RTEMS 4.11Annotated Report
Fri Mar 18 21:26:22 2011
400107b8 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400107b8: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
400107bc: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
400107c0: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
400107c4: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400107c8: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
400107cc: 80 8e e0 03 btst 3, %i3
400107d0: 02 80 00 07 be 400107ec <_CORE_message_queue_Initialize+0x34>
400107d4: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
400107d8: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
400107dc: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
400107e0: 80 a4 80 1b cmp %l2, %i3
400107e4: 0a 80 00 22 bcs 4001086c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
400107e8: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
400107ec: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
400107f0: 92 10 00 1a mov %i2, %o1
400107f4: 90 10 00 11 mov %l1, %o0
400107f8: 40 00 3d ea call 4001ffa0 <.umul>
400107fc: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40010800: 80 a2 00 12 cmp %o0, %l2
40010804: 0a 80 00 1a bcs 4001086c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40010808: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
4001080c: 40 00 0b e1 call 40013790 <_Workspace_Allocate>
40010810: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
40010814: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
40010818: 80 a2 20 00 cmp %o0, 0
4001081c: 02 80 00 14 be 4001086c <_CORE_message_queue_Initialize+0xb4>
40010820: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
40010824: 90 04 20 60 add %l0, 0x60, %o0
40010828: 94 10 00 1a mov %i2, %o2
4001082c: 40 00 13 33 call 400154f8 <_Chain_Initialize>
40010830: 96 10 00 11 mov %l1, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40010834: 82 04 20 54 add %l0, 0x54, %g1
head->next = tail;
40010838: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
4001083c: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
40010840: c0 24 20 54 clr [ %l0 + 0x54 ]
tail->previous = head;
40010844: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40010848: c2 06 40 00 ld [ %i1 ], %g1
4001084c: 90 10 00 10 mov %l0, %o0
40010850: 82 18 60 01 xor %g1, 1, %g1
40010854: 80 a0 00 01 cmp %g0, %g1
40010858: 94 10 20 80 mov 0x80, %o2
4001085c: 92 60 3f ff subx %g0, -1, %o1
40010860: 96 10 20 06 mov 6, %o3
40010864: 40 00 09 57 call 40012dc0 <_Thread_queue_Initialize>
40010868: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
4001086c: 81 c7 e0 08 ret
40010870: 81 e8 00 00 restore
40010874 <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
40010874: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
40010878: 27 10 00 98 sethi %hi(0x40026000), %l3
4001087c: a6 14 e0 3c or %l3, 0x3c, %l3 ! 4002603c <_Per_CPU_Information>
40010880: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
40010884: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
40010888: 7f ff da c2 call 40007390 <sparc_disable_interrupts>
4001088c: c0 24 a0 34 clr [ %l2 + 0x34 ]
40010890: 82 10 00 08 mov %o0, %g1
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
40010894: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40010898: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
4001089c: 80 a4 40 02 cmp %l1, %g2
400108a0: 02 80 00 15 be 400108f4 <_CORE_message_queue_Seize+0x80>
400108a4: 86 06 20 50 add %i0, 0x50, %g3
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
400108a8: c4 04 40 00 ld [ %l1 ], %g2
head->next = new_first;
400108ac: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
400108b0: 80 a4 60 00 cmp %l1, 0
400108b4: 02 80 00 10 be 400108f4 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
400108b8: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
400108bc: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
400108c0: 82 00 7f ff add %g1, -1, %g1
400108c4: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
400108c8: 7f ff da b6 call 400073a0 <sparc_enable_interrupts>
400108cc: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
400108d0: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
400108d4: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
400108d8: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
400108dc: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
400108e0: 90 10 00 1a mov %i2, %o0
400108e4: 40 00 1d 41 call 40017de8 <memcpy>
400108e8: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
400108ec: 7f ff ff 83 call 400106f8 <_Chain_Append>
400108f0: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
400108f4: 80 8f 20 ff btst 0xff, %i4
400108f8: 32 80 00 08 bne,a 40010918 <_CORE_message_queue_Seize+0xa4>
400108fc: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
40010900: 7f ff da a8 call 400073a0 <sparc_enable_interrupts>
40010904: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
40010908: 82 10 20 04 mov 4, %g1
4001090c: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
40010910: 81 c7 e0 08 ret
40010914: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40010918: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
4001091c: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
40010920: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
40010924: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
40010928: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
4001092c: 90 10 00 01 mov %g1, %o0
40010930: 7f ff da 9c call 400073a0 <sparc_enable_interrupts>
40010934: 35 10 00 4b sethi %hi(0x40012c00), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
40010938: b2 10 00 1d mov %i5, %i1
4001093c: 40 00 08 77 call 40012b18 <_Thread_queue_Enqueue_with_handler>
40010940: 95 ee a2 a0 restore %i2, 0x2a0, %o2
40007628 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40007628: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
4000762c: 03 10 00 54 sethi %hi(0x40015000), %g1
40007630: c2 00 63 f0 ld [ %g1 + 0x3f0 ], %g1 ! 400153f0 <_Thread_Dispatch_disable_level>
40007634: 80 a0 60 00 cmp %g1, 0
40007638: 02 80 00 0d be 4000766c <_CORE_mutex_Seize+0x44>
4000763c: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40007640: 80 8e a0 ff btst 0xff, %i2
40007644: 02 80 00 0b be 40007670 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
40007648: 90 10 00 18 mov %i0, %o0
4000764c: 03 10 00 55 sethi %hi(0x40015400), %g1
40007650: c2 00 61 48 ld [ %g1 + 0x148 ], %g1 ! 40015548 <_System_state_Current>
40007654: 80 a0 60 01 cmp %g1, 1
40007658: 08 80 00 05 bleu 4000766c <_CORE_mutex_Seize+0x44>
4000765c: 90 10 20 00 clr %o0
40007660: 92 10 20 00 clr %o1
40007664: 40 00 01 da call 40007dcc <_Internal_error_Occurred>
40007668: 94 10 20 12 mov 0x12, %o2
4000766c: 90 10 00 18 mov %i0, %o0
40007670: 40 00 12 4f call 4000bfac <_CORE_mutex_Seize_interrupt_trylock>
40007674: 92 07 a0 54 add %fp, 0x54, %o1
40007678: 80 a2 20 00 cmp %o0, 0
4000767c: 02 80 00 0a be 400076a4 <_CORE_mutex_Seize+0x7c>
40007680: 80 8e a0 ff btst 0xff, %i2
40007684: 35 10 00 55 sethi %hi(0x40015400), %i2
40007688: 12 80 00 09 bne 400076ac <_CORE_mutex_Seize+0x84>
4000768c: b4 16 a2 1c or %i2, 0x21c, %i2 ! 4001561c <_Per_CPU_Information>
40007690: 7f ff e9 bd call 40001d84 <sparc_enable_interrupts>
40007694: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007698: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
4000769c: 84 10 20 01 mov 1, %g2
400076a0: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
400076a4: 81 c7 e0 08 ret
400076a8: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
400076ac: 82 10 20 01 mov 1, %g1
400076b0: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
400076b4: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
400076b8: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
400076bc: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
400076c0: 03 10 00 54 sethi %hi(0x40015000), %g1
400076c4: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 400153f0 <_Thread_Dispatch_disable_level>
400076c8: 84 00 a0 01 inc %g2
400076cc: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ]
400076d0: 7f ff e9 ad call 40001d84 <sparc_enable_interrupts>
400076d4: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
400076d8: 90 10 00 18 mov %i0, %o0
400076dc: 7f ff ff ba call 400075c4 <_CORE_mutex_Seize_interrupt_blocking>
400076e0: 92 10 00 1b mov %i3, %o1
400076e4: 81 c7 e0 08 ret
400076e8: 81 e8 00 00 restore
40007868 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40007868: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
4000786c: 90 10 00 18 mov %i0, %o0
40007870: 40 00 06 ec call 40009420 <_Thread_queue_Dequeue>
40007874: a0 10 00 18 mov %i0, %l0
40007878: 80 a2 20 00 cmp %o0, 0
4000787c: 12 80 00 0e bne 400078b4 <_CORE_semaphore_Surrender+0x4c>
40007880: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40007884: 7f ff e9 3c call 40001d74 <sparc_disable_interrupts>
40007888: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
4000788c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40007890: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40007894: 80 a0 40 02 cmp %g1, %g2
40007898: 1a 80 00 05 bcc 400078ac <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
4000789c: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
400078a0: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
400078a4: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
400078a8: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
400078ac: 7f ff e9 36 call 40001d84 <sparc_enable_interrupts>
400078b0: 01 00 00 00 nop
}
return status;
}
400078b4: 81 c7 e0 08 ret
400078b8: 81 e8 00 00 restore
40006624 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40006624: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40006628: e2 06 21 4c ld [ %i0 + 0x14c ], %l1
option_set = (rtems_option) the_thread->Wait.option;
4000662c: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
40006630: 7f ff ed d1 call 40001d74 <sparc_disable_interrupts>
40006634: a0 10 00 18 mov %i0, %l0
40006638: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
4000663c: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40006640: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40006644: 82 88 c0 02 andcc %g3, %g2, %g1
40006648: 12 80 00 03 bne 40006654 <_Event_Surrender+0x30>
4000664c: 09 10 00 55 sethi %hi(0x40015400), %g4
_ISR_Enable( level );
40006650: 30 80 00 42 b,a 40006758 <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40006654: 88 11 22 1c or %g4, 0x21c, %g4 ! 4001561c <_Per_CPU_Information>
40006658: da 01 20 08 ld [ %g4 + 8 ], %o5
4000665c: 80 a3 60 00 cmp %o5, 0
40006660: 22 80 00 1d be,a 400066d4 <_Event_Surrender+0xb0>
40006664: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
40006668: c8 01 20 0c ld [ %g4 + 0xc ], %g4
4000666c: 80 a4 00 04 cmp %l0, %g4
40006670: 32 80 00 19 bne,a 400066d4 <_Event_Surrender+0xb0>
40006674: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006678: 09 10 00 55 sethi %hi(0x40015400), %g4
4000667c: da 01 22 70 ld [ %g4 + 0x270 ], %o5 ! 40015670 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40006680: 80 a3 60 02 cmp %o5, 2
40006684: 02 80 00 07 be 400066a0 <_Event_Surrender+0x7c> <== NEVER TAKEN
40006688: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
4000668c: c8 01 22 70 ld [ %g4 + 0x270 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006690: 80 a1 20 01 cmp %g4, 1
40006694: 32 80 00 10 bne,a 400066d4 <_Event_Surrender+0xb0>
40006698: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
4000669c: 80 a0 40 03 cmp %g1, %g3
400066a0: 02 80 00 04 be 400066b0 <_Event_Surrender+0x8c>
400066a4: 80 8c a0 02 btst 2, %l2
400066a8: 02 80 00 0a be 400066d0 <_Event_Surrender+0xac> <== NEVER TAKEN
400066ac: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
400066b0: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
400066b4: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400066b8: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
400066bc: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400066c0: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
400066c4: 84 10 20 03 mov 3, %g2
400066c8: 03 10 00 55 sethi %hi(0x40015400), %g1
400066cc: c4 20 62 70 st %g2, [ %g1 + 0x270 ] ! 40015670 <_Event_Sync_state>
}
_ISR_Enable( level );
400066d0: 30 80 00 22 b,a 40006758 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
400066d4: 80 89 21 00 btst 0x100, %g4
400066d8: 02 80 00 20 be 40006758 <_Event_Surrender+0x134>
400066dc: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
400066e0: 02 80 00 04 be 400066f0 <_Event_Surrender+0xcc>
400066e4: 80 8c a0 02 btst 2, %l2
400066e8: 02 80 00 1c be 40006758 <_Event_Surrender+0x134> <== NEVER TAKEN
400066ec: 01 00 00 00 nop
400066f0: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
400066f4: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400066f8: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
400066fc: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006700: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
40006704: 7f ff ed a0 call 40001d84 <sparc_enable_interrupts>
40006708: 90 10 00 18 mov %i0, %o0
4000670c: 7f ff ed 9a call 40001d74 <sparc_disable_interrupts>
40006710: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40006714: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
40006718: 80 a0 60 02 cmp %g1, 2
4000671c: 02 80 00 06 be 40006734 <_Event_Surrender+0x110>
40006720: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40006724: 7f ff ed 98 call 40001d84 <sparc_enable_interrupts>
40006728: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
4000672c: 10 80 00 08 b 4000674c <_Event_Surrender+0x128>
40006730: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40006734: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40006738: 7f ff ed 93 call 40001d84 <sparc_enable_interrupts>
4000673c: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40006740: 40 00 0e 4e call 4000a078 <_Watchdog_Remove>
40006744: 90 04 20 48 add %l0, 0x48, %o0
40006748: 33 04 00 ff sethi %hi(0x1003fc00), %i1
4000674c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40006750: 40 00 09 ad call 40008e04 <_Thread_Clear_state>
40006754: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40006758: 7f ff ed 8b call 40001d84 <sparc_enable_interrupts>
4000675c: 81 e8 00 00 restore
40006764 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40006764: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40006768: 90 10 00 18 mov %i0, %o0
4000676c: 40 00 0a 78 call 4000914c <_Thread_Get>
40006770: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40006774: c2 07 bf fc ld [ %fp + -4 ], %g1
40006778: 80 a0 60 00 cmp %g1, 0
4000677c: 12 80 00 1c bne 400067ec <_Event_Timeout+0x88> <== NEVER TAKEN
40006780: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40006784: 7f ff ed 7c call 40001d74 <sparc_disable_interrupts>
40006788: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
4000678c: 03 10 00 55 sethi %hi(0x40015400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40006790: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 40015628 <_Per_CPU_Information+0xc>
40006794: 80 a4 00 01 cmp %l0, %g1
40006798: 12 80 00 09 bne 400067bc <_Event_Timeout+0x58>
4000679c: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
400067a0: 03 10 00 55 sethi %hi(0x40015400), %g1
400067a4: c4 00 62 70 ld [ %g1 + 0x270 ], %g2 ! 40015670 <_Event_Sync_state>
400067a8: 80 a0 a0 01 cmp %g2, 1
400067ac: 32 80 00 05 bne,a 400067c0 <_Event_Timeout+0x5c>
400067b0: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
400067b4: 84 10 20 02 mov 2, %g2
400067b8: c4 20 62 70 st %g2, [ %g1 + 0x270 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
400067bc: 82 10 20 06 mov 6, %g1
400067c0: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
400067c4: 7f ff ed 70 call 40001d84 <sparc_enable_interrupts>
400067c8: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400067cc: 90 10 00 10 mov %l0, %o0
400067d0: 13 04 00 ff sethi %hi(0x1003fc00), %o1
400067d4: 40 00 09 8c call 40008e04 <_Thread_Clear_state>
400067d8: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400067dc: 03 10 00 54 sethi %hi(0x40015000), %g1
400067e0: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 400153f0 <_Thread_Dispatch_disable_level>
400067e4: 84 00 bf ff add %g2, -1, %g2
400067e8: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ]
400067ec: 81 c7 e0 08 ret
400067f0: 81 e8 00 00 restore
4000c608 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c608: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000c60c: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c610: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c614: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000c618: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000c61c: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c620: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c624: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
4000c628: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c62c: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000c630: 80 a4 40 19 cmp %l1, %i1
4000c634: 0a 80 00 9f bcs 4000c8b0 <_Heap_Extend+0x2a8>
4000c638: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000c63c: 90 10 00 19 mov %i1, %o0
4000c640: 94 10 00 13 mov %l3, %o2
4000c644: 98 07 bf fc add %fp, -4, %o4
4000c648: 7f ff ed fd call 40007e3c <_Heap_Get_first_and_last_block>
4000c64c: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000c650: 80 8a 20 ff btst 0xff, %o0
4000c654: 02 80 00 97 be 4000c8b0 <_Heap_Extend+0x2a8>
4000c658: aa 10 00 12 mov %l2, %l5
4000c65c: ba 10 20 00 clr %i5
4000c660: b8 10 20 00 clr %i4
4000c664: b0 10 20 00 clr %i0
4000c668: ae 10 20 00 clr %l7
4000c66c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c670: 80 a0 40 11 cmp %g1, %l1
4000c674: 1a 80 00 05 bcc 4000c688 <_Heap_Extend+0x80>
4000c678: ec 05 40 00 ld [ %l5 ], %l6
4000c67c: 80 a6 40 16 cmp %i1, %l6
4000c680: 2a 80 00 8c bcs,a 4000c8b0 <_Heap_Extend+0x2a8>
4000c684: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000c688: 80 a4 40 01 cmp %l1, %g1
4000c68c: 02 80 00 06 be 4000c6a4 <_Heap_Extend+0x9c>
4000c690: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000c694: 2a 80 00 05 bcs,a 4000c6a8 <_Heap_Extend+0xa0>
4000c698: b8 10 00 15 mov %l5, %i4
4000c69c: 10 80 00 04 b 4000c6ac <_Heap_Extend+0xa4>
4000c6a0: 90 10 00 16 mov %l6, %o0
4000c6a4: ae 10 00 15 mov %l5, %l7
4000c6a8: 90 10 00 16 mov %l6, %o0
4000c6ac: 40 00 16 3a call 40011f94 <.urem>
4000c6b0: 92 10 00 13 mov %l3, %o1
4000c6b4: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c6b8: 80 a5 80 19 cmp %l6, %i1
4000c6bc: 12 80 00 05 bne 4000c6d0 <_Heap_Extend+0xc8>
4000c6c0: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
4000c6c4: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
4000c6c8: 10 80 00 04 b 4000c6d8 <_Heap_Extend+0xd0>
4000c6cc: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000c6d0: 2a 80 00 02 bcs,a 4000c6d8 <_Heap_Extend+0xd0>
4000c6d4: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c6d8: ea 02 20 04 ld [ %o0 + 4 ], %l5
4000c6dc: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c6e0: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c6e4: 80 a5 40 12 cmp %l5, %l2
4000c6e8: 12 bf ff e2 bne 4000c670 <_Heap_Extend+0x68>
4000c6ec: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
4000c6f0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000c6f4: 80 a6 40 01 cmp %i1, %g1
4000c6f8: 3a 80 00 04 bcc,a 4000c708 <_Heap_Extend+0x100>
4000c6fc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c700: 10 80 00 05 b 4000c714 <_Heap_Extend+0x10c>
4000c704: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
4000c708: 80 a0 40 11 cmp %g1, %l1
4000c70c: 2a 80 00 02 bcs,a 4000c714 <_Heap_Extend+0x10c>
4000c710: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c714: c4 07 bf fc ld [ %fp + -4 ], %g2
4000c718: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
4000c71c: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000c720: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c724: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000c728: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000c72c: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c730: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
4000c734: 80 a0 c0 02 cmp %g3, %g2
4000c738: 08 80 00 04 bleu 4000c748 <_Heap_Extend+0x140>
4000c73c: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
4000c740: 10 80 00 06 b 4000c758 <_Heap_Extend+0x150>
4000c744: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c748: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
4000c74c: 80 a0 80 01 cmp %g2, %g1
4000c750: 2a 80 00 02 bcs,a 4000c758 <_Heap_Extend+0x150>
4000c754: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c758: 80 a5 e0 00 cmp %l7, 0
4000c75c: 02 80 00 14 be 4000c7ac <_Heap_Extend+0x1a4>
4000c760: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000c764: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000c768: 92 10 00 12 mov %l2, %o1
4000c76c: 40 00 16 0a call 40011f94 <.urem>
4000c770: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c774: 80 a2 20 00 cmp %o0, 0
4000c778: 02 80 00 04 be 4000c788 <_Heap_Extend+0x180>
4000c77c: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
4000c780: b2 06 40 12 add %i1, %l2, %i1
4000c784: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000c788: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000c78c: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000c790: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c794: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000c798: 90 10 00 10 mov %l0, %o0
4000c79c: 7f ff ff 90 call 4000c5dc <_Heap_Free_block>
4000c7a0: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c7a4: 10 80 00 09 b 4000c7c8 <_Heap_Extend+0x1c0>
4000c7a8: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000c7ac: 80 a7 20 00 cmp %i4, 0
4000c7b0: 02 80 00 05 be 4000c7c4 <_Heap_Extend+0x1bc>
4000c7b4: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c7b8: b8 27 00 01 sub %i4, %g1, %i4
4000c7bc: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000c7c0: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c7c4: 80 a6 20 00 cmp %i0, 0
4000c7c8: 02 80 00 15 be 4000c81c <_Heap_Extend+0x214>
4000c7cc: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c7d0: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000c7d4: a2 24 40 18 sub %l1, %i0, %l1
4000c7d8: 40 00 15 ef call 40011f94 <.urem>
4000c7dc: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000c7e0: c4 06 20 04 ld [ %i0 + 4 ], %g2
4000c7e4: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c7e8: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
4000c7ec: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
4000c7f0: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c7f4: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c7f8: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000c7fc: 90 10 00 10 mov %l0, %o0
4000c800: 82 08 60 01 and %g1, 1, %g1
4000c804: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
4000c808: a2 14 40 01 or %l1, %g1, %l1
4000c80c: 7f ff ff 74 call 4000c5dc <_Heap_Free_block>
4000c810: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c814: 10 80 00 0f b 4000c850 <_Heap_Extend+0x248>
4000c818: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000c81c: 80 a7 60 00 cmp %i5, 0
4000c820: 02 80 00 0b be 4000c84c <_Heap_Extend+0x244>
4000c824: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c828: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
4000c82c: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000c830: 86 20 c0 1d sub %g3, %i5, %g3
4000c834: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000c838: 84 10 c0 02 or %g3, %g2, %g2
4000c83c: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c840: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c844: 84 10 a0 01 or %g2, 1, %g2
4000c848: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c84c: 80 a6 20 00 cmp %i0, 0
4000c850: 32 80 00 09 bne,a 4000c874 <_Heap_Extend+0x26c>
4000c854: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c858: 80 a5 e0 00 cmp %l7, 0
4000c85c: 32 80 00 06 bne,a 4000c874 <_Heap_Extend+0x26c>
4000c860: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c864: d2 07 bf fc ld [ %fp + -4 ], %o1
4000c868: 7f ff ff 5d call 4000c5dc <_Heap_Free_block>
4000c86c: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000c870: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c874: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c878: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c87c: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c880: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000c884: 84 10 c0 02 or %g3, %g2, %g2
4000c888: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c88c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
4000c890: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c894: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000c898: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
4000c89c: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000c8a0: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
4000c8a4: 02 80 00 03 be 4000c8b0 <_Heap_Extend+0x2a8> <== NEVER TAKEN
4000c8a8: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
4000c8ac: e8 26 c0 00 st %l4, [ %i3 ]
4000c8b0: 81 c7 e0 08 ret
4000c8b4: 81 e8 00 00 restore
4000c308 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000c308: 9d e3 bf a0 save %sp, -96, %sp
4000c30c: a0 10 00 18 mov %i0, %l0
4000c310: 90 10 00 19 mov %i1, %o0
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
4000c314: 80 a6 60 00 cmp %i1, 0
4000c318: 02 80 00 78 be 4000c4f8 <_Heap_Free+0x1f0>
4000c31c: b0 10 20 01 mov 1, %i0
4000c320: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
4000c324: 40 00 15 de call 40011a9c <.urem>
4000c328: a2 06 7f f8 add %i1, -8, %l1
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c32c: d8 04 20 20 ld [ %l0 + 0x20 ], %o4
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000c330: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c334: 80 a2 00 0c cmp %o0, %o4
4000c338: 0a 80 00 05 bcs 4000c34c <_Heap_Free+0x44>
4000c33c: 82 10 20 00 clr %g1
4000c340: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c344: 80 a0 40 08 cmp %g1, %o0
4000c348: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000c34c: 80 a0 60 00 cmp %g1, 0
4000c350: 02 80 00 6a be 4000c4f8 <_Heap_Free+0x1f0>
4000c354: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c358: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c35c: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c360: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c364: 80 a0 40 0c cmp %g1, %o4
4000c368: 0a 80 00 05 bcs 4000c37c <_Heap_Free+0x74> <== NEVER TAKEN
4000c36c: 86 10 20 00 clr %g3
4000c370: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000c374: 80 a0 c0 01 cmp %g3, %g1
4000c378: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000c37c: 80 a0 e0 00 cmp %g3, 0
4000c380: 02 80 00 5e be 4000c4f8 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000c384: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c388: c8 00 60 04 ld [ %g1 + 4 ], %g4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
4000c38c: 80 89 20 01 btst 1, %g4
4000c390: 02 80 00 5a be 4000c4f8 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000c394: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
4000c398: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c39c: 80 a0 40 09 cmp %g1, %o1
4000c3a0: 02 80 00 07 be 4000c3bc <_Heap_Free+0xb4>
4000c3a4: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c3a8: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c3ac: c6 00 e0 04 ld [ %g3 + 4 ], %g3
4000c3b0: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c3b4: 80 a0 00 03 cmp %g0, %g3
4000c3b8: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
4000c3bc: 80 8b 60 01 btst 1, %o5
4000c3c0: 12 80 00 26 bne 4000c458 <_Heap_Free+0x150>
4000c3c4: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
4000c3c8: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c3cc: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c3d0: 80 a0 c0 0c cmp %g3, %o4
4000c3d4: 0a 80 00 04 bcs 4000c3e4 <_Heap_Free+0xdc> <== NEVER TAKEN
4000c3d8: 94 10 20 00 clr %o2
4000c3dc: 80 a2 40 03 cmp %o1, %g3
4000c3e0: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000c3e4: 80 a2 a0 00 cmp %o2, 0
4000c3e8: 02 80 00 44 be 4000c4f8 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000c3ec: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c3f0: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c3f4: 80 8b 20 01 btst 1, %o4
4000c3f8: 02 80 00 40 be 4000c4f8 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000c3fc: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000c400: 22 80 00 0f be,a 4000c43c <_Heap_Free+0x134>
4000c404: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
4000c408: 88 00 80 04 add %g2, %g4, %g4
4000c40c: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
4000c410: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
4000c414: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000c418: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
4000c41c: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000c420: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000c424: 82 00 7f ff add %g1, -1, %g1
4000c428: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000c42c: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c430: 82 13 60 01 or %o5, 1, %g1
4000c434: 10 80 00 27 b 4000c4d0 <_Heap_Free+0x1c8>
4000c438: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c43c: 88 13 60 01 or %o5, 1, %g4
4000c440: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c444: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
4000c448: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c44c: 86 08 ff fe and %g3, -2, %g3
4000c450: 10 80 00 20 b 4000c4d0 <_Heap_Free+0x1c8>
4000c454: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000c458: 22 80 00 0d be,a 4000c48c <_Heap_Free+0x184>
4000c45c: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
4000c460: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
4000c464: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
4000c468: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000c46c: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
4000c470: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
4000c474: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
4000c478: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c47c: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000c480: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c484: 10 80 00 13 b 4000c4d0 <_Heap_Free+0x1c8>
4000c488: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000c48c: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000c490: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000c494: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c498: 86 10 a0 01 or %g2, 1, %g3
4000c49c: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c4a0: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
4000c4a4: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c4a8: 86 08 ff fe and %g3, -2, %g3
4000c4ac: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c4b0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c4b4: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c4b8: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000c4bc: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c4c0: 80 a0 c0 01 cmp %g3, %g1
4000c4c4: 1a 80 00 03 bcc 4000c4d0 <_Heap_Free+0x1c8>
4000c4c8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c4cc: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
4000c4d0: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
4000c4d4: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c4d8: 82 00 7f ff add %g1, -1, %g1
4000c4dc: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
4000c4e0: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
4000c4e4: 82 00 60 01 inc %g1
4000c4e8: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c4ec: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000c4f0: 84 00 40 02 add %g1, %g2, %g2
4000c4f4: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
4000c4f8: 81 c7 e0 08 ret
4000c4fc: 81 e8 00 00 restore
400136a4 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
400136a4: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400136a8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
400136ac: 7f ff f8 fc call 40011a9c <.urem>
400136b0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400136b4: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400136b8: a2 06 7f f8 add %i1, -8, %l1
400136bc: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
400136c0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400136c4: 80 a2 00 02 cmp %o0, %g2
400136c8: 0a 80 00 05 bcs 400136dc <_Heap_Size_of_alloc_area+0x38>
400136cc: 82 10 20 00 clr %g1
400136d0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
400136d4: 80 a0 40 08 cmp %g1, %o0
400136d8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
400136dc: 80 a0 60 00 cmp %g1, 0
400136e0: 02 80 00 15 be 40013734 <_Heap_Size_of_alloc_area+0x90>
400136e4: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400136e8: e2 02 20 04 ld [ %o0 + 4 ], %l1
400136ec: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400136f0: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400136f4: 80 a4 40 02 cmp %l1, %g2
400136f8: 0a 80 00 05 bcs 4001370c <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
400136fc: 82 10 20 00 clr %g1
40013700: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
40013704: 80 a0 40 11 cmp %g1, %l1
40013708: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
4001370c: 80 a0 60 00 cmp %g1, 0
40013710: 02 80 00 09 be 40013734 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
40013714: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40013718: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
4001371c: 80 88 60 01 btst 1, %g1
40013720: 02 80 00 05 be 40013734 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
40013724: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
40013728: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
4001372c: a2 04 60 04 add %l1, 4, %l1
40013730: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
40013734: 81 c7 e0 08 ret
40013738: 81 e8 00 00 restore
40008c84 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008c84: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008c88: 23 10 00 23 sethi %hi(0x40008c00), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008c8c: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40008c90: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
40008c94: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
40008c98: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
40008c9c: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008ca0: 80 8e a0 ff btst 0xff, %i2
40008ca4: 02 80 00 04 be 40008cb4 <_Heap_Walk+0x30>
40008ca8: a2 14 60 30 or %l1, 0x30, %l1
40008cac: 23 10 00 23 sethi %hi(0x40008c00), %l1
40008cb0: a2 14 60 38 or %l1, 0x38, %l1 ! 40008c38 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40008cb4: 03 10 00 5f sethi %hi(0x40017c00), %g1
40008cb8: c2 00 60 38 ld [ %g1 + 0x38 ], %g1 ! 40017c38 <_System_state_Current>
40008cbc: 80 a0 60 03 cmp %g1, 3
40008cc0: 12 80 01 2d bne 40009174 <_Heap_Walk+0x4f0>
40008cc4: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
40008cc8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40008ccc: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40008cd0: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008cd4: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008cd8: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
40008cdc: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
40008ce0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40008ce4: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
40008ce8: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
40008cec: 90 10 00 19 mov %i1, %o0
40008cf0: 92 10 20 00 clr %o1
40008cf4: 15 10 00 54 sethi %hi(0x40015000), %o2
40008cf8: 96 10 00 12 mov %l2, %o3
40008cfc: 94 12 a3 d8 or %o2, 0x3d8, %o2
40008d00: 9f c4 40 00 call %l1
40008d04: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40008d08: 80 a4 a0 00 cmp %l2, 0
40008d0c: 12 80 00 07 bne 40008d28 <_Heap_Walk+0xa4>
40008d10: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
40008d14: 15 10 00 55 sethi %hi(0x40015400), %o2
40008d18: 90 10 00 19 mov %i1, %o0
40008d1c: 92 10 20 01 mov 1, %o1
40008d20: 10 80 00 38 b 40008e00 <_Heap_Walk+0x17c>
40008d24: 94 12 a0 70 or %o2, 0x70, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40008d28: 22 80 00 08 be,a 40008d48 <_Heap_Walk+0xc4>
40008d2c: 90 10 00 14 mov %l4, %o0
(*printer)(
40008d30: 15 10 00 55 sethi %hi(0x40015400), %o2
40008d34: 90 10 00 19 mov %i1, %o0
40008d38: 92 10 20 01 mov 1, %o1
40008d3c: 94 12 a0 88 or %o2, 0x88, %o2
40008d40: 10 80 01 0b b 4000916c <_Heap_Walk+0x4e8>
40008d44: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008d48: 7f ff e3 6c call 40001af8 <.urem>
40008d4c: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40008d50: 80 a2 20 00 cmp %o0, 0
40008d54: 22 80 00 08 be,a 40008d74 <_Heap_Walk+0xf0>
40008d58: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
40008d5c: 15 10 00 55 sethi %hi(0x40015400), %o2
40008d60: 90 10 00 19 mov %i1, %o0
40008d64: 92 10 20 01 mov 1, %o1
40008d68: 94 12 a0 a8 or %o2, 0xa8, %o2
40008d6c: 10 80 01 00 b 4000916c <_Heap_Walk+0x4e8>
40008d70: 96 10 00 14 mov %l4, %o3
40008d74: 7f ff e3 61 call 40001af8 <.urem>
40008d78: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
40008d7c: 80 a2 20 00 cmp %o0, 0
40008d80: 22 80 00 08 be,a 40008da0 <_Heap_Walk+0x11c>
40008d84: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40008d88: 15 10 00 55 sethi %hi(0x40015400), %o2
40008d8c: 90 10 00 19 mov %i1, %o0
40008d90: 92 10 20 01 mov 1, %o1
40008d94: 94 12 a0 d0 or %o2, 0xd0, %o2
40008d98: 10 80 00 f5 b 4000916c <_Heap_Walk+0x4e8>
40008d9c: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40008da0: 80 88 60 01 btst 1, %g1
40008da4: 32 80 00 07 bne,a 40008dc0 <_Heap_Walk+0x13c>
40008da8: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
40008dac: 15 10 00 55 sethi %hi(0x40015400), %o2
40008db0: 90 10 00 19 mov %i1, %o0
40008db4: 92 10 20 01 mov 1, %o1
40008db8: 10 80 00 12 b 40008e00 <_Heap_Walk+0x17c>
40008dbc: 94 12 a1 08 or %o2, 0x108, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008dc0: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008dc4: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008dc8: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40008dcc: 80 88 60 01 btst 1, %g1
40008dd0: 12 80 00 07 bne 40008dec <_Heap_Walk+0x168>
40008dd4: 80 a5 80 13 cmp %l6, %l3
(*printer)(
40008dd8: 15 10 00 55 sethi %hi(0x40015400), %o2
40008ddc: 90 10 00 19 mov %i1, %o0
40008de0: 92 10 20 01 mov 1, %o1
40008de4: 10 80 00 07 b 40008e00 <_Heap_Walk+0x17c>
40008de8: 94 12 a1 38 or %o2, 0x138, %o2
);
return false;
}
if (
40008dec: 02 80 00 08 be 40008e0c <_Heap_Walk+0x188>
40008df0: 15 10 00 55 sethi %hi(0x40015400), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008df4: 90 10 00 19 mov %i1, %o0
40008df8: 92 10 20 01 mov 1, %o1
40008dfc: 94 12 a1 50 or %o2, 0x150, %o2
40008e00: 9f c4 40 00 call %l1
40008e04: b0 10 20 00 clr %i0
40008e08: 30 80 00 db b,a 40009174 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
40008e0c: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
40008e10: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
40008e14: ae 10 00 10 mov %l0, %l7
40008e18: 10 80 00 32 b 40008ee0 <_Heap_Walk+0x25c>
40008e1c: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008e20: 80 a0 80 1c cmp %g2, %i4
40008e24: 18 80 00 05 bgu 40008e38 <_Heap_Walk+0x1b4>
40008e28: 82 10 20 00 clr %g1
40008e2c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
40008e30: 80 a0 40 1c cmp %g1, %i4
40008e34: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
40008e38: 80 a0 60 00 cmp %g1, 0
40008e3c: 32 80 00 08 bne,a 40008e5c <_Heap_Walk+0x1d8>
40008e40: 90 07 20 08 add %i4, 8, %o0
(*printer)(
40008e44: 15 10 00 55 sethi %hi(0x40015400), %o2
40008e48: 96 10 00 1c mov %i4, %o3
40008e4c: 90 10 00 19 mov %i1, %o0
40008e50: 92 10 20 01 mov 1, %o1
40008e54: 10 80 00 c6 b 4000916c <_Heap_Walk+0x4e8>
40008e58: 94 12 a1 80 or %o2, 0x180, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008e5c: 7f ff e3 27 call 40001af8 <.urem>
40008e60: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
40008e64: 80 a2 20 00 cmp %o0, 0
40008e68: 22 80 00 08 be,a 40008e88 <_Heap_Walk+0x204>
40008e6c: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008e70: 15 10 00 55 sethi %hi(0x40015400), %o2
40008e74: 96 10 00 1c mov %i4, %o3
40008e78: 90 10 00 19 mov %i1, %o0
40008e7c: 92 10 20 01 mov 1, %o1
40008e80: 10 80 00 bb b 4000916c <_Heap_Walk+0x4e8>
40008e84: 94 12 a1 a0 or %o2, 0x1a0, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008e88: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40008e8c: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008e90: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40008e94: 80 88 60 01 btst 1, %g1
40008e98: 22 80 00 08 be,a 40008eb8 <_Heap_Walk+0x234>
40008e9c: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
40008ea0: 15 10 00 55 sethi %hi(0x40015400), %o2
40008ea4: 96 10 00 1c mov %i4, %o3
40008ea8: 90 10 00 19 mov %i1, %o0
40008eac: 92 10 20 01 mov 1, %o1
40008eb0: 10 80 00 af b 4000916c <_Heap_Walk+0x4e8>
40008eb4: 94 12 a1 d0 or %o2, 0x1d0, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
40008eb8: 80 a3 00 17 cmp %o4, %l7
40008ebc: 22 80 00 08 be,a 40008edc <_Heap_Walk+0x258>
40008ec0: ae 10 00 1c mov %i4, %l7
(*printer)(
40008ec4: 15 10 00 55 sethi %hi(0x40015400), %o2
40008ec8: 96 10 00 1c mov %i4, %o3
40008ecc: 90 10 00 19 mov %i1, %o0
40008ed0: 92 10 20 01 mov 1, %o1
40008ed4: 10 80 00 49 b 40008ff8 <_Heap_Walk+0x374>
40008ed8: 94 12 a1 f0 or %o2, 0x1f0, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
40008edc: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008ee0: 80 a7 00 10 cmp %i4, %l0
40008ee4: 32 bf ff cf bne,a 40008e20 <_Heap_Walk+0x19c>
40008ee8: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
40008eec: 35 10 00 55 sethi %hi(0x40015400), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008ef0: 31 10 00 55 sethi %hi(0x40015400), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40008ef4: b4 16 a3 b0 or %i2, 0x3b0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008ef8: b0 16 23 98 or %i0, 0x398, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008efc: 37 10 00 55 sethi %hi(0x40015400), %i3
block = next_block;
} while ( block != first_block );
return true;
}
40008f00: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008f04: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008f08: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008f0c: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008f10: 80 a0 c0 1d cmp %g3, %i5
40008f14: 18 80 00 05 bgu 40008f28 <_Heap_Walk+0x2a4> <== NEVER TAKEN
40008f18: 84 10 20 00 clr %g2
40008f1c: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
40008f20: 80 a0 80 1d cmp %g2, %i5
40008f24: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
40008f28: 80 a0 a0 00 cmp %g2, 0
40008f2c: 12 80 00 07 bne 40008f48 <_Heap_Walk+0x2c4>
40008f30: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
40008f34: 15 10 00 55 sethi %hi(0x40015400), %o2
40008f38: 90 10 00 19 mov %i1, %o0
40008f3c: 92 10 20 01 mov 1, %o1
40008f40: 10 80 00 2c b 40008ff0 <_Heap_Walk+0x36c>
40008f44: 94 12 a2 28 or %o2, 0x228, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40008f48: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008f4c: c2 27 bf fc st %g1, [ %fp + -4 ]
40008f50: b8 40 20 00 addx %g0, 0, %i4
40008f54: 90 10 00 17 mov %l7, %o0
40008f58: 7f ff e2 e8 call 40001af8 <.urem>
40008f5c: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008f60: 80 a2 20 00 cmp %o0, 0
40008f64: 02 80 00 0c be 40008f94 <_Heap_Walk+0x310>
40008f68: c2 07 bf fc ld [ %fp + -4 ], %g1
40008f6c: 80 8f 20 ff btst 0xff, %i4
40008f70: 02 80 00 0a be 40008f98 <_Heap_Walk+0x314>
40008f74: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
40008f78: 15 10 00 55 sethi %hi(0x40015400), %o2
40008f7c: 90 10 00 19 mov %i1, %o0
40008f80: 92 10 20 01 mov 1, %o1
40008f84: 94 12 a2 58 or %o2, 0x258, %o2
40008f88: 96 10 00 16 mov %l6, %o3
40008f8c: 10 80 00 1b b 40008ff8 <_Heap_Walk+0x374>
40008f90: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40008f94: 80 a5 c0 14 cmp %l7, %l4
40008f98: 1a 80 00 0d bcc 40008fcc <_Heap_Walk+0x348>
40008f9c: 80 a7 40 16 cmp %i5, %l6
40008fa0: 80 8f 20 ff btst 0xff, %i4
40008fa4: 02 80 00 0a be 40008fcc <_Heap_Walk+0x348> <== NEVER TAKEN
40008fa8: 80 a7 40 16 cmp %i5, %l6
(*printer)(
40008fac: 15 10 00 55 sethi %hi(0x40015400), %o2
40008fb0: 90 10 00 19 mov %i1, %o0
40008fb4: 92 10 20 01 mov 1, %o1
40008fb8: 94 12 a2 88 or %o2, 0x288, %o2
40008fbc: 96 10 00 16 mov %l6, %o3
40008fc0: 98 10 00 17 mov %l7, %o4
40008fc4: 10 80 00 3f b 400090c0 <_Heap_Walk+0x43c>
40008fc8: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40008fcc: 38 80 00 0e bgu,a 40009004 <_Heap_Walk+0x380>
40008fd0: b8 08 60 01 and %g1, 1, %i4
40008fd4: 80 8f 20 ff btst 0xff, %i4
40008fd8: 02 80 00 0b be 40009004 <_Heap_Walk+0x380>
40008fdc: b8 08 60 01 and %g1, 1, %i4
(*printer)(
40008fe0: 15 10 00 55 sethi %hi(0x40015400), %o2
40008fe4: 90 10 00 19 mov %i1, %o0
40008fe8: 92 10 20 01 mov 1, %o1
40008fec: 94 12 a2 b8 or %o2, 0x2b8, %o2
40008ff0: 96 10 00 16 mov %l6, %o3
40008ff4: 98 10 00 1d mov %i5, %o4
40008ff8: 9f c4 40 00 call %l1
40008ffc: b0 10 20 00 clr %i0
40009000: 30 80 00 5d b,a 40009174 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009004: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40009008: 80 88 60 01 btst 1, %g1
4000900c: 12 80 00 3f bne 40009108 <_Heap_Walk+0x484>
40009010: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
40009014: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009018: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000901c: 05 10 00 54 sethi %hi(0x40015000), %g2
block = next_block;
} while ( block != first_block );
return true;
}
40009020: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009024: 80 a3 40 01 cmp %o5, %g1
40009028: 02 80 00 07 be 40009044 <_Heap_Walk+0x3c0>
4000902c: 86 10 a3 98 or %g2, 0x398, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40009030: 80 a3 40 10 cmp %o5, %l0
40009034: 12 80 00 04 bne 40009044 <_Heap_Walk+0x3c0>
40009038: 86 16 e3 60 or %i3, 0x360, %g3
4000903c: 19 10 00 54 sethi %hi(0x40015000), %o4
40009040: 86 13 23 a8 or %o4, 0x3a8, %g3 ! 400153a8 <_Status_Object_name_errors_to_status+0x48>
block->next,
block->next == last_free_block ?
40009044: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009048: 19 10 00 54 sethi %hi(0x40015000), %o4
4000904c: 80 a0 80 04 cmp %g2, %g4
40009050: 02 80 00 07 be 4000906c <_Heap_Walk+0x3e8>
40009054: 82 13 23 b8 or %o4, 0x3b8, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40009058: 80 a0 80 10 cmp %g2, %l0
4000905c: 12 80 00 04 bne 4000906c <_Heap_Walk+0x3e8>
40009060: 82 16 e3 60 or %i3, 0x360, %g1
40009064: 09 10 00 54 sethi %hi(0x40015000), %g4
40009068: 82 11 23 c8 or %g4, 0x3c8, %g1 ! 400153c8 <_Status_Object_name_errors_to_status+0x68>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
4000906c: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40009070: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
40009074: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
40009078: 90 10 00 19 mov %i1, %o0
4000907c: 92 10 20 00 clr %o1
40009080: 15 10 00 55 sethi %hi(0x40015400), %o2
40009084: 96 10 00 16 mov %l6, %o3
40009088: 94 12 a2 f0 or %o2, 0x2f0, %o2
4000908c: 9f c4 40 00 call %l1
40009090: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40009094: da 07 40 00 ld [ %i5 ], %o5
40009098: 80 a5 c0 0d cmp %l7, %o5
4000909c: 02 80 00 0c be 400090cc <_Heap_Walk+0x448>
400090a0: 80 a7 20 00 cmp %i4, 0
(*printer)(
400090a4: 15 10 00 55 sethi %hi(0x40015400), %o2
400090a8: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
400090ac: 90 10 00 19 mov %i1, %o0
400090b0: 92 10 20 01 mov 1, %o1
400090b4: 94 12 a3 28 or %o2, 0x328, %o2
400090b8: 96 10 00 16 mov %l6, %o3
400090bc: 98 10 00 17 mov %l7, %o4
400090c0: 9f c4 40 00 call %l1
400090c4: b0 10 20 00 clr %i0
400090c8: 30 80 00 2b b,a 40009174 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
400090cc: 32 80 00 0a bne,a 400090f4 <_Heap_Walk+0x470>
400090d0: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
400090d4: 15 10 00 55 sethi %hi(0x40015400), %o2
400090d8: 90 10 00 19 mov %i1, %o0
400090dc: 92 10 20 01 mov 1, %o1
400090e0: 10 80 00 22 b 40009168 <_Heap_Walk+0x4e4>
400090e4: 94 12 a3 68 or %o2, 0x368, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
400090e8: 02 80 00 19 be 4000914c <_Heap_Walk+0x4c8>
400090ec: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
400090f0: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
400090f4: 80 a0 40 10 cmp %g1, %l0
400090f8: 12 bf ff fc bne 400090e8 <_Heap_Walk+0x464>
400090fc: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40009100: 10 80 00 17 b 4000915c <_Heap_Walk+0x4d8>
40009104: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
40009108: 22 80 00 0a be,a 40009130 <_Heap_Walk+0x4ac>
4000910c: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
40009110: 90 10 00 19 mov %i1, %o0
40009114: 92 10 20 00 clr %o1
40009118: 94 10 00 18 mov %i0, %o2
4000911c: 96 10 00 16 mov %l6, %o3
40009120: 9f c4 40 00 call %l1
40009124: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009128: 10 80 00 09 b 4000914c <_Heap_Walk+0x4c8>
4000912c: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009130: 90 10 00 19 mov %i1, %o0
40009134: 92 10 20 00 clr %o1
40009138: 94 10 00 1a mov %i2, %o2
4000913c: 96 10 00 16 mov %l6, %o3
40009140: 9f c4 40 00 call %l1
40009144: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009148: 80 a7 40 13 cmp %i5, %l3
4000914c: 12 bf ff 6d bne 40008f00 <_Heap_Walk+0x27c>
40009150: ac 10 00 1d mov %i5, %l6
return true;
}
40009154: 81 c7 e0 08 ret
40009158: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
4000915c: 90 10 00 19 mov %i1, %o0
40009160: 92 10 20 01 mov 1, %o1
40009164: 94 12 a3 d8 or %o2, 0x3d8, %o2
40009168: 96 10 00 16 mov %l6, %o3
4000916c: 9f c4 40 00 call %l1
40009170: b0 10 20 00 clr %i0
40009174: 81 c7 e0 08 ret
40009178: 81 e8 00 00 restore
40007dcc <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007dcc: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40007dd0: 05 10 00 55 sethi %hi(0x40015400), %g2
40007dd4: 82 10 a0 84 or %g2, 0x84, %g1 ! 40015484 <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007dd8: 90 10 00 18 mov %i0, %o0
40007ddc: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
40007de0: f0 20 a0 84 st %i0, [ %g2 + 0x84 ]
_Internal_errors_What_happened.is_internal = is_internal;
40007de4: f2 28 60 04 stb %i1, [ %g1 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
40007de8: f4 20 60 08 st %i2, [ %g1 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40007dec: 40 00 07 e9 call 40009d90 <_User_extensions_Fatal>
40007df0: 92 0e 60 ff and %i1, 0xff, %o1
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40007df4: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40007df8: 03 10 00 55 sethi %hi(0x40015400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40007dfc: 7f ff e7 de call 40001d74 <sparc_disable_interrupts> <== NOT EXECUTED
40007e00: c4 20 61 48 st %g2, [ %g1 + 0x148 ] ! 40015548 <_System_state_Current><== NOT EXECUTED
40007e04: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40007e08: 30 80 00 00 b,a 40007e08 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40007e7c <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007e7c: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007e80: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007e84: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007e88: 80 a0 60 00 cmp %g1, 0
40007e8c: 02 80 00 20 be 40007f0c <_Objects_Allocate+0x90> <== NEVER TAKEN
40007e90: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007e94: a2 04 20 20 add %l0, 0x20, %l1
40007e98: 7f ff fd 8b call 400074c4 <_Chain_Get>
40007e9c: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40007ea0: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
40007ea4: 80 a0 60 00 cmp %g1, 0
40007ea8: 02 80 00 19 be 40007f0c <_Objects_Allocate+0x90>
40007eac: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40007eb0: 80 a2 20 00 cmp %o0, 0
40007eb4: 32 80 00 0a bne,a 40007edc <_Objects_Allocate+0x60>
40007eb8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
40007ebc: 40 00 00 1e call 40007f34 <_Objects_Extend_information>
40007ec0: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007ec4: 7f ff fd 80 call 400074c4 <_Chain_Get>
40007ec8: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40007ecc: b0 92 20 00 orcc %o0, 0, %i0
40007ed0: 02 80 00 0f be 40007f0c <_Objects_Allocate+0x90>
40007ed4: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007ed8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40007edc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40007ee0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
40007ee4: 40 00 26 42 call 400117ec <.udiv>
40007ee8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007eec: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40007ef0: 91 2a 20 02 sll %o0, 2, %o0
40007ef4: c4 00 40 08 ld [ %g1 + %o0 ], %g2
40007ef8: 84 00 bf ff add %g2, -1, %g2
40007efc: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
40007f00: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
40007f04: 82 00 7f ff add %g1, -1, %g1
40007f08: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40007f0c: 81 c7 e0 08 ret
40007f10: 81 e8 00 00 restore
40008284 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40008284: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40008288: b3 2e 60 10 sll %i1, 0x10, %i1
4000828c: b3 36 60 10 srl %i1, 0x10, %i1
40008290: 80 a6 60 00 cmp %i1, 0
40008294: 02 80 00 17 be 400082f0 <_Objects_Get_information+0x6c>
40008298: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
4000829c: 40 00 10 99 call 4000c500 <_Objects_API_maximum_class>
400082a0: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
400082a4: 80 a2 20 00 cmp %o0, 0
400082a8: 02 80 00 12 be 400082f0 <_Objects_Get_information+0x6c>
400082ac: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
400082b0: 18 80 00 10 bgu 400082f0 <_Objects_Get_information+0x6c>
400082b4: 03 10 00 54 sethi %hi(0x40015000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
400082b8: b1 2e 20 02 sll %i0, 2, %i0
400082bc: 82 10 63 58 or %g1, 0x358, %g1
400082c0: c2 00 40 18 ld [ %g1 + %i0 ], %g1
400082c4: 80 a0 60 00 cmp %g1, 0
400082c8: 02 80 00 0a be 400082f0 <_Objects_Get_information+0x6c> <== NEVER TAKEN
400082cc: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
400082d0: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
400082d4: 80 a4 20 00 cmp %l0, 0
400082d8: 02 80 00 06 be 400082f0 <_Objects_Get_information+0x6c> <== NEVER TAKEN
400082dc: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
400082e0: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
400082e4: 80 a0 00 01 cmp %g0, %g1
400082e8: 82 60 20 00 subx %g0, 0, %g1
400082ec: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
400082f0: 81 c7 e0 08 ret
400082f4: 91 e8 00 10 restore %g0, %l0, %o0
40019bb4 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019bb4: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
40019bb8: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019bbc: 82 22 40 01 sub %o1, %g1, %g1
40019bc0: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
40019bc4: 80 a0 80 01 cmp %g2, %g1
40019bc8: 0a 80 00 09 bcs 40019bec <_Objects_Get_no_protection+0x38>
40019bcc: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
40019bd0: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
40019bd4: d0 00 80 01 ld [ %g2 + %g1 ], %o0
40019bd8: 80 a2 20 00 cmp %o0, 0
40019bdc: 02 80 00 05 be 40019bf0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40019be0: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40019be4: 81 c3 e0 08 retl
40019be8: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40019bec: 82 10 20 01 mov 1, %g1
return NULL;
40019bf0: 90 10 20 00 clr %o0
}
40019bf4: 81 c3 e0 08 retl
40019bf8: c2 22 80 00 st %g1, [ %o2 ]
40009b60 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
40009b60: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40009b64: 92 96 20 00 orcc %i0, 0, %o1
40009b68: 12 80 00 06 bne 40009b80 <_Objects_Id_to_name+0x20>
40009b6c: 83 32 60 18 srl %o1, 0x18, %g1
40009b70: 03 10 00 7c sethi %hi(0x4001f000), %g1
40009b74: c2 00 60 38 ld [ %g1 + 0x38 ], %g1 ! 4001f038 <_Per_CPU_Information+0xc>
40009b78: d2 00 60 08 ld [ %g1 + 8 ], %o1
40009b7c: 83 32 60 18 srl %o1, 0x18, %g1
40009b80: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40009b84: 84 00 7f ff add %g1, -1, %g2
40009b88: 80 a0 a0 02 cmp %g2, 2
40009b8c: 18 80 00 12 bgu 40009bd4 <_Objects_Id_to_name+0x74>
40009b90: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40009b94: 10 80 00 12 b 40009bdc <_Objects_Id_to_name+0x7c>
40009b98: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40009b9c: 85 28 a0 02 sll %g2, 2, %g2
40009ba0: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009ba4: 80 a2 20 00 cmp %o0, 0
40009ba8: 02 80 00 0b be 40009bd4 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
40009bac: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
40009bb0: 7f ff ff cf call 40009aec <_Objects_Get>
40009bb4: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40009bb8: 80 a2 20 00 cmp %o0, 0
40009bbc: 02 80 00 06 be 40009bd4 <_Objects_Id_to_name+0x74>
40009bc0: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40009bc4: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40009bc8: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40009bcc: 40 00 03 59 call 4000a930 <_Thread_Enable_dispatch>
40009bd0: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40009bd4: 81 c7 e0 08 ret
40009bd8: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40009bdc: 05 10 00 7b sethi %hi(0x4001ec00), %g2
40009be0: 84 10 a1 68 or %g2, 0x168, %g2 ! 4001ed68 <_Objects_Information_table>
40009be4: c2 00 80 01 ld [ %g2 + %g1 ], %g1
40009be8: 80 a0 60 00 cmp %g1, 0
40009bec: 12 bf ff ec bne 40009b9c <_Objects_Id_to_name+0x3c>
40009bf0: 85 32 60 1b srl %o1, 0x1b, %g2
40009bf4: 30 bf ff f8 b,a 40009bd4 <_Objects_Id_to_name+0x74>
4000bcdc <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000bcdc: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000bce0: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000bce4: 80 a4 20 00 cmp %l0, 0
4000bce8: 02 80 00 1d be 4000bd5c <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
4000bcec: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000bcf0: 7f ff d8 21 call 40001d74 <sparc_disable_interrupts>
4000bcf4: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000bcf8: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
4000bcfc: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000bd00: 7f ff d8 21 call 40001d84 <sparc_enable_interrupts>
4000bd04: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000bd08: 80 a4 e0 00 cmp %l3, 0
4000bd0c: 02 80 00 14 be 4000bd5c <_RTEMS_tasks_Post_switch_extension+0x80>
4000bd10: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
4000bd14: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bd18: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000bd1c: 82 00 60 01 inc %g1
4000bd20: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bd24: 94 10 00 11 mov %l1, %o2
4000bd28: 25 00 00 3f sethi %hi(0xfc00), %l2
4000bd2c: 40 00 07 39 call 4000da10 <rtems_task_mode>
4000bd30: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
4000bd34: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000bd38: 9f c0 40 00 call %g1
4000bd3c: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
4000bd40: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bd44: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000bd48: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bd4c: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000bd50: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bd54: 40 00 07 2f call 4000da10 <rtems_task_mode>
4000bd58: 94 10 00 11 mov %l1, %o2
4000bd5c: 81 c7 e0 08 ret
4000bd60: 81 e8 00 00 restore
400081d4 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
400081d4: 9d e3 bf 98 save %sp, -104, %sp
400081d8: 11 10 00 7c sethi %hi(0x4001f000), %o0
400081dc: 92 10 00 18 mov %i0, %o1
400081e0: 90 12 22 f4 or %o0, 0x2f4, %o0
400081e4: 40 00 07 c2 call 4000a0ec <_Objects_Get>
400081e8: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
400081ec: c2 07 bf fc ld [ %fp + -4 ], %g1
400081f0: 80 a0 60 00 cmp %g1, 0
400081f4: 12 80 00 24 bne 40008284 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
400081f8: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
400081fc: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40008200: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
40008204: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40008208: 80 88 80 01 btst %g2, %g1
4000820c: 22 80 00 0b be,a 40008238 <_Rate_monotonic_Timeout+0x64>
40008210: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40008214: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40008218: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000821c: 80 a0 80 01 cmp %g2, %g1
40008220: 32 80 00 06 bne,a 40008238 <_Rate_monotonic_Timeout+0x64>
40008224: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40008228: 13 04 00 ff sethi %hi(0x1003fc00), %o1
4000822c: 40 00 0a 56 call 4000ab84 <_Thread_Clear_state>
40008230: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40008234: 30 80 00 06 b,a 4000824c <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40008238: 80 a0 60 01 cmp %g1, 1
4000823c: 12 80 00 0d bne 40008270 <_Rate_monotonic_Timeout+0x9c>
40008240: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40008244: 82 10 20 03 mov 3, %g1
40008248: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
4000824c: 7f ff fe 66 call 40007be4 <_Rate_monotonic_Initiate_statistics>
40008250: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008254: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008258: 11 10 00 7d sethi %hi(0x4001f400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000825c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008260: 90 12 21 20 or %o0, 0x120, %o0
40008264: 40 00 0e ed call 4000be18 <_Watchdog_Insert>
40008268: 92 04 20 10 add %l0, 0x10, %o1
4000826c: 30 80 00 02 b,a 40008274 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40008270: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40008274: 03 10 00 7d sethi %hi(0x4001f400), %g1
40008278: c4 00 60 60 ld [ %g1 + 0x60 ], %g2 ! 4001f460 <_Thread_Dispatch_disable_level>
4000827c: 84 00 bf ff add %g2, -1, %g2
40008280: c4 20 60 60 st %g2, [ %g1 + 0x60 ]
40008284: 81 c7 e0 08 ret
40008288: 81 e8 00 00 restore
400086e4 <_Scheduler_priority_Block>:
#include <rtems/score/thread.h>
void _Scheduler_priority_Block(
Thread_Control *the_thread
)
{
400086e4: 9d e3 bf a0 save %sp, -96, %sp
)
{
Scheduler_priority_Per_thread *sched_info;
Chain_Control *ready;
sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info;
400086e8: c4 06 20 8c ld [ %i0 + 0x8c ], %g2
ready = sched_info->ready_chain;
400086ec: c2 00 80 00 ld [ %g2 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
400086f0: c8 00 40 00 ld [ %g1 ], %g4
400086f4: c6 00 60 08 ld [ %g1 + 8 ], %g3
400086f8: 80 a1 00 03 cmp %g4, %g3
400086fc: 32 80 00 16 bne,a 40008754 <_Scheduler_priority_Block+0x70>
40008700: c4 06 00 00 ld [ %i0 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40008704: 86 00 60 04 add %g1, 4, %g3
head->next = tail;
40008708: c6 20 40 00 st %g3, [ %g1 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
4000870c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
head->previous = NULL;
40008710: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
40008714: c2 20 60 08 st %g1, [ %g1 + 8 ]
40008718: c2 10 a0 0e lduh [ %g2 + 0xe ], %g1
4000871c: c8 10 c0 00 lduh [ %g3 ], %g4
40008720: 82 09 00 01 and %g4, %g1, %g1
40008724: c2 30 c0 00 sth %g1, [ %g3 ]
if ( *the_priority_map->minor == 0 )
40008728: 83 28 60 10 sll %g1, 0x10, %g1
4000872c: 80 a0 60 00 cmp %g1, 0
40008730: 32 80 00 0d bne,a 40008764 <_Scheduler_priority_Block+0x80>
40008734: 03 10 00 55 sethi %hi(0x40015400), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
40008738: 03 10 00 55 sethi %hi(0x40015400), %g1
4000873c: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2
40008740: c6 10 62 40 lduh [ %g1 + 0x240 ], %g3
40008744: 84 08 80 03 and %g2, %g3, %g2
40008748: c4 30 62 40 sth %g2, [ %g1 + 0x240 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
4000874c: 10 80 00 06 b 40008764 <_Scheduler_priority_Block+0x80>
40008750: 03 10 00 55 sethi %hi(0x40015400), %g1
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40008754: c2 06 20 04 ld [ %i0 + 4 ], %g1
next->previous = previous;
40008758: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000875c: c4 20 40 00 st %g2, [ %g1 ]
40008760: 03 10 00 55 sethi %hi(0x40015400), %g1
_Scheduler_priority_Ready_queue_extract( the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
40008764: c2 00 62 2c ld [ %g1 + 0x22c ], %g1 ! 4001562c <_Per_CPU_Information+0x10>
40008768: 80 a6 00 01 cmp %i0, %g1
4000876c: 32 80 00 33 bne,a 40008838 <_Scheduler_priority_Block+0x154>
40008770: 03 10 00 55 sethi %hi(0x40015400), %g1
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
(Chain_Control *) _Scheduler.information
40008774: 03 10 00 52 sethi %hi(0x40014800), %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40008778: c6 00 60 b0 ld [ %g1 + 0xb0 ], %g3 ! 400148b0 <_Scheduler>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000877c: 03 10 00 55 sethi %hi(0x40015400), %g1
40008780: c4 10 62 40 lduh [ %g1 + 0x240 ], %g2 ! 40015640 <_Priority_Major_bit_map>
40008784: 03 10 00 50 sethi %hi(0x40014000), %g1
40008788: 85 28 a0 10 sll %g2, 0x10, %g2
4000878c: 89 30 a0 10 srl %g2, 0x10, %g4
40008790: 80 a1 20 ff cmp %g4, 0xff
40008794: 18 80 00 05 bgu 400087a8 <_Scheduler_priority_Block+0xc4>
40008798: 82 10 60 40 or %g1, 0x40, %g1
4000879c: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
400087a0: 10 80 00 04 b 400087b0 <_Scheduler_priority_Block+0xcc>
400087a4: 84 00 a0 08 add %g2, 8, %g2
400087a8: 85 30 a0 18 srl %g2, 0x18, %g2
400087ac: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400087b0: 83 28 a0 10 sll %g2, 0x10, %g1
400087b4: 09 10 00 55 sethi %hi(0x40015400), %g4
400087b8: 83 30 60 0f srl %g1, 0xf, %g1
400087bc: 88 11 22 50 or %g4, 0x250, %g4
400087c0: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
400087c4: 03 10 00 50 sethi %hi(0x40014000), %g1
400087c8: 89 29 20 10 sll %g4, 0x10, %g4
400087cc: 9b 31 20 10 srl %g4, 0x10, %o5
400087d0: 80 a3 60 ff cmp %o5, 0xff
400087d4: 18 80 00 05 bgu 400087e8 <_Scheduler_priority_Block+0x104>
400087d8: 82 10 60 40 or %g1, 0x40, %g1
400087dc: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
400087e0: 10 80 00 04 b 400087f0 <_Scheduler_priority_Block+0x10c>
400087e4: 82 00 60 08 add %g1, 8, %g1
400087e8: 89 31 20 18 srl %g4, 0x18, %g4
400087ec: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
400087f0: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
400087f4: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
400087f8: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
400087fc: 85 30 a0 0c srl %g2, 0xc, %g2
40008800: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40008804: 89 28 a0 02 sll %g2, 2, %g4
40008808: 83 28 a0 04 sll %g2, 4, %g1
4000880c: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
}
40008810: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
40008814: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40008818: 86 01 20 04 add %g4, 4, %g3
4000881c: 80 a0 80 03 cmp %g2, %g3
40008820: 02 80 00 03 be 4000882c <_Scheduler_priority_Block+0x148> <== NEVER TAKEN
40008824: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
40008828: 82 10 00 02 mov %g2, %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000882c: 05 10 00 55 sethi %hi(0x40015400), %g2
40008830: c2 20 a2 2c st %g1, [ %g2 + 0x22c ] ! 4001562c <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40008834: 03 10 00 55 sethi %hi(0x40015400), %g1
40008838: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001561c <_Per_CPU_Information>
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
4000883c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40008840: 80 a6 00 02 cmp %i0, %g2
40008844: 12 80 00 03 bne 40008850 <_Scheduler_priority_Block+0x16c>
40008848: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000884c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40008850: 81 c7 e0 08 ret
40008854: 81 e8 00 00 restore
40008a08 <_Scheduler_priority_Schedule>:
#include <rtems/system.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulerpriority.h>
void _Scheduler_priority_Schedule(void)
{
40008a08: 9d e3 bf a0 save %sp, -96, %sp
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
(Chain_Control *) _Scheduler.information
40008a0c: 03 10 00 52 sethi %hi(0x40014800), %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40008a10: c6 00 60 b0 ld [ %g1 + 0xb0 ], %g3 ! 400148b0 <_Scheduler>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008a14: 03 10 00 55 sethi %hi(0x40015400), %g1
40008a18: c4 10 62 40 lduh [ %g1 + 0x240 ], %g2 ! 40015640 <_Priority_Major_bit_map>
40008a1c: 03 10 00 50 sethi %hi(0x40014000), %g1
40008a20: 85 28 a0 10 sll %g2, 0x10, %g2
40008a24: 89 30 a0 10 srl %g2, 0x10, %g4
40008a28: 80 a1 20 ff cmp %g4, 0xff
40008a2c: 18 80 00 05 bgu 40008a40 <_Scheduler_priority_Schedule+0x38>
40008a30: 82 10 60 40 or %g1, 0x40, %g1
40008a34: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
40008a38: 10 80 00 04 b 40008a48 <_Scheduler_priority_Schedule+0x40>
40008a3c: 84 00 a0 08 add %g2, 8, %g2
40008a40: 85 30 a0 18 srl %g2, 0x18, %g2
40008a44: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40008a48: 83 28 a0 10 sll %g2, 0x10, %g1
40008a4c: 09 10 00 55 sethi %hi(0x40015400), %g4
40008a50: 83 30 60 0f srl %g1, 0xf, %g1
40008a54: 88 11 22 50 or %g4, 0x250, %g4
40008a58: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
40008a5c: 03 10 00 50 sethi %hi(0x40014000), %g1
40008a60: 89 29 20 10 sll %g4, 0x10, %g4
40008a64: 9b 31 20 10 srl %g4, 0x10, %o5
40008a68: 80 a3 60 ff cmp %o5, 0xff
40008a6c: 18 80 00 05 bgu 40008a80 <_Scheduler_priority_Schedule+0x78>
40008a70: 82 10 60 40 or %g1, 0x40, %g1
40008a74: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
40008a78: 10 80 00 04 b 40008a88 <_Scheduler_priority_Schedule+0x80>
40008a7c: 82 00 60 08 add %g1, 8, %g1
40008a80: 89 31 20 18 srl %g4, 0x18, %g4
40008a84: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
40008a88: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40008a8c: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
40008a90: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40008a94: 85 30 a0 0c srl %g2, 0xc, %g2
40008a98: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40008a9c: 89 28 a0 02 sll %g2, 2, %g4
40008aa0: 83 28 a0 04 sll %g2, 4, %g1
40008aa4: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
}
40008aa8: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
40008aac: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40008ab0: 86 01 20 04 add %g4, 4, %g3
40008ab4: 80 a0 80 03 cmp %g2, %g3
40008ab8: 02 80 00 03 be 40008ac4 <_Scheduler_priority_Schedule+0xbc><== NEVER TAKEN
40008abc: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
40008ac0: 82 10 00 02 mov %g2, %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40008ac4: 05 10 00 55 sethi %hi(0x40015400), %g2
40008ac8: c2 20 a2 2c st %g1, [ %g2 + 0x22c ] ! 4001562c <_Per_CPU_Information+0x10>
40008acc: 81 c7 e0 08 ret
40008ad0: 81 e8 00 00 restore
40008bec <_Scheduler_priority_Yield>:
* ready chain
* select heir
*/
void _Scheduler_priority_Yield(void)
{
40008bec: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_priority_Per_thread *sched_info;
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
40008bf0: 25 10 00 55 sethi %hi(0x40015400), %l2
40008bf4: a4 14 a2 1c or %l2, 0x21c, %l2 ! 4001561c <_Per_CPU_Information>
40008bf8: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info;
ready = sched_info->ready_chain;
40008bfc: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
40008c00: 7f ff e4 5d call 40001d74 <sparc_disable_interrupts>
40008c04: e2 00 40 00 ld [ %g1 ], %l1
40008c08: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
40008c0c: c4 04 40 00 ld [ %l1 ], %g2
40008c10: c2 04 60 08 ld [ %l1 + 8 ], %g1
40008c14: 80 a0 80 01 cmp %g2, %g1
40008c18: 22 80 00 1a be,a 40008c80 <_Scheduler_priority_Yield+0x94>
40008c1c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
40008c20: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
40008c24: c2 04 20 04 ld [ %l0 + 4 ], %g1
next->previous = previous;
40008c28: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40008c2c: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40008c30: c2 04 60 08 ld [ %l1 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
40008c34: 84 04 60 04 add %l1, 4, %g2
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
40008c38: e0 24 60 08 st %l0, [ %l1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
40008c3c: c4 24 00 00 st %g2, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
40008c40: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40008c44: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
40008c48: 7f ff e4 4f call 40001d84 <sparc_enable_interrupts>
40008c4c: 01 00 00 00 nop
40008c50: 7f ff e4 49 call 40001d74 <sparc_disable_interrupts>
40008c54: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
40008c58: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40008c5c: 80 a4 00 01 cmp %l0, %g1
40008c60: 12 80 00 04 bne 40008c70 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
40008c64: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
40008c68: c2 04 40 00 ld [ %l1 ], %g1
40008c6c: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
40008c70: 03 10 00 55 sethi %hi(0x40015400), %g1
40008c74: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001561c <_Per_CPU_Information>
40008c78: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40008c7c: 30 80 00 05 b,a 40008c90 <_Scheduler_priority_Yield+0xa4>
}
else if ( !_Thread_Is_heir( executing ) )
40008c80: 80 a4 00 01 cmp %l0, %g1
40008c84: 02 80 00 03 be 40008c90 <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN
40008c88: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
40008c8c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40008c90: 7f ff e4 3d call 40001d84 <sparc_enable_interrupts>
40008c94: 81 e8 00 00 restore
40007c1c <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007c1c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007c20: 03 10 00 7c sethi %hi(0x4001f000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007c24: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007c28: d2 00 61 f4 ld [ %g1 + 0x1f4 ], %o1
if ((!the_tod) ||
40007c2c: 80 a4 20 00 cmp %l0, 0
40007c30: 02 80 00 2b be 40007cdc <_TOD_Validate+0xc0> <== NEVER TAKEN
40007c34: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40007c38: 11 00 03 d0 sethi %hi(0xf4000), %o0
40007c3c: 40 00 46 fc call 4001982c <.udiv>
40007c40: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40007c44: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40007c48: 80 a0 40 08 cmp %g1, %o0
40007c4c: 1a 80 00 24 bcc 40007cdc <_TOD_Validate+0xc0>
40007c50: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007c54: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40007c58: 80 a0 60 3b cmp %g1, 0x3b
40007c5c: 18 80 00 20 bgu 40007cdc <_TOD_Validate+0xc0>
40007c60: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40007c64: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40007c68: 80 a0 60 3b cmp %g1, 0x3b
40007c6c: 18 80 00 1c bgu 40007cdc <_TOD_Validate+0xc0>
40007c70: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40007c74: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007c78: 80 a0 60 17 cmp %g1, 0x17
40007c7c: 18 80 00 18 bgu 40007cdc <_TOD_Validate+0xc0>
40007c80: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
40007c84: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40007c88: 80 a0 60 00 cmp %g1, 0
40007c8c: 02 80 00 14 be 40007cdc <_TOD_Validate+0xc0> <== NEVER TAKEN
40007c90: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
40007c94: 18 80 00 12 bgu 40007cdc <_TOD_Validate+0xc0>
40007c98: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40007c9c: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
40007ca0: 80 a0 e7 c3 cmp %g3, 0x7c3
40007ca4: 08 80 00 0e bleu 40007cdc <_TOD_Validate+0xc0>
40007ca8: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40007cac: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40007cb0: 80 a0 a0 00 cmp %g2, 0
40007cb4: 02 80 00 0a be 40007cdc <_TOD_Validate+0xc0> <== NEVER TAKEN
40007cb8: 80 88 e0 03 btst 3, %g3
40007cbc: 07 10 00 77 sethi %hi(0x4001dc00), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
40007cc0: 12 80 00 03 bne 40007ccc <_TOD_Validate+0xb0>
40007cc4: 86 10 e2 c8 or %g3, 0x2c8, %g3 ! 4001dec8 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40007cc8: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40007ccc: 83 28 60 02 sll %g1, 2, %g1
40007cd0: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007cd4: 80 a0 40 02 cmp %g1, %g2
40007cd8: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40007cdc: 81 c7 e0 08 ret
40007ce0: 81 e8 00 00 restore
40008cf0 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40008cf0: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
40008cf4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40008cf8: 40 00 03 39 call 400099dc <_Thread_Set_transient>
40008cfc: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40008d00: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40008d04: 80 a0 40 19 cmp %g1, %i1
40008d08: 02 80 00 05 be 40008d1c <_Thread_Change_priority+0x2c>
40008d0c: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40008d10: 90 10 00 18 mov %i0, %o0
40008d14: 40 00 03 18 call 40009974 <_Thread_Set_priority>
40008d18: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40008d1c: 7f ff e4 16 call 40001d74 <sparc_disable_interrupts>
40008d20: 01 00 00 00 nop
40008d24: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40008d28: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
40008d2c: 80 a6 60 04 cmp %i1, 4
40008d30: 02 80 00 10 be 40008d70 <_Thread_Change_priority+0x80>
40008d34: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40008d38: 80 a4 60 00 cmp %l1, 0
40008d3c: 12 80 00 03 bne 40008d48 <_Thread_Change_priority+0x58> <== NEVER TAKEN
40008d40: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40008d44: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40008d48: 7f ff e4 0f call 40001d84 <sparc_enable_interrupts>
40008d4c: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40008d50: 03 00 00 ef sethi %hi(0x3bc00), %g1
40008d54: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40008d58: 80 8e 40 01 btst %i1, %g1
40008d5c: 02 80 00 28 be 40008dfc <_Thread_Change_priority+0x10c>
40008d60: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40008d64: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40008d68: 40 00 02 d6 call 400098c0 <_Thread_queue_Requeue>
40008d6c: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40008d70: 80 a4 60 00 cmp %l1, 0
40008d74: 12 80 00 0b bne 40008da0 <_Thread_Change_priority+0xb0> <== NEVER TAKEN
40008d78: 03 10 00 52 sethi %hi(0x40014800), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40008d7c: c0 24 20 10 clr [ %l0 + 0x10 ]
if ( prepend_it )
40008d80: 80 8e a0 ff btst 0xff, %i2
40008d84: 02 80 00 04 be 40008d94 <_Thread_Change_priority+0xa4>
40008d88: 82 10 60 b0 or %g1, 0xb0, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
40008d8c: 10 80 00 03 b 40008d98 <_Thread_Change_priority+0xa8>
40008d90: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
40008d94: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
40008d98: 9f c0 40 00 call %g1
40008d9c: 90 10 00 10 mov %l0, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
40008da0: 7f ff e3 f9 call 40001d84 <sparc_enable_interrupts>
40008da4: 90 10 00 18 mov %i0, %o0
40008da8: 7f ff e3 f3 call 40001d74 <sparc_disable_interrupts>
40008dac: 01 00 00 00 nop
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
40008db0: 03 10 00 52 sethi %hi(0x40014800), %g1
40008db4: c2 00 60 b8 ld [ %g1 + 0xb8 ], %g1 ! 400148b8 <_Scheduler+0x8>
40008db8: 9f c0 40 00 call %g1
40008dbc: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40008dc0: 03 10 00 55 sethi %hi(0x40015400), %g1
40008dc4: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001561c <_Per_CPU_Information>
40008dc8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
40008dcc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40008dd0: 80 a0 80 03 cmp %g2, %g3
40008dd4: 02 80 00 08 be 40008df4 <_Thread_Change_priority+0x104>
40008dd8: 01 00 00 00 nop
40008ddc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
40008de0: 80 a0 a0 00 cmp %g2, 0
40008de4: 02 80 00 04 be 40008df4 <_Thread_Change_priority+0x104>
40008de8: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40008dec: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
40008df0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40008df4: 7f ff e3 e4 call 40001d84 <sparc_enable_interrupts>
40008df8: 81 e8 00 00 restore
40008dfc: 81 c7 e0 08 ret
40008e00: 81 e8 00 00 restore
40008fc8 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008fc8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008fcc: 90 10 00 18 mov %i0, %o0
40008fd0: 40 00 00 5f call 4000914c <_Thread_Get>
40008fd4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008fd8: c2 07 bf fc ld [ %fp + -4 ], %g1
40008fdc: 80 a0 60 00 cmp %g1, 0
40008fe0: 12 80 00 08 bne 40009000 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008fe4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40008fe8: 7f ff ff 87 call 40008e04 <_Thread_Clear_state>
40008fec: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40008ff0: 03 10 00 54 sethi %hi(0x40015000), %g1
40008ff4: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 400153f0 <_Thread_Dispatch_disable_level>
40008ff8: 84 00 bf ff add %g2, -1, %g2
40008ffc: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ]
40009000: 81 c7 e0 08 ret
40009004: 81 e8 00 00 restore
40009008 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
40009008: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
4000900c: 2b 10 00 55 sethi %hi(0x40015400), %l5
40009010: 82 15 62 1c or %l5, 0x21c, %g1 ! 4001561c <_Per_CPU_Information>
_ISR_Disable( level );
40009014: 7f ff e3 58 call 40001d74 <sparc_disable_interrupts>
40009018: e2 00 60 0c ld [ %g1 + 0xc ], %l1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
4000901c: 25 10 00 55 sethi %hi(0x40015400), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40009020: 39 10 00 54 sethi %hi(0x40015000), %i4
40009024: ba 10 20 01 mov 1, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40009028: 2f 10 00 54 sethi %hi(0x40015000), %l7
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
4000902c: a8 07 bf f8 add %fp, -8, %l4
_Timestamp_Subtract(
40009030: a6 07 bf f0 add %fp, -16, %l3
40009034: a4 14 a0 9c or %l2, 0x9c, %l2
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40009038: 10 80 00 2b b 400090e4 <_Thread_Dispatch+0xdc>
4000903c: 2d 10 00 55 sethi %hi(0x40015400), %l6
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40009040: fa 27 23 f0 st %i5, [ %i4 + 0x3f0 ]
_Thread_Dispatch_necessary = false;
40009044: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40009048: 80 a4 00 11 cmp %l0, %l1
4000904c: 02 80 00 2b be 400090f8 <_Thread_Dispatch+0xf0>
40009050: e0 20 60 0c st %l0, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40009054: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
40009058: 80 a0 60 01 cmp %g1, 1
4000905c: 12 80 00 03 bne 40009068 <_Thread_Dispatch+0x60>
40009060: c2 05 e3 54 ld [ %l7 + 0x354 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40009064: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Enable( level );
40009068: 7f ff e3 47 call 40001d84 <sparc_enable_interrupts>
4000906c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40009070: 40 00 0c 17 call 4000c0cc <_TOD_Get_uptime>
40009074: 90 10 00 14 mov %l4, %o0
_Timestamp_Subtract(
40009078: 90 10 00 12 mov %l2, %o0
4000907c: 92 10 00 14 mov %l4, %o1
40009080: 40 00 02 e3 call 40009c0c <_Timespec_Subtract>
40009084: 94 10 00 13 mov %l3, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40009088: 90 04 60 84 add %l1, 0x84, %o0
4000908c: 40 00 02 c7 call 40009ba8 <_Timespec_Add_to>
40009090: 92 10 00 13 mov %l3, %o1
_Thread_Time_of_last_context_switch = uptime;
40009094: c2 07 bf f8 ld [ %fp + -8 ], %g1
40009098: c2 24 80 00 st %g1, [ %l2 ]
4000909c: c2 07 bf fc ld [ %fp + -4 ], %g1
400090a0: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
400090a4: c2 05 a0 74 ld [ %l6 + 0x74 ], %g1
400090a8: 80 a0 60 00 cmp %g1, 0
400090ac: 02 80 00 06 be 400090c4 <_Thread_Dispatch+0xbc> <== NEVER TAKEN
400090b0: 90 10 00 11 mov %l1, %o0
executing->libc_reent = *_Thread_libc_reent;
400090b4: c4 00 40 00 ld [ %g1 ], %g2
400090b8: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
400090bc: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
400090c0: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
400090c4: 40 00 03 82 call 40009ecc <_User_extensions_Thread_switch>
400090c8: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
400090cc: 90 04 60 c0 add %l1, 0xc0, %o0
400090d0: 40 00 04 73 call 4000a29c <_CPU_Context_switch>
400090d4: 92 04 20 c0 add %l0, 0xc0, %o1
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
400090d8: 82 15 62 1c or %l5, 0x21c, %g1
_ISR_Disable( level );
400090dc: 7f ff e3 26 call 40001d74 <sparc_disable_interrupts>
400090e0: e2 00 60 0c ld [ %g1 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
400090e4: 82 15 62 1c or %l5, 0x21c, %g1
400090e8: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
400090ec: 80 a0 a0 00 cmp %g2, 0
400090f0: 32 bf ff d4 bne,a 40009040 <_Thread_Dispatch+0x38>
400090f4: e0 00 60 10 ld [ %g1 + 0x10 ], %l0
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400090f8: 03 10 00 54 sethi %hi(0x40015000), %g1
400090fc: c0 20 63 f0 clr [ %g1 + 0x3f0 ] ! 400153f0 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
40009100: 7f ff e3 21 call 40001d84 <sparc_enable_interrupts>
40009104: 01 00 00 00 nop
_API_extensions_Run_postswitch();
40009108: 7f ff f8 8f call 40007344 <_API_extensions_Run_postswitch>
4000910c: 01 00 00 00 nop
}
40009110: 81 c7 e0 08 ret
40009114: 81 e8 00 00 restore
4000dd40 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000dd40: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000dd44: 03 10 00 55 sethi %hi(0x40015400), %g1
4000dd48: e0 00 62 28 ld [ %g1 + 0x228 ], %l0 ! 40015628 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000dd4c: 3f 10 00 37 sethi %hi(0x4000dc00), %i7
4000dd50: be 17 e1 40 or %i7, 0x140, %i7 ! 4000dd40 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000dd54: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000dd58: 7f ff d0 0b call 40001d84 <sparc_enable_interrupts>
4000dd5c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000dd60: 03 10 00 54 sethi %hi(0x40015000), %g1
doneConstructors = 1;
4000dd64: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000dd68: e2 08 60 7c ldub [ %g1 + 0x7c ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000dd6c: 90 10 00 10 mov %l0, %o0
4000dd70: 7f ff ef e7 call 40009d0c <_User_extensions_Thread_begin>
4000dd74: c4 28 60 7c stb %g2, [ %g1 + 0x7c ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000dd78: 7f ff ec e8 call 40009118 <_Thread_Enable_dispatch>
4000dd7c: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000dd80: 80 a4 60 00 cmp %l1, 0
4000dd84: 32 80 00 05 bne,a 4000dd98 <_Thread_Handler+0x58>
4000dd88: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
INIT_NAME ();
4000dd8c: 40 00 1a b3 call 40014858 <_init>
4000dd90: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000dd94: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000dd98: 80 a0 60 00 cmp %g1, 0
4000dd9c: 12 80 00 06 bne 4000ddb4 <_Thread_Handler+0x74> <== NEVER TAKEN
4000dda0: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000dda4: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000dda8: 9f c0 40 00 call %g1
4000ddac: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000ddb0: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000ddb4: 7f ff ef e7 call 40009d50 <_User_extensions_Thread_exitted>
4000ddb8: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000ddbc: 90 10 20 00 clr %o0
4000ddc0: 92 10 20 01 mov 1, %o1
4000ddc4: 7f ff e8 02 call 40007dcc <_Internal_error_Occurred>
4000ddc8: 94 10 20 05 mov 5, %o2
400091f8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
400091f8: 9d e3 bf a0 save %sp, -96, %sp
400091fc: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
40009200: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
40009204: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
40009208: c0 26 61 4c clr [ %i1 + 0x14c ]
4000920c: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
40009210: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40009214: 90 10 00 19 mov %i1, %o0
40009218: 40 00 02 01 call 40009a1c <_Thread_Stack_Allocate>
4000921c: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40009220: 80 a2 00 1b cmp %o0, %i3
40009224: 0a 80 00 57 bcs 40009380 <_Thread_Initialize+0x188>
40009228: 80 a2 20 00 cmp %o0, 0
4000922c: 02 80 00 55 be 40009380 <_Thread_Initialize+0x188> <== NEVER TAKEN
40009230: 01 00 00 00 nop
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40009234: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
40009238: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
4000923c: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
40009240: 03 10 00 55 sethi %hi(0x40015400), %g1
40009244: d0 00 60 80 ld [ %g1 + 0x80 ], %o0 ! 40015480 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40009248: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
4000924c: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40009250: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
40009254: c0 26 60 6c clr [ %i1 + 0x6c ]
40009258: 80 a2 20 00 cmp %o0, 0
4000925c: 02 80 00 08 be 4000927c <_Thread_Initialize+0x84>
40009260: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
40009264: 90 02 20 01 inc %o0
40009268: 40 00 03 ef call 4000a224 <_Workspace_Allocate>
4000926c: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40009270: b6 92 20 00 orcc %o0, 0, %i3
40009274: 22 80 00 34 be,a 40009344 <_Thread_Initialize+0x14c>
40009278: a0 10 20 00 clr %l0
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
4000927c: 80 a6 e0 00 cmp %i3, 0
40009280: 02 80 00 0b be 400092ac <_Thread_Initialize+0xb4>
40009284: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40009288: 03 10 00 55 sethi %hi(0x40015400), %g1
4000928c: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 40015480 <_Thread_Maximum_extensions>
40009290: 10 80 00 04 b 400092a0 <_Thread_Initialize+0xa8>
40009294: 82 10 20 00 clr %g1
40009298: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
4000929c: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
400092a0: 80 a0 40 02 cmp %g1, %g2
400092a4: 08 bf ff fd bleu 40009298 <_Thread_Initialize+0xa0>
400092a8: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
400092ac: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
400092b0: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
the_thread->Start.budget_algorithm = budget_algorithm;
400092b4: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
400092b8: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
400092bc: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
400092c0: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
400092c4: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
400092c8: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
400092cc: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
400092d0: 82 10 20 01 mov 1, %g1
400092d4: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
400092d8: 03 10 00 52 sethi %hi(0x40014800), %g1
400092dc: c2 00 60 c8 ld [ %g1 + 0xc8 ], %g1 ! 400148c8 <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
400092e0: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
400092e4: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
400092e8: 9f c0 40 00 call %g1
400092ec: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
400092f0: a0 92 20 00 orcc %o0, 0, %l0
400092f4: 22 80 00 15 be,a 40009348 <_Thread_Initialize+0x150>
400092f8: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
400092fc: 90 10 00 19 mov %i1, %o0
40009300: 40 00 01 9d call 40009974 <_Thread_Set_priority>
40009304: 92 10 00 1d mov %i5, %o1
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
40009308: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000930c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40009310: c0 26 60 84 clr [ %i1 + 0x84 ]
40009314: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40009318: 83 28 60 02 sll %g1, 2, %g1
4000931c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40009320: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
40009324: 90 10 00 19 mov %i1, %o0
40009328: 40 00 02 ac call 40009dd8 <_User_extensions_Thread_create>
4000932c: b0 10 20 01 mov 1, %i0
if ( extension_status )
40009330: 80 8a 20 ff btst 0xff, %o0
40009334: 22 80 00 05 be,a 40009348 <_Thread_Initialize+0x150>
40009338: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
4000933c: 81 c7 e0 08 ret
40009340: 81 e8 00 00 restore
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
40009344: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
40009348: 40 00 03 c0 call 4000a248 <_Workspace_Free>
4000934c: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
40009350: 40 00 03 be call 4000a248 <_Workspace_Free>
40009354: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
40009358: 40 00 03 bc call 4000a248 <_Workspace_Free>
4000935c: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( extensions_area );
40009360: 40 00 03 ba call 4000a248 <_Workspace_Free>
40009364: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
#endif
_Workspace_Free( sched );
40009368: 40 00 03 b8 call 4000a248 <_Workspace_Free>
4000936c: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40009370: 40 00 01 c2 call 40009a78 <_Thread_Stack_Free>
40009374: 90 10 00 19 mov %i1, %o0
return false;
40009378: 81 c7 e0 08 ret
4000937c: 81 e8 00 00 restore
}
40009380: 81 c7 e0 08 ret
40009384: 91 e8 20 00 restore %g0, 0, %o0
400098c0 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
400098c0: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
400098c4: 80 a6 20 00 cmp %i0, 0
400098c8: 02 80 00 19 be 4000992c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
400098cc: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
400098d0: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
400098d4: 80 a4 60 01 cmp %l1, 1
400098d8: 12 80 00 15 bne 4000992c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
400098dc: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
400098e0: 7f ff e1 25 call 40001d74 <sparc_disable_interrupts>
400098e4: 01 00 00 00 nop
400098e8: a0 10 00 08 mov %o0, %l0
400098ec: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
400098f0: 03 00 00 ef sethi %hi(0x3bc00), %g1
400098f4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
400098f8: 80 88 80 01 btst %g2, %g1
400098fc: 02 80 00 0a be 40009924 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
40009900: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
40009904: 92 10 00 19 mov %i1, %o1
40009908: 94 10 20 01 mov 1, %o2
4000990c: 40 00 0b 5d call 4000c680 <_Thread_queue_Extract_priority_helper>
40009910: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40009914: 90 10 00 18 mov %i0, %o0
40009918: 92 10 00 19 mov %i1, %o1
4000991c: 7f ff ff 49 call 40009640 <_Thread_queue_Enqueue_priority>
40009920: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
40009924: 7f ff e1 18 call 40001d84 <sparc_enable_interrupts>
40009928: 90 10 00 10 mov %l0, %o0
4000992c: 81 c7 e0 08 ret
40009930: 81 e8 00 00 restore
40009934 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40009934: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40009938: 90 10 00 18 mov %i0, %o0
4000993c: 7f ff fe 04 call 4000914c <_Thread_Get>
40009940: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40009944: c2 07 bf fc ld [ %fp + -4 ], %g1
40009948: 80 a0 60 00 cmp %g1, 0
4000994c: 12 80 00 08 bne 4000996c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40009950: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
40009954: 40 00 0b 83 call 4000c760 <_Thread_queue_Process_timeout>
40009958: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
4000995c: 03 10 00 54 sethi %hi(0x40015000), %g1
40009960: c4 00 63 f0 ld [ %g1 + 0x3f0 ], %g2 ! 400153f0 <_Thread_Dispatch_disable_level>
40009964: 84 00 bf ff add %g2, -1, %g2
40009968: c4 20 63 f0 st %g2, [ %g1 + 0x3f0 ]
4000996c: 81 c7 e0 08 ret
40009970: 81 e8 00 00 restore
4001738c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
4001738c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017390: 37 10 00 f8 sethi %hi(0x4003e000), %i3
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40017394: b4 07 bf f4 add %fp, -12, %i2
40017398: ba 07 bf f8 add %fp, -8, %i5
4001739c: a4 07 bf e8 add %fp, -24, %l2
400173a0: a6 07 bf ec add %fp, -20, %l3
400173a4: fa 27 bf f4 st %i5, [ %fp + -12 ]
head->previous = NULL;
400173a8: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
400173ac: f4 27 bf fc st %i2, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
400173b0: e6 27 bf e8 st %l3, [ %fp + -24 ]
head->previous = NULL;
400173b4: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
400173b8: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173bc: a8 06 20 30 add %i0, 0x30, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400173c0: 39 10 00 f8 sethi %hi(0x4003e000), %i4
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400173c4: a2 06 20 68 add %i0, 0x68, %l1
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400173c8: ae 10 20 01 mov 1, %l7
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400173cc: ac 06 20 08 add %i0, 8, %l6
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400173d0: aa 06 20 40 add %i0, 0x40, %l5
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
400173d4: f4 26 20 78 st %i2, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
400173d8: c2 06 e3 d0 ld [ %i3 + 0x3d0 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
400173dc: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173e0: 94 10 00 12 mov %l2, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
400173e4: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173e8: 90 10 00 14 mov %l4, %o0
400173ec: 40 00 11 63 call 4001b978 <_Watchdog_Adjust_to_chain>
400173f0: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
400173f4: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400173f8: e0 07 23 48 ld [ %i4 + 0x348 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
400173fc: 80 a4 00 0a cmp %l0, %o2
40017400: 08 80 00 06 bleu 40017418 <_Timer_server_Body+0x8c>
40017404: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017408: 90 10 00 11 mov %l1, %o0
4001740c: 40 00 11 5b call 4001b978 <_Watchdog_Adjust_to_chain>
40017410: 94 10 00 12 mov %l2, %o2
40017414: 30 80 00 06 b,a 4001742c <_Timer_server_Body+0xa0>
} else if ( snapshot < last_snapshot ) {
40017418: 1a 80 00 05 bcc 4001742c <_Timer_server_Body+0xa0>
4001741c: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40017420: 92 10 20 01 mov 1, %o1
40017424: 40 00 11 2d call 4001b8d8 <_Watchdog_Adjust>
40017428: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
4001742c: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40017430: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
40017434: 40 00 02 bf call 40017f30 <_Chain_Get>
40017438: 01 00 00 00 nop
if ( timer == NULL ) {
4001743c: 92 92 20 00 orcc %o0, 0, %o1
40017440: 02 80 00 0c be 40017470 <_Timer_server_Body+0xe4>
40017444: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017448: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
4001744c: 80 a0 60 01 cmp %g1, 1
40017450: 02 80 00 05 be 40017464 <_Timer_server_Body+0xd8>
40017454: 90 10 00 14 mov %l4, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40017458: 80 a0 60 03 cmp %g1, 3
4001745c: 12 bf ff f5 bne 40017430 <_Timer_server_Body+0xa4> <== NEVER TAKEN
40017460: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017464: 40 00 11 79 call 4001ba48 <_Watchdog_Insert>
40017468: 92 02 60 10 add %o1, 0x10, %o1
4001746c: 30 bf ff f1 b,a 40017430 <_Timer_server_Body+0xa4>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
40017470: 7f ff e0 2c call 4000f520 <sparc_disable_interrupts>
40017474: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
40017478: c2 07 bf f4 ld [ %fp + -12 ], %g1
4001747c: 80 a0 40 1d cmp %g1, %i5
40017480: 12 80 00 0a bne 400174a8 <_Timer_server_Body+0x11c> <== NEVER TAKEN
40017484: 01 00 00 00 nop
ts->insert_chain = NULL;
40017488: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
4001748c: 7f ff e0 29 call 4000f530 <sparc_enable_interrupts>
40017490: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40017494: c2 07 bf e8 ld [ %fp + -24 ], %g1
40017498: 80 a0 40 13 cmp %g1, %l3
4001749c: 12 80 00 06 bne 400174b4 <_Timer_server_Body+0x128>
400174a0: 01 00 00 00 nop
400174a4: 30 80 00 1a b,a 4001750c <_Timer_server_Body+0x180>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
400174a8: 7f ff e0 22 call 4000f530 <sparc_enable_interrupts> <== NOT EXECUTED
400174ac: 01 00 00 00 nop <== NOT EXECUTED
400174b0: 30 bf ff ca b,a 400173d8 <_Timer_server_Body+0x4c> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
400174b4: 7f ff e0 1b call 4000f520 <sparc_disable_interrupts>
400174b8: 01 00 00 00 nop
400174bc: 84 10 00 08 mov %o0, %g2
initialized = false;
}
#endif
return status;
}
400174c0: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
400174c4: 80 a4 00 13 cmp %l0, %l3
400174c8: 02 80 00 0e be 40017500 <_Timer_server_Body+0x174>
400174cc: 80 a4 20 00 cmp %l0, 0
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
400174d0: c2 04 00 00 ld [ %l0 ], %g1
head->next = new_first;
400174d4: c2 27 bf e8 st %g1, [ %fp + -24 ]
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
400174d8: 02 80 00 0a be 40017500 <_Timer_server_Body+0x174> <== NEVER TAKEN
400174dc: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
400174e0: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
400174e4: 7f ff e0 13 call 4000f530 <sparc_enable_interrupts>
400174e8: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
400174ec: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
400174f0: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
400174f4: 9f c0 40 00 call %g1
400174f8: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
400174fc: 30 bf ff ee b,a 400174b4 <_Timer_server_Body+0x128>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
40017500: 7f ff e0 0c call 4000f530 <sparc_enable_interrupts>
40017504: 90 10 00 02 mov %g2, %o0
40017508: 30 bf ff b3 b,a 400173d4 <_Timer_server_Body+0x48>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
4001750c: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
40017510: 7f ff ff 6f call 400172cc <_Thread_Disable_dispatch>
40017514: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
40017518: d0 06 00 00 ld [ %i0 ], %o0
4001751c: 40 00 0f 5d call 4001b290 <_Thread_Set_state>
40017520: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
40017524: 7f ff ff 70 call 400172e4 <_Timer_server_Reset_interval_system_watchdog>
40017528: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
4001752c: 7f ff ff 83 call 40017338 <_Timer_server_Reset_tod_system_watchdog>
40017530: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
40017534: 40 00 0d 1d call 4001a9a8 <_Thread_Enable_dispatch>
40017538: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
4001753c: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40017540: ee 2e 20 7c stb %l7, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40017544: 40 00 11 9d call 4001bbb8 <_Watchdog_Remove>
40017548: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
4001754c: 40 00 11 9b call 4001bbb8 <_Watchdog_Remove>
40017550: 90 10 00 15 mov %l5, %o0
40017554: 30 bf ff a0 b,a 400173d4 <_Timer_server_Body+0x48>
40017558 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40017558: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
4001755c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
40017560: 80 a0 60 00 cmp %g1, 0
40017564: 12 80 00 49 bne 40017688 <_Timer_server_Schedule_operation_method+0x130>
40017568: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
4001756c: 7f ff ff 58 call 400172cc <_Thread_Disable_dispatch>
40017570: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017574: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40017578: 80 a0 60 01 cmp %g1, 1
4001757c: 12 80 00 1f bne 400175f8 <_Timer_server_Schedule_operation_method+0xa0>
40017580: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40017584: 7f ff df e7 call 4000f520 <sparc_disable_interrupts>
40017588: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
4001758c: 03 10 00 f8 sethi %hi(0x4003e000), %g1
40017590: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 4003e3d0 <_Watchdog_Ticks_since_boot>
initialized = false;
}
#endif
return status;
}
40017594: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40017598: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4001759c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
400175a0: 80 a0 40 03 cmp %g1, %g3
400175a4: 02 80 00 08 be 400175c4 <_Timer_server_Schedule_operation_method+0x6c>
400175a8: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
400175ac: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
400175b0: 80 a3 40 04 cmp %o5, %g4
400175b4: 08 80 00 03 bleu 400175c0 <_Timer_server_Schedule_operation_method+0x68>
400175b8: 86 10 20 00 clr %g3
delta_interval -= delta;
400175bc: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
400175c0: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
400175c4: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
400175c8: 7f ff df da call 4000f530 <sparc_enable_interrupts>
400175cc: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
400175d0: 90 06 20 30 add %i0, 0x30, %o0
400175d4: 40 00 11 1d call 4001ba48 <_Watchdog_Insert>
400175d8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400175dc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400175e0: 80 a0 60 00 cmp %g1, 0
400175e4: 12 80 00 27 bne 40017680 <_Timer_server_Schedule_operation_method+0x128>
400175e8: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
400175ec: 7f ff ff 3e call 400172e4 <_Timer_server_Reset_interval_system_watchdog>
400175f0: 90 10 00 18 mov %i0, %o0
400175f4: 30 80 00 23 b,a 40017680 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400175f8: 12 80 00 22 bne 40017680 <_Timer_server_Schedule_operation_method+0x128>
400175fc: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40017600: 7f ff df c8 call 4000f520 <sparc_disable_interrupts>
40017604: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
40017608: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
4001760c: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40017610: 03 10 00 f8 sethi %hi(0x4003e000), %g1
40017614: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
40017618: 80 a0 80 03 cmp %g2, %g3
4001761c: 02 80 00 0d be 40017650 <_Timer_server_Schedule_operation_method+0xf8>
40017620: c2 00 63 48 ld [ %g1 + 0x348 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
40017624: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
40017628: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
4001762c: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
40017630: 08 80 00 07 bleu 4001764c <_Timer_server_Schedule_operation_method+0xf4>
40017634: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
40017638: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
4001763c: 80 a1 00 0d cmp %g4, %o5
40017640: 08 80 00 03 bleu 4001764c <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
40017644: 86 10 20 00 clr %g3
delta_interval -= delta;
40017648: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
4001764c: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
40017650: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
40017654: 7f ff df b7 call 4000f530 <sparc_enable_interrupts>
40017658: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
4001765c: 90 06 20 68 add %i0, 0x68, %o0
40017660: 40 00 10 fa call 4001ba48 <_Watchdog_Insert>
40017664: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017668: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
4001766c: 80 a0 60 00 cmp %g1, 0
40017670: 12 80 00 04 bne 40017680 <_Timer_server_Schedule_operation_method+0x128>
40017674: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
40017678: 7f ff ff 30 call 40017338 <_Timer_server_Reset_tod_system_watchdog>
4001767c: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
40017680: 40 00 0c ca call 4001a9a8 <_Thread_Enable_dispatch>
40017684: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40017688: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
4001768c: 40 00 02 13 call 40017ed8 <_Chain_Append>
40017690: 81 e8 00 00 restore
40009d90 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40009d90: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009d94: 23 10 00 55 sethi %hi(0x40015400), %l1
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009d98: b2 0e 60 ff and %i1, 0xff, %i1
}
}
40009d9c: a2 14 61 d8 or %l1, 0x1d8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009da0: 10 80 00 09 b 40009dc4 <_User_extensions_Fatal+0x34>
40009da4: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
40009da8: 80 a0 60 00 cmp %g1, 0
40009dac: 02 80 00 05 be 40009dc0 <_User_extensions_Fatal+0x30>
40009db0: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009db4: 92 10 00 19 mov %i1, %o1
40009db8: 9f c0 40 00 call %g1
40009dbc: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009dc0: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009dc4: 80 a4 00 11 cmp %l0, %l1
40009dc8: 32 bf ff f8 bne,a 40009da8 <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN
40009dcc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009dd0: 81 c7 e0 08 ret <== NOT EXECUTED
40009dd4: 81 e8 00 00 restore <== NOT EXECUTED
40009c54 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
40009c54: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009c58: 03 10 00 52 sethi %hi(0x40014800), %g1
40009c5c: 82 10 61 88 or %g1, 0x188, %g1 ! 40014988 <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40009c60: 05 10 00 55 sethi %hi(0x40015400), %g2
initial_extensions = Configuration.User_extension_table;
40009c64: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009c68: e4 00 60 38 ld [ %g1 + 0x38 ], %l2
40009c6c: 82 10 a1 d8 or %g2, 0x1d8, %g1
40009c70: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40009c74: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
40009c78: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40009c7c: c6 20 a1 d8 st %g3, [ %g2 + 0x1d8 ]
40009c80: 05 10 00 54 sethi %hi(0x40015000), %g2
40009c84: 82 10 a3 f4 or %g2, 0x3f4, %g1 ! 400153f4 <_User_extensions_Switches_list>
40009c88: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40009c8c: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40009c90: c6 20 a3 f4 st %g3, [ %g2 + 0x3f4 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
40009c94: 80 a4 e0 00 cmp %l3, 0
40009c98: 02 80 00 1b be 40009d04 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40009c9c: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
40009ca0: 83 2c a0 02 sll %l2, 2, %g1
40009ca4: a1 2c a0 04 sll %l2, 4, %l0
40009ca8: a0 24 00 01 sub %l0, %g1, %l0
40009cac: a0 04 00 12 add %l0, %l2, %l0
40009cb0: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009cb4: 40 00 01 6c call 4000a264 <_Workspace_Allocate_or_fatal_error>
40009cb8: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009cbc: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009cc0: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009cc4: 92 10 20 00 clr %o1
40009cc8: 40 00 13 10 call 4000e908 <memset>
40009ccc: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009cd0: 10 80 00 0b b 40009cfc <_User_extensions_Handler_initialization+0xa8>
40009cd4: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
40009cd8: 90 04 60 14 add %l1, 0x14, %o0
40009cdc: 92 04 c0 09 add %l3, %o1, %o1
40009ce0: 40 00 12 d1 call 4000e824 <memcpy>
40009ce4: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
40009ce8: 90 10 00 11 mov %l1, %o0
40009cec: 40 00 0a c2 call 4000c7f4 <_User_extensions_Add_set>
40009cf0: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
40009cf4: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009cf8: 80 a4 00 12 cmp %l0, %l2
40009cfc: 0a bf ff f7 bcs 40009cd8 <_User_extensions_Handler_initialization+0x84>
40009d00: 93 2c 20 05 sll %l0, 5, %o1
40009d04: 81 c7 e0 08 ret
40009d08: 81 e8 00 00 restore
4000beac <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000beac: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000beb0: 7f ff db bc call 40002da0 <sparc_disable_interrupts>
4000beb4: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000beb8: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000bebc: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000bec0: 80 a0 40 11 cmp %g1, %l1
4000bec4: 02 80 00 1f be 4000bf40 <_Watchdog_Adjust+0x94>
4000bec8: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000becc: 02 80 00 1a be 4000bf34 <_Watchdog_Adjust+0x88>
4000bed0: a4 10 20 01 mov 1, %l2
4000bed4: 80 a6 60 01 cmp %i1, 1
4000bed8: 12 80 00 1a bne 4000bf40 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000bedc: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000bee0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000bee4: 10 80 00 07 b 4000bf00 <_Watchdog_Adjust+0x54>
4000bee8: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
4000beec: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000bef0: 80 a6 80 19 cmp %i2, %i1
4000bef4: 3a 80 00 05 bcc,a 4000bf08 <_Watchdog_Adjust+0x5c>
4000bef8: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
4000befc: b4 26 40 1a sub %i1, %i2, %i2
break;
4000bf00: 10 80 00 10 b 4000bf40 <_Watchdog_Adjust+0x94>
4000bf04: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
4000bf08: 7f ff db aa call 40002db0 <sparc_enable_interrupts>
4000bf0c: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000bf10: 40 00 00 94 call 4000c160 <_Watchdog_Tickle>
4000bf14: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000bf18: 7f ff db a2 call 40002da0 <sparc_disable_interrupts>
4000bf1c: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000bf20: c2 04 00 00 ld [ %l0 ], %g1
4000bf24: 80 a0 40 11 cmp %g1, %l1
4000bf28: 02 80 00 06 be 4000bf40 <_Watchdog_Adjust+0x94>
4000bf2c: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
4000bf30: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000bf34: 80 a6 a0 00 cmp %i2, 0
4000bf38: 32 bf ff ed bne,a 4000beec <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
4000bf3c: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
4000bf40: 7f ff db 9c call 40002db0 <sparc_enable_interrupts>
4000bf44: 91 e8 00 08 restore %g0, %o0, %o0
4000a078 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
4000a078: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
4000a07c: 7f ff df 3e call 40001d74 <sparc_disable_interrupts>
4000a080: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
4000a084: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
4000a088: 80 a6 20 01 cmp %i0, 1
4000a08c: 22 80 00 1d be,a 4000a100 <_Watchdog_Remove+0x88>
4000a090: c0 24 20 08 clr [ %l0 + 8 ]
4000a094: 0a 80 00 1c bcs 4000a104 <_Watchdog_Remove+0x8c>
4000a098: 03 10 00 55 sethi %hi(0x40015400), %g1
4000a09c: 80 a6 20 03 cmp %i0, 3
4000a0a0: 18 80 00 19 bgu 4000a104 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
4000a0a4: 01 00 00 00 nop
4000a0a8: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
4000a0ac: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
4000a0b0: c4 00 40 00 ld [ %g1 ], %g2
4000a0b4: 80 a0 a0 00 cmp %g2, 0
4000a0b8: 02 80 00 07 be 4000a0d4 <_Watchdog_Remove+0x5c>
4000a0bc: 05 10 00 55 sethi %hi(0x40015400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
4000a0c0: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000a0c4: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
4000a0c8: 84 00 c0 02 add %g3, %g2, %g2
4000a0cc: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
4000a0d0: 05 10 00 55 sethi %hi(0x40015400), %g2
4000a0d4: c4 00 a0 fc ld [ %g2 + 0xfc ], %g2 ! 400154fc <_Watchdog_Sync_count>
4000a0d8: 80 a0 a0 00 cmp %g2, 0
4000a0dc: 22 80 00 07 be,a 4000a0f8 <_Watchdog_Remove+0x80>
4000a0e0: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
4000a0e4: 05 10 00 55 sethi %hi(0x40015400), %g2
4000a0e8: c6 00 a2 24 ld [ %g2 + 0x224 ], %g3 ! 40015624 <_Per_CPU_Information+0x8>
4000a0ec: 05 10 00 55 sethi %hi(0x40015400), %g2
4000a0f0: c6 20 a0 94 st %g3, [ %g2 + 0x94 ] ! 40015494 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000a0f4: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
4000a0f8: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
4000a0fc: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000a100: 03 10 00 55 sethi %hi(0x40015400), %g1
4000a104: c2 00 61 00 ld [ %g1 + 0x100 ], %g1 ! 40015500 <_Watchdog_Ticks_since_boot>
4000a108: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
4000a10c: 7f ff df 1e call 40001d84 <sparc_enable_interrupts>
4000a110: 01 00 00 00 nop
return( previous_state );
}
4000a114: 81 c7 e0 08 ret
4000a118: 81 e8 00 00 restore
4000b6bc <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000b6bc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000b6c0: 7f ff dc 8f call 400028fc <sparc_disable_interrupts>
4000b6c4: a0 10 00 18 mov %i0, %l0
4000b6c8: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b6cc: 11 10 00 75 sethi %hi(0x4001d400), %o0
4000b6d0: 94 10 00 19 mov %i1, %o2
4000b6d4: 90 12 23 90 or %o0, 0x390, %o0
4000b6d8: 7f ff e6 75 call 400050ac <printk>
4000b6dc: 92 10 00 10 mov %l0, %o1
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000b6e0: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b6e4: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000b6e8: 80 a4 40 19 cmp %l1, %i1
4000b6ec: 02 80 00 0e be 4000b724 <_Watchdog_Report_chain+0x68>
4000b6f0: 11 10 00 75 sethi %hi(0x4001d400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000b6f4: 92 10 00 11 mov %l1, %o1
4000b6f8: 40 00 00 10 call 4000b738 <_Watchdog_Report>
4000b6fc: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000b700: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000b704: 80 a4 40 19 cmp %l1, %i1
4000b708: 12 bf ff fc bne 4000b6f8 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b70c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000b710: 11 10 00 75 sethi %hi(0x4001d400), %o0
4000b714: 92 10 00 10 mov %l0, %o1
4000b718: 7f ff e6 65 call 400050ac <printk>
4000b71c: 90 12 23 a8 or %o0, 0x3a8, %o0
4000b720: 30 80 00 03 b,a 4000b72c <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
4000b724: 7f ff e6 62 call 400050ac <printk>
4000b728: 90 12 23 b8 or %o0, 0x3b8, %o0
}
_ISR_Enable( level );
4000b72c: 7f ff dc 78 call 4000290c <sparc_enable_interrupts>
4000b730: 81 e8 00 00 restore
40007920 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40007920: 9d e3 bf 98 save %sp, -104, %sp
40007924: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40007928: 10 80 00 09 b 4000794c <rtems_chain_get_with_wait+0x2c>
4000792c: a4 07 bf fc add %fp, -4, %l2
40007930: 92 10 20 00 clr %o1
40007934: 94 10 00 1a mov %i2, %o2
40007938: 7f ff fc fc call 40006d28 <rtems_event_receive>
4000793c: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40007940: 80 a2 20 00 cmp %o0, 0
40007944: 32 80 00 09 bne,a 40007968 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
40007948: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
4000794c: 40 00 01 64 call 40007edc <_Chain_Get>
40007950: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40007954: a2 92 20 00 orcc %o0, 0, %l1
40007958: 02 bf ff f6 be 40007930 <rtems_chain_get_with_wait+0x10>
4000795c: 90 10 00 19 mov %i1, %o0
40007960: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40007964: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40007968: 81 c7 e0 08 ret
4000796c: 91 e8 00 08 restore %g0, %o0, %o0
40009ad8 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
40009ad8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
40009adc: 80 a6 20 00 cmp %i0, 0
40009ae0: 02 80 00 1d be 40009b54 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
40009ae4: 21 10 00 7f sethi %hi(0x4001fc00), %l0
40009ae8: a0 14 23 dc or %l0, 0x3dc, %l0 ! 4001ffdc <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
40009aec: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
40009af0: c2 04 00 00 ld [ %l0 ], %g1
40009af4: 80 a0 60 00 cmp %g1, 0
40009af8: 22 80 00 14 be,a 40009b48 <rtems_iterate_over_all_threads+0x70>
40009afc: a0 04 20 04 add %l0, 4, %l0
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
40009b00: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
40009b04: 80 a4 a0 00 cmp %l2, 0
40009b08: 12 80 00 0b bne 40009b34 <rtems_iterate_over_all_threads+0x5c>
40009b0c: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009b10: 10 80 00 0e b 40009b48 <rtems_iterate_over_all_threads+0x70>
40009b14: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40009b18: 83 2c 60 02 sll %l1, 2, %g1
40009b1c: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
40009b20: 80 a2 20 00 cmp %o0, 0
40009b24: 02 80 00 04 be 40009b34 <rtems_iterate_over_all_threads+0x5c><== NEVER TAKEN
40009b28: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
40009b2c: 9f c6 00 00 call %i0
40009b30: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009b34: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
40009b38: 80 a4 40 01 cmp %l1, %g1
40009b3c: 28 bf ff f7 bleu,a 40009b18 <rtems_iterate_over_all_threads+0x40>
40009b40: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
40009b44: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40009b48: 80 a4 00 13 cmp %l0, %l3
40009b4c: 32 bf ff ea bne,a 40009af4 <rtems_iterate_over_all_threads+0x1c>
40009b50: c2 04 00 00 ld [ %l0 ], %g1
40009b54: 81 c7 e0 08 ret
40009b58: 81 e8 00 00 restore
40014d44 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40014d44: 9d e3 bf a0 save %sp, -96, %sp
40014d48: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40014d4c: 80 a4 20 00 cmp %l0, 0
40014d50: 02 80 00 1f be 40014dcc <rtems_partition_create+0x88>
40014d54: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40014d58: 80 a6 60 00 cmp %i1, 0
40014d5c: 02 80 00 1c be 40014dcc <rtems_partition_create+0x88>
40014d60: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40014d64: 80 a7 60 00 cmp %i5, 0
40014d68: 02 80 00 19 be 40014dcc <rtems_partition_create+0x88> <== NEVER TAKEN
40014d6c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40014d70: 02 80 00 32 be 40014e38 <rtems_partition_create+0xf4>
40014d74: 80 a6 a0 00 cmp %i2, 0
40014d78: 02 80 00 30 be 40014e38 <rtems_partition_create+0xf4>
40014d7c: 80 a6 80 1b cmp %i2, %i3
40014d80: 0a 80 00 13 bcs 40014dcc <rtems_partition_create+0x88>
40014d84: b0 10 20 08 mov 8, %i0
40014d88: 80 8e e0 07 btst 7, %i3
40014d8c: 12 80 00 10 bne 40014dcc <rtems_partition_create+0x88>
40014d90: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40014d94: 12 80 00 0e bne 40014dcc <rtems_partition_create+0x88>
40014d98: b0 10 20 09 mov 9, %i0
40014d9c: 03 10 00 f8 sethi %hi(0x4003e000), %g1
40014da0: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 4003e2c0 <_Thread_Dispatch_disable_level>
40014da4: 84 00 a0 01 inc %g2
40014da8: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40014dac: 25 10 00 f8 sethi %hi(0x4003e000), %l2
40014db0: 40 00 12 45 call 400196c4 <_Objects_Allocate>
40014db4: 90 14 a0 d4 or %l2, 0xd4, %o0 ! 4003e0d4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40014db8: a2 92 20 00 orcc %o0, 0, %l1
40014dbc: 12 80 00 06 bne 40014dd4 <rtems_partition_create+0x90>
40014dc0: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
40014dc4: 40 00 16 f9 call 4001a9a8 <_Thread_Enable_dispatch>
40014dc8: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40014dcc: 81 c7 e0 08 ret
40014dd0: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40014dd4: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40014dd8: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40014ddc: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
40014de0: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
40014de4: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40014de8: 40 00 60 65 call 4002cf7c <.udiv>
40014dec: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014df0: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40014df4: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014df8: 96 10 00 1b mov %i3, %o3
40014dfc: a6 04 60 24 add %l1, 0x24, %l3
40014e00: 40 00 0c 5b call 40017f6c <_Chain_Initialize>
40014e04: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014e08: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014e0c: a4 14 a0 d4 or %l2, 0xd4, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014e10: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014e14: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014e18: 85 28 a0 02 sll %g2, 2, %g2
40014e1c: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40014e20: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40014e24: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40014e28: 40 00 16 e0 call 4001a9a8 <_Thread_Enable_dispatch>
40014e2c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40014e30: 81 c7 e0 08 ret
40014e34: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
40014e38: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014e3c: 81 c7 e0 08 ret
40014e40: 81 e8 00 00 restore
40007d4c <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40007d4c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
40007d50: 11 10 00 7c sethi %hi(0x4001f000), %o0
40007d54: 92 10 00 18 mov %i0, %o1
40007d58: 90 12 22 f4 or %o0, 0x2f4, %o0
40007d5c: 40 00 08 e4 call 4000a0ec <_Objects_Get>
40007d60: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007d64: c2 07 bf fc ld [ %fp + -4 ], %g1
40007d68: 80 a0 60 00 cmp %g1, 0
40007d6c: 12 80 00 66 bne 40007f04 <rtems_rate_monotonic_period+0x1b8>
40007d70: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40007d74: 25 10 00 7d sethi %hi(0x4001f400), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40007d78: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
40007d7c: a4 14 a2 8c or %l2, 0x28c, %l2
40007d80: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
40007d84: 80 a0 80 01 cmp %g2, %g1
40007d88: 02 80 00 06 be 40007da0 <rtems_rate_monotonic_period+0x54>
40007d8c: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40007d90: 40 00 0c 42 call 4000ae98 <_Thread_Enable_dispatch>
40007d94: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40007d98: 81 c7 e0 08 ret
40007d9c: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40007da0: 12 80 00 0e bne 40007dd8 <rtems_rate_monotonic_period+0x8c>
40007da4: 01 00 00 00 nop
switch ( the_period->state ) {
40007da8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40007dac: 80 a0 60 04 cmp %g1, 4
40007db0: 18 80 00 06 bgu 40007dc8 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
40007db4: b0 10 20 00 clr %i0
40007db8: 83 28 60 02 sll %g1, 2, %g1
40007dbc: 05 10 00 75 sethi %hi(0x4001d400), %g2
40007dc0: 84 10 a1 14 or %g2, 0x114, %g2 ! 4001d514 <CSWTCH.2>
40007dc4: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
40007dc8: 40 00 0c 34 call 4000ae98 <_Thread_Enable_dispatch>
40007dcc: 01 00 00 00 nop
return( return_value );
40007dd0: 81 c7 e0 08 ret
40007dd4: 81 e8 00 00 restore
}
_ISR_Disable( level );
40007dd8: 7f ff eb ac call 40002c88 <sparc_disable_interrupts>
40007ddc: 01 00 00 00 nop
40007de0: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40007de4: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
40007de8: 80 a4 60 00 cmp %l1, 0
40007dec: 12 80 00 15 bne 40007e40 <rtems_rate_monotonic_period+0xf4>
40007df0: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
40007df4: 7f ff eb a9 call 40002c98 <sparc_enable_interrupts>
40007df8: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
40007dfc: 7f ff ff 7a call 40007be4 <_Rate_monotonic_Initiate_statistics>
40007e00: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e04: 82 10 20 02 mov 2, %g1
40007e08: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007e0c: 03 10 00 20 sethi %hi(0x40008000), %g1
40007e10: 82 10 61 d4 or %g1, 0x1d4, %g1 ! 400081d4 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40007e14: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
40007e18: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
40007e1c: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
40007e20: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40007e24: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007e28: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007e2c: 11 10 00 7d sethi %hi(0x4001f400), %o0
40007e30: 92 04 20 10 add %l0, 0x10, %o1
40007e34: 40 00 0f f9 call 4000be18 <_Watchdog_Insert>
40007e38: 90 12 21 20 or %o0, 0x120, %o0
40007e3c: 30 80 00 1b b,a 40007ea8 <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40007e40: 12 80 00 1e bne 40007eb8 <rtems_rate_monotonic_period+0x16c>
40007e44: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40007e48: 7f ff ff 83 call 40007c54 <_Rate_monotonic_Update_statistics>
40007e4c: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007e50: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40007e54: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007e58: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40007e5c: 7f ff eb 8f call 40002c98 <sparc_enable_interrupts>
40007e60: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40007e64: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007e68: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007e6c: 13 00 00 10 sethi %hi(0x4000), %o1
40007e70: 40 00 0e 29 call 4000b714 <_Thread_Set_state>
40007e74: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007e78: 7f ff eb 84 call 40002c88 <sparc_disable_interrupts>
40007e7c: 01 00 00 00 nop
local_state = the_period->state;
40007e80: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e84: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007e88: 7f ff eb 84 call 40002c98 <sparc_enable_interrupts>
40007e8c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007e90: 80 a4 e0 03 cmp %l3, 3
40007e94: 12 80 00 05 bne 40007ea8 <rtems_rate_monotonic_period+0x15c>
40007e98: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007e9c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007ea0: 40 00 0b 39 call 4000ab84 <_Thread_Clear_state>
40007ea4: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
40007ea8: 40 00 0b fc call 4000ae98 <_Thread_Enable_dispatch>
40007eac: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40007eb0: 81 c7 e0 08 ret
40007eb4: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
40007eb8: 12 bf ff b8 bne 40007d98 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
40007ebc: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40007ec0: 7f ff ff 65 call 40007c54 <_Rate_monotonic_Update_statistics>
40007ec4: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
40007ec8: 7f ff eb 74 call 40002c98 <sparc_enable_interrupts>
40007ecc: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007ed0: 82 10 20 02 mov 2, %g1
40007ed4: 92 04 20 10 add %l0, 0x10, %o1
40007ed8: 11 10 00 7d sethi %hi(0x4001f400), %o0
40007edc: 90 12 21 20 or %o0, 0x120, %o0 ! 4001f520 <_Watchdog_Ticks_chain>
40007ee0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
40007ee4: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007ee8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007eec: 40 00 0f cb call 4000be18 <_Watchdog_Insert>
40007ef0: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40007ef4: 40 00 0b e9 call 4000ae98 <_Thread_Enable_dispatch>
40007ef8: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007efc: 81 c7 e0 08 ret
40007f00: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40007f04: b0 10 20 04 mov 4, %i0
}
40007f08: 81 c7 e0 08 ret
40007f0c: 81 e8 00 00 restore
40007f10 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
40007f10: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
40007f14: 80 a6 60 00 cmp %i1, 0
40007f18: 02 80 00 79 be 400080fc <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
40007f1c: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
40007f20: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007f24: 9f c6 40 00 call %i1
40007f28: 92 12 61 28 or %o1, 0x128, %o1 ! 4001d528 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
40007f2c: 90 10 00 18 mov %i0, %o0
40007f30: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007f34: 9f c6 40 00 call %i1
40007f38: 92 12 61 48 or %o1, 0x148, %o1 ! 4001d548 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007f3c: 90 10 00 18 mov %i0, %o0
40007f40: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007f44: 9f c6 40 00 call %i1
40007f48: 92 12 61 70 or %o1, 0x170, %o1 ! 4001d570 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40007f4c: 90 10 00 18 mov %i0, %o0
40007f50: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007f54: 9f c6 40 00 call %i1
40007f58: 92 12 61 98 or %o1, 0x198, %o1 ! 4001d598 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40007f5c: 90 10 00 18 mov %i0, %o0
40007f60: 13 10 00 75 sethi %hi(0x4001d400), %o1
40007f64: 9f c6 40 00 call %i1
40007f68: 92 12 61 e8 or %o1, 0x1e8, %o1 ! 4001d5e8 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007f6c: 3b 10 00 7c sethi %hi(0x4001f000), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007f70: 2b 10 00 75 sethi %hi(0x4001d400), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007f74: 82 17 62 f4 or %i5, 0x2f4, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
40007f78: 27 10 00 75 sethi %hi(0x4001d400), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
40007f7c: 35 10 00 75 sethi %hi(0x4001d400), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007f80: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007f84: ae 07 bf a0 add %fp, -96, %l7
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007f88: ac 07 bf d8 add %fp, -40, %l6
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007f8c: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007f90: aa 15 62 38 or %l5, 0x238, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40007f94: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007f98: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
40007f9c: a6 14 e2 50 or %l3, 0x250, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40007fa0: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007fa4: 10 80 00 52 b 400080ec <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
40007fa8: b4 16 a2 70 or %i2, 0x270, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007fac: 40 00 16 e2 call 4000db34 <rtems_rate_monotonic_get_statistics>
40007fb0: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
40007fb4: 80 a2 20 00 cmp %o0, 0
40007fb8: 32 80 00 4c bne,a 400080e8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007fbc: a0 04 20 01 inc %l0
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007fc0: 92 10 00 16 mov %l6, %o1
40007fc4: 40 00 17 09 call 4000dbe8 <rtems_rate_monotonic_get_status>
40007fc8: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007fcc: d0 07 bf d8 ld [ %fp + -40 ], %o0
40007fd0: 92 10 20 05 mov 5, %o1
40007fd4: 40 00 00 ae call 4000828c <rtems_object_get_name>
40007fd8: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007fdc: d8 1f bf a0 ldd [ %fp + -96 ], %o4
40007fe0: 92 10 00 15 mov %l5, %o1
40007fe4: 90 10 00 18 mov %i0, %o0
40007fe8: 94 10 00 10 mov %l0, %o2
40007fec: 9f c6 40 00 call %i1
40007ff0: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40007ff4: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007ff8: 80 a2 60 00 cmp %o1, 0
40007ffc: 12 80 00 08 bne 4000801c <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
40008000: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
40008004: 90 10 00 18 mov %i0, %o0
40008008: 13 10 00 72 sethi %hi(0x4001c800), %o1
4000800c: 9f c6 40 00 call %i1
40008010: 92 12 60 08 or %o1, 8, %o1 ! 4001c808 <_rodata_start+0x158>
continue;
40008014: 10 80 00 35 b 400080e8 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40008018: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
4000801c: 40 00 0e 5c call 4000b98c <_Timespec_Divide_by_integer>
40008020: 90 10 00 14 mov %l4, %o0
(*print)( context,
40008024: d0 07 bf ac ld [ %fp + -84 ], %o0
40008028: 40 00 44 5c call 40019198 <.div>
4000802c: 92 10 23 e8 mov 0x3e8, %o1
40008030: 96 10 00 08 mov %o0, %o3
40008034: d0 07 bf b4 ld [ %fp + -76 ], %o0
40008038: d6 27 bf 9c st %o3, [ %fp + -100 ]
4000803c: 40 00 44 57 call 40019198 <.div>
40008040: 92 10 23 e8 mov 0x3e8, %o1
40008044: c2 07 bf f0 ld [ %fp + -16 ], %g1
40008048: b6 10 00 08 mov %o0, %i3
4000804c: d0 07 bf f4 ld [ %fp + -12 ], %o0
40008050: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008054: 40 00 44 51 call 40019198 <.div>
40008058: 92 10 23 e8 mov 0x3e8, %o1
4000805c: d8 07 bf b0 ld [ %fp + -80 ], %o4
40008060: d6 07 bf 9c ld [ %fp + -100 ], %o3
40008064: d4 07 bf a8 ld [ %fp + -88 ], %o2
40008068: 9a 10 00 1b mov %i3, %o5
4000806c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40008070: 92 10 00 13 mov %l3, %o1
40008074: 9f c6 40 00 call %i1
40008078: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
4000807c: d2 07 bf a0 ld [ %fp + -96 ], %o1
40008080: 94 10 00 11 mov %l1, %o2
40008084: 40 00 0e 42 call 4000b98c <_Timespec_Divide_by_integer>
40008088: 90 10 00 1c mov %i4, %o0
(*print)( context,
4000808c: d0 07 bf c4 ld [ %fp + -60 ], %o0
40008090: 40 00 44 42 call 40019198 <.div>
40008094: 92 10 23 e8 mov 0x3e8, %o1
40008098: 96 10 00 08 mov %o0, %o3
4000809c: d0 07 bf cc ld [ %fp + -52 ], %o0
400080a0: d6 27 bf 9c st %o3, [ %fp + -100 ]
400080a4: 40 00 44 3d call 40019198 <.div>
400080a8: 92 10 23 e8 mov 0x3e8, %o1
400080ac: c2 07 bf f0 ld [ %fp + -16 ], %g1
400080b0: b6 10 00 08 mov %o0, %i3
400080b4: d0 07 bf f4 ld [ %fp + -12 ], %o0
400080b8: 92 10 23 e8 mov 0x3e8, %o1
400080bc: 40 00 44 37 call 40019198 <.div>
400080c0: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400080c4: d4 07 bf c0 ld [ %fp + -64 ], %o2
400080c8: d6 07 bf 9c ld [ %fp + -100 ], %o3
400080cc: d8 07 bf c8 ld [ %fp + -56 ], %o4
400080d0: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400080d4: 92 10 00 1a mov %i2, %o1
400080d8: 90 10 00 18 mov %i0, %o0
400080dc: 9f c6 40 00 call %i1
400080e0: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400080e4: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
400080e8: 82 17 62 f4 or %i5, 0x2f4, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400080ec: c2 00 60 0c ld [ %g1 + 0xc ], %g1
400080f0: 80 a4 00 01 cmp %l0, %g1
400080f4: 08 bf ff ae bleu 40007fac <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
400080f8: 90 10 00 10 mov %l0, %o0
400080fc: 81 c7 e0 08 ret
40008100: 81 e8 00 00 restore
400162e8 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
400162e8: 9d e3 bf 98 save %sp, -104, %sp
400162ec: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
400162f0: 80 a6 60 00 cmp %i1, 0
400162f4: 02 80 00 2e be 400163ac <rtems_signal_send+0xc4>
400162f8: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
400162fc: 40 00 11 b8 call 4001a9dc <_Thread_Get>
40016300: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40016304: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40016308: a2 10 00 08 mov %o0, %l1
switch ( location ) {
4001630c: 80 a0 60 00 cmp %g1, 0
40016310: 12 80 00 27 bne 400163ac <rtems_signal_send+0xc4>
40016314: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40016318: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
4001631c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40016320: 80 a0 60 00 cmp %g1, 0
40016324: 02 80 00 24 be 400163b4 <rtems_signal_send+0xcc>
40016328: 01 00 00 00 nop
if ( asr->is_enabled ) {
4001632c: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
40016330: 80 a0 60 00 cmp %g1, 0
40016334: 02 80 00 15 be 40016388 <rtems_signal_send+0xa0>
40016338: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
4001633c: 7f ff e4 79 call 4000f520 <sparc_disable_interrupts>
40016340: 01 00 00 00 nop
*signal_set |= signals;
40016344: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40016348: b2 10 40 19 or %g1, %i1, %i1
4001634c: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
40016350: 7f ff e4 78 call 4000f530 <sparc_enable_interrupts>
40016354: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
40016358: 03 10 00 f9 sethi %hi(0x4003e400), %g1
4001635c: 82 10 60 f4 or %g1, 0xf4, %g1 ! 4003e4f4 <_Per_CPU_Information>
40016360: c4 00 60 08 ld [ %g1 + 8 ], %g2
40016364: 80 a0 a0 00 cmp %g2, 0
40016368: 02 80 00 0f be 400163a4 <rtems_signal_send+0xbc>
4001636c: 01 00 00 00 nop
40016370: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40016374: 80 a4 40 02 cmp %l1, %g2
40016378: 12 80 00 0b bne 400163a4 <rtems_signal_send+0xbc> <== NEVER TAKEN
4001637c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40016380: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40016384: 30 80 00 08 b,a 400163a4 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40016388: 7f ff e4 66 call 4000f520 <sparc_disable_interrupts>
4001638c: 01 00 00 00 nop
*signal_set |= signals;
40016390: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40016394: b2 10 40 19 or %g1, %i1, %i1
40016398: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
4001639c: 7f ff e4 65 call 4000f530 <sparc_enable_interrupts>
400163a0: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
400163a4: 40 00 11 81 call 4001a9a8 <_Thread_Enable_dispatch>
400163a8: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
400163ac: 81 c7 e0 08 ret
400163b0: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
400163b4: 40 00 11 7d call 4001a9a8 <_Thread_Enable_dispatch>
400163b8: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
400163bc: 81 c7 e0 08 ret
400163c0: 81 e8 00 00 restore
4000da10 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000da10: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000da14: 80 a6 a0 00 cmp %i2, 0
4000da18: 02 80 00 5a be 4000db80 <rtems_task_mode+0x170>
4000da1c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000da20: 03 10 00 55 sethi %hi(0x40015400), %g1
4000da24: e2 00 62 28 ld [ %g1 + 0x228 ], %l1 ! 40015628 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000da28: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000da2c: e0 04 61 4c ld [ %l1 + 0x14c ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000da30: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000da34: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000da38: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000da3c: 80 a0 60 00 cmp %g1, 0
4000da40: 02 80 00 03 be 4000da4c <rtems_task_mode+0x3c>
4000da44: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000da48: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000da4c: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
4000da50: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000da54: 7f ff f2 67 call 4000a3f0 <_CPU_ISR_Get_level>
4000da58: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000da5c: a7 2c e0 0a sll %l3, 0xa, %l3
4000da60: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
4000da64: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000da68: 80 8e 61 00 btst 0x100, %i1
4000da6c: 02 80 00 06 be 4000da84 <rtems_task_mode+0x74>
4000da70: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000da74: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000da78: 80 a0 00 01 cmp %g0, %g1
4000da7c: 82 60 3f ff subx %g0, -1, %g1
4000da80: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000da84: 80 8e 62 00 btst 0x200, %i1
4000da88: 02 80 00 0b be 4000dab4 <rtems_task_mode+0xa4>
4000da8c: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000da90: 80 8e 22 00 btst 0x200, %i0
4000da94: 22 80 00 07 be,a 4000dab0 <rtems_task_mode+0xa0>
4000da98: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000da9c: 82 10 20 01 mov 1, %g1
4000daa0: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000daa4: 03 10 00 54 sethi %hi(0x40015000), %g1
4000daa8: c2 00 63 54 ld [ %g1 + 0x354 ], %g1 ! 40015354 <_Thread_Ticks_per_timeslice>
4000daac: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000dab0: 80 8e 60 0f btst 0xf, %i1
4000dab4: 02 80 00 06 be 4000dacc <rtems_task_mode+0xbc>
4000dab8: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000dabc: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000dac0: 7f ff d0 b1 call 40001d84 <sparc_enable_interrupts>
4000dac4: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000dac8: 80 8e 64 00 btst 0x400, %i1
4000dacc: 02 80 00 14 be 4000db1c <rtems_task_mode+0x10c>
4000dad0: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dad4: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000dad8: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000dadc: 80 a0 00 18 cmp %g0, %i0
4000dae0: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dae4: 80 a0 40 02 cmp %g1, %g2
4000dae8: 22 80 00 0e be,a 4000db20 <rtems_task_mode+0x110>
4000daec: 03 10 00 55 sethi %hi(0x40015400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000daf0: 7f ff d0 a1 call 40001d74 <sparc_disable_interrupts>
4000daf4: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
4000daf8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
4000dafc: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
4000db00: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000db04: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000db08: 7f ff d0 9f call 40001d84 <sparc_enable_interrupts>
4000db0c: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000db10: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000db14: 80 a0 00 01 cmp %g0, %g1
4000db18: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000db1c: 03 10 00 55 sethi %hi(0x40015400), %g1
4000db20: c4 00 61 48 ld [ %g1 + 0x148 ], %g2 ! 40015548 <_System_state_Current>
4000db24: 80 a0 a0 03 cmp %g2, 3
4000db28: 12 80 00 16 bne 4000db80 <rtems_task_mode+0x170>
4000db2c: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000db30: 07 10 00 55 sethi %hi(0x40015400), %g3
if ( are_signals_pending ||
4000db34: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000db38: 86 10 e2 1c or %g3, 0x21c, %g3
if ( are_signals_pending ||
4000db3c: 12 80 00 0a bne 4000db64 <rtems_task_mode+0x154>
4000db40: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
4000db44: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
4000db48: 80 a0 80 03 cmp %g2, %g3
4000db4c: 02 80 00 0d be 4000db80 <rtems_task_mode+0x170>
4000db50: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000db54: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000db58: 80 a0 a0 00 cmp %g2, 0
4000db5c: 02 80 00 09 be 4000db80 <rtems_task_mode+0x170> <== NEVER TAKEN
4000db60: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000db64: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
4000db68: 03 10 00 55 sethi %hi(0x40015400), %g1
4000db6c: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001561c <_Per_CPU_Information>
4000db70: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000db74: 7f ff ed 25 call 40009008 <_Thread_Dispatch>
4000db78: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000db7c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000db80: 81 c7 e0 08 ret
4000db84: 91 e8 00 01 restore %g0, %g1, %o0
4000b55c <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000b55c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000b560: 80 a6 60 00 cmp %i1, 0
4000b564: 02 80 00 07 be 4000b580 <rtems_task_set_priority+0x24>
4000b568: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000b56c: 03 10 00 64 sethi %hi(0x40019000), %g1
4000b570: c2 08 60 84 ldub [ %g1 + 0x84 ], %g1 ! 40019084 <rtems_maximum_priority>
4000b574: 80 a6 40 01 cmp %i1, %g1
4000b578: 18 80 00 1c bgu 4000b5e8 <rtems_task_set_priority+0x8c>
4000b57c: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000b580: 80 a6 a0 00 cmp %i2, 0
4000b584: 02 80 00 19 be 4000b5e8 <rtems_task_set_priority+0x8c>
4000b588: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000b58c: 40 00 09 17 call 4000d9e8 <_Thread_Get>
4000b590: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000b594: c2 07 bf fc ld [ %fp + -4 ], %g1
4000b598: 80 a0 60 00 cmp %g1, 0
4000b59c: 12 80 00 13 bne 4000b5e8 <rtems_task_set_priority+0x8c>
4000b5a0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000b5a4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000b5a8: 80 a6 60 00 cmp %i1, 0
4000b5ac: 02 80 00 0d be 4000b5e0 <rtems_task_set_priority+0x84>
4000b5b0: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000b5b4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000b5b8: 80 a0 60 00 cmp %g1, 0
4000b5bc: 02 80 00 06 be 4000b5d4 <rtems_task_set_priority+0x78>
4000b5c0: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000b5c4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000b5c8: 80 a0 40 19 cmp %g1, %i1
4000b5cc: 08 80 00 05 bleu 4000b5e0 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000b5d0: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000b5d4: 92 10 00 19 mov %i1, %o1
4000b5d8: 40 00 07 ed call 4000d58c <_Thread_Change_priority>
4000b5dc: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000b5e0: 40 00 08 f5 call 4000d9b4 <_Thread_Enable_dispatch>
4000b5e4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b5e8: 81 c7 e0 08 ret
4000b5ec: 81 e8 00 00 restore
40016cf4 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40016cf4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40016cf8: 11 10 00 f9 sethi %hi(0x4003e400), %o0
40016cfc: 92 10 00 18 mov %i0, %o1
40016d00: 90 12 21 84 or %o0, 0x184, %o0
40016d04: 40 00 0b be call 40019bfc <_Objects_Get>
40016d08: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016d0c: c2 07 bf fc ld [ %fp + -4 ], %g1
40016d10: 80 a0 60 00 cmp %g1, 0
40016d14: 12 80 00 0c bne 40016d44 <rtems_timer_cancel+0x50>
40016d18: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40016d1c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40016d20: 80 a0 60 04 cmp %g1, 4
40016d24: 02 80 00 04 be 40016d34 <rtems_timer_cancel+0x40> <== NEVER TAKEN
40016d28: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40016d2c: 40 00 13 a3 call 4001bbb8 <_Watchdog_Remove>
40016d30: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40016d34: 40 00 0f 1d call 4001a9a8 <_Thread_Enable_dispatch>
40016d38: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40016d3c: 81 c7 e0 08 ret
40016d40: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016d44: 81 c7 e0 08 ret
40016d48: 91 e8 20 04 restore %g0, 4, %o0
400171dc <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
400171dc: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
400171e0: 03 10 00 f9 sethi %hi(0x4003e400), %g1
400171e4: e2 00 61 c4 ld [ %g1 + 0x1c4 ], %l1 ! 4003e5c4 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
400171e8: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
400171ec: 80 a4 60 00 cmp %l1, 0
400171f0: 02 80 00 33 be 400172bc <rtems_timer_server_fire_when+0xe0>
400171f4: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
400171f8: 03 10 00 f8 sethi %hi(0x4003e000), %g1
400171fc: c2 08 62 d0 ldub [ %g1 + 0x2d0 ], %g1 ! 4003e2d0 <_TOD_Is_set>
40017200: 80 a0 60 00 cmp %g1, 0
40017204: 02 80 00 2e be 400172bc <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
40017208: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
4001720c: 80 a6 a0 00 cmp %i2, 0
40017210: 02 80 00 2b be 400172bc <rtems_timer_server_fire_when+0xe0>
40017214: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
40017218: 90 10 00 19 mov %i1, %o0
4001721c: 7f ff f4 07 call 40014238 <_TOD_Validate>
40017220: b0 10 20 14 mov 0x14, %i0
40017224: 80 8a 20 ff btst 0xff, %o0
40017228: 02 80 00 27 be 400172c4 <rtems_timer_server_fire_when+0xe8>
4001722c: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
40017230: 7f ff f3 ce call 40014168 <_TOD_To_seconds>
40017234: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
40017238: 27 10 00 f8 sethi %hi(0x4003e000), %l3
4001723c: c2 04 e3 48 ld [ %l3 + 0x348 ], %g1 ! 4003e348 <_TOD_Now>
40017240: 80 a2 00 01 cmp %o0, %g1
40017244: 08 80 00 1e bleu 400172bc <rtems_timer_server_fire_when+0xe0>
40017248: a4 10 00 08 mov %o0, %l2
4001724c: 11 10 00 f9 sethi %hi(0x4003e400), %o0
40017250: 92 10 00 10 mov %l0, %o1
40017254: 90 12 21 84 or %o0, 0x184, %o0
40017258: 40 00 0a 69 call 40019bfc <_Objects_Get>
4001725c: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40017260: c2 07 bf fc ld [ %fp + -4 ], %g1
40017264: b2 10 00 08 mov %o0, %i1
40017268: 80 a0 60 00 cmp %g1, 0
4001726c: 12 80 00 14 bne 400172bc <rtems_timer_server_fire_when+0xe0>
40017270: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40017274: 40 00 12 51 call 4001bbb8 <_Watchdog_Remove>
40017278: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
4001727c: 82 10 20 03 mov 3, %g1
40017280: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017284: c2 04 e3 48 ld [ %l3 + 0x348 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
40017288: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001728c: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
40017290: c2 04 60 04 ld [ %l1 + 4 ], %g1
40017294: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40017298: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
4001729c: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
400172a0: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
400172a4: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400172a8: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
400172ac: 9f c0 40 00 call %g1
400172b0: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
400172b4: 40 00 0d bd call 4001a9a8 <_Thread_Enable_dispatch>
400172b8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400172bc: 81 c7 e0 08 ret
400172c0: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400172c4: 81 c7 e0 08 ret
400172c8: 81 e8 00 00 restore