RTEMS 4.11Annotated Report
Sat Jan 8 18:04:41 2011
40017e4c <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017e4c: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017e50: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017e54: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017e58: 80 a6 80 01 cmp %i2, %g1
40017e5c: 18 80 00 16 bgu 40017eb4 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
40017e60: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
40017e64: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40017e68: 80 a0 60 00 cmp %g1, 0
40017e6c: 02 80 00 0b be 40017e98 <_CORE_message_queue_Broadcast+0x4c>
40017e70: a2 10 20 00 clr %l1
*count = 0;
40017e74: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017e78: 81 c7 e0 08 ret
40017e7c: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40017e80: 92 10 00 19 mov %i1, %o1
40017e84: 40 00 20 b9 call 40020168 <memcpy>
40017e88: 94 10 00 1a mov %i2, %o2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017e8c: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
40017e90: a2 04 60 01 inc %l1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017e94: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
40017e98: 40 00 0a dc call 4001aa08 <_Thread_queue_Dequeue>
40017e9c: 90 10 00 10 mov %l0, %o0
40017ea0: a4 92 20 00 orcc %o0, 0, %l2
40017ea4: 32 bf ff f7 bne,a 40017e80 <_CORE_message_queue_Broadcast+0x34>
40017ea8: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
40017eac: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017eb0: b0 10 20 00 clr %i0
}
40017eb4: 81 c7 e0 08 ret
40017eb8: 81 e8 00 00 restore
4001073c <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
4001073c: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
40010740: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
40010744: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
40010748: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
4001074c: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
40010750: 80 8e e0 03 btst 3, %i3
40010754: 02 80 00 07 be 40010770 <_CORE_message_queue_Initialize+0x34>
40010758: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
4001075c: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
40010760: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
40010764: 80 a4 80 1b cmp %l2, %i3
40010768: 0a 80 00 22 bcs 400107f0 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4001076c: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
40010770: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
40010774: 92 10 00 1a mov %i2, %o1
40010778: 90 10 00 11 mov %l1, %o0
4001077c: 40 00 3d 6d call 4001fd30 <.umul>
40010780: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40010784: 80 a2 00 12 cmp %o0, %l2
40010788: 0a 80 00 1a bcs 400107f0 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4001078c: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
40010790: 40 00 0b ab call 4001363c <_Workspace_Allocate>
40010794: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
40010798: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
4001079c: 80 a2 20 00 cmp %o0, 0
400107a0: 02 80 00 14 be 400107f0 <_CORE_message_queue_Initialize+0xb4>
400107a4: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
400107a8: 90 04 20 60 add %l0, 0x60, %o0
400107ac: 94 10 00 1a mov %i2, %o2
400107b0: 40 00 13 ac call 40015660 <_Chain_Initialize>
400107b4: 96 10 00 11 mov %l1, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
400107b8: 82 04 20 54 add %l0, 0x54, %g1
head->next = tail;
400107bc: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
400107c0: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
400107c4: c0 24 20 54 clr [ %l0 + 0x54 ]
tail->previous = head;
400107c8: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
400107cc: c2 06 40 00 ld [ %i1 ], %g1
400107d0: 90 10 00 10 mov %l0, %o0
400107d4: 82 18 60 01 xor %g1, 1, %g1
400107d8: 80 a0 00 01 cmp %g0, %g1
400107dc: 94 10 20 80 mov 0x80, %o2
400107e0: 92 60 3f ff subx %g0, -1, %o1
400107e4: 96 10 20 06 mov 6, %o3
400107e8: 40 00 09 06 call 40012c00 <_Thread_queue_Initialize>
400107ec: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
400107f0: 81 c7 e0 08 ret
400107f4: 81 e8 00 00 restore
400107f8 <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
400107f8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
400107fc: 27 10 00 96 sethi %hi(0x40025800), %l3
40010800: a6 14 e3 1c or %l3, 0x31c, %l3 ! 40025b1c <_Per_CPU_Information>
40010804: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
40010808: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
4001080c: 7f ff da d1 call 40007350 <sparc_disable_interrupts>
40010810: c0 24 a0 34 clr [ %l2 + 0x34 ]
40010814: 82 10 00 08 mov %o0, %g1
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
40010818: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4001081c: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40010820: 80 a4 40 02 cmp %l1, %g2
40010824: 02 80 00 15 be 40010878 <_CORE_message_queue_Seize+0x80>
40010828: 86 06 20 50 add %i0, 0x50, %g3
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
4001082c: c4 04 40 00 ld [ %l1 ], %g2
head->next = new_first;
40010830: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
40010834: 80 a4 60 00 cmp %l1, 0
40010838: 02 80 00 10 be 40010878 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
4001083c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
40010840: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
40010844: 82 00 7f ff add %g1, -1, %g1
40010848: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
4001084c: 7f ff da c5 call 40007360 <sparc_enable_interrupts>
40010850: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
40010854: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
40010858: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
4001085c: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
40010860: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40010864: 90 10 00 1a mov %i2, %o0
40010868: 40 00 1e 1a call 400180d0 <memcpy>
4001086c: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
40010870: 7f ff ff 83 call 4001067c <_Chain_Append>
40010874: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
40010878: 80 8f 20 ff btst 0xff, %i4
4001087c: 32 80 00 08 bne,a 4001089c <_CORE_message_queue_Seize+0xa4>
40010880: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
40010884: 7f ff da b7 call 40007360 <sparc_enable_interrupts>
40010888: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
4001088c: 82 10 20 04 mov 4, %g1
40010890: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
40010894: 81 c7 e0 08 ret
40010898: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
4001089c: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
400108a0: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
400108a4: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
400108a8: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
400108ac: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
400108b0: 90 10 00 01 mov %g1, %o0
400108b4: 7f ff da ab call 40007360 <sparc_enable_interrupts>
400108b8: 35 10 00 4b sethi %hi(0x40012c00), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
400108bc: b2 10 00 1d mov %i5, %i1
400108c0: 40 00 08 26 call 40012958 <_Thread_queue_Enqueue_with_handler>
400108c4: 95 ee a0 e0 restore %i2, 0xe0, %o2
400075ac <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
400075ac: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
400075b0: 03 10 00 54 sethi %hi(0x40015000), %g1
400075b4: c2 00 63 10 ld [ %g1 + 0x310 ], %g1 ! 40015310 <_Thread_Dispatch_disable_level>
400075b8: 80 a0 60 00 cmp %g1, 0
400075bc: 02 80 00 0d be 400075f0 <_CORE_mutex_Seize+0x44>
400075c0: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
400075c4: 80 8e a0 ff btst 0xff, %i2
400075c8: 02 80 00 0b be 400075f4 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
400075cc: 90 10 00 18 mov %i0, %o0
400075d0: 03 10 00 55 sethi %hi(0x40015400), %g1
400075d4: c2 00 60 88 ld [ %g1 + 0x88 ], %g1 ! 40015488 <_System_state_Current>
400075d8: 80 a0 60 01 cmp %g1, 1
400075dc: 08 80 00 05 bleu 400075f0 <_CORE_mutex_Seize+0x44>
400075e0: 90 10 20 00 clr %o0
400075e4: 92 10 20 00 clr %o1
400075e8: 40 00 01 da call 40007d50 <_Internal_error_Occurred>
400075ec: 94 10 20 12 mov 0x12, %o2
400075f0: 90 10 00 18 mov %i0, %o0
400075f4: 40 00 12 c8 call 4000c114 <_CORE_mutex_Seize_interrupt_trylock>
400075f8: 92 07 a0 54 add %fp, 0x54, %o1
400075fc: 80 a2 20 00 cmp %o0, 0
40007600: 02 80 00 0a be 40007628 <_CORE_mutex_Seize+0x7c>
40007604: 80 8e a0 ff btst 0xff, %i2
40007608: 35 10 00 55 sethi %hi(0x40015400), %i2
4000760c: 12 80 00 09 bne 40007630 <_CORE_mutex_Seize+0x84>
40007610: b4 16 a1 5c or %i2, 0x15c, %i2 ! 4001555c <_Per_CPU_Information>
40007614: 7f ff e9 cc call 40001d44 <sparc_enable_interrupts>
40007618: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
4000761c: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
40007620: 84 10 20 01 mov 1, %g2
40007624: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40007628: 81 c7 e0 08 ret
4000762c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40007630: 82 10 20 01 mov 1, %g1
40007634: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
40007638: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
4000763c: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40007640: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40007644: 03 10 00 54 sethi %hi(0x40015000), %g1
40007648: c4 00 63 10 ld [ %g1 + 0x310 ], %g2 ! 40015310 <_Thread_Dispatch_disable_level>
4000764c: 84 00 a0 01 inc %g2
40007650: c4 20 63 10 st %g2, [ %g1 + 0x310 ]
40007654: 7f ff e9 bc call 40001d44 <sparc_enable_interrupts>
40007658: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
4000765c: 90 10 00 18 mov %i0, %o0
40007660: 7f ff ff ba call 40007548 <_CORE_mutex_Seize_interrupt_blocking>
40007664: 92 10 00 1b mov %i3, %o1
40007668: 81 c7 e0 08 ret
4000766c: 81 e8 00 00 restore
4000c114 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000c114: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000c118: 03 10 00 55 sethi %hi(0x40015400), %g1
4000c11c: c2 00 61 68 ld [ %g1 + 0x168 ], %g1 ! 40015568 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000c120: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000c124: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000c128: 80 a0 a0 00 cmp %g2, 0
4000c12c: 02 80 00 2f be 4000c1e8 <_CORE_mutex_Seize_interrupt_trylock+0xd4>
4000c130: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000c134: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000c138: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000c13c: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
4000c140: 84 10 20 01 mov 1, %g2
4000c144: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000c148: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000c14c: 80 a0 a0 02 cmp %g2, 2
4000c150: 02 80 00 05 be 4000c164 <_CORE_mutex_Seize_interrupt_trylock+0x50>
4000c154: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
4000c158: 80 a0 a0 03 cmp %g2, 3
4000c15c: 12 80 00 07 bne 4000c178 <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000c160: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000c164: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000c168: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000c16c: 88 00 e0 01 add %g3, 1, %g4
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000c170: 02 80 00 03 be 4000c17c <_CORE_mutex_Seize_interrupt_trylock+0x68>
4000c174: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000c178: 30 80 00 2b b,a 4000c224 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000c17c: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
4000c180: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
4000c184: 80 a1 00 02 cmp %g4, %g2
4000c188: 12 80 00 03 bne 4000c194 <_CORE_mutex_Seize_interrupt_trylock+0x80>
4000c18c: 01 00 00 00 nop
_ISR_Enable( *level_p );
4000c190: 30 80 00 25 b,a 4000c224 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0;
}
if ( current > ceiling ) {
4000c194: 08 80 00 0f bleu 4000c1d0 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
4000c198: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000c19c: 03 10 00 54 sethi %hi(0x40015000), %g1
4000c1a0: c4 00 63 10 ld [ %g1 + 0x310 ], %g2 ! 40015310 <_Thread_Dispatch_disable_level>
4000c1a4: 84 00 a0 01 inc %g2
4000c1a8: c4 20 63 10 st %g2, [ %g1 + 0x310 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000c1ac: 7f ff d6 e6 call 40001d44 <sparc_enable_interrupts>
4000c1b0: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000c1b4: d0 04 20 5c ld [ %l0 + 0x5c ], %o0
4000c1b8: d2 04 20 4c ld [ %l0 + 0x4c ], %o1
4000c1bc: 7f ff f2 28 call 40008a5c <_Thread_Change_priority>
4000c1c0: 94 10 20 00 clr %o2
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000c1c4: 7f ff f3 53 call 40008f10 <_Thread_Enable_dispatch>
4000c1c8: b0 10 20 00 clr %i0
4000c1cc: 30 80 00 1d b,a 4000c240 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000c1d0: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
the_mutex->nest_count = 0; /* undo locking above */
4000c1d4: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000c1d8: 84 10 20 01 mov 1, %g2
4000c1dc: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
executing->resource_count--; /* undo locking above */
4000c1e0: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000c1e4: 30 80 00 10 b,a 4000c224 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000c1e8: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000c1ec: 80 a0 80 01 cmp %g2, %g1
4000c1f0: 12 80 00 14 bne 4000c240 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000c1f4: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000c1f8: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
4000c1fc: 80 a0 60 00 cmp %g1, 0
4000c200: 22 80 00 07 be,a 4000c21c <_CORE_mutex_Seize_interrupt_trylock+0x108>
4000c204: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000c208: 80 a0 60 01 cmp %g1, 1
4000c20c: 12 80 00 0d bne 4000c240 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
4000c210: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000c214: 10 80 00 08 b 4000c234 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED
4000c218: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000c21c: 82 00 60 01 inc %g1
4000c220: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000c224: 7f ff d6 c8 call 40001d44 <sparc_enable_interrupts>
4000c228: d0 06 40 00 ld [ %i1 ], %o0
return 0;
4000c22c: 81 c7 e0 08 ret
4000c230: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
_ISR_Enable( *level_p );
4000c234: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000c238: 7f ff d6 c3 call 40001d44 <sparc_enable_interrupts> <== NOT EXECUTED
4000c23c: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000c240: 81 c7 e0 08 ret
4000c244: 81 e8 00 00 restore
400077ec <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
400077ec: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
400077f0: 90 10 00 18 mov %i0, %o0
400077f4: 40 00 06 9b call 40009260 <_Thread_queue_Dequeue>
400077f8: a0 10 00 18 mov %i0, %l0
400077fc: 80 a2 20 00 cmp %o0, 0
40007800: 12 80 00 0e bne 40007838 <_CORE_semaphore_Surrender+0x4c>
40007804: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40007808: 7f ff e9 4b call 40001d34 <sparc_disable_interrupts>
4000780c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40007810: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40007814: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40007818: 80 a0 40 02 cmp %g1, %g2
4000781c: 1a 80 00 05 bcc 40007830 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
40007820: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40007824: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40007828: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
4000782c: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40007830: 7f ff e9 45 call 40001d44 <sparc_enable_interrupts>
40007834: 01 00 00 00 nop
}
return status;
}
40007838: 81 c7 e0 08 ret
4000783c: 81 e8 00 00 restore
400065a0 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
400065a0: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400065a4: e2 06 21 4c ld [ %i0 + 0x14c ], %l1
option_set = (rtems_option) the_thread->Wait.option;
400065a8: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
400065ac: 7f ff ed e2 call 40001d34 <sparc_disable_interrupts>
400065b0: a0 10 00 18 mov %i0, %l0
400065b4: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
400065b8: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
400065bc: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
400065c0: 82 88 c0 02 andcc %g3, %g2, %g1
400065c4: 12 80 00 03 bne 400065d0 <_Event_Surrender+0x30>
400065c8: 09 10 00 55 sethi %hi(0x40015400), %g4
_ISR_Enable( level );
400065cc: 30 80 00 42 b,a 400066d4 <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
400065d0: 88 11 21 5c or %g4, 0x15c, %g4 ! 4001555c <_Per_CPU_Information>
400065d4: da 01 20 08 ld [ %g4 + 8 ], %o5
400065d8: 80 a3 60 00 cmp %o5, 0
400065dc: 22 80 00 1d be,a 40006650 <_Event_Surrender+0xb0>
400065e0: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
400065e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4
400065e8: 80 a4 00 04 cmp %l0, %g4
400065ec: 32 80 00 19 bne,a 40006650 <_Event_Surrender+0xb0>
400065f0: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
400065f4: 09 10 00 55 sethi %hi(0x40015400), %g4
400065f8: da 01 21 b0 ld [ %g4 + 0x1b0 ], %o5 ! 400155b0 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
400065fc: 80 a3 60 02 cmp %o5, 2
40006600: 02 80 00 07 be 4000661c <_Event_Surrender+0x7c> <== NEVER TAKEN
40006604: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40006608: c8 01 21 b0 ld [ %g4 + 0x1b0 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
4000660c: 80 a1 20 01 cmp %g4, 1
40006610: 32 80 00 10 bne,a 40006650 <_Event_Surrender+0xb0>
40006614: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40006618: 80 a0 40 03 cmp %g1, %g3
4000661c: 02 80 00 04 be 4000662c <_Event_Surrender+0x8c>
40006620: 80 8c a0 02 btst 2, %l2
40006624: 02 80 00 0a be 4000664c <_Event_Surrender+0xac> <== NEVER TAKEN
40006628: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
4000662c: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40006630: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006634: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
40006638: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
4000663c: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40006640: 84 10 20 03 mov 3, %g2
40006644: 03 10 00 55 sethi %hi(0x40015400), %g1
40006648: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ] ! 400155b0 <_Event_Sync_state>
}
_ISR_Enable( level );
4000664c: 30 80 00 22 b,a 400066d4 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40006650: 80 89 21 00 btst 0x100, %g4
40006654: 02 80 00 20 be 400066d4 <_Event_Surrender+0x134>
40006658: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
4000665c: 02 80 00 04 be 4000666c <_Event_Surrender+0xcc>
40006660: 80 8c a0 02 btst 2, %l2
40006664: 02 80 00 1c be 400066d4 <_Event_Surrender+0x134> <== NEVER TAKEN
40006668: 01 00 00 00 nop
4000666c: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40006670: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006674: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
40006678: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
4000667c: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
40006680: 7f ff ed b1 call 40001d44 <sparc_enable_interrupts>
40006684: 90 10 00 18 mov %i0, %o0
40006688: 7f ff ed ab call 40001d34 <sparc_disable_interrupts>
4000668c: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40006690: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
40006694: 80 a0 60 02 cmp %g1, 2
40006698: 02 80 00 06 be 400066b0 <_Event_Surrender+0x110>
4000669c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
400066a0: 7f ff ed a9 call 40001d44 <sparc_enable_interrupts>
400066a4: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400066a8: 10 80 00 08 b 400066c8 <_Event_Surrender+0x128>
400066ac: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
400066b0: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
400066b4: 7f ff ed a4 call 40001d44 <sparc_enable_interrupts>
400066b8: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
400066bc: 40 00 0e 1a call 40009f24 <_Watchdog_Remove>
400066c0: 90 04 20 48 add %l0, 0x48, %o0
400066c4: 33 04 00 ff sethi %hi(0x1003fc00), %i1
400066c8: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
400066cc: 40 00 09 45 call 40008be0 <_Thread_Clear_state>
400066d0: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
400066d4: 7f ff ed 9c call 40001d44 <sparc_enable_interrupts>
400066d8: 81 e8 00 00 restore
400066e0 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
400066e0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
400066e4: 90 10 00 18 mov %i0, %o0
400066e8: 40 00 0a 17 call 40008f44 <_Thread_Get>
400066ec: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400066f0: c2 07 bf fc ld [ %fp + -4 ], %g1
400066f4: 80 a0 60 00 cmp %g1, 0
400066f8: 12 80 00 1c bne 40006768 <_Event_Timeout+0x88> <== NEVER TAKEN
400066fc: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40006700: 7f ff ed 8d call 40001d34 <sparc_disable_interrupts>
40006704: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40006708: 03 10 00 55 sethi %hi(0x40015400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
4000670c: c2 00 61 68 ld [ %g1 + 0x168 ], %g1 ! 40015568 <_Per_CPU_Information+0xc>
40006710: 80 a4 00 01 cmp %l0, %g1
40006714: 12 80 00 09 bne 40006738 <_Event_Timeout+0x58>
40006718: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
4000671c: 03 10 00 55 sethi %hi(0x40015400), %g1
40006720: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 400155b0 <_Event_Sync_state>
40006724: 80 a0 a0 01 cmp %g2, 1
40006728: 32 80 00 05 bne,a 4000673c <_Event_Timeout+0x5c>
4000672c: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40006730: 84 10 20 02 mov 2, %g2
40006734: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006738: 82 10 20 06 mov 6, %g1
4000673c: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40006740: 7f ff ed 81 call 40001d44 <sparc_enable_interrupts>
40006744: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006748: 90 10 00 10 mov %l0, %o0
4000674c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40006750: 40 00 09 24 call 40008be0 <_Thread_Clear_state>
40006754: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40006758: 03 10 00 54 sethi %hi(0x40015000), %g1
4000675c: c4 00 63 10 ld [ %g1 + 0x310 ], %g2 ! 40015310 <_Thread_Dispatch_disable_level>
40006760: 84 00 bf ff add %g2, -1, %g2
40006764: c4 20 63 10 st %g2, [ %g1 + 0x310 ]
40006768: 81 c7 e0 08 ret
4000676c: 81 e8 00 00 restore
4000c784 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c784: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000c788: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c78c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c790: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000c794: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000c798: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c79c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c7a0: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
4000c7a4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c7a8: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000c7ac: 80 a4 40 19 cmp %l1, %i1
4000c7b0: 0a 80 00 9f bcs 4000ca2c <_Heap_Extend+0x2a8>
4000c7b4: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000c7b8: 90 10 00 19 mov %i1, %o0
4000c7bc: 94 10 00 13 mov %l3, %o2
4000c7c0: 98 07 bf fc add %fp, -4, %o4
4000c7c4: 7f ff ed 7f call 40007dc0 <_Heap_Get_first_and_last_block>
4000c7c8: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000c7cc: 80 8a 20 ff btst 0xff, %o0
4000c7d0: 02 80 00 97 be 4000ca2c <_Heap_Extend+0x2a8>
4000c7d4: aa 10 00 12 mov %l2, %l5
4000c7d8: ba 10 20 00 clr %i5
4000c7dc: b8 10 20 00 clr %i4
4000c7e0: b0 10 20 00 clr %i0
4000c7e4: ae 10 20 00 clr %l7
4000c7e8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c7ec: 80 a0 40 11 cmp %g1, %l1
4000c7f0: 1a 80 00 05 bcc 4000c804 <_Heap_Extend+0x80>
4000c7f4: ec 05 40 00 ld [ %l5 ], %l6
4000c7f8: 80 a6 40 16 cmp %i1, %l6
4000c7fc: 2a 80 00 8c bcs,a 4000ca2c <_Heap_Extend+0x2a8>
4000c800: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000c804: 80 a4 40 01 cmp %l1, %g1
4000c808: 02 80 00 06 be 4000c820 <_Heap_Extend+0x9c>
4000c80c: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000c810: 2a 80 00 05 bcs,a 4000c824 <_Heap_Extend+0xa0>
4000c814: b8 10 00 15 mov %l5, %i4
4000c818: 10 80 00 04 b 4000c828 <_Heap_Extend+0xa4>
4000c81c: 90 10 00 16 mov %l6, %o0
4000c820: ae 10 00 15 mov %l5, %l7
4000c824: 90 10 00 16 mov %l6, %o0
4000c828: 40 00 16 57 call 40012184 <.urem>
4000c82c: 92 10 00 13 mov %l3, %o1
4000c830: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c834: 80 a5 80 19 cmp %l6, %i1
4000c838: 12 80 00 05 bne 4000c84c <_Heap_Extend+0xc8>
4000c83c: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
4000c840: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
4000c844: 10 80 00 04 b 4000c854 <_Heap_Extend+0xd0>
4000c848: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000c84c: 2a 80 00 02 bcs,a 4000c854 <_Heap_Extend+0xd0>
4000c850: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c854: ea 02 20 04 ld [ %o0 + 4 ], %l5
4000c858: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c85c: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c860: 80 a5 40 12 cmp %l5, %l2
4000c864: 12 bf ff e2 bne 4000c7ec <_Heap_Extend+0x68>
4000c868: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
4000c86c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000c870: 80 a6 40 01 cmp %i1, %g1
4000c874: 3a 80 00 04 bcc,a 4000c884 <_Heap_Extend+0x100>
4000c878: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c87c: 10 80 00 05 b 4000c890 <_Heap_Extend+0x10c>
4000c880: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
4000c884: 80 a0 40 11 cmp %g1, %l1
4000c888: 2a 80 00 02 bcs,a 4000c890 <_Heap_Extend+0x10c>
4000c88c: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c890: c4 07 bf fc ld [ %fp + -4 ], %g2
4000c894: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
4000c898: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000c89c: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c8a0: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000c8a4: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000c8a8: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c8ac: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
4000c8b0: 80 a0 c0 02 cmp %g3, %g2
4000c8b4: 08 80 00 04 bleu 4000c8c4 <_Heap_Extend+0x140>
4000c8b8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
4000c8bc: 10 80 00 06 b 4000c8d4 <_Heap_Extend+0x150>
4000c8c0: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c8c4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
4000c8c8: 80 a0 80 01 cmp %g2, %g1
4000c8cc: 2a 80 00 02 bcs,a 4000c8d4 <_Heap_Extend+0x150>
4000c8d0: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c8d4: 80 a5 e0 00 cmp %l7, 0
4000c8d8: 02 80 00 14 be 4000c928 <_Heap_Extend+0x1a4>
4000c8dc: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000c8e0: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000c8e4: 92 10 00 12 mov %l2, %o1
4000c8e8: 40 00 16 27 call 40012184 <.urem>
4000c8ec: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c8f0: 80 a2 20 00 cmp %o0, 0
4000c8f4: 02 80 00 04 be 4000c904 <_Heap_Extend+0x180> <== ALWAYS TAKEN
4000c8f8: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
4000c8fc: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000c900: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000c904: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000c908: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000c90c: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c910: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000c914: 90 10 00 10 mov %l0, %o0
4000c918: 7f ff ff 90 call 4000c758 <_Heap_Free_block>
4000c91c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c920: 10 80 00 09 b 4000c944 <_Heap_Extend+0x1c0>
4000c924: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000c928: 80 a7 20 00 cmp %i4, 0
4000c92c: 02 80 00 05 be 4000c940 <_Heap_Extend+0x1bc>
4000c930: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c934: b8 27 00 01 sub %i4, %g1, %i4
4000c938: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000c93c: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c940: 80 a6 20 00 cmp %i0, 0
4000c944: 02 80 00 15 be 4000c998 <_Heap_Extend+0x214>
4000c948: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c94c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000c950: a2 24 40 18 sub %l1, %i0, %l1
4000c954: 40 00 16 0c call 40012184 <.urem>
4000c958: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000c95c: c4 06 20 04 ld [ %i0 + 4 ], %g2
4000c960: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c964: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
4000c968: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
4000c96c: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c970: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c974: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000c978: 90 10 00 10 mov %l0, %o0
4000c97c: 82 08 60 01 and %g1, 1, %g1
4000c980: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
4000c984: a2 14 40 01 or %l1, %g1, %l1
4000c988: 7f ff ff 74 call 4000c758 <_Heap_Free_block>
4000c98c: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c990: 10 80 00 0f b 4000c9cc <_Heap_Extend+0x248>
4000c994: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000c998: 80 a7 60 00 cmp %i5, 0
4000c99c: 02 80 00 0b be 4000c9c8 <_Heap_Extend+0x244>
4000c9a0: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c9a4: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
4000c9a8: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000c9ac: 86 20 c0 1d sub %g3, %i5, %g3
4000c9b0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000c9b4: 84 10 c0 02 or %g3, %g2, %g2
4000c9b8: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c9bc: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c9c0: 84 10 a0 01 or %g2, 1, %g2
4000c9c4: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c9c8: 80 a6 20 00 cmp %i0, 0
4000c9cc: 32 80 00 09 bne,a 4000c9f0 <_Heap_Extend+0x26c>
4000c9d0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c9d4: 80 a5 e0 00 cmp %l7, 0
4000c9d8: 32 80 00 06 bne,a 4000c9f0 <_Heap_Extend+0x26c>
4000c9dc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c9e0: d2 07 bf fc ld [ %fp + -4 ], %o1
4000c9e4: 7f ff ff 5d call 4000c758 <_Heap_Free_block>
4000c9e8: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000c9ec: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c9f0: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c9f4: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c9f8: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c9fc: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000ca00: 84 10 c0 02 or %g3, %g2, %g2
4000ca04: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000ca08: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
4000ca0c: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000ca10: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000ca14: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
4000ca18: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000ca1c: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
4000ca20: 02 80 00 03 be 4000ca2c <_Heap_Extend+0x2a8> <== NEVER TAKEN
4000ca24: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
4000ca28: e8 26 c0 00 st %l4, [ %i3 ]
4000ca2c: 81 c7 e0 08 ret
4000ca30: 81 e8 00 00 restore
4000c484 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000c484: 9d e3 bf a0 save %sp, -96, %sp
4000c488: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000c48c: 40 00 16 00 call 40011c8c <.urem>
4000c490: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c494: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c498: a2 06 7f f8 add %i1, -8, %l1
4000c49c: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000c4a0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c4a4: 80 a2 00 0c cmp %o0, %o4
4000c4a8: 0a 80 00 05 bcs 4000c4bc <_Heap_Free+0x38>
4000c4ac: 82 10 20 00 clr %g1
4000c4b0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
4000c4b4: 80 a0 40 08 cmp %g1, %o0
4000c4b8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t next_block_size = 0;
bool next_is_free = false;
_Heap_Protection_block_check( heap, block );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000c4bc: 80 a0 60 00 cmp %g1, 0
4000c4c0: 02 80 00 6a be 4000c668 <_Heap_Free+0x1e4>
4000c4c4: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c4c8: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c4cc: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c4d0: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c4d4: 80 a0 40 0c cmp %g1, %o4
4000c4d8: 0a 80 00 05 bcs 4000c4ec <_Heap_Free+0x68> <== NEVER TAKEN
4000c4dc: 86 10 20 00 clr %g3
4000c4e0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000c4e4: 80 a0 c0 01 cmp %g3, %g1
4000c4e8: 86 60 3f ff subx %g0, -1, %g3
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000c4ec: 80 a0 e0 00 cmp %g3, 0
4000c4f0: 02 80 00 5e be 4000c668 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c4f4: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c4f8: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000c4fc: 80 89 20 01 btst 1, %g4
4000c500: 02 80 00 5a be 4000c668 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c504: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
4000c508: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c50c: 80 a0 40 09 cmp %g1, %o1
4000c510: 02 80 00 07 be 4000c52c <_Heap_Free+0xa8>
4000c514: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c518: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c51c: c6 00 e0 04 ld [ %g3 + 4 ], %g3
4000c520: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c524: 80 a0 00 03 cmp %g0, %g3
4000c528: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
4000c52c: 80 8b 60 01 btst 1, %o5
4000c530: 12 80 00 26 bne 4000c5c8 <_Heap_Free+0x144>
4000c534: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
4000c538: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c53c: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c540: 80 a0 c0 0c cmp %g3, %o4
4000c544: 0a 80 00 04 bcs 4000c554 <_Heap_Free+0xd0> <== NEVER TAKEN
4000c548: 94 10 20 00 clr %o2
4000c54c: 80 a2 40 03 cmp %o1, %g3
4000c550: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000c554: 80 a2 a0 00 cmp %o2, 0
4000c558: 02 80 00 44 be 4000c668 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c55c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c560: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c564: 80 8b 20 01 btst 1, %o4
4000c568: 02 80 00 40 be 4000c668 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c56c: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000c570: 22 80 00 0f be,a 4000c5ac <_Heap_Free+0x128>
4000c574: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
4000c578: 88 00 80 04 add %g2, %g4, %g4
4000c57c: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
4000c580: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
4000c584: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000c588: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
4000c58c: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000c590: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000c594: 82 00 7f ff add %g1, -1, %g1
4000c598: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000c59c: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c5a0: 82 13 60 01 or %o5, 1, %g1
4000c5a4: 10 80 00 27 b 4000c640 <_Heap_Free+0x1bc>
4000c5a8: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c5ac: 88 13 60 01 or %o5, 1, %g4
4000c5b0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c5b4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
4000c5b8: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c5bc: 86 08 ff fe and %g3, -2, %g3
4000c5c0: 10 80 00 20 b 4000c640 <_Heap_Free+0x1bc>
4000c5c4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000c5c8: 22 80 00 0d be,a 4000c5fc <_Heap_Free+0x178>
4000c5cc: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
4000c5d0: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
4000c5d4: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
4000c5d8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000c5dc: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
4000c5e0: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
4000c5e4: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
4000c5e8: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c5ec: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000c5f0: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c5f4: 10 80 00 13 b 4000c640 <_Heap_Free+0x1bc>
4000c5f8: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000c5fc: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000c600: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000c604: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c608: 86 10 a0 01 or %g2, 1, %g3
4000c60c: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c610: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
4000c614: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c618: 86 08 ff fe and %g3, -2, %g3
4000c61c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c620: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c624: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c628: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000c62c: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c630: 80 a0 c0 01 cmp %g3, %g1
4000c634: 1a 80 00 03 bcc 4000c640 <_Heap_Free+0x1bc>
4000c638: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c63c: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
4000c640: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
4000c644: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c648: 82 00 7f ff add %g1, -1, %g1
4000c64c: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
4000c650: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
4000c654: 82 00 60 01 inc %g1
4000c658: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c65c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000c660: 84 00 40 02 add %g1, %g2, %g2
4000c664: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
4000c668: 81 c7 e0 08 ret
4000c66c: 81 e8 00 00 restore
400135d0 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
400135d0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400135d4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
400135d8: 7f ff f9 ad call 40011c8c <.urem>
400135dc: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400135e0: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400135e4: a2 06 7f f8 add %i1, -8, %l1
400135e8: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
400135ec: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400135f0: 80 a2 00 02 cmp %o0, %g2
400135f4: 0a 80 00 05 bcs 40013608 <_Heap_Size_of_alloc_area+0x38>
400135f8: 82 10 20 00 clr %g1
400135fc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
40013600: 80 a0 40 08 cmp %g1, %o0
40013604: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
40013608: 80 a0 60 00 cmp %g1, 0
4001360c: 02 80 00 15 be 40013660 <_Heap_Size_of_alloc_area+0x90>
40013610: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40013614: e2 02 20 04 ld [ %o0 + 4 ], %l1
40013618: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4001361c: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40013620: 80 a4 40 02 cmp %l1, %g2
40013624: 0a 80 00 05 bcs 40013638 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
40013628: 82 10 20 00 clr %g1
4001362c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
40013630: 80 a0 40 11 cmp %g1, %l1
40013634: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
40013638: 80 a0 60 00 cmp %g1, 0
4001363c: 02 80 00 09 be 40013660 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
40013640: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40013644: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
40013648: 80 88 60 01 btst 1, %g1
4001364c: 02 80 00 05 be 40013660 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
40013650: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
40013654: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
40013658: a2 04 60 04 add %l1, 4, %l1
4001365c: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
40013660: 81 c7 e0 08 ret
40013664: 81 e8 00 00 restore
40008bc8 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008bc8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008bcc: 23 10 00 22 sethi %hi(0x40008800), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008bd0: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40008bd4: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
40008bd8: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
40008bdc: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
40008be0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008be4: 80 8e a0 ff btst 0xff, %i2
40008be8: 02 80 00 04 be 40008bf8 <_Heap_Walk+0x30>
40008bec: a2 14 63 74 or %l1, 0x374, %l1
40008bf0: 23 10 00 22 sethi %hi(0x40008800), %l1
40008bf4: a2 14 63 7c or %l1, 0x37c, %l1 ! 40008b7c <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40008bf8: 03 10 00 5e sethi %hi(0x40017800), %g1
40008bfc: c2 00 63 28 ld [ %g1 + 0x328 ], %g1 ! 40017b28 <_System_state_Current>
40008c00: 80 a0 60 03 cmp %g1, 3
40008c04: 12 80 01 2d bne 400090b8 <_Heap_Walk+0x4f0>
40008c08: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
40008c0c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40008c10: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40008c14: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008c18: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008c1c: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
40008c20: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
40008c24: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40008c28: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
40008c2c: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
40008c30: 90 10 00 19 mov %i1, %o0
40008c34: 92 10 20 00 clr %o1
40008c38: 15 10 00 54 sethi %hi(0x40015000), %o2
40008c3c: 96 10 00 12 mov %l2, %o3
40008c40: 94 12 a2 d8 or %o2, 0x2d8, %o2
40008c44: 9f c4 40 00 call %l1
40008c48: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40008c4c: 80 a4 a0 00 cmp %l2, 0
40008c50: 12 80 00 07 bne 40008c6c <_Heap_Walk+0xa4>
40008c54: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
40008c58: 15 10 00 54 sethi %hi(0x40015000), %o2
40008c5c: 90 10 00 19 mov %i1, %o0
40008c60: 92 10 20 01 mov 1, %o1
40008c64: 10 80 00 38 b 40008d44 <_Heap_Walk+0x17c>
40008c68: 94 12 a3 70 or %o2, 0x370, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40008c6c: 22 80 00 08 be,a 40008c8c <_Heap_Walk+0xc4>
40008c70: 90 10 00 14 mov %l4, %o0
(*printer)(
40008c74: 15 10 00 54 sethi %hi(0x40015000), %o2
40008c78: 90 10 00 19 mov %i1, %o0
40008c7c: 92 10 20 01 mov 1, %o1
40008c80: 94 12 a3 88 or %o2, 0x388, %o2
40008c84: 10 80 01 0b b 400090b0 <_Heap_Walk+0x4e8>
40008c88: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008c8c: 7f ff e3 8e call 40001ac4 <.urem>
40008c90: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40008c94: 80 a2 20 00 cmp %o0, 0
40008c98: 22 80 00 08 be,a 40008cb8 <_Heap_Walk+0xf0>
40008c9c: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
40008ca0: 15 10 00 54 sethi %hi(0x40015000), %o2
40008ca4: 90 10 00 19 mov %i1, %o0
40008ca8: 92 10 20 01 mov 1, %o1
40008cac: 94 12 a3 a8 or %o2, 0x3a8, %o2
40008cb0: 10 80 01 00 b 400090b0 <_Heap_Walk+0x4e8>
40008cb4: 96 10 00 14 mov %l4, %o3
40008cb8: 7f ff e3 83 call 40001ac4 <.urem>
40008cbc: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
40008cc0: 80 a2 20 00 cmp %o0, 0
40008cc4: 22 80 00 08 be,a 40008ce4 <_Heap_Walk+0x11c>
40008cc8: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40008ccc: 15 10 00 54 sethi %hi(0x40015000), %o2
40008cd0: 90 10 00 19 mov %i1, %o0
40008cd4: 92 10 20 01 mov 1, %o1
40008cd8: 94 12 a3 d0 or %o2, 0x3d0, %o2
40008cdc: 10 80 00 f5 b 400090b0 <_Heap_Walk+0x4e8>
40008ce0: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40008ce4: 80 88 60 01 btst 1, %g1
40008ce8: 32 80 00 07 bne,a 40008d04 <_Heap_Walk+0x13c>
40008cec: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
40008cf0: 15 10 00 55 sethi %hi(0x40015400), %o2
40008cf4: 90 10 00 19 mov %i1, %o0
40008cf8: 92 10 20 01 mov 1, %o1
40008cfc: 10 80 00 12 b 40008d44 <_Heap_Walk+0x17c>
40008d00: 94 12 a0 08 or %o2, 8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008d04: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008d08: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008d0c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40008d10: 80 88 60 01 btst 1, %g1
40008d14: 12 80 00 07 bne 40008d30 <_Heap_Walk+0x168>
40008d18: 80 a5 80 13 cmp %l6, %l3
(*printer)(
40008d1c: 15 10 00 55 sethi %hi(0x40015400), %o2
40008d20: 90 10 00 19 mov %i1, %o0
40008d24: 92 10 20 01 mov 1, %o1
40008d28: 10 80 00 07 b 40008d44 <_Heap_Walk+0x17c>
40008d2c: 94 12 a0 38 or %o2, 0x38, %o2
);
return false;
}
if (
40008d30: 02 80 00 08 be 40008d50 <_Heap_Walk+0x188> <== ALWAYS TAKEN
40008d34: 15 10 00 55 sethi %hi(0x40015400), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008d38: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40008d3c: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
40008d40: 94 12 a0 50 or %o2, 0x50, %o2 <== NOT EXECUTED
40008d44: 9f c4 40 00 call %l1
40008d48: b0 10 20 00 clr %i0
40008d4c: 30 80 00 db b,a 400090b8 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
40008d50: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
40008d54: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
40008d58: ae 10 00 10 mov %l0, %l7
40008d5c: 10 80 00 32 b 40008e24 <_Heap_Walk+0x25c>
40008d60: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008d64: 80 a0 80 1c cmp %g2, %i4
40008d68: 18 80 00 05 bgu 40008d7c <_Heap_Walk+0x1b4>
40008d6c: 82 10 20 00 clr %g1
40008d70: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
40008d74: 80 a0 40 1c cmp %g1, %i4
40008d78: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
40008d7c: 80 a0 60 00 cmp %g1, 0
40008d80: 32 80 00 08 bne,a 40008da0 <_Heap_Walk+0x1d8>
40008d84: 90 07 20 08 add %i4, 8, %o0
(*printer)(
40008d88: 15 10 00 55 sethi %hi(0x40015400), %o2
40008d8c: 96 10 00 1c mov %i4, %o3
40008d90: 90 10 00 19 mov %i1, %o0
40008d94: 92 10 20 01 mov 1, %o1
40008d98: 10 80 00 c6 b 400090b0 <_Heap_Walk+0x4e8>
40008d9c: 94 12 a0 80 or %o2, 0x80, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008da0: 7f ff e3 49 call 40001ac4 <.urem>
40008da4: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
40008da8: 80 a2 20 00 cmp %o0, 0
40008dac: 22 80 00 08 be,a 40008dcc <_Heap_Walk+0x204>
40008db0: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008db4: 15 10 00 55 sethi %hi(0x40015400), %o2
40008db8: 96 10 00 1c mov %i4, %o3
40008dbc: 90 10 00 19 mov %i1, %o0
40008dc0: 92 10 20 01 mov 1, %o1
40008dc4: 10 80 00 bb b 400090b0 <_Heap_Walk+0x4e8>
40008dc8: 94 12 a0 a0 or %o2, 0xa0, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008dcc: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40008dd0: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008dd4: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40008dd8: 80 88 60 01 btst 1, %g1
40008ddc: 22 80 00 08 be,a 40008dfc <_Heap_Walk+0x234>
40008de0: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
40008de4: 15 10 00 55 sethi %hi(0x40015400), %o2
40008de8: 96 10 00 1c mov %i4, %o3
40008dec: 90 10 00 19 mov %i1, %o0
40008df0: 92 10 20 01 mov 1, %o1
40008df4: 10 80 00 af b 400090b0 <_Heap_Walk+0x4e8>
40008df8: 94 12 a0 d0 or %o2, 0xd0, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
40008dfc: 80 a3 00 17 cmp %o4, %l7
40008e00: 22 80 00 08 be,a 40008e20 <_Heap_Walk+0x258>
40008e04: ae 10 00 1c mov %i4, %l7
(*printer)(
40008e08: 15 10 00 55 sethi %hi(0x40015400), %o2
40008e0c: 96 10 00 1c mov %i4, %o3
40008e10: 90 10 00 19 mov %i1, %o0
40008e14: 92 10 20 01 mov 1, %o1
40008e18: 10 80 00 49 b 40008f3c <_Heap_Walk+0x374>
40008e1c: 94 12 a0 f0 or %o2, 0xf0, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
40008e20: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008e24: 80 a7 00 10 cmp %i4, %l0
40008e28: 32 bf ff cf bne,a 40008d64 <_Heap_Walk+0x19c>
40008e2c: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
40008e30: 35 10 00 55 sethi %hi(0x40015400), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008e34: 31 10 00 55 sethi %hi(0x40015400), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40008e38: b4 16 a2 b0 or %i2, 0x2b0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008e3c: b0 16 22 98 or %i0, 0x298, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008e40: 37 10 00 55 sethi %hi(0x40015400), %i3
block = next_block;
} while ( block != first_block );
return true;
}
40008e44: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008e48: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008e4c: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008e50: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008e54: 80 a0 c0 1d cmp %g3, %i5
40008e58: 18 80 00 05 bgu 40008e6c <_Heap_Walk+0x2a4> <== NEVER TAKEN
40008e5c: 84 10 20 00 clr %g2
40008e60: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
40008e64: 80 a0 80 1d cmp %g2, %i5
40008e68: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
40008e6c: 80 a0 a0 00 cmp %g2, 0
40008e70: 12 80 00 07 bne 40008e8c <_Heap_Walk+0x2c4>
40008e74: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
40008e78: 15 10 00 55 sethi %hi(0x40015400), %o2
40008e7c: 90 10 00 19 mov %i1, %o0
40008e80: 92 10 20 01 mov 1, %o1
40008e84: 10 80 00 2c b 40008f34 <_Heap_Walk+0x36c>
40008e88: 94 12 a1 28 or %o2, 0x128, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40008e8c: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008e90: c2 27 bf fc st %g1, [ %fp + -4 ]
40008e94: b8 40 20 00 addx %g0, 0, %i4
40008e98: 90 10 00 17 mov %l7, %o0
40008e9c: 7f ff e3 0a call 40001ac4 <.urem>
40008ea0: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008ea4: 80 a2 20 00 cmp %o0, 0
40008ea8: 02 80 00 0c be 40008ed8 <_Heap_Walk+0x310>
40008eac: c2 07 bf fc ld [ %fp + -4 ], %g1
40008eb0: 80 8f 20 ff btst 0xff, %i4
40008eb4: 02 80 00 0a be 40008edc <_Heap_Walk+0x314>
40008eb8: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
40008ebc: 15 10 00 55 sethi %hi(0x40015400), %o2
40008ec0: 90 10 00 19 mov %i1, %o0
40008ec4: 92 10 20 01 mov 1, %o1
40008ec8: 94 12 a1 58 or %o2, 0x158, %o2
40008ecc: 96 10 00 16 mov %l6, %o3
40008ed0: 10 80 00 1b b 40008f3c <_Heap_Walk+0x374>
40008ed4: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40008ed8: 80 a5 c0 14 cmp %l7, %l4
40008edc: 1a 80 00 0d bcc 40008f10 <_Heap_Walk+0x348>
40008ee0: 80 a7 40 16 cmp %i5, %l6
40008ee4: 80 8f 20 ff btst 0xff, %i4
40008ee8: 02 80 00 0a be 40008f10 <_Heap_Walk+0x348> <== NEVER TAKEN
40008eec: 80 a7 40 16 cmp %i5, %l6
(*printer)(
40008ef0: 15 10 00 55 sethi %hi(0x40015400), %o2
40008ef4: 90 10 00 19 mov %i1, %o0
40008ef8: 92 10 20 01 mov 1, %o1
40008efc: 94 12 a1 88 or %o2, 0x188, %o2
40008f00: 96 10 00 16 mov %l6, %o3
40008f04: 98 10 00 17 mov %l7, %o4
40008f08: 10 80 00 3f b 40009004 <_Heap_Walk+0x43c>
40008f0c: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40008f10: 38 80 00 0e bgu,a 40008f48 <_Heap_Walk+0x380>
40008f14: b8 08 60 01 and %g1, 1, %i4
40008f18: 80 8f 20 ff btst 0xff, %i4
40008f1c: 02 80 00 0b be 40008f48 <_Heap_Walk+0x380>
40008f20: b8 08 60 01 and %g1, 1, %i4
(*printer)(
40008f24: 15 10 00 55 sethi %hi(0x40015400), %o2
40008f28: 90 10 00 19 mov %i1, %o0
40008f2c: 92 10 20 01 mov 1, %o1
40008f30: 94 12 a1 b8 or %o2, 0x1b8, %o2
40008f34: 96 10 00 16 mov %l6, %o3
40008f38: 98 10 00 1d mov %i5, %o4
40008f3c: 9f c4 40 00 call %l1
40008f40: b0 10 20 00 clr %i0
40008f44: 30 80 00 5d b,a 400090b8 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008f48: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40008f4c: 80 88 60 01 btst 1, %g1
40008f50: 12 80 00 3f bne 4000904c <_Heap_Walk+0x484>
40008f54: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
40008f58: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008f5c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008f60: 05 10 00 54 sethi %hi(0x40015000), %g2
block = next_block;
} while ( block != first_block );
return true;
}
40008f64: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008f68: 80 a3 40 01 cmp %o5, %g1
40008f6c: 02 80 00 07 be 40008f88 <_Heap_Walk+0x3c0>
40008f70: 86 10 a2 98 or %g2, 0x298, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40008f74: 80 a3 40 10 cmp %o5, %l0
40008f78: 12 80 00 04 bne 40008f88 <_Heap_Walk+0x3c0>
40008f7c: 86 16 e2 60 or %i3, 0x260, %g3
40008f80: 19 10 00 54 sethi %hi(0x40015000), %o4
40008f84: 86 13 22 a8 or %o4, 0x2a8, %g3 ! 400152a8 <C.0.4226+0x44>
block->next,
block->next == last_free_block ?
40008f88: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008f8c: 19 10 00 54 sethi %hi(0x40015000), %o4
40008f90: 80 a0 80 04 cmp %g2, %g4
40008f94: 02 80 00 07 be 40008fb0 <_Heap_Walk+0x3e8>
40008f98: 82 13 22 b8 or %o4, 0x2b8, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008f9c: 80 a0 80 10 cmp %g2, %l0
40008fa0: 12 80 00 04 bne 40008fb0 <_Heap_Walk+0x3e8>
40008fa4: 82 16 e2 60 or %i3, 0x260, %g1
40008fa8: 09 10 00 54 sethi %hi(0x40015000), %g4
40008fac: 82 11 22 c8 or %g4, 0x2c8, %g1 ! 400152c8 <C.0.4226+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008fb0: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40008fb4: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
40008fb8: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
40008fbc: 90 10 00 19 mov %i1, %o0
40008fc0: 92 10 20 00 clr %o1
40008fc4: 15 10 00 55 sethi %hi(0x40015400), %o2
40008fc8: 96 10 00 16 mov %l6, %o3
40008fcc: 94 12 a1 f0 or %o2, 0x1f0, %o2
40008fd0: 9f c4 40 00 call %l1
40008fd4: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40008fd8: da 07 40 00 ld [ %i5 ], %o5
40008fdc: 80 a5 c0 0d cmp %l7, %o5
40008fe0: 02 80 00 0c be 40009010 <_Heap_Walk+0x448>
40008fe4: 80 a7 20 00 cmp %i4, 0
(*printer)(
40008fe8: 15 10 00 55 sethi %hi(0x40015400), %o2
40008fec: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
40008ff0: 90 10 00 19 mov %i1, %o0
40008ff4: 92 10 20 01 mov 1, %o1
40008ff8: 94 12 a2 28 or %o2, 0x228, %o2
40008ffc: 96 10 00 16 mov %l6, %o3
40009000: 98 10 00 17 mov %l7, %o4
40009004: 9f c4 40 00 call %l1
40009008: b0 10 20 00 clr %i0
4000900c: 30 80 00 2b b,a 400090b8 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
40009010: 32 80 00 0a bne,a 40009038 <_Heap_Walk+0x470>
40009014: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
40009018: 15 10 00 55 sethi %hi(0x40015400), %o2
4000901c: 90 10 00 19 mov %i1, %o0
40009020: 92 10 20 01 mov 1, %o1
40009024: 10 80 00 22 b 400090ac <_Heap_Walk+0x4e4>
40009028: 94 12 a2 68 or %o2, 0x268, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
4000902c: 02 80 00 19 be 40009090 <_Heap_Walk+0x4c8>
40009030: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
40009034: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40009038: 80 a0 40 10 cmp %g1, %l0
4000903c: 12 bf ff fc bne 4000902c <_Heap_Walk+0x464>
40009040: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40009044: 10 80 00 17 b 400090a0 <_Heap_Walk+0x4d8>
40009048: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
4000904c: 22 80 00 0a be,a 40009074 <_Heap_Walk+0x4ac>
40009050: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
40009054: 90 10 00 19 mov %i1, %o0
40009058: 92 10 20 00 clr %o1
4000905c: 94 10 00 18 mov %i0, %o2
40009060: 96 10 00 16 mov %l6, %o3
40009064: 9f c4 40 00 call %l1
40009068: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
4000906c: 10 80 00 09 b 40009090 <_Heap_Walk+0x4c8>
40009070: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009074: 90 10 00 19 mov %i1, %o0
40009078: 92 10 20 00 clr %o1
4000907c: 94 10 00 1a mov %i2, %o2
40009080: 96 10 00 16 mov %l6, %o3
40009084: 9f c4 40 00 call %l1
40009088: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
4000908c: 80 a7 40 13 cmp %i5, %l3
40009090: 12 bf ff 6d bne 40008e44 <_Heap_Walk+0x27c>
40009094: ac 10 00 1d mov %i5, %l6
return true;
}
40009098: 81 c7 e0 08 ret
4000909c: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400090a0: 90 10 00 19 mov %i1, %o0
400090a4: 92 10 20 01 mov 1, %o1
400090a8: 94 12 a2 d8 or %o2, 0x2d8, %o2
400090ac: 96 10 00 16 mov %l6, %o3
400090b0: 9f c4 40 00 call %l1
400090b4: b0 10 20 00 clr %i0
400090b8: 81 c7 e0 08 ret
400090bc: 81 e8 00 00 restore
40007d50 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007d50: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40007d54: 05 10 00 54 sethi %hi(0x40015000), %g2
40007d58: 82 10 a3 c4 or %g2, 0x3c4, %g1 ! 400153c4 <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007d5c: 90 10 00 18 mov %i0, %o0
40007d60: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
40007d64: f0 20 a3 c4 st %i0, [ %g2 + 0x3c4 ]
_Internal_errors_What_happened.is_internal = is_internal;
40007d68: f2 28 60 04 stb %i1, [ %g1 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
40007d6c: f4 20 60 08 st %i2, [ %g1 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40007d70: 40 00 07 b3 call 40009c3c <_User_extensions_Fatal>
40007d74: 92 0e 60 ff and %i1, 0xff, %o1
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40007d78: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40007d7c: 03 10 00 55 sethi %hi(0x40015400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40007d80: 7f ff e7 ed call 40001d34 <sparc_disable_interrupts> <== NOT EXECUTED
40007d84: c4 20 60 88 st %g2, [ %g1 + 0x88 ] ! 40015488 <_System_state_Current><== NOT EXECUTED
40007d88: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40007d8c: 30 80 00 00 b,a 40007d8c <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40007e00 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007e00: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007e04: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007e08: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007e0c: 80 a0 60 00 cmp %g1, 0
40007e10: 02 80 00 20 be 40007e90 <_Objects_Allocate+0x90> <== NEVER TAKEN
40007e14: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007e18: a2 04 20 20 add %l0, 0x20, %l1
40007e1c: 7f ff fd 8b call 40007448 <_Chain_Get>
40007e20: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40007e24: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
40007e28: 80 a0 60 00 cmp %g1, 0
40007e2c: 02 80 00 19 be 40007e90 <_Objects_Allocate+0x90>
40007e30: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40007e34: 80 a2 20 00 cmp %o0, 0
40007e38: 32 80 00 0a bne,a 40007e60 <_Objects_Allocate+0x60>
40007e3c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
40007e40: 40 00 00 1e call 40007eb8 <_Objects_Extend_information>
40007e44: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007e48: 7f ff fd 80 call 40007448 <_Chain_Get>
40007e4c: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40007e50: b0 92 20 00 orcc %o0, 0, %i0
40007e54: 02 80 00 0f be 40007e90 <_Objects_Allocate+0x90>
40007e58: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007e5c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40007e60: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40007e64: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
40007e68: 40 00 26 dd call 400119dc <.udiv>
40007e6c: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007e70: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40007e74: 91 2a 20 02 sll %o0, 2, %o0
40007e78: c4 00 40 08 ld [ %g1 + %o0 ], %g2
40007e7c: 84 00 bf ff add %g2, -1, %g2
40007e80: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
40007e84: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
40007e88: 82 00 7f ff add %g1, -1, %g1
40007e8c: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40007e90: 81 c7 e0 08 ret
40007e94: 81 e8 00 00 restore
40008214 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40008214: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40008218: b3 2e 60 10 sll %i1, 0x10, %i1
4000821c: b3 36 60 10 srl %i1, 0x10, %i1
40008220: 80 a6 60 00 cmp %i1, 0
40008224: 02 80 00 17 be 40008280 <_Objects_Get_information+0x6c>
40008228: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
4000822c: 40 00 11 11 call 4000c670 <_Objects_API_maximum_class>
40008230: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40008234: 80 a2 20 00 cmp %o0, 0
40008238: 02 80 00 12 be 40008280 <_Objects_Get_information+0x6c>
4000823c: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40008240: 18 80 00 10 bgu 40008280 <_Objects_Get_information+0x6c>
40008244: 03 10 00 54 sethi %hi(0x40015000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40008248: b1 2e 20 02 sll %i0, 2, %i0
4000824c: 82 10 62 78 or %g1, 0x278, %g1
40008250: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40008254: 80 a0 60 00 cmp %g1, 0
40008258: 02 80 00 0a be 40008280 <_Objects_Get_information+0x6c> <== NEVER TAKEN
4000825c: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40008260: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40008264: 80 a4 20 00 cmp %l0, 0
40008268: 02 80 00 06 be 40008280 <_Objects_Get_information+0x6c> <== NEVER TAKEN
4000826c: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40008270: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40008274: 80 a0 00 01 cmp %g0, %g1
40008278: 82 60 20 00 subx %g0, 0, %g1
4000827c: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
40008280: 81 c7 e0 08 ret
40008284: 91 e8 00 10 restore %g0, %l0, %o0
40019a5c <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019a5c: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
40019a60: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019a64: 82 22 40 01 sub %o1, %g1, %g1
40019a68: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
40019a6c: 80 a0 80 01 cmp %g2, %g1
40019a70: 0a 80 00 09 bcs 40019a94 <_Objects_Get_no_protection+0x38>
40019a74: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
40019a78: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
40019a7c: d0 00 80 01 ld [ %g2 + %g1 ], %o0
40019a80: 80 a2 20 00 cmp %o0, 0
40019a84: 02 80 00 05 be 40019a98 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40019a88: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40019a8c: 81 c3 e0 08 retl
40019a90: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40019a94: 82 10 20 01 mov 1, %g1
return NULL;
40019a98: 90 10 20 00 clr %o0
}
40019a9c: 81 c3 e0 08 retl
40019aa0: c2 22 80 00 st %g1, [ %o2 ]
40009af0 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
40009af0: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40009af4: 92 96 20 00 orcc %i0, 0, %o1
40009af8: 12 80 00 06 bne 40009b10 <_Objects_Id_to_name+0x20>
40009afc: 83 32 60 18 srl %o1, 0x18, %g1
40009b00: 03 10 00 7a sethi %hi(0x4001e800), %g1
40009b04: c2 00 63 58 ld [ %g1 + 0x358 ], %g1 ! 4001eb58 <_Per_CPU_Information+0xc>
40009b08: d2 00 60 08 ld [ %g1 + 8 ], %o1
40009b0c: 83 32 60 18 srl %o1, 0x18, %g1
40009b10: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40009b14: 84 00 7f ff add %g1, -1, %g2
40009b18: 80 a0 a0 02 cmp %g2, 2
40009b1c: 18 80 00 12 bgu 40009b64 <_Objects_Id_to_name+0x74>
40009b20: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40009b24: 10 80 00 12 b 40009b6c <_Objects_Id_to_name+0x7c>
40009b28: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40009b2c: 85 28 a0 02 sll %g2, 2, %g2
40009b30: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009b34: 80 a2 20 00 cmp %o0, 0
40009b38: 02 80 00 0b be 40009b64 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
40009b3c: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
40009b40: 7f ff ff cf call 40009a7c <_Objects_Get>
40009b44: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40009b48: 80 a2 20 00 cmp %o0, 0
40009b4c: 02 80 00 06 be 40009b64 <_Objects_Id_to_name+0x74>
40009b50: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40009b54: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40009b58: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40009b5c: 40 00 02 f3 call 4000a728 <_Thread_Enable_dispatch>
40009b60: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40009b64: 81 c7 e0 08 ret
40009b68: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40009b6c: 05 10 00 7a sethi %hi(0x4001e800), %g2
40009b70: 84 10 a0 68 or %g2, 0x68, %g2 ! 4001e868 <_Objects_Information_table>
40009b74: c2 00 80 01 ld [ %g2 + %g1 ], %g1
40009b78: 80 a0 60 00 cmp %g1, 0
40009b7c: 12 bf ff ec bne 40009b2c <_Objects_Id_to_name+0x3c>
40009b80: 85 32 60 1b srl %o1, 0x1b, %g2
40009b84: 30 bf ff f8 b,a 40009b64 <_Objects_Id_to_name+0x74>
40008370 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40008370: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40008374: 85 2f 20 10 sll %i4, 0x10, %g2
40008378: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
4000837c: 07 10 00 54 sethi %hi(0x40015000), %g3
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40008380: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40008384: 86 10 e2 78 or %g3, 0x278, %g3
40008388: 85 2e 60 02 sll %i1, 2, %g2
4000838c: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
40008390: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
40008394: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
information->local_table = 0;
40008398: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
4000839c: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
400083a0: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
400083a4: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
400083a8: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
400083ac: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
400083b0: b5 2e a0 10 sll %i2, 0x10, %i2
400083b4: b5 36 a0 10 srl %i2, 0x10, %i2
400083b8: 85 2e a0 02 sll %i2, 2, %g2
400083bc: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
400083c0: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
400083c4: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
400083c8: 07 20 00 00 sethi %hi(0x80000000), %g3
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
400083cc: 80 a0 a0 00 cmp %g2, 0
400083d0: 02 80 00 09 be 400083f4 <_Objects_Initialize_information+0x84>
400083d4: b6 2e c0 03 andn %i3, %g3, %i3
400083d8: 80 a6 e0 00 cmp %i3, 0
400083dc: 12 80 00 07 bne 400083f8 <_Objects_Initialize_information+0x88>
400083e0: 05 10 00 53 sethi %hi(0x40014c00), %g2
_Internal_error_Occurred(
400083e4: 90 10 20 00 clr %o0
400083e8: 92 10 20 01 mov 1, %o1
400083ec: 7f ff fe 59 call 40007d50 <_Internal_error_Occurred>
400083f0: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
400083f4: 05 10 00 53 sethi %hi(0x40014c00), %g2
400083f8: 84 10 a3 94 or %g2, 0x394, %g2 ! 40014f94 <null_local_table.3306>
400083fc: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008400: 05 00 00 40 sethi %hi(0x10000), %g2
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40008404: 80 a0 00 1b cmp %g0, %i3
40008408: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
4000840c: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008410: b2 16 40 02 or %i1, %g2, %i1
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
40008414: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40008418: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
4000841c: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008420: b4 16 80 02 or %i2, %g2, %i2
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
40008424: 80 88 60 03 btst 3, %g1
40008428: 02 80 00 04 be 40008438 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN
4000842c: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
40008430: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED
40008434: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40008438: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000843c: 82 06 20 24 add %i0, 0x24, %g1
head->next = tail;
head->previous = NULL;
40008440: c0 26 20 24 clr [ %i0 + 0x24 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008444: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40008448: 82 06 20 20 add %i0, 0x20, %g1
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
4000844c: 80 a6 e0 00 cmp %i3, 0
40008450: 02 80 00 04 be 40008460 <_Objects_Initialize_information+0xf0>
40008454: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40008458: 7f ff fe 98 call 40007eb8 <_Objects_Extend_information>
4000845c: 81 e8 00 00 restore
40008460: 81 c7 e0 08 ret
40008464: 81 e8 00 00 restore
4000be44 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000be44: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000be48: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000be4c: 80 a4 20 00 cmp %l0, 0
4000be50: 02 80 00 1d be 4000bec4 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
4000be54: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000be58: 7f ff d7 b7 call 40001d34 <sparc_disable_interrupts>
4000be5c: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000be60: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
4000be64: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000be68: 7f ff d7 b7 call 40001d44 <sparc_enable_interrupts>
4000be6c: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000be70: 80 a4 e0 00 cmp %l3, 0
4000be74: 02 80 00 14 be 4000bec4 <_RTEMS_tasks_Post_switch_extension+0x80>
4000be78: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
4000be7c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000be80: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000be84: 82 00 60 01 inc %g1
4000be88: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000be8c: 94 10 00 11 mov %l1, %o2
4000be90: 25 00 00 3f sethi %hi(0xfc00), %l2
4000be94: 40 00 07 99 call 4000dcf8 <rtems_task_mode>
4000be98: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
4000be9c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000bea0: 9f c0 40 00 call %g1
4000bea4: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
4000bea8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000beac: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000beb0: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000beb4: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000beb8: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bebc: 40 00 07 8f call 4000dcf8 <rtems_task_mode>
4000bec0: 94 10 00 11 mov %l1, %o2
4000bec4: 81 c7 e0 08 ret
4000bec8: 81 e8 00 00 restore
40008150 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
40008150: 9d e3 bf 98 save %sp, -104, %sp
40008154: 11 10 00 7b sethi %hi(0x4001ec00), %o0
40008158: 92 10 00 18 mov %i0, %o1
4000815c: 90 12 22 04 or %o0, 0x204, %o0
40008160: 40 00 07 c7 call 4000a07c <_Objects_Get>
40008164: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40008168: c2 07 bf fc ld [ %fp + -4 ], %g1
4000816c: 80 a0 60 00 cmp %g1, 0
40008170: 12 80 00 24 bne 40008200 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
40008174: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
40008178: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
4000817c: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
40008180: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40008184: 80 88 80 01 btst %g2, %g1
40008188: 22 80 00 0b be,a 400081b4 <_Rate_monotonic_Timeout+0x64>
4000818c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40008190: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40008194: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008198: 80 a0 80 01 cmp %g2, %g1
4000819c: 32 80 00 06 bne,a 400081b4 <_Rate_monotonic_Timeout+0x64>
400081a0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400081a4: 13 04 00 ff sethi %hi(0x1003fc00), %o1
400081a8: 40 00 09 ee call 4000a960 <_Thread_Clear_state>
400081ac: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
400081b0: 30 80 00 06 b,a 400081c8 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
400081b4: 80 a0 60 01 cmp %g1, 1
400081b8: 12 80 00 0d bne 400081ec <_Rate_monotonic_Timeout+0x9c>
400081bc: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
400081c0: 82 10 20 03 mov 3, %g1
400081c4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
400081c8: 7f ff fe 66 call 40007b60 <_Rate_monotonic_Initiate_statistics>
400081cc: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400081d0: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400081d4: 11 10 00 7c sethi %hi(0x4001f000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400081d8: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400081dc: 90 12 20 50 or %o0, 0x50, %o0
400081e0: 40 00 0e cd call 4000bd14 <_Watchdog_Insert>
400081e4: 92 04 20 10 add %l0, 0x10, %o1
400081e8: 30 80 00 02 b,a 400081f0 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
400081ec: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400081f0: 03 10 00 7b sethi %hi(0x4001ec00), %g1
400081f4: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 4001ef70 <_Thread_Dispatch_disable_level>
400081f8: 84 00 bf ff add %g2, -1, %g2
400081fc: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
40008200: 81 c7 e0 08 ret
40008204: 81 e8 00 00 restore
4000c698 <_Scheduler_priority_Block>:
void _Scheduler_priority_Block(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
4000c698: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract(
Thread_Control *the_thread
)
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
4000c69c: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
4000c6a0: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
4000c6a4: c6 00 40 00 ld [ %g1 ], %g3
4000c6a8: c4 00 60 08 ld [ %g1 + 8 ], %g2
4000c6ac: 80 a0 c0 02 cmp %g3, %g2
4000c6b0: 32 80 00 17 bne,a 4000c70c <_Scheduler_priority_Block+0x74>
4000c6b4: c4 06 40 00 ld [ %i1 ], %g2
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
4000c6b8: c0 20 60 04 clr [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000c6bc: 84 00 60 04 add %g1, 4, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
4000c6c0: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4000c6c4: c4 20 40 00 st %g2, [ %g1 ]
_Chain_Initialize_empty( ready );
_Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
4000c6c8: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
4000c6cc: c6 00 60 04 ld [ %g1 + 4 ], %g3
4000c6d0: c4 10 60 0e lduh [ %g1 + 0xe ], %g2
4000c6d4: c8 10 c0 00 lduh [ %g3 ], %g4
4000c6d8: 84 09 00 02 and %g4, %g2, %g2
4000c6dc: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
4000c6e0: 85 28 a0 10 sll %g2, 0x10, %g2
4000c6e4: 80 a0 a0 00 cmp %g2, 0
4000c6e8: 32 80 00 0d bne,a 4000c71c <_Scheduler_priority_Block+0x84>
4000c6ec: 03 10 00 55 sethi %hi(0x40015400), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
4000c6f0: 05 10 00 55 sethi %hi(0x40015400), %g2
4000c6f4: c2 10 60 0c lduh [ %g1 + 0xc ], %g1
4000c6f8: c6 10 a1 80 lduh [ %g2 + 0x180 ], %g3
4000c6fc: 82 08 40 03 and %g1, %g3, %g1
4000c700: c2 30 a1 80 sth %g1, [ %g2 + 0x180 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
4000c704: 10 80 00 06 b 4000c71c <_Scheduler_priority_Block+0x84>
4000c708: 03 10 00 55 sethi %hi(0x40015400), %g1
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000c70c: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
4000c710: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000c714: c4 20 40 00 st %g2, [ %g1 ]
4000c718: 03 10 00 55 sethi %hi(0x40015400), %g1
{
_Scheduler_priority_Ready_queue_extract(the_thread);
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
4000c71c: c2 00 61 6c ld [ %g1 + 0x16c ], %g1 ! 4001556c <_Per_CPU_Information+0x10>
4000c720: 80 a6 40 01 cmp %i1, %g1
4000c724: 32 80 00 32 bne,a 4000c7ec <_Scheduler_priority_Block+0x154>
4000c728: 03 10 00 55 sethi %hi(0x40015400), %g1
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000c72c: 03 10 00 55 sethi %hi(0x40015400), %g1
4000c730: c4 10 61 80 lduh [ %g1 + 0x180 ], %g2 ! 40015580 <_Priority_Major_bit_map>
_Scheduler_priority_Block_body(the_scheduler, the_thread);
}
4000c734: c6 06 00 00 ld [ %i0 ], %g3
4000c738: 85 28 a0 10 sll %g2, 0x10, %g2
4000c73c: 03 10 00 4f sethi %hi(0x40013c00), %g1
4000c740: 89 30 a0 10 srl %g2, 0x10, %g4
4000c744: 80 a1 20 ff cmp %g4, 0xff
4000c748: 18 80 00 05 bgu 4000c75c <_Scheduler_priority_Block+0xc4>
4000c74c: 82 10 63 80 or %g1, 0x380, %g1
4000c750: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
4000c754: 10 80 00 04 b 4000c764 <_Scheduler_priority_Block+0xcc>
4000c758: 84 00 a0 08 add %g2, 8, %g2
4000c75c: 85 30 a0 18 srl %g2, 0x18, %g2
4000c760: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000c764: 83 28 a0 10 sll %g2, 0x10, %g1
4000c768: 09 10 00 55 sethi %hi(0x40015400), %g4
4000c76c: 83 30 60 0f srl %g1, 0xf, %g1
4000c770: 88 11 21 90 or %g4, 0x190, %g4
4000c774: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
4000c778: 03 10 00 4f sethi %hi(0x40013c00), %g1
4000c77c: 89 29 20 10 sll %g4, 0x10, %g4
4000c780: 9b 31 20 10 srl %g4, 0x10, %o5
4000c784: 80 a3 60 ff cmp %o5, 0xff
4000c788: 18 80 00 05 bgu 4000c79c <_Scheduler_priority_Block+0x104>
4000c78c: 82 10 63 80 or %g1, 0x380, %g1
4000c790: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
4000c794: 10 80 00 04 b 4000c7a4 <_Scheduler_priority_Block+0x10c>
4000c798: 82 00 60 08 add %g1, 8, %g1
4000c79c: 89 31 20 18 srl %g4, 0x18, %g4
4000c7a0: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
4000c7a4: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000c7a8: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
4000c7ac: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000c7b0: 85 30 a0 0c srl %g2, 0xc, %g2
4000c7b4: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
4000c7b8: 89 28 a0 02 sll %g2, 2, %g4
4000c7bc: 83 28 a0 04 sll %g2, 4, %g1
4000c7c0: 82 20 40 04 sub %g1, %g4, %g1
4000c7c4: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
4000c7c8: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000c7cc: 86 01 20 04 add %g4, 4, %g3
4000c7d0: 80 a0 80 03 cmp %g2, %g3
4000c7d4: 02 80 00 03 be 4000c7e0 <_Scheduler_priority_Block+0x148> <== NEVER TAKEN
4000c7d8: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
4000c7dc: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000c7e0: 05 10 00 55 sethi %hi(0x40015400), %g2
4000c7e4: c2 20 a1 6c st %g1, [ %g2 + 0x16c ] ! 4001556c <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
4000c7e8: 03 10 00 55 sethi %hi(0x40015400), %g1
4000c7ec: 82 10 61 5c or %g1, 0x15c, %g1 ! 4001555c <_Per_CPU_Information>
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
_Scheduler_priority_Schedule_body(the_scheduler);
if ( _Thread_Is_executing( the_thread ) )
4000c7f0: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4000c7f4: 80 a6 40 02 cmp %i1, %g2
4000c7f8: 12 80 00 03 bne 4000c804 <_Scheduler_priority_Block+0x16c>
4000c7fc: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000c800: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
4000c804: 81 c7 e0 08 ret
4000c808: 81 e8 00 00 restore
40008754 <_Scheduler_priority_Schedule>:
*/
void _Scheduler_priority_Schedule(
Scheduler_Control *the_scheduler
)
{
40008754: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008758: 03 10 00 55 sethi %hi(0x40015400), %g1
4000875c: c4 10 61 80 lduh [ %g1 + 0x180 ], %g2 ! 40015580 <_Priority_Major_bit_map>
_Scheduler_priority_Schedule_body( the_scheduler );
}
40008760: c6 06 00 00 ld [ %i0 ], %g3
40008764: 85 28 a0 10 sll %g2, 0x10, %g2
40008768: 03 10 00 4f sethi %hi(0x40013c00), %g1
4000876c: 89 30 a0 10 srl %g2, 0x10, %g4
40008770: 80 a1 20 ff cmp %g4, 0xff
40008774: 18 80 00 05 bgu 40008788 <_Scheduler_priority_Schedule+0x34>
40008778: 82 10 63 80 or %g1, 0x380, %g1
4000877c: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
40008780: 10 80 00 04 b 40008790 <_Scheduler_priority_Schedule+0x3c>
40008784: 84 00 a0 08 add %g2, 8, %g2
40008788: 85 30 a0 18 srl %g2, 0x18, %g2
4000878c: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40008790: 83 28 a0 10 sll %g2, 0x10, %g1
40008794: 09 10 00 55 sethi %hi(0x40015400), %g4
40008798: 83 30 60 0f srl %g1, 0xf, %g1
4000879c: 88 11 21 90 or %g4, 0x190, %g4
400087a0: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
400087a4: 03 10 00 4f sethi %hi(0x40013c00), %g1
400087a8: 89 29 20 10 sll %g4, 0x10, %g4
400087ac: 9b 31 20 10 srl %g4, 0x10, %o5
400087b0: 80 a3 60 ff cmp %o5, 0xff
400087b4: 18 80 00 05 bgu 400087c8 <_Scheduler_priority_Schedule+0x74>
400087b8: 82 10 63 80 or %g1, 0x380, %g1
400087bc: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
400087c0: 10 80 00 04 b 400087d0 <_Scheduler_priority_Schedule+0x7c>
400087c4: 82 00 60 08 add %g1, 8, %g1
400087c8: 89 31 20 18 srl %g4, 0x18, %g4
400087cc: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
400087d0: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
400087d4: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
400087d8: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
400087dc: 85 30 a0 0c srl %g2, 0xc, %g2
400087e0: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
400087e4: 89 28 a0 02 sll %g2, 2, %g4
400087e8: 83 28 a0 04 sll %g2, 4, %g1
400087ec: 82 20 40 04 sub %g1, %g4, %g1
400087f0: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
400087f4: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
400087f8: 86 01 20 04 add %g4, 4, %g3
400087fc: 80 a0 80 03 cmp %g2, %g3
40008800: 02 80 00 03 be 4000880c <_Scheduler_priority_Schedule+0xb8><== NEVER TAKEN
40008804: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
40008808: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000880c: 05 10 00 55 sethi %hi(0x40015400), %g2
40008810: c2 20 a1 6c st %g1, [ %g2 + 0x16c ] ! 4001556c <_Per_CPU_Information+0x10>
40008814: 81 c7 e0 08 ret
40008818: 81 e8 00 00 restore
40008958 <_Scheduler_priority_Yield>:
*/
void _Scheduler_priority_Yield(
Scheduler_Control *the_scheduler __attribute__((unused))
)
{
40008958: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
4000895c: 25 10 00 55 sethi %hi(0x40015400), %l2
40008960: a4 14 a1 5c or %l2, 0x15c, %l2 ! 4001555c <_Per_CPU_Information>
40008964: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
40008968: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
4000896c: 7f ff e4 f2 call 40001d34 <sparc_disable_interrupts>
40008970: e2 00 40 00 ld [ %g1 ], %l1
40008974: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
40008978: c4 04 40 00 ld [ %l1 ], %g2
4000897c: c2 04 60 08 ld [ %l1 + 8 ], %g1
40008980: 80 a0 80 01 cmp %g2, %g1
40008984: 22 80 00 1a be,a 400089ec <_Scheduler_priority_Yield+0x94>
40008988: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
4000898c: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
40008990: c2 04 20 04 ld [ %l0 + 4 ], %g1
next->previous = previous;
40008994: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40008998: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
4000899c: c2 04 60 08 ld [ %l1 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
400089a0: 84 04 60 04 add %l1, 4, %g2
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
400089a4: e0 24 60 08 st %l0, [ %l1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
400089a8: c4 24 00 00 st %g2, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
400089ac: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
400089b0: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
400089b4: 7f ff e4 e4 call 40001d44 <sparc_enable_interrupts>
400089b8: 01 00 00 00 nop
400089bc: 7f ff e4 de call 40001d34 <sparc_disable_interrupts>
400089c0: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
400089c4: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
400089c8: 80 a4 00 01 cmp %l0, %g1
400089cc: 12 80 00 04 bne 400089dc <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
400089d0: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
400089d4: c2 04 40 00 ld [ %l1 ], %g1
400089d8: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
400089dc: 03 10 00 55 sethi %hi(0x40015400), %g1
400089e0: 82 10 61 5c or %g1, 0x15c, %g1 ! 4001555c <_Per_CPU_Information>
400089e4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
400089e8: 30 80 00 05 b,a 400089fc <_Scheduler_priority_Yield+0xa4>
}
else if ( !_Thread_Is_heir( executing ) )
400089ec: 80 a4 00 01 cmp %l0, %g1
400089f0: 02 80 00 03 be 400089fc <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN
400089f4: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
400089f8: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
400089fc: 7f ff e4 d2 call 40001d44 <sparc_enable_interrupts>
40008a00: 81 e8 00 00 restore
40007b78 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007b78: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007b7c: 03 10 00 7b sethi %hi(0x4001ec00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007b80: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007b84: d2 00 61 54 ld [ %g1 + 0x154 ], %o1
if ((!the_tod) ||
40007b88: 80 a4 20 00 cmp %l0, 0
40007b8c: 02 80 00 2b be 40007c38 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007b90: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40007b94: 11 00 03 d0 sethi %hi(0xf4000), %o0
40007b98: 40 00 46 a8 call 40019638 <.udiv>
40007b9c: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40007ba0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40007ba4: 80 a0 40 08 cmp %g1, %o0
40007ba8: 1a 80 00 24 bcc 40007c38 <_TOD_Validate+0xc0>
40007bac: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007bb0: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40007bb4: 80 a0 60 3b cmp %g1, 0x3b
40007bb8: 18 80 00 20 bgu 40007c38 <_TOD_Validate+0xc0>
40007bbc: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40007bc0: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40007bc4: 80 a0 60 3b cmp %g1, 0x3b
40007bc8: 18 80 00 1c bgu 40007c38 <_TOD_Validate+0xc0>
40007bcc: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40007bd0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007bd4: 80 a0 60 17 cmp %g1, 0x17
40007bd8: 18 80 00 18 bgu 40007c38 <_TOD_Validate+0xc0>
40007bdc: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
40007be0: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40007be4: 80 a0 60 00 cmp %g1, 0
40007be8: 02 80 00 14 be 40007c38 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007bec: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
40007bf0: 18 80 00 12 bgu 40007c38 <_TOD_Validate+0xc0>
40007bf4: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40007bf8: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
40007bfc: 80 a0 e7 c3 cmp %g3, 0x7c3
40007c00: 08 80 00 0e bleu 40007c38 <_TOD_Validate+0xc0>
40007c04: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40007c08: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40007c0c: 80 a0 a0 00 cmp %g2, 0
40007c10: 02 80 00 0a be 40007c38 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007c14: 80 88 e0 03 btst 3, %g3
40007c18: 07 10 00 76 sethi %hi(0x4001d800), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
40007c1c: 12 80 00 03 bne 40007c28 <_TOD_Validate+0xb0>
40007c20: 86 10 e2 10 or %g3, 0x210, %g3 ! 4001da10 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40007c24: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40007c28: 83 28 60 02 sll %g1, 2, %g1
40007c2c: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007c30: 80 a0 40 02 cmp %g1, %g2
40007c34: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40007c38: 81 c7 e0 08 ret
40007c3c: 81 e8 00 00 restore
40008a5c <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40008a5c: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
40008a60: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40008a64: 40 00 03 70 call 40009824 <_Thread_Set_transient>
40008a68: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40008a6c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40008a70: 80 a0 40 19 cmp %g1, %i1
40008a74: 02 80 00 05 be 40008a88 <_Thread_Change_priority+0x2c>
40008a78: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40008a7c: 90 10 00 18 mov %i0, %o0
40008a80: 40 00 03 4d call 400097b4 <_Thread_Set_priority>
40008a84: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40008a88: 7f ff e4 ab call 40001d34 <sparc_disable_interrupts>
40008a8c: 01 00 00 00 nop
40008a90: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40008a94: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
40008a98: 80 a6 60 04 cmp %i1, 4
40008a9c: 02 80 00 10 be 40008adc <_Thread_Change_priority+0x80>
40008aa0: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40008aa4: 80 a4 60 00 cmp %l1, 0
40008aa8: 12 80 00 03 bne 40008ab4 <_Thread_Change_priority+0x58> <== NEVER TAKEN
40008aac: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40008ab0: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40008ab4: 7f ff e4 a4 call 40001d44 <sparc_enable_interrupts>
40008ab8: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40008abc: 03 00 00 ef sethi %hi(0x3bc00), %g1
40008ac0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40008ac4: 80 8e 40 01 btst %i1, %g1
40008ac8: 02 80 00 44 be 40008bd8 <_Thread_Change_priority+0x17c>
40008acc: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40008ad0: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40008ad4: 40 00 03 0b call 40009700 <_Thread_queue_Requeue>
40008ad8: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40008adc: 80 a4 60 00 cmp %l1, 0
40008ae0: 12 80 00 26 bne 40008b78 <_Thread_Change_priority+0x11c> <== NEVER TAKEN
40008ae4: 80 8e a0 ff btst 0xff, %i2
* Ready Queue with interrupts off.
*
* FIXME: hard-coded for priority scheduling. Might be ok since this
* function is specific to priority scheduling?
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40008ae8: c0 24 20 10 clr [ %l0 + 0x10 ]
40008aec: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
if ( prepend_it )
40008af0: 02 80 00 12 be 40008b38 <_Thread_Change_priority+0xdc>
40008af4: 05 10 00 55 sethi %hi(0x40015400), %g2
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40008af8: c6 00 60 04 ld [ %g1 + 4 ], %g3
40008afc: c8 10 60 0a lduh [ %g1 + 0xa ], %g4
40008b00: da 10 c0 00 lduh [ %g3 ], %o5
40008b04: 88 13 40 04 or %o5, %g4, %g4
40008b08: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008b0c: c6 10 a1 80 lduh [ %g2 + 0x180 ], %g3
40008b10: c8 10 60 08 lduh [ %g1 + 8 ], %g4
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
_Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
40008b14: c2 00 40 00 ld [ %g1 ], %g1
40008b18: 86 11 00 03 or %g4, %g3, %g3
40008b1c: c6 30 a1 80 sth %g3, [ %g2 + 0x180 ]
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
40008b20: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
40008b24: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
40008b28: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
40008b2c: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
40008b30: 10 80 00 12 b 40008b78 <_Thread_Change_priority+0x11c>
40008b34: e0 20 a0 04 st %l0, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40008b38: c6 00 60 04 ld [ %g1 + 4 ], %g3
40008b3c: c8 10 60 0a lduh [ %g1 + 0xa ], %g4
40008b40: da 10 c0 00 lduh [ %g3 ], %o5
40008b44: 88 13 40 04 or %o5, %g4, %g4
40008b48: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008b4c: c8 10 60 08 lduh [ %g1 + 8 ], %g4
40008b50: c6 10 a1 80 lduh [ %g2 + 0x180 ], %g3
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
_Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
40008b54: c2 00 40 00 ld [ %g1 ], %g1
40008b58: 86 11 00 03 or %g4, %g3, %g3
40008b5c: c6 30 a1 80 sth %g3, [ %g2 + 0x180 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40008b60: c4 00 60 08 ld [ %g1 + 8 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
40008b64: 86 00 60 04 add %g1, 4, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
40008b68: e0 20 60 08 st %l0, [ %g1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
40008b6c: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
40008b70: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last;
40008b74: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread );
else
_Scheduler_priority_Ready_queue_enqueue( the_thread );
}
_ISR_Flash( level );
40008b78: 7f ff e4 73 call 40001d44 <sparc_enable_interrupts>
40008b7c: 90 10 00 18 mov %i0, %o0
40008b80: 7f ff e4 6d call 40001d34 <sparc_disable_interrupts>
40008b84: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
Scheduler_Control *the_scheduler
)
{
the_scheduler->Operations.schedule( the_scheduler );
40008b88: 11 10 00 54 sethi %hi(0x40015000), %o0
40008b8c: 90 12 23 94 or %o0, 0x394, %o0 ! 40015394 <_Scheduler>
40008b90: c2 02 20 04 ld [ %o0 + 4 ], %g1
40008b94: 9f c0 40 00 call %g1
40008b98: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40008b9c: 03 10 00 55 sethi %hi(0x40015400), %g1
40008ba0: 82 10 61 5c or %g1, 0x15c, %g1 ! 4001555c <_Per_CPU_Information>
40008ba4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule(&_Scheduler);
if ( !_Thread_Is_executing_also_the_heir() &&
40008ba8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40008bac: 80 a0 80 03 cmp %g2, %g3
40008bb0: 02 80 00 08 be 40008bd0 <_Thread_Change_priority+0x174>
40008bb4: 01 00 00 00 nop
40008bb8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
40008bbc: 80 a0 a0 00 cmp %g2, 0
40008bc0: 02 80 00 04 be 40008bd0 <_Thread_Change_priority+0x174>
40008bc4: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40008bc8: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
40008bcc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40008bd0: 7f ff e4 5d call 40001d44 <sparc_enable_interrupts>
40008bd4: 81 e8 00 00 restore
40008bd8: 81 c7 e0 08 ret
40008bdc: 81 e8 00 00 restore
40008dc0 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008dc0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008dc4: 90 10 00 18 mov %i0, %o0
40008dc8: 40 00 00 5f call 40008f44 <_Thread_Get>
40008dcc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008dd0: c2 07 bf fc ld [ %fp + -4 ], %g1
40008dd4: 80 a0 60 00 cmp %g1, 0
40008dd8: 12 80 00 08 bne 40008df8 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008ddc: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40008de0: 7f ff ff 80 call 40008be0 <_Thread_Clear_state>
40008de4: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40008de8: 03 10 00 54 sethi %hi(0x40015000), %g1
40008dec: c4 00 63 10 ld [ %g1 + 0x310 ], %g2 ! 40015310 <_Thread_Dispatch_disable_level>
40008df0: 84 00 bf ff add %g2, -1, %g2
40008df4: c4 20 63 10 st %g2, [ %g1 + 0x310 ]
40008df8: 81 c7 e0 08 ret
40008dfc: 81 e8 00 00 restore
40008e00 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
40008e00: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
40008e04: 2b 10 00 55 sethi %hi(0x40015400), %l5
40008e08: 82 15 61 5c or %l5, 0x15c, %g1 ! 4001555c <_Per_CPU_Information>
_ISR_Disable( level );
40008e0c: 7f ff e3 ca call 40001d34 <sparc_disable_interrupts>
40008e10: e2 00 60 0c ld [ %g1 + 0xc ], %l1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40008e14: 25 10 00 54 sethi %hi(0x40015000), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40008e18: 39 10 00 54 sethi %hi(0x40015000), %i4
40008e1c: ba 10 20 01 mov 1, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008e20: 2f 10 00 54 sethi %hi(0x40015000), %l7
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008e24: a8 07 bf f8 add %fp, -8, %l4
_Timestamp_Subtract(
40008e28: a6 07 bf f0 add %fp, -16, %l3
40008e2c: a4 14 a3 dc or %l2, 0x3dc, %l2
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008e30: 10 80 00 2b b 40008edc <_Thread_Dispatch+0xdc>
40008e34: 2d 10 00 54 sethi %hi(0x40015000), %l6
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40008e38: fa 27 23 10 st %i5, [ %i4 + 0x310 ]
_Thread_Dispatch_necessary = false;
40008e3c: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40008e40: 80 a4 00 11 cmp %l0, %l1
40008e44: 02 80 00 2b be 40008ef0 <_Thread_Dispatch+0xf0>
40008e48: e0 20 60 0c st %l0, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40008e4c: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
40008e50: 80 a0 60 01 cmp %g1, 1
40008e54: 12 80 00 03 bne 40008e60 <_Thread_Dispatch+0x60>
40008e58: c2 05 e2 74 ld [ %l7 + 0x274 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008e5c: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Enable( level );
40008e60: 7f ff e3 b9 call 40001d44 <sparc_enable_interrupts>
40008e64: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008e68: 40 00 0c f8 call 4000c248 <_TOD_Get_uptime>
40008e6c: 90 10 00 14 mov %l4, %o0
_Timestamp_Subtract(
40008e70: 90 10 00 12 mov %l2, %o0
40008e74: 92 10 00 14 mov %l4, %o1
40008e78: 40 00 03 10 call 40009ab8 <_Timespec_Subtract>
40008e7c: 94 10 00 13 mov %l3, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008e80: 90 04 60 84 add %l1, 0x84, %o0
40008e84: 40 00 02 f4 call 40009a54 <_Timespec_Add_to>
40008e88: 92 10 00 13 mov %l3, %o1
_Thread_Time_of_last_context_switch = uptime;
40008e8c: c2 07 bf f8 ld [ %fp + -8 ], %g1
40008e90: c2 24 80 00 st %g1, [ %l2 ]
40008e94: c2 07 bf fc ld [ %fp + -4 ], %g1
40008e98: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008e9c: c2 05 a3 b4 ld [ %l6 + 0x3b4 ], %g1
40008ea0: 80 a0 60 00 cmp %g1, 0
40008ea4: 02 80 00 06 be 40008ebc <_Thread_Dispatch+0xbc> <== NEVER TAKEN
40008ea8: 90 10 00 11 mov %l1, %o0
executing->libc_reent = *_Thread_libc_reent;
40008eac: c4 00 40 00 ld [ %g1 ], %g2
40008eb0: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
40008eb4: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
40008eb8: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40008ebc: 40 00 03 af call 40009d78 <_User_extensions_Thread_switch>
40008ec0: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
40008ec4: 90 04 60 c0 add %l1, 0xc0, %o0
40008ec8: 40 00 04 a0 call 4000a148 <_CPU_Context_switch>
40008ecc: 92 04 20 c0 add %l0, 0xc0, %o1
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
40008ed0: 82 15 61 5c or %l5, 0x15c, %g1
_ISR_Disable( level );
40008ed4: 7f ff e3 98 call 40001d34 <sparc_disable_interrupts>
40008ed8: e2 00 60 0c ld [ %g1 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008edc: 82 15 61 5c or %l5, 0x15c, %g1
40008ee0: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
40008ee4: 80 a0 a0 00 cmp %g2, 0
40008ee8: 32 bf ff d4 bne,a 40008e38 <_Thread_Dispatch+0x38>
40008eec: e0 00 60 10 ld [ %g1 + 0x10 ], %l0
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
40008ef0: 03 10 00 54 sethi %hi(0x40015000), %g1
40008ef4: c0 20 63 10 clr [ %g1 + 0x310 ] ! 40015310 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
40008ef8: 7f ff e3 93 call 40001d44 <sparc_enable_interrupts>
40008efc: 01 00 00 00 nop
_API_extensions_Run_postswitch();
40008f00: 7f ff f8 f1 call 400072c4 <_API_extensions_Run_postswitch>
40008f04: 01 00 00 00 nop
}
40008f08: 81 c7 e0 08 ret
40008f0c: 81 e8 00 00 restore
40008f44 <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
40008f44: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40008f48: 80 a2 20 00 cmp %o0, 0
40008f4c: 12 80 00 0a bne 40008f74 <_Thread_Get+0x30>
40008f50: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008f54: 03 10 00 54 sethi %hi(0x40015000), %g1
40008f58: c4 00 63 10 ld [ %g1 + 0x310 ], %g2 ! 40015310 <_Thread_Dispatch_disable_level>
40008f5c: 84 00 a0 01 inc %g2
40008f60: c4 20 63 10 st %g2, [ %g1 + 0x310 ]
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
40008f64: 03 10 00 55 sethi %hi(0x40015400), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
40008f68: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
40008f6c: 81 c3 e0 08 retl
40008f70: d0 00 61 68 ld [ %g1 + 0x168 ], %o0
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40008f74: 87 32 20 18 srl %o0, 0x18, %g3
40008f78: 86 08 e0 07 and %g3, 7, %g3
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008f7c: 84 00 ff ff add %g3, -1, %g2
40008f80: 80 a0 a0 02 cmp %g2, 2
40008f84: 28 80 00 16 bleu,a 40008fdc <_Thread_Get+0x98>
40008f88: 85 32 20 1b srl %o0, 0x1b, %g2
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
40008f8c: 82 10 20 01 mov 1, %g1
40008f90: 10 80 00 09 b 40008fb4 <_Thread_Get+0x70>
40008f94: c2 22 80 00 st %g1, [ %o2 ]
goto done;
}
api_information = _Objects_Information_table[ the_api ];
40008f98: 09 10 00 54 sethi %hi(0x40015000), %g4
40008f9c: 88 11 22 78 or %g4, 0x278, %g4 ! 40015278 <_Objects_Information_table>
40008fa0: c6 01 00 03 ld [ %g4 + %g3 ], %g3
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
40008fa4: 80 a0 e0 00 cmp %g3, 0
40008fa8: 32 80 00 05 bne,a 40008fbc <_Thread_Get+0x78> <== ALWAYS TAKEN
40008fac: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
40008fb0: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
40008fb4: 81 c3 e0 08 retl
40008fb8: 90 10 20 00 clr %o0
}
#endif
information = api_information[ the_class ];
if ( !information ) {
40008fbc: 80 a2 20 00 cmp %o0, 0
40008fc0: 12 80 00 04 bne 40008fd0 <_Thread_Get+0x8c>
40008fc4: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
40008fc8: 81 c3 e0 08 retl
40008fcc: c4 22 80 00 st %g2, [ %o2 ]
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
40008fd0: 82 13 c0 00 mov %o7, %g1
40008fd4: 7f ff fc ca call 400082fc <_Objects_Get>
40008fd8: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
40008fdc: 80 a0 a0 01 cmp %g2, 1
40008fe0: 22 bf ff ee be,a 40008f98 <_Thread_Get+0x54>
40008fe4: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
40008fe8: 10 bf ff ea b 40008f90 <_Thread_Get+0x4c>
40008fec: 82 10 20 01 mov 1, %g1
4000e028 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000e028: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000e02c: 03 10 00 55 sethi %hi(0x40015400), %g1
4000e030: e0 00 61 68 ld [ %g1 + 0x168 ], %l0 ! 40015568 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000e034: 3f 10 00 38 sethi %hi(0x4000e000), %i7
4000e038: be 17 e0 28 or %i7, 0x28, %i7 ! 4000e028 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000e03c: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000e040: 7f ff cf 41 call 40001d44 <sparc_enable_interrupts>
4000e044: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000e048: 03 10 00 53 sethi %hi(0x40014c00), %g1
doneConstructors = 1;
4000e04c: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000e050: e2 08 63 9c ldub [ %g1 + 0x39c ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000e054: 90 10 00 10 mov %l0, %o0
4000e058: 7f ff ee d8 call 40009bb8 <_User_extensions_Thread_begin>
4000e05c: c4 28 63 9c stb %g2, [ %g1 + 0x39c ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000e060: 7f ff eb ac call 40008f10 <_Thread_Enable_dispatch>
4000e064: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000e068: 80 a4 60 00 cmp %l1, 0
4000e06c: 32 80 00 05 bne,a 4000e080 <_Thread_Handler+0x58>
4000e070: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
INIT_NAME ();
4000e074: 40 00 19 db call 400147e0 <_init>
4000e078: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000e07c: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000e080: 80 a0 60 00 cmp %g1, 0
4000e084: 12 80 00 06 bne 4000e09c <_Thread_Handler+0x74> <== NEVER TAKEN
4000e088: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000e08c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000e090: 9f c0 40 00 call %g1
4000e094: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000e098: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000e09c: 7f ff ee d8 call 40009bfc <_User_extensions_Thread_exitted>
4000e0a0: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000e0a4: 90 10 20 00 clr %o0
4000e0a8: 92 10 20 01 mov 1, %o1
4000e0ac: 7f ff e7 29 call 40007d50 <_Internal_error_Occurred>
4000e0b0: 94 10 20 05 mov 5, %o2
40008ff0 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
40008ff0: 9d e3 bf a0 save %sp, -96, %sp
40008ff4: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
40008ff8: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
40008ffc: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
40009000: c0 26 61 4c clr [ %i1 + 0x14c ]
40009004: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
40009008: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
4000900c: 90 10 00 19 mov %i1, %o0
40009010: 40 00 02 2d call 400098c4 <_Thread_Stack_Allocate>
40009014: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40009018: 80 a2 00 1b cmp %o0, %i3
4000901c: 0a 80 00 69 bcs 400091c0 <_Thread_Initialize+0x1d0>
40009020: 80 a2 20 00 cmp %o0, 0
40009024: 02 80 00 67 be 400091c0 <_Thread_Initialize+0x1d0> <== NEVER TAKEN
40009028: 01 00 00 00 nop
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
4000902c: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
40009030: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40009034: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
40009038: 03 10 00 54 sethi %hi(0x40015000), %g1
4000903c: d0 00 63 c0 ld [ %g1 + 0x3c0 ], %o0 ! 400153c0 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40009040: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40009044: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40009048: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
4000904c: c0 26 60 6c clr [ %i1 + 0x6c ]
40009050: 80 a2 20 00 cmp %o0, 0
40009054: 02 80 00 08 be 40009074 <_Thread_Initialize+0x84>
40009058: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
4000905c: 90 02 20 01 inc %o0
40009060: 40 00 04 1c call 4000a0d0 <_Workspace_Allocate>
40009064: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40009068: b6 92 20 00 orcc %o0, 0, %i3
4000906c: 22 80 00 34 be,a 4000913c <_Thread_Initialize+0x14c>
40009070: a0 10 20 00 clr %l0
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
40009074: 80 a6 e0 00 cmp %i3, 0
40009078: 02 80 00 0b be 400090a4 <_Thread_Initialize+0xb4>
4000907c: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40009080: 03 10 00 54 sethi %hi(0x40015000), %g1
40009084: c4 00 63 c0 ld [ %g1 + 0x3c0 ], %g2 ! 400153c0 <_Thread_Maximum_extensions>
40009088: 10 80 00 04 b 40009098 <_Thread_Initialize+0xa8>
4000908c: 82 10 20 00 clr %g1
40009090: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
40009094: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40009098: 80 a0 40 02 cmp %g1, %g2
4000909c: 08 bf ff fd bleu 40009090 <_Thread_Initialize+0xa0>
400090a0: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
400090a4: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
400090a8: 11 10 00 54 sethi %hi(0x40015000), %o0
400090ac: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
400090b0: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
400090b4: 90 12 23 94 or %o0, 0x394, %o0
400090b8: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
400090bc: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
400090c0: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
400090c4: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
400090c8: 82 10 20 01 mov 1, %g1
400090cc: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
400090d0: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
the_thread->Wait.queue = NULL;
400090d4: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
400090d8: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
400090dc: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
400090e0: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
400090e4: 9f c0 40 00 call %g1
400090e8: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
400090ec: a0 92 20 00 orcc %o0, 0, %l0
400090f0: 02 80 00 13 be 4000913c <_Thread_Initialize+0x14c>
400090f4: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
400090f8: 40 00 01 af call 400097b4 <_Thread_Set_priority>
400090fc: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread );
return false;
}
40009100: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40009104: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40009108: c0 26 60 84 clr [ %i1 + 0x84 ]
4000910c: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40009110: 83 28 60 02 sll %g1, 2, %g1
40009114: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40009118: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
4000911c: 90 10 00 19 mov %i1, %o0
40009120: 40 00 02 d9 call 40009c84 <_User_extensions_Thread_create>
40009124: b0 10 20 01 mov 1, %i0
if ( extension_status )
40009128: 80 8a 20 ff btst 0xff, %o0
4000912c: 22 80 00 05 be,a 40009140 <_Thread_Initialize+0x150>
40009130: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
40009134: 81 c7 e0 08 ret
40009138: 81 e8 00 00 restore
return true;
failed:
if ( the_thread->libc_reent )
4000913c: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
40009140: 80 a2 20 00 cmp %o0, 0
40009144: 22 80 00 05 be,a 40009158 <_Thread_Initialize+0x168>
40009148: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
_Workspace_Free( the_thread->libc_reent );
4000914c: 40 00 03 ea call 4000a0f4 <_Workspace_Free>
40009150: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
40009154: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
40009158: 80 a2 20 00 cmp %o0, 0
4000915c: 22 80 00 05 be,a 40009170 <_Thread_Initialize+0x180>
40009160: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
40009164: 40 00 03 e4 call 4000a0f4 <_Workspace_Free>
40009168: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
4000916c: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
40009170: 80 a2 20 00 cmp %o0, 0
40009174: 02 80 00 05 be 40009188 <_Thread_Initialize+0x198> <== ALWAYS TAKEN
40009178: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
4000917c: 40 00 03 de call 4000a0f4 <_Workspace_Free> <== NOT EXECUTED
40009180: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
40009184: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40009188: 02 80 00 05 be 4000919c <_Thread_Initialize+0x1ac>
4000918c: 80 a4 20 00 cmp %l0, 0
(void) _Workspace_Free( extensions_area );
40009190: 40 00 03 d9 call 4000a0f4 <_Workspace_Free>
40009194: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
if ( sched )
40009198: 80 a4 20 00 cmp %l0, 0
4000919c: 02 80 00 05 be 400091b0 <_Thread_Initialize+0x1c0>
400091a0: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
400091a4: 40 00 03 d4 call 4000a0f4 <_Workspace_Free>
400091a8: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
400091ac: 90 10 00 19 mov %i1, %o0
400091b0: 40 00 01 dc call 40009920 <_Thread_Stack_Free>
400091b4: b0 10 20 00 clr %i0
return false;
400091b8: 81 c7 e0 08 ret
400091bc: 81 e8 00 00 restore
}
400091c0: 81 c7 e0 08 ret
400091c4: 91 e8 20 00 restore %g0, 0, %o0
4000d01c <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000d01c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000d020: 7f ff d3 99 call 40001e84 <sparc_disable_interrupts>
4000d024: 01 00 00 00 nop
4000d028: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
4000d02c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000d030: 80 88 60 02 btst 2, %g1
4000d034: 02 80 00 0a be 4000d05c <_Thread_Resume+0x40> <== NEVER TAKEN
4000d038: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000d03c: 80 a0 60 00 cmp %g1, 0
4000d040: 12 80 00 07 bne 4000d05c <_Thread_Resume+0x40>
4000d044: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
the_scheduler->Operations.unblock( the_scheduler, the_thread );
4000d048: 11 10 00 64 sethi %hi(0x40019000), %o0
4000d04c: 90 12 23 34 or %o0, 0x334, %o0 ! 40019334 <_Scheduler>
4000d050: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
4000d054: 9f c0 40 00 call %g1
4000d058: 92 10 00 18 mov %i0, %o1
_Scheduler_Unblock( &_Scheduler, the_thread );
}
}
_ISR_Enable( level );
4000d05c: 7f ff d3 8e call 40001e94 <sparc_enable_interrupts>
4000d060: 91 e8 00 10 restore %g0, %l0, %o0
40009700 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
40009700: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40009704: 80 a6 20 00 cmp %i0, 0
40009708: 02 80 00 19 be 4000976c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
4000970c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40009710: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
40009714: 80 a4 60 01 cmp %l1, 1
40009718: 12 80 00 15 bne 4000976c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
4000971c: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40009720: 7f ff e1 85 call 40001d34 <sparc_disable_interrupts>
40009724: 01 00 00 00 nop
40009728: a0 10 00 08 mov %o0, %l0
4000972c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40009730: 03 00 00 ef sethi %hi(0x3bc00), %g1
40009734: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40009738: 80 88 80 01 btst %g2, %g1
4000973c: 02 80 00 0a be 40009764 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
40009740: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
40009744: 92 10 00 19 mov %i1, %o1
40009748: 94 10 20 01 mov 1, %o2
4000974c: 40 00 0c 86 call 4000c964 <_Thread_queue_Extract_priority_helper>
40009750: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40009754: 90 10 00 18 mov %i0, %o0
40009758: 92 10 00 19 mov %i1, %o1
4000975c: 7f ff ff 49 call 40009480 <_Thread_queue_Enqueue_priority>
40009760: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
40009764: 7f ff e1 78 call 40001d44 <sparc_enable_interrupts>
40009768: 90 10 00 10 mov %l0, %o0
4000976c: 81 c7 e0 08 ret
40009770: 81 e8 00 00 restore
40009774 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40009774: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40009778: 90 10 00 18 mov %i0, %o0
4000977c: 7f ff fd f2 call 40008f44 <_Thread_Get>
40009780: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40009784: c2 07 bf fc ld [ %fp + -4 ], %g1
40009788: 80 a0 60 00 cmp %g1, 0
4000978c: 12 80 00 08 bne 400097ac <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40009790: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
40009794: 40 00 0c ac call 4000ca44 <_Thread_queue_Process_timeout>
40009798: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
4000979c: 03 10 00 54 sethi %hi(0x40015000), %g1
400097a0: c4 00 63 10 ld [ %g1 + 0x310 ], %g2 ! 40015310 <_Thread_Dispatch_disable_level>
400097a4: 84 00 bf ff add %g2, -1, %g2
400097a8: c4 20 63 10 st %g2, [ %g1 + 0x310 ]
400097ac: 81 c7 e0 08 ret
400097b0: 81 e8 00 00 restore
40017230 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40017230: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017234: 39 10 00 f6 sethi %hi(0x4003d800), %i4
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40017238: b6 07 bf f4 add %fp, -12, %i3
4001723c: ae 07 bf f8 add %fp, -8, %l7
40017240: a4 07 bf e8 add %fp, -24, %l2
40017244: a6 07 bf ec add %fp, -20, %l3
40017248: ee 27 bf f4 st %l7, [ %fp + -12 ]
head->previous = NULL;
4001724c: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
40017250: f6 27 bf fc st %i3, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40017254: e6 27 bf e8 st %l3, [ %fp + -24 ]
head->previous = NULL;
40017258: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
4001725c: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017260: a8 06 20 30 add %i0, 0x30, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40017264: 3b 10 00 f5 sethi %hi(0x4003d400), %i5
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40017268: a2 06 20 68 add %i0, 0x68, %l1
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
4001726c: ac 06 20 08 add %i0, 8, %l6
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40017270: aa 06 20 40 add %i0, 0x40, %l5
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
40017274: f6 26 20 78 st %i3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017278: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
4001727c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017280: 94 10 00 12 mov %l2, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40017284: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017288: 90 10 00 14 mov %l4, %o0
4001728c: 40 00 11 53 call 4001b7d8 <_Watchdog_Adjust_to_chain>
40017290: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40017294: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40017298: e0 07 63 88 ld [ %i5 + 0x388 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
4001729c: 80 a4 00 0a cmp %l0, %o2
400172a0: 08 80 00 06 bleu 400172b8 <_Timer_server_Body+0x88>
400172a4: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400172a8: 90 10 00 11 mov %l1, %o0
400172ac: 40 00 11 4b call 4001b7d8 <_Watchdog_Adjust_to_chain>
400172b0: 94 10 00 12 mov %l2, %o2
400172b4: 30 80 00 06 b,a 400172cc <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
400172b8: 1a 80 00 05 bcc 400172cc <_Timer_server_Body+0x9c>
400172bc: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400172c0: 92 10 20 01 mov 1, %o1
400172c4: 40 00 11 1d call 4001b738 <_Watchdog_Adjust>
400172c8: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
400172cc: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400172d0: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400172d4: 40 00 02 c1 call 40017dd8 <_Chain_Get>
400172d8: 01 00 00 00 nop
if ( timer == NULL ) {
400172dc: 92 92 20 00 orcc %o0, 0, %o1
400172e0: 02 80 00 0c be 40017310 <_Timer_server_Body+0xe0>
400172e4: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400172e8: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400172ec: 80 a0 60 01 cmp %g1, 1
400172f0: 02 80 00 05 be 40017304 <_Timer_server_Body+0xd4>
400172f4: 90 10 00 14 mov %l4, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400172f8: 80 a0 60 03 cmp %g1, 3
400172fc: 12 bf ff f5 bne 400172d0 <_Timer_server_Body+0xa0> <== NEVER TAKEN
40017300: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017304: 40 00 11 69 call 4001b8a8 <_Watchdog_Insert>
40017308: 92 02 60 10 add %o1, 0x10, %o1
4001730c: 30 bf ff f1 b,a 400172d0 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
40017310: 7f ff e0 3d call 4000f404 <sparc_disable_interrupts>
40017314: 01 00 00 00 nop
tmp = ts->insert_chain;
40017318: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
4001731c: c2 07 bf f4 ld [ %fp + -12 ], %g1
40017320: 80 a0 40 17 cmp %g1, %l7
40017324: 12 80 00 04 bne 40017334 <_Timer_server_Body+0x104> <== NEVER TAKEN
40017328: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
4001732c: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
40017330: a0 10 20 00 clr %l0
}
_ISR_Enable( level );
40017334: 7f ff e0 38 call 4000f414 <sparc_enable_interrupts>
40017338: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
4001733c: 80 8c 20 ff btst 0xff, %l0
40017340: 12 bf ff ce bne 40017278 <_Timer_server_Body+0x48> <== NEVER TAKEN
40017344: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40017348: 80 a0 40 13 cmp %g1, %l3
4001734c: 02 80 00 18 be 400173ac <_Timer_server_Body+0x17c>
40017350: 01 00 00 00 nop
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40017354: 7f ff e0 2c call 4000f404 <sparc_disable_interrupts>
40017358: 01 00 00 00 nop
4001735c: 84 10 00 08 mov %o0, %g2
initialized = false;
}
#endif
return status;
}
40017360: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40017364: 80 a4 00 13 cmp %l0, %l3
40017368: 02 80 00 0e be 400173a0 <_Timer_server_Body+0x170>
4001736c: 80 a4 20 00 cmp %l0, 0
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
40017370: c2 04 00 00 ld [ %l0 ], %g1
head->next = new_first;
40017374: c2 27 bf e8 st %g1, [ %fp + -24 ]
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
40017378: 02 80 00 0a be 400173a0 <_Timer_server_Body+0x170> <== NEVER TAKEN
4001737c: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
40017380: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
40017384: 7f ff e0 24 call 4000f414 <sparc_enable_interrupts>
40017388: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
4001738c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40017390: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
40017394: 9f c0 40 00 call %g1
40017398: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
4001739c: 30 bf ff ee b,a 40017354 <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
400173a0: 7f ff e0 1d call 4000f414 <sparc_enable_interrupts>
400173a4: 90 10 00 02 mov %g2, %o0
400173a8: 30 bf ff b3 b,a 40017274 <_Timer_server_Body+0x44>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
400173ac: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
400173b0: 7f ff ff 70 call 40017170 <_Thread_Disable_dispatch>
400173b4: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
400173b8: d0 06 00 00 ld [ %i0 ], %o0
400173bc: 40 00 0f 1f call 4001b038 <_Thread_Set_state>
400173c0: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400173c4: 7f ff ff 71 call 40017188 <_Timer_server_Reset_interval_system_watchdog>
400173c8: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400173cc: 7f ff ff 84 call 400171dc <_Timer_server_Reset_tod_system_watchdog>
400173d0: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400173d4: 40 00 0c b9 call 4001a6b8 <_Thread_Enable_dispatch>
400173d8: 01 00 00 00 nop
ts->active = true;
400173dc: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400173e0: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400173e4: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400173e8: 40 00 11 8c call 4001ba18 <_Watchdog_Remove>
400173ec: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400173f0: 40 00 11 8a call 4001ba18 <_Watchdog_Remove>
400173f4: 90 10 00 15 mov %l5, %o0
400173f8: 30 bf ff 9f b,a 40017274 <_Timer_server_Body+0x44>
400173fc <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
400173fc: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40017400: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
40017404: 80 a0 60 00 cmp %g1, 0
40017408: 12 80 00 49 bne 4001752c <_Timer_server_Schedule_operation_method+0x130>
4001740c: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
40017410: 7f ff ff 58 call 40017170 <_Thread_Disable_dispatch>
40017414: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017418: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
4001741c: 80 a0 60 01 cmp %g1, 1
40017420: 12 80 00 1f bne 4001749c <_Timer_server_Schedule_operation_method+0xa0>
40017424: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40017428: 7f ff df f7 call 4000f404 <sparc_disable_interrupts>
4001742c: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40017430: 03 10 00 f6 sethi %hi(0x4003d800), %g1
40017434: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 ! 4003d810 <_Watchdog_Ticks_since_boot>
initialized = false;
}
#endif
return status;
}
40017438: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
last_snapshot = ts->Interval_watchdogs.last_snapshot;
4001743c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40017440: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
40017444: 80 a0 40 03 cmp %g1, %g3
40017448: 02 80 00 08 be 40017468 <_Timer_server_Schedule_operation_method+0x6c>
4001744c: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40017450: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40017454: 80 a3 40 04 cmp %o5, %g4
40017458: 08 80 00 03 bleu 40017464 <_Timer_server_Schedule_operation_method+0x68>
4001745c: 86 10 20 00 clr %g3
delta_interval -= delta;
40017460: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40017464: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
40017468: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
4001746c: 7f ff df ea call 4000f414 <sparc_enable_interrupts>
40017470: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40017474: 90 06 20 30 add %i0, 0x30, %o0
40017478: 40 00 11 0c call 4001b8a8 <_Watchdog_Insert>
4001747c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017480: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40017484: 80 a0 60 00 cmp %g1, 0
40017488: 12 80 00 27 bne 40017524 <_Timer_server_Schedule_operation_method+0x128>
4001748c: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40017490: 7f ff ff 3e call 40017188 <_Timer_server_Reset_interval_system_watchdog>
40017494: 90 10 00 18 mov %i0, %o0
40017498: 30 80 00 23 b,a 40017524 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
4001749c: 12 80 00 22 bne 40017524 <_Timer_server_Schedule_operation_method+0x128>
400174a0: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400174a4: 7f ff df d8 call 4000f404 <sparc_disable_interrupts>
400174a8: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
400174ac: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
400174b0: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400174b4: 03 10 00 f5 sethi %hi(0x4003d400), %g1
400174b8: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
400174bc: 80 a0 80 03 cmp %g2, %g3
400174c0: 02 80 00 0d be 400174f4 <_Timer_server_Schedule_operation_method+0xf8>
400174c4: c2 00 63 88 ld [ %g1 + 0x388 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
400174c8: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
400174cc: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
400174d0: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
400174d4: 08 80 00 07 bleu 400174f0 <_Timer_server_Schedule_operation_method+0xf4>
400174d8: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
400174dc: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
400174e0: 80 a1 00 0d cmp %g4, %o5
400174e4: 08 80 00 03 bleu 400174f0 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
400174e8: 86 10 20 00 clr %g3
delta_interval -= delta;
400174ec: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400174f0: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400174f4: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400174f8: 7f ff df c7 call 4000f414 <sparc_enable_interrupts>
400174fc: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017500: 90 06 20 68 add %i0, 0x68, %o0
40017504: 40 00 10 e9 call 4001b8a8 <_Watchdog_Insert>
40017508: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
4001750c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40017510: 80 a0 60 00 cmp %g1, 0
40017514: 12 80 00 04 bne 40017524 <_Timer_server_Schedule_operation_method+0x128>
40017518: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
4001751c: 7f ff ff 30 call 400171dc <_Timer_server_Reset_tod_system_watchdog>
40017520: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
40017524: 40 00 0c 65 call 4001a6b8 <_Thread_Enable_dispatch>
40017528: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
4001752c: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
40017530: 40 00 02 14 call 40017d80 <_Chain_Append>
40017534: 81 e8 00 00 restore
4000b990 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000b990: c6 02 00 00 ld [ %o0 ], %g3
4000b994: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000b998: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000b99c: 80 a0 c0 02 cmp %g3, %g2
4000b9a0: 14 80 00 0b bg 4000b9cc <_Timespec_Greater_than+0x3c>
4000b9a4: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000b9a8: 80 a0 c0 02 cmp %g3, %g2
4000b9ac: 06 80 00 08 bl 4000b9cc <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
4000b9b0: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000b9b4: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000b9b8: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000b9bc: 80 a0 80 01 cmp %g2, %g1
4000b9c0: 14 80 00 03 bg 4000b9cc <_Timespec_Greater_than+0x3c>
4000b9c4: 90 10 20 01 mov 1, %o0
4000b9c8: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000b9cc: 81 c3 e0 08 retl
40009c3c <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40009c3c: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009c40: 23 10 00 55 sethi %hi(0x40015400), %l1
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009c44: b2 0e 60 ff and %i1, 0xff, %i1
}
}
40009c48: a2 14 61 18 or %l1, 0x118, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009c4c: 10 80 00 09 b 40009c70 <_User_extensions_Fatal+0x34>
40009c50: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
40009c54: 80 a0 60 00 cmp %g1, 0
40009c58: 02 80 00 05 be 40009c6c <_User_extensions_Fatal+0x30>
40009c5c: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009c60: 92 10 00 19 mov %i1, %o1
40009c64: 9f c0 40 00 call %g1
40009c68: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009c6c: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009c70: 80 a4 00 11 cmp %l0, %l1
40009c74: 32 bf ff f8 bne,a 40009c54 <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN
40009c78: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009c7c: 81 c7 e0 08 ret <== NOT EXECUTED
40009c80: 81 e8 00 00 restore <== NOT EXECUTED
40009b00 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
40009b00: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009b04: 03 10 00 52 sethi %hi(0x40014800), %g1
40009b08: 82 10 60 d8 or %g1, 0xd8, %g1 ! 400148d8 <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40009b0c: 05 10 00 55 sethi %hi(0x40015400), %g2
initial_extensions = Configuration.User_extension_table;
40009b10: e6 00 60 40 ld [ %g1 + 0x40 ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009b14: e4 00 60 3c ld [ %g1 + 0x3c ], %l2
40009b18: 82 10 a1 18 or %g2, 0x118, %g1
40009b1c: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40009b20: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
40009b24: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40009b28: c6 20 a1 18 st %g3, [ %g2 + 0x118 ]
40009b2c: 05 10 00 54 sethi %hi(0x40015000), %g2
40009b30: 82 10 a3 14 or %g2, 0x314, %g1 ! 40015314 <_User_extensions_Switches_list>
40009b34: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40009b38: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40009b3c: c6 20 a3 14 st %g3, [ %g2 + 0x314 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
40009b40: 80 a4 e0 00 cmp %l3, 0
40009b44: 02 80 00 1b be 40009bb0 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40009b48: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
40009b4c: 83 2c a0 02 sll %l2, 2, %g1
40009b50: a1 2c a0 04 sll %l2, 4, %l0
40009b54: a0 24 00 01 sub %l0, %g1, %l0
40009b58: a0 04 00 12 add %l0, %l2, %l0
40009b5c: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009b60: 40 00 01 6c call 4000a110 <_Workspace_Allocate_or_fatal_error>
40009b64: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009b68: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009b6c: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009b70: 92 10 20 00 clr %o1
40009b74: 40 00 14 1f call 4000ebf0 <memset>
40009b78: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009b7c: 10 80 00 0b b 40009ba8 <_User_extensions_Handler_initialization+0xa8>
40009b80: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
40009b84: 90 04 60 14 add %l1, 0x14, %o0
40009b88: 92 04 c0 09 add %l3, %o1, %o1
40009b8c: 40 00 13 e0 call 4000eb0c <memcpy>
40009b90: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
40009b94: 90 10 00 11 mov %l1, %o0
40009b98: 40 00 0b d1 call 4000cadc <_User_extensions_Add_set>
40009b9c: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
40009ba0: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009ba4: 80 a4 00 12 cmp %l0, %l2
40009ba8: 0a bf ff f7 bcs 40009b84 <_User_extensions_Handler_initialization+0x84>
40009bac: 93 2c 20 05 sll %l0, 5, %o1
40009bb0: 81 c7 e0 08 ret
40009bb4: 81 e8 00 00 restore
40009bfc <_User_extensions_Thread_exitted>:
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
40009bfc: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009c00: 23 10 00 55 sethi %hi(0x40015400), %l1
40009c04: a2 14 61 18 or %l1, 0x118, %l1 ! 40015518 <_User_extensions_List>
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009c08: 10 80 00 08 b 40009c28 <_User_extensions_Thread_exitted+0x2c>
40009c0c: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
40009c10: 80 a0 60 00 cmp %g1, 0
40009c14: 22 80 00 05 be,a 40009c28 <_User_extensions_Thread_exitted+0x2c>
40009c18: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
40009c1c: 9f c0 40 00 call %g1
40009c20: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009c24: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40009c28: 80 a4 00 11 cmp %l0, %l1
40009c2c: 32 bf ff f9 bne,a 40009c10 <_User_extensions_Thread_exitted+0x14>
40009c30: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
(*the_extension->Callouts.thread_exitted)( executing );
}
}
40009c34: 81 c7 e0 08 ret
40009c38: 81 e8 00 00 restore
4000bdd4 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000bdd4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000bdd8: 7f ff db e2 call 40002d60 <sparc_disable_interrupts>
4000bddc: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000bde0: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000bde4: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000bde8: 80 a0 40 11 cmp %g1, %l1
4000bdec: 02 80 00 1f be 4000be68 <_Watchdog_Adjust+0x94>
4000bdf0: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000bdf4: 02 80 00 1a be 4000be5c <_Watchdog_Adjust+0x88>
4000bdf8: a4 10 20 01 mov 1, %l2
4000bdfc: 80 a6 60 01 cmp %i1, 1
4000be00: 12 80 00 1a bne 4000be68 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000be04: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000be08: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000be0c: 10 80 00 07 b 4000be28 <_Watchdog_Adjust+0x54>
4000be10: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
4000be14: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000be18: 80 a6 80 19 cmp %i2, %i1
4000be1c: 3a 80 00 05 bcc,a 4000be30 <_Watchdog_Adjust+0x5c>
4000be20: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
4000be24: b4 26 40 1a sub %i1, %i2, %i2
break;
4000be28: 10 80 00 10 b 4000be68 <_Watchdog_Adjust+0x94>
4000be2c: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
4000be30: 7f ff db d0 call 40002d70 <sparc_enable_interrupts>
4000be34: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000be38: 40 00 00 94 call 4000c088 <_Watchdog_Tickle>
4000be3c: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000be40: 7f ff db c8 call 40002d60 <sparc_disable_interrupts>
4000be44: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000be48: c2 04 00 00 ld [ %l0 ], %g1
4000be4c: 80 a0 40 11 cmp %g1, %l1
4000be50: 02 80 00 06 be 4000be68 <_Watchdog_Adjust+0x94>
4000be54: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
4000be58: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000be5c: 80 a6 a0 00 cmp %i2, 0
4000be60: 32 bf ff ed bne,a 4000be14 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
4000be64: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
4000be68: 7f ff db c2 call 40002d70 <sparc_enable_interrupts>
4000be6c: 91 e8 00 08 restore %g0, %o0, %o0
40009f24 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
40009f24: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
40009f28: 7f ff df 83 call 40001d34 <sparc_disable_interrupts>
40009f2c: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
40009f30: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
40009f34: 80 a6 20 01 cmp %i0, 1
40009f38: 22 80 00 1d be,a 40009fac <_Watchdog_Remove+0x88>
40009f3c: c0 24 20 08 clr [ %l0 + 8 ]
40009f40: 0a 80 00 1c bcs 40009fb0 <_Watchdog_Remove+0x8c>
40009f44: 03 10 00 55 sethi %hi(0x40015400), %g1
40009f48: 80 a6 20 03 cmp %i0, 3
40009f4c: 18 80 00 19 bgu 40009fb0 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
40009f50: 01 00 00 00 nop
40009f54: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
40009f58: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
40009f5c: c4 00 40 00 ld [ %g1 ], %g2
40009f60: 80 a0 a0 00 cmp %g2, 0
40009f64: 02 80 00 07 be 40009f80 <_Watchdog_Remove+0x5c>
40009f68: 05 10 00 55 sethi %hi(0x40015400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
40009f6c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009f70: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
40009f74: 84 00 c0 02 add %g3, %g2, %g2
40009f78: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009f7c: 05 10 00 55 sethi %hi(0x40015400), %g2
40009f80: c4 00 a0 3c ld [ %g2 + 0x3c ], %g2 ! 4001543c <_Watchdog_Sync_count>
40009f84: 80 a0 a0 00 cmp %g2, 0
40009f88: 22 80 00 07 be,a 40009fa4 <_Watchdog_Remove+0x80>
40009f8c: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009f90: 05 10 00 55 sethi %hi(0x40015400), %g2
40009f94: c6 00 a1 64 ld [ %g2 + 0x164 ], %g3 ! 40015564 <_Per_CPU_Information+0x8>
40009f98: 05 10 00 54 sethi %hi(0x40015000), %g2
40009f9c: c6 20 a3 d4 st %g3, [ %g2 + 0x3d4 ] ! 400153d4 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40009fa0: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
40009fa4: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
40009fa8: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009fac: 03 10 00 55 sethi %hi(0x40015400), %g1
40009fb0: c2 00 60 40 ld [ %g1 + 0x40 ], %g1 ! 40015440 <_Watchdog_Ticks_since_boot>
40009fb4: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
40009fb8: 7f ff df 63 call 40001d44 <sparc_enable_interrupts>
40009fbc: 01 00 00 00 nop
return( previous_state );
}
40009fc0: 81 c7 e0 08 ret
40009fc4: 81 e8 00 00 restore
4000b604 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000b604: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000b608: 7f ff dc ad call 400028bc <sparc_disable_interrupts>
4000b60c: a0 10 00 18 mov %i0, %l0
4000b610: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b614: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b618: 94 10 00 19 mov %i1, %o2
4000b61c: 90 12 23 08 or %o0, 0x308, %o0
4000b620: 7f ff e6 82 call 40005028 <printk>
4000b624: 92 10 00 10 mov %l0, %o1
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000b628: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b62c: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000b630: 80 a4 40 19 cmp %l1, %i1
4000b634: 02 80 00 0e be 4000b66c <_Watchdog_Report_chain+0x68>
4000b638: 11 10 00 74 sethi %hi(0x4001d000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000b63c: 92 10 00 11 mov %l1, %o1
4000b640: 40 00 00 10 call 4000b680 <_Watchdog_Report>
4000b644: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000b648: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000b64c: 80 a4 40 19 cmp %l1, %i1
4000b650: 12 bf ff fc bne 4000b640 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b654: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000b658: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b65c: 92 10 00 10 mov %l0, %o1
4000b660: 7f ff e6 72 call 40005028 <printk>
4000b664: 90 12 23 20 or %o0, 0x320, %o0
4000b668: 30 80 00 03 b,a 4000b674 <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
4000b66c: 7f ff e6 6f call 40005028 <printk>
4000b670: 90 12 23 30 or %o0, 0x330, %o0
}
_ISR_Enable( level );
4000b674: 7f ff dc 96 call 400028cc <sparc_enable_interrupts>
4000b678: 81 e8 00 00 restore
40007710 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40007710: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
40007714: 90 10 00 18 mov %i0, %o0
40007718: 40 00 01 4a call 40007c40 <_Chain_Append_with_empty_check>
4000771c: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
40007720: 80 8a 20 ff btst 0xff, %o0
40007724: 02 80 00 05 be 40007738 <rtems_chain_append_with_notification+0x28><== NEVER TAKEN
40007728: 01 00 00 00 nop
sc = rtems_event_send( task, events );
4000772c: b0 10 00 1a mov %i2, %i0
40007730: 7f ff fd 75 call 40006d04 <rtems_event_send>
40007734: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
40007738: 81 c7 e0 08 ret
4000773c: 91 e8 20 00 restore %g0, 0, %o0
40007770 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40007770: 9d e3 bf 98 save %sp, -104, %sp
40007774: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40007778: 10 80 00 09 b 4000779c <rtems_chain_get_with_wait+0x2c>
4000777c: a4 07 bf fc add %fp, -4, %l2
40007780: 92 10 20 00 clr %o1
40007784: 94 10 00 1a mov %i2, %o2
40007788: 7f ff fc fb call 40006b74 <rtems_event_receive>
4000778c: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40007790: 80 a2 20 00 cmp %o0, 0
40007794: 32 80 00 09 bne,a 400077b8 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
40007798: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
4000779c: 40 00 01 65 call 40007d30 <_Chain_Get>
400077a0: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
400077a4: a2 92 20 00 orcc %o0, 0, %l1
400077a8: 02 bf ff f6 be 40007780 <rtems_chain_get_with_wait+0x10>
400077ac: 90 10 00 19 mov %i1, %o0
400077b0: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
400077b4: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
400077b8: 81 c7 e0 08 ret
400077bc: 91 e8 00 08 restore %g0, %o0, %o0
400077c0 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
400077c0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
400077c4: 90 10 00 18 mov %i0, %o0
400077c8: 40 00 01 74 call 40007d98 <_Chain_Prepend_with_empty_check>
400077cc: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
400077d0: 80 8a 20 ff btst 0xff, %o0
400077d4: 02 80 00 05 be 400077e8 <rtems_chain_prepend_with_notification+0x28><== NEVER TAKEN
400077d8: 01 00 00 00 nop
sc = rtems_event_send( task, events );
400077dc: b0 10 00 1a mov %i2, %i0
400077e0: 7f ff fd 49 call 40006d04 <rtems_event_send>
400077e4: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
400077e8: 81 c7 e0 08 ret <== NOT EXECUTED
400077ec: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
40009a3c <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
40009a3c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
40009a40: 80 a6 20 00 cmp %i0, 0
40009a44: 02 80 00 1d be 40009ab8 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
40009a48: 21 10 00 9d sethi %hi(0x40027400), %l0
40009a4c: a0 14 20 ec or %l0, 0xec, %l0 ! 400274ec <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
40009a50: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
40009a54: c2 04 00 00 ld [ %l0 ], %g1
40009a58: 80 a0 60 00 cmp %g1, 0
40009a5c: 22 80 00 14 be,a 40009aac <rtems_iterate_over_all_threads+0x70>
40009a60: a0 04 20 04 add %l0, 4, %l0
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
40009a64: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
40009a68: 80 a4 a0 00 cmp %l2, 0
40009a6c: 12 80 00 0b bne 40009a98 <rtems_iterate_over_all_threads+0x5c>
40009a70: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009a74: 10 80 00 0e b 40009aac <rtems_iterate_over_all_threads+0x70>
40009a78: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40009a7c: 83 2c 60 02 sll %l1, 2, %g1
40009a80: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
40009a84: 80 a2 20 00 cmp %o0, 0
40009a88: 02 80 00 04 be 40009a98 <rtems_iterate_over_all_threads+0x5c><== NEVER TAKEN
40009a8c: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
40009a90: 9f c6 00 00 call %i0
40009a94: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009a98: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
40009a9c: 80 a4 40 01 cmp %l1, %g1
40009aa0: 28 bf ff f7 bleu,a 40009a7c <rtems_iterate_over_all_threads+0x40>
40009aa4: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
40009aa8: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40009aac: 80 a4 00 13 cmp %l0, %l3
40009ab0: 32 bf ff ea bne,a 40009a58 <rtems_iterate_over_all_threads+0x1c>
40009ab4: c2 04 00 00 ld [ %l0 ], %g1
40009ab8: 81 c7 e0 08 ret
40009abc: 81 e8 00 00 restore
40014be4 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40014be4: 9d e3 bf a0 save %sp, -96, %sp
40014be8: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40014bec: 80 a4 20 00 cmp %l0, 0
40014bf0: 02 80 00 1f be 40014c6c <rtems_partition_create+0x88>
40014bf4: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40014bf8: 80 a6 60 00 cmp %i1, 0
40014bfc: 02 80 00 1c be 40014c6c <rtems_partition_create+0x88>
40014c00: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40014c04: 80 a7 60 00 cmp %i5, 0
40014c08: 02 80 00 19 be 40014c6c <rtems_partition_create+0x88> <== NEVER TAKEN
40014c0c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40014c10: 02 80 00 32 be 40014cd8 <rtems_partition_create+0xf4>
40014c14: 80 a6 a0 00 cmp %i2, 0
40014c18: 02 80 00 30 be 40014cd8 <rtems_partition_create+0xf4>
40014c1c: 80 a6 80 1b cmp %i2, %i3
40014c20: 0a 80 00 13 bcs 40014c6c <rtems_partition_create+0x88>
40014c24: b0 10 20 08 mov 8, %i0
40014c28: 80 8e e0 07 btst 7, %i3
40014c2c: 12 80 00 10 bne 40014c6c <rtems_partition_create+0x88>
40014c30: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40014c34: 12 80 00 0e bne 40014c6c <rtems_partition_create+0x88>
40014c38: b0 10 20 09 mov 9, %i0
40014c3c: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40014c40: c4 00 62 e0 ld [ %g1 + 0x2e0 ], %g2 ! 4003d6e0 <_Thread_Dispatch_disable_level>
40014c44: 84 00 a0 01 inc %g2
40014c48: c4 20 62 e0 st %g2, [ %g1 + 0x2e0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40014c4c: 25 10 00 f5 sethi %hi(0x4003d400), %l2
40014c50: 40 00 12 44 call 40019560 <_Objects_Allocate>
40014c54: 90 14 a0 f4 or %l2, 0xf4, %o0 ! 4003d4f4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40014c58: a2 92 20 00 orcc %o0, 0, %l1
40014c5c: 12 80 00 06 bne 40014c74 <rtems_partition_create+0x90>
40014c60: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
40014c64: 40 00 16 95 call 4001a6b8 <_Thread_Enable_dispatch>
40014c68: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40014c6c: 81 c7 e0 08 ret
40014c70: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40014c74: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40014c78: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40014c7c: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
40014c80: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
40014c84: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40014c88: 40 00 5e 96 call 4002c6e0 <.udiv>
40014c8c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014c90: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40014c94: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014c98: 96 10 00 1b mov %i3, %o3
40014c9c: a6 04 60 24 add %l1, 0x24, %l3
40014ca0: 40 00 0c 5d call 40017e14 <_Chain_Initialize>
40014ca4: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014ca8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014cac: a4 14 a0 f4 or %l2, 0xf4, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014cb0: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014cb4: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014cb8: 85 28 a0 02 sll %g2, 2, %g2
40014cbc: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40014cc0: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40014cc4: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40014cc8: 40 00 16 7c call 4001a6b8 <_Thread_Enable_dispatch>
40014ccc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40014cd0: 81 c7 e0 08 ret
40014cd4: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
40014cd8: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014cdc: 81 c7 e0 08 ret
40014ce0: 81 e8 00 00 restore
40007cc8 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40007cc8: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
40007ccc: 11 10 00 7b sethi %hi(0x4001ec00), %o0
40007cd0: 92 10 00 18 mov %i0, %o1
40007cd4: 90 12 22 04 or %o0, 0x204, %o0
40007cd8: 40 00 08 e9 call 4000a07c <_Objects_Get>
40007cdc: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007ce0: c2 07 bf fc ld [ %fp + -4 ], %g1
40007ce4: 80 a0 60 00 cmp %g1, 0
40007ce8: 12 80 00 66 bne 40007e80 <rtems_rate_monotonic_period+0x1b8>
40007cec: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40007cf0: 25 10 00 7c sethi %hi(0x4001f000), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40007cf4: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
40007cf8: a4 14 a1 bc or %l2, 0x1bc, %l2
40007cfc: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
40007d00: 80 a0 80 01 cmp %g2, %g1
40007d04: 02 80 00 06 be 40007d1c <rtems_rate_monotonic_period+0x54>
40007d08: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40007d0c: 40 00 0b e1 call 4000ac90 <_Thread_Enable_dispatch>
40007d10: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40007d14: 81 c7 e0 08 ret
40007d18: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40007d1c: 12 80 00 0e bne 40007d54 <rtems_rate_monotonic_period+0x8c>
40007d20: 01 00 00 00 nop
switch ( the_period->state ) {
40007d24: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40007d28: 80 a0 60 04 cmp %g1, 4
40007d2c: 18 80 00 06 bgu 40007d44 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
40007d30: b0 10 20 00 clr %i0
40007d34: 83 28 60 02 sll %g1, 2, %g1
40007d38: 05 10 00 74 sethi %hi(0x4001d000), %g2
40007d3c: 84 10 a0 3c or %g2, 0x3c, %g2 ! 4001d03c <CSWTCH.2>
40007d40: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
40007d44: 40 00 0b d3 call 4000ac90 <_Thread_Enable_dispatch>
40007d48: 01 00 00 00 nop
return( return_value );
40007d4c: 81 c7 e0 08 ret
40007d50: 81 e8 00 00 restore
}
_ISR_Disable( level );
40007d54: 7f ff eb bd call 40002c48 <sparc_disable_interrupts>
40007d58: 01 00 00 00 nop
40007d5c: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40007d60: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
40007d64: 80 a4 60 00 cmp %l1, 0
40007d68: 12 80 00 15 bne 40007dbc <rtems_rate_monotonic_period+0xf4>
40007d6c: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
40007d70: 7f ff eb ba call 40002c58 <sparc_enable_interrupts>
40007d74: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
40007d78: 7f ff ff 7a call 40007b60 <_Rate_monotonic_Initiate_statistics>
40007d7c: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007d80: 82 10 20 02 mov 2, %g1
40007d84: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007d88: 03 10 00 20 sethi %hi(0x40008000), %g1
40007d8c: 82 10 61 50 or %g1, 0x150, %g1 ! 40008150 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40007d90: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
40007d94: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
40007d98: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
40007d9c: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40007da0: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007da4: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007da8: 11 10 00 7c sethi %hi(0x4001f000), %o0
40007dac: 92 04 20 10 add %l0, 0x10, %o1
40007db0: 40 00 0f d9 call 4000bd14 <_Watchdog_Insert>
40007db4: 90 12 20 50 or %o0, 0x50, %o0
40007db8: 30 80 00 1b b,a 40007e24 <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40007dbc: 12 80 00 1e bne 40007e34 <rtems_rate_monotonic_period+0x16c>
40007dc0: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40007dc4: 7f ff ff 83 call 40007bd0 <_Rate_monotonic_Update_statistics>
40007dc8: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007dcc: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40007dd0: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007dd4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40007dd8: 7f ff eb a0 call 40002c58 <sparc_enable_interrupts>
40007ddc: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40007de0: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007de4: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007de8: 13 00 00 10 sethi %hi(0x4000), %o1
40007dec: 40 00 0d db call 4000b558 <_Thread_Set_state>
40007df0: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007df4: 7f ff eb 95 call 40002c48 <sparc_disable_interrupts>
40007df8: 01 00 00 00 nop
local_state = the_period->state;
40007dfc: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e00: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007e04: 7f ff eb 95 call 40002c58 <sparc_enable_interrupts>
40007e08: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007e0c: 80 a4 e0 03 cmp %l3, 3
40007e10: 12 80 00 05 bne 40007e24 <rtems_rate_monotonic_period+0x15c>
40007e14: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007e18: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007e1c: 40 00 0a d1 call 4000a960 <_Thread_Clear_state>
40007e20: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
40007e24: 40 00 0b 9b call 4000ac90 <_Thread_Enable_dispatch>
40007e28: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40007e2c: 81 c7 e0 08 ret
40007e30: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
40007e34: 12 bf ff b8 bne 40007d14 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
40007e38: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40007e3c: 7f ff ff 65 call 40007bd0 <_Rate_monotonic_Update_statistics>
40007e40: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
40007e44: 7f ff eb 85 call 40002c58 <sparc_enable_interrupts>
40007e48: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e4c: 82 10 20 02 mov 2, %g1
40007e50: 92 04 20 10 add %l0, 0x10, %o1
40007e54: 11 10 00 7c sethi %hi(0x4001f000), %o0
40007e58: 90 12 20 50 or %o0, 0x50, %o0 ! 4001f050 <_Watchdog_Ticks_chain>
40007e5c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
40007e60: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007e64: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007e68: 40 00 0f ab call 4000bd14 <_Watchdog_Insert>
40007e6c: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40007e70: 40 00 0b 88 call 4000ac90 <_Thread_Enable_dispatch>
40007e74: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007e78: 81 c7 e0 08 ret
40007e7c: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40007e80: b0 10 20 04 mov 4, %i0
}
40007e84: 81 c7 e0 08 ret
40007e88: 81 e8 00 00 restore
40007e8c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
40007e8c: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
40007e90: 80 a6 60 00 cmp %i1, 0
40007e94: 02 80 00 79 be 40008078 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
40007e98: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
40007e9c: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ea0: 9f c6 40 00 call %i1
40007ea4: 92 12 60 50 or %o1, 0x50, %o1 ! 4001d050 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
40007ea8: 90 10 00 18 mov %i0, %o0
40007eac: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007eb0: 9f c6 40 00 call %i1
40007eb4: 92 12 60 70 or %o1, 0x70, %o1 ! 4001d070 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007eb8: 90 10 00 18 mov %i0, %o0
40007ebc: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ec0: 9f c6 40 00 call %i1
40007ec4: 92 12 60 98 or %o1, 0x98, %o1 ! 4001d098 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40007ec8: 90 10 00 18 mov %i0, %o0
40007ecc: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ed0: 9f c6 40 00 call %i1
40007ed4: 92 12 60 c0 or %o1, 0xc0, %o1 ! 4001d0c0 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40007ed8: 90 10 00 18 mov %i0, %o0
40007edc: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ee0: 9f c6 40 00 call %i1
40007ee4: 92 12 61 10 or %o1, 0x110, %o1 ! 4001d110 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007ee8: 3b 10 00 7b sethi %hi(0x4001ec00), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007eec: 2b 10 00 74 sethi %hi(0x4001d000), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007ef0: 82 17 62 04 or %i5, 0x204, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
40007ef4: 27 10 00 74 sethi %hi(0x4001d000), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
40007ef8: 35 10 00 74 sethi %hi(0x4001d000), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007efc: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007f00: ae 07 bf a0 add %fp, -96, %l7
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007f04: ac 07 bf d8 add %fp, -40, %l6
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007f08: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007f0c: aa 15 61 60 or %l5, 0x160, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40007f10: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007f14: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
40007f18: a6 14 e1 78 or %l3, 0x178, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40007f1c: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007f20: 10 80 00 52 b 40008068 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
40007f24: b4 16 a1 98 or %i2, 0x198, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007f28: 40 00 17 71 call 4000dcec <rtems_rate_monotonic_get_statistics>
40007f2c: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
40007f30: 80 a2 20 00 cmp %o0, 0
40007f34: 32 80 00 4c bne,a 40008064 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007f38: a0 04 20 01 inc %l0
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007f3c: 92 10 00 16 mov %l6, %o1
40007f40: 40 00 17 98 call 4000dda0 <rtems_rate_monotonic_get_status>
40007f44: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007f48: d0 07 bf d8 ld [ %fp + -40 ], %o0
40007f4c: 92 10 20 05 mov 5, %o1
40007f50: 40 00 00 ae call 40008208 <rtems_object_get_name>
40007f54: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007f58: d8 1f bf a0 ldd [ %fp + -96 ], %o4
40007f5c: 92 10 00 15 mov %l5, %o1
40007f60: 90 10 00 18 mov %i0, %o0
40007f64: 94 10 00 10 mov %l0, %o2
40007f68: 9f c6 40 00 call %i1
40007f6c: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40007f70: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007f74: 80 a2 60 00 cmp %o1, 0
40007f78: 12 80 00 08 bne 40007f98 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
40007f7c: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
40007f80: 90 10 00 18 mov %i0, %o0
40007f84: 13 10 00 70 sethi %hi(0x4001c000), %o1
40007f88: 9f c6 40 00 call %i1
40007f8c: 92 12 63 28 or %o1, 0x328, %o1 ! 4001c328 <_rodata_start+0x158>
continue;
40007f90: 10 80 00 35 b 40008064 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007f94: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007f98: 40 00 0e 3c call 4000b888 <_Timespec_Divide_by_integer>
40007f9c: 90 10 00 14 mov %l4, %o0
(*print)( context,
40007fa0: d0 07 bf ac ld [ %fp + -84 ], %o0
40007fa4: 40 00 43 f5 call 40018f78 <.div>
40007fa8: 92 10 23 e8 mov 0x3e8, %o1
40007fac: 96 10 00 08 mov %o0, %o3
40007fb0: d0 07 bf b4 ld [ %fp + -76 ], %o0
40007fb4: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007fb8: 40 00 43 f0 call 40018f78 <.div>
40007fbc: 92 10 23 e8 mov 0x3e8, %o1
40007fc0: c2 07 bf f0 ld [ %fp + -16 ], %g1
40007fc4: b6 10 00 08 mov %o0, %i3
40007fc8: d0 07 bf f4 ld [ %fp + -12 ], %o0
40007fcc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007fd0: 40 00 43 ea call 40018f78 <.div>
40007fd4: 92 10 23 e8 mov 0x3e8, %o1
40007fd8: d8 07 bf b0 ld [ %fp + -80 ], %o4
40007fdc: d6 07 bf 9c ld [ %fp + -100 ], %o3
40007fe0: d4 07 bf a8 ld [ %fp + -88 ], %o2
40007fe4: 9a 10 00 1b mov %i3, %o5
40007fe8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40007fec: 92 10 00 13 mov %l3, %o1
40007ff0: 9f c6 40 00 call %i1
40007ff4: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40007ff8: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007ffc: 94 10 00 11 mov %l1, %o2
40008000: 40 00 0e 22 call 4000b888 <_Timespec_Divide_by_integer>
40008004: 90 10 00 1c mov %i4, %o0
(*print)( context,
40008008: d0 07 bf c4 ld [ %fp + -60 ], %o0
4000800c: 40 00 43 db call 40018f78 <.div>
40008010: 92 10 23 e8 mov 0x3e8, %o1
40008014: 96 10 00 08 mov %o0, %o3
40008018: d0 07 bf cc ld [ %fp + -52 ], %o0
4000801c: d6 27 bf 9c st %o3, [ %fp + -100 ]
40008020: 40 00 43 d6 call 40018f78 <.div>
40008024: 92 10 23 e8 mov 0x3e8, %o1
40008028: c2 07 bf f0 ld [ %fp + -16 ], %g1
4000802c: b6 10 00 08 mov %o0, %i3
40008030: d0 07 bf f4 ld [ %fp + -12 ], %o0
40008034: 92 10 23 e8 mov 0x3e8, %o1
40008038: 40 00 43 d0 call 40018f78 <.div>
4000803c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008040: d4 07 bf c0 ld [ %fp + -64 ], %o2
40008044: d6 07 bf 9c ld [ %fp + -100 ], %o3
40008048: d8 07 bf c8 ld [ %fp + -56 ], %o4
4000804c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40008050: 92 10 00 1a mov %i2, %o1
40008054: 90 10 00 18 mov %i0, %o0
40008058: 9f c6 40 00 call %i1
4000805c: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008060: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
40008064: 82 17 62 04 or %i5, 0x204, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008068: c2 00 60 0c ld [ %g1 + 0xc ], %g1
4000806c: 80 a4 00 01 cmp %l0, %g1
40008070: 08 bf ff ae bleu 40007f28 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
40008074: 90 10 00 10 mov %l0, %o0
40008078: 81 c7 e0 08 ret
4000807c: 81 e8 00 00 restore
40016188 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
40016188: 9d e3 bf 98 save %sp, -104, %sp
4001618c: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
40016190: 80 a6 60 00 cmp %i1, 0
40016194: 02 80 00 2e be 4001624c <rtems_signal_send+0xc4>
40016198: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
4001619c: 40 00 11 54 call 4001a6ec <_Thread_Get>
400161a0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400161a4: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
400161a8: a2 10 00 08 mov %o0, %l1
switch ( location ) {
400161ac: 80 a0 60 00 cmp %g1, 0
400161b0: 12 80 00 27 bne 4001624c <rtems_signal_send+0xc4>
400161b4: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400161b8: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400161bc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400161c0: 80 a0 60 00 cmp %g1, 0
400161c4: 02 80 00 24 be 40016254 <rtems_signal_send+0xcc>
400161c8: 01 00 00 00 nop
if ( asr->is_enabled ) {
400161cc: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
400161d0: 80 a0 60 00 cmp %g1, 0
400161d4: 02 80 00 15 be 40016228 <rtems_signal_send+0xa0>
400161d8: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400161dc: 7f ff e4 8a call 4000f404 <sparc_disable_interrupts>
400161e0: 01 00 00 00 nop
*signal_set |= signals;
400161e4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
400161e8: b2 10 40 19 or %g1, %i1, %i1
400161ec: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
400161f0: 7f ff e4 89 call 4000f414 <sparc_enable_interrupts>
400161f4: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
400161f8: 03 10 00 f6 sethi %hi(0x4003d800), %g1
400161fc: 82 10 61 34 or %g1, 0x134, %g1 ! 4003d934 <_Per_CPU_Information>
40016200: c4 00 60 08 ld [ %g1 + 8 ], %g2
40016204: 80 a0 a0 00 cmp %g2, 0
40016208: 02 80 00 0f be 40016244 <rtems_signal_send+0xbc>
4001620c: 01 00 00 00 nop
40016210: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40016214: 80 a4 40 02 cmp %l1, %g2
40016218: 12 80 00 0b bne 40016244 <rtems_signal_send+0xbc> <== NEVER TAKEN
4001621c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40016220: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40016224: 30 80 00 08 b,a 40016244 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40016228: 7f ff e4 77 call 4000f404 <sparc_disable_interrupts>
4001622c: 01 00 00 00 nop
*signal_set |= signals;
40016230: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40016234: b2 10 40 19 or %g1, %i1, %i1
40016238: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
4001623c: 7f ff e4 76 call 4000f414 <sparc_enable_interrupts>
40016240: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
40016244: 40 00 11 1d call 4001a6b8 <_Thread_Enable_dispatch>
40016248: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
4001624c: 81 c7 e0 08 ret
40016250: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
40016254: 40 00 11 19 call 4001a6b8 <_Thread_Enable_dispatch>
40016258: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
4001625c: 81 c7 e0 08 ret
40016260: 81 e8 00 00 restore
4000dcf8 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000dcf8: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000dcfc: 80 a6 a0 00 cmp %i2, 0
4000dd00: 02 80 00 5a be 4000de68 <rtems_task_mode+0x170>
4000dd04: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000dd08: 03 10 00 55 sethi %hi(0x40015400), %g1
4000dd0c: e2 00 61 68 ld [ %g1 + 0x168 ], %l1 ! 40015568 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dd10: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000dd14: e0 04 61 4c ld [ %l1 + 0x14c ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dd18: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dd1c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dd20: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dd24: 80 a0 60 00 cmp %g1, 0
4000dd28: 02 80 00 03 be 4000dd34 <rtems_task_mode+0x3c>
4000dd2c: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000dd30: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dd34: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
4000dd38: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dd3c: 7f ff f2 07 call 4000a558 <_CPU_ISR_Get_level>
4000dd40: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dd44: a7 2c e0 0a sll %l3, 0xa, %l3
4000dd48: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
4000dd4c: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dd50: 80 8e 61 00 btst 0x100, %i1
4000dd54: 02 80 00 06 be 4000dd6c <rtems_task_mode+0x74>
4000dd58: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dd5c: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000dd60: 80 a0 00 01 cmp %g0, %g1
4000dd64: 82 60 3f ff subx %g0, -1, %g1
4000dd68: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000dd6c: 80 8e 62 00 btst 0x200, %i1
4000dd70: 02 80 00 0b be 4000dd9c <rtems_task_mode+0xa4>
4000dd74: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000dd78: 80 8e 22 00 btst 0x200, %i0
4000dd7c: 22 80 00 07 be,a 4000dd98 <rtems_task_mode+0xa0>
4000dd80: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000dd84: 82 10 20 01 mov 1, %g1
4000dd88: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000dd8c: 03 10 00 54 sethi %hi(0x40015000), %g1
4000dd90: c2 00 62 74 ld [ %g1 + 0x274 ], %g1 ! 40015274 <_Thread_Ticks_per_timeslice>
4000dd94: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000dd98: 80 8e 60 0f btst 0xf, %i1
4000dd9c: 02 80 00 06 be 4000ddb4 <rtems_task_mode+0xbc>
4000dda0: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000dda4: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000dda8: 7f ff cf e7 call 40001d44 <sparc_enable_interrupts>
4000ddac: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000ddb0: 80 8e 64 00 btst 0x400, %i1
4000ddb4: 02 80 00 14 be 4000de04 <rtems_task_mode+0x10c>
4000ddb8: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000ddbc: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000ddc0: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000ddc4: 80 a0 00 18 cmp %g0, %i0
4000ddc8: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000ddcc: 80 a0 40 02 cmp %g1, %g2
4000ddd0: 22 80 00 0e be,a 4000de08 <rtems_task_mode+0x110>
4000ddd4: 03 10 00 55 sethi %hi(0x40015400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000ddd8: 7f ff cf d7 call 40001d34 <sparc_disable_interrupts>
4000dddc: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
4000dde0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
4000dde4: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
4000dde8: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000ddec: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000ddf0: 7f ff cf d5 call 40001d44 <sparc_enable_interrupts>
4000ddf4: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000ddf8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000ddfc: 80 a0 00 01 cmp %g0, %g1
4000de00: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000de04: 03 10 00 55 sethi %hi(0x40015400), %g1
4000de08: c4 00 60 88 ld [ %g1 + 0x88 ], %g2 ! 40015488 <_System_state_Current>
4000de0c: 80 a0 a0 03 cmp %g2, 3
4000de10: 12 80 00 16 bne 4000de68 <rtems_task_mode+0x170> <== NEVER TAKEN
4000de14: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000de18: 07 10 00 55 sethi %hi(0x40015400), %g3
if ( are_signals_pending ||
4000de1c: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000de20: 86 10 e1 5c or %g3, 0x15c, %g3
if ( are_signals_pending ||
4000de24: 12 80 00 0a bne 4000de4c <rtems_task_mode+0x154>
4000de28: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
4000de2c: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
4000de30: 80 a0 80 03 cmp %g2, %g3
4000de34: 02 80 00 0d be 4000de68 <rtems_task_mode+0x170>
4000de38: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000de3c: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000de40: 80 a0 a0 00 cmp %g2, 0
4000de44: 02 80 00 09 be 4000de68 <rtems_task_mode+0x170> <== NEVER TAKEN
4000de48: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000de4c: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
4000de50: 03 10 00 55 sethi %hi(0x40015400), %g1
4000de54: 82 10 61 5c or %g1, 0x15c, %g1 ! 4001555c <_Per_CPU_Information>
4000de58: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000de5c: 7f ff eb e9 call 40008e00 <_Thread_Dispatch>
4000de60: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000de64: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000de68: 81 c7 e0 08 ret
4000de6c: 91 e8 00 01 restore %g0, %g1, %o0
4000b4d8 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000b4d8: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000b4dc: 80 a6 60 00 cmp %i1, 0
4000b4e0: 02 80 00 07 be 4000b4fc <rtems_task_set_priority+0x24>
4000b4e4: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000b4e8: 03 10 00 64 sethi %hi(0x40019000), %g1
4000b4ec: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 ! 40019074 <rtems_maximum_priority>
4000b4f0: 80 a6 40 01 cmp %i1, %g1
4000b4f4: 18 80 00 1c bgu 4000b564 <rtems_task_set_priority+0x8c>
4000b4f8: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000b4fc: 80 a6 a0 00 cmp %i2, 0
4000b500: 02 80 00 19 be 4000b564 <rtems_task_set_priority+0x8c>
4000b504: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000b508: 40 00 08 b6 call 4000d7e0 <_Thread_Get>
4000b50c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000b510: c2 07 bf fc ld [ %fp + -4 ], %g1
4000b514: 80 a0 60 00 cmp %g1, 0
4000b518: 12 80 00 13 bne 4000b564 <rtems_task_set_priority+0x8c>
4000b51c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000b520: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000b524: 80 a6 60 00 cmp %i1, 0
4000b528: 02 80 00 0d be 4000b55c <rtems_task_set_priority+0x84>
4000b52c: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000b530: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000b534: 80 a0 60 00 cmp %g1, 0
4000b538: 02 80 00 06 be 4000b550 <rtems_task_set_priority+0x78>
4000b53c: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000b540: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000b544: 80 a0 40 19 cmp %g1, %i1
4000b548: 08 80 00 05 bleu 4000b55c <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000b54c: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000b550: 92 10 00 19 mov %i1, %o1
4000b554: 40 00 07 69 call 4000d2f8 <_Thread_Change_priority>
4000b558: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000b55c: 40 00 08 94 call 4000d7ac <_Thread_Enable_dispatch>
4000b560: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b564: 81 c7 e0 08 ret
4000b568: 81 e8 00 00 restore
40016b98 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40016b98: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40016b9c: 11 10 00 f6 sethi %hi(0x4003d800), %o0
40016ba0: 92 10 00 18 mov %i0, %o1
40016ba4: 90 12 21 c4 or %o0, 0x1c4, %o0
40016ba8: 40 00 0b bf call 40019aa4 <_Objects_Get>
40016bac: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016bb0: c2 07 bf fc ld [ %fp + -4 ], %g1
40016bb4: 80 a0 60 00 cmp %g1, 0
40016bb8: 12 80 00 0c bne 40016be8 <rtems_timer_cancel+0x50>
40016bbc: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40016bc0: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40016bc4: 80 a0 60 04 cmp %g1, 4
40016bc8: 02 80 00 04 be 40016bd8 <rtems_timer_cancel+0x40> <== NEVER TAKEN
40016bcc: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40016bd0: 40 00 13 92 call 4001ba18 <_Watchdog_Remove>
40016bd4: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40016bd8: 40 00 0e b8 call 4001a6b8 <_Thread_Enable_dispatch>
40016bdc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40016be0: 81 c7 e0 08 ret
40016be4: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016be8: 81 c7 e0 08 ret
40016bec: 91 e8 20 04 restore %g0, 4, %o0
40017080 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40017080: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40017084: 03 10 00 f6 sethi %hi(0x4003d800), %g1
40017088: e2 00 62 04 ld [ %g1 + 0x204 ], %l1 ! 4003da04 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
4001708c: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
40017090: 80 a4 60 00 cmp %l1, 0
40017094: 02 80 00 33 be 40017160 <rtems_timer_server_fire_when+0xe0>
40017098: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
4001709c: 03 10 00 f5 sethi %hi(0x4003d400), %g1
400170a0: c2 08 62 f0 ldub [ %g1 + 0x2f0 ], %g1 ! 4003d6f0 <_TOD_Is_set>
400170a4: 80 a0 60 00 cmp %g1, 0
400170a8: 02 80 00 2e be 40017160 <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
400170ac: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
400170b0: 80 a6 a0 00 cmp %i2, 0
400170b4: 02 80 00 2b be 40017160 <rtems_timer_server_fire_when+0xe0>
400170b8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
400170bc: 90 10 00 19 mov %i1, %o0
400170c0: 7f ff f4 06 call 400140d8 <_TOD_Validate>
400170c4: b0 10 20 14 mov 0x14, %i0
400170c8: 80 8a 20 ff btst 0xff, %o0
400170cc: 02 80 00 27 be 40017168 <rtems_timer_server_fire_when+0xe8>
400170d0: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
400170d4: 7f ff f3 cd call 40014008 <_TOD_To_seconds>
400170d8: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400170dc: 27 10 00 f5 sethi %hi(0x4003d400), %l3
400170e0: c2 04 e3 88 ld [ %l3 + 0x388 ], %g1 ! 4003d788 <_TOD_Now>
400170e4: 80 a2 00 01 cmp %o0, %g1
400170e8: 08 80 00 1e bleu 40017160 <rtems_timer_server_fire_when+0xe0>
400170ec: a4 10 00 08 mov %o0, %l2
400170f0: 11 10 00 f6 sethi %hi(0x4003d800), %o0
400170f4: 92 10 00 10 mov %l0, %o1
400170f8: 90 12 21 c4 or %o0, 0x1c4, %o0
400170fc: 40 00 0a 6a call 40019aa4 <_Objects_Get>
40017100: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40017104: c2 07 bf fc ld [ %fp + -4 ], %g1
40017108: b2 10 00 08 mov %o0, %i1
4001710c: 80 a0 60 00 cmp %g1, 0
40017110: 12 80 00 14 bne 40017160 <rtems_timer_server_fire_when+0xe0>
40017114: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40017118: 40 00 12 40 call 4001ba18 <_Watchdog_Remove>
4001711c: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40017120: 82 10 20 03 mov 3, %g1
40017124: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017128: c2 04 e3 88 ld [ %l3 + 0x388 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
4001712c: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017130: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
40017134: c2 04 60 04 ld [ %l1 + 4 ], %g1
40017138: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
4001713c: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
40017140: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
40017144: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
40017148: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001714c: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
40017150: 9f c0 40 00 call %g1
40017154: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
40017158: 40 00 0d 58 call 4001a6b8 <_Thread_Enable_dispatch>
4001715c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40017160: 81 c7 e0 08 ret
40017164: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40017168: 81 c7 e0 08 ret
4001716c: 81 e8 00 00 restore