, ip Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 300078c8: e58d2004 str r2, [sp, #4] 300078cc: e58d0008 str r0, [sp, #8] 300078d0: e58d300c str r3, [sp, #12] 300078d4: e58d1010 str r1, [sp, #16] 300078d8: e1a03006 mov r3, r6 300078dc: e58d7000 str r7, [sp] 300078e0: e1a0000a mov r0, sl 300078e4: e3a01000 mov r1, #0 300078e8: e59f22a0 ldr r2, [pc, #672] ; 30007b90 <_Heap_Walk+0x624> 300078ec: e1a0e00f mov lr, pc 300078f0: e12fff19 bx r9 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 300078f4: e5953000 ldr r3, [r5] 300078f8: e1570003 cmp r7, r3 300078fc: 1a000011 bne 30007948 <_Heap_Walk+0x3dc> ); return false; } if ( !prev_used ) { 30007900: e35b0000 cmp fp, #0 30007904: 0a00001a beq 30007974 <_Heap_Walk+0x408> block = next_block; } while ( block != first_block ); return true; } 30007908: e5943008 ldr r3, [r4, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 3000790c: e1540003 cmp r4, r3 30007910: 0a000004 beq 30007928 <_Heap_Walk+0x3bc> if ( free_block == block ) { 30007914: e1560003 cmp r6, r3 30007918: 0affffc8 beq 30007840 <_Heap_Walk+0x2d4> return true; } free_block = free_block->next; 3000791c: e5933008 ldr r3, [r3, #8] ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 30007920: e1540003 cmp r4, r3 30007924: 1afffffa bne 30007914 <_Heap_Walk+0x3a8> return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 30007928: e1a0000a mov r0, sl 3000792c: e3a01001 mov r1, #1 30007930: e59f225c ldr r2, [pc, #604] ; 30007b94 <_Heap_Walk+0x628> 30007934: e1a03006 mov r3, r6 30007938: e1a0e00f mov lr, pc 3000793c: e12fff19 bx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 30007940: e3a00000 mov r0, #0 30007944: eaffff1c b 300075bc <_Heap_Walk+0x50> " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 30007948: e58d3004 str r3, [sp, #4] 3000794c: e1a0000a mov r0, sl 30007950: e58d7000 str r7, [sp] 30007954: e58d5008 str r5, [sp, #8] 30007958: e3a01001 mov r1, #1 3000795c: e59f2234 ldr r2, [pc, #564] ; 30007b98 <_Heap_Walk+0x62c> 30007960: e1a03006 mov r3, r6 30007964: e1a0e00f mov lr, pc 30007968: e12fff19 bx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 3000796c: e3a00000 mov r0, #0 30007970: eaffff11 b 300075bc <_Heap_Walk+0x50> return false; } if ( !prev_used ) { (*printer)( 30007974: e1a0000a mov r0, sl 30007978: e3a01001 mov r1, #1 3000797c: e59f2218 ldr r2, [pc, #536] ; 30007b9c <_Heap_Walk+0x630> 30007980: e1a03006 mov r3, r6 30007984: e1a0e00f mov lr, pc 30007988: e12fff19 bx r9 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 3000798c: e1a0000b mov r0, fp 30007990: eaffff09 b 300075bc <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 30007994: e1a0000a mov r0, sl 30007998: e3a01001 mov r1, #1 3000799c: e59f21fc ldr r2, [pc, #508] ; 30007ba0 <_Heap_Walk+0x634> 300079a0: e1a0e00f mov lr, pc 300079a4: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 300079a8: e1a00005 mov r0, r5 300079ac: eaffff02 b 300075bc <_Heap_Walk+0x50> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 300079b0: e594c024 ldr ip, [r4, #36] ; 0x24 300079b4: e15c0005 cmp ip, r5 300079b8: 3affff64 bcc 30007750 <_Heap_Walk+0x1e4> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 300079bc: e2850008 add r0, r5, #8 300079c0: e1a01007 mov r1, r7 300079c4: e58d3020 str r3, [sp, #32] 300079c8: e58dc01c str ip, [sp, #28] 300079cc: ebffe470 bl 30000b94 <__umodsi3> ); return false; } if ( 300079d0: e3500000 cmp r0, #0 300079d4: e59d3020 ldr r3, [sp, #32] 300079d8: e59dc01c ldr ip, [sp, #28] 300079dc: 1a000048 bne 30007b04 <_Heap_Walk+0x598> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 300079e0: e5952004 ldr r2, [r5, #4] 300079e4: e3c22001 bic r2, r2, #1 block = next_block; } while ( block != first_block ); return true; } 300079e8: e0852002 add r2, r5, r2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 300079ec: e5922004 ldr r2, [r2, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { 300079f0: e3120001 tst r2, #1 300079f4: 1a00004a bne 30007b24 <_Heap_Walk+0x5b8> 300079f8: e58d8030 str r8, [sp, #48] ; 0x30 300079fc: e58db034 str fp, [sp, #52] ; 0x34 30007a00: e1a01004 mov r1, r4 30007a04: e1a06005 mov r6, r5 30007a08: e1a08003 mov r8, r3 30007a0c: e1a0b00c mov fp, ip 30007a10: ea000013 b 30007a64 <_Heap_Walk+0x4f8> return false; } prev_block = free_block; free_block = free_block->next; 30007a14: e5955008 ldr r5, [r5, #8] const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 30007a18: e1540005 cmp r4, r5 30007a1c: 0affff53 beq 30007770 <_Heap_Walk+0x204> const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 30007a20: e1580005 cmp r8, r5 30007a24: 8affff49 bhi 30007750 <_Heap_Walk+0x1e4> 30007a28: e155000b cmp r5, fp RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 30007a2c: e2850008 add r0, r5, #8 30007a30: e1a01007 mov r1, r7 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 30007a34: 8affff45 bhi 30007750 <_Heap_Walk+0x1e4> RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 30007a38: ebffe455 bl 30000b94 <__umodsi3> ); return false; } if ( 30007a3c: e3500000 cmp r0, #0 30007a40: 1a00002f bne 30007b04 <_Heap_Walk+0x598> - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 30007a44: e5953004 ldr r3, [r5, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { 30007a48: e1a01006 mov r1, r6 30007a4c: e3c33001 bic r3, r3, #1 block = next_block; } while ( block != first_block ); return true; } 30007a50: e0833005 add r3, r3, r5 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 30007a54: e5933004 ldr r3, [r3, #4] ); return false; } if ( _Heap_Is_used( free_block ) ) { 30007a58: e1a06005 mov r6, r5 30007a5c: e3130001 tst r3, #1 30007a60: 1a00002f bne 30007b24 <_Heap_Walk+0x5b8> ); return false; } if ( free_block->prev != prev_block ) { 30007a64: e595200c ldr r2, [r5, #12] 30007a68: e1520001 cmp r2, r1 30007a6c: 0affffe8 beq 30007a14 <_Heap_Walk+0x4a8> (*printer)( 30007a70: e58d2000 str r2, [sp] 30007a74: e1a0000a mov r0, sl 30007a78: e3a01001 mov r1, #1 30007a7c: e59f2120 ldr r2, [pc, #288] ; 30007ba4 <_Heap_Walk+0x638> 30007a80: e1a03005 mov r3, r5 30007a84: e1a0e00f mov lr, pc 30007a88: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 30007a8c: e3a00000 mov r0, #0 30007a90: eafffec9 b 300075bc <_Heap_Walk+0x50> return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 30007a94: e1a0000a mov r0, sl 30007a98: e58d7000 str r7, [sp] 30007a9c: e3a01001 mov r1, #1 30007aa0: e59f2100 ldr r2, [pc, #256] ; 30007ba8 <_Heap_Walk+0x63c> 30007aa4: e1a03006 mov r3, r6 30007aa8: e1a0e00f mov lr, pc 30007aac: e12fff19 bx r9 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 30007ab0: e3a00000 mov r0, #0 30007ab4: eafffec0 b 300075bc <_Heap_Walk+0x50> } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( 30007ab8: e58d2004 str r2, [sp, #4] 30007abc: e1a0000a mov r0, sl 30007ac0: e58d7000 str r7, [sp] 30007ac4: e3a01001 mov r1, #1 30007ac8: e59f20dc ldr r2, [pc, #220] ; 30007bac <_Heap_Walk+0x640> 30007acc: e1a03006 mov r3, r6 30007ad0: e1a0e00f mov lr, pc 30007ad4: e12fff19 bx r9 block, block_size, min_block_size ); return false; 30007ad8: e3a00000 mov r0, #0 30007adc: eafffeb6 b 300075bc <_Heap_Walk+0x50> } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( 30007ae0: e1a0000a mov r0, sl 30007ae4: e58d5000 str r5, [sp] 30007ae8: e3a01001 mov r1, #1 30007aec: e59f20bc ldr r2, [pc, #188] ; 30007bb0 <_Heap_Walk+0x644> 30007af0: e1a03006 mov r3, r6 30007af4: e1a0e00f mov lr, pc 30007af8: e12fff19 bx r9 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 30007afc: e3a00000 mov r0, #0 30007b00: eafffead b 300075bc <_Heap_Walk+0x50> } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 30007b04: e1a0000a mov r0, sl 30007b08: e3a01001 mov r1, #1 30007b0c: e59f20a0 ldr r2, [pc, #160] ; 30007bb4 <_Heap_Walk+0x648> 30007b10: e1a03005 mov r3, r5 30007b14: e1a0e00f mov lr, pc 30007b18: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 30007b1c: e3a00000 mov r0, #0 30007b20: eafffea5 b 300075bc <_Heap_Walk+0x50> return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 30007b24: e1a0000a mov r0, sl 30007b28: e3a01001 mov r1, #1 30007b2c: e59f2084 ldr r2, [pc, #132] ; 30007bb8 <_Heap_Walk+0x64c> 30007b30: e1a03005 mov r3, r5 30007b34: e1a0e00f mov lr, pc 30007b38: e12fff19 bx r9 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 30007b3c: e3a00000 mov r0, #0 30007b40: eafffe9d b 300075bc <_Heap_Walk+0x50> =============================================================================== 30006950 <_Internal_error_Occurred>: bool is_internal, Internal_errors_t the_error ) { _Internal_errors_What_happened.the_source = the_source; 30006950: e59f303c ldr r3, [pc, #60] ; 30006994 <_Internal_error_Occurred+0x44> void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 30006954: e201c0ff and ip, r1, #255 ; 0xff 30006958: e52de004 push {lr} ; (str lr, [sp, #-4]!) _Internal_errors_What_happened.the_source = the_source; _Internal_errors_What_happened.is_internal = is_internal; _Internal_errors_What_happened.the_error = the_error; _User_extensions_Fatal( the_source, is_internal, the_error ); 3000695c: e1a0100c mov r1, ip bool is_internal, Internal_errors_t the_error ) { _Internal_errors_What_happened.the_source = the_source; 30006960: e5830000 str r0, [r3] _Internal_errors_What_happened.is_internal = is_internal; 30006964: e5c3c004 strb ip, [r3, #4] _Internal_errors_What_happened.the_error = the_error; 30006968: e5832008 str r2, [r3, #8] void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 3000696c: e1a04002 mov r4, r2 _Internal_errors_What_happened.the_source = the_source; _Internal_errors_What_happened.is_internal = is_internal; _Internal_errors_What_happened.the_error = the_error; _User_extensions_Fatal( the_source, is_internal, the_error ); 30006970: eb000738 bl 30008658 <_User_extensions_Fatal> RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state; 30006974: e59f301c ldr r3, [pc, #28] ; 30006998 <_Internal_error_Occurred+0x48><== NOT EXECUTED 30006978: e3a02005 mov r2, #5 <== NOT EXECUTED 3000697c: e5832000 str r2, [r3] <== NOT EXECUTED static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 30006980: e10f2000 mrs r2, CPSR <== NOT EXECUTED 30006984: e3823080 orr r3, r2, #128 ; 0x80 <== NOT EXECUTED 30006988: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED _System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error ); 3000698c: e1a00004 mov r0, r4 <== NOT EXECUTED 30006990: eafffffe b 30006990 <_Internal_error_Occurred+0x40> <== NOT EXECUTED =============================================================================== 30006a58 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 30006a58: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 30006a5c: e5904034 ldr r4, [r0, #52] ; 0x34 */ void _Objects_Extend_information( Objects_Information *information ) { 30006a60: e24dd014 sub sp, sp, #20 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 30006a64: e3540000 cmp r4, #0 */ void _Objects_Extend_information( Objects_Information *information ) { 30006a68: e1a05000 mov r5, r0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 30006a6c: e1d070b8 ldrh r7, [r0, #8] index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 30006a70: 0a00009b beq 30006ce4 <_Objects_Extend_information+0x28c> block_count = 0; else { block_count = information->maximum / information->allocation_size; 30006a74: e1d081b4 ldrh r8, [r0, #20] 30006a78: e1d0a1b0 ldrh sl, [r0, #16] 30006a7c: e1a01008 mov r1, r8 30006a80: e1a0000a mov r0, sl 30006a84: eb0025da bl 300101f4 <__aeabi_uidiv> 30006a88: e1a03800 lsl r3, r0, #16 for ( ; block < block_count; block++ ) { 30006a8c: e1b03823 lsrs r3, r3, #16 30006a90: 0a000099 beq 30006cfc <_Objects_Extend_information+0x2a4> if ( information->object_blocks[ block ] == NULL ) { 30006a94: e5949000 ldr r9, [r4] 30006a98: e3590000 cmp r9, #0 30006a9c: 01a01008 moveq r1, r8 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 30006aa0: 01a06007 moveq r6, r7 index_base = minimum_index; block = 0; 30006aa4: 01a04009 moveq r4, r9 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 30006aa8: 0a00000c beq 30006ae0 <_Objects_Extend_information+0x88> 30006aac: e1a02004 mov r2, r4 30006ab0: e1a01008 mov r1, r8 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 30006ab4: e1a06007 mov r6, r7 index_base = minimum_index; block = 0; 30006ab8: e3a04000 mov r4, #0 30006abc: ea000002 b 30006acc <_Objects_Extend_information+0x74> block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 30006ac0: e5b29004 ldr r9, [r2, #4]! 30006ac4: e3590000 cmp r9, #0 30006ac8: 0a000004 beq 30006ae0 <_Objects_Extend_information+0x88> if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 30006acc: e2844001 add r4, r4, #1 30006ad0: e1530004 cmp r3, r4 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 30006ad4: e0866008 add r6, r6, r8 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 30006ad8: 8afffff8 bhi 30006ac0 <_Objects_Extend_information+0x68> /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 30006adc: e3a09001 mov r9, #1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 30006ae0: e08aa001 add sl, sl, r1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 30006ae4: e35a0801 cmp sl, #65536 ; 0x10000 30006ae8: 2a000063 bcs 30006c7c <_Objects_Extend_information+0x224> /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) { 30006aec: e5d52012 ldrb r2, [r5, #18] /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 30006af0: e5950018 ldr r0, [r5, #24] if ( information->auto_extend ) { 30006af4: e3520000 cmp r2, #0 /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 30006af8: e0000091 mul r0, r1, r0 if ( information->auto_extend ) { 30006afc: 1a000060 bne 30006c84 <_Objects_Extend_information+0x22c> new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 30006b00: e58d3000 str r3, [sp] 30006b04: eb000816 bl 30008b64 <_Workspace_Allocate_or_fatal_error> 30006b08: e59d3000 ldr r3, [sp] 30006b0c: e1a08000 mov r8, r0 } /* * Do we need to grow the tables? */ if ( do_extend ) { 30006b10: e3590000 cmp r9, #0 30006b14: 0a000039 beq 30006c00 <_Objects_Extend_information+0x1a8> */ /* * Up the block count and maximum */ block_count++; 30006b18: e283b001 add fp, r3, #1 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 30006b1c: e08b008b add r0, fp, fp, lsl #1 ((maximum + minimum_index) * sizeof(Objects_Control *)); 30006b20: e08a0000 add r0, sl, r0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 30006b24: e0800007 add r0, r0, r7 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); 30006b28: e1a00100 lsl r0, r0, #2 30006b2c: e58d3000 str r3, [sp] 30006b30: eb000801 bl 30008b3c <_Workspace_Allocate> if ( !object_blocks ) { 30006b34: e2509000 subs r9, r0, #0 30006b38: e59d3000 ldr r3, [sp] 30006b3c: 0a000073 beq 30006d10 <_Objects_Extend_information+0x2b8> * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 30006b40: e1d521b0 ldrh r2, [r5, #16] RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset ( const void *base, uintptr_t offset ) { return (void *)((uintptr_t)base + offset); 30006b44: e089c10b add ip, r9, fp, lsl #2 30006b48: e1570002 cmp r7, r2 30006b4c: e089b18b add fp, r9, fp, lsl #3 30006b50: 3a000051 bcc 30006c9c <_Objects_Extend_information+0x244> } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 30006b54: e3570000 cmp r7, #0 30006b58: 13a02000 movne r2, #0 30006b5c: 11a0100b movne r1, fp local_table[ index ] = NULL; 30006b60: 11a00002 movne r0, r2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 30006b64: 0a000003 beq 30006b78 <_Objects_Extend_information+0x120> 30006b68: e2822001 add r2, r2, #1 30006b6c: e1570002 cmp r7, r2 local_table[ index ] = NULL; 30006b70: e4810004 str r0, [r1], #4 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 30006b74: 8afffffb bhi 30006b68 <_Objects_Extend_information+0x110> 30006b78: e1a03103 lsl r3, r3, #2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 30006b7c: e1d511b4 ldrh r1, [r5, #20] } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 30006b80: e3a00000 mov r0, #0 inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 30006b84: e0861001 add r1, r6, r1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 30006b88: e1560001 cmp r6, r1 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 30006b8c: e7890003 str r0, [r9, r3] inactive_per_block[block_count] = 0; 30006b90: e78c0003 str r0, [ip, r3] for ( index=index_base ; 30006b94: 2a000005 bcs 30006bb0 <_Objects_Extend_information+0x158> 30006b98: e08b2106 add r2, fp, r6, lsl #2 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 30006b9c: e1a03006 mov r3, r6 object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { 30006ba0: e2833001 add r3, r3, #1 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 30006ba4: e1530001 cmp r3, r1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 30006ba8: e4820004 str r0, [r2], #4 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 30006bac: 3afffffb bcc 30006ba0 <_Objects_Extend_information+0x148> 30006bb0: e10f3000 mrs r3, CPSR 30006bb4: e3832080 orr r2, r3, #128 ; 0x80 30006bb8: e129f002 msr CPSR_fc, r2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 30006bbc: e5952000 ldr r2, [r5] information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 30006bc0: e1d510b4 ldrh r1, [r5, #4] 30006bc4: e1a02c02 lsl r2, r2, #24 old_tables = information->object_blocks; information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 30006bc8: e1a0a80a lsl sl, sl, #16 30006bcc: e3822801 orr r2, r2, #65536 ; 0x10000 30006bd0: e1a0a82a lsr sl, sl, #16 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 30006bd4: e1822d81 orr r2, r2, r1, lsl #27 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 30006bd8: e182200a orr r2, r2, sl local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 30006bdc: e5950034 ldr r0, [r5, #52] ; 0x34 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; 30006be0: e585c030 str ip, [r5, #48] ; 0x30 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 30006be4: e5859034 str r9, [r5, #52] ; 0x34 information->inactive_per_block = inactive_per_block; information->local_table = local_table; 30006be8: e585b01c str fp, [r5, #28] information->maximum = (Objects_Maximum) maximum; 30006bec: e1c5a1b0 strh sl, [r5, #16] information->maximum_id = _Objects_Build_id( 30006bf0: e585200c str r2, [r5, #12] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( 30006bf4: e129f003 msr CPSR_fc, r3 information->maximum ); _ISR_Enable( level ); if ( old_tables ) 30006bf8: e3500000 cmp r0, #0 _Workspace_Free( old_tables ); 30006bfc: 1b0007d4 blne 30008b54 <_Workspace_Free> } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 30006c00: e5953034 ldr r3, [r5, #52] ; 0x34 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 30006c04: e28d7008 add r7, sp, #8 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 30006c08: e7838104 str r8, [r3, r4, lsl #2] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 30006c0c: e1a01008 mov r1, r8 30006c10: e1a00007 mov r0, r7 30006c14: e1d521b4 ldrh r2, [r5, #20] 30006c18: e5953018 ldr r3, [r5, #24] 30006c1c: eb000fa8 bl 3000aac4 <_Chain_Initialize> } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 30006c20: e1a04104 lsl r4, r4, #2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 30006c24: e2858020 add r8, r5, #32 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 30006c28: ea000009 b 30006c54 <_Objects_Extend_information+0x1fc> 30006c2c: e5953000 ldr r3, [r5] the_object->id = _Objects_Build_id( 30006c30: e1d520b4 ldrh r2, [r5, #4] 30006c34: e1a03c03 lsl r3, r3, #24 30006c38: e3833801 orr r3, r3, #65536 ; 0x10000 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 30006c3c: e1833d82 orr r3, r3, r2, lsl #27 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 30006c40: e1833006 orr r3, r3, r6 30006c44: e5813008 str r3, [r1, #8] information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 30006c48: e1a00008 mov r0, r8 30006c4c: ebfffce8 bl 30005ff4 <_Chain_Append> index++; 30006c50: e2866001 add r6, r6, #1 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 30006c54: e1a00007 mov r0, r7 30006c58: ebfffcf8 bl 30006040 <_Chain_Get> 30006c5c: e2501000 subs r1, r0, #0 30006c60: 1afffff1 bne 30006c2c <_Objects_Extend_information+0x1d4> index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 30006c64: e1d522bc ldrh r2, [r5, #44] ; 0x2c _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 30006c68: e1d531b4 ldrh r3, [r5, #20] 30006c6c: e5951030 ldr r1, [r5, #48] ; 0x30 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 30006c70: e0832002 add r2, r3, r2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 30006c74: e7813004 str r3, [r1, r4] information->inactive = 30006c78: e1c522bc strh r2, [r5, #44] ; 0x2c (Objects_Maximum)(information->inactive + information->allocation_size); } 30006c7c: e28dd014 add sp, sp, #20 30006c80: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); 30006c84: e58d3000 str r3, [sp] 30006c88: eb0007ab bl 30008b3c <_Workspace_Allocate> if ( !new_object_block ) 30006c8c: e2508000 subs r8, r0, #0 30006c90: e59d3000 ldr r3, [sp] 30006c94: 1affff9d bne 30006b10 <_Objects_Extend_information+0xb8> 30006c98: eafffff7 b 30006c7c <_Objects_Extend_information+0x224> /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 30006c9c: e1a03103 lsl r3, r3, #2 30006ca0: e5951034 ldr r1, [r5, #52] ; 0x34 30006ca4: e1a02003 mov r2, r3 30006ca8: e88d1008 stm sp, {r3, ip} 30006cac: eb0019df bl 3000d430 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 30006cb0: e89d1008 ldm sp, {r3, ip} 30006cb4: e1a0000c mov r0, ip 30006cb8: e1a02003 mov r2, r3 30006cbc: e5951030 ldr r1, [r5, #48] ; 0x30 30006cc0: eb0019da bl 3000d430 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 30006cc4: e1d521b0 ldrh r2, [r5, #16] information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 30006cc8: e1a0000b mov r0, fp information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 30006ccc: e0872002 add r2, r7, r2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 30006cd0: e595101c ldr r1, [r5, #28] 30006cd4: e1a02102 lsl r2, r2, #2 30006cd8: eb0019d4 bl 3000d430 30006cdc: e89d1008 ldm sp, {r3, ip} 30006ce0: eaffffa5 b 30006b7c <_Objects_Extend_information+0x124> minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 30006ce4: e1d0a1b0 ldrh sl, [r0, #16] 30006ce8: e1d011b4 ldrh r1, [r0, #20] /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 30006cec: e1a06007 mov r6, r7 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 30006cf0: e3a09001 mov r9, #1 index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 30006cf4: e1a03004 mov r3, r4 30006cf8: eaffff78 b 30006ae0 <_Objects_Extend_information+0x88> else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 30006cfc: e1a01008 mov r1, r8 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 30006d00: e1a06007 mov r6, r7 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 30006d04: e3a09001 mov r9, #1 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 30006d08: e1a04003 mov r4, r3 <== NOT EXECUTED 30006d0c: eaffff73 b 30006ae0 <_Objects_Extend_information+0x88> <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); 30006d10: e1a00008 mov r0, r8 30006d14: eb00078e bl 30008b54 <_Workspace_Free> return; 30006d18: eaffffd7 b 30006c7c <_Objects_Extend_information+0x224> =============================================================================== 30007060 <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { 30007060: e92d40f0 push {r4, r5, r6, r7, lr} /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 30007064: e1d040b8 ldrh r4, [r0, #8] block_count = (information->maximum - index_base) / 30007068: e1d051b4 ldrh r5, [r0, #20] */ void _Objects_Shrink_information( Objects_Information *information ) { 3000706c: e1a06000 mov r6, r0 /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / 30007070: e1d001b0 ldrh r0, [r0, #16] 30007074: e1a01005 mov r1, r5 30007078: e0640000 rsb r0, r4, r0 3000707c: eb00245c bl 300101f4 <__aeabi_uidiv> information->allocation_size; for ( block = 0; block < block_count; block++ ) { 30007080: e3500000 cmp r0, #0 30007084: 08bd80f0 popeq {r4, r5, r6, r7, pc} if ( information->inactive_per_block[ block ] == 30007088: e5962030 ldr r2, [r6, #48] ; 0x30 3000708c: e5923000 ldr r3, [r2] 30007090: e1550003 cmp r5, r3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 30007094: 13a03000 movne r3, #0 if ( information->inactive_per_block[ block ] == 30007098: 1a000005 bne 300070b4 <_Objects_Shrink_information+0x54> 3000709c: ea000008 b 300070c4 <_Objects_Shrink_information+0x64> <== NOT EXECUTED 300070a0: e5b21004 ldr r1, [r2, #4]! information->inactive -= information->allocation_size; return; } index_base += information->allocation_size; 300070a4: e0844005 add r4, r4, r5 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 300070a8: e1550001 cmp r5, r1 information->inactive -= information->allocation_size; return; } index_base += information->allocation_size; 300070ac: e1a07103 lsl r7, r3, #2 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 300070b0: 0a000004 beq 300070c8 <_Objects_Shrink_information+0x68> index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 300070b4: e2833001 add r3, r3, #1 300070b8: e1500003 cmp r0, r3 300070bc: 8afffff7 bhi 300070a0 <_Objects_Shrink_information+0x40> 300070c0: e8bd80f0 pop {r4, r5, r6, r7, pc} if ( information->inactive_per_block[ block ] == 300070c4: e3a07000 mov r7, #0 <== NOT EXECUTED information->allocation_size ) { /* * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; 300070c8: e5960020 ldr r0, [r6, #32] 300070cc: ea000002 b 300070dc <_Objects_Shrink_information+0x7c> if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 300070d0: e3550000 cmp r5, #0 300070d4: 0a00000b beq 30007108 <_Objects_Shrink_information+0xa8> index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 300070d8: e1a00005 mov r0, r5 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; do { index = _Objects_Get_index( the_object->id ); 300070dc: e1d030b8 ldrh r3, [r0, #8] /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 300070e0: e5905000 ldr r5, [r0] if ((index >= index_base) && 300070e4: e1530004 cmp r3, r4 300070e8: 3afffff8 bcc 300070d0 <_Objects_Shrink_information+0x70> (index < (index_base + information->allocation_size))) { 300070ec: e1d621b4 ldrh r2, [r6, #20] 300070f0: e0842002 add r2, r4, r2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 300070f4: e1530002 cmp r3, r2 300070f8: 2afffff4 bcs 300070d0 <_Objects_Shrink_information+0x70> (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 300070fc: ebfffbc7 bl 30006020 <_Chain_Extract> } } while ( the_object ); 30007100: e3550000 cmp r5, #0 30007104: 1afffff3 bne 300070d8 <_Objects_Shrink_information+0x78> /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 30007108: e5963034 ldr r3, [r6, #52] ; 0x34 3000710c: e7930007 ldr r0, [r3, r7] 30007110: eb00068f bl 30008b54 <_Workspace_Free> information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 30007114: e1d602bc ldrh r0, [r6, #44] ; 0x2c 30007118: e1d631b4 ldrh r3, [r6, #20] /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 3000711c: e5961034 ldr r1, [r6, #52] ; 0x34 information->inactive_per_block[ block ] = 0; 30007120: e5962030 ldr r2, [r6, #48] ; 0x30 information->inactive -= information->allocation_size; 30007124: e0633000 rsb r3, r3, r0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 30007128: e7815007 str r5, [r1, r7] information->inactive_per_block[ block ] = 0; 3000712c: e7825007 str r5, [r2, r7] information->inactive -= information->allocation_size; 30007130: e1c632bc strh r3, [r6, #44] ; 0x2c return; 30007134: e8bd80f0 pop {r4, r5, r6, r7, pc} =============================================================================== 300066c8 <_TOD_Validate>: { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 300066c8: e59f30b0 ldr r3, [pc, #176] ; 30006780 <_TOD_Validate+0xb8> */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 300066cc: e92d4010 push {r4, lr} uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 300066d0: e2504000 subs r4, r0, #0 { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 300066d4: e593100c ldr r1, [r3, #12] (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 300066d8: 01a00004 moveq r0, r4 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 300066dc: 08bd8010 popeq {r4, pc} ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 300066e0: e59f009c ldr r0, [pc, #156] ; 30006784 <_TOD_Validate+0xbc> 300066e4: eb0044f5 bl 30017ac0 <__aeabi_uidiv> rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 300066e8: e5943018 ldr r3, [r4, #24] 300066ec: e1500003 cmp r0, r3 300066f0: 9a00001e bls 30006770 <_TOD_Validate+0xa8> (the_tod->ticks >= ticks_per_second) || 300066f4: e5943014 ldr r3, [r4, #20] 300066f8: e353003b cmp r3, #59 ; 0x3b 300066fc: 8a00001b bhi 30006770 <_TOD_Validate+0xa8> (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 30006700: e5943010 ldr r3, [r4, #16] 30006704: e353003b cmp r3, #59 ; 0x3b 30006708: 8a000018 bhi 30006770 <_TOD_Validate+0xa8> (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 3000670c: e594300c ldr r3, [r4, #12] 30006710: e3530017 cmp r3, #23 30006714: 8a000015 bhi 30006770 <_TOD_Validate+0xa8> (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 30006718: e5940004 ldr r0, [r4, #4] rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 3000671c: e3500000 cmp r0, #0 30006720: 08bd8010 popeq {r4, pc} (the_tod->month == 0) || 30006724: e350000c cmp r0, #12 30006728: 8a000010 bhi 30006770 <_TOD_Validate+0xa8> (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 3000672c: e5943000 ldr r3, [r4] (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 30006730: e59f2050 ldr r2, [pc, #80] ; 30006788 <_TOD_Validate+0xc0> 30006734: e1530002 cmp r3, r2 30006738: 9a00000c bls 30006770 <_TOD_Validate+0xa8> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 3000673c: e5944008 ldr r4, [r4, #8] (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 30006740: e3540000 cmp r4, #0 30006744: 0a00000b beq 30006778 <_TOD_Validate+0xb0> (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 30006748: e3130003 tst r3, #3 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 3000674c: 059f3038 ldreq r3, [pc, #56] ; 3000678c <_TOD_Validate+0xc4> else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 30006750: 159f3034 ldrne r3, [pc, #52] ; 3000678c <_TOD_Validate+0xc4> (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 30006754: 0280000d addeq r0, r0, #13 30006758: 07930100 ldreq r0, [r3, r0, lsl #2] else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 3000675c: 17930100 ldrne r0, [r3, r0, lsl #2] * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 30006760: e1500004 cmp r0, r4 30006764: 33a00000 movcc r0, #0 30006768: 23a00001 movcs r0, #1 3000676c: e8bd8010 pop {r4, pc} (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 30006770: e3a00000 mov r0, #0 30006774: e8bd8010 pop {r4, pc} 30006778: e1a00004 mov r0, r4 <== NOT EXECUTED if ( the_tod->day > days_in_month ) return false; return true; } 3000677c: e8bd8010 pop {r4, pc} <== NOT EXECUTED =============================================================================== 30007ccc <_Thread_queue_Enqueue_priority>: Priority_Control priority; States_Control block_state; _Chain_Initialize_empty( &the_thread->Wait.Block2n ); priority = the_thread->current_priority; 30007ccc: e5913014 ldr r3, [r1, #20] Thread_blocking_operation_States _Thread_queue_Enqueue_priority ( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread, ISR_Level *level_p ) { 30007cd0: e92d0ff0 push {r4, r5, r6, r7, r8, r9, sl, fp} 30007cd4: e281403c add r4, r1, #60 ; 0x3c Chain_Node *previous_node; Chain_Node *search_node; Priority_Control priority; States_Control block_state; _Chain_Initialize_empty( &the_thread->Wait.Block2n ); 30007cd8: e281c038 add ip, r1, #56 ; 0x38 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 30007cdc: e5814038 str r4, [r1, #56] ; 0x38 priority = the_thread->current_priority; header_index = _Thread_queue_Header_number( priority ); header = &the_thread_queue->Queues.Priority[ header_index ]; block_state = the_thread_queue->state; if ( _Thread_queue_Is_reverse_search( priority ) ) 30007ce0: e3130020 tst r3, #32 the_chain->permanent_null = NULL; 30007ce4: e3a04000 mov r4, #0 30007ce8: e581403c str r4, [r1, #60] ; 0x3c the_chain->last = _Chain_Head(the_chain); 30007cec: e581c040 str ip, [r1, #64] ; 0x40 RTEMS_INLINE_ROUTINE uint32_t _Thread_queue_Header_number ( Priority_Control the_priority ) { return (the_priority / TASK_QUEUE_DATA_PRIORITIES_PER_HEADER); 30007cf0: e1a08323 lsr r8, r3, #6 _Chain_Initialize_empty( &the_thread->Wait.Block2n ); priority = the_thread->current_priority; header_index = _Thread_queue_Header_number( priority ); header = &the_thread_queue->Queues.Priority[ header_index ]; block_state = the_thread_queue->state; 30007cf4: e5905038 ldr r5, [r0, #56] ; 0x38 if ( _Thread_queue_Is_reverse_search( priority ) ) 30007cf8: 1a00001f bne 30007d7c <_Thread_queue_Enqueue_priority+0xb0> goto restart_reverse_search; restart_forward_search: search_priority = PRIORITY_MINIMUM - 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->first; 30007cfc: e0888088 add r8, r8, r8, lsl #1 30007d00: e1a09108 lsl r9, r8, #2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 30007d04: e2898004 add r8, r9, #4 30007d08: e0808008 add r8, r0, r8 30007d0c: e0809009 add r9, r0, r9 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 30007d10: e10f7000 mrs r7, CPSR 30007d14: e387c080 orr ip, r7, #128 ; 0x80 30007d18: e129f00c msr CPSR_fc, ip 30007d1c: e1a0a007 mov sl, r7 30007d20: e599c000 ldr ip, [r9] while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) { 30007d24: e15c0008 cmp ip, r8 30007d28: 1a000009 bne 30007d54 <_Thread_queue_Enqueue_priority+0x88> 30007d2c: ea000054 b 30007e84 <_Thread_queue_Enqueue_priority+0x1b8> static inline void arm_interrupt_flash( uint32_t level ) { uint32_t arm_switch_reg; asm volatile ( 30007d30: e10f6000 mrs r6, CPSR 30007d34: e129f007 msr CPSR_fc, r7 30007d38: e129f006 msr CPSR_fc, r6 RTEMS_INLINE_ROUTINE bool _States_Are_set ( States_Control the_states, States_Control mask ) { return ( (the_states & mask) != STATES_READY); 30007d3c: e59c6010 ldr r6, [ip, #16] search_priority = search_thread->current_priority; if ( priority <= search_priority ) break; #endif _ISR_Flash( level ); if ( !_States_Are_set( search_thread->current_state, block_state) ) { 30007d40: e1150006 tst r5, r6 30007d44: 0a000036 beq 30007e24 <_Thread_queue_Enqueue_priority+0x158> _ISR_Enable( level ); goto restart_forward_search; } search_thread = (Thread_Control *)search_thread->Object.Node.next; 30007d48: e59cc000 ldr ip, [ip] restart_forward_search: search_priority = PRIORITY_MINIMUM - 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->first; while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) { 30007d4c: e15c0008 cmp ip, r8 30007d50: 0a000002 beq 30007d60 <_Thread_queue_Enqueue_priority+0x94> search_priority = search_thread->current_priority; 30007d54: e59c4014 ldr r4, [ip, #20] if ( priority <= search_priority ) 30007d58: e1530004 cmp r3, r4 30007d5c: 8afffff3 bhi 30007d30 <_Thread_queue_Enqueue_priority+0x64> } search_thread = (Thread_Control *)search_thread->Object.Node.next; } if ( the_thread_queue->sync_state != 30007d60: e5905030 ldr r5, [r0, #48] ; 0x30 30007d64: e3550001 cmp r5, #1 30007d68: 0a00002f beq 30007e2c <_Thread_queue_Enqueue_priority+0x160> * For example, the blocking thread could have been given * the mutex by an ISR or timed out. * * WARNING! Returning with interrupts disabled! */ *level_p = level; 30007d6c: e582a000 str sl, [r2] return the_thread_queue->sync_state; } 30007d70: e1a00005 mov r0, r5 30007d74: e8bd0ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp} 30007d78: e12fff1e bx lr _Chain_Initialize_empty( &the_thread->Wait.Block2n ); priority = the_thread->current_priority; header_index = _Thread_queue_Header_number( priority ); header = &the_thread_queue->Queues.Priority[ header_index ]; 30007d7c: e0888088 add r8, r8, r8, lsl #1 30007d80: e0808108 add r8, r0, r8, lsl #2 30007d84: e59f9100 ldr r9, [pc, #256] ; 30007e8c <_Thread_queue_Enqueue_priority+0x1c0> restart_reverse_search: search_priority = PRIORITY_MAXIMUM + 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->last; 30007d88: e1a0b008 mov fp, r8 the_thread->Wait.queue = the_thread_queue; _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; restart_reverse_search: search_priority = PRIORITY_MAXIMUM + 1; 30007d8c: e5d94000 ldrb r4, [r9] 30007d90: e2844001 add r4, r4, #1 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 30007d94: e10f7000 mrs r7, CPSR 30007d98: e387c080 orr ip, r7, #128 ; 0x80 30007d9c: e129f00c msr CPSR_fc, ip 30007da0: e1a0a007 mov sl, r7 _ISR_Disable( level ); search_thread = (Thread_Control *) header->last; 30007da4: e59bc008 ldr ip, [fp, #8] while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) { 30007da8: e15c0008 cmp ip, r8 30007dac: 1a000009 bne 30007dd8 <_Thread_queue_Enqueue_priority+0x10c> 30007db0: ea00000b b 30007de4 <_Thread_queue_Enqueue_priority+0x118> static inline void arm_interrupt_flash( uint32_t level ) { uint32_t arm_switch_reg; asm volatile ( 30007db4: e10f6000 mrs r6, CPSR 30007db8: e129f007 msr CPSR_fc, r7 30007dbc: e129f006 msr CPSR_fc, r6 30007dc0: e59c6010 ldr r6, [ip, #16] search_priority = search_thread->current_priority; if ( priority >= search_priority ) break; #endif _ISR_Flash( level ); if ( !_States_Are_set( search_thread->current_state, block_state) ) { 30007dc4: e1150006 tst r5, r6 30007dc8: 0a000013 beq 30007e1c <_Thread_queue_Enqueue_priority+0x150> _ISR_Enable( level ); goto restart_reverse_search; } search_thread = (Thread_Control *) search_thread->Object.Node.previous; 30007dcc: e59cc004 ldr ip, [ip, #4] restart_reverse_search: search_priority = PRIORITY_MAXIMUM + 1; _ISR_Disable( level ); search_thread = (Thread_Control *) header->last; while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) { 30007dd0: e15c0008 cmp ip, r8 30007dd4: 0a000002 beq 30007de4 <_Thread_queue_Enqueue_priority+0x118> search_priority = search_thread->current_priority; 30007dd8: e59c4014 ldr r4, [ip, #20] if ( priority >= search_priority ) 30007ddc: e1530004 cmp r3, r4 30007de0: 3afffff3 bcc 30007db4 <_Thread_queue_Enqueue_priority+0xe8> } search_thread = (Thread_Control *) search_thread->Object.Node.previous; } if ( the_thread_queue->sync_state != 30007de4: e5905030 ldr r5, [r0, #48] ; 0x30 30007de8: e3550001 cmp r5, #1 30007dec: 1affffde bne 30007d6c <_Thread_queue_Enqueue_priority+0xa0> THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; if ( priority == search_priority ) 30007df0: e1530004 cmp r3, r4 if ( the_thread_queue->sync_state != THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; 30007df4: e3a03000 mov r3, #0 30007df8: e5803030 str r3, [r0, #48] ; 0x30 if ( priority == search_priority ) 30007dfc: 0a000016 beq 30007e5c <_Thread_queue_Enqueue_priority+0x190> goto equal_priority; search_node = (Chain_Node *) search_thread; next_node = search_node->next; 30007e00: e59c3000 ldr r3, [ip] the_node = (Chain_Node *) the_thread; the_node->next = next_node; the_node->previous = search_node; 30007e04: e8811008 stm r1, {r3, ip} search_node->next = the_node; next_node->previous = the_node; 30007e08: e5831004 str r1, [r3, #4] next_node = search_node->next; the_node = (Chain_Node *) the_thread; the_node->next = next_node; the_node->previous = search_node; search_node->next = the_node; 30007e0c: e58c1000 str r1, [ip] next_node->previous = the_node; the_thread->Wait.queue = the_thread_queue; 30007e10: e5810044 str r0, [r1, #68] ; 0x44 static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( 30007e14: e129f007 msr CPSR_fc, r7 _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 30007e18: eaffffd4 b 30007d70 <_Thread_queue_Enqueue_priority+0xa4> 30007e1c: e129f007 msr CPSR_fc, r7 <== NOT EXECUTED 30007e20: eaffffd9 b 30007d8c <_Thread_queue_Enqueue_priority+0xc0> <== NOT EXECUTED 30007e24: e129f007 msr CPSR_fc, r7 30007e28: eaffffb8 b 30007d10 <_Thread_queue_Enqueue_priority+0x44> THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; if ( priority == search_priority ) 30007e2c: e1530004 cmp r3, r4 if ( the_thread_queue->sync_state != THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) goto synchronize; the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED; 30007e30: e3a03000 mov r3, #0 30007e34: e5803030 str r3, [r0, #48] ; 0x30 if ( priority == search_priority ) 30007e38: 0a000007 beq 30007e5c <_Thread_queue_Enqueue_priority+0x190> goto equal_priority; search_node = (Chain_Node *) search_thread; previous_node = search_node->previous; 30007e3c: e59c3004 ldr r3, [ip, #4] the_node = (Chain_Node *) the_thread; the_node->next = search_node; 30007e40: e581c000 str ip, [r1] the_node->previous = previous_node; 30007e44: e5813004 str r3, [r1, #4] previous_node->next = the_node; 30007e48: e5831000 str r1, [r3] search_node->previous = the_node; 30007e4c: e58c1004 str r1, [ip, #4] the_thread->Wait.queue = the_thread_queue; 30007e50: e5810044 str r0, [r1, #68] ; 0x44 30007e54: e129f007 msr CPSR_fc, r7 _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 30007e58: eaffffc4 b 30007d70 <_Thread_queue_Enqueue_priority+0xa4> 30007e5c: e28cc03c add ip, ip, #60 ; 0x3c _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; equal_priority: /* add at end of priority group */ search_node = _Chain_Tail( &search_thread->Wait.Block2n ); previous_node = search_node->previous; 30007e60: e59c3004 ldr r3, [ip, #4] the_node = (Chain_Node *) the_thread; the_node->next = search_node; 30007e64: e581c000 str ip, [r1] the_node->previous = previous_node; 30007e68: e5813004 str r3, [r1, #4] previous_node->next = the_node; 30007e6c: e5831000 str r1, [r3] search_node->previous = the_node; 30007e70: e58c1004 str r1, [ip, #4] the_thread->Wait.queue = the_thread_queue; 30007e74: e5810044 str r0, [r1, #68] ; 0x44 30007e78: e129f00a msr CPSR_fc, sl _ISR_Enable( level ); return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 30007e7c: e3a05001 mov r5, #1 30007e80: eaffffba b 30007d70 <_Thread_queue_Enqueue_priority+0xa4> if ( _Thread_queue_Is_reverse_search( priority ) ) goto restart_reverse_search; restart_forward_search: search_priority = PRIORITY_MINIMUM - 1; 30007e84: e3e04000 mvn r4, #0 30007e88: eaffffb4 b 30007d60 <_Thread_queue_Enqueue_priority+0x94> =============================================================================== 3001604c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 3001604c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} 30016050: e24dd024 sub sp, sp, #36 ; 0x24 30016054: e28d700c add r7, sp, #12 30016058: e28d2018 add r2, sp, #24 3001605c: e282a004 add sl, r2, #4 30016060: e2872004 add r2, r7, #4 30016064: e58d2000 str r2, [sp] Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain); 30016068: e28d2018 add r2, sp, #24 3001606c: e58d2020 str r2, [sp, #32] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 30016070: e59d2000 ldr r2, [sp] the_chain->permanent_null = NULL; 30016074: e3a03000 mov r3, #0 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 30016078: e58d200c str r2, [sp, #12] 3001607c: e2802008 add r2, r0, #8 30016080: e58d2004 str r2, [sp, #4] 30016084: e59f91bc ldr r9, [pc, #444] ; 30016248 <_Timer_server_Body+0x1fc> 30016088: e2802040 add r2, r0, #64 ; 0x40 3001608c: e59fb1b8 ldr fp, [pc, #440] ; 3001624c <_Timer_server_Body+0x200> 30016090: e1a04000 mov r4, r0 30016094: e58da018 str sl, [sp, #24] the_chain->permanent_null = NULL; 30016098: e58d301c str r3, [sp, #28] 3001609c: e58d3010 str r3, [sp, #16] the_chain->last = _Chain_Head(the_chain); 300160a0: e58d7014 str r7, [sp, #20] 300160a4: e2806030 add r6, r0, #48 ; 0x30 300160a8: e2808068 add r8, r0, #104 ; 0x68 300160ac: e58d2008 str r2, [sp, #8] { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 300160b0: e28d3018 add r3, sp, #24 300160b4: e5843078 str r3, [r4, #120] ; 0x78 static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 300160b8: e5993000 ldr r3, [r9] /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 300160bc: e594103c ldr r1, [r4, #60] ; 0x3c watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 300160c0: e1a02007 mov r2, r7 300160c4: e1a00006 mov r0, r6 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 300160c8: e584303c str r3, [r4, #60] ; 0x3c _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 300160cc: e0611003 rsb r1, r1, r3 300160d0: eb001159 bl 3001a63c <_Watchdog_Adjust_to_chain> static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 300160d4: e59b5000 ldr r5, [fp] Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 300160d8: e5942074 ldr r2, [r4, #116] ; 0x74 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 300160dc: e1550002 cmp r5, r2 300160e0: 8a000022 bhi 30016170 <_Timer_server_Body+0x124> * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 300160e4: 3a000018 bcc 3001614c <_Timer_server_Body+0x100> */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 300160e8: e5845074 str r5, [r4, #116] ; 0x74 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 300160ec: e5940078 ldr r0, [r4, #120] ; 0x78 300160f0: eb0002bf bl 30016bf4 <_Chain_Get> if ( timer == NULL ) { 300160f4: e2501000 subs r1, r0, #0 300160f8: 0a00000b beq 3001612c <_Timer_server_Body+0xe0> static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 300160fc: e5913038 ldr r3, [r1, #56] ; 0x38 30016100: e3530001 cmp r3, #1 30016104: 0a000015 beq 30016160 <_Timer_server_Body+0x114> _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 30016108: e3530003 cmp r3, #3 3001610c: 1afffff6 bne 300160ec <_Timer_server_Body+0xa0> _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 30016110: e2811010 add r1, r1, #16 30016114: e1a00008 mov r0, r8 30016118: eb001171 bl 3001a6e4 <_Watchdog_Insert> } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 3001611c: e5940078 ldr r0, [r4, #120] ; 0x78 30016120: eb0002b3 bl 30016bf4 <_Chain_Get> if ( timer == NULL ) { 30016124: e2501000 subs r1, r0, #0 30016128: 1afffff3 bne 300160fc <_Timer_server_Body+0xb0> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 3001612c: e10f2000 mrs r2, CPSR 30016130: e3823080 orr r3, r2, #128 ; 0x80 30016134: e129f003 msr CPSR_fc, r3 * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { 30016138: e59d3018 ldr r3, [sp, #24] 3001613c: e15a0003 cmp sl, r3 30016140: 0a00000f beq 30016184 <_Timer_server_Body+0x138> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( 30016144: e129f002 msr CPSR_fc, r2 <== NOT EXECUTED 30016148: eaffffda b 300160b8 <_Timer_server_Body+0x6c> <== NOT EXECUTED /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 3001614c: e1a00008 mov r0, r8 30016150: e3a01001 mov r1, #1 30016154: e0652002 rsb r2, r5, r2 30016158: eb001108 bl 3001a580 <_Watchdog_Adjust> 3001615c: eaffffe1 b 300160e8 <_Timer_server_Body+0x9c> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 30016160: e1a00006 mov r0, r6 30016164: e2811010 add r1, r1, #16 30016168: eb00115d bl 3001a6e4 <_Watchdog_Insert> 3001616c: eaffffde b 300160ec <_Timer_server_Body+0xa0> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 30016170: e0621005 rsb r1, r2, r5 30016174: e1a00008 mov r0, r8 30016178: e1a02007 mov r2, r7 3001617c: eb00112e bl 3001a63c <_Watchdog_Adjust_to_chain> 30016180: eaffffd8 b 300160e8 <_Timer_server_Body+0x9c> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 30016184: e5841078 str r1, [r4, #120] ; 0x78 30016188: e129f002 msr CPSR_fc, r2 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 3001618c: e59d300c ldr r3, [sp, #12] 30016190: e59d2000 ldr r2, [sp] 30016194: e1520003 cmp r2, r3 30016198: 0a000015 beq 300161f4 <_Timer_server_Body+0x1a8> 3001619c: e1a05004 mov r5, r4 300161a0: e59d4000 ldr r4, [sp] 300161a4: ea000009 b 300161d0 <_Timer_server_Body+0x184> { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 300161a8: e5932000 ldr r2, [r3] the_chain->first = new_first; new_first->previous = _Chain_Head(the_chain); 300161ac: e5827004 str r7, [r2, #4] Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; the_chain->first = new_first; 300161b0: e58d200c str r2, [sp, #12] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 300161b4: e3a02000 mov r2, #0 300161b8: e5832008 str r2, [r3, #8] 300161bc: e129f001 msr CPSR_fc, r1 /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 300161c0: e5930020 ldr r0, [r3, #32] 300161c4: e5931024 ldr r1, [r3, #36] ; 0x24 300161c8: e1a0e00f mov lr, pc 300161cc: e593f01c ldr pc, [r3, #28] static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 300161d0: e10f1000 mrs r1, CPSR 300161d4: e3813080 orr r3, r1, #128 ; 0x80 300161d8: e129f003 msr CPSR_fc, r3 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 300161dc: e59d300c ldr r3, [sp, #12] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 300161e0: e1540003 cmp r4, r3 300161e4: 1affffef bne 300161a8 <_Timer_server_Body+0x15c> 300161e8: e1a04005 mov r4, r5 static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( 300161ec: e129f001 msr CPSR_fc, r1 300161f0: eaffffae b 300160b0 <_Timer_server_Body+0x64> 300161f4: e59f2054 ldr r2, [pc, #84] ; 30016250 <_Timer_server_Body+0x204> } } else { ts->active = false; 300161f8: e3a03000 mov r3, #0 300161fc: e5c4307c strb r3, [r4, #124] ; 0x7c 30016200: e5923000 ldr r3, [r2] 30016204: e2833001 add r3, r3, #1 30016208: e5823000 str r3, [r2] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 3001620c: e3a01008 mov r1, #8 30016210: e5940000 ldr r0, [r4] 30016214: eb000e80 bl 30019c1c <_Thread_Set_state> _Timer_server_Reset_interval_system_watchdog( ts ); 30016218: e1a00004 mov r0, r4 3001621c: ebffff5e bl 30015f9c <_Timer_server_Reset_interval_system_watchdog> _Timer_server_Reset_tod_system_watchdog( ts ); 30016220: e1a00004 mov r0, r4 30016224: ebffff72 bl 30015ff4 <_Timer_server_Reset_tod_system_watchdog> _Thread_Enable_dispatch(); 30016228: eb000bef bl 300191ec <_Thread_Enable_dispatch> ts->active = true; 3001622c: e3a03001 mov r3, #1 30016230: e5c4307c strb r3, [r4, #124] ; 0x7c static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 30016234: e59d0004 ldr r0, [sp, #4] 30016238: eb001196 bl 3001a898 <_Watchdog_Remove> static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 3001623c: e59d0008 ldr r0, [sp, #8] 30016240: eb001194 bl 3001a898 <_Watchdog_Remove> 30016244: eaffff99 b 300160b0 <_Timer_server_Body+0x64> =============================================================================== 3000a2b4 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 3000a2b4: e5902000 ldr r2, [r0] 3000a2b8: e5913000 ldr r3, [r1] 3000a2bc: e1520003 cmp r2, r3 return true; 3000a2c0: c3a00001 movgt r0, #1 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 3000a2c4: c12fff1e bxgt lr return true; if ( lhs->tv_sec < rhs->tv_sec ) 3000a2c8: ba000005 blt 3000a2e4 <_Timespec_Greater_than+0x30> #include #include #include bool _Timespec_Greater_than( 3000a2cc: e5900004 ldr r0, [r0, #4] 3000a2d0: e5913004 ldr r3, [r1, #4] 3000a2d4: e1500003 cmp r0, r3 3000a2d8: d3a00000 movle r0, #0 3000a2dc: c3a00001 movgt r0, #1 3000a2e0: e12fff1e bx lr { if ( lhs->tv_sec > rhs->tv_sec ) return true; if ( lhs->tv_sec < rhs->tv_sec ) return false; 3000a2e4: e3a00000 mov r0, #0 <== NOT EXECUTED /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 3000a2e8: e12fff1e bx lr <== NOT EXECUTED =============================================================================== 30008658 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 30008658: e92d41f0 push {r4, r5, r6, r7, r8, lr} Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 3000865c: e59f5040 ldr r5, [pc, #64] ; 300086a4 <_User_extensions_Fatal+0x4c> void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 30008660: e1a08000 mov r8, r0 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 30008664: e5954008 ldr r4, [r5, #8] void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 30008668: e1a07002 mov r7, r2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 3000866c: e1540005 cmp r4, r5 void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 30008670: e20160ff and r6, r1, #255 ; 0xff Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 30008674: 08bd81f0 popeq {r4, r5, r6, r7, r8, pc} !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 30008678: e5943030 ldr r3, [r4, #48] ; 0x30 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 3000867c: e1a00008 mov r0, r8 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 30008680: e3530000 cmp r3, #0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 30008684: e1a01006 mov r1, r6 30008688: e1a02007 mov r2, r7 3000868c: 11a0e00f movne lr, pc 30008690: 112fff13 bxne r3 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 30008694: e5944004 ldr r4, [r4, #4] ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 30008698: e1540005 cmp r4, r5 3000869c: 1afffff5 bne 30008678 <_User_extensions_Fatal+0x20> 300086a0: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED =============================================================================== 300086a8 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 300086a8: e92d40f0 push {r4, r5, r6, r7, lr} Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; 300086ac: e59f5050 ldr r5, [pc, #80] ; 30008704 <_User_extensions_Thread_create+0x5c> #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 300086b0: e1a06000 mov r6, r0 Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; 300086b4: e4954004 ldr r4, [r5], #4 300086b8: e1540005 cmp r4, r5 300086bc: 0a00000e beq 300086fc <_User_extensions_Thread_create+0x54> the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( 300086c0: e59f7040 ldr r7, [pc, #64] ; 30008708 <_User_extensions_Thread_create+0x60> !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 300086c4: e5943014 ldr r3, [r4, #20] status = (*the_extension->Callouts.thread_create)( 300086c8: e1a01006 mov r1, r6 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 300086cc: e3530000 cmp r3, #0 300086d0: 0a000004 beq 300086e8 <_User_extensions_Thread_create+0x40> status = (*the_extension->Callouts.thread_create)( 300086d4: e5970004 ldr r0, [r7, #4] 300086d8: e1a0e00f mov lr, pc 300086dc: e12fff13 bx r3 _Thread_Executing, the_thread ); if ( !status ) 300086e0: e3500000 cmp r0, #0 300086e4: 08bd80f0 popeq {r4, r5, r6, r7, pc} User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 300086e8: e5944000 ldr r4, [r4] { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; 300086ec: e1540005 cmp r4, r5 300086f0: 1afffff3 bne 300086c4 <_User_extensions_Thread_create+0x1c> if ( !status ) return false; } } return true; 300086f4: e3a00001 mov r0, #1 300086f8: e8bd80f0 pop {r4, r5, r6, r7, pc} 300086fc: e3a00001 mov r0, #1 <== NOT EXECUTED } 30008700: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED =============================================================================== 3000a640 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 3000a640: e92d41f0 push {r4, r5, r6, r7, r8, lr} 3000a644: e1a04000 mov r4, r0 3000a648: e1a05002 mov r5, r2 static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 3000a64c: e10f3000 mrs r3, CPSR 3000a650: e3832080 orr r2, r3, #128 ; 0x80 3000a654: e129f002 msr CPSR_fc, r2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 3000a658: e1a07000 mov r7, r0 3000a65c: e4972004 ldr r2, [r7], #4 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 3000a660: e1520007 cmp r2, r7 3000a664: 0a000018 beq 3000a6cc <_Watchdog_Adjust+0x8c> switch ( direction ) { 3000a668: e3510000 cmp r1, #0 3000a66c: 1a000018 bne 3000a6d4 <_Watchdog_Adjust+0x94> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 3000a670: e3550000 cmp r5, #0 3000a674: 0a000014 beq 3000a6cc <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) { 3000a678: e5926010 ldr r6, [r2, #16] 3000a67c: e1550006 cmp r5, r6 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 3000a680: 23a08001 movcs r8, #1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 3000a684: 2a000005 bcs 3000a6a0 <_Watchdog_Adjust+0x60> 3000a688: ea000018 b 3000a6f0 <_Watchdog_Adjust+0xb0> <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 3000a68c: e0555006 subs r5, r5, r6 3000a690: 0a00000d beq 3000a6cc <_Watchdog_Adjust+0x8c> if ( units < _Watchdog_First( header )->delta_interval ) { 3000a694: e5926010 ldr r6, [r2, #16] 3000a698: e1560005 cmp r6, r5 3000a69c: 8a000013 bhi 3000a6f0 <_Watchdog_Adjust+0xb0> _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 3000a6a0: e5828010 str r8, [r2, #16] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( 3000a6a4: e129f003 msr CPSR_fc, r3 _ISR_Enable( level ); _Watchdog_Tickle( header ); 3000a6a8: e1a00004 mov r0, r4 3000a6ac: eb0000aa bl 3000a95c <_Watchdog_Tickle> static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 3000a6b0: e10f3000 mrs r3, CPSR 3000a6b4: e3832080 orr r2, r3, #128 ; 0x80 3000a6b8: e129f002 msr CPSR_fc, r2 3000a6bc: e5941000 ldr r1, [r4] _ISR_Disable( level ); if ( _Chain_Is_empty( header ) ) 3000a6c0: e1570001 cmp r7, r1 RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First( Chain_Control *header ) { return ( (Watchdog_Control *) header->first ); 3000a6c4: e1a02001 mov r2, r1 3000a6c8: 1affffef bne 3000a68c <_Watchdog_Adjust+0x4c> static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( 3000a6cc: e129f003 msr CPSR_fc, r3 } } _ISR_Enable( level ); } 3000a6d0: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 3000a6d4: e3510001 cmp r1, #1 3000a6d8: 1afffffb bne 3000a6cc <_Watchdog_Adjust+0x8c> case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 3000a6dc: e5921010 ldr r1, [r2, #16] 3000a6e0: e0815005 add r5, r1, r5 3000a6e4: e5825010 str r5, [r2, #16] 3000a6e8: e129f003 msr CPSR_fc, r3 } } _ISR_Enable( level ); } 3000a6ec: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; 3000a6f0: e0655006 rsb r5, r5, r6 3000a6f4: e5825010 str r5, [r2, #16] break; 3000a6f8: eafffff3 b 3000a6cc <_Watchdog_Adjust+0x8c> =============================================================================== 300072cc : rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 300072cc: e59fc150 ldr ip, [pc, #336] ; 30007424 rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; 300072d0: e59f3150 ldr r3, [pc, #336] ; 30007428 if ( rtems_interrupt_is_in_progress() ) 300072d4: e59cc000 ldr ip, [ip] rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 300072d8: e92d4030 push {r4, r5, lr} rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 300072dc: e35c0000 cmp ip, #0 rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 300072e0: e1a04000 mov r4, r0 rtems_device_major_number major_limit = _IO_Number_of_drivers; 300072e4: e5930000 ldr r0, [r3] if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; 300072e8: 13a00012 movne r0, #18 rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 300072ec: 18bd8030 popne {r4, r5, pc} return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 300072f0: e3520000 cmp r2, #0 300072f4: 0a00003f beq 300073f8 return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 300072f8: e3510000 cmp r1, #0 if ( registered_major == NULL ) return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; 300072fc: e5820000 str r0, [r2] if ( driver_table == NULL ) 30007300: 0a00003c beq 300073f8 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 30007304: e591c000 ldr ip, [r1] 30007308: e35c0000 cmp ip, #0 3000730c: 0a000036 beq 300073ec return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 30007310: e1500004 cmp r0, r4 30007314: 9a000027 bls 300073b8 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 30007318: e59f010c ldr r0, [pc, #268] ; 3000742c 3000731c: e590c000 ldr ip, [r0] 30007320: e28cc001 add ip, ip, #1 30007324: e580c000 str ip, [r0] return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 30007328: e3540000 cmp r4, #0 3000732c: 1a000023 bne 300073c0 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 30007330: e593c000 ldr ip, [r3] rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 30007334: e35c0000 cmp ip, #0 30007338: 0a000030 beq 30007400 3000733c: e59fe0ec ldr lr, [pc, #236] ; 30007430 30007340: e59e3000 ldr r3, [lr] 30007344: ea000003 b 30007358 30007348: e2844001 add r4, r4, #1 3000734c: e15c0004 cmp ip, r4 30007350: e2833018 add r3, r3, #24 30007354: 9a000005 bls 30007370 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 30007358: e5930000 ldr r0, [r3] 3000735c: e3500000 cmp r0, #0 30007360: 1afffff8 bne 30007348 30007364: e5930004 ldr r0, [r3, #4] 30007368: e3500000 cmp r0, #0 3000736c: 1afffff5 bne 30007348 } /* Assigns invalid value in case of failure */ *major = m; if ( m != n ) 30007370: e15c0004 cmp ip, r4 30007374: 1084c084 addne ip, r4, r4, lsl #1 if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 30007378: e5824000 str r4, [r2] if ( m != n ) 3000737c: 11a0c18c lslne ip, ip, #3 30007380: 0a00001f beq 30007404 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 30007384: e59e5000 ldr r5, [lr] 30007388: e1a0e001 mov lr, r1 3000738c: e085c00c add ip, r5, ip 30007390: e8be000f ldm lr!, {r0, r1, r2, r3} 30007394: e8ac000f stmia ip!, {r0, r1, r2, r3} 30007398: e89e0003 ldm lr, {r0, r1} 3000739c: e88c0003 stm ip, {r0, r1} _Thread_Enable_dispatch(); 300073a0: eb0006a7 bl 30008e44 <_Thread_Enable_dispatch> return rtems_io_initialize( major, 0, NULL ); 300073a4: e3a01000 mov r1, #0 300073a8: e1a00004 mov r0, r4 300073ac: e1a02001 mov r2, r1 } 300073b0: e8bd4030 pop {r4, r5, lr} _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 300073b4: ea001ee0 b 3000ef3c if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) return RTEMS_INVALID_NUMBER; 300073b8: e3a0000a mov r0, #10 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } 300073bc: e8bd8030 pop {r4, r5, pc} _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 300073c0: e59fe068 ldr lr, [pc, #104] ; 30007430 300073c4: e0840084 add r0, r4, r4, lsl #1 300073c8: e59e3000 ldr r3, [lr] 300073cc: e1a0c180 lsl ip, r0, #3 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 300073d0: e7930180 ldr r0, [r3, r0, lsl #3] _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 300073d4: e083300c add r3, r3, ip static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 300073d8: e3500000 cmp r0, #0 300073dc: 0a00000b beq 30007410 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 300073e0: eb000697 bl 30008e44 <_Thread_Enable_dispatch> return RTEMS_RESOURCE_IN_USE; 300073e4: e3a0000c mov r0, #12 300073e8: e8bd8030 pop {r4, r5, pc} static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 300073ec: e591c004 ldr ip, [r1, #4] 300073f0: e35c0000 cmp ip, #0 300073f4: 1affffc5 bne 30007310 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 300073f8: e3a00009 mov r0, #9 300073fc: e8bd8030 pop {r4, r5, pc} if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 30007400: e5824000 str r4, [r2] <== NOT EXECUTED if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 30007404: eb00068e bl 30008e44 <_Thread_Enable_dispatch> *major = m; if ( m != n ) return RTEMS_SUCCESSFUL; return RTEMS_TOO_MANY; 30007408: e3a00005 mov r0, #5 if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); return sc; 3000740c: e8bd8030 pop {r4, r5, pc} static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 30007410: e5933004 ldr r3, [r3, #4] 30007414: e3530000 cmp r3, #0 30007418: 1afffff0 bne 300073e0 if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 3000741c: e5824000 str r4, [r2] 30007420: eaffffd7 b 30007384 =============================================================================== 30008448 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 30008448: e92d41f0 push {r4, r5, r6, r7, r8, lr} uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 3000844c: e2506000 subs r6, r0, #0 30008450: 08bd81f0 popeq {r4, r5, r6, r7, r8, pc} 30008454: e59f7054 ldr r7, [pc, #84] ; 300084b0 #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 30008458: e287800c add r8, r7, #12 #if defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 3000845c: e5b73004 ldr r3, [r7, #4]! 30008460: e5935004 ldr r5, [r3, #4] if ( !information ) 30008464: e3550000 cmp r5, #0 30008468: 0a00000d beq 300084a4 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 3000846c: e1d521b0 ldrh r2, [r5, #16] 30008470: e3520000 cmp r2, #0 30008474: 0a00000a beq 300084a4 30008478: e3a04001 mov r4, #1 the_thread = (Thread_Control *)information->local_table[ i ]; 3000847c: e595301c ldr r3, [r5, #28] 30008480: e7930104 ldr r0, [r3, r4, lsl #2] if ( !the_thread ) 30008484: e3500000 cmp r0, #0 30008488: 0a000002 beq 30008498 continue; (*routine)(the_thread); 3000848c: e1a0e00f mov lr, pc 30008490: e12fff16 bx r6 30008494: e1d521b0 ldrh r2, [r5, #16] information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 30008498: e2844001 add r4, r4, #1 3000849c: e1520004 cmp r2, r4 300084a0: 2afffff5 bcs 3000847c Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 300084a4: e1570008 cmp r7, r8 300084a8: 1affffeb bne 3000845c 300084ac: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED =============================================================================== 3000c62c : rtems_status_code rtems_rate_monotonic_get_status( rtems_id id, rtems_rate_monotonic_period_status *status ) { 3000c62c: e92d4010 push {r4, lr} Objects_Locations location; Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) 3000c630: e2514000 subs r4, r1, #0 rtems_status_code rtems_rate_monotonic_get_status( rtems_id id, rtems_rate_monotonic_period_status *status ) { 3000c634: e24dd014 sub sp, sp, #20 3000c638: e1a01000 mov r1, r0 Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) return RTEMS_INVALID_ADDRESS; 3000c63c: 03a00009 moveq r0, #9 Objects_Locations location; Rate_monotonic_Period_time_t since_last_period; Rate_monotonic_Control *the_period; bool valid_status; if ( !status ) 3000c640: 0a000013 beq 3000c694 3000c644: e28d2010 add r2, sp, #16 3000c648: e59f008c ldr r0, [pc, #140] ; 3000c6dc 3000c64c: ebfff113 bl 30008aa0 <_Objects_Get> return RTEMS_INVALID_ADDRESS; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 3000c650: e59d2010 ldr r2, [sp, #16] 3000c654: e1a03000 mov r3, r0 3000c658: e3520000 cmp r2, #0 #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 3000c65c: 13a00004 movne r0, #4 if ( !status ) return RTEMS_INVALID_ADDRESS; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 3000c660: 1a00000b bne 3000c694 case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; 3000c664: e5932040 ldr r2, [r3, #64] ; 0x40 status->state = the_period->state; 3000c668: e5933038 ldr r3, [r3, #56] ; 0x38 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; 3000c66c: e5922008 ldr r2, [r2, #8] status->state = the_period->state; /* * If the period is inactive, there is no information. */ if ( status->state == RATE_MONOTONIC_INACTIVE ) { 3000c670: e3530000 cmp r3, #0 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: status->owner = the_period->owner->Object.id; 3000c674: e884000c stm r4, {r2, r3} status->state = the_period->state; /* * If the period is inactive, there is no information. */ if ( status->state == RATE_MONOTONIC_INACTIVE ) { 3000c678: 1a000007 bne 3000c69c #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timespec_Set_to_zero( &status->since_last_period ); 3000c67c: e5843008 str r3, [r4, #8] 3000c680: e584300c str r3, [r4, #12] _Timespec_Set_to_zero( &status->executed_since_last_period ); 3000c684: e5843010 str r3, [r4, #16] 3000c688: e5843014 str r3, [r4, #20] status->since_last_period = since_last_period; status->executed_since_last_period = executed; #endif } _Thread_Enable_dispatch(); 3000c68c: ebfff348 bl 300093b4 <_Thread_Enable_dispatch> return RTEMS_SUCCESSFUL; 3000c690: e3a00000 mov r0, #0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 3000c694: e28dd014 add sp, sp, #20 3000c698: e8bd8010 pop {r4, pc} } else { /* * Grab the current status. */ valid_status = 3000c69c: e1a0100d mov r1, sp 3000c6a0: e28d2008 add r2, sp, #8 3000c6a4: ebffe7b7 bl 30006588 <_Rate_monotonic_Get_status> _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) { 3000c6a8: e3500000 cmp r0, #0 3000c6ac: 0a000007 beq 3000c6d0 _Thread_Enable_dispatch(); return RTEMS_NOT_DEFINED; } #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_To_timespec( 3000c6b0: e89d000c ldm sp, {r2, r3} 3000c6b4: e5842008 str r2, [r4, #8] 3000c6b8: e584300c str r3, [r4, #12] &since_last_period, &status->since_last_period ); _Timestamp_To_timespec( 3000c6bc: e28d3008 add r3, sp, #8 3000c6c0: e893000c ldm r3, {r2, r3} 3000c6c4: e5842010 str r2, [r4, #16] 3000c6c8: e5843014 str r3, [r4, #20] 3000c6cc: eaffffee b 3000c68c valid_status = _Rate_monotonic_Get_status( the_period, &since_last_period, &executed ); if (!valid_status) { _Thread_Enable_dispatch(); 3000c6d0: ebfff337 bl 300093b4 <_Thread_Enable_dispatch> <== NOT EXECUTED return RTEMS_NOT_DEFINED; 3000c6d4: e3a0000b mov r0, #11 <== NOT EXECUTED 3000c6d8: eaffffed b 3000c694 <== NOT EXECUTED =============================================================================== 3000c6f8 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 3000c6f8: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr} ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 3000c6fc: e2525000 subs r5, r2, #0 rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 3000c700: e1a04000 mov r4, r0 3000c704: e1a06001 mov r6, r1 bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; 3000c708: 03a00009 moveq r0, #9 ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 3000c70c: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc} return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 3000c710: e59f9148 ldr r9, [pc, #328] ; 3000c860 3000c714: e5997004 ldr r7, [r9, #4] api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 3000c718: e5d7a074 ldrb sl, [r7, #116] ; 0x74 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 3000c71c: e5978100 ldr r8, [r7, #256] ; 0x100 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 3000c720: e597307c ldr r3, [r7, #124] ; 0x7c executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 3000c724: e35a0000 cmp sl, #0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 3000c728: e5d8b008 ldrb fp, [r8, #8] executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 3000c72c: 03a0ac01 moveq sl, #256 ; 0x100 3000c730: 13a0a000 movne sl, #0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 3000c734: e3530000 cmp r3, #0 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 3000c738: 138aac02 orrne sl, sl, #512 ; 0x200 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 3000c73c: e35b0000 cmp fp, #0 3000c740: 03a0bb01 moveq fp, #1024 ; 0x400 3000c744: 13a0b000 movne fp, #0 old_mode |= _ISR_Get_level(); 3000c748: ebfff1f7 bl 30008f2c <_CPU_ISR_Get_level> if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 3000c74c: e18bb000 orr fp, fp, r0 old_mode |= _ISR_Get_level(); 3000c750: e18ba00a orr sl, fp, sl *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 3000c754: e3160c01 tst r6, #256 ; 0x100 old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; old_mode |= _ISR_Get_level(); *previous_mode_set = old_mode; 3000c758: e585a000 str sl, [r5] /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 3000c75c: 0a000003 beq 3000c770 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 3000c760: e3140c01 tst r4, #256 ; 0x100 3000c764: 13a03000 movne r3, #0 3000c768: 03a03001 moveq r3, #1 3000c76c: e5c73074 strb r3, [r7, #116] ; 0x74 if ( mask & RTEMS_TIMESLICE_MASK ) { 3000c770: e3160c02 tst r6, #512 ; 0x200 3000c774: 1a000028 bne 3000c81c } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 3000c778: e3160080 tst r6, #128 ; 0x80 3000c77c: 1a00002f bne 3000c840 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 3000c780: e2166b01 ands r6, r6, #1024 ; 0x400 3000c784: 0a000012 beq 3000c7d4 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 3000c788: e3140b01 tst r4, #1024 ; 0x400 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 3000c78c: e5d82008 ldrb r2, [r8, #8] * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 3000c790: 13a03000 movne r3, #0 3000c794: 03a03001 moveq r3, #1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 3000c798: e1520003 cmp r2, r3 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 3000c79c: 03a06000 moveq r6, #0 if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 3000c7a0: 0a00000b beq 3000c7d4 asr->is_enabled = is_asr_enabled; 3000c7a4: e5c83008 strb r3, [r8, #8] static inline uint32_t arm_interrupt_disable( void ) { uint32_t arm_switch_reg; uint32_t level; asm volatile ( 3000c7a8: e10f3000 mrs r3, CPSR 3000c7ac: e3832080 orr r2, r3, #128 ; 0x80 3000c7b0: e129f002 msr CPSR_fc, r2 { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; 3000c7b4: e5981018 ldr r1, [r8, #24] information->signals_pending = information->signals_posted; 3000c7b8: e5982014 ldr r2, [r8, #20] information->signals_posted = _signals; 3000c7bc: e5881014 str r1, [r8, #20] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 3000c7c0: e5882018 str r2, [r8, #24] static inline void arm_interrupt_enable( uint32_t level ) { ARM_SWITCH_REGISTERS; asm volatile ( 3000c7c4: e129f003 msr CPSR_fc, r3 _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 3000c7c8: e5986014 ldr r6, [r8, #20] 3000c7cc: e3560000 cmp r6, #0 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 3000c7d0: 13a06001 movne r6, #1 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 3000c7d4: e59f3088 ldr r3, [pc, #136] ; 3000c864 3000c7d8: e5933000 ldr r3, [r3] 3000c7dc: e3530003 cmp r3, #3 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; 3000c7e0: 13a00000 movne r0, #0 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 3000c7e4: 18bd8ff0 popne {r4, r5, r6, r7, r8, r9, sl, fp, pc} { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 3000c7e8: e3560000 cmp r6, #0 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 3000c7ec: e5993004 ldr r3, [r9, #4] if ( are_signals_pending || 3000c7f0: 1a000015 bne 3000c84c 3000c7f4: e59f2064 ldr r2, [pc, #100] ; 3000c860 3000c7f8: e5922008 ldr r2, [r2, #8] 3000c7fc: e1530002 cmp r3, r2 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; 3000c800: 01a00006 moveq r0, r6 3000c804: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc} (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 3000c808: e5d33074 ldrb r3, [r3, #116] ; 0x74 3000c80c: e3530000 cmp r3, #0 3000c810: 1a00000d bne 3000c84c 3000c814: e1a00006 mov r0, r6 <== NOT EXECUTED } 3000c818: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED */ if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { 3000c81c: e2143c02 ands r3, r4, #512 ; 0x200 executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 3000c820: 159f3040 ldrne r3, [pc, #64] ; 3000c868 if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 3000c824: 13a02001 movne r2, #1 executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 3000c828: 15933000 ldrne r3, [r3] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 3000c82c: 1587207c strne r2, [r7, #124] ; 0x7c executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 3000c830: 15873078 strne r3, [r7, #120] ; 0x78 } else executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE; 3000c834: 0587307c streq r3, [r7, #124] ; 0x7c } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 3000c838: e3160080 tst r6, #128 ; 0x80 3000c83c: 0affffcf beq 3000c780 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 3000c840: e2040080 and r0, r4, #128 ; 0x80 3000c844: ebfff1b3 bl 30008f18 <_CPU_ISR_Set_level> 3000c848: eaffffcc b 3000c780 _Thread_Dispatch_necessary = true; 3000c84c: e3a03001 mov r3, #1 3000c850: e5c93010 strb r3, [r9, #16] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 3000c854: ebffeb7a bl 30007644 <_Thread_Dispatch> } return RTEMS_SUCCESSFUL; 3000c858: e3a00000 mov r0, #0 3000c85c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}