RTEMS 4.11Annotated Report
Fri Oct 8 16:52:56 2010
30016c88 <_CORE_message_queue_Broadcast>:
{
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
30016c88: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
30016c8c: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
30016c90: e1530002 cmp r3, r2
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
30016c94: e1a07000 mov r7, r0
30016c98: e1a05002 mov r5, r2
30016c9c: e1a08001 mov r8, r1
30016ca0: e59da020 ldr sl, [sp, #32]
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
30016ca4: 3a000016 bcc 30016d04 <_CORE_message_queue_Broadcast+0x7c>
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
30016ca8: e5906048 ldr r6, [r0, #72] ; 0x48
30016cac: e3560000 cmp r6, #0
*count = 0;
30016cb0: 13a00000 movne r0, #0
30016cb4: 158a0000 strne r0, [sl]
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
30016cb8: 18bd85f0 popne {r4, r5, r6, r7, r8, sl, pc}
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016cbc: e1a00007 mov r0, r7
30016cc0: eb000a12 bl 30019510 <_Thread_queue_Dequeue>
30016cc4: e2504000 subs r4, r0, #0
30016cc8: 0a00000a beq 30016cf8 <_CORE_message_queue_Broadcast+0x70>
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
30016ccc: e594002c ldr r0, [r4, #44] ; 0x2c
30016cd0: e1a01008 mov r1, r8
30016cd4: e1a02005 mov r2, r5
30016cd8: eb002044 bl 3001edf0 <memcpy>
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
30016cdc: e5943028 ldr r3, [r4, #40] ; 0x28
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016ce0: e1a00007 mov r0, r7
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
30016ce4: e5835000 str r5, [r3]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016ce8: eb000a08 bl 30019510 <_Thread_queue_Dequeue>
30016cec: e2504000 subs r4, r0, #0
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
30016cf0: e2866001 add r6, r6, #1
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
30016cf4: 1afffff4 bne 30016ccc <_CORE_message_queue_Broadcast+0x44>
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
30016cf8: e58a6000 str r6, [sl]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
30016cfc: e1a00004 mov r0, r4
30016d00: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE;
30016d04: e3a00001 mov r0, #1 <== NOT EXECUTED
#endif
}
*count = number_broadcasted;
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
}
30016d08: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
3000ab24 <_CORE_mutex_Seize_interrupt_trylock>:
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
3000ab24: e59f215c ldr r2, [pc, #348] ; 3000ac88 <_CORE_mutex_Seize_interrupt_trylock+0x164>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
3000ab28: e590c050 ldr ip, [r0, #80] ; 0x50
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
3000ab2c: e1a03000 mov r3, r0
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
3000ab30: e5922004 ldr r2, [r2, #4]
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
3000ab34: e3a00000 mov r0, #0
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
3000ab38: e15c0000 cmp ip, r0
3000ab3c: e92d40f0 push {r4, r5, r6, r7, lr}
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
3000ab40: e5820034 str r0, [r2, #52] ; 0x34
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
3000ab44: 0a00000e beq 3000ab84 <_CORE_mutex_Seize_interrupt_trylock+0x60>
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
3000ab48: e593c048 ldr ip, [r3, #72] ; 0x48
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
3000ab4c: e5925008 ldr r5, [r2, #8]
the_mutex->nest_count = 1;
3000ab50: e3a04001 mov r4, #1
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
3000ab54: e35c0002 cmp ip, #2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
3000ab58: e5830050 str r0, [r3, #80] ; 0x50
the_mutex->holder = executing;
3000ab5c: e583205c str r2, [r3, #92] ; 0x5c
the_mutex->holder_id = executing->Object.id;
3000ab60: e5835060 str r5, [r3, #96] ; 0x60
the_mutex->nest_count = 1;
3000ab64: e5834054 str r4, [r3, #84] ; 0x54
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
3000ab68: 0a000013 beq 3000abbc <_CORE_mutex_Seize_interrupt_trylock+0x98>
3000ab6c: e35c0003 cmp ip, #3
3000ab70: 0a000018 beq 3000abd8 <_CORE_mutex_Seize_interrupt_trylock+0xb4>
3000ab74: e5913000 ldr r3, [r1]
3000ab78: e129f003 msr CPSR_fc, r3
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
3000ab7c: e3a00000 mov r0, #0
3000ab80: e8bd80f0 pop {r4, r5, r6, r7, pc}
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
3000ab84: e593005c ldr r0, [r3, #92] ; 0x5c
3000ab88: e1520000 cmp r2, r0
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
3000ab8c: 13a00001 movne r0, #1
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
3000ab90: 18bd80f0 popne {r4, r5, r6, r7, pc}
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
3000ab94: e5930040 ldr r0, [r3, #64] ; 0x40
3000ab98: e3500000 cmp r0, #0
3000ab9c: 1a00001e bne 3000ac1c <_CORE_mutex_Seize_interrupt_trylock+0xf8>
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
3000aba0: e5932054 ldr r2, [r3, #84] ; 0x54
3000aba4: e2822001 add r2, r2, #1
3000aba8: e5832054 str r2, [r3, #84] ; 0x54
3000abac: e5913000 ldr r3, [r1]
3000abb0: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
3000abb4: e3a00000 mov r0, #0
3000abb8: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000abbc: e592301c ldr r3, [r2, #28]
3000abc0: e2833001 add r3, r3, #1
3000abc4: e582301c str r3, [r2, #28]
3000abc8: e5913000 ldr r3, [r1]
3000abcc: e129f003 msr CPSR_fc, r3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
3000abd0: e3a00000 mov r0, #0
3000abd4: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000abd8: e592c01c ldr ip, [r2, #28]
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
3000abdc: e593704c ldr r7, [r3, #76] ; 0x4c
current = executing->current_priority;
3000abe0: e5926014 ldr r6, [r2, #20]
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000abe4: e08c5004 add r5, ip, r4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
3000abe8: e1570006 cmp r7, r6
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
3000abec: e582501c str r5, [r2, #28]
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
3000abf0: 0a000020 beq 3000ac78 <_CORE_mutex_Seize_interrupt_trylock+0x154>
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
3000abf4: 3a000012 bcc 3000ac44 <_CORE_mutex_Seize_interrupt_trylock+0x120>
);
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
3000abf8: e3a05006 mov r5, #6
3000abfc: e5825034 str r5, [r2, #52] ; 0x34
the_mutex->lock = CORE_MUTEX_UNLOCKED;
3000ac00: e5834050 str r4, [r3, #80] ; 0x50
the_mutex->nest_count = 0; /* undo locking above */
3000ac04: e5830054 str r0, [r3, #84] ; 0x54
executing->resource_count--; /* undo locking above */
3000ac08: e582c01c str ip, [r2, #28]
3000ac0c: e5913000 ldr r3, [r1]
3000ac10: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
3000ac14: e3a00000 mov r0, #0
3000ac18: e8bd80f0 pop {r4, r5, r6, r7, pc}
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
3000ac1c: e3500001 cmp r0, #1
3000ac20: 0a000001 beq 3000ac2c <_CORE_mutex_Seize_interrupt_trylock+0x108>
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
3000ac24: e3a00001 mov r0, #1
3000ac28: e8bd80f0 pop {r4, r5, r6, r7, pc}
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
3000ac2c: e3a03002 mov r3, #2 <== NOT EXECUTED
3000ac30: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED
3000ac34: e5913000 ldr r3, [r1] <== NOT EXECUTED
3000ac38: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED
_ISR_Enable( *level_p );
return 0;
3000ac3c: e3a00000 mov r0, #0 <== NOT EXECUTED
3000ac40: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
3000ac44: e59f2040 ldr r2, [pc, #64] ; 3000ac8c <_CORE_mutex_Seize_interrupt_trylock+0x168>
3000ac48: e5920000 ldr r0, [r2]
3000ac4c: e2800001 add r0, r0, #1
3000ac50: e5820000 str r0, [r2]
3000ac54: e5912000 ldr r2, [r1]
3000ac58: e129f002 msr CPSR_fc, r2
}
if ( current > ceiling ) {
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
_Thread_Change_priority(
3000ac5c: e3a02000 mov r2, #0
3000ac60: e593005c ldr r0, [r3, #92] ; 0x5c
3000ac64: e593104c ldr r1, [r3, #76] ; 0x4c
3000ac68: ebfff16c bl 30007220 <_Thread_Change_priority>
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
3000ac6c: ebfff2c6 bl 3000778c <_Thread_Enable_dispatch>
return 0;
3000ac70: e3a00000 mov r0, #0
3000ac74: e8bd80f0 pop {r4, r5, r6, r7, pc}
3000ac78: e5913000 ldr r3, [r1]
3000ac7c: e129f003 msr CPSR_fc, r3
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
return 0;
3000ac80: e3a00000 mov r0, #0
3000ac84: e8bd80f0 pop {r4, r5, r6, r7, pc}
3000aac4 <_Chain_Initialize>:
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
3000aac4: e3520000 cmp r2, #0
Chain_Node *current;
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
3000aac8: e3a0c000 mov ip, #0
next = starting_address;
while ( count-- ) {
3000aacc: 12422001 subne r2, r2, #1
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
3000aad0: e92d0070 push {r4, r5, r6}
Chain_Node *current;
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
3000aad4: e580c004 str ip, [r0, #4]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Head(
Chain_Control *the_chain
)
{
return (Chain_Node *) the_chain;
3000aad8: e1a04000 mov r4, r0
next = starting_address;
while ( count-- ) {
3000aadc: 11a06002 movne r6, r2
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
3000aae0: 11a0c001 movne ip, r1
while ( count-- ) {
3000aae4: 1a000003 bne 3000aaf8 <_Chain_Initialize+0x34>
3000aae8: ea000008 b 3000ab10 <_Chain_Initialize+0x4c> <== NOT EXECUTED
3000aaec: e1a0400c mov r4, ip
3000aaf0: e2422001 sub r2, r2, #1
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
3000aaf4: e1a0c005 mov ip, r5
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
3000aaf8: e3520000 cmp r2, #0
current->next = next;
3000aafc: e584c000 str ip, [r4]
next->previous = current;
3000ab00: e58c4004 str r4, [ip, #4]
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
3000ab04: e08c5003 add r5, ip, r3
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
3000ab08: 1afffff7 bne 3000aaec <_Chain_Initialize+0x28>
3000ab0c: e0241396 mla r4, r6, r3, r1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
3000ab10: e2803004 add r3, r0, #4
next->previous = current;
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = _Chain_Tail( the_chain );
3000ab14: e5843000 str r3, [r4]
the_chain->last = current;
3000ab18: e5804008 str r4, [r0, #8]
}
3000ab1c: e8bd0070 pop {r4, r5, r6}
3000ab20: e12fff1e bx lr
3000ad04 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ad04: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
3000ad08: e1a08002 mov r8, r2
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
3000ad0c: e5902010 ldr r2, [r0, #16]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ad10: e24dd01c sub sp, sp, #28
3000ad14: e1a05001 mov r5, r1
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
3000ad18: e2911004 adds r1, r1, #4
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ad1c: e1a07000 mov r7, r0
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
3000ad20: e58d1000 str r1, [sp]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
3000ad24: e1a0b003 mov fp, r3
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
3000ad28: e58d200c str r2, [sp, #12]
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
3000ad2c: 2a000078 bcs 3000af14 <_Heap_Allocate_aligned_with_boundary+0x210>
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
3000ad30: e3530000 cmp r3, #0
3000ad34: 1a000074 bne 3000af0c <_Heap_Allocate_aligned_with_boundary+0x208>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
3000ad38: e5979008 ldr r9, [r7, #8]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000ad3c: e1570009 cmp r7, r9
3000ad40: 0a000073 beq 3000af14 <_Heap_Allocate_aligned_with_boundary+0x210>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000ad44: e59d300c ldr r3, [sp, #12]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
3000ad48: e2651004 rsb r1, r5, #4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000ad4c: e2833007 add r3, r3, #7
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000ad50: e3a06001 mov r6, #1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000ad54: e58d3010 str r3, [sp, #16]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
3000ad58: e58d1014 str r1, [sp, #20]
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
3000ad5c: e599a004 ldr sl, [r9, #4]
3000ad60: e59d2000 ldr r2, [sp]
3000ad64: e152000a cmp r2, sl
3000ad68: 2a00004e bcs 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4>
if ( alignment == 0 ) {
3000ad6c: e3580000 cmp r8, #0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
3000ad70: 02894008 addeq r4, r9, #8
3000ad74: 0a000051 beq 3000aec0 <_Heap_Allocate_aligned_with_boundary+0x1bc>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
3000ad78: e5973014 ldr r3, [r7, #20]
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
3000ad7c: e59d1014 ldr r1, [sp, #20]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
3000ad80: e59d2010 ldr r2, [sp, #16]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
3000ad84: e3caa001 bic sl, sl, #1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
3000ad88: e089a00a add sl, r9, sl
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
3000ad8c: e081400a add r4, r1, sl
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
3000ad90: e58d3004 str r3, [sp, #4]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
3000ad94: e0633002 rsb r3, r3, r2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
3000ad98: e1a00004 mov r0, r4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
3000ad9c: e083a00a add sl, r3, sl
3000ada0: e1a01008 mov r1, r8
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
3000ada4: e2893008 add r3, r9, #8
3000ada8: e58d3008 str r3, [sp, #8]
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
3000adac: eb001556 bl 3001030c <__umodsi3>
3000adb0: e0604004 rsb r4, r0, r4
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
3000adb4: e15a0004 cmp sl, r4
3000adb8: 2a000003 bcs 3000adcc <_Heap_Allocate_aligned_with_boundary+0xc8>
3000adbc: e1a0000a mov r0, sl
3000adc0: e1a01008 mov r1, r8
3000adc4: eb001550 bl 3001030c <__umodsi3>
3000adc8: e060400a rsb r4, r0, sl
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
3000adcc: e35b0000 cmp fp, #0
3000add0: 0a000026 beq 3000ae70 <_Heap_Allocate_aligned_with_boundary+0x16c>
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
3000add4: e084a005 add sl, r4, r5
3000add8: e1a0000a mov r0, sl
3000addc: e1a0100b mov r1, fp
3000ade0: eb001549 bl 3001030c <__umodsi3>
3000ade4: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
3000ade8: e15a0000 cmp sl, r0
3000adec: 93a0a000 movls sl, #0
3000adf0: 83a0a001 movhi sl, #1
3000adf4: e1540000 cmp r4, r0
3000adf8: 23a0a000 movcs sl, #0
3000adfc: e35a0000 cmp sl, #0
3000ae00: 0a00001a beq 3000ae70 <_Heap_Allocate_aligned_with_boundary+0x16c>
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
3000ae04: e59d1008 ldr r1, [sp, #8]
3000ae08: e0813005 add r3, r1, r5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
3000ae0c: e1530000 cmp r3, r0
3000ae10: 958d9018 strls r9, [sp, #24]
3000ae14: 91a09003 movls r9, r3
3000ae18: 9a000002 bls 3000ae28 <_Heap_Allocate_aligned_with_boundary+0x124>
3000ae1c: ea000021 b 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4>
3000ae20: e1590000 cmp r9, r0
3000ae24: 8a00003c bhi 3000af1c <_Heap_Allocate_aligned_with_boundary+0x218>
return 0;
}
alloc_begin = boundary_line - alloc_size;
3000ae28: e0654000 rsb r4, r5, r0
3000ae2c: e1a01008 mov r1, r8
3000ae30: e1a00004 mov r0, r4
3000ae34: eb001534 bl 3001030c <__umodsi3>
3000ae38: e0604004 rsb r4, r0, r4
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
3000ae3c: e084a005 add sl, r4, r5
3000ae40: e1a0000a mov r0, sl
3000ae44: e1a0100b mov r1, fp
3000ae48: eb00152f bl 3001030c <__umodsi3>
3000ae4c: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
3000ae50: e15a0000 cmp sl, r0
3000ae54: 93a0a000 movls sl, #0
3000ae58: 83a0a001 movhi sl, #1
3000ae5c: e1540000 cmp r4, r0
3000ae60: 23a0a000 movcs sl, #0
3000ae64: e35a0000 cmp sl, #0
3000ae68: 1affffec bne 3000ae20 <_Heap_Allocate_aligned_with_boundary+0x11c>
3000ae6c: e59d9018 ldr r9, [sp, #24]
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
3000ae70: e59d2008 ldr r2, [sp, #8]
3000ae74: e1520004 cmp r2, r4
3000ae78: 8a00000a bhi 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4>
3000ae7c: e59d100c ldr r1, [sp, #12]
3000ae80: e1a00004 mov r0, r4
3000ae84: eb001520 bl 3001030c <__umodsi3>
3000ae88: e3e0a007 mvn sl, #7
3000ae8c: e069a00a rsb sl, r9, sl
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
3000ae90: e08aa004 add sl, sl, r4
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
3000ae94: e59d1004 ldr r1, [sp, #4]
3000ae98: e060300a rsb r3, r0, sl
3000ae9c: e15a0000 cmp sl, r0
3000aea0: 11510003 cmpne r1, r3
3000aea4: 9a000005 bls 3000aec0 <_Heap_Allocate_aligned_with_boundary+0x1bc>
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
3000aea8: e5999008 ldr r9, [r9, #8]
3000aeac: e2863001 add r3, r6, #1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000aeb0: e1570009 cmp r7, r9
3000aeb4: 0a00001d beq 3000af30 <_Heap_Allocate_aligned_with_boundary+0x22c>
3000aeb8: e1a06003 mov r6, r3
3000aebc: eaffffa6 b 3000ad5c <_Heap_Allocate_aligned_with_boundary+0x58>
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
3000aec0: e3540000 cmp r4, #0
3000aec4: 0afffff7 beq 3000aea8 <_Heap_Allocate_aligned_with_boundary+0x1a4>
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
3000aec8: e5972048 ldr r2, [r7, #72] ; 0x48
stats->searches += search_count;
3000aecc: e597304c ldr r3, [r7, #76] ; 0x4c
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
3000aed0: e2822001 add r2, r2, #1
stats->searches += search_count;
3000aed4: e0833006 add r3, r3, r6
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
3000aed8: e5872048 str r2, [r7, #72] ; 0x48
stats->searches += search_count;
3000aedc: e587304c str r3, [r7, #76] ; 0x4c
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
3000aee0: e1a00007 mov r0, r7
3000aee4: e1a01009 mov r1, r9
3000aee8: e1a02004 mov r2, r4
3000aeec: e1a03005 mov r3, r5
3000aef0: ebffee45 bl 3000680c <_Heap_Block_allocate>
3000aef4: e1a00004 mov r0, r4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
3000aef8: e5973044 ldr r3, [r7, #68] ; 0x44
3000aefc: e1530006 cmp r3, r6
stats->max_search = search_count;
3000af00: 35876044 strcc r6, [r7, #68] ; 0x44
}
return (void *) alloc_begin;
}
3000af04: e28dd01c add sp, sp, #28
3000af08: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
3000af0c: e1550003 cmp r5, r3
3000af10: 9a000008 bls 3000af38 <_Heap_Allocate_aligned_with_boundary+0x234>
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000af14: e3a00000 mov r0, #0
3000af18: eafffff9 b 3000af04 <_Heap_Allocate_aligned_with_boundary+0x200>
3000af1c: e59d9018 ldr r9, [sp, #24] <== NOT EXECUTED
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
3000af20: e2863001 add r3, r6, #1 <== NOT EXECUTED
3000af24: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
3000af28: e1570009 cmp r7, r9 <== NOT EXECUTED
3000af2c: 1affffe1 bne 3000aeb8 <_Heap_Allocate_aligned_with_boundary+0x1b4><== NOT EXECUTED
3000af30: e3a00000 mov r0, #0
3000af34: eaffffef b 3000aef8 <_Heap_Allocate_aligned_with_boundary+0x1f4>
if ( boundary < alloc_size ) {
return NULL;
}
if ( alignment == 0 ) {
alignment = page_size;
3000af38: e3580000 cmp r8, #0
3000af3c: 01a08002 moveq r8, r2
3000af40: eaffff7c b 3000ad38 <_Heap_Allocate_aligned_with_boundary+0x34>
3000af44 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
3000af44: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
3000af48: e1a04000 mov r4, r0
3000af4c: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
3000af50: e1a00001 mov r0, r1
3000af54: e5941010 ldr r1, [r4, #16]
3000af58: eb0014eb bl 3001030c <__umodsi3>
3000af5c: e2455008 sub r5, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
3000af60: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
3000af64: e0605005 rsb r5, r0, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000af68: e1550003 cmp r5, r3
3000af6c: 3a00002f bcc 3000b030 <_Heap_Free+0xec>
3000af70: e5941024 ldr r1, [r4, #36] ; 0x24
3000af74: e1550001 cmp r5, r1
3000af78: 8a00002c bhi 3000b030 <_Heap_Free+0xec>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000af7c: e595c004 ldr ip, [r5, #4]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
3000af80: e3cc6001 bic r6, ip, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
3000af84: e0852006 add r2, r5, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000af88: e1530002 cmp r3, r2
3000af8c: 8a000027 bhi 3000b030 <_Heap_Free+0xec>
3000af90: e1510002 cmp r1, r2
3000af94: 3a000027 bcc 3000b038 <_Heap_Free+0xf4>
3000af98: e5927004 ldr r7, [r2, #4]
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
3000af9c: e2170001 ands r0, r7, #1
3000afa0: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
3000afa4: e1510002 cmp r1, r2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
3000afa8: e3c77001 bic r7, r7, #1
3000afac: 03a08000 moveq r8, #0
3000afb0: 0a000004 beq 3000afc8 <_Heap_Free+0x84>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000afb4: e0820007 add r0, r2, r7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
3000afb8: e5900004 ldr r0, [r0, #4]
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
3000afbc: e3100001 tst r0, #1
3000afc0: 13a08000 movne r8, #0
3000afc4: 03a08001 moveq r8, #1
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
3000afc8: e21c0001 ands r0, ip, #1
3000afcc: 1a00001b bne 3000b040 <_Heap_Free+0xfc>
uintptr_t const prev_size = block->prev_size;
3000afd0: e595c000 ldr ip, [r5]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
3000afd4: e06ca005 rsb sl, ip, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
3000afd8: e153000a cmp r3, sl
3000afdc: 88bd85f0 pophi {r4, r5, r6, r7, r8, sl, pc}
3000afe0: e151000a cmp r1, sl
3000afe4: 38bd85f0 popcc {r4, r5, r6, r7, r8, sl, pc}
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
3000afe8: e59a0004 ldr r0, [sl, #4]
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
3000afec: e2100001 ands r0, r0, #1
3000aff0: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
3000aff4: e3580000 cmp r8, #0
3000aff8: 0a000039 beq 3000b0e4 <_Heap_Free+0x1a0>
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
3000affc: e5940038 ldr r0, [r4, #56] ; 0x38
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
3000b000: e0867007 add r7, r6, r7
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b004: e5923008 ldr r3, [r2, #8]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
3000b008: e087c00c add ip, r7, ip
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b00c: e592200c ldr r2, [r2, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
3000b010: e2400001 sub r0, r0, #1
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b014: e38c1001 orr r1, ip, #1
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
3000b018: e5823008 str r3, [r2, #8]
next->prev = prev;
3000b01c: e583200c str r2, [r3, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
3000b020: e5840038 str r0, [r4, #56] ; 0x38
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b024: e58a1004 str r1, [sl, #4]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
3000b028: e78ac00c str ip, [sl, ip]
3000b02c: ea00000f b 3000b070 <_Heap_Free+0x12c>
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
3000b030: e3a00000 mov r0, #0
3000b034: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
3000b038: e3a00000 mov r0, #0 <== NOT EXECUTED
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b03c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
3000b040: e3580000 cmp r8, #0
3000b044: 0a000014 beq 3000b09c <_Heap_Free+0x158>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b048: e5923008 ldr r3, [r2, #8]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
3000b04c: e0877006 add r7, r7, r6
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
3000b050: e592200c ldr r2, [r2, #12]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b054: e3871001 orr r1, r7, #1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
3000b058: e5853008 str r3, [r5, #8]
new_block->prev = prev;
3000b05c: e585200c str r2, [r5, #12]
next->prev = new_block;
prev->next = new_block;
3000b060: e5825008 str r5, [r2, #8]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
3000b064: e583500c str r5, [r3, #12]
3000b068: e5851004 str r1, [r5, #4]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
3000b06c: e7857007 str r7, [r5, r7]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
3000b070: e5942040 ldr r2, [r4, #64] ; 0x40
++stats->frees;
3000b074: e5943050 ldr r3, [r4, #80] ; 0x50
stats->free_size += block_size;
3000b078: e5941030 ldr r1, [r4, #48] ; 0x30
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
3000b07c: e2422001 sub r2, r2, #1
++stats->frees;
3000b080: e2833001 add r3, r3, #1
stats->free_size += block_size;
3000b084: e0816006 add r6, r1, r6
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
3000b088: e5842040 str r2, [r4, #64] ; 0x40
++stats->frees;
3000b08c: e5843050 str r3, [r4, #80] ; 0x50
stats->free_size += block_size;
3000b090: e5846030 str r6, [r4, #48] ; 0x30
return( true );
3000b094: e3a00001 mov r0, #1
3000b098: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
3000b09c: e3863001 orr r3, r6, #1
3000b0a0: e5853004 str r3, [r5, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
3000b0a4: e5943038 ldr r3, [r4, #56] ; 0x38
if ( stats->max_free_blocks < stats->free_blocks ) {
3000b0a8: e594c03c ldr ip, [r4, #60] ; 0x3c
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b0ac: e5920004 ldr r0, [r2, #4]
RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after(
Heap_Block *block_before,
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
3000b0b0: e5941008 ldr r1, [r4, #8]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
3000b0b4: e2833001 add r3, r3, #1
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b0b8: e3c00001 bic r0, r0, #1
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
3000b0bc: e153000c cmp r3, ip
new_block->next = next;
3000b0c0: e5851008 str r1, [r5, #8]
new_block->prev = block_before;
3000b0c4: e585400c str r4, [r5, #12]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b0c8: e5820004 str r0, [r2, #4]
block_before->next = new_block;
next->prev = new_block;
3000b0cc: e581500c str r5, [r1, #12]
next_block->prev_size = block_size;
3000b0d0: e7856006 str r6, [r5, r6]
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
3000b0d4: e5845008 str r5, [r4, #8]
/* Statistics */
++stats->free_blocks;
3000b0d8: e5843038 str r3, [r4, #56] ; 0x38
if ( stats->max_free_blocks < stats->free_blocks ) {
stats->max_free_blocks = stats->free_blocks;
3000b0dc: 8584303c strhi r3, [r4, #60] ; 0x3c
3000b0e0: eaffffe2 b 3000b070 <_Heap_Free+0x12c>
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
3000b0e4: e086c00c add ip, r6, ip
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
3000b0e8: e38c3001 orr r3, ip, #1
3000b0ec: e58a3004 str r3, [sl, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b0f0: e5923004 ldr r3, [r2, #4]
next_block->prev_size = size;
3000b0f4: e785c006 str ip, [r5, r6]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
3000b0f8: e3c33001 bic r3, r3, #1
3000b0fc: e5823004 str r3, [r2, #4]
3000b100: eaffffda b 3000b070 <_Heap_Free+0x12c>
3001283c <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
3001283c: e92d40f0 push {r4, r5, r6, r7, lr}
30012840: e1a04000 mov r4, r0
30012844: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
30012848: e1a00001 mov r0, r1
3001284c: e5941010 ldr r1, [r4, #16]
30012850: e1a07002 mov r7, r2
30012854: ebfff6ac bl 3001030c <__umodsi3>
30012858: e2456008 sub r6, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
3001285c: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
30012860: e0600006 rsb r0, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30012864: e1500003 cmp r0, r3
30012868: 3a000010 bcc 300128b0 <_Heap_Size_of_alloc_area+0x74>
3001286c: e5942024 ldr r2, [r4, #36] ; 0x24
30012870: e1500002 cmp r0, r2
30012874: 8a00000d bhi 300128b0 <_Heap_Size_of_alloc_area+0x74>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
30012878: e5906004 ldr r6, [r0, #4]
3001287c: e3c66001 bic r6, r6, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
30012880: e0806006 add r6, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30012884: e1530006 cmp r3, r6
30012888: 8a000008 bhi 300128b0 <_Heap_Size_of_alloc_area+0x74>
3001288c: e1520006 cmp r2, r6
30012890: 3a000008 bcc 300128b8 <_Heap_Size_of_alloc_area+0x7c>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
30012894: e5960004 ldr r0, [r6, #4]
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
30012898: e2100001 ands r0, r0, #1
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
3001289c: 12655004 rsbne r5, r5, #4
300128a0: 10856006 addne r6, r5, r6
300128a4: 15876000 strne r6, [r7]
return true;
300128a8: 13a00001 movne r0, #1
300128ac: e8bd80f0 pop {r4, r5, r6, r7, pc}
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
) {
return false;
300128b0: e3a00000 mov r0, #0
300128b4: e8bd80f0 pop {r4, r5, r6, r7, pc}
300128b8: e3a00000 mov r0, #0 <== NOT EXECUTED
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
}
300128bc: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
3000756c <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
3000756c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
30007570: e59f35cc ldr r3, [pc, #1484] ; 30007b44 <_Heap_Walk+0x5d8>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
30007574: e31200ff tst r2, #255 ; 0xff
if ( !_System_state_Is_up( _System_state_Get() ) ) {
30007578: e5933000 ldr r3, [r3]
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
3000757c: e59f25c4 ldr r2, [pc, #1476] ; 30007b48 <_Heap_Walk+0x5dc>
30007580: e59f95c4 ldr r9, [pc, #1476] ; 30007b4c <_Heap_Walk+0x5e0>
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
30007584: e1a0a001 mov sl, r1
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
30007588: 11a09002 movne r9, r2
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
3000758c: e5901010 ldr r1, [r0, #16]
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
30007590: e3530003 cmp r3, #3
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
30007594: e5902014 ldr r2, [r0, #20]
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
30007598: e5903024 ldr r3, [r0, #36] ; 0x24
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
3000759c: e24dd038 sub sp, sp, #56 ; 0x38
300075a0: e1a04000 mov r4, r0
uintptr_t const page_size = heap->page_size;
300075a4: e58d1024 str r1, [sp, #36] ; 0x24
uintptr_t const min_block_size = heap->min_block_size;
300075a8: e58d2028 str r2, [sp, #40] ; 0x28
Heap_Block *const first_block = heap->first_block;
300075ac: e5908020 ldr r8, [r0, #32]
Heap_Block *const last_block = heap->last_block;
300075b0: e58d302c str r3, [sp, #44] ; 0x2c
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
300075b4: 0a000002 beq 300075c4 <_Heap_Walk+0x58>
}
block = next_block;
} while ( block != first_block );
return true;
300075b8: e3a00001 mov r0, #1
}
300075bc: e28dd038 add sp, sp, #56 ; 0x38
300075c0: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
300075c4: e594101c ldr r1, [r4, #28]
300075c8: e5900018 ldr r0, [r0, #24]
300075cc: e5942008 ldr r2, [r4, #8]
300075d0: e594300c ldr r3, [r4, #12]
300075d4: e59dc028 ldr ip, [sp, #40] ; 0x28
300075d8: e58d1008 str r1, [sp, #8]
300075dc: e59d102c ldr r1, [sp, #44] ; 0x2c
300075e0: e58d0004 str r0, [sp, #4]
300075e4: e58d1010 str r1, [sp, #16]
300075e8: e58d2014 str r2, [sp, #20]
300075ec: e58d3018 str r3, [sp, #24]
300075f0: e59f2558 ldr r2, [pc, #1368] ; 30007b50 <_Heap_Walk+0x5e4>
300075f4: e58dc000 str ip, [sp]
300075f8: e58d800c str r8, [sp, #12]
300075fc: e1a0000a mov r0, sl
30007600: e3a01000 mov r1, #0
30007604: e59d3024 ldr r3, [sp, #36] ; 0x24
30007608: e1a0e00f mov lr, pc
3000760c: e12fff19 bx r9
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
30007610: e59d2024 ldr r2, [sp, #36] ; 0x24
30007614: e3520000 cmp r2, #0
30007618: 0a000026 beq 300076b8 <_Heap_Walk+0x14c>
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
3000761c: e59d3024 ldr r3, [sp, #36] ; 0x24
30007620: e2135003 ands r5, r3, #3
30007624: 1a00002a bne 300076d4 <_Heap_Walk+0x168>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
30007628: e59d0028 ldr r0, [sp, #40] ; 0x28
3000762c: e59d1024 ldr r1, [sp, #36] ; 0x24
30007630: ebffe557 bl 30000b94 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
30007634: e250b000 subs fp, r0, #0
30007638: 1a00002c bne 300076f0 <_Heap_Walk+0x184>
3000763c: e2880008 add r0, r8, #8
30007640: e59d1024 ldr r1, [sp, #36] ; 0x24
30007644: ebffe552 bl 30000b94 <__umodsi3>
);
return false;
}
if (
30007648: e2506000 subs r6, r0, #0
3000764c: 1a00002f bne 30007710 <_Heap_Walk+0x1a4>
block = next_block;
} while ( block != first_block );
return true;
}
30007650: e598b004 ldr fp, [r8, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
30007654: e21b5001 ands r5, fp, #1
30007658: 0a0000cd beq 30007994 <_Heap_Walk+0x428>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
3000765c: e59dc02c ldr ip, [sp, #44] ; 0x2c
30007660: e59c3004 ldr r3, [ip, #4]
30007664: e3c33001 bic r3, r3, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
30007668: e08c3003 add r3, ip, r3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
3000766c: e5935004 ldr r5, [r3, #4]
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
30007670: e2155001 ands r5, r5, #1
30007674: 0a000008 beq 3000769c <_Heap_Walk+0x130>
);
return false;
}
if (
30007678: e1580003 cmp r8, r3
3000767c: 0a00002b beq 30007730 <_Heap_Walk+0x1c4>
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
30007680: e1a0000a mov r0, sl <== NOT EXECUTED
30007684: e3a01001 mov r1, #1 <== NOT EXECUTED
30007688: e59f24c4 ldr r2, [pc, #1220] ; 30007b54 <_Heap_Walk+0x5e8> <== NOT EXECUTED
3000768c: e1a0e00f mov lr, pc <== NOT EXECUTED
30007690: e12fff19 bx r9 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007694: e1a00006 mov r0, r6 <== NOT EXECUTED
30007698: eaffffc7 b 300075bc <_Heap_Walk+0x50> <== NOT EXECUTED
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
3000769c: e1a0000a mov r0, sl
300076a0: e3a01001 mov r1, #1
300076a4: e59f24ac ldr r2, [pc, #1196] ; 30007b58 <_Heap_Walk+0x5ec>
300076a8: e1a0e00f mov lr, pc
300076ac: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300076b0: e1a00005 mov r0, r5
300076b4: eaffffc0 b 300075bc <_Heap_Walk+0x50>
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
300076b8: e1a0000a mov r0, sl
300076bc: e3a01001 mov r1, #1
300076c0: e59f2494 ldr r2, [pc, #1172] ; 30007b5c <_Heap_Walk+0x5f0>
300076c4: e1a0e00f mov lr, pc
300076c8: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300076cc: e59d0024 ldr r0, [sp, #36] ; 0x24
300076d0: eaffffb9 b 300075bc <_Heap_Walk+0x50>
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
300076d4: e1a0000a mov r0, sl
300076d8: e3a01001 mov r1, #1
300076dc: e59f247c ldr r2, [pc, #1148] ; 30007b60 <_Heap_Walk+0x5f4>
300076e0: e1a0e00f mov lr, pc
300076e4: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300076e8: e3a00000 mov r0, #0
300076ec: eaffffb2 b 300075bc <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
300076f0: e1a0000a mov r0, sl
300076f4: e3a01001 mov r1, #1
300076f8: e59f2464 ldr r2, [pc, #1124] ; 30007b64 <_Heap_Walk+0x5f8>
300076fc: e59d3028 ldr r3, [sp, #40] ; 0x28
30007700: e1a0e00f mov lr, pc
30007704: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007708: e1a00005 mov r0, r5
3000770c: eaffffaa b 300075bc <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
30007710: e1a0000a mov r0, sl
30007714: e3a01001 mov r1, #1
30007718: e59f2448 ldr r2, [pc, #1096] ; 30007b68 <_Heap_Walk+0x5fc>
3000771c: e1a03008 mov r3, r8
30007720: e1a0e00f mov lr, pc
30007724: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007728: e1a0000b mov r0, fp
3000772c: eaffffa2 b 300075bc <_Heap_Walk+0x50>
block = next_block;
} while ( block != first_block );
return true;
}
30007730: e5945008 ldr r5, [r4, #8]
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
30007734: e5947010 ldr r7, [r4, #16]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
30007738: e1540005 cmp r4, r5
3000773c: 05943020 ldreq r3, [r4, #32]
30007740: 0a00000d beq 3000777c <_Heap_Walk+0x210>
block = next_block;
} while ( block != first_block );
return true;
}
30007744: e5943020 ldr r3, [r4, #32]
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30007748: e1530005 cmp r3, r5
3000774c: 9a000097 bls 300079b0 <_Heap_Walk+0x444>
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
30007750: e1a0000a mov r0, sl
30007754: e3a01001 mov r1, #1
30007758: e59f240c ldr r2, [pc, #1036] ; 30007b6c <_Heap_Walk+0x600>
3000775c: e1a03005 mov r3, r5
30007760: e1a0e00f mov lr, pc
30007764: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007768: e3a00000 mov r0, #0
3000776c: eaffff92 b 300075bc <_Heap_Walk+0x50>
30007770: e1a03008 mov r3, r8
30007774: e59db034 ldr fp, [sp, #52] ; 0x34
30007778: e59d8030 ldr r8, [sp, #48] ; 0x30
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
3000777c: e1a06008 mov r6, r8
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
30007780: e3cb7001 bic r7, fp, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
30007784: e0875006 add r5, r7, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30007788: e1530005 cmp r3, r5
3000778c: 9a000008 bls 300077b4 <_Heap_Walk+0x248>
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
30007790: e1a0000a mov r0, sl
30007794: e58d5000 str r5, [sp]
30007798: e3a01001 mov r1, #1
3000779c: e59f23cc ldr r2, [pc, #972] ; 30007b70 <_Heap_Walk+0x604>
300077a0: e1a03006 mov r3, r6
300077a4: e1a0e00f mov lr, pc
300077a8: e12fff19 bx r9
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
300077ac: e3a00000 mov r0, #0
300077b0: eaffff81 b 300075bc <_Heap_Walk+0x50>
300077b4: e5943024 ldr r3, [r4, #36] ; 0x24
300077b8: e1530005 cmp r3, r5
300077bc: 3afffff3 bcc 30007790 <_Heap_Walk+0x224>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
300077c0: e59d1024 ldr r1, [sp, #36] ; 0x24
300077c4: e1a00007 mov r0, r7
300077c8: ebffe4f1 bl 30000b94 <__umodsi3>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
300077cc: e59d102c ldr r1, [sp, #44] ; 0x2c
300077d0: e0563001 subs r3, r6, r1
300077d4: 13a03001 movne r3, #1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
300077d8: e3500000 cmp r0, #0
300077dc: 0a000001 beq 300077e8 <_Heap_Walk+0x27c>
300077e0: e3530000 cmp r3, #0
300077e4: 1a0000aa bne 30007a94 <_Heap_Walk+0x528>
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
300077e8: e59d2028 ldr r2, [sp, #40] ; 0x28
300077ec: e1520007 cmp r2, r7
300077f0: 9a000001 bls 300077fc <_Heap_Walk+0x290>
300077f4: e3530000 cmp r3, #0
300077f8: 1a0000ae bne 30007ab8 <_Heap_Walk+0x54c>
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
300077fc: e1560005 cmp r6, r5
30007800: 3a000001 bcc 3000780c <_Heap_Walk+0x2a0>
30007804: e3530000 cmp r3, #0
30007808: 1a0000b4 bne 30007ae0 <_Heap_Walk+0x574>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
3000780c: e5953004 ldr r3, [r5, #4]
30007810: e20bb001 and fp, fp, #1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
30007814: e3130001 tst r3, #1
30007818: 0a000018 beq 30007880 <_Heap_Walk+0x314>
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
3000781c: e35b0000 cmp fp, #0
30007820: 0a00000c beq 30007858 <_Heap_Walk+0x2ec>
(*printer)(
30007824: e58d7000 str r7, [sp]
30007828: e1a0000a mov r0, sl
3000782c: e3a01000 mov r1, #0
30007830: e59f233c ldr r2, [pc, #828] ; 30007b74 <_Heap_Walk+0x608>
30007834: e1a03006 mov r3, r6
30007838: e1a0e00f mov lr, pc
3000783c: e12fff19 bx r9
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
30007840: e1580005 cmp r8, r5
30007844: 0affff5b beq 300075b8 <_Heap_Walk+0x4c>
30007848: e595b004 ldr fp, [r5, #4]
3000784c: e5943020 ldr r3, [r4, #32]
30007850: e1a06005 mov r6, r5
30007854: eaffffc9 b 30007780 <_Heap_Walk+0x214>
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
30007858: e58d7000 str r7, [sp]
3000785c: e5963000 ldr r3, [r6]
30007860: e1a0000a mov r0, sl
30007864: e58d3004 str r3, [sp, #4]
30007868: e1a0100b mov r1, fp
3000786c: e59f2304 ldr r2, [pc, #772] ; 30007b78 <_Heap_Walk+0x60c>
30007870: e1a03006 mov r3, r6
30007874: e1a0e00f mov lr, pc
30007878: e12fff19 bx r9
3000787c: eaffffef b 30007840 <_Heap_Walk+0x2d4>
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
30007880: e596200c ldr r2, [r6, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
30007884: e5943008 ldr r3, [r4, #8]
block = next_block;
} while ( block != first_block );
return true;
}
30007888: e594100c ldr r1, [r4, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
3000788c: e1530002 cmp r3, r2
30007890: 059f02e4 ldreq r0, [pc, #740] ; 30007b7c <_Heap_Walk+0x610>
30007894: 0a000003 beq 300078a8 <_Heap_Walk+0x33c>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
30007898: e59f32e0 ldr r3, [pc, #736] ; 30007b80 <_Heap_Walk+0x614>
3000789c: e1540002 cmp r4, r2
300078a0: e59f02dc ldr r0, [pc, #732] ; 30007b84 <_Heap_Walk+0x618>
300078a4: 01a00003 moveq r0, r3
block->next,
block->next == last_free_block ?
300078a8: e5963008 ldr r3, [r6, #8]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
300078ac: e1510003 cmp r1, r3
300078b0: 059f12d0 ldreq r1, [pc, #720] ; 30007b88 <_Heap_Walk+0x61c>
300078b4: 0a000003 beq 300078c8 <_Heap_Walk+0x35c>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
300078b8: e59fc2cc ldr ip, [pc, #716] ; 30007b8c <_Heap_Walk+0x620>
300078bc: e1540003 cmp r4, r3
300078c0: e59f12bc ldr r1, [pc, #700] ; 30007b84 <_Heap_Walk+0x618>
300078c4: 01a0100c moveq r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
300078c8: e58d2004 str r2, [sp, #4]
300078cc: e58d0008 str r0, [sp, #8]
300078d0: e58d300c str r3, [sp, #12]
300078d4: e58d1010 str r1, [sp, #16]
300078d8: e1a03006 mov r3, r6
300078dc: e58d7000 str r7, [sp]
300078e0: e1a0000a mov r0, sl
300078e4: e3a01000 mov r1, #0
300078e8: e59f22a0 ldr r2, [pc, #672] ; 30007b90 <_Heap_Walk+0x624>
300078ec: e1a0e00f mov lr, pc
300078f0: e12fff19 bx r9
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
300078f4: e5953000 ldr r3, [r5]
300078f8: e1570003 cmp r7, r3
300078fc: 1a000011 bne 30007948 <_Heap_Walk+0x3dc>
);
return false;
}
if ( !prev_used ) {
30007900: e35b0000 cmp fp, #0
30007904: 0a00001a beq 30007974 <_Heap_Walk+0x408>
block = next_block;
} while ( block != first_block );
return true;
}
30007908: e5943008 ldr r3, [r4, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
3000790c: e1540003 cmp r4, r3
30007910: 0a000004 beq 30007928 <_Heap_Walk+0x3bc>
if ( free_block == block ) {
30007914: e1560003 cmp r6, r3
30007918: 0affffc8 beq 30007840 <_Heap_Walk+0x2d4>
return true;
}
free_block = free_block->next;
3000791c: e5933008 ldr r3, [r3, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
30007920: e1540003 cmp r4, r3
30007924: 1afffffa bne 30007914 <_Heap_Walk+0x3a8>
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
30007928: e1a0000a mov r0, sl
3000792c: e3a01001 mov r1, #1
30007930: e59f225c ldr r2, [pc, #604] ; 30007b94 <_Heap_Walk+0x628>
30007934: e1a03006 mov r3, r6
30007938: e1a0e00f mov lr, pc
3000793c: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
30007940: e3a00000 mov r0, #0
30007944: eaffff1c b 300075bc <_Heap_Walk+0x50>
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
30007948: e58d3004 str r3, [sp, #4]
3000794c: e1a0000a mov r0, sl
30007950: e58d7000 str r7, [sp]
30007954: e58d5008 str r5, [sp, #8]
30007958: e3a01001 mov r1, #1
3000795c: e59f2234 ldr r2, [pc, #564] ; 30007b98 <_Heap_Walk+0x62c>
30007960: e1a03006 mov r3, r6
30007964: e1a0e00f mov lr, pc
30007968: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
3000796c: e3a00000 mov r0, #0
30007970: eaffff11 b 300075bc <_Heap_Walk+0x50>
return false;
}
if ( !prev_used ) {
(*printer)(
30007974: e1a0000a mov r0, sl
30007978: e3a01001 mov r1, #1
3000797c: e59f2218 ldr r2, [pc, #536] ; 30007b9c <_Heap_Walk+0x630>
30007980: e1a03006 mov r3, r6
30007984: e1a0e00f mov lr, pc
30007988: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
3000798c: e1a0000b mov r0, fp
30007990: eaffff09 b 300075bc <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
30007994: e1a0000a mov r0, sl
30007998: e3a01001 mov r1, #1
3000799c: e59f21fc ldr r2, [pc, #508] ; 30007ba0 <_Heap_Walk+0x634>
300079a0: e1a0e00f mov lr, pc
300079a4: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
300079a8: e1a00005 mov r0, r5
300079ac: eaffff02 b 300075bc <_Heap_Walk+0x50>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
300079b0: e594c024 ldr ip, [r4, #36] ; 0x24
300079b4: e15c0005 cmp ip, r5
300079b8: 3affff64 bcc 30007750 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
300079bc: e2850008 add r0, r5, #8
300079c0: e1a01007 mov r1, r7
300079c4: e58d3020 str r3, [sp, #32]
300079c8: e58dc01c str ip, [sp, #28]
300079cc: ebffe470 bl 30000b94 <__umodsi3>
);
return false;
}
if (
300079d0: e3500000 cmp r0, #0
300079d4: e59d3020 ldr r3, [sp, #32]
300079d8: e59dc01c ldr ip, [sp, #28]
300079dc: 1a000048 bne 30007b04 <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
300079e0: e5952004 ldr r2, [r5, #4]
300079e4: e3c22001 bic r2, r2, #1
block = next_block;
} while ( block != first_block );
return true;
}
300079e8: e0852002 add r2, r5, r2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
300079ec: e5922004 ldr r2, [r2, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
300079f0: e3120001 tst r2, #1
300079f4: 1a00004a bne 30007b24 <_Heap_Walk+0x5b8>
300079f8: e58d8030 str r8, [sp, #48] ; 0x30
300079fc: e58db034 str fp, [sp, #52] ; 0x34
30007a00: e1a01004 mov r1, r4
30007a04: e1a06005 mov r6, r5
30007a08: e1a08003 mov r8, r3
30007a0c: e1a0b00c mov fp, ip
30007a10: ea000013 b 30007a64 <_Heap_Walk+0x4f8>
return false;
}
prev_block = free_block;
free_block = free_block->next;
30007a14: e5955008 ldr r5, [r5, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
30007a18: e1540005 cmp r4, r5
30007a1c: 0affff53 beq 30007770 <_Heap_Walk+0x204>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30007a20: e1580005 cmp r8, r5
30007a24: 8affff49 bhi 30007750 <_Heap_Walk+0x1e4>
30007a28: e155000b cmp r5, fp
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
30007a2c: e2850008 add r0, r5, #8
30007a30: e1a01007 mov r1, r7
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
30007a34: 8affff45 bhi 30007750 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
30007a38: ebffe455 bl 30000b94 <__umodsi3>
);
return false;
}
if (
30007a3c: e3500000 cmp r0, #0
30007a40: 1a00002f bne 30007b04 <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
30007a44: e5953004 ldr r3, [r5, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
30007a48: e1a01006 mov r1, r6
30007a4c: e3c33001 bic r3, r3, #1
block = next_block;
} while ( block != first_block );
return true;
}
30007a50: e0833005 add r3, r3, r5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
30007a54: e5933004 ldr r3, [r3, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
30007a58: e1a06005 mov r6, r5
30007a5c: e3130001 tst r3, #1
30007a60: 1a00002f bne 30007b24 <_Heap_Walk+0x5b8>
);
return false;
}
if ( free_block->prev != prev_block ) {
30007a64: e595200c ldr r2, [r5, #12]
30007a68: e1520001 cmp r2, r1
30007a6c: 0affffe8 beq 30007a14 <_Heap_Walk+0x4a8>
(*printer)(
30007a70: e58d2000 str r2, [sp]
30007a74: e1a0000a mov r0, sl
30007a78: e3a01001 mov r1, #1
30007a7c: e59f2120 ldr r2, [pc, #288] ; 30007ba4 <_Heap_Walk+0x638>
30007a80: e1a03005 mov r3, r5
30007a84: e1a0e00f mov lr, pc
30007a88: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007a8c: e3a00000 mov r0, #0
30007a90: eafffec9 b 300075bc <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
30007a94: e1a0000a mov r0, sl
30007a98: e58d7000 str r7, [sp]
30007a9c: e3a01001 mov r1, #1
30007aa0: e59f2100 ldr r2, [pc, #256] ; 30007ba8 <_Heap_Walk+0x63c>
30007aa4: e1a03006 mov r3, r6
30007aa8: e1a0e00f mov lr, pc
30007aac: e12fff19 bx r9
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
30007ab0: e3a00000 mov r0, #0
30007ab4: eafffec0 b 300075bc <_Heap_Walk+0x50>
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
30007ab8: e58d2004 str r2, [sp, #4]
30007abc: e1a0000a mov r0, sl
30007ac0: e58d7000 str r7, [sp]
30007ac4: e3a01001 mov r1, #1
30007ac8: e59f20dc ldr r2, [pc, #220] ; 30007bac <_Heap_Walk+0x640>
30007acc: e1a03006 mov r3, r6
30007ad0: e1a0e00f mov lr, pc
30007ad4: e12fff19 bx r9
block,
block_size,
min_block_size
);
return false;
30007ad8: e3a00000 mov r0, #0
30007adc: eafffeb6 b 300075bc <_Heap_Walk+0x50>
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
30007ae0: e1a0000a mov r0, sl
30007ae4: e58d5000 str r5, [sp]
30007ae8: e3a01001 mov r1, #1
30007aec: e59f20bc ldr r2, [pc, #188] ; 30007bb0 <_Heap_Walk+0x644>
30007af0: e1a03006 mov r3, r6
30007af4: e1a0e00f mov lr, pc
30007af8: e12fff19 bx r9
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
30007afc: e3a00000 mov r0, #0
30007b00: eafffead b 300075bc <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
30007b04: e1a0000a mov r0, sl
30007b08: e3a01001 mov r1, #1
30007b0c: e59f20a0 ldr r2, [pc, #160] ; 30007bb4 <_Heap_Walk+0x648>
30007b10: e1a03005 mov r3, r5
30007b14: e1a0e00f mov lr, pc
30007b18: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007b1c: e3a00000 mov r0, #0
30007b20: eafffea5 b 300075bc <_Heap_Walk+0x50>
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
30007b24: e1a0000a mov r0, sl
30007b28: e3a01001 mov r1, #1
30007b2c: e59f2084 ldr r2, [pc, #132] ; 30007bb8 <_Heap_Walk+0x64c>
30007b30: e1a03005 mov r3, r5
30007b34: e1a0e00f mov lr, pc
30007b38: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
30007b3c: e3a00000 mov r0, #0
30007b40: eafffe9d b 300075bc <_Heap_Walk+0x50>
30006950 <_Internal_error_Occurred>:
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
30006950: e59f303c ldr r3, [pc, #60] ; 30006994 <_Internal_error_Occurred+0x44>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30006954: e201c0ff and ip, r1, #255 ; 0xff
30006958: e52de004 push {lr} ; (str lr, [sp, #-4]!)
_Internal_errors_What_happened.the_source = the_source;
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
3000695c: e1a0100c mov r1, ip
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
30006960: e5830000 str r0, [r3]
_Internal_errors_What_happened.is_internal = is_internal;
30006964: e5c3c004 strb ip, [r3, #4]
_Internal_errors_What_happened.the_error = the_error;
30006968: e5832008 str r2, [r3, #8]
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
3000696c: e1a04002 mov r4, r2
_Internal_errors_What_happened.the_source = the_source;
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
30006970: eb000738 bl 30008658 <_User_extensions_Fatal>
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
30006974: e59f301c ldr r3, [pc, #28] ; 30006998 <_Internal_error_Occurred+0x48><== NOT EXECUTED
30006978: e3a02005 mov r2, #5 <== NOT EXECUTED
3000697c: e5832000 str r2, [r3] <== NOT EXECUTED
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
30006980: e10f2000 mrs r2, CPSR <== NOT EXECUTED
30006984: e3823080 orr r3, r2, #128 ; 0x80 <== NOT EXECUTED
30006988: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
3000698c: e1a00004 mov r0, r4 <== NOT EXECUTED
30006990: eafffffe b 30006990 <_Internal_error_Occurred+0x40> <== NOT EXECUTED
30006a58 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
30006a58: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006a5c: e5904034 ldr r4, [r0, #52] ; 0x34
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
30006a60: e24dd014 sub sp, sp, #20
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006a64: e3540000 cmp r4, #0
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
30006a68: e1a05000 mov r5, r0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006a6c: e1d070b8 ldrh r7, [r0, #8]
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006a70: 0a00009b beq 30006ce4 <_Objects_Extend_information+0x28c>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
30006a74: e1d081b4 ldrh r8, [r0, #20]
30006a78: e1d0a1b0 ldrh sl, [r0, #16]
30006a7c: e1a01008 mov r1, r8
30006a80: e1a0000a mov r0, sl
30006a84: eb0025da bl 300101f4 <__aeabi_uidiv>
30006a88: e1a03800 lsl r3, r0, #16
for ( ; block < block_count; block++ ) {
30006a8c: e1b03823 lsrs r3, r3, #16
30006a90: 0a000099 beq 30006cfc <_Objects_Extend_information+0x2a4>
if ( information->object_blocks[ block ] == NULL ) {
30006a94: e5949000 ldr r9, [r4]
30006a98: e3590000 cmp r9, #0
30006a9c: 01a01008 moveq r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006aa0: 01a06007 moveq r6, r7
index_base = minimum_index;
block = 0;
30006aa4: 01a04009 moveq r4, r9
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
30006aa8: 0a00000c beq 30006ae0 <_Objects_Extend_information+0x88>
30006aac: e1a02004 mov r2, r4
30006ab0: e1a01008 mov r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006ab4: e1a06007 mov r6, r7
index_base = minimum_index;
block = 0;
30006ab8: e3a04000 mov r4, #0
30006abc: ea000002 b 30006acc <_Objects_Extend_information+0x74>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
30006ac0: e5b29004 ldr r9, [r2, #4]!
30006ac4: e3590000 cmp r9, #0
30006ac8: 0a000004 beq 30006ae0 <_Objects_Extend_information+0x88>
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
30006acc: e2844001 add r4, r4, #1
30006ad0: e1530004 cmp r3, r4
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
30006ad4: e0866008 add r6, r6, r8
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
30006ad8: 8afffff8 bhi 30006ac0 <_Objects_Extend_information+0x68>
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
30006adc: e3a09001 mov r9, #1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
30006ae0: e08aa001 add sl, sl, r1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
30006ae4: e35a0801 cmp sl, #65536 ; 0x10000
30006ae8: 2a000063 bcs 30006c7c <_Objects_Extend_information+0x224>
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
30006aec: e5d52012 ldrb r2, [r5, #18]
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
30006af0: e5950018 ldr r0, [r5, #24]
if ( information->auto_extend ) {
30006af4: e3520000 cmp r2, #0
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
30006af8: e0000091 mul r0, r1, r0
if ( information->auto_extend ) {
30006afc: 1a000060 bne 30006c84 <_Objects_Extend_information+0x22c>
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
30006b00: e58d3000 str r3, [sp]
30006b04: eb000816 bl 30008b64 <_Workspace_Allocate_or_fatal_error>
30006b08: e59d3000 ldr r3, [sp]
30006b0c: e1a08000 mov r8, r0
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
30006b10: e3590000 cmp r9, #0
30006b14: 0a000039 beq 30006c00 <_Objects_Extend_information+0x1a8>
*/
/*
* Up the block count and maximum
*/
block_count++;
30006b18: e283b001 add fp, r3, #1
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
30006b1c: e08b008b add r0, fp, fp, lsl #1
((maximum + minimum_index) * sizeof(Objects_Control *));
30006b20: e08a0000 add r0, sl, r0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
30006b24: e0800007 add r0, r0, r7
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
30006b28: e1a00100 lsl r0, r0, #2
30006b2c: e58d3000 str r3, [sp]
30006b30: eb000801 bl 30008b3c <_Workspace_Allocate>
if ( !object_blocks ) {
30006b34: e2509000 subs r9, r0, #0
30006b38: e59d3000 ldr r3, [sp]
30006b3c: 0a000073 beq 30006d10 <_Objects_Extend_information+0x2b8>
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
30006b40: e1d521b0 ldrh r2, [r5, #16]
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset (
const void *base,
uintptr_t offset
)
{
return (void *)((uintptr_t)base + offset);
30006b44: e089c10b add ip, r9, fp, lsl #2
30006b48: e1570002 cmp r7, r2
30006b4c: e089b18b add fp, r9, fp, lsl #3
30006b50: 3a000051 bcc 30006c9c <_Objects_Extend_information+0x244>
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
30006b54: e3570000 cmp r7, #0
30006b58: 13a02000 movne r2, #0
30006b5c: 11a0100b movne r1, fp
local_table[ index ] = NULL;
30006b60: 11a00002 movne r0, r2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
30006b64: 0a000003 beq 30006b78 <_Objects_Extend_information+0x120>
30006b68: e2822001 add r2, r2, #1
30006b6c: e1570002 cmp r7, r2
local_table[ index ] = NULL;
30006b70: e4810004 str r0, [r1], #4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
30006b74: 8afffffb bhi 30006b68 <_Objects_Extend_information+0x110>
30006b78: e1a03103 lsl r3, r3, #2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
30006b7c: e1d511b4 ldrh r1, [r5, #20]
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
30006b80: e3a00000 mov r0, #0
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
30006b84: e0861001 add r1, r6, r1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
30006b88: e1560001 cmp r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
30006b8c: e7890003 str r0, [r9, r3]
inactive_per_block[block_count] = 0;
30006b90: e78c0003 str r0, [ip, r3]
for ( index=index_base ;
30006b94: 2a000005 bcs 30006bb0 <_Objects_Extend_information+0x158>
30006b98: e08b2106 add r2, fp, r6, lsl #2
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
30006b9c: e1a03006 mov r3, r6
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
30006ba0: e2833001 add r3, r3, #1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
30006ba4: e1530001 cmp r3, r1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
30006ba8: e4820004 str r0, [r2], #4
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
30006bac: 3afffffb bcc 30006ba0 <_Objects_Extend_information+0x148>
30006bb0: e10f3000 mrs r3, CPSR
30006bb4: e3832080 orr r2, r3, #128 ; 0x80
30006bb8: e129f002 msr CPSR_fc, r2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
30006bbc: e5952000 ldr r2, [r5]
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
30006bc0: e1d510b4 ldrh r1, [r5, #4]
30006bc4: e1a02c02 lsl r2, r2, #24
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
30006bc8: e1a0a80a lsl sl, sl, #16
30006bcc: e3822801 orr r2, r2, #65536 ; 0x10000
30006bd0: e1a0a82a lsr sl, sl, #16
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
30006bd4: e1822d81 orr r2, r2, r1, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
30006bd8: e182200a orr r2, r2, sl
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
30006bdc: e5950034 ldr r0, [r5, #52] ; 0x34
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
30006be0: e585c030 str ip, [r5, #48] ; 0x30
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
30006be4: e5859034 str r9, [r5, #52] ; 0x34
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
30006be8: e585b01c str fp, [r5, #28]
information->maximum = (Objects_Maximum) maximum;
30006bec: e1c5a1b0 strh sl, [r5, #16]
information->maximum_id = _Objects_Build_id(
30006bf0: e585200c str r2, [r5, #12]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
30006bf4: e129f003 msr CPSR_fc, r3
information->maximum
);
_ISR_Enable( level );
if ( old_tables )
30006bf8: e3500000 cmp r0, #0
_Workspace_Free( old_tables );
30006bfc: 1b0007d4 blne 30008b54 <_Workspace_Free>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
30006c00: e5953034 ldr r3, [r5, #52] ; 0x34
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
30006c04: e28d7008 add r7, sp, #8
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
30006c08: e7838104 str r8, [r3, r4, lsl #2]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
30006c0c: e1a01008 mov r1, r8
30006c10: e1a00007 mov r0, r7
30006c14: e1d521b4 ldrh r2, [r5, #20]
30006c18: e5953018 ldr r3, [r5, #24]
30006c1c: eb000fa8 bl 3000aac4 <_Chain_Initialize>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
30006c20: e1a04104 lsl r4, r4, #2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
30006c24: e2858020 add r8, r5, #32
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
30006c28: ea000009 b 30006c54 <_Objects_Extend_information+0x1fc>
30006c2c: e5953000 ldr r3, [r5]
the_object->id = _Objects_Build_id(
30006c30: e1d520b4 ldrh r2, [r5, #4]
30006c34: e1a03c03 lsl r3, r3, #24
30006c38: e3833801 orr r3, r3, #65536 ; 0x10000
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
30006c3c: e1833d82 orr r3, r3, r2, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
30006c40: e1833006 orr r3, r3, r6
30006c44: e5813008 str r3, [r1, #8]
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
30006c48: e1a00008 mov r0, r8
30006c4c: ebfffce8 bl 30005ff4 <_Chain_Append>
index++;
30006c50: e2866001 add r6, r6, #1
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
30006c54: e1a00007 mov r0, r7
30006c58: ebfffcf8 bl 30006040 <_Chain_Get>
30006c5c: e2501000 subs r1, r0, #0
30006c60: 1afffff1 bne 30006c2c <_Objects_Extend_information+0x1d4>
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
30006c64: e1d522bc ldrh r2, [r5, #44] ; 0x2c
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
30006c68: e1d531b4 ldrh r3, [r5, #20]
30006c6c: e5951030 ldr r1, [r5, #48] ; 0x30
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
30006c70: e0832002 add r2, r3, r2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
30006c74: e7813004 str r3, [r1, r4]
information->inactive =
30006c78: e1c522bc strh r2, [r5, #44] ; 0x2c
(Objects_Maximum)(information->inactive + information->allocation_size);
}
30006c7c: e28dd014 add sp, sp, #20
30006c80: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
30006c84: e58d3000 str r3, [sp]
30006c88: eb0007ab bl 30008b3c <_Workspace_Allocate>
if ( !new_object_block )
30006c8c: e2508000 subs r8, r0, #0
30006c90: e59d3000 ldr r3, [sp]
30006c94: 1affff9d bne 30006b10 <_Objects_Extend_information+0xb8>
30006c98: eafffff7 b 30006c7c <_Objects_Extend_information+0x224>
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
30006c9c: e1a03103 lsl r3, r3, #2
30006ca0: e5951034 ldr r1, [r5, #52] ; 0x34
30006ca4: e1a02003 mov r2, r3
30006ca8: e88d1008 stm sp, {r3, ip}
30006cac: eb0019df bl 3000d430 <memcpy>
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
30006cb0: e89d1008 ldm sp, {r3, ip}
30006cb4: e1a0000c mov r0, ip
30006cb8: e1a02003 mov r2, r3
30006cbc: e5951030 ldr r1, [r5, #48] ; 0x30
30006cc0: eb0019da bl 3000d430 <memcpy>
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
30006cc4: e1d521b0 ldrh r2, [r5, #16]
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
30006cc8: e1a0000b mov r0, fp
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
30006ccc: e0872002 add r2, r7, r2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
30006cd0: e595101c ldr r1, [r5, #28]
30006cd4: e1a02102 lsl r2, r2, #2
30006cd8: eb0019d4 bl 3000d430 <memcpy>
30006cdc: e89d1008 ldm sp, {r3, ip}
30006ce0: eaffffa5 b 30006b7c <_Objects_Extend_information+0x124>
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
30006ce4: e1d0a1b0 ldrh sl, [r0, #16]
30006ce8: e1d011b4 ldrh r1, [r0, #20]
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006cec: e1a06007 mov r6, r7
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
30006cf0: e3a09001 mov r9, #1
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
30006cf4: e1a03004 mov r3, r4
30006cf8: eaffff78 b 30006ae0 <_Objects_Extend_information+0x88>
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
30006cfc: e1a01008 mov r1, r8 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
30006d00: e1a06007 mov r6, r7 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
30006d04: e3a09001 mov r9, #1 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
30006d08: e1a04003 mov r4, r3 <== NOT EXECUTED
30006d0c: eaffff73 b 30006ae0 <_Objects_Extend_information+0x88> <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
30006d10: e1a00008 mov r0, r8
30006d14: eb00078e bl 30008b54 <_Workspace_Free>
return;
30006d18: eaffffd7 b 30006c7c <_Objects_Extend_information+0x224>
30007060 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
30007060: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
30007064: e1d040b8 ldrh r4, [r0, #8]
block_count = (information->maximum - index_base) /
30007068: e1d051b4 ldrh r5, [r0, #20]
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
3000706c: e1a06000 mov r6, r0
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
30007070: e1d001b0 ldrh r0, [r0, #16]
30007074: e1a01005 mov r1, r5
30007078: e0640000 rsb r0, r4, r0
3000707c: eb00245c bl 300101f4 <__aeabi_uidiv>
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
30007080: e3500000 cmp r0, #0
30007084: 08bd80f0 popeq {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
30007088: e5962030 ldr r2, [r6, #48] ; 0x30
3000708c: e5923000 ldr r3, [r2]
30007090: e1550003 cmp r5, r3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
30007094: 13a03000 movne r3, #0
if ( information->inactive_per_block[ block ] ==
30007098: 1a000005 bne 300070b4 <_Objects_Shrink_information+0x54>
3000709c: ea000008 b 300070c4 <_Objects_Shrink_information+0x64> <== NOT EXECUTED
300070a0: e5b21004 ldr r1, [r2, #4]!
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
300070a4: e0844005 add r4, r4, r5
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
300070a8: e1550001 cmp r5, r1
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
300070ac: e1a07103 lsl r7, r3, #2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
300070b0: 0a000004 beq 300070c8 <_Objects_Shrink_information+0x68>
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
300070b4: e2833001 add r3, r3, #1
300070b8: e1500003 cmp r0, r3
300070bc: 8afffff7 bhi 300070a0 <_Objects_Shrink_information+0x40>
300070c0: e8bd80f0 pop {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
300070c4: e3a07000 mov r7, #0 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
300070c8: e5960020 ldr r0, [r6, #32]
300070cc: ea000002 b 300070dc <_Objects_Shrink_information+0x7c>
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
300070d0: e3550000 cmp r5, #0
300070d4: 0a00000b beq 30007108 <_Objects_Shrink_information+0xa8>
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
300070d8: e1a00005 mov r0, r5
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
do {
index = _Objects_Get_index( the_object->id );
300070dc: e1d030b8 ldrh r3, [r0, #8]
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
300070e0: e5905000 ldr r5, [r0]
if ((index >= index_base) &&
300070e4: e1530004 cmp r3, r4
300070e8: 3afffff8 bcc 300070d0 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
300070ec: e1d621b4 ldrh r2, [r6, #20]
300070f0: e0842002 add r2, r4, r2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
300070f4: e1530002 cmp r3, r2
300070f8: 2afffff4 bcs 300070d0 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
300070fc: ebfffbc7 bl 30006020 <_Chain_Extract>
}
}
while ( the_object );
30007100: e3550000 cmp r5, #0
30007104: 1afffff3 bne 300070d8 <_Objects_Shrink_information+0x78>
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
30007108: e5963034 ldr r3, [r6, #52] ; 0x34
3000710c: e7930007 ldr r0, [r3, r7]
30007110: eb00068f bl 30008b54 <_Workspace_Free>
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
30007114: e1d602bc ldrh r0, [r6, #44] ; 0x2c
30007118: e1d631b4 ldrh r3, [r6, #20]
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
3000711c: e5961034 ldr r1, [r6, #52] ; 0x34
information->inactive_per_block[ block ] = 0;
30007120: e5962030 ldr r2, [r6, #48] ; 0x30
information->inactive -= information->allocation_size;
30007124: e0633000 rsb r3, r3, r0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
30007128: e7815007 str r5, [r1, r7]
information->inactive_per_block[ block ] = 0;
3000712c: e7825007 str r5, [r2, r7]
information->inactive -= information->allocation_size;
30007130: e1c632bc strh r3, [r6, #44] ; 0x2c
return;
30007134: e8bd80f0 pop {r4, r5, r6, r7, pc}
300066c8 <_TOD_Validate>:
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
300066c8: e59f30b0 ldr r3, [pc, #176] ; 30006780 <_TOD_Validate+0xb8>
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
300066cc: e92d4010 push {r4, lr}
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
300066d0: e2504000 subs r4, r0, #0
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
300066d4: e593100c ldr r1, [r3, #12]
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
300066d8: 01a00004 moveq r0, r4
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
300066dc: 08bd8010 popeq {r4, pc}
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
300066e0: e59f009c ldr r0, [pc, #156] ; 30006784 <_TOD_Validate+0xbc>
300066e4: eb0044f5 bl 30017ac0 <__aeabi_uidiv>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
300066e8: e5943018 ldr r3, [r4, #24]
300066ec: e1500003 cmp r0, r3
300066f0: 9a00001e bls 30006770 <_TOD_Validate+0xa8>
(the_tod->ticks >= ticks_per_second) ||
300066f4: e5943014 ldr r3, [r4, #20]
300066f8: e353003b cmp r3, #59 ; 0x3b
300066fc: 8a00001b bhi 30006770 <_TOD_Validate+0xa8>
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
30006700: e5943010 ldr r3, [r4, #16]
30006704: e353003b cmp r3, #59 ; 0x3b
30006708: 8a000018 bhi 30006770 <_TOD_Validate+0xa8>
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
3000670c: e594300c ldr r3, [r4, #12]
30006710: e3530017 cmp r3, #23
30006714: 8a000015 bhi 30006770 <_TOD_Validate+0xa8>
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
30006718: e5940004 ldr r0, [r4, #4]
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
3000671c: e3500000 cmp r0, #0
30006720: 08bd8010 popeq {r4, pc}
(the_tod->month == 0) ||
30006724: e350000c cmp r0, #12
30006728: 8a000010 bhi 30006770 <_TOD_Validate+0xa8>
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
3000672c: e5943000 ldr r3, [r4]
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
30006730: e59f2050 ldr r2, [pc, #80] ; 30006788 <_TOD_Validate+0xc0>
30006734: e1530002 cmp r3, r2
30006738: 9a00000c bls 30006770 <_TOD_Validate+0xa8>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
3000673c: e5944008 ldr r4, [r4, #8]
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
30006740: e3540000 cmp r4, #0
30006744: 0a00000b beq 30006778 <_TOD_Validate+0xb0>
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
30006748: e3130003 tst r3, #3
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
3000674c: 059f3038 ldreq r3, [pc, #56] ; 3000678c <_TOD_Validate+0xc4>
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
30006750: 159f3034 ldrne r3, [pc, #52] ; 3000678c <_TOD_Validate+0xc4>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
30006754: 0280000d addeq r0, r0, #13
30006758: 07930100 ldreq r0, [r3, r0, lsl #2]
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
3000675c: 17930100 ldrne r0, [r3, r0, lsl #2]
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
30006760: e1500004 cmp r0, r4
30006764: 33a00000 movcc r0, #0
30006768: 23a00001 movcs r0, #1
3000676c: e8bd8010 pop {r4, pc}
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
30006770: e3a00000 mov r0, #0
30006774: e8bd8010 pop {r4, pc}
30006778: e1a00004 mov r0, r4 <== NOT EXECUTED
if ( the_tod->day > days_in_month )
return false;
return true;
}
3000677c: e8bd8010 pop {r4, pc} <== NOT EXECUTED
30007ccc <_Thread_queue_Enqueue_priority>:
Priority_Control priority;
States_Control block_state;
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
30007ccc: e5913014 ldr r3, [r1, #20]
Thread_blocking_operation_States _Thread_queue_Enqueue_priority (
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread,
ISR_Level *level_p
)
{
30007cd0: e92d0ff0 push {r4, r5, r6, r7, r8, r9, sl, fp}
30007cd4: e281403c add r4, r1, #60 ; 0x3c
Chain_Node *previous_node;
Chain_Node *search_node;
Priority_Control priority;
States_Control block_state;
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
30007cd8: e281c038 add ip, r1, #56 ; 0x38
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
30007cdc: e5814038 str r4, [r1, #56] ; 0x38
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
if ( _Thread_queue_Is_reverse_search( priority ) )
30007ce0: e3130020 tst r3, #32
the_chain->permanent_null = NULL;
30007ce4: e3a04000 mov r4, #0
30007ce8: e581403c str r4, [r1, #60] ; 0x3c
the_chain->last = _Chain_Head(the_chain);
30007cec: e581c040 str ip, [r1, #64] ; 0x40
RTEMS_INLINE_ROUTINE uint32_t _Thread_queue_Header_number (
Priority_Control the_priority
)
{
return (the_priority / TASK_QUEUE_DATA_PRIORITIES_PER_HEADER);
30007cf0: e1a08323 lsr r8, r3, #6
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
30007cf4: e5905038 ldr r5, [r0, #56] ; 0x38
if ( _Thread_queue_Is_reverse_search( priority ) )
30007cf8: 1a00001f bne 30007d7c <_Thread_queue_Enqueue_priority+0xb0>
goto restart_reverse_search;
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->first;
30007cfc: e0888088 add r8, r8, r8, lsl #1
30007d00: e1a09108 lsl r9, r8, #2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
30007d04: e2898004 add r8, r9, #4
30007d08: e0808008 add r8, r0, r8
30007d0c: e0809009 add r9, r0, r9
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
30007d10: e10f7000 mrs r7, CPSR
30007d14: e387c080 orr ip, r7, #128 ; 0x80
30007d18: e129f00c msr CPSR_fc, ip
30007d1c: e1a0a007 mov sl, r7
30007d20: e599c000 ldr ip, [r9]
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
30007d24: e15c0008 cmp ip, r8
30007d28: 1a000009 bne 30007d54 <_Thread_queue_Enqueue_priority+0x88>
30007d2c: ea000054 b 30007e84 <_Thread_queue_Enqueue_priority+0x1b8>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
asm volatile (
30007d30: e10f6000 mrs r6, CPSR
30007d34: e129f007 msr CPSR_fc, r7
30007d38: e129f006 msr CPSR_fc, r6
RTEMS_INLINE_ROUTINE bool _States_Are_set (
States_Control the_states,
States_Control mask
)
{
return ( (the_states & mask) != STATES_READY);
30007d3c: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority <= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
30007d40: e1150006 tst r5, r6
30007d44: 0a000036 beq 30007e24 <_Thread_queue_Enqueue_priority+0x158>
_ISR_Enable( level );
goto restart_forward_search;
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
30007d48: e59cc000 ldr ip, [ip]
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->first;
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
30007d4c: e15c0008 cmp ip, r8
30007d50: 0a000002 beq 30007d60 <_Thread_queue_Enqueue_priority+0x94>
search_priority = search_thread->current_priority;
30007d54: e59c4014 ldr r4, [ip, #20]
if ( priority <= search_priority )
30007d58: e1530004 cmp r3, r4
30007d5c: 8afffff3 bhi 30007d30 <_Thread_queue_Enqueue_priority+0x64>
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
}
if ( the_thread_queue->sync_state !=
30007d60: e5905030 ldr r5, [r0, #48] ; 0x30
30007d64: e3550001 cmp r5, #1
30007d68: 0a00002f beq 30007e2c <_Thread_queue_Enqueue_priority+0x160>
* For example, the blocking thread could have been given
* the mutex by an ISR or timed out.
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
30007d6c: e582a000 str sl, [r2]
return the_thread_queue->sync_state;
}
30007d70: e1a00005 mov r0, r5
30007d74: e8bd0ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp}
30007d78: e12fff1e bx lr
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
30007d7c: e0888088 add r8, r8, r8, lsl #1
30007d80: e0808108 add r8, r0, r8, lsl #2
30007d84: e59f9100 ldr r9, [pc, #256] ; 30007e8c <_Thread_queue_Enqueue_priority+0x1c0>
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->last;
30007d88: e1a0b008 mov fp, r8
the_thread->Wait.queue = the_thread_queue;
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
30007d8c: e5d94000 ldrb r4, [r9]
30007d90: e2844001 add r4, r4, #1
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
30007d94: e10f7000 mrs r7, CPSR
30007d98: e387c080 orr ip, r7, #128 ; 0x80
30007d9c: e129f00c msr CPSR_fc, ip
30007da0: e1a0a007 mov sl, r7
_ISR_Disable( level );
search_thread = (Thread_Control *) header->last;
30007da4: e59bc008 ldr ip, [fp, #8]
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
30007da8: e15c0008 cmp ip, r8
30007dac: 1a000009 bne 30007dd8 <_Thread_queue_Enqueue_priority+0x10c>
30007db0: ea00000b b 30007de4 <_Thread_queue_Enqueue_priority+0x118>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
asm volatile (
30007db4: e10f6000 mrs r6, CPSR
30007db8: e129f007 msr CPSR_fc, r7
30007dbc: e129f006 msr CPSR_fc, r6
30007dc0: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority >= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
30007dc4: e1150006 tst r5, r6
30007dc8: 0a000013 beq 30007e1c <_Thread_queue_Enqueue_priority+0x150>
_ISR_Enable( level );
goto restart_reverse_search;
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
30007dcc: e59cc004 ldr ip, [ip, #4]
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->last;
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
30007dd0: e15c0008 cmp ip, r8
30007dd4: 0a000002 beq 30007de4 <_Thread_queue_Enqueue_priority+0x118>
search_priority = search_thread->current_priority;
30007dd8: e59c4014 ldr r4, [ip, #20]
if ( priority >= search_priority )
30007ddc: e1530004 cmp r3, r4
30007de0: 3afffff3 bcc 30007db4 <_Thread_queue_Enqueue_priority+0xe8>
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
}
if ( the_thread_queue->sync_state !=
30007de4: e5905030 ldr r5, [r0, #48] ; 0x30
30007de8: e3550001 cmp r5, #1
30007dec: 1affffde bne 30007d6c <_Thread_queue_Enqueue_priority+0xa0>
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
30007df0: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
30007df4: e3a03000 mov r3, #0
30007df8: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
30007dfc: 0a000016 beq 30007e5c <_Thread_queue_Enqueue_priority+0x190>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
next_node = search_node->next;
30007e00: e59c3000 ldr r3, [ip]
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
30007e04: e8811008 stm r1, {r3, ip}
search_node->next = the_node;
next_node->previous = the_node;
30007e08: e5831004 str r1, [r3, #4]
next_node = search_node->next;
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
search_node->next = the_node;
30007e0c: e58c1000 str r1, [ip]
next_node->previous = the_node;
the_thread->Wait.queue = the_thread_queue;
30007e10: e5810044 str r0, [r1, #68] ; 0x44
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
30007e14: e129f007 msr CPSR_fc, r7
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
30007e18: eaffffd4 b 30007d70 <_Thread_queue_Enqueue_priority+0xa4>
30007e1c: e129f007 msr CPSR_fc, r7 <== NOT EXECUTED
30007e20: eaffffd9 b 30007d8c <_Thread_queue_Enqueue_priority+0xc0> <== NOT EXECUTED
30007e24: e129f007 msr CPSR_fc, r7
30007e28: eaffffb8 b 30007d10 <_Thread_queue_Enqueue_priority+0x44>
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
30007e2c: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
30007e30: e3a03000 mov r3, #0
30007e34: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
30007e38: 0a000007 beq 30007e5c <_Thread_queue_Enqueue_priority+0x190>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
previous_node = search_node->previous;
30007e3c: e59c3004 ldr r3, [ip, #4]
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
30007e40: e581c000 str ip, [r1]
the_node->previous = previous_node;
30007e44: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
30007e48: e5831000 str r1, [r3]
search_node->previous = the_node;
30007e4c: e58c1004 str r1, [ip, #4]
the_thread->Wait.queue = the_thread_queue;
30007e50: e5810044 str r0, [r1, #68] ; 0x44
30007e54: e129f007 msr CPSR_fc, r7
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
30007e58: eaffffc4 b 30007d70 <_Thread_queue_Enqueue_priority+0xa4>
30007e5c: e28cc03c add ip, ip, #60 ; 0x3c
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
equal_priority: /* add at end of priority group */
search_node = _Chain_Tail( &search_thread->Wait.Block2n );
previous_node = search_node->previous;
30007e60: e59c3004 ldr r3, [ip, #4]
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
30007e64: e581c000 str ip, [r1]
the_node->previous = previous_node;
30007e68: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
30007e6c: e5831000 str r1, [r3]
search_node->previous = the_node;
30007e70: e58c1004 str r1, [ip, #4]
the_thread->Wait.queue = the_thread_queue;
30007e74: e5810044 str r0, [r1, #68] ; 0x44
30007e78: e129f00a msr CPSR_fc, sl
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
30007e7c: e3a05001 mov r5, #1
30007e80: eaffffba b 30007d70 <_Thread_queue_Enqueue_priority+0xa4>
if ( _Thread_queue_Is_reverse_search( priority ) )
goto restart_reverse_search;
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
30007e84: e3e04000 mvn r4, #0
30007e88: eaffffb4 b 30007d60 <_Thread_queue_Enqueue_priority+0x94>
3001604c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
3001604c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
30016050: e24dd024 sub sp, sp, #36 ; 0x24
30016054: e28d700c add r7, sp, #12
30016058: e28d2018 add r2, sp, #24
3001605c: e282a004 add sl, r2, #4
30016060: e2872004 add r2, r7, #4
30016064: e58d2000 str r2, [sp]
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
the_chain->last = _Chain_Head(the_chain);
30016068: e28d2018 add r2, sp, #24
3001606c: e58d2020 str r2, [sp, #32]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
30016070: e59d2000 ldr r2, [sp]
the_chain->permanent_null = NULL;
30016074: e3a03000 mov r3, #0
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
30016078: e58d200c str r2, [sp, #12]
3001607c: e2802008 add r2, r0, #8
30016080: e58d2004 str r2, [sp, #4]
30016084: e59f91bc ldr r9, [pc, #444] ; 30016248 <_Timer_server_Body+0x1fc>
30016088: e2802040 add r2, r0, #64 ; 0x40
3001608c: e59fb1b8 ldr fp, [pc, #440] ; 3001624c <_Timer_server_Body+0x200>
30016090: e1a04000 mov r4, r0
30016094: e58da018 str sl, [sp, #24]
the_chain->permanent_null = NULL;
30016098: e58d301c str r3, [sp, #28]
3001609c: e58d3010 str r3, [sp, #16]
the_chain->last = _Chain_Head(the_chain);
300160a0: e58d7014 str r7, [sp, #20]
300160a4: e2806030 add r6, r0, #48 ; 0x30
300160a8: e2808068 add r8, r0, #104 ; 0x68
300160ac: e58d2008 str r2, [sp, #8]
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
300160b0: e28d3018 add r3, sp, #24
300160b4: e5843078 str r3, [r4, #120] ; 0x78
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
300160b8: e5993000 ldr r3, [r9]
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
300160bc: e594103c ldr r1, [r4, #60] ; 0x3c
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
300160c0: e1a02007 mov r2, r7
300160c4: e1a00006 mov r0, r6
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
300160c8: e584303c str r3, [r4, #60] ; 0x3c
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
300160cc: e0611003 rsb r1, r1, r3
300160d0: eb001159 bl 3001a63c <_Watchdog_Adjust_to_chain>
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
300160d4: e59b5000 ldr r5, [fp]
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
300160d8: e5942074 ldr r2, [r4, #116] ; 0x74
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
300160dc: e1550002 cmp r5, r2
300160e0: 8a000022 bhi 30016170 <_Timer_server_Body+0x124>
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
300160e4: 3a000018 bcc 3001614c <_Timer_server_Body+0x100>
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
300160e8: e5845074 str r5, [r4, #116] ; 0x74
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
300160ec: e5940078 ldr r0, [r4, #120] ; 0x78
300160f0: eb0002bf bl 30016bf4 <_Chain_Get>
if ( timer == NULL ) {
300160f4: e2501000 subs r1, r0, #0
300160f8: 0a00000b beq 3001612c <_Timer_server_Body+0xe0>
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
300160fc: e5913038 ldr r3, [r1, #56] ; 0x38
30016100: e3530001 cmp r3, #1
30016104: 0a000015 beq 30016160 <_Timer_server_Body+0x114>
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
30016108: e3530003 cmp r3, #3
3001610c: 1afffff6 bne 300160ec <_Timer_server_Body+0xa0>
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
30016110: e2811010 add r1, r1, #16
30016114: e1a00008 mov r0, r8
30016118: eb001171 bl 3001a6e4 <_Watchdog_Insert>
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
3001611c: e5940078 ldr r0, [r4, #120] ; 0x78
30016120: eb0002b3 bl 30016bf4 <_Chain_Get>
if ( timer == NULL ) {
30016124: e2501000 subs r1, r0, #0
30016128: 1afffff3 bne 300160fc <_Timer_server_Body+0xb0>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
3001612c: e10f2000 mrs r2, CPSR
30016130: e3823080 orr r3, r2, #128 ; 0x80
30016134: e129f003 msr CPSR_fc, r3
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
30016138: e59d3018 ldr r3, [sp, #24]
3001613c: e15a0003 cmp sl, r3
30016140: 0a00000f beq 30016184 <_Timer_server_Body+0x138>
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
30016144: e129f002 msr CPSR_fc, r2 <== NOT EXECUTED
30016148: eaffffda b 300160b8 <_Timer_server_Body+0x6c> <== NOT EXECUTED
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
3001614c: e1a00008 mov r0, r8
30016150: e3a01001 mov r1, #1
30016154: e0652002 rsb r2, r5, r2
30016158: eb001108 bl 3001a580 <_Watchdog_Adjust>
3001615c: eaffffe1 b 300160e8 <_Timer_server_Body+0x9c>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
30016160: e1a00006 mov r0, r6
30016164: e2811010 add r1, r1, #16
30016168: eb00115d bl 3001a6e4 <_Watchdog_Insert>
3001616c: eaffffde b 300160ec <_Timer_server_Body+0xa0>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
30016170: e0621005 rsb r1, r2, r5
30016174: e1a00008 mov r0, r8
30016178: e1a02007 mov r2, r7
3001617c: eb00112e bl 3001a63c <_Watchdog_Adjust_to_chain>
30016180: eaffffd8 b 300160e8 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
30016184: e5841078 str r1, [r4, #120] ; 0x78
30016188: e129f002 msr CPSR_fc, r2
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
3001618c: e59d300c ldr r3, [sp, #12]
30016190: e59d2000 ldr r2, [sp]
30016194: e1520003 cmp r2, r3
30016198: 0a000015 beq 300161f4 <_Timer_server_Body+0x1a8>
3001619c: e1a05004 mov r5, r4
300161a0: e59d4000 ldr r4, [sp]
300161a4: ea000009 b 300161d0 <_Timer_server_Body+0x184>
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
300161a8: e5932000 ldr r2, [r3]
the_chain->first = new_first;
new_first->previous = _Chain_Head(the_chain);
300161ac: e5827004 str r7, [r2, #4]
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
300161b0: e58d200c str r2, [sp, #12]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
300161b4: e3a02000 mov r2, #0
300161b8: e5832008 str r2, [r3, #8]
300161bc: e129f001 msr CPSR_fc, r1
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
300161c0: e5930020 ldr r0, [r3, #32]
300161c4: e5931024 ldr r1, [r3, #36] ; 0x24
300161c8: e1a0e00f mov lr, pc
300161cc: e593f01c ldr pc, [r3, #28]
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
300161d0: e10f1000 mrs r1, CPSR
300161d4: e3813080 orr r3, r1, #128 ; 0x80
300161d8: e129f003 msr CPSR_fc, r3
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
300161dc: e59d300c ldr r3, [sp, #12]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
300161e0: e1540003 cmp r4, r3
300161e4: 1affffef bne 300161a8 <_Timer_server_Body+0x15c>
300161e8: e1a04005 mov r4, r5
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
300161ec: e129f001 msr CPSR_fc, r1
300161f0: eaffffae b 300160b0 <_Timer_server_Body+0x64>
300161f4: e59f2054 ldr r2, [pc, #84] ; 30016250 <_Timer_server_Body+0x204>
}
} else {
ts->active = false;
300161f8: e3a03000 mov r3, #0
300161fc: e5c4307c strb r3, [r4, #124] ; 0x7c
30016200: e5923000 ldr r3, [r2]
30016204: e2833001 add r3, r3, #1
30016208: e5823000 str r3, [r2]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
3001620c: e3a01008 mov r1, #8
30016210: e5940000 ldr r0, [r4]
30016214: eb000e80 bl 30019c1c <_Thread_Set_state>
_Timer_server_Reset_interval_system_watchdog( ts );
30016218: e1a00004 mov r0, r4
3001621c: ebffff5e bl 30015f9c <_Timer_server_Reset_interval_system_watchdog>
_Timer_server_Reset_tod_system_watchdog( ts );
30016220: e1a00004 mov r0, r4
30016224: ebffff72 bl 30015ff4 <_Timer_server_Reset_tod_system_watchdog>
_Thread_Enable_dispatch();
30016228: eb000bef bl 300191ec <_Thread_Enable_dispatch>
ts->active = true;
3001622c: e3a03001 mov r3, #1
30016230: e5c4307c strb r3, [r4, #124] ; 0x7c
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
30016234: e59d0004 ldr r0, [sp, #4]
30016238: eb001196 bl 3001a898 <_Watchdog_Remove>
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
3001623c: e59d0008 ldr r0, [sp, #8]
30016240: eb001194 bl 3001a898 <_Watchdog_Remove>
30016244: eaffff99 b 300160b0 <_Timer_server_Body+0x64>
3000a2b4 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
3000a2b4: e5902000 ldr r2, [r0]
3000a2b8: e5913000 ldr r3, [r1]
3000a2bc: e1520003 cmp r2, r3
return true;
3000a2c0: c3a00001 movgt r0, #1
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
3000a2c4: c12fff1e bxgt lr
return true;
if ( lhs->tv_sec < rhs->tv_sec )
3000a2c8: ba000005 blt 3000a2e4 <_Timespec_Greater_than+0x30>
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
3000a2cc: e5900004 ldr r0, [r0, #4]
3000a2d0: e5913004 ldr r3, [r1, #4]
3000a2d4: e1500003 cmp r0, r3
3000a2d8: d3a00000 movle r0, #0
3000a2dc: c3a00001 movgt r0, #1
3000a2e0: e12fff1e bx lr
{
if ( lhs->tv_sec > rhs->tv_sec )
return true;
if ( lhs->tv_sec < rhs->tv_sec )
return false;
3000a2e4: e3a00000 mov r0, #0 <== NOT EXECUTED
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
3000a2e8: e12fff1e bx lr <== NOT EXECUTED
30008658 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008658: e92d41f0 push {r4, r5, r6, r7, r8, lr}
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
3000865c: e59f5040 ldr r5, [pc, #64] ; 300086a4 <_User_extensions_Fatal+0x4c>
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008660: e1a08000 mov r8, r0
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
30008664: e5954008 ldr r4, [r5, #8]
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008668: e1a07002 mov r7, r2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
3000866c: e1540005 cmp r4, r5
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
30008670: e20160ff and r6, r1, #255 ; 0xff
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
30008674: 08bd81f0 popeq {r4, r5, r6, r7, r8, pc}
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
30008678: e5943030 ldr r3, [r4, #48] ; 0x30
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
3000867c: e1a00008 mov r0, r8
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
30008680: e3530000 cmp r3, #0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
30008684: e1a01006 mov r1, r6
30008688: e1a02007 mov r2, r7
3000868c: 11a0e00f movne lr, pc
30008690: 112fff13 bxne r3
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
30008694: e5944004 ldr r4, [r4, #4]
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
30008698: e1540005 cmp r4, r5
3000869c: 1afffff5 bne 30008678 <_User_extensions_Fatal+0x20>
300086a0: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED
300086a8 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
300086a8: e92d40f0 push {r4, r5, r6, r7, lr}
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
300086ac: e59f5050 ldr r5, [pc, #80] ; 30008704 <_User_extensions_Thread_create+0x5c>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
300086b0: e1a06000 mov r6, r0
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
300086b4: e4954004 ldr r4, [r5], #4
300086b8: e1540005 cmp r4, r5
300086bc: 0a00000e beq 300086fc <_User_extensions_Thread_create+0x54>
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
300086c0: e59f7040 ldr r7, [pc, #64] ; 30008708 <_User_extensions_Thread_create+0x60>
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
300086c4: e5943014 ldr r3, [r4, #20]
status = (*the_extension->Callouts.thread_create)(
300086c8: e1a01006 mov r1, r6
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
300086cc: e3530000 cmp r3, #0
300086d0: 0a000004 beq 300086e8 <_User_extensions_Thread_create+0x40>
status = (*the_extension->Callouts.thread_create)(
300086d4: e5970004 ldr r0, [r7, #4]
300086d8: e1a0e00f mov lr, pc
300086dc: e12fff13 bx r3
_Thread_Executing,
the_thread
);
if ( !status )
300086e0: e3500000 cmp r0, #0
300086e4: 08bd80f0 popeq {r4, r5, r6, r7, pc}
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
300086e8: e5944000 ldr r4, [r4]
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
300086ec: e1540005 cmp r4, r5
300086f0: 1afffff3 bne 300086c4 <_User_extensions_Thread_create+0x1c>
if ( !status )
return false;
}
}
return true;
300086f4: e3a00001 mov r0, #1
300086f8: e8bd80f0 pop {r4, r5, r6, r7, pc}
300086fc: e3a00001 mov r0, #1 <== NOT EXECUTED
}
30008700: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
3000a640 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
3000a640: e92d41f0 push {r4, r5, r6, r7, r8, lr}
3000a644: e1a04000 mov r4, r0
3000a648: e1a05002 mov r5, r2
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
3000a64c: e10f3000 mrs r3, CPSR
3000a650: e3832080 orr r2, r3, #128 ; 0x80
3000a654: e129f002 msr CPSR_fc, r2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
3000a658: e1a07000 mov r7, r0
3000a65c: e4972004 ldr r2, [r7], #4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
3000a660: e1520007 cmp r2, r7
3000a664: 0a000018 beq 3000a6cc <_Watchdog_Adjust+0x8c>
switch ( direction ) {
3000a668: e3510000 cmp r1, #0
3000a66c: 1a000018 bne 3000a6d4 <_Watchdog_Adjust+0x94>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
3000a670: e3550000 cmp r5, #0
3000a674: 0a000014 beq 3000a6cc <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
3000a678: e5926010 ldr r6, [r2, #16]
3000a67c: e1550006 cmp r5, r6
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
3000a680: 23a08001 movcs r8, #1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
3000a684: 2a000005 bcs 3000a6a0 <_Watchdog_Adjust+0x60>
3000a688: ea000018 b 3000a6f0 <_Watchdog_Adjust+0xb0> <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
3000a68c: e0555006 subs r5, r5, r6
3000a690: 0a00000d beq 3000a6cc <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
3000a694: e5926010 ldr r6, [r2, #16]
3000a698: e1560005 cmp r6, r5
3000a69c: 8a000013 bhi 3000a6f0 <_Watchdog_Adjust+0xb0>
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
3000a6a0: e5828010 str r8, [r2, #16]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
3000a6a4: e129f003 msr CPSR_fc, r3
_ISR_Enable( level );
_Watchdog_Tickle( header );
3000a6a8: e1a00004 mov r0, r4
3000a6ac: eb0000aa bl 3000a95c <_Watchdog_Tickle>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
3000a6b0: e10f3000 mrs r3, CPSR
3000a6b4: e3832080 orr r2, r3, #128 ; 0x80
3000a6b8: e129f002 msr CPSR_fc, r2
3000a6bc: e5941000 ldr r1, [r4]
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
3000a6c0: e1570001 cmp r7, r1
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First(
Chain_Control *header
)
{
return ( (Watchdog_Control *) header->first );
3000a6c4: e1a02001 mov r2, r1
3000a6c8: 1affffef bne 3000a68c <_Watchdog_Adjust+0x4c>
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
3000a6cc: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
3000a6d0: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
3000a6d4: e3510001 cmp r1, #1
3000a6d8: 1afffffb bne 3000a6cc <_Watchdog_Adjust+0x8c>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
3000a6dc: e5921010 ldr r1, [r2, #16]
3000a6e0: e0815005 add r5, r1, r5
3000a6e4: e5825010 str r5, [r2, #16]
3000a6e8: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
3000a6ec: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
3000a6f0: e0655006 rsb r5, r5, r6
3000a6f4: e5825010 str r5, [r2, #16]
break;
3000a6f8: eafffff3 b 3000a6cc <_Watchdog_Adjust+0x8c>
300072cc <rtems_io_register_driver>:
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
300072cc: e59fc150 ldr ip, [pc, #336] ; 30007424 <rtems_io_register_driver+0x158>
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
300072d0: e59f3150 ldr r3, [pc, #336] ; 30007428 <rtems_io_register_driver+0x15c>
if ( rtems_interrupt_is_in_progress() )
300072d4: e59cc000 ldr ip, [ip]
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
300072d8: e92d4030 push {r4, r5, lr}
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
300072dc: e35c0000 cmp ip, #0
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
300072e0: e1a04000 mov r4, r0
rtems_device_major_number major_limit = _IO_Number_of_drivers;
300072e4: e5930000 ldr r0, [r3]
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
300072e8: 13a00012 movne r0, #18
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
300072ec: 18bd8030 popne {r4, r5, pc}
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
300072f0: e3520000 cmp r2, #0
300072f4: 0a00003f beq 300073f8 <rtems_io_register_driver+0x12c>
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
300072f8: e3510000 cmp r1, #0
if ( registered_major == NULL )
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
300072fc: e5820000 str r0, [r2]
if ( driver_table == NULL )
30007300: 0a00003c beq 300073f8 <rtems_io_register_driver+0x12c>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
30007304: e591c000 ldr ip, [r1]
30007308: e35c0000 cmp ip, #0
3000730c: 0a000036 beq 300073ec <rtems_io_register_driver+0x120>
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
30007310: e1500004 cmp r0, r4
30007314: 9a000027 bls 300073b8 <rtems_io_register_driver+0xec>
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
30007318: e59f010c ldr r0, [pc, #268] ; 3000742c <rtems_io_register_driver+0x160>
3000731c: e590c000 ldr ip, [r0]
30007320: e28cc001 add ip, ip, #1
30007324: e580c000 str ip, [r0]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
30007328: e3540000 cmp r4, #0
3000732c: 1a000023 bne 300073c0 <rtems_io_register_driver+0xf4>
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
30007330: e593c000 ldr ip, [r3]
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
30007334: e35c0000 cmp ip, #0
30007338: 0a000030 beq 30007400 <rtems_io_register_driver+0x134>
3000733c: e59fe0ec ldr lr, [pc, #236] ; 30007430 <rtems_io_register_driver+0x164>
30007340: e59e3000 ldr r3, [lr]
30007344: ea000003 b 30007358 <rtems_io_register_driver+0x8c>
30007348: e2844001 add r4, r4, #1
3000734c: e15c0004 cmp ip, r4
30007350: e2833018 add r3, r3, #24
30007354: 9a000005 bls 30007370 <rtems_io_register_driver+0xa4>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
30007358: e5930000 ldr r0, [r3]
3000735c: e3500000 cmp r0, #0
30007360: 1afffff8 bne 30007348 <rtems_io_register_driver+0x7c>
30007364: e5930004 ldr r0, [r3, #4]
30007368: e3500000 cmp r0, #0
3000736c: 1afffff5 bne 30007348 <rtems_io_register_driver+0x7c>
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
30007370: e15c0004 cmp ip, r4
30007374: 1084c084 addne ip, r4, r4, lsl #1
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
30007378: e5824000 str r4, [r2]
if ( m != n )
3000737c: 11a0c18c lslne ip, ip, #3
30007380: 0a00001f beq 30007404 <rtems_io_register_driver+0x138>
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
30007384: e59e5000 ldr r5, [lr]
30007388: e1a0e001 mov lr, r1
3000738c: e085c00c add ip, r5, ip
30007390: e8be000f ldm lr!, {r0, r1, r2, r3}
30007394: e8ac000f stmia ip!, {r0, r1, r2, r3}
30007398: e89e0003 ldm lr, {r0, r1}
3000739c: e88c0003 stm ip, {r0, r1}
_Thread_Enable_dispatch();
300073a0: eb0006a7 bl 30008e44 <_Thread_Enable_dispatch>
return rtems_io_initialize( major, 0, NULL );
300073a4: e3a01000 mov r1, #0
300073a8: e1a00004 mov r0, r4
300073ac: e1a02001 mov r2, r1
}
300073b0: e8bd4030 pop {r4, r5, lr}
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
300073b4: ea001ee0 b 3000ef3c <rtems_io_initialize>
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
return RTEMS_INVALID_NUMBER;
300073b8: e3a0000a mov r0, #10
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
300073bc: e8bd8030 pop {r4, r5, pc}
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
300073c0: e59fe068 ldr lr, [pc, #104] ; 30007430 <rtems_io_register_driver+0x164>
300073c4: e0840084 add r0, r4, r4, lsl #1
300073c8: e59e3000 ldr r3, [lr]
300073cc: e1a0c180 lsl ip, r0, #3
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
300073d0: e7930180 ldr r0, [r3, r0, lsl #3]
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
300073d4: e083300c add r3, r3, ip
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
300073d8: e3500000 cmp r0, #0
300073dc: 0a00000b beq 30007410 <rtems_io_register_driver+0x144>
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
300073e0: eb000697 bl 30008e44 <_Thread_Enable_dispatch>
return RTEMS_RESOURCE_IN_USE;
300073e4: e3a0000c mov r0, #12
300073e8: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
300073ec: e591c004 ldr ip, [r1, #4]
300073f0: e35c0000 cmp ip, #0
300073f4: 1affffc5 bne 30007310 <rtems_io_register_driver+0x44>
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
300073f8: e3a00009 mov r0, #9
300073fc: e8bd8030 pop {r4, r5, pc}
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
30007400: e5824000 str r4, [r2] <== NOT EXECUTED
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
30007404: eb00068e bl 30008e44 <_Thread_Enable_dispatch>
*major = m;
if ( m != n )
return RTEMS_SUCCESSFUL;
return RTEMS_TOO_MANY;
30007408: e3a00005 mov r0, #5
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
return sc;
3000740c: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
30007410: e5933004 ldr r3, [r3, #4]
30007414: e3530000 cmp r3, #0
30007418: 1afffff0 bne 300073e0 <rtems_io_register_driver+0x114>
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
3000741c: e5824000 str r4, [r2]
30007420: eaffffd7 b 30007384 <rtems_io_register_driver+0xb8>
30008448 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
30008448: e92d41f0 push {r4, r5, r6, r7, r8, lr}
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
3000844c: e2506000 subs r6, r0, #0
30008450: 08bd81f0 popeq {r4, r5, r6, r7, r8, pc}
30008454: e59f7054 ldr r7, [pc, #84] ; 300084b0 <rtems_iterate_over_all_threads+0x68>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
30008458: e287800c add r8, r7, #12
#if defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
3000845c: e5b73004 ldr r3, [r7, #4]!
30008460: e5935004 ldr r5, [r3, #4]
if ( !information )
30008464: e3550000 cmp r5, #0
30008468: 0a00000d beq 300084a4 <rtems_iterate_over_all_threads+0x5c>
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
3000846c: e1d521b0 ldrh r2, [r5, #16]
30008470: e3520000 cmp r2, #0
30008474: 0a00000a beq 300084a4 <rtems_iterate_over_all_threads+0x5c>
30008478: e3a04001 mov r4, #1
the_thread = (Thread_Control *)information->local_table[ i ];
3000847c: e595301c ldr r3, [r5, #28]
30008480: e7930104 ldr r0, [r3, r4, lsl #2]
if ( !the_thread )
30008484: e3500000 cmp r0, #0
30008488: 0a000002 beq 30008498 <rtems_iterate_over_all_threads+0x50>
continue;
(*routine)(the_thread);
3000848c: e1a0e00f mov lr, pc
30008490: e12fff16 bx r6
30008494: e1d521b0 ldrh r2, [r5, #16]
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
30008498: e2844001 add r4, r4, #1
3000849c: e1520004 cmp r2, r4
300084a0: 2afffff5 bcs 3000847c <rtems_iterate_over_all_threads+0x34>
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
300084a4: e1570008 cmp r7, r8
300084a8: 1affffeb bne 3000845c <rtems_iterate_over_all_threads+0x14>
300084ac: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED
3000c62c <rtems_rate_monotonic_get_status>:
rtems_status_code rtems_rate_monotonic_get_status(
rtems_id id,
rtems_rate_monotonic_period_status *status
)
{
3000c62c: e92d4010 push {r4, lr}
Objects_Locations location;
Rate_monotonic_Period_time_t since_last_period;
Rate_monotonic_Control *the_period;
bool valid_status;
if ( !status )
3000c630: e2514000 subs r4, r1, #0
rtems_status_code rtems_rate_monotonic_get_status(
rtems_id id,
rtems_rate_monotonic_period_status *status
)
{
3000c634: e24dd014 sub sp, sp, #20
3000c638: e1a01000 mov r1, r0
Rate_monotonic_Period_time_t since_last_period;
Rate_monotonic_Control *the_period;
bool valid_status;
if ( !status )
return RTEMS_INVALID_ADDRESS;
3000c63c: 03a00009 moveq r0, #9
Objects_Locations location;
Rate_monotonic_Period_time_t since_last_period;
Rate_monotonic_Control *the_period;
bool valid_status;
if ( !status )
3000c640: 0a000013 beq 3000c694 <rtems_rate_monotonic_get_status+0x68>
3000c644: e28d2010 add r2, sp, #16
3000c648: e59f008c ldr r0, [pc, #140] ; 3000c6dc <rtems_rate_monotonic_get_status+0xb0>
3000c64c: ebfff113 bl 30008aa0 <_Objects_Get>
return RTEMS_INVALID_ADDRESS;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
3000c650: e59d2010 ldr r2, [sp, #16]
3000c654: e1a03000 mov r3, r0
3000c658: e3520000 cmp r2, #0
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
3000c65c: 13a00004 movne r0, #4
if ( !status )
return RTEMS_INVALID_ADDRESS;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
3000c660: 1a00000b bne 3000c694 <rtems_rate_monotonic_get_status+0x68>
case OBJECTS_LOCAL:
status->owner = the_period->owner->Object.id;
3000c664: e5932040 ldr r2, [r3, #64] ; 0x40
status->state = the_period->state;
3000c668: e5933038 ldr r3, [r3, #56] ; 0x38
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
status->owner = the_period->owner->Object.id;
3000c66c: e5922008 ldr r2, [r2, #8]
status->state = the_period->state;
/*
* If the period is inactive, there is no information.
*/
if ( status->state == RATE_MONOTONIC_INACTIVE ) {
3000c670: e3530000 cmp r3, #0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
status->owner = the_period->owner->Object.id;
3000c674: e884000c stm r4, {r2, r3}
status->state = the_period->state;
/*
* If the period is inactive, there is no information.
*/
if ( status->state == RATE_MONOTONIC_INACTIVE ) {
3000c678: 1a000007 bne 3000c69c <rtems_rate_monotonic_get_status+0x70>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timespec_Set_to_zero( &status->since_last_period );
3000c67c: e5843008 str r3, [r4, #8]
3000c680: e584300c str r3, [r4, #12]
_Timespec_Set_to_zero( &status->executed_since_last_period );
3000c684: e5843010 str r3, [r4, #16]
3000c688: e5843014 str r3, [r4, #20]
status->since_last_period = since_last_period;
status->executed_since_last_period = executed;
#endif
}
_Thread_Enable_dispatch();
3000c68c: ebfff348 bl 300093b4 <_Thread_Enable_dispatch>
return RTEMS_SUCCESSFUL;
3000c690: e3a00000 mov r0, #0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
3000c694: e28dd014 add sp, sp, #20
3000c698: e8bd8010 pop {r4, pc}
} else {
/*
* Grab the current status.
*/
valid_status =
3000c69c: e1a0100d mov r1, sp
3000c6a0: e28d2008 add r2, sp, #8
3000c6a4: ebffe7b7 bl 30006588 <_Rate_monotonic_Get_status>
_Rate_monotonic_Get_status(
the_period, &since_last_period, &executed
);
if (!valid_status) {
3000c6a8: e3500000 cmp r0, #0
3000c6ac: 0a000007 beq 3000c6d0 <rtems_rate_monotonic_get_status+0xa4>
_Thread_Enable_dispatch();
return RTEMS_NOT_DEFINED;
}
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_To_timespec(
3000c6b0: e89d000c ldm sp, {r2, r3}
3000c6b4: e5842008 str r2, [r4, #8]
3000c6b8: e584300c str r3, [r4, #12]
&since_last_period, &status->since_last_period
);
_Timestamp_To_timespec(
3000c6bc: e28d3008 add r3, sp, #8
3000c6c0: e893000c ldm r3, {r2, r3}
3000c6c4: e5842010 str r2, [r4, #16]
3000c6c8: e5843014 str r3, [r4, #20]
3000c6cc: eaffffee b 3000c68c <rtems_rate_monotonic_get_status+0x60>
valid_status =
_Rate_monotonic_Get_status(
the_period, &since_last_period, &executed
);
if (!valid_status) {
_Thread_Enable_dispatch();
3000c6d0: ebfff337 bl 300093b4 <_Thread_Enable_dispatch> <== NOT EXECUTED
return RTEMS_NOT_DEFINED;
3000c6d4: e3a0000b mov r0, #11 <== NOT EXECUTED
3000c6d8: eaffffed b 3000c694 <rtems_rate_monotonic_get_status+0x68> <== NOT EXECUTED
3000c6f8 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
3000c6f8: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
3000c6fc: e2525000 subs r5, r2, #0
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
3000c700: e1a04000 mov r4, r0
3000c704: e1a06001 mov r6, r1
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
3000c708: 03a00009 moveq r0, #9
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
3000c70c: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
3000c710: e59f9148 ldr r9, [pc, #328] ; 3000c860 <rtems_task_mode+0x168>
3000c714: e5997004 ldr r7, [r9, #4]
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
3000c718: e5d7a074 ldrb sl, [r7, #116] ; 0x74
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
3000c71c: e5978100 ldr r8, [r7, #256] ; 0x100
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
3000c720: e597307c ldr r3, [r7, #124] ; 0x7c
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
3000c724: e35a0000 cmp sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
3000c728: e5d8b008 ldrb fp, [r8, #8]
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
3000c72c: 03a0ac01 moveq sl, #256 ; 0x100
3000c730: 13a0a000 movne sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
3000c734: e3530000 cmp r3, #0
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
3000c738: 138aac02 orrne sl, sl, #512 ; 0x200
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
3000c73c: e35b0000 cmp fp, #0
3000c740: 03a0bb01 moveq fp, #1024 ; 0x400
3000c744: 13a0b000 movne fp, #0
old_mode |= _ISR_Get_level();
3000c748: ebfff1f7 bl 30008f2c <_CPU_ISR_Get_level>
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
3000c74c: e18bb000 orr fp, fp, r0
old_mode |= _ISR_Get_level();
3000c750: e18ba00a orr sl, fp, sl
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
3000c754: e3160c01 tst r6, #256 ; 0x100
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
old_mode |= _ISR_Get_level();
*previous_mode_set = old_mode;
3000c758: e585a000 str sl, [r5]
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
3000c75c: 0a000003 beq 3000c770 <rtems_task_mode+0x78>
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
3000c760: e3140c01 tst r4, #256 ; 0x100
3000c764: 13a03000 movne r3, #0
3000c768: 03a03001 moveq r3, #1
3000c76c: e5c73074 strb r3, [r7, #116] ; 0x74
if ( mask & RTEMS_TIMESLICE_MASK ) {
3000c770: e3160c02 tst r6, #512 ; 0x200
3000c774: 1a000028 bne 3000c81c <rtems_task_mode+0x124>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
3000c778: e3160080 tst r6, #128 ; 0x80
3000c77c: 1a00002f bne 3000c840 <rtems_task_mode+0x148>
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
3000c780: e2166b01 ands r6, r6, #1024 ; 0x400
3000c784: 0a000012 beq 3000c7d4 <rtems_task_mode+0xdc>
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
3000c788: e3140b01 tst r4, #1024 ; 0x400
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
3000c78c: e5d82008 ldrb r2, [r8, #8]
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
3000c790: 13a03000 movne r3, #0
3000c794: 03a03001 moveq r3, #1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
3000c798: e1520003 cmp r2, r3
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
3000c79c: 03a06000 moveq r6, #0
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
3000c7a0: 0a00000b beq 3000c7d4 <rtems_task_mode+0xdc>
asr->is_enabled = is_asr_enabled;
3000c7a4: e5c83008 strb r3, [r8, #8]
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
3000c7a8: e10f3000 mrs r3, CPSR
3000c7ac: e3832080 orr r2, r3, #128 ; 0x80
3000c7b0: e129f002 msr CPSR_fc, r2
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
3000c7b4: e5981018 ldr r1, [r8, #24]
information->signals_pending = information->signals_posted;
3000c7b8: e5982014 ldr r2, [r8, #20]
information->signals_posted = _signals;
3000c7bc: e5881014 str r1, [r8, #20]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
3000c7c0: e5882018 str r2, [r8, #24]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
3000c7c4: e129f003 msr CPSR_fc, r3
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
3000c7c8: e5986014 ldr r6, [r8, #20]
3000c7cc: e3560000 cmp r6, #0
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
3000c7d0: 13a06001 movne r6, #1
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
3000c7d4: e59f3088 ldr r3, [pc, #136] ; 3000c864 <rtems_task_mode+0x16c>
3000c7d8: e5933000 ldr r3, [r3]
3000c7dc: e3530003 cmp r3, #3
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
3000c7e0: 13a00000 movne r0, #0
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
3000c7e4: 18bd8ff0 popne {r4, r5, r6, r7, r8, r9, sl, fp, pc}
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
3000c7e8: e3560000 cmp r6, #0
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
3000c7ec: e5993004 ldr r3, [r9, #4]
if ( are_signals_pending ||
3000c7f0: 1a000015 bne 3000c84c <rtems_task_mode+0x154>
3000c7f4: e59f2064 ldr r2, [pc, #100] ; 3000c860 <rtems_task_mode+0x168>
3000c7f8: e5922008 ldr r2, [r2, #8]
3000c7fc: e1530002 cmp r3, r2
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
3000c800: 01a00006 moveq r0, r6
3000c804: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
3000c808: e5d33074 ldrb r3, [r3, #116] ; 0x74
3000c80c: e3530000 cmp r3, #0
3000c810: 1a00000d bne 3000c84c <rtems_task_mode+0x154>
3000c814: e1a00006 mov r0, r6 <== NOT EXECUTED
}
3000c818: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
3000c81c: e2143c02 ands r3, r4, #512 ; 0x200
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
3000c820: 159f3040 ldrne r3, [pc, #64] ; 3000c868 <rtems_task_mode+0x170>
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
3000c824: 13a02001 movne r2, #1
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
3000c828: 15933000 ldrne r3, [r3]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
3000c82c: 1587207c strne r2, [r7, #124] ; 0x7c
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
3000c830: 15873078 strne r3, [r7, #120] ; 0x78
} else
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE;
3000c834: 0587307c streq r3, [r7, #124] ; 0x7c
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
3000c838: e3160080 tst r6, #128 ; 0x80
3000c83c: 0affffcf beq 3000c780 <rtems_task_mode+0x88>
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
3000c840: e2040080 and r0, r4, #128 ; 0x80
3000c844: ebfff1b3 bl 30008f18 <_CPU_ISR_Set_level>
3000c848: eaffffcc b 3000c780 <rtems_task_mode+0x88>
_Thread_Dispatch_necessary = true;
3000c84c: e3a03001 mov r3, #1
3000c850: e5c93010 strb r3, [r9, #16]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
3000c854: ebffeb7a bl 30007644 <_Thread_Dispatch>
}
return RTEMS_SUCCESSFUL;
3000c858: e3a00000 mov r0, #0
3000c85c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}