RTEMS 4.11Annotated Report
Fri Oct 8 11:34:22 2010
40017e40 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017e40: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017e44: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017e48: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017e4c: 80 a6 80 01 cmp %i2, %g1
40017e50: 18 80 00 16 bgu 40017ea8 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
40017e54: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
40017e58: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40017e5c: 80 a0 60 00 cmp %g1, 0
40017e60: 02 80 00 0b be 40017e8c <_CORE_message_queue_Broadcast+0x4c>
40017e64: a2 10 20 00 clr %l1
*count = 0;
40017e68: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017e6c: 81 c7 e0 08 ret
40017e70: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40017e74: 92 10 00 19 mov %i1, %o1
40017e78: 40 00 20 df call 400201f4 <memcpy>
40017e7c: 94 10 00 1a mov %i2, %o2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017e80: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
40017e84: a2 04 60 01 inc %l1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017e88: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
40017e8c: 40 00 0a 32 call 4001a754 <_Thread_queue_Dequeue>
40017e90: 90 10 00 10 mov %l0, %o0
40017e94: a4 92 20 00 orcc %o0, 0, %l2
40017e98: 32 bf ff f7 bne,a 40017e74 <_CORE_message_queue_Broadcast+0x34>
40017e9c: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
40017ea0: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017ea4: b0 10 20 00 clr %i0
}
40017ea8: 81 c7 e0 08 ret
40017eac: 81 e8 00 00 restore
40010720 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
40010720: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
40010724: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
40010728: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
4001072c: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
40010730: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
40010734: 80 8e e0 03 btst 3, %i3
40010738: 02 80 00 07 be 40010754 <_CORE_message_queue_Initialize+0x34>
4001073c: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
40010740: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
40010744: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
40010748: 80 a4 80 1b cmp %l2, %i3
4001074c: 0a 80 00 22 bcs 400107d4 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40010750: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
40010754: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
40010758: 92 10 00 1a mov %i2, %o1
4001075c: 90 10 00 11 mov %l1, %o0
40010760: 40 00 3d 20 call 4001fbe0 <.umul>
40010764: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40010768: 80 a2 00 12 cmp %o0, %l2
4001076c: 0a 80 00 1a bcs 400107d4 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40010770: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
40010774: 40 00 0b 7d call 40013568 <_Workspace_Allocate>
40010778: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
4001077c: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
40010780: 80 a2 20 00 cmp %o0, 0
40010784: 02 80 00 14 be 400107d4 <_CORE_message_queue_Initialize+0xb4>
40010788: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
4001078c: 90 04 20 60 add %l0, 0x60, %o0
40010790: 94 10 00 1a mov %i2, %o2
40010794: 40 00 13 7e call 4001558c <_Chain_Initialize>
40010798: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4001079c: 82 04 20 54 add %l0, 0x54, %g1
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
400107a0: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
the_message_queue->message_buffers,
(size_t) maximum_pending_messages,
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
400107a4: 82 04 20 50 add %l0, 0x50, %g1
the_chain->permanent_null = NULL;
the_chain->last = _Chain_Head(the_chain);
400107a8: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
_Thread_queue_Initialize(
400107ac: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
400107b0: c0 24 20 54 clr [ %l0 + 0x54 ]
400107b4: 82 18 60 01 xor %g1, 1, %g1
400107b8: 80 a0 00 01 cmp %g0, %g1
400107bc: 90 10 00 10 mov %l0, %o0
400107c0: 92 60 3f ff subx %g0, -1, %o1
400107c4: 94 10 20 80 mov 0x80, %o2
400107c8: 96 10 20 06 mov 6, %o3
400107cc: 40 00 08 55 call 40012920 <_Thread_queue_Initialize>
400107d0: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
400107d4: 81 c7 e0 08 ret
400107d8: 81 e8 00 00 restore
400107dc <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
400107dc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
400107e0: 27 10 00 96 sethi %hi(0x40025800), %l3
400107e4: a6 14 e1 dc or %l3, 0x1dc, %l3 ! 400259dc <_Per_CPU_Information>
400107e8: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
400107ec: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
400107f0: 7f ff da d7 call 4000734c <sparc_disable_interrupts>
400107f4: c0 24 a0 34 clr [ %l2 + 0x34 ]
400107f8: 82 10 00 08 mov %o0, %g1
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
400107fc: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40010800: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40010804: 80 a4 40 02 cmp %l1, %g2
40010808: 02 80 00 15 be 4001085c <_CORE_message_queue_Seize+0x80>
4001080c: 86 06 20 50 add %i0, 0x50, %g3
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
40010810: c4 04 40 00 ld [ %l1 ], %g2
the_chain->first = new_first;
40010814: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
40010818: 80 a4 60 00 cmp %l1, 0
4001081c: 02 80 00 10 be 4001085c <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
40010820: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
40010824: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
40010828: 82 00 7f ff add %g1, -1, %g1
4001082c: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
40010830: 7f ff da cb call 4000735c <sparc_enable_interrupts>
40010834: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
40010838: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
4001083c: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
40010840: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
40010844: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40010848: 90 10 00 1a mov %i2, %o0
4001084c: 40 00 1d cc call 40017f7c <memcpy>
40010850: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
40010854: 7f ff ff 83 call 40010660 <_Chain_Append>
40010858: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
4001085c: 80 8f 20 ff btst 0xff, %i4
40010860: 32 80 00 08 bne,a 40010880 <_CORE_message_queue_Seize+0xa4>
40010864: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
40010868: 7f ff da bd call 4000735c <sparc_enable_interrupts>
4001086c: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
40010870: 82 10 20 04 mov 4, %g1
40010874: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
40010878: 81 c7 e0 08 ret
4001087c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40010880: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
40010884: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
40010888: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
4001088c: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
40010890: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
40010894: 90 10 00 01 mov %g1, %o0
40010898: 7f ff da b1 call 4000735c <sparc_enable_interrupts>
4001089c: 35 10 00 4a sethi %hi(0x40012800), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
400108a0: b2 10 00 1d mov %i5, %i1
400108a4: 40 00 07 77 call 40012680 <_Thread_queue_Enqueue_with_handler>
400108a8: 95 ee a2 00 restore %i2, 0x200, %o2
40007598 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40007598: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
4000759c: 03 10 00 54 sethi %hi(0x40015000), %g1
400075a0: c2 00 61 b8 ld [ %g1 + 0x1b8 ], %g1 ! 400151b8 <_Thread_Dispatch_disable_level>
400075a4: 80 a0 60 00 cmp %g1, 0
400075a8: 02 80 00 0d be 400075dc <_CORE_mutex_Seize+0x44>
400075ac: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
400075b0: 80 8e a0 ff btst 0xff, %i2
400075b4: 02 80 00 0b be 400075e0 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
400075b8: 90 10 00 18 mov %i0, %o0
400075bc: 03 10 00 54 sethi %hi(0x40015000), %g1
400075c0: c2 00 63 3c ld [ %g1 + 0x33c ], %g1 ! 4001533c <_System_state_Current>
400075c4: 80 a0 60 01 cmp %g1, 1
400075c8: 08 80 00 05 bleu 400075dc <_CORE_mutex_Seize+0x44>
400075cc: 90 10 20 00 clr %o0
400075d0: 92 10 20 00 clr %o1
400075d4: 40 00 01 dd call 40007d48 <_Internal_error_Occurred>
400075d8: 94 10 20 12 mov 0x12, %o2
400075dc: 90 10 00 18 mov %i0, %o0
400075e0: 40 00 12 9a call 4000c048 <_CORE_mutex_Seize_interrupt_trylock>
400075e4: 92 07 a0 54 add %fp, 0x54, %o1
400075e8: 80 a2 20 00 cmp %o0, 0
400075ec: 02 80 00 0a be 40007614 <_CORE_mutex_Seize+0x7c>
400075f0: 80 8e a0 ff btst 0xff, %i2
400075f4: 35 10 00 55 sethi %hi(0x40015400), %i2
400075f8: 12 80 00 09 bne 4000761c <_CORE_mutex_Seize+0x84>
400075fc: b4 16 a0 1c or %i2, 0x1c, %i2 ! 4001541c <_Per_CPU_Information>
40007600: 7f ff e9 d1 call 40001d44 <sparc_enable_interrupts>
40007604: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007608: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
4000760c: 84 10 20 01 mov 1, %g2
40007610: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40007614: 81 c7 e0 08 ret
40007618: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
4000761c: 82 10 20 01 mov 1, %g1
40007620: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
40007624: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
40007628: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
4000762c: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40007630: 03 10 00 54 sethi %hi(0x40015000), %g1
40007634: c4 00 61 b8 ld [ %g1 + 0x1b8 ], %g2 ! 400151b8 <_Thread_Dispatch_disable_level>
40007638: 84 00 a0 01 inc %g2
4000763c: c4 20 61 b8 st %g2, [ %g1 + 0x1b8 ]
40007640: 7f ff e9 c1 call 40001d44 <sparc_enable_interrupts>
40007644: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007648: 90 10 00 18 mov %i0, %o0
4000764c: 7f ff ff ba call 40007534 <_CORE_mutex_Seize_interrupt_blocking>
40007650: 92 10 00 1b mov %i3, %o1
40007654: 81 c7 e0 08 ret
40007658: 81 e8 00 00 restore
4000c048 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000c048: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000c04c: 03 10 00 55 sethi %hi(0x40015400), %g1
4000c050: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 ! 40015428 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000c054: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000c058: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000c05c: 80 a0 a0 00 cmp %g2, 0
4000c060: 02 80 00 2f be 4000c11c <_CORE_mutex_Seize_interrupt_trylock+0xd4>
4000c064: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000c068: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000c06c: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000c070: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
4000c074: 84 10 20 01 mov 1, %g2
4000c078: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000c07c: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000c080: 80 a0 a0 02 cmp %g2, 2
4000c084: 02 80 00 05 be 4000c098 <_CORE_mutex_Seize_interrupt_trylock+0x50>
4000c088: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
4000c08c: 80 a0 a0 03 cmp %g2, 3
4000c090: 12 80 00 07 bne 4000c0ac <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000c094: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000c098: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000c09c: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000c0a0: 88 00 e0 01 add %g3, 1, %g4
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000c0a4: 02 80 00 03 be 4000c0b0 <_CORE_mutex_Seize_interrupt_trylock+0x68>
4000c0a8: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000c0ac: 30 80 00 2b b,a 4000c158 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000c0b0: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
4000c0b4: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
4000c0b8: 80 a1 00 02 cmp %g4, %g2
4000c0bc: 12 80 00 03 bne 4000c0c8 <_CORE_mutex_Seize_interrupt_trylock+0x80>
4000c0c0: 01 00 00 00 nop
_ISR_Enable( *level_p );
4000c0c4: 30 80 00 25 b,a 4000c158 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0;
}
if ( current > ceiling ) {
4000c0c8: 08 80 00 0f bleu 4000c104 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
4000c0cc: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000c0d0: 03 10 00 54 sethi %hi(0x40015000), %g1
4000c0d4: c4 00 61 b8 ld [ %g1 + 0x1b8 ], %g2 ! 400151b8 <_Thread_Dispatch_disable_level>
4000c0d8: 84 00 a0 01 inc %g2
4000c0dc: c4 20 61 b8 st %g2, [ %g1 + 0x1b8 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000c0e0: 7f ff d7 19 call 40001d44 <sparc_enable_interrupts>
4000c0e4: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000c0e8: d0 04 20 5c ld [ %l0 + 0x5c ], %o0
4000c0ec: d2 04 20 4c ld [ %l0 + 0x4c ], %o1
4000c0f0: 7f ff f1 6b call 4000869c <_Thread_Change_priority>
4000c0f4: 94 10 20 00 clr %o2
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000c0f8: 7f ff f2 cd call 40008c2c <_Thread_Enable_dispatch>
4000c0fc: b0 10 20 00 clr %i0
4000c100: 30 80 00 1d b,a 4000c174 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000c104: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
the_mutex->nest_count = 0; /* undo locking above */
4000c108: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000c10c: 84 10 20 01 mov 1, %g2
4000c110: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
executing->resource_count--; /* undo locking above */
4000c114: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000c118: 30 80 00 10 b,a 4000c158 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000c11c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000c120: 80 a0 80 01 cmp %g2, %g1
4000c124: 12 80 00 14 bne 4000c174 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000c128: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000c12c: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
4000c130: 80 a0 60 00 cmp %g1, 0
4000c134: 22 80 00 07 be,a 4000c150 <_CORE_mutex_Seize_interrupt_trylock+0x108>
4000c138: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000c13c: 80 a0 60 01 cmp %g1, 1
4000c140: 12 80 00 0d bne 4000c174 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
4000c144: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000c148: 10 80 00 08 b 4000c168 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED
4000c14c: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000c150: 82 00 60 01 inc %g1
4000c154: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000c158: 7f ff d6 fb call 40001d44 <sparc_enable_interrupts>
4000c15c: d0 06 40 00 ld [ %i1 ], %o0
return 0;
4000c160: 81 c7 e0 08 ret
4000c164: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
_ISR_Enable( *level_p );
4000c168: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000c16c: 7f ff d6 f6 call 40001d44 <sparc_enable_interrupts> <== NOT EXECUTED
4000c170: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000c174: 81 c7 e0 08 ret
4000c178: 81 e8 00 00 restore
400077d8 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
400077d8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
400077dc: 90 10 00 18 mov %i0, %o0
400077e0: 40 00 05 ee call 40008f98 <_Thread_queue_Dequeue>
400077e4: a0 10 00 18 mov %i0, %l0
400077e8: 80 a2 20 00 cmp %o0, 0
400077ec: 12 80 00 0e bne 40007824 <_CORE_semaphore_Surrender+0x4c>
400077f0: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
400077f4: 7f ff e9 50 call 40001d34 <sparc_disable_interrupts>
400077f8: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
400077fc: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40007800: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40007804: 80 a0 40 02 cmp %g1, %g2
40007808: 1a 80 00 05 bcc 4000781c <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
4000780c: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40007810: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40007814: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40007818: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
4000781c: 7f ff e9 4a call 40001d44 <sparc_enable_interrupts>
40007820: 01 00 00 00 nop
}
return status;
}
40007824: 81 c7 e0 08 ret
40007828: 81 e8 00 00 restore
40007b58 <_Chain_Get_with_empty_check>:
bool _Chain_Get_with_empty_check(
Chain_Control *chain,
Chain_Node **node
)
{
40007b58: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
bool is_empty_now;
_ISR_Disable( level );
40007b5c: 7f ff ea 0a call 40002384 <sparc_disable_interrupts>
40007b60: 01 00 00 00 nop
Chain_Control *the_chain,
Chain_Node **the_node
)
{
bool is_empty_now = true;
Chain_Node *first = the_chain->first;
40007b64: c4 06 00 00 ld [ %i0 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40007b68: 86 06 20 04 add %i0, 4, %g3
)
{
bool is_empty_now = true;
Chain_Node *first = the_chain->first;
if ( first != _Chain_Tail( the_chain ) ) {
40007b6c: 80 a0 80 03 cmp %g2, %g3
40007b70: 22 80 00 0a be,a 40007b98 <_Chain_Get_with_empty_check+0x40><== NEVER TAKEN
40007b74: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED
Chain_Node *new_first = first->next;
40007b78: c2 00 80 00 ld [ %g2 ], %g1
the_chain->first = new_first;
40007b7c: c2 26 00 00 st %g1, [ %i0 ]
new_first->previous = _Chain_Head( the_chain );
40007b80: f0 20 60 04 st %i0, [ %g1 + 4 ]
*the_node = first;
40007b84: c4 26 40 00 st %g2, [ %i1 ]
is_empty_now = new_first == _Chain_Tail( the_chain );
40007b88: 82 18 40 03 xor %g1, %g3, %g1
40007b8c: 80 a0 00 01 cmp %g0, %g1
40007b90: 10 80 00 03 b 40007b9c <_Chain_Get_with_empty_check+0x44>
40007b94: b0 60 3f ff subx %g0, -1, %i0
RTEMS_INLINE_ROUTINE bool _Chain_Get_with_empty_check_unprotected(
Chain_Control *the_chain,
Chain_Node **the_node
)
{
bool is_empty_now = true;
40007b98: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED
is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node );
_ISR_Enable( level );
40007b9c: 7f ff e9 fe call 40002394 <sparc_enable_interrupts>
40007ba0: 01 00 00 00 nop
return is_empty_now;
}
40007ba4: 81 c7 e0 08 ret
40007ba8: 81 e8 00 00 restore
400065a0 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
400065a0: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400065a4: e2 06 21 5c ld [ %i0 + 0x15c ], %l1
option_set = (rtems_option) the_thread->Wait.option;
400065a8: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
400065ac: 7f ff ed e2 call 40001d34 <sparc_disable_interrupts>
400065b0: a0 10 00 18 mov %i0, %l0
400065b4: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
400065b8: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
400065bc: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
400065c0: 82 88 c0 02 andcc %g3, %g2, %g1
400065c4: 12 80 00 03 bne 400065d0 <_Event_Surrender+0x30>
400065c8: 09 10 00 55 sethi %hi(0x40015400), %g4
_ISR_Enable( level );
400065cc: 30 80 00 42 b,a 400066d4 <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
400065d0: 88 11 20 1c or %g4, 0x1c, %g4 ! 4001541c <_Per_CPU_Information>
400065d4: da 01 20 08 ld [ %g4 + 8 ], %o5
400065d8: 80 a3 60 00 cmp %o5, 0
400065dc: 22 80 00 1d be,a 40006650 <_Event_Surrender+0xb0>
400065e0: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
400065e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4
400065e8: 80 a4 00 04 cmp %l0, %g4
400065ec: 32 80 00 19 bne,a 40006650 <_Event_Surrender+0xb0>
400065f0: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
400065f4: 09 10 00 55 sethi %hi(0x40015400), %g4
400065f8: da 01 20 38 ld [ %g4 + 0x38 ], %o5 ! 40015438 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
400065fc: 80 a3 60 02 cmp %o5, 2
40006600: 02 80 00 07 be 4000661c <_Event_Surrender+0x7c> <== NEVER TAKEN
40006604: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40006608: c8 01 20 38 ld [ %g4 + 0x38 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
4000660c: 80 a1 20 01 cmp %g4, 1
40006610: 32 80 00 10 bne,a 40006650 <_Event_Surrender+0xb0>
40006614: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40006618: 80 a0 40 03 cmp %g1, %g3
4000661c: 02 80 00 04 be 4000662c <_Event_Surrender+0x8c>
40006620: 80 8c a0 02 btst 2, %l2
40006624: 02 80 00 0a be 4000664c <_Event_Surrender+0xac> <== NEVER TAKEN
40006628: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
4000662c: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40006630: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006634: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
40006638: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
4000663c: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40006640: 84 10 20 03 mov 3, %g2
40006644: 03 10 00 55 sethi %hi(0x40015400), %g1
40006648: c4 20 60 38 st %g2, [ %g1 + 0x38 ] ! 40015438 <_Event_Sync_state>
}
_ISR_Enable( level );
4000664c: 30 80 00 22 b,a 400066d4 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40006650: 80 89 21 00 btst 0x100, %g4
40006654: 02 80 00 20 be 400066d4 <_Event_Surrender+0x134>
40006658: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
4000665c: 02 80 00 04 be 4000666c <_Event_Surrender+0xcc>
40006660: 80 8c a0 02 btst 2, %l2
40006664: 02 80 00 1c be 400066d4 <_Event_Surrender+0x134> <== NEVER TAKEN
40006668: 01 00 00 00 nop
4000666c: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40006670: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006674: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
40006678: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
4000667c: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
40006680: 7f ff ed b1 call 40001d44 <sparc_enable_interrupts>
40006684: 90 10 00 18 mov %i0, %o0
40006688: 7f ff ed ab call 40001d34 <sparc_disable_interrupts>
4000668c: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40006690: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
40006694: 80 a0 60 02 cmp %g1, 2
40006698: 02 80 00 06 be 400066b0 <_Event_Surrender+0x110>
4000669c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
400066a0: 7f ff ed a9 call 40001d44 <sparc_enable_interrupts>
400066a4: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400066a8: 10 80 00 08 b 400066c8 <_Event_Surrender+0x128>
400066ac: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
400066b0: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
400066b4: 7f ff ed a4 call 40001d44 <sparc_enable_interrupts>
400066b8: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
400066bc: 40 00 0d e7 call 40009e58 <_Watchdog_Remove>
400066c0: 90 04 20 48 add %l0, 0x48, %o0
400066c4: 33 04 00 ff sethi %hi(0x1003fc00), %i1
400066c8: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
400066cc: 40 00 08 6d call 40008880 <_Thread_Clear_state>
400066d0: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
400066d4: 7f ff ed 9c call 40001d44 <sparc_enable_interrupts>
400066d8: 81 e8 00 00 restore
400066e0 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
400066e0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
400066e4: 90 10 00 18 mov %i0, %o0
400066e8: 40 00 09 5e call 40008c60 <_Thread_Get>
400066ec: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400066f0: c2 07 bf fc ld [ %fp + -4 ], %g1
400066f4: 80 a0 60 00 cmp %g1, 0
400066f8: 12 80 00 1c bne 40006768 <_Event_Timeout+0x88> <== NEVER TAKEN
400066fc: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40006700: 7f ff ed 8d call 40001d34 <sparc_disable_interrupts>
40006704: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40006708: 03 10 00 55 sethi %hi(0x40015400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
4000670c: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 ! 40015428 <_Per_CPU_Information+0xc>
40006710: 80 a4 00 01 cmp %l0, %g1
40006714: 12 80 00 09 bne 40006738 <_Event_Timeout+0x58>
40006718: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
4000671c: 03 10 00 55 sethi %hi(0x40015400), %g1
40006720: c4 00 60 38 ld [ %g1 + 0x38 ], %g2 ! 40015438 <_Event_Sync_state>
40006724: 80 a0 a0 01 cmp %g2, 1
40006728: 32 80 00 05 bne,a 4000673c <_Event_Timeout+0x5c>
4000672c: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40006730: 84 10 20 02 mov 2, %g2
40006734: c4 20 60 38 st %g2, [ %g1 + 0x38 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006738: 82 10 20 06 mov 6, %g1
4000673c: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40006740: 7f ff ed 81 call 40001d44 <sparc_enable_interrupts>
40006744: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006748: 90 10 00 10 mov %l0, %o0
4000674c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40006750: 40 00 08 4c call 40008880 <_Thread_Clear_state>
40006754: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40006758: 03 10 00 54 sethi %hi(0x40015000), %g1
4000675c: c4 00 61 b8 ld [ %g1 + 0x1b8 ], %g2 ! 400151b8 <_Thread_Dispatch_disable_level>
40006760: 84 00 bf ff add %g2, -1, %g2
40006764: c4 20 61 b8 st %g2, [ %g1 + 0x1b8 ]
40006768: 81 c7 e0 08 ret
4000676c: 81 e8 00 00 restore
4000c6c4 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c6c4: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000c6c8: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c6cc: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c6d0: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000c6d4: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000c6d8: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c6dc: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c6e0: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
4000c6e4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000c6e8: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000c6ec: 80 a4 40 19 cmp %l1, %i1
4000c6f0: 0a 80 00 9f bcs 4000c96c <_Heap_Extend+0x2a8>
4000c6f4: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000c6f8: 90 10 00 19 mov %i1, %o0
4000c6fc: 94 10 00 13 mov %l3, %o2
4000c700: 98 07 bf fc add %fp, -4, %o4
4000c704: 7f ff ed ad call 40007db8 <_Heap_Get_first_and_last_block>
4000c708: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000c70c: 80 8a 20 ff btst 0xff, %o0
4000c710: 02 80 00 97 be 4000c96c <_Heap_Extend+0x2a8>
4000c714: aa 10 00 12 mov %l2, %l5
4000c718: ba 10 20 00 clr %i5
4000c71c: b8 10 20 00 clr %i4
4000c720: b0 10 20 00 clr %i0
4000c724: ae 10 20 00 clr %l7
4000c728: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000c72c: 80 a0 40 11 cmp %g1, %l1
4000c730: 1a 80 00 05 bcc 4000c744 <_Heap_Extend+0x80>
4000c734: ec 05 40 00 ld [ %l5 ], %l6
4000c738: 80 a6 40 16 cmp %i1, %l6
4000c73c: 2a 80 00 8c bcs,a 4000c96c <_Heap_Extend+0x2a8>
4000c740: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000c744: 80 a4 40 01 cmp %l1, %g1
4000c748: 02 80 00 06 be 4000c760 <_Heap_Extend+0x9c>
4000c74c: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000c750: 2a 80 00 05 bcs,a 4000c764 <_Heap_Extend+0xa0>
4000c754: b8 10 00 15 mov %l5, %i4
4000c758: 10 80 00 04 b 4000c768 <_Heap_Extend+0xa4>
4000c75c: 90 10 00 16 mov %l6, %o0
4000c760: ae 10 00 15 mov %l5, %l7
4000c764: 90 10 00 16 mov %l6, %o0
4000c768: 40 00 16 35 call 4001203c <.urem>
4000c76c: 92 10 00 13 mov %l3, %o1
4000c770: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000c774: 80 a5 80 19 cmp %l6, %i1
4000c778: 12 80 00 05 bne 4000c78c <_Heap_Extend+0xc8>
4000c77c: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
4000c780: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
4000c784: 10 80 00 04 b 4000c794 <_Heap_Extend+0xd0>
4000c788: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000c78c: 2a 80 00 02 bcs,a 4000c794 <_Heap_Extend+0xd0>
4000c790: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c794: ea 02 20 04 ld [ %o0 + 4 ], %l5
4000c798: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c79c: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000c7a0: 80 a5 40 12 cmp %l5, %l2
4000c7a4: 12 bf ff e2 bne 4000c72c <_Heap_Extend+0x68>
4000c7a8: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
4000c7ac: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000c7b0: 80 a6 40 01 cmp %i1, %g1
4000c7b4: 3a 80 00 04 bcc,a 4000c7c4 <_Heap_Extend+0x100>
4000c7b8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c7bc: 10 80 00 05 b 4000c7d0 <_Heap_Extend+0x10c>
4000c7c0: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
4000c7c4: 80 a0 40 11 cmp %g1, %l1
4000c7c8: 2a 80 00 02 bcs,a 4000c7d0 <_Heap_Extend+0x10c>
4000c7cc: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c7d0: c4 07 bf fc ld [ %fp + -4 ], %g2
4000c7d4: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
4000c7d8: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000c7dc: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c7e0: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000c7e4: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000c7e8: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c7ec: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
4000c7f0: 80 a0 c0 02 cmp %g3, %g2
4000c7f4: 08 80 00 04 bleu 4000c804 <_Heap_Extend+0x140>
4000c7f8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
4000c7fc: 10 80 00 06 b 4000c814 <_Heap_Extend+0x150>
4000c800: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c804: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
4000c808: 80 a0 80 01 cmp %g2, %g1
4000c80c: 2a 80 00 02 bcs,a 4000c814 <_Heap_Extend+0x150>
4000c810: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000c814: 80 a5 e0 00 cmp %l7, 0
4000c818: 02 80 00 14 be 4000c868 <_Heap_Extend+0x1a4>
4000c81c: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000c820: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000c824: 92 10 00 12 mov %l2, %o1
4000c828: 40 00 16 05 call 4001203c <.urem>
4000c82c: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c830: 80 a2 20 00 cmp %o0, 0
4000c834: 02 80 00 04 be 4000c844 <_Heap_Extend+0x180> <== ALWAYS TAKEN
4000c838: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
4000c83c: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000c840: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000c844: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000c848: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000c84c: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c850: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000c854: 90 10 00 10 mov %l0, %o0
4000c858: 7f ff ff 90 call 4000c698 <_Heap_Free_block>
4000c85c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c860: 10 80 00 09 b 4000c884 <_Heap_Extend+0x1c0>
4000c864: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000c868: 80 a7 20 00 cmp %i4, 0
4000c86c: 02 80 00 05 be 4000c880 <_Heap_Extend+0x1bc>
4000c870: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c874: b8 27 00 01 sub %i4, %g1, %i4
4000c878: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000c87c: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000c880: 80 a6 20 00 cmp %i0, 0
4000c884: 02 80 00 15 be 4000c8d8 <_Heap_Extend+0x214>
4000c888: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c88c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000c890: a2 24 40 18 sub %l1, %i0, %l1
4000c894: 40 00 15 ea call 4001203c <.urem>
4000c898: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000c89c: c4 06 20 04 ld [ %i0 + 4 ], %g2
4000c8a0: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c8a4: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
4000c8a8: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
4000c8ac: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000c8b0: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c8b4: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000c8b8: 90 10 00 10 mov %l0, %o0
4000c8bc: 82 08 60 01 and %g1, 1, %g1
4000c8c0: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
4000c8c4: a2 14 40 01 or %l1, %g1, %l1
4000c8c8: 7f ff ff 74 call 4000c698 <_Heap_Free_block>
4000c8cc: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c8d0: 10 80 00 0f b 4000c90c <_Heap_Extend+0x248>
4000c8d4: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000c8d8: 80 a7 60 00 cmp %i5, 0
4000c8dc: 02 80 00 0b be 4000c908 <_Heap_Extend+0x244>
4000c8e0: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c8e4: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
4000c8e8: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000c8ec: 86 20 c0 1d sub %g3, %i5, %g3
4000c8f0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000c8f4: 84 10 c0 02 or %g3, %g2, %g2
4000c8f8: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c8fc: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c900: 84 10 a0 01 or %g2, 1, %g2
4000c904: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c908: 80 a6 20 00 cmp %i0, 0
4000c90c: 32 80 00 09 bne,a 4000c930 <_Heap_Extend+0x26c>
4000c910: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000c914: 80 a5 e0 00 cmp %l7, 0
4000c918: 32 80 00 06 bne,a 4000c930 <_Heap_Extend+0x26c>
4000c91c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c920: d2 07 bf fc ld [ %fp + -4 ], %o1
4000c924: 7f ff ff 5d call 4000c698 <_Heap_Free_block>
4000c928: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000c92c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c930: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c934: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000c938: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c93c: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000c940: 84 10 c0 02 or %g3, %g2, %g2
4000c944: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c948: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
4000c94c: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000c950: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000c954: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
4000c958: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000c95c: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
4000c960: 02 80 00 03 be 4000c96c <_Heap_Extend+0x2a8> <== NEVER TAKEN
4000c964: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
4000c968: e8 26 c0 00 st %l4, [ %i3 ]
4000c96c: 81 c7 e0 08 ret
4000c970: 81 e8 00 00 restore
4000c3c4 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000c3c4: 9d e3 bf a0 save %sp, -96, %sp
4000c3c8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000c3cc: 40 00 15 de call 40011b44 <.urem>
4000c3d0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c3d4: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000c3d8: a2 06 7f f8 add %i1, -8, %l1
4000c3dc: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000c3e0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c3e4: 80 a2 00 0c cmp %o0, %o4
4000c3e8: 0a 80 00 05 bcs 4000c3fc <_Heap_Free+0x38>
4000c3ec: 82 10 20 00 clr %g1
4000c3f0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
4000c3f4: 80 a0 40 08 cmp %g1, %o0
4000c3f8: 82 60 3f ff subx %g0, -1, %g1
uintptr_t next_block_size = 0;
bool next_is_free = false;
_Heap_Protection_block_check( heap, block );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000c3fc: 80 a0 60 00 cmp %g1, 0
4000c400: 02 80 00 6a be 4000c5a8 <_Heap_Free+0x1e4>
4000c404: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c408: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c40c: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c410: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c414: 80 a0 40 0c cmp %g1, %o4
4000c418: 0a 80 00 05 bcs 4000c42c <_Heap_Free+0x68> <== NEVER TAKEN
4000c41c: 86 10 20 00 clr %g3
4000c420: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000c424: 80 a0 c0 01 cmp %g3, %g1
4000c428: 86 60 3f ff subx %g0, -1, %g3
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000c42c: 80 a0 e0 00 cmp %g3, 0
4000c430: 02 80 00 5e be 4000c5a8 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c434: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c438: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000c43c: 80 89 20 01 btst 1, %g4
4000c440: 02 80 00 5a be 4000c5a8 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c444: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
4000c448: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c44c: 80 a0 40 09 cmp %g1, %o1
4000c450: 02 80 00 07 be 4000c46c <_Heap_Free+0xa8>
4000c454: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000c458: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c45c: c6 00 e0 04 ld [ %g3 + 4 ], %g3
4000c460: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c464: 80 a0 00 03 cmp %g0, %g3
4000c468: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
4000c46c: 80 8b 60 01 btst 1, %o5
4000c470: 12 80 00 26 bne 4000c508 <_Heap_Free+0x144>
4000c474: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
4000c478: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000c47c: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c480: 80 a0 c0 0c cmp %g3, %o4
4000c484: 0a 80 00 04 bcs 4000c494 <_Heap_Free+0xd0> <== NEVER TAKEN
4000c488: 94 10 20 00 clr %o2
4000c48c: 80 a2 40 03 cmp %o1, %g3
4000c490: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000c494: 80 a2 a0 00 cmp %o2, 0
4000c498: 02 80 00 44 be 4000c5a8 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c49c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c4a0: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c4a4: 80 8b 20 01 btst 1, %o4
4000c4a8: 02 80 00 40 be 4000c5a8 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c4ac: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000c4b0: 22 80 00 0f be,a 4000c4ec <_Heap_Free+0x128>
4000c4b4: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
4000c4b8: 88 00 80 04 add %g2, %g4, %g4
4000c4bc: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
4000c4c0: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
4000c4c4: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000c4c8: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
4000c4cc: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000c4d0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000c4d4: 82 00 7f ff add %g1, -1, %g1
4000c4d8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000c4dc: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c4e0: 82 13 60 01 or %o5, 1, %g1
4000c4e4: 10 80 00 27 b 4000c580 <_Heap_Free+0x1bc>
4000c4e8: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c4ec: 88 13 60 01 or %o5, 1, %g4
4000c4f0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c4f4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
4000c4f8: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c4fc: 86 08 ff fe and %g3, -2, %g3
4000c500: 10 80 00 20 b 4000c580 <_Heap_Free+0x1bc>
4000c504: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000c508: 22 80 00 0d be,a 4000c53c <_Heap_Free+0x178>
4000c50c: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
4000c510: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
4000c514: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
4000c518: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000c51c: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
4000c520: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
4000c524: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
4000c528: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c52c: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000c530: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c534: 10 80 00 13 b 4000c580 <_Heap_Free+0x1bc>
4000c538: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000c53c: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000c540: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000c544: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c548: 86 10 a0 01 or %g2, 1, %g3
4000c54c: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c550: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
4000c554: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c558: 86 08 ff fe and %g3, -2, %g3
4000c55c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c560: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c564: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000c568: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000c56c: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c570: 80 a0 c0 01 cmp %g3, %g1
4000c574: 1a 80 00 03 bcc 4000c580 <_Heap_Free+0x1bc>
4000c578: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c57c: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
4000c580: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
4000c584: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000c588: 82 00 7f ff add %g1, -1, %g1
4000c58c: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
4000c590: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
4000c594: 82 00 60 01 inc %g1
4000c598: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c59c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000c5a0: 84 00 40 02 add %g1, %g2, %g2
4000c5a4: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
4000c5a8: 81 c7 e0 08 ret
4000c5ac: 81 e8 00 00 restore
4001348c <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
4001348c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40013490: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
40013494: 7f ff f9 ac call 40011b44 <.urem>
40013498: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4001349c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400134a0: a2 06 7f f8 add %i1, -8, %l1
400134a4: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
400134a8: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400134ac: 80 a2 00 02 cmp %o0, %g2
400134b0: 0a 80 00 05 bcs 400134c4 <_Heap_Size_of_alloc_area+0x38>
400134b4: 82 10 20 00 clr %g1
400134b8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
400134bc: 80 a0 40 08 cmp %g1, %o0
400134c0: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
400134c4: 80 a0 60 00 cmp %g1, 0
400134c8: 02 80 00 15 be 4001351c <_Heap_Size_of_alloc_area+0x90>
400134cc: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400134d0: e2 02 20 04 ld [ %o0 + 4 ], %l1
400134d4: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400134d8: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400134dc: 80 a4 40 02 cmp %l1, %g2
400134e0: 0a 80 00 05 bcs 400134f4 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
400134e4: 82 10 20 00 clr %g1
400134e8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
400134ec: 80 a0 40 11 cmp %g1, %l1
400134f0: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
400134f4: 80 a0 60 00 cmp %g1, 0
400134f8: 02 80 00 09 be 4001351c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
400134fc: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40013500: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
40013504: 80 88 60 01 btst 1, %g1
40013508: 02 80 00 05 be 4001351c <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
4001350c: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
40013510: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
40013514: a2 04 60 04 add %l1, 4, %l1
40013518: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
4001351c: 81 c7 e0 08 ret
40013520: 81 e8 00 00 restore
40008bc0 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008bc0: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008bc4: 23 10 00 22 sethi %hi(0x40008800), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40008bc8: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40008bcc: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
40008bd0: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
40008bd4: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
40008bd8: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40008bdc: 80 8e a0 ff btst 0xff, %i2
40008be0: 02 80 00 04 be 40008bf0 <_Heap_Walk+0x30>
40008be4: a2 14 63 6c or %l1, 0x36c, %l1
40008be8: 23 10 00 22 sethi %hi(0x40008800), %l1
40008bec: a2 14 63 74 or %l1, 0x374, %l1 ! 40008b74 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40008bf0: 03 10 00 5e sethi %hi(0x40017800), %g1
40008bf4: c2 00 61 dc ld [ %g1 + 0x1dc ], %g1 ! 400179dc <_System_state_Current>
40008bf8: 80 a0 60 03 cmp %g1, 3
40008bfc: 12 80 01 2d bne 400090b0 <_Heap_Walk+0x4f0>
40008c00: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
40008c04: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40008c08: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40008c0c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008c10: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008c14: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
40008c18: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
40008c1c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40008c20: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
40008c24: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
40008c28: 90 10 00 19 mov %i1, %o0
40008c2c: 92 10 20 00 clr %o1
40008c30: 15 10 00 54 sethi %hi(0x40015000), %o2
40008c34: 96 10 00 12 mov %l2, %o3
40008c38: 94 12 a1 80 or %o2, 0x180, %o2
40008c3c: 9f c4 40 00 call %l1
40008c40: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40008c44: 80 a4 a0 00 cmp %l2, 0
40008c48: 12 80 00 07 bne 40008c64 <_Heap_Walk+0xa4>
40008c4c: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
40008c50: 15 10 00 54 sethi %hi(0x40015000), %o2
40008c54: 90 10 00 19 mov %i1, %o0
40008c58: 92 10 20 01 mov 1, %o1
40008c5c: 10 80 00 38 b 40008d3c <_Heap_Walk+0x17c>
40008c60: 94 12 a2 18 or %o2, 0x218, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40008c64: 22 80 00 08 be,a 40008c84 <_Heap_Walk+0xc4>
40008c68: 90 10 00 14 mov %l4, %o0
(*printer)(
40008c6c: 15 10 00 54 sethi %hi(0x40015000), %o2
40008c70: 90 10 00 19 mov %i1, %o0
40008c74: 92 10 20 01 mov 1, %o1
40008c78: 94 12 a2 30 or %o2, 0x230, %o2
40008c7c: 10 80 01 0b b 400090a8 <_Heap_Walk+0x4e8>
40008c80: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008c84: 7f ff e3 90 call 40001ac4 <.urem>
40008c88: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40008c8c: 80 a2 20 00 cmp %o0, 0
40008c90: 22 80 00 08 be,a 40008cb0 <_Heap_Walk+0xf0>
40008c94: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
40008c98: 15 10 00 54 sethi %hi(0x40015000), %o2
40008c9c: 90 10 00 19 mov %i1, %o0
40008ca0: 92 10 20 01 mov 1, %o1
40008ca4: 94 12 a2 50 or %o2, 0x250, %o2
40008ca8: 10 80 01 00 b 400090a8 <_Heap_Walk+0x4e8>
40008cac: 96 10 00 14 mov %l4, %o3
40008cb0: 7f ff e3 85 call 40001ac4 <.urem>
40008cb4: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
40008cb8: 80 a2 20 00 cmp %o0, 0
40008cbc: 22 80 00 08 be,a 40008cdc <_Heap_Walk+0x11c>
40008cc0: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40008cc4: 15 10 00 54 sethi %hi(0x40015000), %o2
40008cc8: 90 10 00 19 mov %i1, %o0
40008ccc: 92 10 20 01 mov 1, %o1
40008cd0: 94 12 a2 78 or %o2, 0x278, %o2
40008cd4: 10 80 00 f5 b 400090a8 <_Heap_Walk+0x4e8>
40008cd8: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40008cdc: 80 88 60 01 btst 1, %g1
40008ce0: 32 80 00 07 bne,a 40008cfc <_Heap_Walk+0x13c>
40008ce4: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
40008ce8: 15 10 00 54 sethi %hi(0x40015000), %o2
40008cec: 90 10 00 19 mov %i1, %o0
40008cf0: 92 10 20 01 mov 1, %o1
40008cf4: 10 80 00 12 b 40008d3c <_Heap_Walk+0x17c>
40008cf8: 94 12 a2 b0 or %o2, 0x2b0, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008cfc: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008d00: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008d04: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40008d08: 80 88 60 01 btst 1, %g1
40008d0c: 12 80 00 07 bne 40008d28 <_Heap_Walk+0x168>
40008d10: 80 a5 80 13 cmp %l6, %l3
(*printer)(
40008d14: 15 10 00 54 sethi %hi(0x40015000), %o2
40008d18: 90 10 00 19 mov %i1, %o0
40008d1c: 92 10 20 01 mov 1, %o1
40008d20: 10 80 00 07 b 40008d3c <_Heap_Walk+0x17c>
40008d24: 94 12 a2 e0 or %o2, 0x2e0, %o2
);
return false;
}
if (
40008d28: 02 80 00 08 be 40008d48 <_Heap_Walk+0x188> <== ALWAYS TAKEN
40008d2c: 15 10 00 54 sethi %hi(0x40015000), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40008d30: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40008d34: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
40008d38: 94 12 a2 f8 or %o2, 0x2f8, %o2 <== NOT EXECUTED
40008d3c: 9f c4 40 00 call %l1
40008d40: b0 10 20 00 clr %i0
40008d44: 30 80 00 db b,a 400090b0 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
40008d48: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
40008d4c: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
40008d50: ae 10 00 10 mov %l0, %l7
40008d54: 10 80 00 32 b 40008e1c <_Heap_Walk+0x25c>
40008d58: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008d5c: 80 a0 80 1c cmp %g2, %i4
40008d60: 18 80 00 05 bgu 40008d74 <_Heap_Walk+0x1b4>
40008d64: 82 10 20 00 clr %g1
40008d68: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
40008d6c: 80 a0 40 1c cmp %g1, %i4
40008d70: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
40008d74: 80 a0 60 00 cmp %g1, 0
40008d78: 32 80 00 08 bne,a 40008d98 <_Heap_Walk+0x1d8>
40008d7c: 90 07 20 08 add %i4, 8, %o0
(*printer)(
40008d80: 15 10 00 54 sethi %hi(0x40015000), %o2
40008d84: 96 10 00 1c mov %i4, %o3
40008d88: 90 10 00 19 mov %i1, %o0
40008d8c: 92 10 20 01 mov 1, %o1
40008d90: 10 80 00 c6 b 400090a8 <_Heap_Walk+0x4e8>
40008d94: 94 12 a3 28 or %o2, 0x328, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008d98: 7f ff e3 4b call 40001ac4 <.urem>
40008d9c: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
40008da0: 80 a2 20 00 cmp %o0, 0
40008da4: 22 80 00 08 be,a 40008dc4 <_Heap_Walk+0x204>
40008da8: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008dac: 15 10 00 54 sethi %hi(0x40015000), %o2
40008db0: 96 10 00 1c mov %i4, %o3
40008db4: 90 10 00 19 mov %i1, %o0
40008db8: 92 10 20 01 mov 1, %o1
40008dbc: 10 80 00 bb b 400090a8 <_Heap_Walk+0x4e8>
40008dc0: 94 12 a3 48 or %o2, 0x348, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008dc4: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40008dc8: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008dcc: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40008dd0: 80 88 60 01 btst 1, %g1
40008dd4: 22 80 00 08 be,a 40008df4 <_Heap_Walk+0x234>
40008dd8: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
40008ddc: 15 10 00 54 sethi %hi(0x40015000), %o2
40008de0: 96 10 00 1c mov %i4, %o3
40008de4: 90 10 00 19 mov %i1, %o0
40008de8: 92 10 20 01 mov 1, %o1
40008dec: 10 80 00 af b 400090a8 <_Heap_Walk+0x4e8>
40008df0: 94 12 a3 78 or %o2, 0x378, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
40008df4: 80 a3 00 17 cmp %o4, %l7
40008df8: 22 80 00 08 be,a 40008e18 <_Heap_Walk+0x258>
40008dfc: ae 10 00 1c mov %i4, %l7
(*printer)(
40008e00: 15 10 00 54 sethi %hi(0x40015000), %o2
40008e04: 96 10 00 1c mov %i4, %o3
40008e08: 90 10 00 19 mov %i1, %o0
40008e0c: 92 10 20 01 mov 1, %o1
40008e10: 10 80 00 49 b 40008f34 <_Heap_Walk+0x374>
40008e14: 94 12 a3 98 or %o2, 0x398, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
40008e18: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008e1c: 80 a7 00 10 cmp %i4, %l0
40008e20: 32 bf ff cf bne,a 40008d5c <_Heap_Walk+0x19c>
40008e24: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
40008e28: 35 10 00 55 sethi %hi(0x40015400), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008e2c: 31 10 00 55 sethi %hi(0x40015400), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40008e30: b4 16 a1 58 or %i2, 0x158, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008e34: b0 16 21 40 or %i0, 0x140, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008e38: 37 10 00 55 sethi %hi(0x40015400), %i3
block = next_block;
} while ( block != first_block );
return true;
}
40008e3c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008e40: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008e44: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008e48: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008e4c: 80 a0 c0 1d cmp %g3, %i5
40008e50: 18 80 00 05 bgu 40008e64 <_Heap_Walk+0x2a4> <== NEVER TAKEN
40008e54: 84 10 20 00 clr %g2
40008e58: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
40008e5c: 80 a0 80 1d cmp %g2, %i5
40008e60: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
40008e64: 80 a0 a0 00 cmp %g2, 0
40008e68: 12 80 00 07 bne 40008e84 <_Heap_Walk+0x2c4>
40008e6c: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
40008e70: 15 10 00 54 sethi %hi(0x40015000), %o2
40008e74: 90 10 00 19 mov %i1, %o0
40008e78: 92 10 20 01 mov 1, %o1
40008e7c: 10 80 00 2c b 40008f2c <_Heap_Walk+0x36c>
40008e80: 94 12 a3 d0 or %o2, 0x3d0, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40008e84: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008e88: c2 27 bf fc st %g1, [ %fp + -4 ]
40008e8c: b8 40 20 00 addx %g0, 0, %i4
40008e90: 90 10 00 17 mov %l7, %o0
40008e94: 7f ff e3 0c call 40001ac4 <.urem>
40008e98: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008e9c: 80 a2 20 00 cmp %o0, 0
40008ea0: 02 80 00 0c be 40008ed0 <_Heap_Walk+0x310>
40008ea4: c2 07 bf fc ld [ %fp + -4 ], %g1
40008ea8: 80 8f 20 ff btst 0xff, %i4
40008eac: 02 80 00 0a be 40008ed4 <_Heap_Walk+0x314>
40008eb0: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
40008eb4: 15 10 00 55 sethi %hi(0x40015400), %o2
40008eb8: 90 10 00 19 mov %i1, %o0
40008ebc: 92 10 20 01 mov 1, %o1
40008ec0: 94 12 a0 00 mov %o2, %o2
40008ec4: 96 10 00 16 mov %l6, %o3
40008ec8: 10 80 00 1b b 40008f34 <_Heap_Walk+0x374>
40008ecc: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40008ed0: 80 a5 c0 14 cmp %l7, %l4
40008ed4: 1a 80 00 0d bcc 40008f08 <_Heap_Walk+0x348>
40008ed8: 80 a7 40 16 cmp %i5, %l6
40008edc: 80 8f 20 ff btst 0xff, %i4
40008ee0: 02 80 00 0a be 40008f08 <_Heap_Walk+0x348> <== NEVER TAKEN
40008ee4: 80 a7 40 16 cmp %i5, %l6
(*printer)(
40008ee8: 15 10 00 55 sethi %hi(0x40015400), %o2
40008eec: 90 10 00 19 mov %i1, %o0
40008ef0: 92 10 20 01 mov 1, %o1
40008ef4: 94 12 a0 30 or %o2, 0x30, %o2
40008ef8: 96 10 00 16 mov %l6, %o3
40008efc: 98 10 00 17 mov %l7, %o4
40008f00: 10 80 00 3f b 40008ffc <_Heap_Walk+0x43c>
40008f04: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40008f08: 38 80 00 0e bgu,a 40008f40 <_Heap_Walk+0x380>
40008f0c: b8 08 60 01 and %g1, 1, %i4
40008f10: 80 8f 20 ff btst 0xff, %i4
40008f14: 02 80 00 0b be 40008f40 <_Heap_Walk+0x380>
40008f18: b8 08 60 01 and %g1, 1, %i4
(*printer)(
40008f1c: 15 10 00 55 sethi %hi(0x40015400), %o2
40008f20: 90 10 00 19 mov %i1, %o0
40008f24: 92 10 20 01 mov 1, %o1
40008f28: 94 12 a0 60 or %o2, 0x60, %o2
40008f2c: 96 10 00 16 mov %l6, %o3
40008f30: 98 10 00 1d mov %i5, %o4
40008f34: 9f c4 40 00 call %l1
40008f38: b0 10 20 00 clr %i0
40008f3c: 30 80 00 5d b,a 400090b0 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008f40: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40008f44: 80 88 60 01 btst 1, %g1
40008f48: 12 80 00 3f bne 40009044 <_Heap_Walk+0x484>
40008f4c: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
40008f50: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008f54: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008f58: 05 10 00 54 sethi %hi(0x40015000), %g2
block = next_block;
} while ( block != first_block );
return true;
}
40008f5c: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008f60: 80 a3 40 01 cmp %o5, %g1
40008f64: 02 80 00 07 be 40008f80 <_Heap_Walk+0x3c0>
40008f68: 86 10 a1 40 or %g2, 0x140, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40008f6c: 80 a3 40 10 cmp %o5, %l0
40008f70: 12 80 00 04 bne 40008f80 <_Heap_Walk+0x3c0>
40008f74: 86 16 e1 08 or %i3, 0x108, %g3
40008f78: 19 10 00 54 sethi %hi(0x40015000), %o4
40008f7c: 86 13 21 50 or %o4, 0x150, %g3 ! 40015150 <C.0.4139+0x44>
block->next,
block->next == last_free_block ?
40008f80: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008f84: 19 10 00 54 sethi %hi(0x40015000), %o4
40008f88: 80 a0 80 04 cmp %g2, %g4
40008f8c: 02 80 00 07 be 40008fa8 <_Heap_Walk+0x3e8>
40008f90: 82 13 21 60 or %o4, 0x160, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008f94: 80 a0 80 10 cmp %g2, %l0
40008f98: 12 80 00 04 bne 40008fa8 <_Heap_Walk+0x3e8>
40008f9c: 82 16 e1 08 or %i3, 0x108, %g1
40008fa0: 09 10 00 54 sethi %hi(0x40015000), %g4
40008fa4: 82 11 21 70 or %g4, 0x170, %g1 ! 40015170 <C.0.4139+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008fa8: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40008fac: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
40008fb0: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
40008fb4: 90 10 00 19 mov %i1, %o0
40008fb8: 92 10 20 00 clr %o1
40008fbc: 15 10 00 55 sethi %hi(0x40015400), %o2
40008fc0: 96 10 00 16 mov %l6, %o3
40008fc4: 94 12 a0 98 or %o2, 0x98, %o2
40008fc8: 9f c4 40 00 call %l1
40008fcc: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40008fd0: da 07 40 00 ld [ %i5 ], %o5
40008fd4: 80 a5 c0 0d cmp %l7, %o5
40008fd8: 02 80 00 0c be 40009008 <_Heap_Walk+0x448>
40008fdc: 80 a7 20 00 cmp %i4, 0
(*printer)(
40008fe0: 15 10 00 55 sethi %hi(0x40015400), %o2
40008fe4: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
40008fe8: 90 10 00 19 mov %i1, %o0
40008fec: 92 10 20 01 mov 1, %o1
40008ff0: 94 12 a0 d0 or %o2, 0xd0, %o2
40008ff4: 96 10 00 16 mov %l6, %o3
40008ff8: 98 10 00 17 mov %l7, %o4
40008ffc: 9f c4 40 00 call %l1
40009000: b0 10 20 00 clr %i0
40009004: 30 80 00 2b b,a 400090b0 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
40009008: 32 80 00 0a bne,a 40009030 <_Heap_Walk+0x470>
4000900c: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
40009010: 15 10 00 55 sethi %hi(0x40015400), %o2
40009014: 90 10 00 19 mov %i1, %o0
40009018: 92 10 20 01 mov 1, %o1
4000901c: 10 80 00 22 b 400090a4 <_Heap_Walk+0x4e4>
40009020: 94 12 a1 10 or %o2, 0x110, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
40009024: 02 80 00 19 be 40009088 <_Heap_Walk+0x4c8>
40009028: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
4000902c: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40009030: 80 a0 40 10 cmp %g1, %l0
40009034: 12 bf ff fc bne 40009024 <_Heap_Walk+0x464>
40009038: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
4000903c: 10 80 00 17 b 40009098 <_Heap_Walk+0x4d8>
40009040: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
40009044: 22 80 00 0a be,a 4000906c <_Heap_Walk+0x4ac>
40009048: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
4000904c: 90 10 00 19 mov %i1, %o0
40009050: 92 10 20 00 clr %o1
40009054: 94 10 00 18 mov %i0, %o2
40009058: 96 10 00 16 mov %l6, %o3
4000905c: 9f c4 40 00 call %l1
40009060: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009064: 10 80 00 09 b 40009088 <_Heap_Walk+0x4c8>
40009068: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
4000906c: 90 10 00 19 mov %i1, %o0
40009070: 92 10 20 00 clr %o1
40009074: 94 10 00 1a mov %i2, %o2
40009078: 96 10 00 16 mov %l6, %o3
4000907c: 9f c4 40 00 call %l1
40009080: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009084: 80 a7 40 13 cmp %i5, %l3
40009088: 32 bf ff 6d bne,a 40008e3c <_Heap_Walk+0x27c>
4000908c: ac 10 00 1d mov %i5, %l6
return true;
}
40009090: 81 c7 e0 08 ret
40009094: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40009098: 90 10 00 19 mov %i1, %o0
4000909c: 92 10 20 01 mov 1, %o1
400090a0: 94 12 a1 80 or %o2, 0x180, %o2
400090a4: 96 10 00 16 mov %l6, %o3
400090a8: 9f c4 40 00 call %l1
400090ac: b0 10 20 00 clr %i0
400090b0: 81 c7 e0 08 ret
400090b4: 81 e8 00 00 restore
40007d48 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007d48: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40007d4c: 05 10 00 54 sethi %hi(0x40015000), %g2
40007d50: 82 10 a2 4c or %g2, 0x24c, %g1 ! 4001524c <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40007d54: 90 10 00 18 mov %i0, %o0
40007d58: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
40007d5c: f0 20 a2 4c st %i0, [ %g2 + 0x24c ]
_Internal_errors_What_happened.is_internal = is_internal;
40007d60: f2 28 60 04 stb %i1, [ %g1 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
40007d64: f4 20 60 08 st %i2, [ %g1 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40007d68: 40 00 07 84 call 40009b78 <_User_extensions_Fatal>
40007d6c: 92 0e 60 ff and %i1, 0xff, %o1
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40007d70: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40007d74: 03 10 00 54 sethi %hi(0x40015000), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40007d78: 7f ff e7 ef call 40001d34 <sparc_disable_interrupts> <== NOT EXECUTED
40007d7c: c4 20 63 3c st %g2, [ %g1 + 0x33c ] ! 4001533c <_System_state_Current><== NOT EXECUTED
40007d80: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40007d84: 30 80 00 00 b,a 40007d84 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40007df8 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007df8: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007dfc: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007e00: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007e04: 80 a0 60 00 cmp %g1, 0
40007e08: 02 80 00 20 be 40007e88 <_Objects_Allocate+0x90> <== NEVER TAKEN
40007e0c: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007e10: a2 04 20 20 add %l0, 0x20, %l1
40007e14: 7f ff fd 88 call 40007434 <_Chain_Get>
40007e18: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40007e1c: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
40007e20: 80 a0 60 00 cmp %g1, 0
40007e24: 02 80 00 19 be 40007e88 <_Objects_Allocate+0x90>
40007e28: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40007e2c: 80 a2 20 00 cmp %o0, 0
40007e30: 32 80 00 0a bne,a 40007e58 <_Objects_Allocate+0x60>
40007e34: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
40007e38: 40 00 00 1e call 40007eb0 <_Objects_Extend_information>
40007e3c: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007e40: 7f ff fd 7d call 40007434 <_Chain_Get>
40007e44: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40007e48: b0 92 20 00 orcc %o0, 0, %i0
40007e4c: 02 80 00 0f be 40007e88 <_Objects_Allocate+0x90>
40007e50: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007e54: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40007e58: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40007e5c: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
40007e60: 40 00 26 8d call 40011894 <.udiv>
40007e64: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007e68: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40007e6c: 91 2a 20 02 sll %o0, 2, %o0
40007e70: c4 00 40 08 ld [ %g1 + %o0 ], %g2
40007e74: 84 00 bf ff add %g2, -1, %g2
40007e78: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
40007e7c: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
40007e80: 82 00 7f ff add %g1, -1, %g1
40007e84: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40007e88: 81 c7 e0 08 ret
40007e8c: 81 e8 00 00 restore
4000820c <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
4000820c: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40008210: b3 2e 60 10 sll %i1, 0x10, %i1
40008214: b3 36 60 10 srl %i1, 0x10, %i1
40008218: 80 a6 60 00 cmp %i1, 0
4000821c: 02 80 00 17 be 40008278 <_Objects_Get_information+0x6c>
40008220: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40008224: 40 00 10 e3 call 4000c5b0 <_Objects_API_maximum_class>
40008228: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
4000822c: 80 a2 20 00 cmp %o0, 0
40008230: 02 80 00 12 be 40008278 <_Objects_Get_information+0x6c>
40008234: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40008238: 18 80 00 10 bgu 40008278 <_Objects_Get_information+0x6c>
4000823c: 03 10 00 54 sethi %hi(0x40015000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40008240: b1 2e 20 02 sll %i0, 2, %i0
40008244: 82 10 61 1c or %g1, 0x11c, %g1
40008248: c2 00 40 18 ld [ %g1 + %i0 ], %g1
4000824c: 80 a0 60 00 cmp %g1, 0
40008250: 02 80 00 0a be 40008278 <_Objects_Get_information+0x6c> <== NEVER TAKEN
40008254: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40008258: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
4000825c: 80 a4 20 00 cmp %l0, 0
40008260: 02 80 00 06 be 40008278 <_Objects_Get_information+0x6c> <== NEVER TAKEN
40008264: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40008268: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
4000826c: 80 a0 00 01 cmp %g0, %g1
40008270: 82 60 20 00 subx %g0, 0, %g1
40008274: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
40008278: 81 c7 e0 08 ret
4000827c: 91 e8 00 10 restore %g0, %l0, %o0
40019a68 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019a68: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
40019a6c: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019a70: 82 22 40 01 sub %o1, %g1, %g1
40019a74: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
40019a78: 80 a0 80 01 cmp %g2, %g1
40019a7c: 0a 80 00 09 bcs 40019aa0 <_Objects_Get_no_protection+0x38>
40019a80: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
40019a84: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
40019a88: d0 00 80 01 ld [ %g2 + %g1 ], %o0
40019a8c: 80 a2 20 00 cmp %o0, 0
40019a90: 02 80 00 05 be 40019aa4 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40019a94: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40019a98: 81 c3 e0 08 retl
40019a9c: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40019aa0: 82 10 20 01 mov 1, %g1
return NULL;
40019aa4: 90 10 20 00 clr %o0
}
40019aa8: 81 c3 e0 08 retl
40019aac: c2 22 80 00 st %g1, [ %o2 ]
40009aec <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
40009aec: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40009af0: 92 96 20 00 orcc %i0, 0, %o1
40009af4: 12 80 00 06 bne 40009b0c <_Objects_Id_to_name+0x20>
40009af8: 83 32 60 18 srl %o1, 0x18, %g1
40009afc: 03 10 00 7a sethi %hi(0x4001e800), %g1
40009b00: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 4001eb78 <_Per_CPU_Information+0xc>
40009b04: d2 00 60 08 ld [ %g1 + 8 ], %o1
40009b08: 83 32 60 18 srl %o1, 0x18, %g1
40009b0c: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40009b10: 84 00 7f ff add %g1, -1, %g2
40009b14: 80 a0 a0 02 cmp %g2, 2
40009b18: 18 80 00 12 bgu 40009b60 <_Objects_Id_to_name+0x74>
40009b1c: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40009b20: 10 80 00 12 b 40009b68 <_Objects_Id_to_name+0x7c>
40009b24: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40009b28: 85 28 a0 02 sll %g2, 2, %g2
40009b2c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009b30: 80 a2 20 00 cmp %o0, 0
40009b34: 02 80 00 0b be 40009b60 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
40009b38: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
40009b3c: 7f ff ff cf call 40009a78 <_Objects_Get>
40009b40: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40009b44: 80 a2 20 00 cmp %o0, 0
40009b48: 02 80 00 06 be 40009b60 <_Objects_Id_to_name+0x74>
40009b4c: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40009b50: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40009b54: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40009b58: 40 00 02 3c call 4000a448 <_Thread_Enable_dispatch>
40009b5c: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40009b60: 81 c7 e0 08 ret
40009b64: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40009b68: 05 10 00 7a sethi %hi(0x4001e800), %g2
40009b6c: 84 10 a0 6c or %g2, 0x6c, %g2 ! 4001e86c <_Objects_Information_table>
40009b70: c2 00 80 01 ld [ %g2 + %g1 ], %g1
40009b74: 80 a0 60 00 cmp %g1, 0
40009b78: 12 bf ff ec bne 40009b28 <_Objects_Id_to_name+0x3c>
40009b7c: 85 32 60 1b srl %o1, 0x1b, %g2
40009b80: 30 bf ff f8 b,a 40009b60 <_Objects_Id_to_name+0x74>
40008368 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40008368: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
4000836c: 85 2f 20 10 sll %i4, 0x10, %g2
40008370: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40008374: 07 10 00 54 sethi %hi(0x40015000), %g3
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40008378: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
4000837c: 86 10 e1 1c or %g3, 0x11c, %g3
40008380: 85 2e 60 02 sll %i1, 2, %g2
40008384: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
40008388: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
4000838c: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
information->local_table = 0;
40008390: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
40008394: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
40008398: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
4000839c: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
400083a0: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
400083a4: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
400083a8: b5 2e a0 10 sll %i2, 0x10, %i2
400083ac: b5 36 a0 10 srl %i2, 0x10, %i2
400083b0: 85 2e a0 02 sll %i2, 2, %g2
400083b4: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
400083b8: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
400083bc: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
400083c0: 07 20 00 00 sethi %hi(0x80000000), %g3
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
400083c4: 80 a0 a0 00 cmp %g2, 0
400083c8: 02 80 00 09 be 400083ec <_Objects_Initialize_information+0x84>
400083cc: b6 2e c0 03 andn %i3, %g3, %i3
400083d0: 80 a6 e0 00 cmp %i3, 0
400083d4: 12 80 00 07 bne 400083f0 <_Objects_Initialize_information+0x88>
400083d8: 05 10 00 53 sethi %hi(0x40014c00), %g2
_Internal_error_Occurred(
400083dc: 90 10 20 00 clr %o0
400083e0: 92 10 20 01 mov 1, %o1
400083e4: 7f ff fe 59 call 40007d48 <_Internal_error_Occurred>
400083e8: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
400083ec: 05 10 00 53 sethi %hi(0x40014c00), %g2
400083f0: 84 10 a2 34 or %g2, 0x234, %g2 ! 40014e34 <null_local_table.3221>
400083f4: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400083f8: 05 00 00 40 sethi %hi(0x10000), %g2
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
400083fc: 80 a0 00 1b cmp %g0, %i3
40008400: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008404: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008408: b2 16 40 02 or %i1, %g2, %i1
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
4000840c: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40008410: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008414: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008418: b4 16 80 02 or %i2, %g2, %i2
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
4000841c: 80 88 60 03 btst 3, %g1
40008420: 02 80 00 04 be 40008430 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN
40008424: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
40008428: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED
4000842c: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40008430: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40008434: 82 06 20 24 add %i0, 0x24, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
40008438: c0 26 20 24 clr [ %i0 + 0x24 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
4000843c: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
_Chain_Initialize_empty( &information->Inactive );
40008440: 82 06 20 20 add %i0, 0x20, %g1
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40008444: 80 a6 e0 00 cmp %i3, 0
40008448: 02 80 00 04 be 40008458 <_Objects_Initialize_information+0xf0>
4000844c: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40008450: 7f ff fe 98 call 40007eb0 <_Objects_Extend_information>
40008454: 81 e8 00 00 restore
40008458: 81 c7 e0 08 ret
4000845c: 81 e8 00 00 restore
4000bd78 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000bd78: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000bd7c: e0 06 21 5c ld [ %i0 + 0x15c ], %l0
if ( !api )
4000bd80: 80 a4 20 00 cmp %l0, 0
4000bd84: 02 80 00 1d be 4000bdf8 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
4000bd88: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000bd8c: 7f ff d7 ea call 40001d34 <sparc_disable_interrupts>
4000bd90: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000bd94: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
4000bd98: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000bd9c: 7f ff d7 ea call 40001d44 <sparc_enable_interrupts>
4000bda0: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000bda4: 80 a4 e0 00 cmp %l3, 0
4000bda8: 02 80 00 14 be 4000bdf8 <_RTEMS_tasks_Post_switch_extension+0x80>
4000bdac: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
4000bdb0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bdb4: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000bdb8: 82 00 60 01 inc %g1
4000bdbc: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bdc0: 94 10 00 11 mov %l1, %o2
4000bdc4: 25 00 00 3f sethi %hi(0xfc00), %l2
4000bdc8: 40 00 07 79 call 4000dbac <rtems_task_mode>
4000bdcc: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
4000bdd0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000bdd4: 9f c0 40 00 call %g1
4000bdd8: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
4000bddc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bde0: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000bde4: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bde8: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000bdec: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bdf0: 40 00 07 6f call 4000dbac <rtems_task_mode>
4000bdf4: 94 10 00 11 mov %l1, %o2
4000bdf8: 81 c7 e0 08 ret
4000bdfc: 81 e8 00 00 restore
40008150 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
40008150: 9d e3 bf 98 save %sp, -104, %sp
40008154: 11 10 00 7b sethi %hi(0x4001ec00), %o0
40008158: 92 10 00 18 mov %i0, %o1
4000815c: 90 12 21 e4 or %o0, 0x1e4, %o0
40008160: 40 00 07 c9 call 4000a084 <_Objects_Get>
40008164: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40008168: c2 07 bf fc ld [ %fp + -4 ], %g1
4000816c: 80 a0 60 00 cmp %g1, 0
40008170: 12 80 00 24 bne 40008200 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
40008174: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
40008178: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
4000817c: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
40008180: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40008184: 80 88 80 01 btst %g2, %g1
40008188: 22 80 00 0b be,a 400081b4 <_Rate_monotonic_Timeout+0x64>
4000818c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40008190: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40008194: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008198: 80 a0 80 01 cmp %g2, %g1
4000819c: 32 80 00 06 bne,a 400081b4 <_Rate_monotonic_Timeout+0x64>
400081a0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400081a4: 13 04 00 ff sethi %hi(0x1003fc00), %o1
400081a8: 40 00 09 1a call 4000a610 <_Thread_Clear_state>
400081ac: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
400081b0: 30 80 00 06 b,a 400081c8 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
400081b4: 80 a0 60 01 cmp %g1, 1
400081b8: 12 80 00 0d bne 400081ec <_Rate_monotonic_Timeout+0x9c>
400081bc: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
400081c0: 82 10 20 03 mov 3, %g1
400081c4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
400081c8: 7f ff fe 66 call 40007b60 <_Rate_monotonic_Initiate_statistics>
400081cc: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400081d0: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400081d4: 11 10 00 7c sethi %hi(0x4001f000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400081d8: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400081dc: 90 12 20 1c or %o0, 0x1c, %o0
400081e0: 40 00 0e f0 call 4000bda0 <_Watchdog_Insert>
400081e4: 92 04 20 10 add %l0, 0x10, %o1
400081e8: 30 80 00 02 b,a 400081f0 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
400081ec: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400081f0: 03 10 00 7b sethi %hi(0x4001ec00), %g1
400081f4: c4 00 63 58 ld [ %g1 + 0x358 ], %g2 ! 4001ef58 <_Thread_Dispatch_disable_level>
400081f8: 84 00 bf ff add %g2, -1, %g2
400081fc: c4 20 63 58 st %g2, [ %g1 + 0x358 ]
40008200: 81 c7 e0 08 ret
40008204: 81 e8 00 00 restore
40007b58 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007b58: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007b5c: 03 10 00 7b sethi %hi(0x4001ec00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40007b60: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40007b64: d2 00 61 b4 ld [ %g1 + 0x1b4 ], %o1
if ((!the_tod) ||
40007b68: 80 a4 20 00 cmp %l0, 0
40007b6c: 02 80 00 2b be 40007c18 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007b70: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40007b74: 11 00 03 d0 sethi %hi(0xf4000), %o0
40007b78: 40 00 46 ca call 400196a0 <.udiv>
40007b7c: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40007b80: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40007b84: 80 a0 40 08 cmp %g1, %o0
40007b88: 1a 80 00 24 bcc 40007c18 <_TOD_Validate+0xc0>
40007b8c: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007b90: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40007b94: 80 a0 60 3b cmp %g1, 0x3b
40007b98: 18 80 00 20 bgu 40007c18 <_TOD_Validate+0xc0>
40007b9c: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40007ba0: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40007ba4: 80 a0 60 3b cmp %g1, 0x3b
40007ba8: 18 80 00 1c bgu 40007c18 <_TOD_Validate+0xc0>
40007bac: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40007bb0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007bb4: 80 a0 60 17 cmp %g1, 0x17
40007bb8: 18 80 00 18 bgu 40007c18 <_TOD_Validate+0xc0>
40007bbc: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
40007bc0: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40007bc4: 80 a0 60 00 cmp %g1, 0
40007bc8: 02 80 00 14 be 40007c18 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007bcc: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
40007bd0: 18 80 00 12 bgu 40007c18 <_TOD_Validate+0xc0>
40007bd4: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40007bd8: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
40007bdc: 80 a0 e7 c3 cmp %g3, 0x7c3
40007be0: 08 80 00 0e bleu 40007c18 <_TOD_Validate+0xc0>
40007be4: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40007be8: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40007bec: 80 a0 a0 00 cmp %g2, 0
40007bf0: 02 80 00 0a be 40007c18 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007bf4: 80 88 e0 03 btst 3, %g3
40007bf8: 07 10 00 76 sethi %hi(0x4001d800), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
40007bfc: 12 80 00 03 bne 40007c08 <_TOD_Validate+0xb0>
40007c00: 86 10 e2 78 or %g3, 0x278, %g3 ! 4001da78 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40007c04: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40007c08: 83 28 60 02 sll %g1, 2, %g1
40007c0c: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40007c10: 80 a0 40 02 cmp %g1, %g2
40007c14: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40007c18: 81 c7 e0 08 ret
40007c1c: 81 e8 00 00 restore
4000869c <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
4000869c: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
400086a0: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
400086a4: 40 00 04 0b call 400096d0 <_Thread_Set_transient>
400086a8: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
400086ac: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
400086b0: 80 a0 40 19 cmp %g1, %i1
400086b4: 02 80 00 05 be 400086c8 <_Thread_Change_priority+0x2c>
400086b8: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
400086bc: 90 10 00 18 mov %i0, %o0
400086c0: 40 00 03 87 call 400094dc <_Thread_Set_priority>
400086c4: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
400086c8: 7f ff e5 9b call 40001d34 <sparc_disable_interrupts>
400086cc: 01 00 00 00 nop
400086d0: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
400086d4: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
400086d8: 80 a6 60 04 cmp %i1, 4
400086dc: 02 80 00 10 be 4000871c <_Thread_Change_priority+0x80>
400086e0: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
400086e4: 80 a4 60 00 cmp %l1, 0
400086e8: 12 80 00 03 bne 400086f4 <_Thread_Change_priority+0x58> <== NEVER TAKEN
400086ec: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
400086f0: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
400086f4: 7f ff e5 94 call 40001d44 <sparc_enable_interrupts>
400086f8: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
400086fc: 03 00 00 ef sethi %hi(0x3bc00), %g1
40008700: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40008704: 80 8e 40 01 btst %i1, %g1
40008708: 02 80 00 5c be 40008878 <_Thread_Change_priority+0x1dc>
4000870c: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40008710: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40008714: 40 00 03 45 call 40009428 <_Thread_queue_Requeue>
40008718: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
4000871c: 80 a4 60 00 cmp %l1, 0
40008720: 12 80 00 1c bne 40008790 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
40008724: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40008728: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000872c: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
40008730: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40008734: c0 24 20 10 clr [ %l0 + 0x10 ]
40008738: 84 10 c0 02 or %g3, %g2, %g2
4000873c: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008740: 03 10 00 54 sethi %hi(0x40015000), %g1
40008744: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
40008748: c4 10 62 58 lduh [ %g1 + 0x258 ], %g2
_Priority_bit_map_Add( &the_thread->Priority_map );
if ( prepend_it )
4000874c: 80 8e a0 ff btst 0xff, %i2
40008750: 84 10 c0 02 or %g3, %g2, %g2
40008754: c4 30 62 58 sth %g2, [ %g1 + 0x258 ]
40008758: 02 80 00 08 be 40008778 <_Thread_Change_priority+0xdc>
4000875c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
40008760: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
40008764: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
40008768: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
4000876c: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
40008770: 10 80 00 08 b 40008790 <_Thread_Change_priority+0xf4>
40008774: e0 20 a0 04 st %l0, [ %g2 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40008778: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
4000877c: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
40008780: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
40008784: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
40008788: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000878c: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node );
else
_Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );
}
_ISR_Flash( level );
40008790: 7f ff e5 6d call 40001d44 <sparc_enable_interrupts>
40008794: 90 10 00 18 mov %i0, %o0
40008798: 7f ff e5 67 call 40001d34 <sparc_disable_interrupts>
4000879c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
_Thread_Ready_chain[ _Priority_bit_map_Get_highest() ].first;
400087a0: 03 10 00 54 sethi %hi(0x40015000), %g1
400087a4: da 00 61 14 ld [ %g1 + 0x114 ], %o5 ! 40015114 <_Thread_Ready_chain>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400087a8: 03 10 00 54 sethi %hi(0x40015000), %g1
400087ac: c4 10 62 58 lduh [ %g1 + 0x258 ], %g2 ! 40015258 <_Priority_Major_bit_map>
400087b0: 03 10 00 4f sethi %hi(0x40013c00), %g1
400087b4: 85 28 a0 10 sll %g2, 0x10, %g2
400087b8: 87 30 a0 10 srl %g2, 0x10, %g3
400087bc: 80 a0 e0 ff cmp %g3, 0xff
400087c0: 18 80 00 05 bgu 400087d4 <_Thread_Change_priority+0x138>
400087c4: 82 10 62 28 or %g1, 0x228, %g1
400087c8: c4 08 40 03 ldub [ %g1 + %g3 ], %g2
400087cc: 10 80 00 04 b 400087dc <_Thread_Change_priority+0x140>
400087d0: 84 00 a0 08 add %g2, 8, %g2
400087d4: 85 30 a0 18 srl %g2, 0x18, %g2
400087d8: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400087dc: 83 28 a0 10 sll %g2, 0x10, %g1
400087e0: 07 10 00 54 sethi %hi(0x40015000), %g3
400087e4: 83 30 60 0f srl %g1, 0xf, %g1
400087e8: 86 10 e2 d0 or %g3, 0x2d0, %g3
400087ec: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3
400087f0: 03 10 00 4f sethi %hi(0x40013c00), %g1
400087f4: 87 28 e0 10 sll %g3, 0x10, %g3
400087f8: 89 30 e0 10 srl %g3, 0x10, %g4
400087fc: 80 a1 20 ff cmp %g4, 0xff
40008800: 18 80 00 05 bgu 40008814 <_Thread_Change_priority+0x178>
40008804: 82 10 62 28 or %g1, 0x228, %g1
40008808: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
4000880c: 10 80 00 04 b 4000881c <_Thread_Change_priority+0x180>
40008810: 82 00 60 08 add %g1, 8, %g1
40008814: 87 30 e0 18 srl %g3, 0x18, %g3
40008818: c2 08 40 03 ldub [ %g1 + %g3 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
4000881c: 83 28 60 10 sll %g1, 0x10, %g1
40008820: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40008824: 85 28 a0 10 sll %g2, 0x10, %g2
40008828: 85 30 a0 0c srl %g2, 0xc, %g2
4000882c: 84 00 40 02 add %g1, %g2, %g2
40008830: 83 28 a0 02 sll %g2, 2, %g1
40008834: 85 28 a0 04 sll %g2, 4, %g2
40008838: 84 20 80 01 sub %g2, %g1, %g2
* ready thread.
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
4000883c: c6 03 40 02 ld [ %o5 + %g2 ], %g3
40008840: 03 10 00 55 sethi %hi(0x40015400), %g1
40008844: 82 10 60 1c or %g1, 0x1c, %g1 ! 4001541c <_Per_CPU_Information>
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40008848: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Thread_Calculate_heir();
if ( !_Thread_Is_executing_also_the_heir() &&
4000884c: 80 a0 80 03 cmp %g2, %g3
40008850: 02 80 00 08 be 40008870 <_Thread_Change_priority+0x1d4>
40008854: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
40008858: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000885c: 80 a0 a0 00 cmp %g2, 0
40008860: 02 80 00 04 be 40008870 <_Thread_Change_priority+0x1d4>
40008864: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40008868: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
4000886c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40008870: 7f ff e5 35 call 40001d44 <sparc_enable_interrupts>
40008874: 81 e8 00 00 restore
40008878: 81 c7 e0 08 ret
4000887c: 81 e8 00 00 restore
40008880 <_Thread_Clear_state>:
void _Thread_Clear_state(
Thread_Control *the_thread,
States_Control state
)
{
40008880: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
40008884: 7f ff e5 2c call 40001d34 <sparc_disable_interrupts>
40008888: a0 10 00 18 mov %i0, %l0
4000888c: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
40008890: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
40008894: 80 8e 40 01 btst %i1, %g1
40008898: 02 80 00 2f be 40008954 <_Thread_Clear_state+0xd4>
4000889c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear (
States_Control states_to_clear,
States_Control current_state
)
{
return (current_state & ~states_to_clear);
400088a0: b2 28 40 19 andn %g1, %i1, %i1
current_state =
the_thread->current_state = _States_Clear( state, current_state );
if ( _States_Is_ready( current_state ) ) {
400088a4: 80 a6 60 00 cmp %i1, 0
400088a8: 12 80 00 2b bne 40008954 <_Thread_Clear_state+0xd4>
400088ac: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
400088b0: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
400088b4: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
400088b8: c6 10 40 00 lduh [ %g1 ], %g3
400088bc: 84 10 c0 02 or %g3, %g2, %g2
400088c0: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
400088c4: 03 10 00 54 sethi %hi(0x40015000), %g1
400088c8: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
400088cc: c4 10 62 58 lduh [ %g1 + 0x258 ], %g2
400088d0: 84 10 c0 02 or %g3, %g2, %g2
400088d4: c4 30 62 58 sth %g2, [ %g1 + 0x258 ]
_Priority_bit_map_Add( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
400088d8: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
400088dc: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
400088e0: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
400088e4: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
400088e8: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
400088ec: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
400088f0: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
400088f4: 7f ff e5 14 call 40001d44 <sparc_enable_interrupts>
400088f8: 01 00 00 00 nop
400088fc: 7f ff e5 0e call 40001d34 <sparc_disable_interrupts>
40008900: 01 00 00 00 nop
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
40008904: 03 10 00 55 sethi %hi(0x40015400), %g1
40008908: 82 10 60 1c or %g1, 0x1c, %g1 ! 4001541c <_Per_CPU_Information>
4000890c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40008910: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
40008914: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
40008918: 80 a0 80 03 cmp %g2, %g3
4000891c: 1a 80 00 0e bcc 40008954 <_Thread_Clear_state+0xd4>
40008920: 01 00 00 00 nop
_Thread_Heir = the_thread;
40008924: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
40008928: c2 00 60 0c ld [ %g1 + 0xc ], %g1
4000892c: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
40008930: 80 a0 60 00 cmp %g1, 0
40008934: 32 80 00 05 bne,a 40008948 <_Thread_Clear_state+0xc8>
40008938: 84 10 20 01 mov 1, %g2
4000893c: 80 a0 a0 00 cmp %g2, 0
40008940: 12 80 00 05 bne 40008954 <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN
40008944: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
40008948: 03 10 00 55 sethi %hi(0x40015400), %g1
4000894c: 82 10 60 1c or %g1, 0x1c, %g1 ! 4001541c <_Per_CPU_Information>
40008950: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
40008954: 7f ff e4 fc call 40001d44 <sparc_enable_interrupts>
40008958: 81 e8 00 00 restore
40008adc <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008adc: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008ae0: 90 10 00 18 mov %i0, %o0
40008ae4: 40 00 00 5f call 40008c60 <_Thread_Get>
40008ae8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008aec: c2 07 bf fc ld [ %fp + -4 ], %g1
40008af0: 80 a0 60 00 cmp %g1, 0
40008af4: 12 80 00 08 bne 40008b14 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008af8: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40008afc: 7f ff ff 61 call 40008880 <_Thread_Clear_state>
40008b00: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40008b04: 03 10 00 54 sethi %hi(0x40015000), %g1
40008b08: c4 00 61 b8 ld [ %g1 + 0x1b8 ], %g2 ! 400151b8 <_Thread_Dispatch_disable_level>
40008b0c: 84 00 bf ff add %g2, -1, %g2
40008b10: c4 20 61 b8 st %g2, [ %g1 + 0x1b8 ]
40008b14: 81 c7 e0 08 ret
40008b18: 81 e8 00 00 restore
40008b1c <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
40008b1c: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
40008b20: 2b 10 00 55 sethi %hi(0x40015400), %l5
40008b24: 82 15 60 1c or %l5, 0x1c, %g1 ! 4001541c <_Per_CPU_Information>
_ISR_Disable( level );
40008b28: 7f ff e4 83 call 40001d34 <sparc_disable_interrupts>
40008b2c: e2 00 60 0c ld [ %g1 + 0xc ], %l1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40008b30: 25 10 00 54 sethi %hi(0x40015000), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40008b34: 39 10 00 54 sethi %hi(0x40015000), %i4
40008b38: ba 10 20 01 mov 1, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008b3c: 2f 10 00 54 sethi %hi(0x40015000), %l7
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008b40: a8 07 bf f8 add %fp, -8, %l4
_Timestamp_Subtract(
40008b44: a6 07 bf f0 add %fp, -16, %l3
40008b48: a4 14 a2 68 or %l2, 0x268, %l2
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008b4c: 10 80 00 2b b 40008bf8 <_Thread_Dispatch+0xdc>
40008b50: 2d 10 00 54 sethi %hi(0x40015000), %l6
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40008b54: fa 27 21 b8 st %i5, [ %i4 + 0x1b8 ]
_Thread_Dispatch_necessary = false;
40008b58: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40008b5c: 80 a4 00 11 cmp %l0, %l1
40008b60: 02 80 00 2b be 40008c0c <_Thread_Dispatch+0xf0>
40008b64: e0 20 60 0c st %l0, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40008b68: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
40008b6c: 80 a0 60 01 cmp %g1, 1
40008b70: 12 80 00 03 bne 40008b7c <_Thread_Dispatch+0x60>
40008b74: c2 05 e1 18 ld [ %l7 + 0x118 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008b78: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Enable( level );
40008b7c: 7f ff e4 72 call 40001d44 <sparc_enable_interrupts>
40008b80: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008b84: 40 00 0d 7e call 4000c17c <_TOD_Get_uptime>
40008b88: 90 10 00 14 mov %l4, %o0
_Timestamp_Subtract(
40008b8c: 90 10 00 12 mov %l2, %o0
40008b90: 92 10 00 14 mov %l4, %o1
40008b94: 40 00 03 98 call 400099f4 <_Timespec_Subtract>
40008b98: 94 10 00 13 mov %l3, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008b9c: 90 04 60 84 add %l1, 0x84, %o0
40008ba0: 40 00 03 7c call 40009990 <_Timespec_Add_to>
40008ba4: 92 10 00 13 mov %l3, %o1
_Thread_Time_of_last_context_switch = uptime;
40008ba8: c2 07 bf f8 ld [ %fp + -8 ], %g1
40008bac: c2 24 80 00 st %g1, [ %l2 ]
40008bb0: c2 07 bf fc ld [ %fp + -4 ], %g1
40008bb4: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008bb8: c2 05 a2 3c ld [ %l6 + 0x23c ], %g1
40008bbc: 80 a0 60 00 cmp %g1, 0
40008bc0: 02 80 00 06 be 40008bd8 <_Thread_Dispatch+0xbc> <== NEVER TAKEN
40008bc4: 90 10 00 11 mov %l1, %o0
executing->libc_reent = *_Thread_libc_reent;
40008bc8: c4 00 40 00 ld [ %g1 ], %g2
40008bcc: c4 24 61 58 st %g2, [ %l1 + 0x158 ]
*_Thread_libc_reent = heir->libc_reent;
40008bd0: c4 04 21 58 ld [ %l0 + 0x158 ], %g2
40008bd4: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40008bd8: 40 00 04 37 call 40009cb4 <_User_extensions_Thread_switch>
40008bdc: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
40008be0: 90 04 60 d0 add %l1, 0xd0, %o0
40008be4: 40 00 05 26 call 4000a07c <_CPU_Context_switch>
40008be8: 92 04 20 d0 add %l0, 0xd0, %o1
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
40008bec: 82 15 60 1c or %l5, 0x1c, %g1
_ISR_Disable( level );
40008bf0: 7f ff e4 51 call 40001d34 <sparc_disable_interrupts>
40008bf4: e2 00 60 0c ld [ %g1 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008bf8: 82 15 60 1c or %l5, 0x1c, %g1
40008bfc: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
40008c00: 80 a0 a0 00 cmp %g2, 0
40008c04: 32 bf ff d4 bne,a 40008b54 <_Thread_Dispatch+0x38>
40008c08: e0 00 60 10 ld [ %g1 + 0x10 ], %l0
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
40008c0c: 03 10 00 54 sethi %hi(0x40015000), %g1
40008c10: c0 20 61 b8 clr [ %g1 + 0x1b8 ] ! 400151b8 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
40008c14: 7f ff e4 4c call 40001d44 <sparc_enable_interrupts>
40008c18: 01 00 00 00 nop
_API_extensions_Run_postswitch();
40008c1c: 7f ff f9 a5 call 400072b0 <_API_extensions_Run_postswitch>
40008c20: 01 00 00 00 nop
}
40008c24: 81 c7 e0 08 ret
40008c28: 81 e8 00 00 restore
40008c60 <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
40008c60: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40008c64: 80 a2 20 00 cmp %o0, 0
40008c68: 12 80 00 0a bne 40008c90 <_Thread_Get+0x30>
40008c6c: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008c70: 03 10 00 54 sethi %hi(0x40015000), %g1
40008c74: c4 00 61 b8 ld [ %g1 + 0x1b8 ], %g2 ! 400151b8 <_Thread_Dispatch_disable_level>
40008c78: 84 00 a0 01 inc %g2
40008c7c: c4 20 61 b8 st %g2, [ %g1 + 0x1b8 ]
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
40008c80: 03 10 00 55 sethi %hi(0x40015400), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
40008c84: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
40008c88: 81 c3 e0 08 retl
40008c8c: d0 00 60 28 ld [ %g1 + 0x28 ], %o0
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40008c90: 87 32 20 18 srl %o0, 0x18, %g3
40008c94: 86 08 e0 07 and %g3, 7, %g3
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008c98: 84 00 ff ff add %g3, -1, %g2
40008c9c: 80 a0 a0 02 cmp %g2, 2
40008ca0: 28 80 00 16 bleu,a 40008cf8 <_Thread_Get+0x98>
40008ca4: 85 32 20 1b srl %o0, 0x1b, %g2
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
40008ca8: 82 10 20 01 mov 1, %g1
40008cac: 10 80 00 09 b 40008cd0 <_Thread_Get+0x70>
40008cb0: c2 22 80 00 st %g1, [ %o2 ]
goto done;
}
api_information = _Objects_Information_table[ the_api ];
40008cb4: 09 10 00 54 sethi %hi(0x40015000), %g4
40008cb8: 88 11 21 1c or %g4, 0x11c, %g4 ! 4001511c <_Objects_Information_table>
40008cbc: c6 01 00 03 ld [ %g4 + %g3 ], %g3
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
40008cc0: 80 a0 e0 00 cmp %g3, 0
40008cc4: 32 80 00 05 bne,a 40008cd8 <_Thread_Get+0x78> <== ALWAYS TAKEN
40008cc8: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
40008ccc: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
40008cd0: 81 c3 e0 08 retl
40008cd4: 90 10 20 00 clr %o0
}
#endif
information = api_information[ the_class ];
if ( !information ) {
40008cd8: 80 a2 20 00 cmp %o0, 0
40008cdc: 12 80 00 04 bne 40008cec <_Thread_Get+0x8c>
40008ce0: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
40008ce4: 81 c3 e0 08 retl
40008ce8: c4 22 80 00 st %g2, [ %o2 ]
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
40008cec: 82 13 c0 00 mov %o7, %g1
40008cf0: 7f ff fd 81 call 400082f4 <_Objects_Get>
40008cf4: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
40008cf8: 80 a0 a0 01 cmp %g2, 1
40008cfc: 22 bf ff ee be,a 40008cb4 <_Thread_Get+0x54>
40008d00: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
40008d04: 10 bf ff ea b 40008cac <_Thread_Get+0x4c>
40008d08: 82 10 20 01 mov 1, %g1
4000dedc <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000dedc: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000dee0: 03 10 00 55 sethi %hi(0x40015400), %g1
4000dee4: e0 00 60 28 ld [ %g1 + 0x28 ], %l0 ! 40015428 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000dee8: 3f 10 00 37 sethi %hi(0x4000dc00), %i7
4000deec: be 17 e2 dc or %i7, 0x2dc, %i7 ! 4000dedc <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000def0: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
4000def4: 7f ff cf 94 call 40001d44 <sparc_enable_interrupts>
4000def8: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000defc: 03 10 00 53 sethi %hi(0x40014c00), %g1
doneConstructors = 1;
4000df00: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000df04: e2 08 62 3c ldub [ %g1 + 0x23c ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000df08: 90 10 00 10 mov %l0, %o0
4000df0c: 7f ff ee fa call 40009af4 <_User_extensions_Thread_begin>
4000df10: c4 28 62 3c stb %g2, [ %g1 + 0x23c ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000df14: 7f ff eb 46 call 40008c2c <_Thread_Enable_dispatch>
4000df18: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000df1c: 80 a4 60 00 cmp %l1, 0
4000df20: 32 80 00 05 bne,a 4000df34 <_Thread_Handler+0x58>
4000df24: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
INIT_NAME ();
4000df28: 40 00 19 d8 call 40014688 <_init>
4000df2c: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000df30: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
4000df34: 80 a0 60 00 cmp %g1, 0
4000df38: 12 80 00 06 bne 4000df50 <_Thread_Handler+0x74> <== NEVER TAKEN
4000df3c: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000df40: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
4000df44: 9f c0 40 00 call %g1
4000df48: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000df4c: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000df50: 7f ff ee fa call 40009b38 <_User_extensions_Thread_exitted>
4000df54: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000df58: 90 10 20 00 clr %o0
4000df5c: 92 10 20 01 mov 1, %o1
4000df60: 7f ff e7 7a call 40007d48 <_Internal_error_Occurred>
4000df64: 94 10 20 05 mov 5, %o2
40008d0c <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
40008d0c: 9d e3 bf a0 save %sp, -96, %sp
40008d10: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
40008d14: e2 0f a0 5f ldub [ %fp + 0x5f ], %l1
40008d18: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
40008d1c: c0 26 61 5c clr [ %i1 + 0x15c ]
40008d20: c0 26 61 60 clr [ %i1 + 0x160 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
40008d24: c0 26 61 58 clr [ %i1 + 0x158 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40008d28: 90 10 00 19 mov %i1, %o0
40008d2c: 40 00 02 8e call 40009764 <_Thread_Stack_Allocate>
40008d30: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40008d34: 80 a2 00 1b cmp %o0, %i3
40008d38: 0a 80 00 5b bcs 40008ea4 <_Thread_Initialize+0x198>
40008d3c: 80 a2 20 00 cmp %o0, 0
40008d40: 22 80 00 57 be,a 40008e9c <_Thread_Initialize+0x190> <== NEVER TAKEN
40008d44: b0 10 20 00 clr %i0 <== NOT EXECUTED
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40008d48: c2 06 60 c8 ld [ %i1 + 0xc8 ], %g1
the_stack->size = size;
40008d4c: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40008d50: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
40008d54: 03 10 00 54 sethi %hi(0x40015000), %g1
40008d58: d0 00 62 48 ld [ %g1 + 0x248 ], %o0 ! 40015248 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40008d5c: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40008d60: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40008d64: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
40008d68: c0 26 60 6c clr [ %i1 + 0x6c ]
40008d6c: 80 a2 20 00 cmp %o0, 0
40008d70: 02 80 00 08 be 40008d90 <_Thread_Initialize+0x84>
40008d74: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
40008d78: 90 02 20 01 inc %o0
40008d7c: 40 00 04 a2 call 4000a004 <_Workspace_Allocate>
40008d80: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40008d84: b6 92 20 00 orcc %o0, 0, %i3
40008d88: 22 80 00 2c be,a 40008e38 <_Thread_Initialize+0x12c>
40008d8c: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
40008d90: 80 a6 e0 00 cmp %i3, 0
40008d94: 02 80 00 0b be 40008dc0 <_Thread_Initialize+0xb4>
40008d98: f6 26 61 64 st %i3, [ %i1 + 0x164 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008d9c: 03 10 00 54 sethi %hi(0x40015000), %g1
40008da0: c4 00 62 48 ld [ %g1 + 0x248 ], %g2 ! 40015248 <_Thread_Maximum_extensions>
40008da4: 10 80 00 04 b 40008db4 <_Thread_Initialize+0xa8>
40008da8: 82 10 20 00 clr %g1
40008dac: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
40008db0: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008db4: 80 a0 40 02 cmp %g1, %g2
40008db8: 08 bf ff fd bleu 40008dac <_Thread_Initialize+0xa0>
40008dbc: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008dc0: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40008dc4: 90 10 00 19 mov %i1, %o0
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40008dc8: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
40008dcc: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40008dd0: 92 10 00 1d mov %i5, %o1
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
40008dd4: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008dd8: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40008ddc: e2 2e 60 ac stb %l1, [ %i1 + 0xac ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008de0: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
40008de4: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
40008de8: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
40008dec: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
40008df0: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
40008df4: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40008df8: 40 00 01 b9 call 400094dc <_Thread_Set_priority>
40008dfc: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
_Thread_Stack_Free( the_thread );
return false;
}
40008e00: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40008e04: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40008e08: c0 26 60 84 clr [ %i1 + 0x84 ]
40008e0c: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40008e10: 83 28 60 02 sll %g1, 2, %g1
40008e14: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40008e18: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
40008e1c: 90 10 00 19 mov %i1, %o0
40008e20: 40 00 03 68 call 40009bc0 <_User_extensions_Thread_create>
40008e24: b0 10 20 01 mov 1, %i0
if ( extension_status )
40008e28: 80 8a 20 ff btst 0xff, %o0
40008e2c: 12 80 00 1f bne 40008ea8 <_Thread_Initialize+0x19c>
40008e30: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
40008e34: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
40008e38: 80 a2 20 00 cmp %o0, 0
40008e3c: 22 80 00 05 be,a 40008e50 <_Thread_Initialize+0x144>
40008e40: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->libc_reent );
40008e44: 40 00 04 79 call 4000a028 <_Workspace_Free>
40008e48: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
40008e4c: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
40008e50: 80 a2 20 00 cmp %o0, 0
40008e54: 22 80 00 05 be,a 40008e68 <_Thread_Initialize+0x15c>
40008e58: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
40008e5c: 40 00 04 73 call 4000a028 <_Workspace_Free>
40008e60: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
40008e64: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
40008e68: 80 a2 20 00 cmp %o0, 0
40008e6c: 02 80 00 05 be 40008e80 <_Thread_Initialize+0x174> <== ALWAYS TAKEN
40008e70: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
40008e74: 40 00 04 6d call 4000a028 <_Workspace_Free> <== NOT EXECUTED
40008e78: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
40008e7c: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40008e80: 02 80 00 05 be 40008e94 <_Thread_Initialize+0x188>
40008e84: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( extensions_area );
40008e88: 40 00 04 68 call 4000a028 <_Workspace_Free>
40008e8c: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
_Thread_Stack_Free( the_thread );
40008e90: 90 10 00 19 mov %i1, %o0
40008e94: 40 00 02 4b call 400097c0 <_Thread_Stack_Free>
40008e98: b0 10 20 00 clr %i0
return false;
40008e9c: 81 c7 e0 08 ret
40008ea0: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
40008ea4: b0 10 20 00 clr %i0
_Thread_Stack_Free( the_thread );
return false;
}
40008ea8: 81 c7 e0 08 ret
40008eac: 81 e8 00 00 restore
4000cd40 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000cd40: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000cd44: 7f ff d4 50 call 40001e84 <sparc_disable_interrupts>
4000cd48: a0 10 00 18 mov %i0, %l0
4000cd4c: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
4000cd50: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000cd54: 80 88 60 02 btst 2, %g1
4000cd58: 02 80 00 2e be 4000ce10 <_Thread_Resume+0xd0> <== NEVER TAKEN
4000cd5c: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000cd60: 80 a0 60 00 cmp %g1, 0
4000cd64: 12 80 00 2b bne 4000ce10 <_Thread_Resume+0xd0>
4000cd68: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000cd6c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000cd70: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
4000cd74: c6 10 40 00 lduh [ %g1 ], %g3
4000cd78: 84 10 c0 02 or %g3, %g2, %g2
4000cd7c: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
4000cd80: 03 10 00 64 sethi %hi(0x40019000), %g1
4000cd84: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
4000cd88: c4 10 63 c8 lduh [ %g1 + 0x3c8 ], %g2
4000cd8c: 84 10 c0 02 or %g3, %g2, %g2
4000cd90: c4 30 63 c8 sth %g2, [ %g1 + 0x3c8 ]
_Priority_bit_map_Add( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
4000cd94: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000cd98: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
4000cd9c: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
4000cda0: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
4000cda4: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
4000cda8: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000cdac: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
4000cdb0: 7f ff d4 39 call 40001e94 <sparc_enable_interrupts>
4000cdb4: 01 00 00 00 nop
4000cdb8: 7f ff d4 33 call 40001e84 <sparc_disable_interrupts>
4000cdbc: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
4000cdc0: 03 10 00 65 sethi %hi(0x40019400), %g1
4000cdc4: 82 10 61 8c or %g1, 0x18c, %g1 ! 4001958c <_Per_CPU_Information>
4000cdc8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000cdcc: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
4000cdd0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
4000cdd4: 80 a0 80 03 cmp %g2, %g3
4000cdd8: 1a 80 00 0e bcc 4000ce10 <_Thread_Resume+0xd0>
4000cddc: 01 00 00 00 nop
_Thread_Heir = the_thread;
4000cde0: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
4000cde4: c2 00 60 0c ld [ %g1 + 0xc ], %g1
4000cde8: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
4000cdec: 80 a0 60 00 cmp %g1, 0
4000cdf0: 32 80 00 05 bne,a 4000ce04 <_Thread_Resume+0xc4>
4000cdf4: 84 10 20 01 mov 1, %g2
4000cdf8: 80 a0 a0 00 cmp %g2, 0
4000cdfc: 12 80 00 05 bne 4000ce10 <_Thread_Resume+0xd0> <== ALWAYS TAKEN
4000ce00: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
4000ce04: 03 10 00 65 sethi %hi(0x40019400), %g1
4000ce08: 82 10 61 8c or %g1, 0x18c, %g1 ! 4001958c <_Per_CPU_Information>
4000ce0c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
4000ce10: 7f ff d4 21 call 40001e94 <sparc_enable_interrupts>
4000ce14: 81 e8 00 00 restore
400098e8 <_Thread_Yield_processor>:
* ready chain
* select heir
*/
void _Thread_Yield_processor( void )
{
400098e8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
400098ec: 23 10 00 55 sethi %hi(0x40015400), %l1
400098f0: a2 14 60 1c or %l1, 0x1c, %l1 ! 4001541c <_Per_CPU_Information>
400098f4: e0 04 60 0c ld [ %l1 + 0xc ], %l0
ready = executing->ready;
_ISR_Disable( level );
400098f8: 7f ff e1 0f call 40001d34 <sparc_disable_interrupts>
400098fc: e4 04 20 8c ld [ %l0 + 0x8c ], %l2
40009900: b0 10 00 08 mov %o0, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node(
const Chain_Control *the_chain
)
{
return (the_chain->first == the_chain->last);
40009904: c2 04 a0 08 ld [ %l2 + 8 ], %g1
if ( !_Chain_Has_only_one_node( ready ) ) {
40009908: c4 04 80 00 ld [ %l2 ], %g2
4000990c: 80 a0 80 01 cmp %g2, %g1
40009910: 22 80 00 19 be,a 40009974 <_Thread_Yield_processor+0x8c>
40009914: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
40009918: c6 04 00 00 ld [ %l0 ], %g3
previous = the_node->previous;
4000991c: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
previous->next = next;
40009920: c6 20 80 00 st %g3, [ %g2 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
40009924: c4 20 e0 04 st %g2, [ %g3 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40009928: 84 04 a0 04 add %l2, 4, %g2
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
4000992c: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
40009930: e0 24 a0 08 st %l0, [ %l2 + 8 ]
old_last_node->next = the_node;
40009934: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
40009938: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
4000993c: 7f ff e1 02 call 40001d44 <sparc_enable_interrupts>
40009940: 01 00 00 00 nop
40009944: 7f ff e0 fc call 40001d34 <sparc_disable_interrupts>
40009948: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
4000994c: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
40009950: 80 a4 00 01 cmp %l0, %g1
40009954: 12 80 00 04 bne 40009964 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN
40009958: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) ready->first;
4000995c: c2 04 80 00 ld [ %l2 ], %g1
40009960: c2 24 60 10 st %g1, [ %l1 + 0x10 ]
_Thread_Dispatch_necessary = true;
40009964: 03 10 00 55 sethi %hi(0x40015400), %g1
40009968: 82 10 60 1c or %g1, 0x1c, %g1 ! 4001541c <_Per_CPU_Information>
4000996c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40009970: 30 80 00 05 b,a 40009984 <_Thread_Yield_processor+0x9c>
}
else if ( !_Thread_Is_heir( executing ) )
40009974: 80 a4 00 01 cmp %l0, %g1
40009978: 02 80 00 03 be 40009984 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN
4000997c: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
40009980: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40009984: 7f ff e0 f0 call 40001d44 <sparc_enable_interrupts>
40009988: 81 e8 00 00 restore
40009428 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
40009428: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
4000942c: 80 a6 20 00 cmp %i0, 0
40009430: 02 80 00 19 be 40009494 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
40009434: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40009438: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
4000943c: 80 a4 60 01 cmp %l1, 1
40009440: 12 80 00 15 bne 40009494 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
40009444: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40009448: 7f ff e2 3b call 40001d34 <sparc_disable_interrupts>
4000944c: 01 00 00 00 nop
40009450: a0 10 00 08 mov %o0, %l0
40009454: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40009458: 03 00 00 ef sethi %hi(0x3bc00), %g1
4000945c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40009460: 80 88 80 01 btst %g2, %g1
40009464: 02 80 00 0a be 4000948c <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
40009468: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
4000946c: 92 10 00 19 mov %i1, %o1
40009470: 94 10 20 01 mov 1, %o2
40009474: 40 00 0c af call 4000c730 <_Thread_queue_Extract_priority_helper>
40009478: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
4000947c: 90 10 00 18 mov %i0, %o0
40009480: 92 10 00 19 mov %i1, %o1
40009484: 7f ff ff 4b call 400091b0 <_Thread_queue_Enqueue_priority>
40009488: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
4000948c: 7f ff e2 2e call 40001d44 <sparc_enable_interrupts>
40009490: 90 10 00 10 mov %l0, %o0
40009494: 81 c7 e0 08 ret
40009498: 81 e8 00 00 restore
4000949c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000949c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
400094a0: 90 10 00 18 mov %i0, %o0
400094a4: 7f ff fd ef call 40008c60 <_Thread_Get>
400094a8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400094ac: c2 07 bf fc ld [ %fp + -4 ], %g1
400094b0: 80 a0 60 00 cmp %g1, 0
400094b4: 12 80 00 08 bne 400094d4 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
400094b8: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
400094bc: 40 00 0c d3 call 4000c808 <_Thread_queue_Process_timeout>
400094c0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400094c4: 03 10 00 54 sethi %hi(0x40015000), %g1
400094c8: c4 00 61 b8 ld [ %g1 + 0x1b8 ], %g2 ! 400151b8 <_Thread_Dispatch_disable_level>
400094cc: 84 00 bf ff add %g2, -1, %g2
400094d0: c4 20 61 b8 st %g2, [ %g1 + 0x1b8 ]
400094d4: 81 c7 e0 08 ret
400094d8: 81 e8 00 00 restore
40017224 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40017224: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017228: 35 10 00 f6 sethi %hi(0x4003d800), %i2
4001722c: a4 07 bf e8 add %fp, -24, %l2
40017230: b2 07 bf f4 add %fp, -12, %i1
40017234: ac 07 bf f8 add %fp, -8, %l6
40017238: a6 07 bf ec add %fp, -20, %l3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
4001723c: ec 27 bf f4 st %l6, [ %fp + -12 ]
the_chain->permanent_null = NULL;
40017240: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
40017244: f2 27 bf fc st %i1, [ %fp + -4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40017248: e6 27 bf e8 st %l3, [ %fp + -24 ]
the_chain->permanent_null = NULL;
4001724c: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
40017250: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017254: aa 06 20 30 add %i0, 0x30, %l5
_Chain_Initialize_empty( &insert_chain );
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
40017258: a8 10 00 12 mov %l2, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001725c: 37 10 00 f6 sethi %hi(0x4003d800), %i3
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40017260: a2 06 20 68 add %i0, 0x68, %l1
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40017264: b8 10 20 01 mov 1, %i4
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40017268: ba 06 20 08 add %i0, 8, %i5
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
4001726c: ae 06 20 40 add %i0, 0x40, %l7
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
40017270: f2 26 20 78 st %i1, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017274: c2 06 a0 c4 ld [ %i2 + 0xc4 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40017278: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
4001727c: 94 10 00 14 mov %l4, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40017280: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017284: 90 10 00 15 mov %l5, %o0
40017288: 40 00 11 9c call 4001b8f8 <_Watchdog_Adjust_to_chain>
4001728c: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40017290: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40017294: e0 06 e0 10 ld [ %i3 + 0x10 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40017298: 80 a4 00 0a cmp %l0, %o2
4001729c: 08 80 00 06 bleu 400172b4 <_Timer_server_Body+0x90>
400172a0: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400172a4: 90 10 00 11 mov %l1, %o0
400172a8: 40 00 11 94 call 4001b8f8 <_Watchdog_Adjust_to_chain>
400172ac: 94 10 00 14 mov %l4, %o2
400172b0: 30 80 00 06 b,a 400172c8 <_Timer_server_Body+0xa4>
} else if ( snapshot < last_snapshot ) {
400172b4: 1a 80 00 05 bcc 400172c8 <_Timer_server_Body+0xa4>
400172b8: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400172bc: 92 10 20 01 mov 1, %o1
400172c0: 40 00 11 66 call 4001b858 <_Watchdog_Adjust>
400172c4: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
400172c8: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400172cc: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400172d0: 40 00 02 bf call 40017dcc <_Chain_Get>
400172d4: 01 00 00 00 nop
if ( timer == NULL ) {
400172d8: 92 92 20 00 orcc %o0, 0, %o1
400172dc: 02 80 00 0c be 4001730c <_Timer_server_Body+0xe8>
400172e0: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400172e4: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400172e8: 80 a0 60 01 cmp %g1, 1
400172ec: 02 80 00 05 be 40017300 <_Timer_server_Body+0xdc>
400172f0: 90 10 00 15 mov %l5, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400172f4: 80 a0 60 03 cmp %g1, 3
400172f8: 12 bf ff f5 bne 400172cc <_Timer_server_Body+0xa8> <== NEVER TAKEN
400172fc: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017300: 40 00 11 b2 call 4001b9c8 <_Watchdog_Insert>
40017304: 92 02 60 10 add %o1, 0x10, %o1
40017308: 30 bf ff f1 b,a 400172cc <_Timer_server_Body+0xa8>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
4001730c: 7f ff e0 3e call 4000f404 <sparc_disable_interrupts>
40017310: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
40017314: c2 07 bf f4 ld [ %fp + -12 ], %g1
40017318: 80 a0 40 16 cmp %g1, %l6
4001731c: 12 80 00 0a bne 40017344 <_Timer_server_Body+0x120> <== NEVER TAKEN
40017320: 01 00 00 00 nop
ts->insert_chain = NULL;
40017324: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
40017328: 7f ff e0 3b call 4000f414 <sparc_enable_interrupts>
4001732c: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40017330: c2 07 bf e8 ld [ %fp + -24 ], %g1
40017334: 80 a0 40 13 cmp %g1, %l3
40017338: 12 80 00 06 bne 40017350 <_Timer_server_Body+0x12c>
4001733c: 01 00 00 00 nop
40017340: 30 80 00 1a b,a 400173a8 <_Timer_server_Body+0x184>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
40017344: 7f ff e0 34 call 4000f414 <sparc_enable_interrupts> <== NOT EXECUTED
40017348: 01 00 00 00 nop <== NOT EXECUTED
4001734c: 30 bf ff ca b,a 40017274 <_Timer_server_Body+0x50> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40017350: 7f ff e0 2d call 4000f404 <sparc_disable_interrupts>
40017354: 01 00 00 00 nop
40017358: 84 10 00 08 mov %o0, %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4001735c: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40017360: 80 a4 00 13 cmp %l0, %l3
40017364: 02 80 00 0e be 4001739c <_Timer_server_Body+0x178>
40017368: 80 a4 20 00 cmp %l0, 0
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
4001736c: c2 04 00 00 ld [ %l0 ], %g1
the_chain->first = new_first;
40017370: c2 27 bf e8 st %g1, [ %fp + -24 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
40017374: 02 80 00 0a be 4001739c <_Timer_server_Body+0x178> <== NEVER TAKEN
40017378: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
4001737c: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
40017380: 7f ff e0 25 call 4000f414 <sparc_enable_interrupts>
40017384: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40017388: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4001738c: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
40017390: 9f c0 40 00 call %g1
40017394: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
40017398: 30 bf ff ee b,a 40017350 <_Timer_server_Body+0x12c>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
4001739c: 7f ff e0 1e call 4000f414 <sparc_enable_interrupts>
400173a0: 90 10 00 02 mov %g2, %o0
400173a4: 30 bf ff b3 b,a 40017270 <_Timer_server_Body+0x4c>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
400173a8: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
400173ac: 7f ff ff 6e call 40017164 <_Thread_Disable_dispatch>
400173b0: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
400173b4: d0 06 00 00 ld [ %i0 ], %o0
400173b8: 40 00 0e a4 call 4001ae48 <_Thread_Set_state>
400173bc: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400173c0: 7f ff ff 6f call 4001717c <_Timer_server_Reset_interval_system_watchdog>
400173c4: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400173c8: 7f ff ff 82 call 400171d0 <_Timer_server_Reset_tod_system_watchdog>
400173cc: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400173d0: 40 00 0c 06 call 4001a3e8 <_Thread_Enable_dispatch>
400173d4: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400173d8: 90 10 00 1d mov %i5, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400173dc: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400173e0: 40 00 11 d4 call 4001bb30 <_Watchdog_Remove>
400173e4: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400173e8: 40 00 11 d2 call 4001bb30 <_Watchdog_Remove>
400173ec: 90 10 00 17 mov %l7, %o0
400173f0: 30 bf ff a0 b,a 40017270 <_Timer_server_Body+0x4c>
400173f4 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
400173f4: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
400173f8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
400173fc: 80 a0 60 00 cmp %g1, 0
40017400: 12 80 00 49 bne 40017524 <_Timer_server_Schedule_operation_method+0x130>
40017404: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
40017408: 7f ff ff 57 call 40017164 <_Thread_Disable_dispatch>
4001740c: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017410: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40017414: 80 a0 60 01 cmp %g1, 1
40017418: 12 80 00 1f bne 40017494 <_Timer_server_Schedule_operation_method+0xa0>
4001741c: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40017420: 7f ff df f9 call 4000f404 <sparc_disable_interrupts>
40017424: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40017428: 03 10 00 f6 sethi %hi(0x4003d800), %g1
4001742c: c4 00 60 c4 ld [ %g1 + 0xc4 ], %g2 ! 4003d8c4 <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
40017430: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40017434: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40017438: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
4001743c: 80 a0 40 03 cmp %g1, %g3
40017440: 02 80 00 08 be 40017460 <_Timer_server_Schedule_operation_method+0x6c>
40017444: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40017448: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
4001744c: 80 a3 40 04 cmp %o5, %g4
40017450: 08 80 00 03 bleu 4001745c <_Timer_server_Schedule_operation_method+0x68>
40017454: 86 10 20 00 clr %g3
delta_interval -= delta;
40017458: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
4001745c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
40017460: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
40017464: 7f ff df ec call 4000f414 <sparc_enable_interrupts>
40017468: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
4001746c: 90 06 20 30 add %i0, 0x30, %o0
40017470: 40 00 11 56 call 4001b9c8 <_Watchdog_Insert>
40017474: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017478: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
4001747c: 80 a0 60 00 cmp %g1, 0
40017480: 12 80 00 27 bne 4001751c <_Timer_server_Schedule_operation_method+0x128>
40017484: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40017488: 7f ff ff 3d call 4001717c <_Timer_server_Reset_interval_system_watchdog>
4001748c: 90 10 00 18 mov %i0, %o0
40017490: 30 80 00 23 b,a 4001751c <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40017494: 12 80 00 22 bne 4001751c <_Timer_server_Schedule_operation_method+0x128>
40017498: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
4001749c: 7f ff df da call 4000f404 <sparc_disable_interrupts>
400174a0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
400174a4: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
400174a8: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400174ac: 03 10 00 f6 sethi %hi(0x4003d800), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
400174b0: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
400174b4: 80 a0 80 03 cmp %g2, %g3
400174b8: 02 80 00 0d be 400174ec <_Timer_server_Schedule_operation_method+0xf8>
400174bc: c2 00 60 10 ld [ %g1 + 0x10 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
400174c0: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
400174c4: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
400174c8: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
400174cc: 08 80 00 07 bleu 400174e8 <_Timer_server_Schedule_operation_method+0xf4>
400174d0: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
400174d4: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
400174d8: 80 a1 00 0d cmp %g4, %o5
400174dc: 08 80 00 03 bleu 400174e8 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
400174e0: 86 10 20 00 clr %g3
delta_interval -= delta;
400174e4: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400174e8: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400174ec: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400174f0: 7f ff df c9 call 4000f414 <sparc_enable_interrupts>
400174f4: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400174f8: 90 06 20 68 add %i0, 0x68, %o0
400174fc: 40 00 11 33 call 4001b9c8 <_Watchdog_Insert>
40017500: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017504: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40017508: 80 a0 60 00 cmp %g1, 0
4001750c: 12 80 00 04 bne 4001751c <_Timer_server_Schedule_operation_method+0x128>
40017510: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
40017514: 7f ff ff 2f call 400171d0 <_Timer_server_Reset_tod_system_watchdog>
40017518: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
4001751c: 40 00 0b b3 call 4001a3e8 <_Thread_Enable_dispatch>
40017520: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40017524: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
40017528: 40 00 02 13 call 40017d74 <_Chain_Append>
4001752c: 81 e8 00 00 restore
4000ba1c <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000ba1c: c6 02 00 00 ld [ %o0 ], %g3
4000ba20: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000ba24: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000ba28: 80 a0 c0 02 cmp %g3, %g2
4000ba2c: 14 80 00 0b bg 4000ba58 <_Timespec_Greater_than+0x3c>
4000ba30: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000ba34: 80 a0 c0 02 cmp %g3, %g2
4000ba38: 06 80 00 08 bl 4000ba58 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
4000ba3c: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000ba40: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000ba44: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000ba48: 80 a0 80 01 cmp %g2, %g1
4000ba4c: 14 80 00 03 bg 4000ba58 <_Timespec_Greater_than+0x3c>
4000ba50: 90 10 20 01 mov 1, %o0
4000ba54: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000ba58: 81 c3 e0 08 retl
40009b78 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40009b78: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
40009b7c: 23 10 00 54 sethi %hi(0x40015000), %l1
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009b80: b2 0e 60 ff and %i1, 0xff, %i1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
40009b84: a2 14 63 d8 or %l1, 0x3d8, %l1
40009b88: 10 80 00 09 b 40009bac <_User_extensions_Fatal+0x34>
40009b8c: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
40009b90: 80 a0 60 00 cmp %g1, 0
40009b94: 02 80 00 05 be 40009ba8 <_User_extensions_Fatal+0x30>
40009b98: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009b9c: 92 10 00 19 mov %i1, %o1
40009ba0: 9f c0 40 00 call %g1
40009ba4: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009ba8: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
40009bac: 80 a4 00 11 cmp %l0, %l1
40009bb0: 32 bf ff f8 bne,a 40009b90 <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN
40009bb4: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40009bb8: 81 c7 e0 08 ret <== NOT EXECUTED
40009bbc: 81 e8 00 00 restore <== NOT EXECUTED
40009a3c <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
40009a3c: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009a40: 03 10 00 51 sethi %hi(0x40014400), %g1
40009a44: 82 10 63 88 or %g1, 0x388, %g1 ! 40014788 <Configuration>
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40009a48: 05 10 00 54 sethi %hi(0x40015000), %g2
initial_extensions = Configuration.User_extension_table;
40009a4c: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40009a50: e4 00 60 38 ld [ %g1 + 0x38 ], %l2
40009a54: 82 10 a3 d8 or %g2, 0x3d8, %g1
40009a58: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
40009a5c: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
40009a60: c2 20 60 08 st %g1, [ %g1 + 8 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40009a64: c6 20 a3 d8 st %g3, [ %g2 + 0x3d8 ]
40009a68: 05 10 00 54 sethi %hi(0x40015000), %g2
40009a6c: 82 10 a1 bc or %g2, 0x1bc, %g1 ! 400151bc <_User_extensions_Switches_list>
40009a70: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
40009a74: c0 20 60 04 clr [ %g1 + 4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40009a78: c6 20 a1 bc st %g3, [ %g2 + 0x1bc ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
40009a7c: 80 a4 e0 00 cmp %l3, 0
40009a80: 02 80 00 1b be 40009aec <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40009a84: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
40009a88: 83 2c a0 02 sll %l2, 2, %g1
40009a8c: a1 2c a0 04 sll %l2, 4, %l0
40009a90: a0 24 00 01 sub %l0, %g1, %l0
40009a94: a0 04 00 12 add %l0, %l2, %l0
40009a98: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009a9c: 40 00 01 6a call 4000a044 <_Workspace_Allocate_or_fatal_error>
40009aa0: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009aa4: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40009aa8: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40009aac: 92 10 20 00 clr %o1
40009ab0: 40 00 13 fd call 4000eaa4 <memset>
40009ab4: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009ab8: 10 80 00 0b b 40009ae4 <_User_extensions_Handler_initialization+0xa8>
40009abc: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
40009ac0: 90 04 60 14 add %l1, 0x14, %o0
40009ac4: 92 04 c0 09 add %l3, %o1, %o1
40009ac8: 40 00 13 be call 4000e9c0 <memcpy>
40009acc: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
40009ad0: 90 10 00 11 mov %l1, %o0
40009ad4: 40 00 0b b5 call 4000c9a8 <_User_extensions_Add_set>
40009ad8: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
40009adc: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009ae0: 80 a4 00 12 cmp %l0, %l2
40009ae4: 0a bf ff f7 bcs 40009ac0 <_User_extensions_Handler_initialization+0x84>
40009ae8: 93 2c 20 05 sll %l0, 5, %o1
40009aec: 81 c7 e0 08 ret
40009af0: 81 e8 00 00 restore
40009b38 <_User_extensions_Thread_exitted>:
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
40009b38: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
40009b3c: 23 10 00 54 sethi %hi(0x40015000), %l1
40009b40: a2 14 63 d8 or %l1, 0x3d8, %l1 ! 400153d8 <_User_extensions_List>
40009b44: 10 80 00 08 b 40009b64 <_User_extensions_Thread_exitted+0x2c>
40009b48: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
40009b4c: 80 a0 60 00 cmp %g1, 0
40009b50: 22 80 00 05 be,a 40009b64 <_User_extensions_Thread_exitted+0x2c>
40009b54: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
40009b58: 9f c0 40 00 call %g1
40009b5c: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40009b60: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
40009b64: 80 a4 00 11 cmp %l0, %l1
40009b68: 32 bf ff f9 bne,a 40009b4c <_User_extensions_Thread_exitted+0x14>
40009b6c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
(*the_extension->Callouts.thread_exitted)( executing );
}
}
40009b70: 81 c7 e0 08 ret
40009b74: 81 e8 00 00 restore
4000becc <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000becc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000bed0: 7f ff db a4 call 40002d60 <sparc_disable_interrupts>
4000bed4: a0 10 00 18 mov %i0, %l0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000bed8: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000bedc: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000bee0: 80 a0 40 11 cmp %g1, %l1
4000bee4: 02 80 00 1f be 4000bf60 <_Watchdog_Adjust+0x94>
4000bee8: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000beec: 02 80 00 1a be 4000bf54 <_Watchdog_Adjust+0x88>
4000bef0: a4 10 20 01 mov 1, %l2
4000bef4: 80 a6 60 01 cmp %i1, 1
4000bef8: 12 80 00 1a bne 4000bf60 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000befc: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000bf00: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000bf04: 10 80 00 07 b 4000bf20 <_Watchdog_Adjust+0x54>
4000bf08: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
4000bf0c: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000bf10: 80 a6 80 19 cmp %i2, %i1
4000bf14: 3a 80 00 05 bcc,a 4000bf28 <_Watchdog_Adjust+0x5c>
4000bf18: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
4000bf1c: b4 26 40 1a sub %i1, %i2, %i2
break;
4000bf20: 10 80 00 10 b 4000bf60 <_Watchdog_Adjust+0x94>
4000bf24: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
4000bf28: 7f ff db 92 call 40002d70 <sparc_enable_interrupts>
4000bf2c: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000bf30: 40 00 00 92 call 4000c178 <_Watchdog_Tickle>
4000bf34: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000bf38: 7f ff db 8a call 40002d60 <sparc_disable_interrupts>
4000bf3c: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000bf40: c2 04 00 00 ld [ %l0 ], %g1
4000bf44: 80 a0 40 11 cmp %g1, %l1
4000bf48: 02 80 00 06 be 4000bf60 <_Watchdog_Adjust+0x94>
4000bf4c: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
4000bf50: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000bf54: 80 a6 a0 00 cmp %i2, 0
4000bf58: 32 bf ff ed bne,a 4000bf0c <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
4000bf5c: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
4000bf60: 7f ff db 84 call 40002d70 <sparc_enable_interrupts>
4000bf64: 91 e8 00 08 restore %g0, %o0, %o0
40009e58 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
40009e58: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
40009e5c: 7f ff df b6 call 40001d34 <sparc_disable_interrupts>
40009e60: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
40009e64: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
40009e68: 80 a6 20 01 cmp %i0, 1
40009e6c: 22 80 00 1d be,a 40009ee0 <_Watchdog_Remove+0x88>
40009e70: c0 24 20 08 clr [ %l0 + 8 ]
40009e74: 0a 80 00 1c bcs 40009ee4 <_Watchdog_Remove+0x8c>
40009e78: 03 10 00 54 sethi %hi(0x40015000), %g1
40009e7c: 80 a6 20 03 cmp %i0, 3
40009e80: 18 80 00 19 bgu 40009ee4 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
40009e84: 01 00 00 00 nop
40009e88: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
40009e8c: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
40009e90: c4 00 40 00 ld [ %g1 ], %g2
40009e94: 80 a0 a0 00 cmp %g2, 0
40009e98: 02 80 00 07 be 40009eb4 <_Watchdog_Remove+0x5c>
40009e9c: 05 10 00 54 sethi %hi(0x40015000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
40009ea0: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009ea4: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
40009ea8: 84 00 c0 02 add %g3, %g2, %g2
40009eac: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009eb0: 05 10 00 54 sethi %hi(0x40015000), %g2
40009eb4: c4 00 a2 f0 ld [ %g2 + 0x2f0 ], %g2 ! 400152f0 <_Watchdog_Sync_count>
40009eb8: 80 a0 a0 00 cmp %g2, 0
40009ebc: 22 80 00 07 be,a 40009ed8 <_Watchdog_Remove+0x80>
40009ec0: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009ec4: 05 10 00 55 sethi %hi(0x40015400), %g2
40009ec8: c6 00 a0 24 ld [ %g2 + 0x24 ], %g3 ! 40015424 <_Per_CPU_Information+0x8>
40009ecc: 05 10 00 54 sethi %hi(0x40015000), %g2
40009ed0: c6 20 a2 60 st %g3, [ %g2 + 0x260 ] ! 40015260 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40009ed4: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
40009ed8: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
40009edc: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009ee0: 03 10 00 54 sethi %hi(0x40015000), %g1
40009ee4: c2 00 62 f4 ld [ %g1 + 0x2f4 ], %g1 ! 400152f4 <_Watchdog_Ticks_since_boot>
40009ee8: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
40009eec: 7f ff df 96 call 40001d44 <sparc_enable_interrupts>
40009ef0: 01 00 00 00 nop
return( previous_state );
}
40009ef4: 81 c7 e0 08 ret
40009ef8: 81 e8 00 00 restore
4000b70c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000b70c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000b710: 7f ff dc 6b call 400028bc <sparc_disable_interrupts>
4000b714: a0 10 00 18 mov %i0, %l0
4000b718: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b71c: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b720: 94 10 00 19 mov %i1, %o2
4000b724: 90 12 23 90 or %o0, 0x390, %o0
4000b728: 7f ff e6 40 call 40005028 <printk>
4000b72c: 92 10 00 10 mov %l0, %o1
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000b730: e2 06 40 00 ld [ %i1 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000b734: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
4000b738: 80 a4 40 19 cmp %l1, %i1
4000b73c: 02 80 00 0e be 4000b774 <_Watchdog_Report_chain+0x68>
4000b740: 11 10 00 74 sethi %hi(0x4001d000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000b744: 92 10 00 11 mov %l1, %o1
4000b748: 40 00 00 10 call 4000b788 <_Watchdog_Report>
4000b74c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
node != _Chain_Tail(header) ;
node = node->next )
4000b750: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
4000b754: 80 a4 40 19 cmp %l1, %i1
4000b758: 12 bf ff fc bne 4000b748 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b75c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000b760: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b764: 92 10 00 10 mov %l0, %o1
4000b768: 7f ff e6 30 call 40005028 <printk>
4000b76c: 90 12 23 a8 or %o0, 0x3a8, %o0
4000b770: 30 80 00 03 b,a 4000b77c <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
4000b774: 7f ff e6 2d call 40005028 <printk>
4000b778: 90 12 23 b8 or %o0, 0x3b8, %o0
}
_ISR_Enable( level );
4000b77c: 7f ff dc 54 call 400028cc <sparc_enable_interrupts>
4000b780: 81 e8 00 00 restore
40007594 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40007594: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
40007598: 90 10 00 18 mov %i0, %o0
4000759c: 40 00 01 48 call 40007abc <_Chain_Append_with_empty_check>
400075a0: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
400075a4: 80 8a 20 ff btst 0xff, %o0
400075a8: 02 80 00 05 be 400075bc <rtems_chain_append_with_notification+0x28><== NEVER TAKEN
400075ac: 01 00 00 00 nop
sc = rtems_event_send( task, events );
400075b0: b0 10 00 1a mov %i2, %i0
400075b4: 7f ff fd 78 call 40006b94 <rtems_event_send>
400075b8: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
400075bc: 81 c7 e0 08 ret <== NOT EXECUTED
400075c0: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
400075c4 <rtems_chain_get_with_notification>:
rtems_chain_control *chain,
rtems_id task,
rtems_event_set events,
rtems_chain_node **node
)
{
400075c4: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node **node
)
{
return _Chain_Get_with_empty_check( chain, node );
400075c8: 90 10 00 18 mov %i0, %o0
400075cc: 40 00 01 63 call 40007b58 <_Chain_Get_with_empty_check>
400075d0: 92 10 00 1b mov %i3, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool is_empty = rtems_chain_get_with_empty_check( chain, node );
if ( is_empty ) {
400075d4: 80 8a 20 ff btst 0xff, %o0
400075d8: 02 80 00 05 be 400075ec <rtems_chain_get_with_notification+0x28><== NEVER TAKEN
400075dc: 01 00 00 00 nop
sc = rtems_event_send( task, events );
400075e0: b0 10 00 19 mov %i1, %i0
400075e4: 7f ff fd 6c call 40006b94 <rtems_event_send>
400075e8: 93 e8 00 1a restore %g0, %i2, %o1
}
return sc;
}
400075ec: 81 c7 e0 08 ret <== NOT EXECUTED
400075f0: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
400075f4 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
400075f4: 9d e3 bf 98 save %sp, -104, %sp
400075f8: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
400075fc: 10 80 00 09 b 40007620 <rtems_chain_get_with_wait+0x2c>
40007600: a4 07 bf fc add %fp, -4, %l2
40007604: 92 10 20 00 clr %o1
40007608: 94 10 00 1a mov %i2, %o2
4000760c: 7f ff fc fe call 40006a04 <rtems_event_receive>
40007610: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40007614: 80 a2 20 00 cmp %o0, 0
40007618: 32 80 00 09 bne,a 4000763c <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
4000761c: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40007620: 40 00 01 63 call 40007bac <_Chain_Get>
40007624: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40007628: a2 92 20 00 orcc %o0, 0, %l1
4000762c: 02 bf ff f6 be 40007604 <rtems_chain_get_with_wait+0x10>
40007630: 90 10 00 19 mov %i1, %o0
40007634: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40007638: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
4000763c: 81 c7 e0 08 ret
40007640: 91 e8 00 08 restore %g0, %o0, %o0
40007644 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40007644: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
40007648: 90 10 00 18 mov %i0, %o0
4000764c: 40 00 01 72 call 40007c14 <_Chain_Prepend_with_empty_check>
40007650: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
40007654: 80 8a 20 ff btst 0xff, %o0
40007658: 02 80 00 05 be 4000766c <rtems_chain_prepend_with_notification+0x28><== NEVER TAKEN
4000765c: 01 00 00 00 nop
sc = rtems_event_send( task, events );
40007660: b0 10 00 1a mov %i2, %i0
40007664: 7f ff fd 4c call 40006b94 <rtems_event_send>
40007668: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
4000766c: 81 c7 e0 08 ret <== NOT EXECUTED
40007670: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
40009a24 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
40009a24: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
40009a28: 80 a6 20 00 cmp %i0, 0
40009a2c: 02 80 00 1a be 40009a94 <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
40009a30: 21 10 00 9d sethi %hi(0x40027400), %l0
40009a34: a0 14 21 40 or %l0, 0x140, %l0 ! 40027540 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
40009a38: a6 04 20 0c add %l0, 0xc, %l3
#if defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
40009a3c: c2 04 00 00 ld [ %l0 ], %g1
40009a40: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
40009a44: 80 a4 a0 00 cmp %l2, 0
40009a48: 12 80 00 0b bne 40009a74 <rtems_iterate_over_all_threads+0x50>
40009a4c: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009a50: 10 80 00 0e b 40009a88 <rtems_iterate_over_all_threads+0x64>
40009a54: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40009a58: 83 2c 60 02 sll %l1, 2, %g1
40009a5c: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
40009a60: 80 a2 20 00 cmp %o0, 0
40009a64: 02 80 00 04 be 40009a74 <rtems_iterate_over_all_threads+0x50><== NEVER TAKEN
40009a68: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
40009a6c: 9f c6 00 00 call %i0
40009a70: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40009a74: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
40009a78: 80 a4 40 01 cmp %l1, %g1
40009a7c: 28 bf ff f7 bleu,a 40009a58 <rtems_iterate_over_all_threads+0x34>
40009a80: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
40009a84: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40009a88: 80 a4 00 13 cmp %l0, %l3
40009a8c: 32 bf ff ed bne,a 40009a40 <rtems_iterate_over_all_threads+0x1c>
40009a90: c2 04 00 00 ld [ %l0 ], %g1
40009a94: 81 c7 e0 08 ret
40009a98: 81 e8 00 00 restore
40014be4 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40014be4: 9d e3 bf a0 save %sp, -96, %sp
40014be8: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40014bec: 80 a4 20 00 cmp %l0, 0
40014bf0: 02 80 00 1f be 40014c6c <rtems_partition_create+0x88>
40014bf4: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40014bf8: 80 a6 60 00 cmp %i1, 0
40014bfc: 02 80 00 1c be 40014c6c <rtems_partition_create+0x88>
40014c00: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40014c04: 80 a7 60 00 cmp %i5, 0
40014c08: 02 80 00 19 be 40014c6c <rtems_partition_create+0x88> <== NEVER TAKEN
40014c0c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40014c10: 02 80 00 32 be 40014cd8 <rtems_partition_create+0xf4>
40014c14: 80 a6 a0 00 cmp %i2, 0
40014c18: 02 80 00 30 be 40014cd8 <rtems_partition_create+0xf4>
40014c1c: 80 a6 80 1b cmp %i2, %i3
40014c20: 0a 80 00 13 bcs 40014c6c <rtems_partition_create+0x88>
40014c24: b0 10 20 08 mov 8, %i0
40014c28: 80 8e e0 07 btst 7, %i3
40014c2c: 12 80 00 10 bne 40014c6c <rtems_partition_create+0x88>
40014c30: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40014c34: 12 80 00 0e bne 40014c6c <rtems_partition_create+0x88>
40014c38: b0 10 20 09 mov 9, %i0
40014c3c: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40014c40: c4 00 63 88 ld [ %g1 + 0x388 ], %g2 ! 4003d788 <_Thread_Dispatch_disable_level>
40014c44: 84 00 a0 01 inc %g2
40014c48: c4 20 63 88 st %g2, [ %g1 + 0x388 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40014c4c: 25 10 00 f5 sethi %hi(0x4003d400), %l2
40014c50: 40 00 12 47 call 4001956c <_Objects_Allocate>
40014c54: 90 14 a1 94 or %l2, 0x194, %o0 ! 4003d594 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40014c58: a2 92 20 00 orcc %o0, 0, %l1
40014c5c: 12 80 00 06 bne 40014c74 <rtems_partition_create+0x90>
40014c60: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
40014c64: 40 00 15 e1 call 4001a3e8 <_Thread_Enable_dispatch>
40014c68: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40014c6c: 81 c7 e0 08 ret
40014c70: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40014c74: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40014c78: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40014c7c: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
40014c80: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
40014c84: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40014c88: 40 00 5e bd call 4002c77c <.udiv>
40014c8c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014c90: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40014c94: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014c98: 96 10 00 1b mov %i3, %o3
40014c9c: a6 04 60 24 add %l1, 0x24, %l3
40014ca0: 40 00 0c 5a call 40017e08 <_Chain_Initialize>
40014ca4: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014ca8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014cac: a4 14 a1 94 or %l2, 0x194, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014cb0: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014cb4: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014cb8: 85 28 a0 02 sll %g2, 2, %g2
40014cbc: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40014cc0: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40014cc4: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40014cc8: 40 00 15 c8 call 4001a3e8 <_Thread_Enable_dispatch>
40014ccc: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40014cd0: 81 c7 e0 08 ret
40014cd4: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
40014cd8: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014cdc: 81 c7 e0 08 ret
40014ce0: 81 e8 00 00 restore
40007cc8 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40007cc8: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
40007ccc: 11 10 00 7b sethi %hi(0x4001ec00), %o0
40007cd0: 92 10 00 18 mov %i0, %o1
40007cd4: 90 12 21 e4 or %o0, 0x1e4, %o0
40007cd8: 40 00 08 eb call 4000a084 <_Objects_Get>
40007cdc: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007ce0: c2 07 bf fc ld [ %fp + -4 ], %g1
40007ce4: 80 a0 60 00 cmp %g1, 0
40007ce8: 12 80 00 66 bne 40007e80 <rtems_rate_monotonic_period+0x1b8>
40007cec: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40007cf0: 25 10 00 7c sethi %hi(0x4001f000), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40007cf4: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
40007cf8: a4 14 a1 bc or %l2, 0x1bc, %l2
40007cfc: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
40007d00: 80 a0 80 01 cmp %g2, %g1
40007d04: 02 80 00 06 be 40007d1c <rtems_rate_monotonic_period+0x54>
40007d08: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40007d0c: 40 00 0b 2c call 4000a9bc <_Thread_Enable_dispatch>
40007d10: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40007d14: 81 c7 e0 08 ret
40007d18: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40007d1c: 12 80 00 0e bne 40007d54 <rtems_rate_monotonic_period+0x8c>
40007d20: 01 00 00 00 nop
switch ( the_period->state ) {
40007d24: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40007d28: 80 a0 60 04 cmp %g1, 4
40007d2c: 18 80 00 06 bgu 40007d44 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
40007d30: b0 10 20 00 clr %i0
40007d34: 83 28 60 02 sll %g1, 2, %g1
40007d38: 05 10 00 74 sethi %hi(0x4001d000), %g2
40007d3c: 84 10 a0 34 or %g2, 0x34, %g2 ! 4001d034 <CSWTCH.2>
40007d40: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
40007d44: 40 00 0b 1e call 4000a9bc <_Thread_Enable_dispatch>
40007d48: 01 00 00 00 nop
return( return_value );
40007d4c: 81 c7 e0 08 ret
40007d50: 81 e8 00 00 restore
}
_ISR_Disable( level );
40007d54: 7f ff eb bd call 40002c48 <sparc_disable_interrupts>
40007d58: 01 00 00 00 nop
40007d5c: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40007d60: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
40007d64: 80 a4 60 00 cmp %l1, 0
40007d68: 12 80 00 15 bne 40007dbc <rtems_rate_monotonic_period+0xf4>
40007d6c: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
40007d70: 7f ff eb ba call 40002c58 <sparc_enable_interrupts>
40007d74: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
40007d78: 7f ff ff 7a call 40007b60 <_Rate_monotonic_Initiate_statistics>
40007d7c: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007d80: 82 10 20 02 mov 2, %g1
40007d84: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40007d88: 03 10 00 20 sethi %hi(0x40008000), %g1
40007d8c: 82 10 61 50 or %g1, 0x150, %g1 ! 40008150 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40007d90: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
40007d94: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
40007d98: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
40007d9c: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40007da0: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007da4: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007da8: 11 10 00 7c sethi %hi(0x4001f000), %o0
40007dac: 92 04 20 10 add %l0, 0x10, %o1
40007db0: 40 00 0f fc call 4000bda0 <_Watchdog_Insert>
40007db4: 90 12 20 1c or %o0, 0x1c, %o0
40007db8: 30 80 00 1b b,a 40007e24 <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40007dbc: 12 80 00 1e bne 40007e34 <rtems_rate_monotonic_period+0x16c>
40007dc0: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40007dc4: 7f ff ff 83 call 40007bd0 <_Rate_monotonic_Update_statistics>
40007dc8: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007dcc: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40007dd0: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007dd4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40007dd8: 7f ff eb a0 call 40002c58 <sparc_enable_interrupts>
40007ddc: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40007de0: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007de4: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007de8: 13 00 00 10 sethi %hi(0x4000), %o1
40007dec: 40 00 0d 3a call 4000b2d4 <_Thread_Set_state>
40007df0: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007df4: 7f ff eb 95 call 40002c48 <sparc_disable_interrupts>
40007df8: 01 00 00 00 nop
local_state = the_period->state;
40007dfc: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e00: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007e04: 7f ff eb 95 call 40002c58 <sparc_enable_interrupts>
40007e08: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007e0c: 80 a4 e0 03 cmp %l3, 3
40007e10: 12 80 00 05 bne 40007e24 <rtems_rate_monotonic_period+0x15c>
40007e14: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007e18: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007e1c: 40 00 09 fd call 4000a610 <_Thread_Clear_state>
40007e20: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
40007e24: 40 00 0a e6 call 4000a9bc <_Thread_Enable_dispatch>
40007e28: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40007e2c: 81 c7 e0 08 ret
40007e30: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
40007e34: 12 bf ff b8 bne 40007d14 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
40007e38: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40007e3c: 7f ff ff 65 call 40007bd0 <_Rate_monotonic_Update_statistics>
40007e40: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
40007e44: 7f ff eb 85 call 40002c58 <sparc_enable_interrupts>
40007e48: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e4c: 82 10 20 02 mov 2, %g1
40007e50: 92 04 20 10 add %l0, 0x10, %o1
40007e54: 11 10 00 7c sethi %hi(0x4001f000), %o0
40007e58: 90 12 20 1c or %o0, 0x1c, %o0 ! 4001f01c <_Watchdog_Ticks_chain>
40007e5c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
40007e60: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007e64: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007e68: 40 00 0f ce call 4000bda0 <_Watchdog_Insert>
40007e6c: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40007e70: 40 00 0a d3 call 4000a9bc <_Thread_Enable_dispatch>
40007e74: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007e78: 81 c7 e0 08 ret
40007e7c: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40007e80: b0 10 20 04 mov 4, %i0
}
40007e84: 81 c7 e0 08 ret
40007e88: 81 e8 00 00 restore
40007e8c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
40007e8c: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
40007e90: 80 a6 60 00 cmp %i1, 0
40007e94: 02 80 00 79 be 40008078 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
40007e98: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
40007e9c: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ea0: 9f c6 40 00 call %i1
40007ea4: 92 12 60 48 or %o1, 0x48, %o1 ! 4001d048 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
40007ea8: 90 10 00 18 mov %i0, %o0
40007eac: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007eb0: 9f c6 40 00 call %i1
40007eb4: 92 12 60 68 or %o1, 0x68, %o1 ! 4001d068 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007eb8: 90 10 00 18 mov %i0, %o0
40007ebc: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ec0: 9f c6 40 00 call %i1
40007ec4: 92 12 60 90 or %o1, 0x90, %o1 ! 4001d090 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40007ec8: 90 10 00 18 mov %i0, %o0
40007ecc: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ed0: 9f c6 40 00 call %i1
40007ed4: 92 12 60 b8 or %o1, 0xb8, %o1 ! 4001d0b8 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40007ed8: 90 10 00 18 mov %i0, %o0
40007edc: 13 10 00 74 sethi %hi(0x4001d000), %o1
40007ee0: 9f c6 40 00 call %i1
40007ee4: 92 12 61 08 or %o1, 0x108, %o1 ! 4001d108 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007ee8: 3b 10 00 7b sethi %hi(0x4001ec00), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007eec: 2b 10 00 74 sethi %hi(0x4001d000), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007ef0: 82 17 61 e4 or %i5, 0x1e4, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
40007ef4: 27 10 00 74 sethi %hi(0x4001d000), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
40007ef8: 35 10 00 74 sethi %hi(0x4001d000), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007efc: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007f00: ae 07 bf a0 add %fp, -96, %l7
if ( status != RTEMS_SUCCESSFUL )
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
40007f04: ac 07 bf d8 add %fp, -40, %l6
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007f08: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007f0c: aa 15 61 58 or %l5, 0x158, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40007f10: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007f14: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
40007f18: a6 14 e1 70 or %l3, 0x170, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40007f1c: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007f20: 10 80 00 52 b 40008068 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
40007f24: b4 16 a1 90 or %i2, 0x190, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007f28: 40 00 17 92 call 4000dd70 <rtems_rate_monotonic_get_statistics>
40007f2c: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
40007f30: 80 a2 20 00 cmp %o0, 0
40007f34: 32 80 00 4c bne,a 40008064 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007f38: a0 04 20 01 inc %l0
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
40007f3c: 92 10 00 16 mov %l6, %o1
40007f40: 40 00 17 b9 call 4000de24 <rtems_rate_monotonic_get_status>
40007f44: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007f48: d0 07 bf d8 ld [ %fp + -40 ], %o0
40007f4c: 92 10 20 05 mov 5, %o1
40007f50: 40 00 00 ae call 40008208 <rtems_object_get_name>
40007f54: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007f58: d8 1f bf a0 ldd [ %fp + -96 ], %o4
40007f5c: 92 10 00 15 mov %l5, %o1
40007f60: 90 10 00 18 mov %i0, %o0
40007f64: 94 10 00 10 mov %l0, %o2
40007f68: 9f c6 40 00 call %i1
40007f6c: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40007f70: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007f74: 80 a2 60 00 cmp %o1, 0
40007f78: 12 80 00 08 bne 40007f98 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
40007f7c: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
40007f80: 90 10 00 18 mov %i0, %o0
40007f84: 13 10 00 70 sethi %hi(0x4001c000), %o1
40007f88: 9f c6 40 00 call %i1
40007f8c: 92 12 63 28 or %o1, 0x328, %o1 ! 4001c328 <_rodata_start+0x158>
continue;
40007f90: 10 80 00 35 b 40008064 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007f94: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007f98: 40 00 0e 5f call 4000b914 <_Timespec_Divide_by_integer>
40007f9c: 90 10 00 14 mov %l4, %o0
(*print)( context,
40007fa0: d0 07 bf ac ld [ %fp + -84 ], %o0
40007fa4: 40 00 43 f4 call 40018f74 <.div>
40007fa8: 92 10 23 e8 mov 0x3e8, %o1
40007fac: 96 10 00 08 mov %o0, %o3
40007fb0: d0 07 bf b4 ld [ %fp + -76 ], %o0
40007fb4: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007fb8: 40 00 43 ef call 40018f74 <.div>
40007fbc: 92 10 23 e8 mov 0x3e8, %o1
40007fc0: c2 07 bf f0 ld [ %fp + -16 ], %g1
40007fc4: b6 10 00 08 mov %o0, %i3
40007fc8: d0 07 bf f4 ld [ %fp + -12 ], %o0
40007fcc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007fd0: 40 00 43 e9 call 40018f74 <.div>
40007fd4: 92 10 23 e8 mov 0x3e8, %o1
40007fd8: d8 07 bf b0 ld [ %fp + -80 ], %o4
40007fdc: d6 07 bf 9c ld [ %fp + -100 ], %o3
40007fe0: d4 07 bf a8 ld [ %fp + -88 ], %o2
40007fe4: 9a 10 00 1b mov %i3, %o5
40007fe8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40007fec: 92 10 00 13 mov %l3, %o1
40007ff0: 9f c6 40 00 call %i1
40007ff4: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40007ff8: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007ffc: 94 10 00 11 mov %l1, %o2
40008000: 40 00 0e 45 call 4000b914 <_Timespec_Divide_by_integer>
40008004: 90 10 00 1c mov %i4, %o0
(*print)( context,
40008008: d0 07 bf c4 ld [ %fp + -60 ], %o0
4000800c: 40 00 43 da call 40018f74 <.div>
40008010: 92 10 23 e8 mov 0x3e8, %o1
40008014: 96 10 00 08 mov %o0, %o3
40008018: d0 07 bf cc ld [ %fp + -52 ], %o0
4000801c: d6 27 bf 9c st %o3, [ %fp + -100 ]
40008020: 40 00 43 d5 call 40018f74 <.div>
40008024: 92 10 23 e8 mov 0x3e8, %o1
40008028: c2 07 bf f0 ld [ %fp + -16 ], %g1
4000802c: b6 10 00 08 mov %o0, %i3
40008030: d0 07 bf f4 ld [ %fp + -12 ], %o0
40008034: 92 10 23 e8 mov 0x3e8, %o1
40008038: 40 00 43 cf call 40018f74 <.div>
4000803c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008040: d4 07 bf c0 ld [ %fp + -64 ], %o2
40008044: d6 07 bf 9c ld [ %fp + -100 ], %o3
40008048: d8 07 bf c8 ld [ %fp + -56 ], %o4
4000804c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40008050: 92 10 00 1a mov %i2, %o1
40008054: 90 10 00 18 mov %i0, %o0
40008058: 9f c6 40 00 call %i1
4000805c: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008060: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
40008064: 82 17 61 e4 or %i5, 0x1e4, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008068: c2 00 60 0c ld [ %g1 + 0xc ], %g1
4000806c: 80 a4 00 01 cmp %l0, %g1
40008070: 08 bf ff ae bleu 40007f28 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
40008074: 90 10 00 10 mov %l0, %o0
40008078: 81 c7 e0 08 ret
4000807c: 81 e8 00 00 restore
400130c0 <rtems_shutdown_executive>:
*/
void rtems_shutdown_executive(
uint32_t result
)
{
400130c0: 9d e3 bf a0 save %sp, -96, %sp
if ( _System_state_Is_up( _System_state_Get() ) ) {
400130c4: 03 10 00 54 sethi %hi(0x40015000), %g1
400130c8: c4 00 63 3c ld [ %g1 + 0x33c ], %g2 ! 4001533c <_System_state_Current>
400130cc: 80 a0 a0 03 cmp %g2, 3
400130d0: 32 80 00 08 bne,a 400130f0 <rtems_shutdown_executive+0x30>
400130d4: 90 10 20 00 clr %o0
400130d8: 84 10 20 04 mov 4, %g2
* if we were running within the same context, it would work.
*
* And we will not return to this thread, so there is no point of
* saving the context.
*/
_Context_Restart_self( &_Thread_BSP_context );
400130dc: 11 10 00 54 sethi %hi(0x40015000), %o0
400130e0: c4 20 63 3c st %g2, [ %g1 + 0x33c ]
400130e4: 7f ff dc 33 call 4000a1b0 <_CPU_Context_restore>
400130e8: 90 12 21 30 or %o0, 0x130, %o0
_System_state_Set( SYSTEM_STATE_SHUTDOWN );
_Thread_Stop_multitasking();
}
_Internal_error_Occurred(
400130ec: 90 10 20 00 clr %o0 <== NOT EXECUTED
400130f0: 92 10 20 01 mov 1, %o1
400130f4: 7f ff d3 15 call 40007d48 <_Internal_error_Occurred>
400130f8: 94 10 20 14 mov 0x14, %o2
40016188 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
40016188: 9d e3 bf 98 save %sp, -104, %sp
4001618c: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
40016190: 80 a6 60 00 cmp %i1, 0
40016194: 02 80 00 2e be 4001624c <rtems_signal_send+0xc4>
40016198: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
4001619c: 40 00 10 a0 call 4001a41c <_Thread_Get>
400161a0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400161a4: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
400161a8: a2 10 00 08 mov %o0, %l1
switch ( location ) {
400161ac: 80 a0 60 00 cmp %g1, 0
400161b0: 12 80 00 27 bne 4001624c <rtems_signal_send+0xc4>
400161b4: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400161b8: e0 02 21 5c ld [ %o0 + 0x15c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400161bc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400161c0: 80 a0 60 00 cmp %g1, 0
400161c4: 02 80 00 24 be 40016254 <rtems_signal_send+0xcc>
400161c8: 01 00 00 00 nop
if ( asr->is_enabled ) {
400161cc: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
400161d0: 80 a0 60 00 cmp %g1, 0
400161d4: 02 80 00 15 be 40016228 <rtems_signal_send+0xa0>
400161d8: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400161dc: 7f ff e4 8a call 4000f404 <sparc_disable_interrupts>
400161e0: 01 00 00 00 nop
*signal_set |= signals;
400161e4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
400161e8: b2 10 40 19 or %g1, %i1, %i1
400161ec: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
400161f0: 7f ff e4 89 call 4000f414 <sparc_enable_interrupts>
400161f4: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
400161f8: 03 10 00 f6 sethi %hi(0x4003d800), %g1
400161fc: 82 10 61 f4 or %g1, 0x1f4, %g1 ! 4003d9f4 <_Per_CPU_Information>
40016200: c4 00 60 08 ld [ %g1 + 8 ], %g2
40016204: 80 a0 a0 00 cmp %g2, 0
40016208: 02 80 00 0f be 40016244 <rtems_signal_send+0xbc>
4001620c: 01 00 00 00 nop
40016210: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40016214: 80 a4 40 02 cmp %l1, %g2
40016218: 12 80 00 0b bne 40016244 <rtems_signal_send+0xbc> <== NEVER TAKEN
4001621c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40016220: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40016224: 30 80 00 08 b,a 40016244 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40016228: 7f ff e4 77 call 4000f404 <sparc_disable_interrupts>
4001622c: 01 00 00 00 nop
*signal_set |= signals;
40016230: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40016234: b2 10 40 19 or %g1, %i1, %i1
40016238: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
4001623c: 7f ff e4 76 call 4000f414 <sparc_enable_interrupts>
40016240: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
40016244: 40 00 10 69 call 4001a3e8 <_Thread_Enable_dispatch>
40016248: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
4001624c: 81 c7 e0 08 ret
40016250: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
40016254: 40 00 10 65 call 4001a3e8 <_Thread_Enable_dispatch>
40016258: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
4001625c: 81 c7 e0 08 ret
40016260: 81 e8 00 00 restore
4000dbac <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000dbac: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000dbb0: 80 a6 a0 00 cmp %i2, 0
4000dbb4: 02 80 00 5a be 4000dd1c <rtems_task_mode+0x170>
4000dbb8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000dbbc: 03 10 00 55 sethi %hi(0x40015400), %g1
4000dbc0: e2 00 60 28 ld [ %g1 + 0x28 ], %l1 ! 40015428 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbc4: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000dbc8: e0 04 61 5c ld [ %l1 + 0x15c ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbcc: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dbd0: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dbd4: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dbd8: 80 a0 60 00 cmp %g1, 0
4000dbdc: 02 80 00 03 be 4000dbe8 <rtems_task_mode+0x3c>
4000dbe0: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000dbe4: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dbe8: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
4000dbec: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dbf0: 7f ff f2 27 call 4000a48c <_CPU_ISR_Get_level>
4000dbf4: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dbf8: a7 2c e0 0a sll %l3, 0xa, %l3
4000dbfc: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
4000dc00: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000dc04: 80 8e 61 00 btst 0x100, %i1
4000dc08: 02 80 00 06 be 4000dc20 <rtems_task_mode+0x74>
4000dc0c: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dc10: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000dc14: 80 a0 00 01 cmp %g0, %g1
4000dc18: 82 60 3f ff subx %g0, -1, %g1
4000dc1c: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000dc20: 80 8e 62 00 btst 0x200, %i1
4000dc24: 02 80 00 0b be 4000dc50 <rtems_task_mode+0xa4>
4000dc28: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000dc2c: 80 8e 22 00 btst 0x200, %i0
4000dc30: 22 80 00 07 be,a 4000dc4c <rtems_task_mode+0xa0>
4000dc34: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000dc38: 82 10 20 01 mov 1, %g1
4000dc3c: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000dc40: 03 10 00 54 sethi %hi(0x40015000), %g1
4000dc44: c2 00 61 18 ld [ %g1 + 0x118 ], %g1 ! 40015118 <_Thread_Ticks_per_timeslice>
4000dc48: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000dc4c: 80 8e 60 0f btst 0xf, %i1
4000dc50: 02 80 00 06 be 4000dc68 <rtems_task_mode+0xbc>
4000dc54: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000dc58: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000dc5c: 7f ff d0 3a call 40001d44 <sparc_enable_interrupts>
4000dc60: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000dc64: 80 8e 64 00 btst 0x400, %i1
4000dc68: 02 80 00 14 be 4000dcb8 <rtems_task_mode+0x10c>
4000dc6c: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dc70: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000dc74: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000dc78: 80 a0 00 18 cmp %g0, %i0
4000dc7c: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000dc80: 80 a0 40 02 cmp %g1, %g2
4000dc84: 22 80 00 0e be,a 4000dcbc <rtems_task_mode+0x110>
4000dc88: 03 10 00 54 sethi %hi(0x40015000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000dc8c: 7f ff d0 2a call 40001d34 <sparc_disable_interrupts>
4000dc90: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
4000dc94: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
4000dc98: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
4000dc9c: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000dca0: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000dca4: 7f ff d0 28 call 40001d44 <sparc_enable_interrupts>
4000dca8: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000dcac: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000dcb0: 80 a0 00 01 cmp %g0, %g1
4000dcb4: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000dcb8: 03 10 00 54 sethi %hi(0x40015000), %g1
4000dcbc: c4 00 63 3c ld [ %g1 + 0x33c ], %g2 ! 4001533c <_System_state_Current>
4000dcc0: 80 a0 a0 03 cmp %g2, 3
4000dcc4: 12 80 00 16 bne 4000dd1c <rtems_task_mode+0x170> <== NEVER TAKEN
4000dcc8: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000dccc: 07 10 00 55 sethi %hi(0x40015400), %g3
if ( are_signals_pending ||
4000dcd0: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000dcd4: 86 10 e0 1c or %g3, 0x1c, %g3
if ( are_signals_pending ||
4000dcd8: 12 80 00 0a bne 4000dd00 <rtems_task_mode+0x154>
4000dcdc: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
4000dce0: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
4000dce4: 80 a0 80 03 cmp %g2, %g3
4000dce8: 02 80 00 0d be 4000dd1c <rtems_task_mode+0x170>
4000dcec: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000dcf0: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000dcf4: 80 a0 a0 00 cmp %g2, 0
4000dcf8: 02 80 00 09 be 4000dd1c <rtems_task_mode+0x170> <== NEVER TAKEN
4000dcfc: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000dd00: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
4000dd04: 03 10 00 55 sethi %hi(0x40015400), %g1
4000dd08: 82 10 60 1c or %g1, 0x1c, %g1 ! 4001541c <_Per_CPU_Information>
4000dd0c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000dd10: 7f ff eb 83 call 40008b1c <_Thread_Dispatch>
4000dd14: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000dd18: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000dd1c: 81 c7 e0 08 ret
4000dd20: 91 e8 00 01 restore %g0, %g1, %o0
4000b4d4 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000b4d4: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000b4d8: 80 a6 60 00 cmp %i1, 0
4000b4dc: 02 80 00 07 be 4000b4f8 <rtems_task_set_priority+0x24>
4000b4e0: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000b4e4: 03 10 00 64 sethi %hi(0x40019000), %g1
4000b4e8: c2 08 60 f4 ldub [ %g1 + 0xf4 ], %g1 ! 400190f4 <rtems_maximum_priority>
4000b4ec: 80 a6 40 01 cmp %i1, %g1
4000b4f0: 18 80 00 1c bgu 4000b560 <rtems_task_set_priority+0x8c>
4000b4f4: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000b4f8: 80 a6 a0 00 cmp %i2, 0
4000b4fc: 02 80 00 19 be 4000b560 <rtems_task_set_priority+0x8c>
4000b500: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000b504: 40 00 07 fd call 4000d4f8 <_Thread_Get>
4000b508: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000b50c: c2 07 bf fc ld [ %fp + -4 ], %g1
4000b510: 80 a0 60 00 cmp %g1, 0
4000b514: 12 80 00 13 bne 4000b560 <rtems_task_set_priority+0x8c>
4000b518: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000b51c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000b520: 80 a6 60 00 cmp %i1, 0
4000b524: 02 80 00 0d be 4000b558 <rtems_task_set_priority+0x84>
4000b528: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000b52c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000b530: 80 a0 60 00 cmp %g1, 0
4000b534: 02 80 00 06 be 4000b54c <rtems_task_set_priority+0x78>
4000b538: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000b53c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000b540: 80 a0 40 19 cmp %g1, %i1
4000b544: 08 80 00 05 bleu 4000b558 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000b548: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000b54c: 92 10 00 19 mov %i1, %o1
4000b550: 40 00 06 79 call 4000cf34 <_Thread_Change_priority>
4000b554: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000b558: 40 00 07 db call 4000d4c4 <_Thread_Enable_dispatch>
4000b55c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b560: 81 c7 e0 08 ret
4000b564: 81 e8 00 00 restore
40016b8c <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40016b8c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40016b90: 11 10 00 f6 sethi %hi(0x4003d800), %o0
40016b94: 92 10 00 18 mov %i0, %o1
40016b98: 90 12 22 54 or %o0, 0x254, %o0
40016b9c: 40 00 0b c5 call 40019ab0 <_Objects_Get>
40016ba0: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016ba4: c2 07 bf fc ld [ %fp + -4 ], %g1
40016ba8: 80 a0 60 00 cmp %g1, 0
40016bac: 12 80 00 0c bne 40016bdc <rtems_timer_cancel+0x50>
40016bb0: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40016bb4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40016bb8: 80 a0 60 04 cmp %g1, 4
40016bbc: 02 80 00 04 be 40016bcc <rtems_timer_cancel+0x40> <== NEVER TAKEN
40016bc0: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40016bc4: 40 00 13 db call 4001bb30 <_Watchdog_Remove>
40016bc8: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40016bcc: 40 00 0e 07 call 4001a3e8 <_Thread_Enable_dispatch>
40016bd0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40016bd4: 81 c7 e0 08 ret
40016bd8: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016bdc: 81 c7 e0 08 ret
40016be0: 91 e8 20 04 restore %g0, 4, %o0
40017074 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40017074: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40017078: 03 10 00 f6 sethi %hi(0x4003d800), %g1
4001707c: e2 00 62 94 ld [ %g1 + 0x294 ], %l1 ! 4003da94 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40017080: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
40017084: 80 a4 60 00 cmp %l1, 0
40017088: 02 80 00 33 be 40017154 <rtems_timer_server_fire_when+0xe0>
4001708c: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
40017090: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40017094: c2 08 63 98 ldub [ %g1 + 0x398 ], %g1 ! 4003d798 <_TOD_Is_set>
40017098: 80 a0 60 00 cmp %g1, 0
4001709c: 02 80 00 2e be 40017154 <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
400170a0: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
400170a4: 80 a6 a0 00 cmp %i2, 0
400170a8: 02 80 00 2b be 40017154 <rtems_timer_server_fire_when+0xe0>
400170ac: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
400170b0: 90 10 00 19 mov %i1, %o0
400170b4: 7f ff f4 09 call 400140d8 <_TOD_Validate>
400170b8: b0 10 20 14 mov 0x14, %i0
400170bc: 80 8a 20 ff btst 0xff, %o0
400170c0: 02 80 00 27 be 4001715c <rtems_timer_server_fire_when+0xe8>
400170c4: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
400170c8: 7f ff f3 d0 call 40014008 <_TOD_To_seconds>
400170cc: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400170d0: 27 10 00 f6 sethi %hi(0x4003d800), %l3
400170d4: c2 04 e0 10 ld [ %l3 + 0x10 ], %g1 ! 4003d810 <_TOD_Now>
400170d8: 80 a2 00 01 cmp %o0, %g1
400170dc: 08 80 00 1e bleu 40017154 <rtems_timer_server_fire_when+0xe0>
400170e0: a4 10 00 08 mov %o0, %l2
400170e4: 11 10 00 f6 sethi %hi(0x4003d800), %o0
400170e8: 92 10 00 10 mov %l0, %o1
400170ec: 90 12 22 54 or %o0, 0x254, %o0
400170f0: 40 00 0a 70 call 40019ab0 <_Objects_Get>
400170f4: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
400170f8: c2 07 bf fc ld [ %fp + -4 ], %g1
400170fc: b2 10 00 08 mov %o0, %i1
40017100: 80 a0 60 00 cmp %g1, 0
40017104: 12 80 00 14 bne 40017154 <rtems_timer_server_fire_when+0xe0>
40017108: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
4001710c: 40 00 12 89 call 4001bb30 <_Watchdog_Remove>
40017110: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40017114: 82 10 20 03 mov 3, %g1
40017118: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001711c: c2 04 e0 10 ld [ %l3 + 0x10 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
40017120: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017124: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
40017128: c2 04 60 04 ld [ %l1 + 4 ], %g1
4001712c: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40017130: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
40017134: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
40017138: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
4001713c: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017140: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
40017144: 9f c0 40 00 call %g1
40017148: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
4001714c: 40 00 0c a7 call 4001a3e8 <_Thread_Enable_dispatch>
40017150: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40017154: 81 c7 e0 08 ret
40017158: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4001715c: 81 c7 e0 08 ret
40017160: 81 e8 00 00 restore