40017f94 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
40017f94: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
40017f98: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) {
40017f9c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) {
40017fa0: 80 a6 80 01 cmp %i2, %g1
40017fa4: 18 80 00 16 bgu 40017ffc <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
40017fa8: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) {
40017fac: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 40017fb0: 80 a0 60 00 cmp %g1, 0
40017fb4: 02 80 00 0b be 40017fe0 <_CORE_message_queue_Broadcast+0x4c>
40017fb8: a2 10 20 00 clr %l1
*count = 0;
40017fbc: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017fc0: 81 c7 e0 08 ret 40017fc4: 91 e8 20 00 restore %g0, 0, %o0
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
40017fc8: 92 10 00 19 mov %i1, %o1 40017fcc: 40 00 21 0c call 400203fc <memcpy> 40017fd0: 94 10 00 1a mov %i2, %o2
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
40017fd4: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1;
40017fd8: a2 04 60 01 inc %l1
buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size;
40017fdc: f4 20 40 00 st %i2, [ %g1 ]
/* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread =
40017fe0: 40 00 0a 2c call 4001a890 <_Thread_queue_Dequeue> 40017fe4: 90 10 00 10 mov %l0, %o0 40017fe8: a4 92 20 00 orcc %o0, 0, %l2
40017fec: 32 bf ff f7 bne,a 40017fc8 <_CORE_message_queue_Broadcast+0x34>
40017ff0: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted;
40017ff4: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017ff8: b0 10 20 00 clr %i0
}
40017ffc: 81 c7 e0 08 ret 40018000: 81 e8 00 00 restore
400107c8 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
400107c8: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages;
400107cc: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
400107d0: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
400107d4: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) {
400107d8: a0 10 00 18 mov %i0, %l0
/* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) {
400107dc: 80 8e e0 03 btst 3, %i3
400107e0: 02 80 00 07 be 400107fc <_CORE_message_queue_Initialize+0x34>
400107e4: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
400107e8: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
400107ec: a4 0c bf fc and %l2, -4, %l2
} if (allocated_message_size < maximum_message_size)
400107f0: 80 a4 80 1b cmp %l2, %i3
400107f4: 0a 80 00 22 bcs 4001087c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
400107f8: b0 10 20 00 clr %i0
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
400107fc: a2 04 a0 10 add %l2, 0x10, %l1
/* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages *
40010800: 92 10 00 1a mov %i2, %o1 40010804: 90 10 00 11 mov %l1, %o0 40010808: 40 00 3d 44 call 4001fd18 <.umul> 4001080c: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size)
40010810: 80 a2 00 12 cmp %o0, %l2
40010814: 0a 80 00 1a bcs 4001087c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40010818: 01 00 00 00 nop
/* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required );
4001081c: 40 00 0b 7b call 40013608 <_Workspace_Allocate> 40010820: 01 00 00 00 nop
return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
40010824: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0)
40010828: 80 a2 20 00 cmp %o0, 0
4001082c: 02 80 00 14 be 4001087c <_CORE_message_queue_Initialize+0xb4>
40010830: 92 10 00 08 mov %o0, %o1
/* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize (
40010834: 90 04 20 60 add %l0, 0x60, %o0 40010838: 94 10 00 1a mov %i2, %o2 4001083c: 40 00 13 91 call 40015680 <_Chain_Initialize> 40010840: 96 10 00 11 mov %l1, %o3
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40010844: 82 04 20 54 add %l0, 0x54, %g1
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40010848: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages );
4001084c: 82 04 20 50 add %l0, 0x50, %g1
the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain);
40010850: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
_Thread_queue_Initialize(
40010854: c2 06 40 00 ld [ %i1 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
40010858: c0 24 20 54 clr [ %l0 + 0x54 ] 4001085c: 82 18 60 01 xor %g1, 1, %g1 40010860: 80 a0 00 01 cmp %g0, %g1 40010864: 90 10 00 10 mov %l0, %o0 40010868: 92 60 3f ff subx %g0, -1, %o1 4001086c: 94 10 20 80 mov 0x80, %o2 40010870: 96 10 20 06 mov 6, %o3 40010874: 40 00 08 53 call 400129c0 <_Thread_queue_Initialize> 40010878: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; }
4001087c: 81 c7 e0 08 ret 40010880: 81 e8 00 00 restore
40010884 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
40010884: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing;
40010888: 27 10 00 96 sethi %hi(0x40025800), %l3 4001088c: a6 14 e3 3c or %l3, 0x33c, %l3 ! 40025b3c <_Per_CPU_Information> 40010890: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) {
40010894: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level );
40010898: 7f ff da ad call 4000734c <sparc_disable_interrupts> 4001089c: c0 24 a0 34 clr [ %l2 + 0x34 ] 400108a0: 82 10 00 08 mov %o0, %g1
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
400108a4: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
400108a8: 84 06 20 54 add %i0, 0x54, %g2
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
400108ac: 80 a4 40 02 cmp %l1, %g2
400108b0: 02 80 00 15 be 40010904 <_CORE_message_queue_Seize+0x80>
400108b4: 86 06 20 50 add %i0, 0x50, %g3
{ Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next;
400108b8: c4 04 40 00 ld [ %l1 ], %g2
the_chain->first = new_first;
400108bc: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) {
400108c0: 80 a4 60 00 cmp %l1, 0
400108c4: 02 80 00 10 be 40010904 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
400108c8: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
400108cc: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 400108d0: 82 00 7f ff add %g1, -1, %g1 400108d4: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
400108d8: 7f ff da a1 call 4000735c <sparc_enable_interrupts> 400108dc: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
400108e0: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
400108e4: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size;
400108e8: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
400108ec: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source, void *destination, size_t size ) { memcpy(destination, source, size);
400108f0: 90 10 00 1a mov %i2, %o0 400108f4: 40 00 1d f9 call 400180d8 <memcpy> 400108f8: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
400108fc: 7f ff ff 83 call 40010708 <_Chain_Append> 40010900: 93 e8 00 11 restore %g0, %l1, %o1
return; } #endif } if ( !wait ) {
40010904: 80 8f 20 ff btst 0xff, %i4
40010908: 32 80 00 08 bne,a 40010928 <_CORE_message_queue_Seize+0xa4>
4001090c: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
40010910: 7f ff da 93 call 4000735c <sparc_enable_interrupts> 40010914: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
40010918: 82 10 20 04 mov 4, %g1 4001091c: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); }
40010920: 81 c7 e0 08 ret 40010924: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40010928: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue;
4001092c: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
40010930: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
40010934: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
40010938: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */ _ISR_Enable( level );
4001093c: 90 10 00 01 mov %g1, %o0 40010940: 7f ff da 87 call 4000735c <sparc_enable_interrupts> 40010944: 35 10 00 4a sethi %hi(0x40012800), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
40010948: b2 10 00 1d mov %i5, %i1 4001094c: 40 00 07 75 call 40012720 <_Thread_queue_Enqueue_with_handler> 40010950: 95 ee a2 a0 restore %i2, 0x2a0, %o2
4000762c <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) {
4000762c: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40007630: 03 10 00 54 sethi %hi(0x40015000), %g1 40007634: c2 00 63 68 ld [ %g1 + 0x368 ], %g1 ! 40015368 <_Thread_Dispatch_disable_level> 40007638: 80 a0 60 00 cmp %g1, 0
4000763c: 02 80 00 0d be 40007670 <_CORE_mutex_Seize+0x44>
40007640: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 40007644: 80 8e a0 ff btst 0xff, %i2
40007648: 02 80 00 0b be 40007674 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
4000764c: 90 10 00 18 mov %i0, %o0 40007650: 03 10 00 55 sethi %hi(0x40015400), %g1 40007654: c2 00 60 ec ld [ %g1 + 0xec ], %g1 ! 400154ec <_System_state_Current> 40007658: 80 a0 60 01 cmp %g1, 1
4000765c: 08 80 00 05 bleu 40007670 <_CORE_mutex_Seize+0x44>
40007660: 90 10 20 00 clr %o0 40007664: 92 10 20 00 clr %o1 40007668: 40 00 01 df call 40007de4 <_Internal_error_Occurred> 4000766c: 94 10 20 12 mov 0x12, %o2 40007670: 90 10 00 18 mov %i0, %o0 40007674: 40 00 12 ad call 4000c128 <_CORE_mutex_Seize_interrupt_trylock> 40007678: 92 07 a0 54 add %fp, 0x54, %o1 4000767c: 80 a2 20 00 cmp %o0, 0
40007680: 02 80 00 0a be 400076a8 <_CORE_mutex_Seize+0x7c>
40007684: 80 8e a0 ff btst 0xff, %i2 40007688: 35 10 00 55 sethi %hi(0x40015400), %i2
4000768c: 12 80 00 09 bne 400076b0 <_CORE_mutex_Seize+0x84>
40007690: b4 16 a1 cc or %i2, 0x1cc, %i2 ! 400155cc <_Per_CPU_Information> 40007694: 7f ff e9 ac call 40001d44 <sparc_enable_interrupts> 40007698: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 4000769c: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 400076a0: 84 10 20 01 mov 1, %g2 400076a4: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 400076a8: 81 c7 e0 08 ret 400076ac: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
400076b0: 82 10 20 01 mov 1, %g1 400076b4: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 400076b8: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 400076bc: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 400076c0: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 400076c4: 03 10 00 54 sethi %hi(0x40015000), %g1 400076c8: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 40015368 <_Thread_Dispatch_disable_level> 400076cc: 84 00 a0 01 inc %g2 400076d0: c4 20 63 68 st %g2, [ %g1 + 0x368 ] 400076d4: 7f ff e9 9c call 40001d44 <sparc_enable_interrupts> 400076d8: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 400076dc: 90 10 00 18 mov %i0, %o0 400076e0: 7f ff ff ba call 400075c8 <_CORE_mutex_Seize_interrupt_blocking> 400076e4: 92 10 00 1b mov %i3, %o1 400076e8: 81 c7 e0 08 ret 400076ec: 81 e8 00 00 restore
4000c128 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) {
4000c128: 9d e3 bf a0 save %sp, -96, %sp
{ Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing;
4000c12c: 03 10 00 55 sethi %hi(0x40015400), %g1 4000c130: c2 00 61 d8 ld [ %g1 + 0x1d8 ], %g1 ! 400155d8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000c134: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000c138: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000c13c: 80 a0 a0 00 cmp %g2, 0
4000c140: 02 80 00 2f be 4000c1fc <_CORE_mutex_Seize_interrupt_trylock+0xd4>
4000c144: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
4000c148: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED;
4000c14c: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id;
4000c150: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
4000c154: 84 10 20 01 mov 1, %g2 4000c158: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); }
4000c15c: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000c160: 80 a0 a0 02 cmp %g2, 2
4000c164: 02 80 00 05 be 4000c178 <_CORE_mutex_Seize_interrupt_trylock+0x50>
4000c168: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 4000c16c: 80 a0 a0 03 cmp %g2, 3
4000c170: 12 80 00 07 bne 4000c18c <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000c174: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
4000c178: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000c17c: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++;
4000c180: 88 00 e0 01 add %g3, 1, %g4
} if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 4000c184: 02 80 00 03 be 4000c190 <_CORE_mutex_Seize_interrupt_trylock+0x68>
4000c188: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000c18c: 30 80 00 2b b,a 4000c238 <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling;
4000c190: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
4000c194: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
4000c198: 80 a1 00 02 cmp %g4, %g2
4000c19c: 12 80 00 03 bne 4000c1a8 <_CORE_mutex_Seize_interrupt_trylock+0x80>
4000c1a0: 01 00 00 00 nop
_ISR_Enable( *level_p );
4000c1a4: 30 80 00 25 b,a 4000c238 <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0; } if ( current > ceiling ) { 4000c1a8: 08 80 00 0f bleu 4000c1e4 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
4000c1ac: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
4000c1b0: 03 10 00 54 sethi %hi(0x40015000), %g1 4000c1b4: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 40015368 <_Thread_Dispatch_disable_level> 4000c1b8: 84 00 a0 01 inc %g2 4000c1bc: c4 20 63 68 st %g2, [ %g1 + 0x368 ]
_Thread_Disable_dispatch(); _ISR_Enable( *level_p );
4000c1c0: 7f ff d6 e1 call 40001d44 <sparc_enable_interrupts> 4000c1c4: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000c1c8: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 4000c1cc: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 4000c1d0: 7f ff f1 56 call 40008728 <_Thread_Change_priority> 4000c1d4: 94 10 20 00 clr %o2
the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch();
4000c1d8: 7f ff f2 b8 call 40008cb8 <_Thread_Enable_dispatch> 4000c1dc: b0 10 20 00 clr %i0 4000c1e0: 30 80 00 1d b,a 4000c254 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000c1e4: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */
4000c1e8: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000c1ec: 84 10 20 01 mov 1, %g2 4000c1f0: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */
4000c1f4: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000c1f8: 30 80 00 10 b,a 4000c238 <_CORE_mutex_Seize_interrupt_trylock+0x110>
/* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000c1fc: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 4000c200: 80 a0 80 01 cmp %g2, %g1
4000c204: 12 80 00 14 bne 4000c254 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000c208: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000c20c: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 4000c210: 80 a0 60 00 cmp %g1, 0
4000c214: 22 80 00 07 be,a 4000c230 <_CORE_mutex_Seize_interrupt_trylock+0x108>
4000c218: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 4000c21c: 80 a0 60 01 cmp %g1, 1
4000c220: 12 80 00 0d bne 4000c254 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
4000c224: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000c228: 10 80 00 08 b 4000c248 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 4000c22c: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++;
4000c230: 82 00 60 01 inc %g1 4000c234: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000c238: 7f ff d6 c3 call 40001d44 <sparc_enable_interrupts> 4000c23c: d0 06 40 00 ld [ %i1 ], %o0
return 0;
4000c240: 81 c7 e0 08 ret 4000c244: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p );
4000c248: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 4000c24c: 7f ff d6 be call 40001d44 <sparc_enable_interrupts> <== NOT EXECUTED 4000c250: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000c254: 81 c7 e0 08 ret 4000c258: 81 e8 00 00 restore
4000786c <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) {
4000786c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40007870: 90 10 00 18 mov %i0, %o0 40007874: 40 00 05 ec call 40009024 <_Thread_queue_Dequeue> 40007878: a0 10 00 18 mov %i0, %l0 4000787c: 80 a2 20 00 cmp %o0, 0
40007880: 12 80 00 0e bne 400078b8 <_CORE_semaphore_Surrender+0x4c>
40007884: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level );
40007888: 7f ff e9 2b call 40001d34 <sparc_disable_interrupts> 4000788c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40007890: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 40007894: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 40007898: 80 a0 40 02 cmp %g1, %g2
4000789c: 1a 80 00 05 bcc 400078b0 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
400078a0: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
400078a4: 82 00 60 01 inc %g1
{ Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
400078a8: b0 10 20 00 clr %i0
#endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1;
400078ac: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level );
400078b0: 7f ff e9 25 call 40001d44 <sparc_enable_interrupts> 400078b4: 01 00 00 00 nop
} return status; }
400078b8: 81 c7 e0 08 ret 400078bc: 81 e8 00 00 restore
400064c0 <_Event_Seize>: rtems_event_set event_in, rtems_option option_set, rtems_interval ticks, rtems_event_set *event_out ) {
400064c0: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set pending_events; ISR_Level level; RTEMS_API_Control *api; Thread_blocking_operation_States sync_state; executing = _Thread_Executing;
400064c4: 03 10 00 55 sethi %hi(0x40015400), %g1 400064c8: e0 00 61 d8 ld [ %g1 + 0x1d8 ], %l0 ! 400155d8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = RTEMS_SUCCESSFUL;
400064cc: c0 24 20 34 clr [ %l0 + 0x34 ]
api = executing->API_Extensions[ THREAD_API_RTEMS ]; _ISR_Disable( level );
400064d0: 7f ff ee 19 call 40001d34 <sparc_disable_interrupts> 400064d4: e4 04 21 5c ld [ %l0 + 0x15c ], %l2
pending_events = api->pending_events;
400064d8: c2 04 80 00 ld [ %l2 ], %g1
seized_events = _Event_sets_Get( pending_events, event_in ); if ( !_Event_sets_Is_empty( seized_events ) &&
400064dc: a2 8e 00 01 andcc %i0, %g1, %l1
400064e0: 02 80 00 0f be 4000651c <_Event_Seize+0x5c>
400064e4: 80 8e 60 01 btst 1, %i1 400064e8: 80 a4 40 18 cmp %l1, %i0
400064ec: 22 80 00 06 be,a 40006504 <_Event_Seize+0x44>
400064f0: 82 28 40 11 andn %g1, %l1, %g1
(seized_events == event_in || _Options_Is_any( option_set )) ) {
400064f4: 80 8e 60 02 btst 2, %i1
400064f8: 22 80 00 09 be,a 4000651c <_Event_Seize+0x5c> <== NEVER TAKEN
400064fc: 80 8e 60 01 btst 1, %i1 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) );
40006500: 82 28 40 11 andn %g1, %l1, %g1
api->pending_events =
40006504: c2 24 80 00 st %g1, [ %l2 ]
_Event_sets_Clear( pending_events, seized_events ); _ISR_Enable( level );
40006508: 7f ff ee 0f call 40001d44 <sparc_enable_interrupts> 4000650c: 01 00 00 00 nop 40006510: e2 26 c0 00 st %l1, [ %i3 ] 40006514: 81 c7 e0 08 ret 40006518: 81 e8 00 00 restore
*event_out = seized_events; return; } if ( _Options_Is_no_wait( option_set ) ) { 4000651c: 22 80 00 09 be,a 40006540 <_Event_Seize+0x80>
40006520: f2 24 20 30 st %i1, [ %l0 + 0x30 ]
_ISR_Enable( level );
40006524: 7f ff ee 08 call 40001d44 <sparc_enable_interrupts> 40006528: 01 00 00 00 nop
executing->Wait.return_code = RTEMS_UNSATISFIED;
4000652c: 82 10 20 0d mov 0xd, %g1 ! d <PROM_START+0xd> 40006530: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
*event_out = seized_events;
40006534: e2 26 c0 00 st %l1, [ %i3 ] 40006538: 81 c7 e0 08 ret 4000653c: 81 e8 00 00 restore
* * NOTE: Since interrupts are disabled, this isn't that much of an * issue but better safe than sorry. */ executing->Wait.option = (uint32_t) option_set; executing->Wait.count = (uint32_t) event_in;
40006540: f0 24 20 24 st %i0, [ %l0 + 0x24 ]
executing->Wait.return_argument = event_out;
40006544: f6 24 20 28 st %i3, [ %l0 + 0x28 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006548: 84 10 20 01 mov 1, %g2 4000654c: 03 10 00 55 sethi %hi(0x40015400), %g1 40006550: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ] ! 400155e8 <_Event_Sync_state>
_ISR_Enable( level );
40006554: 7f ff ed fc call 40001d44 <sparc_enable_interrupts> 40006558: 01 00 00 00 nop
if ( ticks ) {
4000655c: 80 a6 a0 00 cmp %i2, 0
40006560: 02 80 00 0f be 4000659c <_Event_Seize+0xdc>
40006564: 90 10 00 10 mov %l0, %o0
_Watchdog_Initialize(
40006568: c2 04 20 08 ld [ %l0 + 8 ], %g1
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
4000656c: 05 10 00 19 sethi %hi(0x40006400), %g2 40006570: 84 10 a3 74 or %g2, 0x374, %g2 ! 40006774 <_Event_Timeout>
) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40006574: 11 10 00 55 sethi %hi(0x40015400), %o0
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40006578: c0 24 20 50 clr [ %l0 + 0x50 ]
the_watchdog->routine = routine;
4000657c: c4 24 20 64 st %g2, [ %l0 + 0x64 ]
the_watchdog->id = id;
40006580: c2 24 20 68 st %g1, [ %l0 + 0x68 ]
the_watchdog->user_data = user_data;
40006584: c0 24 20 6c clr [ %l0 + 0x6c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40006588: f4 24 20 54 st %i2, [ %l0 + 0x54 ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000658c: 90 12 20 2c or %o0, 0x2c, %o0 40006590: 40 00 0d fb call 40009d7c <_Watchdog_Insert> 40006594: 92 04 20 48 add %l0, 0x48, %o1
NULL ); _Watchdog_Insert_ticks( &executing->Timer, ticks ); } _Thread_Set_state( executing, STATES_WAITING_FOR_EVENT );
40006598: 90 10 00 10 mov %l0, %o0 4000659c: 40 00 0c 0d call 400095d0 <_Thread_Set_state> 400065a0: 92 10 21 00 mov 0x100, %o1
_ISR_Disable( level );
400065a4: 7f ff ed e4 call 40001d34 <sparc_disable_interrupts> 400065a8: 01 00 00 00 nop
sync_state = _Event_Sync_state;
400065ac: 03 10 00 55 sethi %hi(0x40015400), %g1 400065b0: f0 00 61 e8 ld [ %g1 + 0x1e8 ], %i0 ! 400155e8 <_Event_Sync_state>
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
400065b4: c0 20 61 e8 clr [ %g1 + 0x1e8 ]
if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
400065b8: 80 a6 20 01 cmp %i0, 1
400065bc: 12 80 00 04 bne 400065cc <_Event_Seize+0x10c>
400065c0: b2 10 00 10 mov %l0, %i1
_ISR_Enable( level );
400065c4: 7f ff ed e0 call 40001d44 <sparc_enable_interrupts> 400065c8: 91 e8 00 08 restore %g0, %o0, %o0
* An interrupt completed the thread's blocking request. * The blocking thread was satisfied by an ISR or timed out. * * WARNING! Returning with interrupts disabled! */ _Thread_blocking_operation_Cancel( sync_state, executing, level );
400065cc: 40 00 08 42 call 400086d4 <_Thread_blocking_operation_Cancel> 400065d0: 95 e8 00 08 restore %g0, %o0, %o2
40006634 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) {
40006634: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40006638: e2 06 21 5c ld [ %i0 + 0x15c ], %l1
option_set = (rtems_option) the_thread->Wait.option;
4000663c: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
40006640: 7f ff ed bd call 40001d34 <sparc_disable_interrupts> 40006644: a0 10 00 18 mov %i0, %l0 40006648: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
4000664c: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40006650: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) {
40006654: 82 88 c0 02 andcc %g3, %g2, %g1
40006658: 12 80 00 03 bne 40006664 <_Event_Surrender+0x30>
4000665c: 09 10 00 55 sethi %hi(0x40015400), %g4
_ISR_Enable( level );
40006660: 30 80 00 42 b,a 40006768 <_Event_Surrender+0x134>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() &&
40006664: 88 11 21 cc or %g4, 0x1cc, %g4 ! 400155cc <_Per_CPU_Information> 40006668: da 01 20 08 ld [ %g4 + 8 ], %o5 4000666c: 80 a3 60 00 cmp %o5, 0
40006670: 22 80 00 1d be,a 400066e4 <_Event_Surrender+0xb0>
40006674: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 40006678: c8 01 20 0c ld [ %g4 + 0xc ], %g4 4000667c: 80 a4 00 04 cmp %l0, %g4
40006680: 32 80 00 19 bne,a 400066e4 <_Event_Surrender+0xb0>
40006684: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006688: 09 10 00 55 sethi %hi(0x40015400), %g4 4000668c: da 01 21 e8 ld [ %g4 + 0x1e8 ], %o5 ! 400155e8 <_Event_Sync_state>
/* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) &&
40006690: 80 a3 60 02 cmp %o5, 2
40006694: 02 80 00 07 be 400066b0 <_Event_Surrender+0x7c> <== NEVER TAKEN
40006698: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
4000669c: c8 01 21 e8 ld [ %g4 + 0x1e8 ], %g4
* If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
400066a0: 80 a1 20 01 cmp %g4, 1
400066a4: 32 80 00 10 bne,a 400066e4 <_Event_Surrender+0xb0>
400066a8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
400066ac: 80 a0 40 03 cmp %g1, %g3
400066b0: 02 80 00 04 be 400066c0 <_Event_Surrender+0x8c>
400066b4: 80 8c a0 02 btst 2, %l2
400066b8: 02 80 00 0a be 400066e0 <_Event_Surrender+0xac> <== NEVER TAKEN
400066bc: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) );
400066c0: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
400066c4: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400066c8: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0;
400066cc: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400066d0: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
400066d4: 84 10 20 03 mov 3, %g2 400066d8: 03 10 00 55 sethi %hi(0x40015400), %g1 400066dc: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ] ! 400155e8 <_Event_Sync_state>
} _ISR_Enable( level );
400066e0: 30 80 00 22 b,a 40006768 <_Event_Surrender+0x134>
} /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
400066e4: 80 89 21 00 btst 0x100, %g4
400066e8: 02 80 00 20 be 40006768 <_Event_Surrender+0x134>
400066ec: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 400066f0: 02 80 00 04 be 40006700 <_Event_Surrender+0xcc>
400066f4: 80 8c a0 02 btst 2, %l2
400066f8: 02 80 00 1c be 40006768 <_Event_Surrender+0x134> <== NEVER TAKEN
400066fc: 01 00 00 00 nop 40006700: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40006704: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006708: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0;
4000670c: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006710: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
40006714: 7f ff ed 8c call 40001d44 <sparc_enable_interrupts> 40006718: 90 10 00 18 mov %i0, %o0 4000671c: 7f ff ed 86 call 40001d34 <sparc_disable_interrupts> 40006720: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40006724: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 40006728: 80 a0 60 02 cmp %g1, 2
4000672c: 02 80 00 06 be 40006744 <_Event_Surrender+0x110>
40006730: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40006734: 7f ff ed 84 call 40001d44 <sparc_enable_interrupts> 40006738: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
4000673c: 10 80 00 08 b 4000675c <_Event_Surrender+0x128> 40006740: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT;
40006744: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level );
40006748: 7f ff ed 7f call 40001d44 <sparc_enable_interrupts> 4000674c: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40006750: 40 00 0d e5 call 40009ee4 <_Watchdog_Remove> 40006754: 90 04 20 48 add %l0, 0x48, %o0 40006758: 33 04 00 ff sethi %hi(0x1003fc00), %i1 4000675c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8> 40006760: 40 00 08 6b call 4000890c <_Thread_Clear_state> 40006764: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level );
40006768: 7f ff ed 77 call 40001d44 <sparc_enable_interrupts> 4000676c: 81 e8 00 00 restore
40006774 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) {
40006774: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location );
40006778: 90 10 00 18 mov %i0, %o0 4000677c: 40 00 09 5c call 40008cec <_Thread_Get> 40006780: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40006784: c2 07 bf fc ld [ %fp + -4 ], %g1 40006788: 80 a0 60 00 cmp %g1, 0
4000678c: 12 80 00 1c bne 400067fc <_Event_Timeout+0x88> <== NEVER TAKEN
40006790: a0 10 00 08 mov %o0, %l0
* * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level );
40006794: 7f ff ed 68 call 40001d34 <sparc_disable_interrupts> 40006798: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
4000679c: 03 10 00 55 sethi %hi(0x40015400), %g1
return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) {
400067a0: c2 00 61 d8 ld [ %g1 + 0x1d8 ], %g1 ! 400155d8 <_Per_CPU_Information+0xc> 400067a4: 80 a4 00 01 cmp %l0, %g1
400067a8: 12 80 00 09 bne 400067cc <_Event_Timeout+0x58>
400067ac: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
400067b0: 03 10 00 55 sethi %hi(0x40015400), %g1 400067b4: c4 00 61 e8 ld [ %g1 + 0x1e8 ], %g2 ! 400155e8 <_Event_Sync_state> 400067b8: 80 a0 a0 01 cmp %g2, 1
400067bc: 32 80 00 05 bne,a 400067d0 <_Event_Timeout+0x5c>
400067c0: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
400067c4: 84 10 20 02 mov 2, %g2 400067c8: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ]
} the_thread->Wait.return_code = RTEMS_TIMEOUT;
400067cc: 82 10 20 06 mov 6, %g1 400067d0: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
400067d4: 7f ff ed 5c call 40001d44 <sparc_enable_interrupts> 400067d8: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
400067dc: 90 10 00 10 mov %l0, %o0 400067e0: 13 04 00 ff sethi %hi(0x1003fc00), %o1 400067e4: 40 00 08 4a call 4000890c <_Thread_Clear_state> 400067e8: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
400067ec: 03 10 00 54 sethi %hi(0x40015000), %g1 400067f0: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 40015368 <_Thread_Dispatch_disable_level> 400067f4: 84 00 bf ff add %g2, -1, %g2 400067f8: c4 20 63 68 st %g2, [ %g1 + 0x368 ] 400067fc: 81 c7 e0 08 ret 40006800: 81 e8 00 00 restore
4000c2d8 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) {
4000c2d8: 9d e3 bf 98 save %sp, -104, %sp 4000c2dc: a0 10 00 18 mov %i0, %l0
if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; }
4000c2e0: e4 06 20 08 ld [ %i0 + 8 ], %l2
) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); Heap_Block *block = _Heap_Free_list_first( heap ); uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000c2e4: ac 06 60 04 add %i1, 4, %l6
- HEAP_BLOCK_SIZE_OFFSET; uintptr_t const page_size = heap->page_size;
4000c2e8: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t alloc_begin = 0; uint32_t search_count = 0; if ( block_size_floor < alloc_size ) {
4000c2ec: 80 a5 80 19 cmp %l6, %i1
4000c2f0: 0a 80 00 67 bcs 4000c48c <_Heap_Allocate_aligned_with_boundary+0x1b4>
4000c2f4: b0 10 20 00 clr %i0
/* Integer overflow occured */ return NULL; } if ( boundary != 0 ) {
4000c2f8: 80 a6 e0 00 cmp %i3, 0
4000c2fc: 02 80 00 08 be 4000c31c <_Heap_Allocate_aligned_with_boundary+0x44>
4000c300: 82 05 20 07 add %l4, 7, %g1
if ( boundary < alloc_size ) {
4000c304: 80 a6 c0 19 cmp %i3, %i1
4000c308: 0a 80 00 61 bcs 4000c48c <_Heap_Allocate_aligned_with_boundary+0x1b4>
4000c30c: 80 a6 a0 00 cmp %i2, 0
return NULL; } if ( alignment == 0 ) { 4000c310: 22 80 00 03 be,a 4000c31c <_Heap_Allocate_aligned_with_boundary+0x44>
4000c314: b4 10 00 14 mov %l4, %i2
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000c318: 82 05 20 07 add %l4, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
4000c31c: b8 10 20 04 mov 4, %i4
if ( boundary < alloc_size ) { return NULL; } if ( alignment == 0 ) { alignment = page_size;
4000c320: a2 10 20 00 clr %l1
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000c324: c2 27 bf f8 st %g1, [ %fp + -8 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
4000c328: b8 27 00 19 sub %i4, %i1, %i4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000c32c: 10 80 00 50 b 4000c46c <_Heap_Allocate_aligned_with_boundary+0x194> 4000c330: ba 10 3f f8 mov -8, %i5
/* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) {
4000c334: 80 a6 00 16 cmp %i0, %l6
4000c338: 08 80 00 4c bleu 4000c468 <_Heap_Allocate_aligned_with_boundary+0x190>
4000c33c: a2 04 60 01 inc %l1
if ( alignment == 0 ) {
4000c340: 80 a6 a0 00 cmp %i2, 0
4000c344: 12 80 00 04 bne 4000c354 <_Heap_Allocate_aligned_with_boundary+0x7c>
4000c348: aa 04 a0 08 add %l2, 8, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block( const Heap_Block *block ) { return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
4000c34c: 10 80 00 3a b 4000c434 <_Heap_Allocate_aligned_with_boundary+0x15c> 4000c350: b0 10 00 15 mov %l5, %i0
uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000c354: c2 07 bf f8 ld [ %fp + -8 ], %g1
uintptr_t alignment, uintptr_t boundary ) { uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size;
4000c358: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c35c: b0 0e 3f fe and %i0, -2, %i0
uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000c360: a6 20 40 17 sub %g1, %l7, %l3
uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size;
4000c364: b0 04 80 18 add %l2, %i0, %i0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000c368: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000c36c: a6 04 c0 18 add %l3, %i0, %l3
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET; uintptr_t alloc_begin = alloc_end - alloc_size;
4000c370: b0 07 00 18 add %i4, %i0, %i0 4000c374: 40 00 16 55 call 40011cc8 <.urem> 4000c378: 90 10 00 18 mov %i0, %o0 4000c37c: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) {
4000c380: 80 a6 00 13 cmp %i0, %l3
4000c384: 08 80 00 07 bleu 4000c3a0 <_Heap_Allocate_aligned_with_boundary+0xc8>
4000c388: 80 a6 e0 00 cmp %i3, 0 4000c38c: 90 10 00 13 mov %l3, %o0 4000c390: 40 00 16 4e call 40011cc8 <.urem> 4000c394: 92 10 00 1a mov %i2, %o1 4000c398: b0 24 c0 08 sub %l3, %o0, %i0
} alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) {
4000c39c: 80 a6 e0 00 cmp %i3, 0
4000c3a0: 02 80 00 18 be 4000c400 <_Heap_Allocate_aligned_with_boundary+0x128>
4000c3a4: 80 a6 00 15 cmp %i0, %l5
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000c3a8: 82 05 40 19 add %l5, %i1, %g1
/* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size;
4000c3ac: a6 06 00 19 add %i0, %i1, %l3
/* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000c3b0: 10 80 00 0a b 4000c3d8 <_Heap_Allocate_aligned_with_boundary+0x100> 4000c3b4: c2 27 bf fc st %g1, [ %fp + -4 ]
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) {
4000c3b8: 80 a2 00 01 cmp %o0, %g1
4000c3bc: 0a 80 00 2b bcs 4000c468 <_Heap_Allocate_aligned_with_boundary+0x190>
4000c3c0: b0 22 00 19 sub %o0, %i1, %i0 4000c3c4: 92 10 00 1a mov %i2, %o1 4000c3c8: 40 00 16 40 call 40011cc8 <.urem> 4000c3cc: 90 10 00 18 mov %i0, %o0 4000c3d0: b0 26 00 08 sub %i0, %o0, %i0
return 0; } alloc_begin = boundary_line - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size;
4000c3d4: a6 06 00 19 add %i0, %i1, %l3 4000c3d8: 90 10 00 13 mov %l3, %o0 4000c3dc: 40 00 16 3b call 40011cc8 <.urem> 4000c3e0: 92 10 00 1b mov %i3, %o1 4000c3e4: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000c3e8: 80 a2 00 13 cmp %o0, %l3
4000c3ec: 1a 80 00 04 bcc 4000c3fc <_Heap_Allocate_aligned_with_boundary+0x124>
4000c3f0: 80 a6 00 08 cmp %i0, %o0
4000c3f4: 0a bf ff f1 bcs 4000c3b8 <_Heap_Allocate_aligned_with_boundary+0xe0>
4000c3f8: c2 07 bf fc ld [ %fp + -4 ], %g1
boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) {
4000c3fc: 80 a6 00 15 cmp %i0, %l5
4000c400: 2a 80 00 1b bcs,a 4000c46c <_Heap_Allocate_aligned_with_boundary+0x194>
4000c404: e4 04 a0 08 ld [ %l2 + 8 ], %l2 4000c408: a6 27 40 12 sub %i5, %l2, %l3 4000c40c: 90 10 00 18 mov %i0, %o0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
4000c410: a6 04 c0 18 add %l3, %i0, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000c414: 40 00 16 2d call 40011cc8 <.urem> 4000c418: 92 10 00 14 mov %l4, %o1
uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) {
4000c41c: 90 a4 c0 08 subcc %l3, %o0, %o0
4000c420: 02 80 00 06 be 4000c438 <_Heap_Allocate_aligned_with_boundary+0x160>
4000c424: 80 a6 20 00 cmp %i0, 0 4000c428: 80 a2 00 17 cmp %o0, %l7
4000c42c: 2a 80 00 10 bcs,a 4000c46c <_Heap_Allocate_aligned_with_boundary+0x194>
4000c430: e4 04 a0 08 ld [ %l2 + 8 ], %l2
boundary ); } } if ( alloc_begin != 0 ) {
4000c434: 80 a6 20 00 cmp %i0, 0
4000c438: 22 80 00 0d be,a 4000c46c <_Heap_Allocate_aligned_with_boundary+0x194><== NEVER TAKEN
4000c43c: e4 04 a0 08 ld [ %l2 + 8 ], %l2 <== NOT EXECUTED
block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
4000c440: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000c444: 90 10 00 10 mov %l0, %o0
block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
4000c448: 82 00 40 11 add %g1, %l1, %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000c44c: 92 10 00 12 mov %l2, %o1
block = block->next; } if ( alloc_begin != 0 ) { /* Statistics */ stats->searches += search_count;
4000c450: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000c454: 94 10 00 18 mov %i0, %o2 4000c458: 7f ff ee 16 call 40007cb0 <_Heap_Block_allocate> 4000c45c: 96 10 00 19 mov %i1, %o3
boundary ); } /* Statistics */ if ( stats->max_search < search_count ) {
4000c460: 10 80 00 08 b 4000c480 <_Heap_Allocate_aligned_with_boundary+0x1a8> 4000c464: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
if ( alloc_begin != 0 ) { break; } block = block->next;
4000c468: e4 04 a0 08 ld [ %l2 + 8 ], %l2
if ( alignment == 0 ) { alignment = page_size; } } while ( block != free_list_tail ) {
4000c46c: 80 a4 80 10 cmp %l2, %l0
4000c470: 32 bf ff b1 bne,a 4000c334 <_Heap_Allocate_aligned_with_boundary+0x5c>
4000c474: f0 04 a0 04 ld [ %l2 + 4 ], %i0 4000c478: b0 10 20 00 clr %i0
boundary ); } /* Statistics */ if ( stats->max_search < search_count ) {
4000c47c: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 4000c480: 80 a0 40 11 cmp %g1, %l1
4000c484: 2a 80 00 02 bcs,a 4000c48c <_Heap_Allocate_aligned_with_boundary+0x1b4>
4000c488: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count; } return (void *) alloc_begin; }
4000c48c: 81 c7 e0 08 ret 4000c490: 81 e8 00 00 restore
4000c784 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
4000c784: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL;
4000c788: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000c78c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
4000c790: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block;
4000c794: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size;
4000c798: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000c79c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000c7a0: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
4000c7a4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) {
4000c7a8: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) {
4000c7ac: 80 a4 40 19 cmp %l1, %i1
4000c7b0: 0a 80 00 9f bcs 4000ca2c <_Heap_Extend+0x2a8>
4000c7b4: b0 10 20 00 clr %i0
return false; } extend_area_ok = _Heap_Get_first_and_last_block(
4000c7b8: 90 10 00 19 mov %i1, %o0 4000c7bc: 94 10 00 13 mov %l3, %o2 4000c7c0: 98 07 bf fc add %fp, -4, %o4 4000c7c4: 7f ff ed 5c call 40007d34 <_Heap_Get_first_and_last_block> 4000c7c8: 9a 07 bf f8 add %fp, -8, %o5
page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) {
4000c7cc: 80 8a 20 ff btst 0xff, %o0
4000c7d0: 02 80 00 97 be 4000ca2c <_Heap_Extend+0x2a8>
4000c7d4: aa 10 00 12 mov %l2, %l5 4000c7d8: ba 10 20 00 clr %i5 4000c7dc: b8 10 20 00 clr %i4 4000c7e0: b0 10 20 00 clr %i0 4000c7e4: ae 10 20 00 clr %l7 4000c7e8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if (
4000c7ec: 80 a0 40 11 cmp %g1, %l1
4000c7f0: 1a 80 00 05 bcc 4000c804 <_Heap_Extend+0x80>
4000c7f4: ec 05 40 00 ld [ %l5 ], %l6 4000c7f8: 80 a6 40 16 cmp %i1, %l6
4000c7fc: 2a 80 00 8c bcs,a 4000ca2c <_Heap_Extend+0x2a8>
4000c800: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) {
4000c804: 80 a4 40 01 cmp %l1, %g1
4000c808: 02 80 00 06 be 4000c820 <_Heap_Extend+0x9c>
4000c80c: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 4000c810: 2a 80 00 05 bcs,a 4000c824 <_Heap_Extend+0xa0>
4000c814: b8 10 00 15 mov %l5, %i4 4000c818: 10 80 00 04 b 4000c828 <_Heap_Extend+0xa4> 4000c81c: 90 10 00 16 mov %l6, %o0 4000c820: ae 10 00 15 mov %l5, %l7 4000c824: 90 10 00 16 mov %l6, %o0 4000c828: 40 00 16 62 call 400121b0 <.urem> 4000c82c: 92 10 00 13 mov %l3, %o1 4000c830: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) {
4000c834: 80 a5 80 19 cmp %l6, %i1
4000c838: 12 80 00 05 bne 4000c84c <_Heap_Extend+0xc8>
4000c83c: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
4000c840: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
4000c844: 10 80 00 04 b 4000c854 <_Heap_Extend+0xd0> 4000c848: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 4000c84c: 2a 80 00 02 bcs,a 4000c854 <_Heap_Extend+0xd0>
4000c850: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c854: ea 02 20 04 ld [ %o0 + 4 ], %l5 4000c858: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
4000c85c: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block );
4000c860: 80 a5 40 12 cmp %l5, %l2
4000c864: 12 bf ff e2 bne 4000c7ec <_Heap_Extend+0x68>
4000c868: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
4000c86c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 4000c870: 80 a6 40 01 cmp %i1, %g1
4000c874: 3a 80 00 04 bcc,a 4000c884 <_Heap_Extend+0x100>
4000c878: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000c87c: 10 80 00 05 b 4000c890 <_Heap_Extend+0x10c> 4000c880: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
4000c884: 80 a0 40 11 cmp %g1, %l1
4000c888: 2a 80 00 02 bcs,a 4000c890 <_Heap_Extend+0x10c>
4000c88c: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000c890: c4 07 bf fc ld [ %fp + -4 ], %g2 4000c894: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
4000c898: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size =
4000c89c: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000c8a0: 88 10 e0 01 or %g3, 1, %g4
extend_last_block->prev_size = extend_first_block_size;
4000c8a4: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag =
4000c8a8: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED; extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000c8ac: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 4000c8b0: 80 a0 c0 02 cmp %g3, %g2
4000c8b4: 08 80 00 04 bleu 4000c8c4 <_Heap_Extend+0x140>
4000c8b8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
4000c8bc: 10 80 00 06 b 4000c8d4 <_Heap_Extend+0x150> 4000c8c0: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000c8c4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 4000c8c8: 80 a0 80 01 cmp %g2, %g1
4000c8cc: 2a 80 00 02 bcs,a 4000c8d4 <_Heap_Extend+0x150>
4000c8d0: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) {
4000c8d4: 80 a5 e0 00 cmp %l7, 0
4000c8d8: 02 80 00 14 be 4000c928 <_Heap_Extend+0x1a4>
4000c8dc: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size;
4000c8e0: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment;
4000c8e4: 92 10 00 12 mov %l2, %o1 4000c8e8: 40 00 16 32 call 400121b0 <.urem> 4000c8ec: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000c8f0: 80 a2 20 00 cmp %o0, 0
4000c8f4: 02 80 00 04 be 4000c904 <_Heap_Extend+0x180> <== ALWAYS TAKEN
4000c8f8: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
4000c8fc: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 4000c900: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin =
4000c904: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size;
4000c908: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size =
4000c90c: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000c910: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000c914: 90 10 00 10 mov %l0, %o0 4000c918: 7f ff ff 90 call 4000c758 <_Heap_Free_block> 4000c91c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
4000c920: 10 80 00 09 b 4000c944 <_Heap_Extend+0x1c0> 4000c924: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) {
4000c928: 80 a7 20 00 cmp %i4, 0
4000c92c: 02 80 00 05 be 4000c940 <_Heap_Extend+0x1bc>
4000c930: c2 07 bf f8 ld [ %fp + -8 ], %g1
{ uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000c934: b8 27 00 01 sub %i4, %g1, %i4 4000c938: b8 17 20 01 or %i4, 1, %i4
) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag =
4000c93c: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) {
4000c940: 80 a6 20 00 cmp %i0, 0
4000c944: 02 80 00 15 be 4000c998 <_Heap_Extend+0x214>
4000c948: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000c94c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down(
4000c950: a2 24 40 18 sub %l1, %i0, %l1 4000c954: 40 00 16 17 call 400121b0 <.urem> 4000c958: 90 10 00 11 mov %l1, %o0
); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size)
4000c95c: c4 06 20 04 ld [ %i0 + 4 ], %g2 4000c960: a2 24 40 08 sub %l1, %o0, %l1
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
4000c964: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
4000c968: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
4000c96c: 84 10 a0 01 or %g2, 1, %g2
page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag =
4000c970: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c974: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block );
4000c978: 90 10 00 10 mov %l0, %o0 4000c97c: 82 08 60 01 and %g1, 1, %g1 4000c980: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
4000c984: a2 14 40 01 or %l1, %g1, %l1 4000c988: 7f ff ff 74 call 4000c758 <_Heap_Free_block> 4000c98c: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c990: 10 80 00 0f b 4000c9cc <_Heap_Extend+0x248> 4000c994: 80 a6 20 00 cmp %i0, 0
); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) {
4000c998: 80 a7 60 00 cmp %i5, 0
4000c99c: 02 80 00 0b be 4000c9c8 <_Heap_Extend+0x244>
4000c9a0: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c9a4: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
4000c9a8: c2 07 bf f8 ld [ %fp + -8 ], %g1
) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin );
4000c9ac: 86 20 c0 1d sub %g3, %i5, %g3 4000c9b0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000c9b4: 84 10 c0 02 or %g3, %g2, %g2 4000c9b8: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000c9bc: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000c9c0: 84 10 a0 01 or %g2, 1, %g2 4000c9c4: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000c9c8: 80 a6 20 00 cmp %i0, 0
4000c9cc: 32 80 00 09 bne,a 4000c9f0 <_Heap_Extend+0x26c>
4000c9d0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 4000c9d4: 80 a5 e0 00 cmp %l7, 0
4000c9d8: 32 80 00 06 bne,a 4000c9f0 <_Heap_Extend+0x26c>
4000c9dc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000c9e0: d2 07 bf fc ld [ %fp + -4 ], %o1 4000c9e4: 7f ff ff 5d call 4000c758 <_Heap_Free_block> 4000c9e8: 90 10 00 10 mov %l0, %o0
*/ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000c9ec: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
4000c9f0: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c9f4: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size(
4000c9f8: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c9fc: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000ca00: 84 10 c0 02 or %g3, %g2, %g2 4000ca04: c4 20 60 04 st %g2, [ %g1 + 4 ]
} _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
4000ca08: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true;
4000ca0c: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size;
4000ca10: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */ stats->size += extended_size;
4000ca14: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
4000ca18: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size;
4000ca1c: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
4000ca20: 02 80 00 03 be 4000ca2c <_Heap_Extend+0x2a8> <== NEVER TAKEN
4000ca24: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
4000ca28: e8 26 c0 00 st %l4, [ %i3 ] 4000ca2c: 81 c7 e0 08 ret 4000ca30: 81 e8 00 00 restore
4000c494 <_Heap_Free>: #include <rtems/system.h> #include <rtems/score/sysstate.h> #include <rtems/score/heap.h> bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) {
4000c494: 9d e3 bf a0 save %sp, -96, %sp 4000c498: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 4000c49c: 40 00 16 0b call 40011cc8 <.urem> 4000c4a0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
4000c4a4: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
4000c4a8: a2 06 7f f8 add %i1, -8, %l1 4000c4ac: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
4000c4b0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c4b4: 80 a2 00 0c cmp %o0, %o4
4000c4b8: 0a 80 00 05 bcs 4000c4cc <_Heap_Free+0x38>
4000c4bc: 82 10 20 00 clr %g1 4000c4c0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 4000c4c4: 80 a0 40 08 cmp %g1, %o0 4000c4c8: 82 60 3f ff subx %g0, -1, %g1
Heap_Block *next_block = NULL; uintptr_t block_size = 0; uintptr_t next_block_size = 0; bool next_is_free = false; if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000c4cc: 80 a0 60 00 cmp %g1, 0
4000c4d0: 02 80 00 6a be 4000c678 <_Heap_Free+0x1e4>
4000c4d4: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
4000c4d8: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000c4dc: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
4000c4e0: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c4e4: 80 a0 40 0c cmp %g1, %o4
4000c4e8: 0a 80 00 05 bcs 4000c4fc <_Heap_Free+0x68> <== NEVER TAKEN
4000c4ec: 86 10 20 00 clr %g3 4000c4f0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 4000c4f4: 80 a0 c0 01 cmp %g3, %g1 4000c4f8: 86 60 3f ff subx %g0, -1, %g3
} block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000c4fc: 80 a0 e0 00 cmp %g3, 0
4000c500: 02 80 00 5e be 4000c678 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c504: b0 10 20 00 clr %i0
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
4000c508: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
4000c50c: 80 89 20 01 btst 1, %g4
4000c510: 02 80 00 5a be 4000c678 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c514: 88 09 3f fe and %g4, -2, %g4
_HAssert( false ); return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block
4000c518: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c51c: 80 a0 40 09 cmp %g1, %o1
4000c520: 02 80 00 07 be 4000c53c <_Heap_Free+0xa8>
4000c524: 96 10 20 00 clr %o3
--stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); }
4000c528: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c52c: c6 00 e0 04 ld [ %g3 + 4 ], %g3 4000c530: 86 08 e0 01 and %g3, 1, %g3
return false; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000c534: 80 a0 00 03 cmp %g0, %g3 4000c538: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
4000c53c: 80 8b 60 01 btst 1, %o5
4000c540: 12 80 00 26 bne 4000c5d8 <_Heap_Free+0x144>
4000c544: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
4000c548: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
4000c54c: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
4000c550: 80 a0 c0 0c cmp %g3, %o4
4000c554: 0a 80 00 04 bcs 4000c564 <_Heap_Free+0xd0> <== NEVER TAKEN
4000c558: 94 10 20 00 clr %o2 4000c55c: 80 a2 40 03 cmp %o1, %g3 4000c560: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000c564: 80 a2 a0 00 cmp %o2, 0
4000c568: 02 80 00 44 be 4000c678 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c56c: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000c570: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) {
4000c574: 80 8b 20 01 btst 1, %o4
4000c578: 02 80 00 40 be 4000c678 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000c57c: 80 8a e0 ff btst 0xff, %o3
_HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 4000c580: 22 80 00 0f be,a 4000c5bc <_Heap_Free+0x128>
4000c584: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
4000c588: 88 00 80 04 add %g2, %g4, %g4 4000c58c: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next;
4000c590: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
4000c594: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000c598: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
4000c59c: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block ); stats->free_blocks -= 1;
4000c5a0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 4000c5a4: 82 00 7f ff add %g1, -1, %g1 4000c5a8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size;
4000c5ac: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c5b0: 82 13 60 01 or %o5, 1, %g1 4000c5b4: 10 80 00 27 b 4000c650 <_Heap_Free+0x1bc> 4000c5b8: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c5bc: 88 13 60 01 or %o5, 1, %g4 4000c5c0: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c5c4: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
4000c5c8: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c5cc: 86 08 ff fe and %g3, -2, %g3 4000c5d0: 10 80 00 20 b 4000c650 <_Heap_Free+0x1bc> 4000c5d4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 4000c5d8: 22 80 00 0d be,a 4000c60c <_Heap_Free+0x178>
4000c5dc: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
4000c5e0: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next;
4000c5e4: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
4000c5e8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000c5ec: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
4000c5f0: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block; prev->next = new_block;
4000c5f4: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block;
4000c5f8: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c5fc: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size ); next_block->prev_size = size;
4000c600: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000c604: 10 80 00 13 b 4000c650 <_Heap_Free+0x1bc> 4000c608: c2 22 20 04 st %g1, [ %o0 + 4 ]
) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before;
4000c60c: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next;
4000c610: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before; block_before->next = new_block; next->prev = new_block;
4000c614: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000c618: 86 10 a0 01 or %g2, 1, %g3 4000c61c: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c620: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
4000c624: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000c628: 86 08 ff fe and %g3, -2, %g3 4000c62c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
4000c630: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c634: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks;
4000c638: 82 00 60 01 inc %g1
{ Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block;
4000c63c: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000c640: 80 a0 c0 01 cmp %g3, %g1
4000c644: 1a 80 00 03 bcc 4000c650 <_Heap_Free+0x1bc>
4000c648: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000c64c: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
} } /* Statistics */ --stats->used_blocks;
4000c650: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees; stats->free_size += block_size; return( true );
4000c654: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks;
4000c658: 82 00 7f ff add %g1, -1, %g1 4000c65c: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
4000c660: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 4000c664: 82 00 60 01 inc %g1 4000c668: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000c66c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 4000c670: 84 00 40 02 add %g1, %g2, %g2 4000c674: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true ); }
4000c678: 81 c7 e0 08 ret 4000c67c: 81 e8 00 00 restore
40013634 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) {
40013634: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
40013638: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 4001363c: 7f ff f9 a3 call 40011cc8 <.urem> 40013640: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block
40013644: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment);
40013648: a2 06 7f f8 add %i1, -8, %l1 4001364c: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE);
40013650: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
40013654: 80 a2 00 02 cmp %o0, %g2
40013658: 0a 80 00 05 bcs 4001366c <_Heap_Size_of_alloc_area+0x38>
4001365c: 82 10 20 00 clr %g1 40013660: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 40013664: 80 a0 40 08 cmp %g1, %o0 40013668: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4001366c: 80 a0 60 00 cmp %g1, 0
40013670: 02 80 00 15 be 400136c4 <_Heap_Size_of_alloc_area+0x90>
40013674: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40013678: e2 02 20 04 ld [ %o0 + 4 ], %l1 4001367c: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
40013680: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
40013684: 80 a4 40 02 cmp %l1, %g2
40013688: 0a 80 00 05 bcs 4001369c <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
4001368c: 82 10 20 00 clr %g1 40013690: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 40013694: 80 a0 40 11 cmp %g1, %l1 40013698: 82 60 3f ff subx %g0, -1, %g1
} block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if (
4001369c: 80 a0 60 00 cmp %g1, 0
400136a0: 02 80 00 09 be 400136c4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
400136a4: b0 10 20 00 clr %i0
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400136a8: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block )
400136ac: 80 88 60 01 btst 1, %g1
400136b0: 02 80 00 05 be 400136c4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
400136b4: a2 24 40 19 sub %l1, %i1, %l1
return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin; return true;
400136b8: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
400136bc: a2 04 60 04 add %l1, 4, %l1 400136c0: e2 26 80 00 st %l1, [ %i2 ]
return true; }
400136c4: 81 c7 e0 08 ret 400136c8: 81 e8 00 00 restore
40008c4c <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
40008c4c: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
40008c50: 23 10 00 22 sethi %hi(0x40008800), %l1
bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) {
40008c54: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40008c58: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
40008c5c: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
40008c60: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
40008c64: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing;
40008c68: 80 8e a0 ff btst 0xff, %i2
40008c6c: 02 80 00 04 be 40008c7c <_Heap_Walk+0x30>
40008c70: a2 14 63 f8 or %l1, 0x3f8, %l1 40008c74: 23 10 00 23 sethi %hi(0x40008c00), %l1 40008c78: a2 14 60 00 mov %l1, %l1 ! 40008c00 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40008c7c: 03 10 00 5e sethi %hi(0x40017800), %g1 40008c80: c2 00 63 8c ld [ %g1 + 0x38c ], %g1 ! 40017b8c <_System_state_Current> 40008c84: 80 a0 60 03 cmp %g1, 3
40008c88: 12 80 01 2d bne 4000913c <_Heap_Walk+0x4f0>
40008c8c: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)(
40008c90: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 40008c94: da 04 20 18 ld [ %l0 + 0x18 ], %o5 40008c98: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40008c9c: c2 04 20 08 ld [ %l0 + 8 ], %g1 40008ca0: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 40008ca4: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 40008ca8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40008cac: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 40008cb0: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 40008cb4: 90 10 00 19 mov %i1, %o0 40008cb8: 92 10 20 00 clr %o1 40008cbc: 15 10 00 54 sethi %hi(0x40015000), %o2 40008cc0: 96 10 00 12 mov %l2, %o3 40008cc4: 94 12 a3 30 or %o2, 0x330, %o2 40008cc8: 9f c4 40 00 call %l1 40008ccc: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) {
40008cd0: 80 a4 a0 00 cmp %l2, 0
40008cd4: 12 80 00 07 bne 40008cf0 <_Heap_Walk+0xa4>
40008cd8: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
40008cdc: 15 10 00 54 sethi %hi(0x40015000), %o2 40008ce0: 90 10 00 19 mov %i1, %o0 40008ce4: 92 10 20 01 mov 1, %o1 40008ce8: 10 80 00 38 b 40008dc8 <_Heap_Walk+0x17c> 40008cec: 94 12 a3 c8 or %o2, 0x3c8, %o2
return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 40008cf0: 22 80 00 08 be,a 40008d10 <_Heap_Walk+0xc4>
40008cf4: 90 10 00 14 mov %l4, %o0
(*printer)(
40008cf8: 15 10 00 54 sethi %hi(0x40015000), %o2 40008cfc: 90 10 00 19 mov %i1, %o0 40008d00: 92 10 20 01 mov 1, %o1 40008d04: 94 12 a3 e0 or %o2, 0x3e0, %o2 40008d08: 10 80 01 0b b 40009134 <_Heap_Walk+0x4e8> 40008d0c: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
40008d10: 7f ff e3 6d call 40001ac4 <.urem> 40008d14: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40008d18: 80 a2 20 00 cmp %o0, 0
40008d1c: 22 80 00 08 be,a 40008d3c <_Heap_Walk+0xf0>
40008d20: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
40008d24: 15 10 00 55 sethi %hi(0x40015400), %o2 40008d28: 90 10 00 19 mov %i1, %o0 40008d2c: 92 10 20 01 mov 1, %o1 40008d30: 94 12 a0 00 mov %o2, %o2 40008d34: 10 80 01 00 b 40009134 <_Heap_Walk+0x4e8> 40008d38: 96 10 00 14 mov %l4, %o3 40008d3c: 7f ff e3 62 call 40001ac4 <.urem> 40008d40: 92 10 00 12 mov %l2, %o1
); return false; } if (
40008d44: 80 a2 20 00 cmp %o0, 0
40008d48: 22 80 00 08 be,a 40008d68 <_Heap_Walk+0x11c>
40008d4c: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)(
40008d50: 15 10 00 55 sethi %hi(0x40015400), %o2 40008d54: 90 10 00 19 mov %i1, %o0 40008d58: 92 10 20 01 mov 1, %o1 40008d5c: 94 12 a0 28 or %o2, 0x28, %o2 40008d60: 10 80 00 f5 b 40009134 <_Heap_Walk+0x4e8> 40008d64: 96 10 00 13 mov %l3, %o3
); return false; } if ( !_Heap_Is_prev_used( first_block ) ) {
40008d68: 80 88 60 01 btst 1, %g1
40008d6c: 32 80 00 07 bne,a 40008d88 <_Heap_Walk+0x13c>
40008d70: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
40008d74: 15 10 00 55 sethi %hi(0x40015400), %o2 40008d78: 90 10 00 19 mov %i1, %o0 40008d7c: 92 10 20 01 mov 1, %o1 40008d80: 10 80 00 12 b 40008dc8 <_Heap_Walk+0x17c> 40008d84: 94 12 a0 60 or %o2, 0x60, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008d88: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
40008d8c: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008d90: c2 05 a0 04 ld [ %l6 + 4 ], %g1
); return false; } if ( _Heap_Is_free( last_block ) ) {
40008d94: 80 88 60 01 btst 1, %g1
40008d98: 12 80 00 07 bne 40008db4 <_Heap_Walk+0x168>
40008d9c: 80 a5 80 13 cmp %l6, %l3
(*printer)(
40008da0: 15 10 00 55 sethi %hi(0x40015400), %o2 40008da4: 90 10 00 19 mov %i1, %o0 40008da8: 92 10 20 01 mov 1, %o1 40008dac: 10 80 00 07 b 40008dc8 <_Heap_Walk+0x17c> 40008db0: 94 12 a0 90 or %o2, 0x90, %o2
); return false; } if (
40008db4: 02 80 00 08 be 40008dd4 <_Heap_Walk+0x188> <== ALWAYS TAKEN
40008db8: 15 10 00 55 sethi %hi(0x40015400), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)(
40008dbc: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 40008dc0: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 40008dc4: 94 12 a0 a8 or %o2, 0xa8, %o2 <== NOT EXECUTED
40008dc8: 9f c4 40 00 call %l1 40008dcc: b0 10 20 00 clr %i0 40008dd0: 30 80 00 db b,a 4000913c <_Heap_Walk+0x4f0>
block = next_block; } while ( block != first_block ); return true; }
40008dd4: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size;
40008dd8: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
40008ddc: ae 10 00 10 mov %l0, %l7 40008de0: 10 80 00 32 b 40008ea8 <_Heap_Walk+0x25c> 40008de4: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
40008de8: 80 a0 80 1c cmp %g2, %i4
40008dec: 18 80 00 05 bgu 40008e00 <_Heap_Walk+0x1b4>
40008df0: 82 10 20 00 clr %g1 40008df4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 40008df8: 80 a0 40 1c cmp %g1, %i4 40008dfc: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
40008e00: 80 a0 60 00 cmp %g1, 0
40008e04: 32 80 00 08 bne,a 40008e24 <_Heap_Walk+0x1d8>
40008e08: 90 07 20 08 add %i4, 8, %o0
(*printer)(
40008e0c: 15 10 00 55 sethi %hi(0x40015400), %o2 40008e10: 96 10 00 1c mov %i4, %o3 40008e14: 90 10 00 19 mov %i1, %o0 40008e18: 92 10 20 01 mov 1, %o1 40008e1c: 10 80 00 c6 b 40009134 <_Heap_Walk+0x4e8> 40008e20: 94 12 a0 d8 or %o2, 0xd8, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
40008e24: 7f ff e3 28 call 40001ac4 <.urem> 40008e28: 92 10 00 1d mov %i5, %o1
); return false; } if (
40008e2c: 80 a2 20 00 cmp %o0, 0
40008e30: 22 80 00 08 be,a 40008e50 <_Heap_Walk+0x204>
40008e34: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)(
40008e38: 15 10 00 55 sethi %hi(0x40015400), %o2 40008e3c: 96 10 00 1c mov %i4, %o3 40008e40: 90 10 00 19 mov %i1, %o0 40008e44: 92 10 20 01 mov 1, %o1 40008e48: 10 80 00 bb b 40009134 <_Heap_Walk+0x4e8> 40008e4c: 94 12 a0 f8 or %o2, 0xf8, %o2
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008e50: 82 08 7f fe and %g1, -2, %g1
block = next_block; } while ( block != first_block ); return true; }
40008e54: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008e58: c2 00 60 04 ld [ %g1 + 4 ], %g1
); return false; } if ( _Heap_Is_used( free_block ) ) {
40008e5c: 80 88 60 01 btst 1, %g1
40008e60: 22 80 00 08 be,a 40008e80 <_Heap_Walk+0x234>
40008e64: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
40008e68: 15 10 00 55 sethi %hi(0x40015400), %o2 40008e6c: 96 10 00 1c mov %i4, %o3 40008e70: 90 10 00 19 mov %i1, %o0 40008e74: 92 10 20 01 mov 1, %o1 40008e78: 10 80 00 af b 40009134 <_Heap_Walk+0x4e8> 40008e7c: 94 12 a1 28 or %o2, 0x128, %o2
); return false; } if ( free_block->prev != prev_block ) {
40008e80: 80 a3 00 17 cmp %o4, %l7
40008e84: 22 80 00 08 be,a 40008ea4 <_Heap_Walk+0x258>
40008e88: ae 10 00 1c mov %i4, %l7
(*printer)(
40008e8c: 15 10 00 55 sethi %hi(0x40015400), %o2 40008e90: 96 10 00 1c mov %i4, %o3 40008e94: 90 10 00 19 mov %i1, %o0 40008e98: 92 10 20 01 mov 1, %o1 40008e9c: 10 80 00 49 b 40008fc0 <_Heap_Walk+0x374> 40008ea0: 94 12 a1 48 or %o2, 0x148, %o2
return false; } prev_block = free_block; free_block = free_block->next;
40008ea4: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) {
40008ea8: 80 a7 00 10 cmp %i4, %l0
40008eac: 32 bf ff cf bne,a 40008de8 <_Heap_Walk+0x19c>
40008eb0: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 40008eb4: 35 10 00 55 sethi %hi(0x40015400), %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
40008eb8: 31 10 00 55 sethi %hi(0x40015400), %i0
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
40008ebc: b4 16 a3 08 or %i2, 0x308, %i2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)(
40008ec0: b0 16 22 f0 or %i0, 0x2f0, %i0
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
40008ec4: 37 10 00 55 sethi %hi(0x40015400), %i3
block = next_block; } while ( block != first_block ); return true; }
40008ec8: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
40008ecc: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008ed0: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset);
40008ed4: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block;
40008ed8: 80 a0 c0 1d cmp %g3, %i5
40008edc: 18 80 00 05 bgu 40008ef0 <_Heap_Walk+0x2a4> <== NEVER TAKEN
40008ee0: 84 10 20 00 clr %g2 40008ee4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 40008ee8: 80 a0 80 1d cmp %g2, %i5 40008eec: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
40008ef0: 80 a0 a0 00 cmp %g2, 0
40008ef4: 12 80 00 07 bne 40008f10 <_Heap_Walk+0x2c4>
40008ef8: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
40008efc: 15 10 00 55 sethi %hi(0x40015400), %o2 40008f00: 90 10 00 19 mov %i1, %o0 40008f04: 92 10 20 01 mov 1, %o1 40008f08: 10 80 00 2c b 40008fb8 <_Heap_Walk+0x36c> 40008f0c: 94 12 a1 80 or %o2, 0x180, %o2
uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block;
40008f10: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0;
40008f14: c2 27 bf fc st %g1, [ %fp + -4 ] 40008f18: b8 40 20 00 addx %g0, 0, %i4 40008f1c: 90 10 00 17 mov %l7, %o0 40008f20: 7f ff e2 e9 call 40001ac4 <.urem> 40008f24: 92 10 00 12 mov %l2, %o1
); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008f28: 80 a2 20 00 cmp %o0, 0
40008f2c: 02 80 00 0c be 40008f5c <_Heap_Walk+0x310>
40008f30: c2 07 bf fc ld [ %fp + -4 ], %g1 40008f34: 80 8f 20 ff btst 0xff, %i4
40008f38: 02 80 00 0a be 40008f60 <_Heap_Walk+0x314>
40008f3c: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
40008f40: 15 10 00 55 sethi %hi(0x40015400), %o2 40008f44: 90 10 00 19 mov %i1, %o0 40008f48: 92 10 20 01 mov 1, %o1 40008f4c: 94 12 a1 b0 or %o2, 0x1b0, %o2 40008f50: 96 10 00 16 mov %l6, %o3 40008f54: 10 80 00 1b b 40008fc0 <_Heap_Walk+0x374> 40008f58: 98 10 00 17 mov %l7, %o4
); return false; } if ( block_size < min_block_size && is_not_last_block ) {
40008f5c: 80 a5 c0 14 cmp %l7, %l4
40008f60: 1a 80 00 0d bcc 40008f94 <_Heap_Walk+0x348>
40008f64: 80 a7 40 16 cmp %i5, %l6 40008f68: 80 8f 20 ff btst 0xff, %i4
40008f6c: 02 80 00 0a be 40008f94 <_Heap_Walk+0x348> <== NEVER TAKEN
40008f70: 80 a7 40 16 cmp %i5, %l6
(*printer)(
40008f74: 15 10 00 55 sethi %hi(0x40015400), %o2 40008f78: 90 10 00 19 mov %i1, %o0 40008f7c: 92 10 20 01 mov 1, %o1 40008f80: 94 12 a1 e0 or %o2, 0x1e0, %o2 40008f84: 96 10 00 16 mov %l6, %o3 40008f88: 98 10 00 17 mov %l7, %o4 40008f8c: 10 80 00 3f b 40009088 <_Heap_Walk+0x43c> 40008f90: 9a 10 00 14 mov %l4, %o5
); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 40008f94: 38 80 00 0e bgu,a 40008fcc <_Heap_Walk+0x380>
40008f98: b8 08 60 01 and %g1, 1, %i4 40008f9c: 80 8f 20 ff btst 0xff, %i4
40008fa0: 02 80 00 0b be 40008fcc <_Heap_Walk+0x380>
40008fa4: b8 08 60 01 and %g1, 1, %i4
(*printer)(
40008fa8: 15 10 00 55 sethi %hi(0x40015400), %o2 40008fac: 90 10 00 19 mov %i1, %o0 40008fb0: 92 10 20 01 mov 1, %o1 40008fb4: 94 12 a2 10 or %o2, 0x210, %o2 40008fb8: 96 10 00 16 mov %l6, %o3 40008fbc: 98 10 00 1d mov %i5, %o4 40008fc0: 9f c4 40 00 call %l1 40008fc4: b0 10 20 00 clr %i0 40008fc8: 30 80 00 5d b,a 4000913c <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008fcc: c2 07 60 04 ld [ %i5 + 4 ], %g1
); return false; } if ( !_Heap_Is_prev_used( next_block ) ) {
40008fd0: 80 88 60 01 btst 1, %g1
40008fd4: 12 80 00 3f bne 400090d0 <_Heap_Walk+0x484>
40008fd8: 80 a7 20 00 cmp %i4, 0
false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ?
40008fdc: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
40008fe0: c2 04 20 08 ld [ %l0 + 8 ], %g1 40008fe4: 05 10 00 54 sethi %hi(0x40015000), %g2
block = next_block; } while ( block != first_block ); return true; }
40008fe8: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
40008fec: 80 a3 40 01 cmp %o5, %g1
40008ff0: 02 80 00 07 be 4000900c <_Heap_Walk+0x3c0>
40008ff4: 86 10 a2 f0 or %g2, 0x2f0, %g3
block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""),
40008ff8: 80 a3 40 10 cmp %o5, %l0
40008ffc: 12 80 00 04 bne 4000900c <_Heap_Walk+0x3c0>
40009000: 86 16 e2 b8 or %i3, 0x2b8, %g3 40009004: 19 10 00 54 sethi %hi(0x40015000), %o4 40009008: 86 13 23 00 or %o4, 0x300, %g3 ! 40015300 <C.0.4109+0x44>
block->next, block->next == last_free_block ?
4000900c: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
40009010: 19 10 00 54 sethi %hi(0x40015000), %o4 40009014: 80 a0 80 04 cmp %g2, %g4
40009018: 02 80 00 07 be 40009034 <_Heap_Walk+0x3e8>
4000901c: 82 13 23 10 or %o4, 0x310, %g1
" (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "")
40009020: 80 a0 80 10 cmp %g2, %l0
40009024: 12 80 00 04 bne 40009034 <_Heap_Walk+0x3e8>
40009028: 82 16 e2 b8 or %i3, 0x2b8, %g1 4000902c: 09 10 00 54 sethi %hi(0x40015000), %g4 40009030: 82 11 23 20 or %g4, 0x320, %g1 ! 40015320 <C.0.4109+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)(
40009034: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 40009038: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 4000903c: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 40009040: 90 10 00 19 mov %i1, %o0 40009044: 92 10 20 00 clr %o1 40009048: 15 10 00 55 sethi %hi(0x40015400), %o2 4000904c: 96 10 00 16 mov %l6, %o3 40009050: 94 12 a2 48 or %o2, 0x248, %o2 40009054: 9f c4 40 00 call %l1 40009058: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) {
4000905c: da 07 40 00 ld [ %i5 ], %o5 40009060: 80 a5 c0 0d cmp %l7, %o5
40009064: 02 80 00 0c be 40009094 <_Heap_Walk+0x448>
40009068: 80 a7 20 00 cmp %i4, 0
(*printer)(
4000906c: 15 10 00 55 sethi %hi(0x40015400), %o2 40009070: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 40009074: 90 10 00 19 mov %i1, %o0 40009078: 92 10 20 01 mov 1, %o1 4000907c: 94 12 a2 80 or %o2, 0x280, %o2 40009080: 96 10 00 16 mov %l6, %o3 40009084: 98 10 00 17 mov %l7, %o4 40009088: 9f c4 40 00 call %l1 4000908c: b0 10 20 00 clr %i0 40009090: 30 80 00 2b b,a 4000913c <_Heap_Walk+0x4f0>
); return false; } if ( !prev_used ) { 40009094: 32 80 00 0a bne,a 400090bc <_Heap_Walk+0x470>
40009098: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
4000909c: 15 10 00 55 sethi %hi(0x40015400), %o2 400090a0: 90 10 00 19 mov %i1, %o0 400090a4: 92 10 20 01 mov 1, %o1 400090a8: 10 80 00 22 b 40009130 <_Heap_Walk+0x4e4> 400090ac: 94 12 a2 c0 or %o2, 0x2c0, %o2
{ const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 400090b0: 02 80 00 19 be 40009114 <_Heap_Walk+0x4c8>
400090b4: 80 a7 40 13 cmp %i5, %l3
return true; } free_block = free_block->next;
400090b8: c2 00 60 08 ld [ %g1 + 8 ], %g1
) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) {
400090bc: 80 a0 40 10 cmp %g1, %l0
400090c0: 12 bf ff fc bne 400090b0 <_Heap_Walk+0x464>
400090c4: 80 a0 40 16 cmp %g1, %l6
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
400090c8: 10 80 00 17 b 40009124 <_Heap_Walk+0x4d8> 400090cc: 15 10 00 55 sethi %hi(0x40015400), %o2
if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 400090d0: 22 80 00 0a be,a 400090f8 <_Heap_Walk+0x4ac>
400090d4: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
400090d8: 90 10 00 19 mov %i1, %o0 400090dc: 92 10 20 00 clr %o1 400090e0: 94 10 00 18 mov %i0, %o2 400090e4: 96 10 00 16 mov %l6, %o3 400090e8: 9f c4 40 00 call %l1 400090ec: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
400090f0: 10 80 00 09 b 40009114 <_Heap_Walk+0x4c8> 400090f4: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n", block, block_size ); } else { (*printer)(
400090f8: 90 10 00 19 mov %i1, %o0 400090fc: 92 10 20 00 clr %o1 40009100: 94 10 00 1a mov %i2, %o2 40009104: 96 10 00 16 mov %l6, %o3 40009108: 9f c4 40 00 call %l1 4000910c: 98 10 00 17 mov %l7, %o4
block->prev_size ); } block = next_block; } while ( block != first_block );
40009110: 80 a7 40 13 cmp %i5, %l3
40009114: 32 bf ff 6d bne,a 40008ec8 <_Heap_Walk+0x27c>
40009118: ac 10 00 1d mov %i5, %l6
return true; }
4000911c: 81 c7 e0 08 ret 40009120: 91 e8 20 01 restore %g0, 1, %o0
return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)(
40009124: 90 10 00 19 mov %i1, %o0 40009128: 92 10 20 01 mov 1, %o1 4000912c: 94 12 a3 30 or %o2, 0x330, %o2 40009130: 96 10 00 16 mov %l6, %o3 40009134: 9f c4 40 00 call %l1 40009138: b0 10 20 00 clr %i0 4000913c: 81 c7 e0 08 ret 40009140: 81 e8 00 00 restore
40007de4 <_Internal_error_Occurred>: void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) {
40007de4: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40007de8: 05 10 00 54 sethi %hi(0x40015000), %g2 40007dec: 82 10 a3 fc or %g2, 0x3fc, %g1 ! 400153fc <_Internal_errors_What_happened>
void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) {
40007df0: 90 10 00 18 mov %i0, %o0 40007df4: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
40007df8: f0 20 a3 fc st %i0, [ %g2 + 0x3fc ]
_Internal_errors_What_happened.is_internal = is_internal;
40007dfc: f2 28 60 04 stb %i1, [ %g1 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
40007e00: f4 20 60 08 st %i2, [ %g1 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40007e04: 40 00 07 80 call 40009c04 <_User_extensions_Fatal> 40007e08: 92 0e 60 ff and %i1, 0xff, %o1
RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state;
40007e0c: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED 40007e10: 03 10 00 55 sethi %hi(0x40015400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error );
40007e14: 7f ff e7 c8 call 40001d34 <sparc_disable_interrupts> <== NOT EXECUTED 40007e18: c4 20 60 ec st %g2, [ %g1 + 0xec ] ! 400154ec <_System_state_Current><== NOT EXECUTED 40007e1c: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED 40007e20: 30 80 00 00 b,a 40007e20 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40007e94 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
40007e94: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
40007e98: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/ Objects_Control *_Objects_Allocate( Objects_Information *information ) {
40007e9c: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 )
40007ea0: 80 a0 60 00 cmp %g1, 0
40007ea4: 02 80 00 20 be 40007f24 <_Objects_Allocate+0x90> <== NEVER TAKEN
40007ea8: b0 10 20 00 clr %i0
/* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007eac: a2 04 20 20 add %l0, 0x20, %l1 40007eb0: 7f ff fd 86 call 400074c8 <_Chain_Get> 40007eb4: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40007eb8: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 40007ebc: 80 a0 60 00 cmp %g1, 0
40007ec0: 02 80 00 19 be 40007f24 <_Objects_Allocate+0x90>
40007ec4: b0 10 00 08 mov %o0, %i0
/* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) {
40007ec8: 80 a2 20 00 cmp %o0, 0
40007ecc: 32 80 00 0a bne,a 40007ef4 <_Objects_Allocate+0x60>
40007ed0: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
40007ed4: 40 00 00 1e call 40007f4c <_Objects_Extend_information> 40007ed8: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007edc: 7f ff fd 7b call 400074c8 <_Chain_Get> 40007ee0: 90 10 00 11 mov %l1, %o0
} if ( the_object ) {
40007ee4: b0 92 20 00 orcc %o0, 0, %i0
40007ee8: 02 80 00 0f be 40007f24 <_Objects_Allocate+0x90>
40007eec: 01 00 00 00 nop
uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007ef0: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 40007ef4: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id ); block /= information->allocation_size;
40007ef8: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 40007efc: 40 00 26 c7 call 40011a18 <.udiv> 40007f00: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007f04: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 40007f08: 91 2a 20 02 sll %o0, 2, %o0 40007f0c: c4 00 40 08 ld [ %g1 + %o0 ], %g2 40007f10: 84 00 bf ff add %g2, -1, %g2 40007f14: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
40007f18: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 40007f1c: 82 00 7f ff add %g1, -1, %g1 40007f20: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
); } #endif return the_object; }
40007f24: 81 c7 e0 08 ret 40007f28: 81 e8 00 00 restore
400082a8 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint32_t the_class ) {
400082a8: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info; int the_class_api_maximum; if ( !the_class )
400082ac: 80 a6 60 00 cmp %i1, 0
400082b0: 02 80 00 17 be 4000830c <_Objects_Get_information+0x64>
400082b4: a0 10 20 00 clr %l0
/* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api );
400082b8: 40 00 10 f2 call 4000c680 <_Objects_API_maximum_class> 400082bc: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
400082c0: 80 a2 20 00 cmp %o0, 0
400082c4: 02 80 00 12 be 4000830c <_Objects_Get_information+0x64>
400082c8: 80 a6 40 08 cmp %i1, %o0
return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 400082cc: 18 80 00 10 bgu 4000830c <_Objects_Get_information+0x64>
400082d0: 03 10 00 54 sethi %hi(0x40015000), %g1
return NULL; if ( !_Objects_Information_table[ the_api ] )
400082d4: b1 2e 20 02 sll %i0, 2, %i0 400082d8: 82 10 62 cc or %g1, 0x2cc, %g1 400082dc: c2 00 40 18 ld [ %g1 + %i0 ], %g1 400082e0: 80 a0 60 00 cmp %g1, 0
400082e4: 02 80 00 0a be 4000830c <_Objects_Get_information+0x64> <== NEVER TAKEN
400082e8: b3 2e 60 02 sll %i1, 2, %i1
return NULL; info = _Objects_Information_table[ the_api ][ the_class ];
400082ec: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
400082f0: 80 a4 20 00 cmp %l0, 0
400082f4: 02 80 00 06 be 4000830c <_Objects_Get_information+0x64> <== NEVER TAKEN
400082f8: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 )
400082fc: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40008300: 80 a0 00 01 cmp %g0, %g1 40008304: 82 60 20 00 subx %g0, 0, %g1 40008308: a0 0c 00 01 and %l0, %g1, %l0
#endif return info; }
4000830c: 81 c7 e0 08 ret 40008310: 91 e8 00 10 restore %g0, %l0, %o0
40019bac <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
40019bac: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
40019bb0: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1;
40019bb4: 82 22 40 01 sub %o1, %g1, %g1 40019bb8: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
40019bbc: 80 a0 80 01 cmp %g2, %g1
40019bc0: 0a 80 00 09 bcs 40019be4 <_Objects_Get_no_protection+0x38>
40019bc4: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
40019bc8: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 40019bcc: d0 00 80 01 ld [ %g2 + %g1 ], %o0 40019bd0: 80 a2 20 00 cmp %o0, 0
40019bd4: 02 80 00 05 be 40019be8 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40019bd8: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL; return the_object;
40019bdc: 81 c3 e0 08 retl 40019be0: c0 22 80 00 clr [ %o2 ]
/* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR;
40019be4: 82 10 20 01 mov 1, %g1
return NULL;
40019be8: 90 10 20 00 clr %o0
}
40019bec: 81 c3 e0 08 retl 40019bf0: c2 22 80 00 st %g1, [ %o2 ]
40009b74 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) {
40009b74: 9d e3 bf 98 save %sp, -104, %sp
/* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40009b78: 92 96 20 00 orcc %i0, 0, %o1
40009b7c: 12 80 00 06 bne 40009b94 <_Objects_Id_to_name+0x20>
40009b80: 83 32 60 18 srl %o1, 0x18, %g1 40009b84: 03 10 00 7b sethi %hi(0x4001ec00), %g1 40009b88: c2 00 60 d8 ld [ %g1 + 0xd8 ], %g1 ! 4001ecd8 <_Per_CPU_Information+0xc> 40009b8c: d2 00 60 08 ld [ %g1 + 8 ], %o1 40009b90: 83 32 60 18 srl %o1, 0x18, %g1 40009b94: 82 08 60 07 and %g1, 7, %g1
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
40009b98: 84 00 7f ff add %g1, -1, %g2 40009b9c: 80 a0 a0 02 cmp %g2, 2
40009ba0: 18 80 00 12 bgu 40009be8 <_Objects_Id_to_name+0x74>
40009ba4: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
40009ba8: 10 80 00 12 b 40009bf0 <_Objects_Id_to_name+0x7c> 40009bac: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ];
40009bb0: 85 28 a0 02 sll %g2, 2, %g2 40009bb4: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40009bb8: 80 a2 20 00 cmp %o0, 0
40009bbc: 02 80 00 0b be 40009be8 <_Objects_Id_to_name+0x74> <== NEVER TAKEN
40009bc0: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location );
40009bc4: 7f ff ff cf call 40009b00 <_Objects_Get> 40009bc8: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40009bcc: 80 a2 20 00 cmp %o0, 0
40009bd0: 02 80 00 06 be 40009be8 <_Objects_Id_to_name+0x74>
40009bd4: 01 00 00 00 nop
return OBJECTS_INVALID_ID; *name = the_object->name;
40009bd8: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40009bdc: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch();
40009be0: 40 00 02 3a call 4000a4c8 <_Thread_Enable_dispatch> 40009be4: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; }
40009be8: 81 c7 e0 08 ret 40009bec: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] )
40009bf0: 05 10 00 7a sethi %hi(0x4001e800), %g2 40009bf4: 84 10 a1 cc or %g2, 0x1cc, %g2 ! 4001e9cc <_Objects_Information_table> 40009bf8: c2 00 80 01 ld [ %g2 + %g1 ], %g1 40009bfc: 80 a0 60 00 cmp %g1, 0
40009c00: 12 bf ff ec bne 40009bb0 <_Objects_Id_to_name+0x3c> <== ALWAYS TAKEN
40009c04: 85 32 60 1b srl %o1, 0x1b, %g2
40009c08: 30 bf ff f8 b,a 40009be8 <_Objects_Id_to_name+0x74> <== NOT EXECUTED
400083fc <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
400083fc: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
40008400: 85 2f 20 10 sll %i4, 0x10, %g2 40008404: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
40008408: 07 10 00 54 sethi %hi(0x40015000), %g3
uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size;
4000840c: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
40008410: 86 10 e2 cc or %g3, 0x2cc, %g3 40008414: 85 2e 60 02 sll %i1, 2, %g2 40008418: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api;
4000841c: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
40008420: f4 36 20 04 sth %i2, [ %i0 + 4 ]
information->size = size; information->local_table = 0;
40008424: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
40008428: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
4000842c: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
40008430: c0 36 20 2c clrh [ %i0 + 0x2c ]
/* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0;
40008434: c0 36 20 10 clrh [ %i0 + 0x10 ]
/* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
40008438: 85 2e a0 02 sll %i2, 2, %g2
, bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) {
4000843c: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information;
40008440: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
40008444: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend =
40008448: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
4000844c: 07 20 00 00 sethi %hi(0x80000000), %g3
/* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) {
40008450: 80 a0 a0 00 cmp %g2, 0
40008454: 02 80 00 09 be 40008478 <_Objects_Initialize_information+0x7c>
40008458: b6 2e c0 03 andn %i3, %g3, %i3 4000845c: 80 a6 e0 00 cmp %i3, 0
40008460: 12 80 00 07 bne 4000847c <_Objects_Initialize_information+0x80>
40008464: 05 10 00 53 sethi %hi(0x40014c00), %g2
_Internal_error_Occurred(
40008468: 90 10 20 00 clr %o0 4000846c: 92 10 20 01 mov 1, %o1 40008470: 7f ff fe 5d call 40007de4 <_Internal_error_Occurred> 40008474: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table;
40008478: 05 10 00 53 sethi %hi(0x40014c00), %g2 4000847c: 84 10 a3 e4 or %g2, 0x3e4, %g2 ! 40014fe4 <null_local_table.3194> 40008480: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008484: 05 00 00 40 sethi %hi(0x10000), %g2
/* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40008488: 80 a0 00 1b cmp %g0, %i3 4000848c: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008490: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008494: b2 16 40 02 or %i1, %g2, %i1
} /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation;
40008498: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
4000849c: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400084a0: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400084a4: b4 16 80 02 or %i2, %g2, %i2
/* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
400084a8: 80 88 60 03 btst 3, %g1
400084ac: 02 80 00 04 be 400084bc <_Objects_Initialize_information+0xc0><== ALWAYS TAKEN
400084b0: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
400084b4: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 400084b8: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length;
400084bc: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
400084c0: 82 06 20 24 add %i0, 0x24, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL;
400084c4: c0 26 20 24 clr [ %i0 + 0x24 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
400084c8: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
_Chain_Initialize_empty( &information->Inactive );
400084cc: 82 06 20 20 add %i0, 0x20, %g1
/* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) {
400084d0: 80 a6 e0 00 cmp %i3, 0
400084d4: 02 80 00 04 be 400084e4 <_Objects_Initialize_information+0xe8>
400084d8: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information );
400084dc: 7f ff fe 9c call 40007f4c <_Objects_Extend_information> 400084e0: 81 e8 00 00 restore 400084e4: 81 c7 e0 08 ret 400084e8: 81 e8 00 00 restore
4000be58 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) {
4000be58: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000be5c: e0 06 21 5c ld [ %i0 + 0x15c ], %l0
if ( !api )
4000be60: 80 a4 20 00 cmp %l0, 0
4000be64: 02 80 00 1d be 4000bed8 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
4000be68: 01 00 00 00 nop
* Signal Processing */ asr = &api->Signal; _ISR_Disable( level );
4000be6c: 7f ff d7 b2 call 40001d34 <sparc_disable_interrupts> 4000be70: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000be74: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
4000be78: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000be7c: 7f ff d7 b2 call 40001d44 <sparc_enable_interrupts> 4000be80: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000be84: 80 a4 e0 00 cmp %l3, 0
4000be88: 02 80 00 14 be 4000bed8 <_RTEMS_tasks_Post_switch_extension+0x80>
4000be8c: a2 07 bf fc add %fp, -4, %l1
return; asr->nest_level += 1;
4000be90: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000be94: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1;
4000be98: 82 00 60 01 inc %g1 4000be9c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bea0: 94 10 00 11 mov %l1, %o2 4000bea4: 25 00 00 3f sethi %hi(0xfc00), %l2 4000bea8: 40 00 07 93 call 4000dcf4 <rtems_task_mode> 4000beac: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
4000beb0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 4000beb4: 9f c0 40 00 call %g1 4000beb8: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
4000bebc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bec0: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
4000bec4: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bec8: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1;
4000becc: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000bed0: 40 00 07 89 call 4000dcf4 <rtems_task_mode> 4000bed4: 94 10 00 11 mov %l1, %o2 4000bed8: 81 c7 e0 08 ret 4000bedc: 81 e8 00 00 restore
400081e8 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) {
400081e8: 9d e3 bf 98 save %sp, -104, %sp 400081ec: 11 10 00 7b sethi %hi(0x4001ec00), %o0 400081f0: 92 10 00 18 mov %i0, %o1 400081f4: 90 12 23 44 or %o0, 0x344, %o0 400081f8: 40 00 07 cb call 4000a124 <_Objects_Get> 400081fc: 94 07 bf fc add %fp, -4, %o2
/* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
40008200: c2 07 bf fc ld [ %fp + -4 ], %g1 40008204: 80 a0 60 00 cmp %g1, 0
40008208: 12 80 00 24 bne 40008298 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
4000820c: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL: the_thread = the_period->owner;
40008210: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40008214: 03 00 00 10 sethi %hi(0x4000), %g1
*/ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD);
40008218: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 4000821c: 80 88 80 01 btst %g2, %g1
40008220: 22 80 00 0b be,a 4000824c <_Rate_monotonic_Timeout+0x64>
40008224: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 40008228: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 4000822c: c2 04 20 08 ld [ %l0 + 8 ], %g1 40008230: 80 a0 80 01 cmp %g2, %g1
40008234: 32 80 00 06 bne,a 4000824c <_Rate_monotonic_Timeout+0x64>
40008238: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED );
4000823c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 40008240: 40 00 09 1a call 4000a6a8 <_Thread_Clear_state> 40008244: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8> 40008248: 30 80 00 06 b,a 40008260 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
4000824c: 80 a0 60 01 cmp %g1, 1
40008250: 12 80 00 0d bne 40008284 <_Rate_monotonic_Timeout+0x9c>
40008254: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40008258: 82 10 20 03 mov 3, %g1 4000825c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40008260: 7f ff fe 65 call 40007bf4 <_Rate_monotonic_Initiate_statistics> 40008264: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40008268: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000826c: 11 10 00 7c sethi %hi(0x4001f000), %o0
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40008270: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008274: 90 12 21 7c or %o0, 0x17c, %o0 40008278: 40 00 0e f0 call 4000be38 <_Watchdog_Insert> 4000827c: 92 04 20 10 add %l0, 0x10, %o1 40008280: 30 80 00 02 b,a 40008288 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED;
40008284: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
40008288: 03 10 00 7c sethi %hi(0x4001f000), %g1 4000828c: c4 00 60 b8 ld [ %g1 + 0xb8 ], %g2 ! 4001f0b8 <_Thread_Dispatch_disable_level> 40008290: 84 00 bf ff add %g2, -1, %g2 40008294: c4 20 60 b8 st %g2, [ %g1 + 0xb8 ] 40008298: 81 c7 e0 08 ret 4000829c: 81 e8 00 00 restore
40007bf8 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
40007bf8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
40007bfc: 03 10 00 7b sethi %hi(0x4001ec00), %g1
*/ bool _TOD_Validate( const rtems_time_of_day *the_tod ) {
40007c00: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick();
40007c04: d2 00 63 54 ld [ %g1 + 0x354 ], %o1
if ((!the_tod) ||
40007c08: 80 a4 20 00 cmp %l0, 0
40007c0c: 02 80 00 2b be 40007cb8 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007c10: b0 10 20 00 clr %i0
) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40007c14: 11 00 03 d0 sethi %hi(0xf4000), %o0 40007c18: 40 00 46 fe call 40019810 <.udiv> 40007c1c: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) ||
40007c20: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 40007c24: 80 a0 40 08 cmp %g1, %o0
40007c28: 1a 80 00 24 bcc 40007cb8 <_TOD_Validate+0xc0>
40007c2c: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40007c30: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 40007c34: 80 a0 60 3b cmp %g1, 0x3b
40007c38: 18 80 00 20 bgu 40007cb8 <_TOD_Validate+0xc0>
40007c3c: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40007c40: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 40007c44: 80 a0 60 3b cmp %g1, 0x3b
40007c48: 18 80 00 1c bgu 40007cb8 <_TOD_Validate+0xc0>
40007c4c: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40007c50: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40007c54: 80 a0 60 17 cmp %g1, 0x17
40007c58: 18 80 00 18 bgu 40007cb8 <_TOD_Validate+0xc0>
40007c5c: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) ||
40007c60: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) ||
40007c64: 80 a0 60 00 cmp %g1, 0
40007c68: 02 80 00 14 be 40007cb8 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007c6c: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) || 40007c70: 18 80 00 12 bgu 40007cb8 <_TOD_Validate+0xc0>
40007c74: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
40007c78: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) ||
40007c7c: 80 a0 e7 c3 cmp %g3, 0x7c3
40007c80: 08 80 00 0e bleu 40007cb8 <_TOD_Validate+0xc0>
40007c84: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) )
40007c88: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) ||
40007c8c: 80 a0 a0 00 cmp %g2, 0
40007c90: 02 80 00 0a be 40007cb8 <_TOD_Validate+0xc0> <== NEVER TAKEN
40007c94: 80 88 e0 03 btst 3, %g3 40007c98: 07 10 00 77 sethi %hi(0x4001dc00), %g3
(the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 40007c9c: 12 80 00 03 bne 40007ca8 <_TOD_Validate+0xb0>
40007ca0: 86 10 e0 18 or %g3, 0x18, %g3 ! 4001dc18 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40007ca4: 82 00 60 0d add %g1, 0xd, %g1
else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40007ca8: 83 28 60 02 sll %g1, 2, %g1 40007cac: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate(
40007cb0: 80 a0 40 02 cmp %g1, %g2 40007cb4: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month ) return false; return true; }
40007cb8: 81 c7 e0 08 ret 40007cbc: 81 e8 00 00 restore
40008728 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) {
40008728: 9d e3 bf a0 save %sp, -96, %sp
*/ /* * Save original state */ original_state = the_thread->current_state;
4000872c: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread );
40008730: 40 00 04 0b call 4000975c <_Thread_Set_transient> 40008734: 90 10 00 18 mov %i0, %o0
/* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority )
40008738: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 4000873c: 80 a0 40 19 cmp %g1, %i1
40008740: 02 80 00 05 be 40008754 <_Thread_Change_priority+0x2c>
40008744: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40008748: 90 10 00 18 mov %i0, %o0 4000874c: 40 00 03 87 call 40009568 <_Thread_Set_priority> 40008750: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40008754: 7f ff e5 78 call 40001d34 <sparc_disable_interrupts> 40008758: 01 00 00 00 nop 4000875c: b0 10 00 08 mov %o0, %i0
/* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state;
40008760: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
40008764: 80 a6 60 04 cmp %i1, 4
40008768: 02 80 00 10 be 400087a8 <_Thread_Change_priority+0x80>
4000876c: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) )
40008770: 80 a4 60 00 cmp %l1, 0
40008774: 12 80 00 03 bne 40008780 <_Thread_Change_priority+0x58> <== NEVER TAKEN
40008778: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
4000877c: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40008780: 7f ff e5 71 call 40001d44 <sparc_enable_interrupts> 40008784: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40008788: 03 00 00 ef sethi %hi(0x3bc00), %g1 4000878c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 40008790: 80 8e 40 01 btst %i1, %g1
40008794: 02 80 00 5c be 40008904 <_Thread_Change_priority+0x1dc>
40008798: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
4000879c: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 400087a0: 40 00 03 45 call 400094b4 <_Thread_queue_Requeue> 400087a4: 93 e8 00 10 restore %g0, %l0, %o1
} return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) {
400087a8: 80 a4 60 00 cmp %l1, 0
400087ac: 12 80 00 1c bne 4000881c <_Thread_Change_priority+0xf4> <== NEVER TAKEN
400087b0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
400087b4: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 400087b8: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 400087bc: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
400087c0: c0 24 20 10 clr [ %l0 + 0x10 ] 400087c4: 84 10 c0 02 or %g3, %g2, %g2 400087c8: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
400087cc: 03 10 00 55 sethi %hi(0x40015400), %g1 400087d0: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 400087d4: c4 10 60 08 lduh [ %g1 + 8 ], %g2
_Priority_Add_to_bit_map( &the_thread->Priority_map ); if ( prepend_it )
400087d8: 80 8e a0 ff btst 0xff, %i2 400087dc: 84 10 c0 02 or %g3, %g2, %g2 400087e0: c4 30 60 08 sth %g2, [ %g1 + 8 ]
400087e4: 02 80 00 08 be 40008804 <_Thread_Change_priority+0xdc>
400087e8: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next;
400087ec: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node;
400087f0: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next; after_node->next = the_node;
400087f4: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
400087f8: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
400087fc: 10 80 00 08 b 4000881c <_Thread_Change_priority+0xf4> 40008800: e0 20 a0 04 st %l0, [ %g2 + 4 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40008804: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
40008808: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
4000880c: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
40008810: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
40008814: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
40008818: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level );
4000881c: 7f ff e5 4a call 40001d44 <sparc_enable_interrupts> 40008820: 90 10 00 18 mov %i0, %o0 40008824: 7f ff e5 44 call 40001d34 <sparc_disable_interrupts> 40008828: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_Get_highest() ].first;
4000882c: 03 10 00 54 sethi %hi(0x40015000), %g1 40008830: da 00 62 c4 ld [ %g1 + 0x2c4 ], %o5 ! 400152c4 <_Thread_Ready_chain>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void ) { Priority_Bit_map_control minor; Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40008834: 03 10 00 55 sethi %hi(0x40015400), %g1 40008838: c4 10 60 08 lduh [ %g1 + 8 ], %g2 ! 40015408 <_Priority_Major_bit_map> 4000883c: 03 10 00 4f sethi %hi(0x40013c00), %g1 40008840: 85 28 a0 10 sll %g2, 0x10, %g2 40008844: 87 30 a0 10 srl %g2, 0x10, %g3 40008848: 80 a0 e0 ff cmp %g3, 0xff
4000884c: 18 80 00 05 bgu 40008860 <_Thread_Change_priority+0x138>
40008850: 82 10 63 d8 or %g1, 0x3d8, %g1 40008854: c4 08 40 03 ldub [ %g1 + %g3 ], %g2 40008858: 10 80 00 04 b 40008868 <_Thread_Change_priority+0x140> 4000885c: 84 00 a0 08 add %g2, 8, %g2 40008860: 85 30 a0 18 srl %g2, 0x18, %g2 40008864: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40008868: 83 28 a0 10 sll %g2, 0x10, %g1 4000886c: 07 10 00 55 sethi %hi(0x40015400), %g3 40008870: 83 30 60 0f srl %g1, 0xf, %g1 40008874: 86 10 e0 80 or %g3, 0x80, %g3 40008878: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3 4000887c: 03 10 00 4f sethi %hi(0x40013c00), %g1 40008880: 87 28 e0 10 sll %g3, 0x10, %g3 40008884: 89 30 e0 10 srl %g3, 0x10, %g4 40008888: 80 a1 20 ff cmp %g4, 0xff
4000888c: 18 80 00 05 bgu 400088a0 <_Thread_Change_priority+0x178>
40008890: 82 10 63 d8 or %g1, 0x3d8, %g1 40008894: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 40008898: 10 80 00 04 b 400088a8 <_Thread_Change_priority+0x180> 4000889c: 82 00 60 08 add %g1, 8, %g1 400088a0: 87 30 e0 18 srl %g3, 0x18, %g3 400088a4: c2 08 40 03 ldub [ %g1 + %g3 ], %g1
return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor );
400088a8: 83 28 60 10 sll %g1, 0x10, %g1 400088ac: 83 30 60 10 srl %g1, 0x10, %g1
Priority_Bit_map_control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) +
400088b0: 85 28 a0 10 sll %g2, 0x10, %g2 400088b4: 85 30 a0 0c srl %g2, 0xc, %g2 400088b8: 84 00 40 02 add %g1, %g2, %g2 400088bc: 83 28 a0 02 sll %g2, 2, %g1 400088c0: 85 28 a0 04 sll %g2, 4, %g2 400088c4: 84 20 80 01 sub %g2, %g1, %g2
* ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *)
400088c8: c6 03 40 02 ld [ %o5 + %g2 ], %g3 400088cc: 03 10 00 55 sethi %hi(0x40015400), %g1 400088d0: 82 10 61 cc or %g1, 0x1cc, %g1 ! 400155cc <_Per_CPU_Information>
* is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir );
400088d4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() &&
400088d8: 80 a0 80 03 cmp %g2, %g3
400088dc: 02 80 00 08 be 400088fc <_Thread_Change_priority+0x1d4>
400088e0: c6 20 60 10 st %g3, [ %g1 + 0x10 ] 400088e4: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 400088e8: 80 a0 a0 00 cmp %g2, 0
400088ec: 02 80 00 04 be 400088fc <_Thread_Change_priority+0x1d4>
400088f0: 01 00 00 00 nop
_Thread_Executing->is_preemptible ) _Context_Switch_necessary = true;
400088f4: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1> 400088f8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
400088fc: 7f ff e5 12 call 40001d44 <sparc_enable_interrupts> 40008900: 81 e8 00 00 restore 40008904: 81 c7 e0 08 ret 40008908: 81 e8 00 00 restore
4000890c <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) {
4000890c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; States_Control current_state; _ISR_Disable( level );
40008910: 7f ff e5 09 call 40001d34 <sparc_disable_interrupts> 40008914: a0 10 00 18 mov %i0, %l0 40008918: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
4000891c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
40008920: 80 8e 40 01 btst %i1, %g1
40008924: 02 80 00 2f be 400089e0 <_Thread_Clear_state+0xd4>
40008928: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear ( States_Control states_to_clear, States_Control current_state ) { return (current_state & ~states_to_clear);
4000892c: b2 28 40 19 andn %g1, %i1, %i1
current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) {
40008930: 80 a6 60 00 cmp %i1, 0
40008934: 12 80 00 2b bne 400089e0 <_Thread_Clear_state+0xd4>
40008938: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
4000893c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 40008940: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 40008944: c6 10 40 00 lduh [ %g1 ], %g3 40008948: 84 10 c0 02 or %g3, %g2, %g2 4000894c: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40008950: 03 10 00 55 sethi %hi(0x40015400), %g1 40008954: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 40008958: c4 10 60 08 lduh [ %g1 + 8 ], %g2 4000895c: 84 10 c0 02 or %g3, %g2, %g2 40008960: c4 30 60 08 sth %g2, [ %g1 + 8 ]
_Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
40008964: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40008968: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
4000896c: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
40008970: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
40008974: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
40008978: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000897c: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
40008980: 7f ff e4 f1 call 40001d44 <sparc_enable_interrupts> 40008984: 01 00 00 00 nop 40008988: 7f ff e4 eb call 40001d34 <sparc_disable_interrupts> 4000898c: 01 00 00 00 nop
* a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
40008990: 03 10 00 55 sethi %hi(0x40015400), %g1 40008994: 82 10 61 cc or %g1, 0x1cc, %g1 ! 400155cc <_Per_CPU_Information> 40008998: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 4000899c: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 400089a0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 400089a4: 80 a0 80 03 cmp %g2, %g3
400089a8: 1a 80 00 0e bcc 400089e0 <_Thread_Clear_state+0xd4>
400089ac: 01 00 00 00 nop
_Thread_Heir = the_thread;
400089b0: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
400089b4: c2 00 60 0c ld [ %g1 + 0xc ], %g1 400089b8: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 400089bc: 80 a0 60 00 cmp %g1, 0
400089c0: 32 80 00 05 bne,a 400089d4 <_Thread_Clear_state+0xc8>
400089c4: 84 10 20 01 mov 1, %g2 400089c8: 80 a0 a0 00 cmp %g2, 0
400089cc: 12 80 00 05 bne 400089e0 <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN
400089d0: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 ) _Context_Switch_necessary = true;
400089d4: 03 10 00 55 sethi %hi(0x40015400), %g1 400089d8: 82 10 61 cc or %g1, 0x1cc, %g1 ! 400155cc <_Per_CPU_Information> 400089dc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
} } } _ISR_Enable( level );
400089e0: 7f ff e4 d9 call 40001d44 <sparc_enable_interrupts> 400089e4: 81 e8 00 00 restore
40008b68 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) {
40008b68: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
40008b6c: 90 10 00 18 mov %i0, %o0 40008b70: 40 00 00 5f call 40008cec <_Thread_Get> 40008b74: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008b78: c2 07 bf fc ld [ %fp + -4 ], %g1 40008b7c: 80 a0 60 00 cmp %g1, 0
40008b80: 12 80 00 08 bne 40008ba0 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008b84: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state(
40008b88: 7f ff ff 61 call 4000890c <_Thread_Clear_state> 40008b8c: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018> 40008b90: 03 10 00 54 sethi %hi(0x40015000), %g1 40008b94: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 40015368 <_Thread_Dispatch_disable_level> 40008b98: 84 00 bf ff add %g2, -1, %g2 40008b9c: c4 20 63 68 st %g2, [ %g1 + 0x368 ] 40008ba0: 81 c7 e0 08 ret 40008ba4: 81 e8 00 00 restore
40008ba8 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) {
40008ba8: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing;
40008bac: 2b 10 00 55 sethi %hi(0x40015400), %l5 40008bb0: 82 15 61 cc or %l5, 0x1cc, %g1 ! 400155cc <_Per_CPU_Information>
_ISR_Disable( level );
40008bb4: 7f ff e4 60 call 40001d34 <sparc_disable_interrupts> 40008bb8: e2 00 60 0c ld [ %g1 + 0xc ], %l1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract(
40008bbc: 25 10 00 55 sethi %hi(0x40015400), %l2
executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
40008bc0: 39 10 00 54 sethi %hi(0x40015000), %i4 40008bc4: ba 10 20 01 mov 1, %i5
#if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008bc8: 2f 10 00 54 sethi %hi(0x40015000), %l7
_ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
40008bcc: a8 07 bf f8 add %fp, -8, %l4
_Timestamp_Subtract(
40008bd0: a6 07 bf f0 add %fp, -16, %l3 40008bd4: a4 14 a0 18 or %l2, 0x18, %l2
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) {
40008bd8: 10 80 00 2b b 40008c84 <_Thread_Dispatch+0xdc> 40008bdc: 2d 10 00 54 sethi %hi(0x40015000), %l6
heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1;
40008be0: fa 27 23 68 st %i5, [ %i4 + 0x368 ]
_Context_Switch_necessary = false;
40008be4: c0 28 60 18 clrb [ %g1 + 0x18 ]
/* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing )
40008be8: 80 a4 00 11 cmp %l0, %l1
40008bec: 02 80 00 2b be 40008c98 <_Thread_Dispatch+0xf0>
40008bf0: e0 20 60 0c st %l0, [ %g1 + 0xc ]
*/ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40008bf4: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 40008bf8: 80 a0 60 01 cmp %g1, 1
40008bfc: 12 80 00 03 bne 40008c08 <_Thread_Dispatch+0x60>
40008c00: c2 05 e2 c8 ld [ %l7 + 0x2c8 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008c04: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Enable( level );
40008c08: 7f ff e4 4f call 40001d44 <sparc_enable_interrupts> 40008c0c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime );
40008c10: 40 00 0d 93 call 4000c25c <_TOD_Get_uptime> 40008c14: 90 10 00 14 mov %l4, %o0
_Timestamp_Subtract(
40008c18: 90 10 00 12 mov %l2, %o0 40008c1c: 92 10 00 14 mov %l4, %o1 40008c20: 40 00 03 98 call 40009a80 <_Timespec_Subtract> 40008c24: 94 10 00 13 mov %l3, %o2
&_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008c28: 90 04 60 84 add %l1, 0x84, %o0 40008c2c: 40 00 03 7c call 40009a1c <_Timespec_Add_to> 40008c30: 92 10 00 13 mov %l3, %o1
_Thread_Time_of_last_context_switch = uptime;
40008c34: c2 07 bf f8 ld [ %fp + -8 ], %g1 40008c38: c2 24 80 00 st %g1, [ %l2 ] 40008c3c: c2 07 bf fc ld [ %fp + -4 ], %g1 40008c40: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) {
40008c44: c2 05 a3 ec ld [ %l6 + 0x3ec ], %g1 40008c48: 80 a0 60 00 cmp %g1, 0
40008c4c: 02 80 00 06 be 40008c64 <_Thread_Dispatch+0xbc> <== NEVER TAKEN
40008c50: 90 10 00 11 mov %l1, %o0
executing->libc_reent = *_Thread_libc_reent;
40008c54: c4 00 40 00 ld [ %g1 ], %g2 40008c58: c4 24 61 58 st %g2, [ %l1 + 0x158 ]
*_Thread_libc_reent = heir->libc_reent;
40008c5c: c4 04 21 58 ld [ %l0 + 0x158 ], %g2 40008c60: c4 20 40 00 st %g2, [ %g1 ]
} _User_extensions_Thread_switch( executing, heir );
40008c64: 40 00 04 37 call 40009d40 <_User_extensions_Thread_switch> 40008c68: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers );
40008c6c: 90 04 60 d0 add %l1, 0xd0, %o0 40008c70: 40 00 05 26 call 4000a108 <_CPU_Context_switch> 40008c74: 92 04 20 d0 add %l0, 0xd0, %o1
if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing;
40008c78: 82 15 61 cc or %l5, 0x1cc, %g1
_ISR_Disable( level );
40008c7c: 7f ff e4 2e call 40001d34 <sparc_disable_interrupts> 40008c80: e2 00 60 0c ld [ %g1 + 0xc ], %l1
Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Context_Switch_necessary == true ) {
40008c84: 82 15 61 cc or %l5, 0x1cc, %g1 40008c88: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 40008c8c: 80 a0 a0 00 cmp %g2, 0
40008c90: 32 bf ff d4 bne,a 40008be0 <_Thread_Dispatch+0x38>
40008c94: e0 00 60 10 ld [ %g1 + 0x10 ], %l0
_ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0;
40008c98: 03 10 00 54 sethi %hi(0x40015000), %g1 40008c9c: c0 20 63 68 clr [ %g1 + 0x368 ] ! 40015368 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
40008ca0: 7f ff e4 29 call 40001d44 <sparc_enable_interrupts> 40008ca4: 01 00 00 00 nop
_API_extensions_Run_postswitch();
40008ca8: 7f ff f9 a7 call 40007344 <_API_extensions_Run_postswitch> 40008cac: 01 00 00 00 nop
}
40008cb0: 81 c7 e0 08 ret 40008cb4: 81 e8 00 00 restore
40008cec <_Thread_Get>: Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) {
40008cec: 82 10 00 08 mov %o0, %g1
uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40008cf0: 80 a2 20 00 cmp %o0, 0
40008cf4: 12 80 00 0a bne 40008d1c <_Thread_Get+0x30>
40008cf8: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1;
40008cfc: 03 10 00 54 sethi %hi(0x40015000), %g1 40008d00: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 40015368 <_Thread_Dispatch_disable_level> 40008d04: 84 00 a0 01 inc %g2 40008d08: c4 20 63 68 st %g2, [ %g1 + 0x368 ]
_Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing;
40008d0c: 03 10 00 55 sethi %hi(0x40015400), %g1
Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL;
40008d10: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing; goto done;
40008d14: 81 c3 e0 08 retl 40008d18: d0 00 61 d8 ld [ %g1 + 0x1d8 ], %o0
*/ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40008d1c: 87 32 20 18 srl %o0, 0x18, %g3 40008d20: 86 08 e0 07 and %g3, 7, %g3
*/ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008d24: 84 00 ff ff add %g3, -1, %g2 40008d28: 80 a0 a0 02 cmp %g2, 2
40008d2c: 28 80 00 16 bleu,a 40008d84 <_Thread_Get+0x98>
40008d30: 85 32 20 1b srl %o0, 0x1b, %g2
goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR;
40008d34: 82 10 20 01 mov 1, %g1 40008d38: 10 80 00 09 b 40008d5c <_Thread_Get+0x70> 40008d3c: c2 22 80 00 st %g1, [ %o2 ]
goto done; } api_information = _Objects_Information_table[ the_api ];
40008d40: 09 10 00 54 sethi %hi(0x40015000), %g4 40008d44: 88 11 22 cc or %g4, 0x2cc, %g4 ! 400152cc <_Objects_Information_table> 40008d48: c6 01 00 03 ld [ %g4 + %g3 ], %g3
if ( !api_information ) {
40008d4c: 80 a0 e0 00 cmp %g3, 0
40008d50: 32 80 00 05 bne,a 40008d64 <_Thread_Get+0x78> <== ALWAYS TAKEN
40008d54: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
40008d58: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
40008d5c: 81 c3 e0 08 retl 40008d60: 90 10 20 00 clr %o0
} information = api_information[ the_class ]; if ( !information ) {
40008d64: 80 a2 20 00 cmp %o0, 0
40008d68: 12 80 00 04 bne 40008d78 <_Thread_Get+0x8c>
40008d6c: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR; goto done;
40008d70: 81 c3 e0 08 retl 40008d74: c4 22 80 00 st %g2, [ %o2 ]
} tp = (Thread_Control *) _Objects_Get( information, id, location );
40008d78: 82 13 c0 00 mov %o7, %g1 40008d7c: 7f ff fd 83 call 40008388 <_Objects_Get> 40008d80: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */
40008d84: 80 a0 a0 01 cmp %g2, 1
40008d88: 22 bf ff ee be,a 40008d40 <_Thread_Get+0x54>
40008d8c: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
40008d90: 10 bf ff ea b 40008d38 <_Thread_Get+0x4c> 40008d94: 82 10 20 01 mov 1, %g1
4000e038 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) {
4000e038: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing;
4000e03c: 03 10 00 55 sethi %hi(0x40015400), %g1 4000e040: e0 00 61 d8 ld [ %g1 + 0x1d8 ], %l0 ! 400155d8 <_Per_CPU_Information+0xc>
/* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin();
4000e044: 3f 10 00 38 sethi %hi(0x4000e000), %i7 4000e048: be 17 e0 38 or %i7, 0x38, %i7 ! 4000e038 <_Thread_Handler>
/* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level;
4000e04c: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
4000e050: 7f ff cf 3d call 40001d44 <sparc_enable_interrupts> 4000e054: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
4000e058: 03 10 00 53 sethi %hi(0x40014c00), %g1
doneConstructors = 1;
4000e05c: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors;
4000e060: e2 08 63 ec ldub [ %g1 + 0x3ec ], %l1
/* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing );
4000e064: 90 10 00 10 mov %l0, %o0 4000e068: 7f ff ee c6 call 40009b80 <_User_extensions_Thread_begin> 4000e06c: c4 28 63 ec stb %g2, [ %g1 + 0x3ec ]
/* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch();
4000e070: 7f ff eb 12 call 40008cb8 <_Thread_Enable_dispatch> 4000e074: a3 2c 60 18 sll %l1, 0x18, %l1
/* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ {
4000e078: 80 a4 60 00 cmp %l1, 0
4000e07c: 32 80 00 05 bne,a 4000e090 <_Thread_Handler+0x58>
4000e080: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
INIT_NAME ();
4000e084: 40 00 19 ed call 40014838 <_init> 4000e088: 01 00 00 00 nop
} #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000e08c: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 4000e090: 80 a0 60 00 cmp %g1, 0
4000e094: 12 80 00 06 bne 4000e0ac <_Thread_Handler+0x74> <== NEVER TAKEN
4000e098: 01 00 00 00 nop
executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)(
4000e09c: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 4000e0a0: 9f c0 40 00 call %g1 4000e0a4: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument =
4000e0a8: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing );
4000e0ac: 7f ff ee c6 call 40009bc4 <_User_extensions_Thread_exitted> 4000e0b0: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000e0b4: 90 10 20 00 clr %o0 4000e0b8: 92 10 20 01 mov 1, %o1 4000e0bc: 7f ff e7 4a call 40007de4 <_Internal_error_Occurred> 4000e0c0: 94 10 20 05 mov 5, %o2
40008d98 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) {
40008d98: 9d e3 bf a0 save %sp, -96, %sp 40008d9c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 40008da0: e2 0f a0 5f ldub [ %fp + 0x5f ], %l1 40008da4: e0 00 40 00 ld [ %g1 ], %l0
/* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL;
40008da8: c0 26 61 5c clr [ %i1 + 0x15c ] 40008dac: c0 26 61 60 clr [ %i1 + 0x160 ]
extensions_area = NULL; the_thread->libc_reent = NULL;
40008db0: c0 26 61 58 clr [ %i1 + 0x158 ]
/* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40008db4: 90 10 00 19 mov %i1, %o0 40008db8: 40 00 02 8e call 400097f0 <_Thread_Stack_Allocate> 40008dbc: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40008dc0: 80 a2 00 1b cmp %o0, %i3
40008dc4: 0a 80 00 5b bcs 40008f30 <_Thread_Initialize+0x198>
40008dc8: 80 a2 20 00 cmp %o0, 0
40008dcc: 22 80 00 57 be,a 40008f28 <_Thread_Initialize+0x190> <== NEVER TAKEN
40008dd0: b0 10 20 00 clr %i0 <== NOT EXECUTED
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
40008dd4: c2 06 60 c8 ld [ %i1 + 0xc8 ], %g1
the_stack->size = size;
40008dd8: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address;
40008ddc: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ]
#endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) {
40008de0: 03 10 00 54 sethi %hi(0x40015000), %g1 40008de4: d0 00 63 f8 ld [ %g1 + 0x3f8 ], %o0 ! 400153f8 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40008de8: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40008dec: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40008df0: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
40008df4: c0 26 60 6c clr [ %i1 + 0x6c ] 40008df8: 80 a2 20 00 cmp %o0, 0
40008dfc: 02 80 00 08 be 40008e1c <_Thread_Initialize+0x84>
40008e00: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
40008e04: 90 02 20 01 inc %o0 40008e08: 40 00 04 a2 call 4000a090 <_Workspace_Allocate> 40008e0c: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area )
40008e10: b6 92 20 00 orcc %o0, 0, %i3
40008e14: 22 80 00 2c be,a 40008ec4 <_Thread_Initialize+0x12c>
40008e18: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
* if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) {
40008e1c: 80 a6 e0 00 cmp %i3, 0
40008e20: 02 80 00 0b be 40008e4c <_Thread_Initialize+0xb4>
40008e24: f6 26 61 64 st %i3, [ %i1 + 0x164 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008e28: 03 10 00 54 sethi %hi(0x40015000), %g1 40008e2c: c4 00 63 f8 ld [ %g1 + 0x3f8 ], %g2 ! 400153f8 <_Thread_Maximum_extensions> 40008e30: 10 80 00 04 b 40008e40 <_Thread_Initialize+0xa8> 40008e34: 82 10 20 00 clr %g1 40008e38: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
40008e3c: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008e40: 80 a0 40 02 cmp %g1, %g2
40008e44: 08 bf ff fd bleu 40008e38 <_Thread_Initialize+0xa0>
40008e48: 87 28 60 02 sll %g1, 2, %g3
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm;
40008e4c: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
40008e50: 90 10 00 19 mov %i1, %o0
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm;
40008e54: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
40008e58: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
40008e5c: 92 10 00 1d mov %i5, %o1
* General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout;
40008e60: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
40008e64: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/* * General initialization */ the_thread->Start.is_preemptible = is_preemptible;
40008e68: e2 2e 60 ac stb %l1, [ %i1 + 0xac ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level;
40008e6c: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
40008e70: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
40008e74: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT;
40008e78: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL; the_thread->resource_count = 0;
40008e7c: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
40008e80: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority );
40008e84: 40 00 01 b9 call 40009568 <_Thread_Set_priority> 40008e88: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
_Thread_Stack_Free( the_thread ); return false; }
40008e8c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
40008e90: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40008e94: c0 26 60 84 clr [ %i1 + 0x84 ] 40008e98: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
40008e9c: 83 28 60 02 sll %g1, 2, %g1 40008ea0: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
40008ea4: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread );
40008ea8: 90 10 00 19 mov %i1, %o0 40008eac: 40 00 03 68 call 40009c4c <_User_extensions_Thread_create> 40008eb0: b0 10 20 01 mov 1, %i0
if ( extension_status )
40008eb4: 80 8a 20 ff btst 0xff, %o0
40008eb8: 12 80 00 1f bne 40008f34 <_Thread_Initialize+0x19c>
40008ebc: 01 00 00 00 nop
return true; failed: if ( the_thread->libc_reent )
40008ec0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 40008ec4: 80 a2 20 00 cmp %o0, 0
40008ec8: 22 80 00 05 be,a 40008edc <_Thread_Initialize+0x144>
40008ecc: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->libc_reent );
40008ed0: 40 00 04 79 call 4000a0b4 <_Workspace_Free> 40008ed4: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
40008ed8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 40008edc: 80 a2 20 00 cmp %o0, 0
40008ee0: 22 80 00 05 be,a 40008ef4 <_Thread_Initialize+0x15c>
40008ee4: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
40008ee8: 40 00 04 73 call 4000a0b4 <_Workspace_Free> 40008eec: 01 00 00 00 nop
failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] )
40008ef0: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 40008ef4: 80 a2 20 00 cmp %o0, 0
40008ef8: 02 80 00 05 be 40008f0c <_Thread_Initialize+0x174> <== ALWAYS TAKEN
40008efc: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
40008f00: 40 00 04 6d call 4000a0b4 <_Workspace_Free> <== NOT EXECUTED 40008f04: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
40008f08: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40008f0c: 02 80 00 05 be 40008f20 <_Thread_Initialize+0x188>
40008f10: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( extensions_area );
40008f14: 40 00 04 68 call 4000a0b4 <_Workspace_Free> 40008f18: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread );
40008f1c: 90 10 00 19 mov %i1, %o0 40008f20: 40 00 02 4b call 4000984c <_Thread_Stack_Free> 40008f24: b0 10 20 00 clr %i0
return false;
40008f28: 81 c7 e0 08 ret 40008f2c: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */
40008f30: b0 10 20 00 clr %i0
_Thread_Stack_Free( the_thread ); return false; }
40008f34: 81 c7 e0 08 ret 40008f38: 81 e8 00 00 restore
4000cde0 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) {
4000cde0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; States_Control current_state; _ISR_Disable( level );
4000cde4: 7f ff d4 28 call 40001e84 <sparc_disable_interrupts> 4000cde8: a0 10 00 18 mov %i0, %l0 4000cdec: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
4000cdf0: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000cdf4: 80 88 60 02 btst 2, %g1
4000cdf8: 02 80 00 2e be 4000ceb0 <_Thread_Resume+0xd0> <== NEVER TAKEN
4000cdfc: 82 08 7f fd and %g1, -3, %g1
current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) {
4000ce00: 80 a0 60 00 cmp %g1, 0
4000ce04: 12 80 00 2b bne 4000ceb0 <_Thread_Resume+0xd0>
4000ce08: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map ( Priority_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor;
4000ce0c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 4000ce10: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 4000ce14: c6 10 40 00 lduh [ %g1 ], %g3 4000ce18: 84 10 c0 02 or %g3, %g2, %g2 4000ce1c: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
4000ce20: 03 10 00 65 sethi %hi(0x40019400), %g1 4000ce24: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 4000ce28: c4 10 61 68 lduh [ %g1 + 0x168 ], %g2 4000ce2c: 84 10 c0 02 or %g3, %g2, %g2 4000ce30: c4 30 61 68 sth %g2, [ %g1 + 0x168 ]
_Priority_Add_to_bit_map( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
4000ce34: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000ce38: 84 00 60 04 add %g1, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
4000ce3c: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last;
4000ce40: c4 00 60 08 ld [ %g1 + 8 ], %g2
the_chain->last = the_node;
4000ce44: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
4000ce48: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000ce4c: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
4000ce50: 7f ff d4 11 call 40001e94 <sparc_enable_interrupts> 4000ce54: 01 00 00 00 nop 4000ce58: 7f ff d4 0b call 40001e84 <sparc_disable_interrupts> 4000ce5c: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
4000ce60: 03 10 00 65 sethi %hi(0x40019400), %g1 4000ce64: 82 10 63 2c or %g1, 0x32c, %g1 ! 4001972c <_Per_CPU_Information> 4000ce68: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 4000ce6c: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 4000ce70: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 4000ce74: 80 a0 80 03 cmp %g2, %g3
4000ce78: 1a 80 00 0e bcc 4000ceb0 <_Thread_Resume+0xd0>
4000ce7c: 01 00 00 00 nop
_Thread_Heir = the_thread;
4000ce80: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
4000ce84: c2 00 60 0c ld [ %g1 + 0xc ], %g1 4000ce88: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 4000ce8c: 80 a0 60 00 cmp %g1, 0
4000ce90: 32 80 00 05 bne,a 4000cea4 <_Thread_Resume+0xc4>
4000ce94: 84 10 20 01 mov 1, %g2 4000ce98: 80 a0 a0 00 cmp %g2, 0
4000ce9c: 12 80 00 05 bne 4000ceb0 <_Thread_Resume+0xd0> <== ALWAYS TAKEN
4000cea0: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 ) _Context_Switch_necessary = true;
4000cea4: 03 10 00 65 sethi %hi(0x40019400), %g1 4000cea8: 82 10 63 2c or %g1, 0x32c, %g1 ! 4001972c <_Per_CPU_Information> 4000ceac: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
} } } _ISR_Enable( level );
4000ceb0: 7f ff d3 f9 call 40001e94 <sparc_enable_interrupts> 4000ceb4: 81 e8 00 00 restore
40009974 <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) {
40009974: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing;
40009978: 23 10 00 55 sethi %hi(0x40015400), %l1 4000997c: a2 14 61 cc or %l1, 0x1cc, %l1 ! 400155cc <_Per_CPU_Information> 40009980: e0 04 60 0c ld [ %l1 + 0xc ], %l0
ready = executing->ready; _ISR_Disable( level );
40009984: 7f ff e0 ec call 40001d34 <sparc_disable_interrupts> 40009988: e4 04 20 8c ld [ %l0 + 0x8c ], %l2 4000998c: b0 10 00 08 mov %o0, %i0
*/ RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node( const Chain_Control *the_chain ) { return (the_chain->first == the_chain->last);
40009990: c2 04 a0 08 ld [ %l2 + 8 ], %g1
if ( !_Chain_Has_only_one_node( ready ) ) {
40009994: c4 04 80 00 ld [ %l2 ], %g2 40009998: 80 a0 80 01 cmp %g2, %g1
4000999c: 22 80 00 19 be,a 40009a00 <_Thread_Yield_processor+0x8c>
400099a0: c2 04 60 10 ld [ %l1 + 0x10 ], %g1
) { Chain_Node *next; Chain_Node *previous; next = the_node->next;
400099a4: c6 04 00 00 ld [ %l0 ], %g3
previous = the_node->previous;
400099a8: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous; previous->next = next;
400099ac: c6 20 80 00 st %g3, [ %g2 ]
Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous;
400099b0: c4 20 e0 04 st %g2, [ %g3 + 4 ]
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
400099b4: 84 04 a0 04 add %l2, 4, %g2
Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain);
400099b8: c4 24 00 00 st %g2, [ %l0 ]
old_last_node = the_chain->last; the_chain->last = the_node;
400099bc: e0 24 a0 08 st %l0, [ %l2 + 8 ]
old_last_node->next = the_node;
400099c0: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
400099c4: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level );
400099c8: 7f ff e0 df call 40001d44 <sparc_enable_interrupts> 400099cc: 01 00 00 00 nop 400099d0: 7f ff e0 d9 call 40001d34 <sparc_disable_interrupts> 400099d4: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
400099d8: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 400099dc: 80 a4 00 01 cmp %l0, %g1
400099e0: 12 80 00 04 bne 400099f0 <_Thread_Yield_processor+0x7c> <== NEVER TAKEN
400099e4: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) ready->first;
400099e8: c2 04 80 00 ld [ %l2 ], %g1 400099ec: c2 24 60 10 st %g1, [ %l1 + 0x10 ]
_Context_Switch_necessary = true;
400099f0: 03 10 00 55 sethi %hi(0x40015400), %g1 400099f4: 82 10 61 cc or %g1, 0x1cc, %g1 ! 400155cc <_Per_CPU_Information> 400099f8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 400099fc: 30 80 00 05 b,a 40009a10 <_Thread_Yield_processor+0x9c>
} else if ( !_Thread_Is_heir( executing ) )
40009a00: 80 a4 00 01 cmp %l0, %g1
40009a04: 02 80 00 03 be 40009a10 <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN
40009a08: 82 10 20 01 mov 1, %g1
_Context_Switch_necessary = true;
40009a0c: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40009a10: 7f ff e0 cd call 40001d44 <sparc_enable_interrupts> 40009a14: 81 e8 00 00 restore
4000c800 <_Thread_queue_Extract_priority_helper>: void _Thread_queue_Extract_priority_helper( Thread_queue_Control *the_thread_queue __attribute__((unused)), Thread_Control *the_thread, bool requeuing ) {
4000c800: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *new_first_node; Chain_Node *new_second_node; Chain_Node *last_node; the_node = (Chain_Node *) the_thread; _ISR_Disable( level );
4000c804: 7f ff d5 4c call 40001d34 <sparc_disable_interrupts> 4000c808: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
4000c80c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
4000c810: 03 00 00 ef sethi %hi(0x3bc00), %g1 4000c814: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 4000c818: 80 88 80 01 btst %g2, %g1
4000c81c: 32 80 00 03 bne,a 4000c828 <_Thread_queue_Extract_priority_helper+0x28>
4000c820: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
_ISR_Enable( level );
4000c824: 30 80 00 1a b,a 4000c88c <_Thread_queue_Extract_priority_helper+0x8c>
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000c828: 88 06 60 3c add %i1, 0x3c, %g4
/* * The thread was actually waiting on a thread queue so let's remove it. */ next_node = the_node->next;
4000c82c: c4 06 40 00 ld [ %i1 ], %g2
previous_node = the_node->previous; if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
4000c830: 80 a0 40 04 cmp %g1, %g4
4000c834: 02 80 00 11 be 4000c878 <_Thread_queue_Extract_priority_helper+0x78>
4000c838: c6 06 60 04 ld [ %i1 + 4 ], %g3
new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last;
4000c83c: c8 06 60 40 ld [ %i1 + 0x40 ], %g4
new_second_node = new_first_node->next;
4000c840: da 00 40 00 ld [ %g1 ], %o5
previous_node->next = new_first_node; next_node->previous = new_first_node;
4000c844: c2 20 a0 04 st %g1, [ %g2 + 4 ]
new_first_node = the_thread->Wait.Block2n.first; new_first_thread = (Thread_Control *) new_first_node; last_node = the_thread->Wait.Block2n.last; new_second_node = new_first_node->next; previous_node->next = new_first_node;
4000c848: c2 20 c0 00 st %g1, [ %g3 ]
next_node->previous = new_first_node; new_first_node->next = next_node;
4000c84c: c4 20 40 00 st %g2, [ %g1 ]
new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
4000c850: 80 a0 40 04 cmp %g1, %g4
4000c854: 02 80 00 0b be 4000c880 <_Thread_queue_Extract_priority_helper+0x80>
4000c858: c6 20 60 04 st %g3, [ %g1 + 4 ]
/* > two threads on 2-n */ new_second_node->previous = _Chain_Head( &new_first_thread->Wait.Block2n );
4000c85c: 84 00 60 38 add %g1, 0x38, %g2
new_first_node->next = next_node; new_first_node->previous = previous_node; if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) { /* > two threads on 2-n */ new_second_node->previous =
4000c860: c4 23 60 04 st %g2, [ %o5 + 4 ]
_Chain_Head( &new_first_thread->Wait.Block2n ); new_first_thread->Wait.Block2n.first = new_second_node;
4000c864: da 20 60 38 st %o5, [ %g1 + 0x38 ]
new_first_thread->Wait.Block2n.last = last_node;
4000c868: c8 20 60 40 st %g4, [ %g1 + 0x40 ] 4000c86c: 82 00 60 3c add %g1, 0x3c, %g1
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
4000c870: 10 80 00 04 b 4000c880 <_Thread_queue_Extract_priority_helper+0x80> 4000c874: c2 21 00 00 st %g1, [ %g4 ]
} } else { previous_node->next = next_node;
4000c878: c4 20 c0 00 st %g2, [ %g3 ]
next_node->previous = previous_node;
4000c87c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
/* * If we are not supposed to touch timers or the thread's state, return. */ if ( requeuing ) {
4000c880: 80 8e a0 ff btst 0xff, %i2
4000c884: 22 80 00 04 be,a 4000c894 <_Thread_queue_Extract_priority_helper+0x94>
4000c888: c2 06 60 50 ld [ %i1 + 0x50 ], %g1
_ISR_Enable( level );
4000c88c: 7f ff d5 2e call 40001d44 <sparc_enable_interrupts> 4000c890: 91 e8 00 08 restore %g0, %o0, %o0
return; } if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
4000c894: 80 a0 60 02 cmp %g1, 2
4000c898: 02 80 00 06 be 4000c8b0 <_Thread_queue_Extract_priority_helper+0xb0><== NEVER TAKEN
4000c89c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
4000c8a0: 7f ff d5 29 call 40001d44 <sparc_enable_interrupts> 4000c8a4: b0 10 00 19 mov %i1, %i0 4000c8a8: 10 80 00 08 b 4000c8c8 <_Thread_queue_Extract_priority_helper+0xc8> 4000c8ac: 33 04 00 ff sethi %hi(0x1003fc00), %i1
4000c8b0: c2 26 60 50 st %g1, [ %i1 + 0x50 ] ! 1003fc50 <RAM_SIZE+0xfc3fc50><== NOT EXECUTED
} else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level );
4000c8b4: 7f ff d5 24 call 40001d44 <sparc_enable_interrupts> <== NOT EXECUTED 4000c8b8: b0 10 00 19 mov %i1, %i0 <== NOT EXECUTED
(void) _Watchdog_Remove( &the_thread->Timer );
4000c8bc: 7f ff f5 8a call 40009ee4 <_Watchdog_Remove> <== NOT EXECUTED 4000c8c0: 90 06 60 48 add %i1, 0x48, %o0 <== NOT EXECUTED 4000c8c4: 33 04 00 ff sethi %hi(0x1003fc00), %i1 <== NOT EXECUTED
4000c8c8: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8> 4000c8cc: 7f ff f0 10 call 4000890c <_Thread_Clear_state> 4000c8d0: 81 e8 00 00 restore
400094b4 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) {
400094b4: 9d e3 bf 98 save %sp, -104, %sp
/* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue )
400094b8: 80 a6 20 00 cmp %i0, 0
400094bc: 02 80 00 19 be 40009520 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
400094c0: 01 00 00 00 nop
/* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
400094c4: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 400094c8: 80 a4 60 01 cmp %l1, 1
400094cc: 12 80 00 15 bne 40009520 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
400094d0: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level );
400094d4: 7f ff e2 18 call 40001d34 <sparc_disable_interrupts> 400094d8: 01 00 00 00 nop 400094dc: a0 10 00 08 mov %o0, %l0 400094e0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
400094e4: 03 00 00 ef sethi %hi(0x3bc00), %g1 400094e8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0> 400094ec: 80 88 80 01 btst %g2, %g1
400094f0: 02 80 00 0a be 40009518 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
400094f4: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true );
400094f8: 92 10 00 19 mov %i1, %o1 400094fc: 94 10 20 01 mov 1, %o2 40009500: 40 00 0c c0 call 4000c800 <_Thread_queue_Extract_priority_helper> 40009504: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40009508: 90 10 00 18 mov %i0, %o0 4000950c: 92 10 00 19 mov %i1, %o1 40009510: 7f ff ff 4b call 4000923c <_Thread_queue_Enqueue_priority> 40009514: 94 07 bf fc add %fp, -4, %o2
} _ISR_Enable( level );
40009518: 7f ff e2 0b call 40001d44 <sparc_enable_interrupts> 4000951c: 90 10 00 10 mov %l0, %o0 40009520: 81 c7 e0 08 ret 40009524: 81 e8 00 00 restore
40009528 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) {
40009528: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location );
4000952c: 90 10 00 18 mov %i0, %o0 40009530: 7f ff fd ef call 40008cec <_Thread_Get> 40009534: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40009538: c2 07 bf fc ld [ %fp + -4 ], %g1 4000953c: 80 a0 60 00 cmp %g1, 0
40009540: 12 80 00 08 bne 40009560 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40009544: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread );
40009548: 40 00 0c e4 call 4000c8d8 <_Thread_queue_Process_timeout> 4000954c: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1;
40009550: 03 10 00 54 sethi %hi(0x40015000), %g1 40009554: c4 00 63 68 ld [ %g1 + 0x368 ], %g2 ! 40015368 <_Thread_Dispatch_disable_level> 40009558: 84 00 bf ff add %g2, -1, %g2 4000955c: c4 20 63 68 st %g2, [ %g1 + 0x368 ] 40009560: 81 c7 e0 08 ret 40009564: 81 e8 00 00 restore
40017384 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) {
40017384: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017388: 35 10 00 f6 sethi %hi(0x4003d800), %i2 4001738c: a4 07 bf e8 add %fp, -24, %l2 40017390: b2 07 bf f4 add %fp, -12, %i1 40017394: ac 07 bf f8 add %fp, -8, %l6 40017398: a6 07 bf ec add %fp, -20, %l3
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
4001739c: ec 27 bf f4 st %l6, [ %fp + -12 ]
the_chain->permanent_null = NULL;
400173a0: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
400173a4: f2 27 bf fc st %i1, [ %fp + -4 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
400173a8: e6 27 bf e8 st %l3, [ %fp + -24 ]
the_chain->permanent_null = NULL;
400173ac: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
400173b0: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173b4: aa 06 20 30 add %i0, 0x30, %l5
_Chain_Initialize_empty( &insert_chain ); _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
400173b8: a8 10 00 12 mov %l2, %l4
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400173bc: 37 10 00 f6 sethi %hi(0x4003d800), %i3
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400173c0: a2 06 20 68 add %i0, 0x68, %l1
_Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true;
400173c4: b8 10 20 01 mov 1, %i4
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400173c8: ba 06 20 08 add %i0, 8, %i5
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400173cc: ae 06 20 40 add %i0, 0x40, %l7
{ /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain;
400173d0: f2 26 20 78 st %i1, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
400173d4: c2 06 a3 34 ld [ %i2 + 0x334 ], %g1
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
400173d8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173dc: 94 10 00 14 mov %l4, %o2
/* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot;
400173e0: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173e4: 90 10 00 15 mov %l5, %o0 400173e8: 40 00 11 93 call 4001ba34 <_Watchdog_Adjust_to_chain> 400173ec: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
400173f0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400173f4: e0 06 e2 80 ld [ %i3 + 0x280 ], %l0
/* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) {
400173f8: 80 a4 00 0a cmp %l0, %o2
400173fc: 08 80 00 06 bleu 40017414 <_Timer_server_Body+0x90>
40017400: 92 24 00 0a sub %l0, %o2, %o1
/* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017404: 90 10 00 11 mov %l1, %o0 40017408: 40 00 11 8b call 4001ba34 <_Watchdog_Adjust_to_chain> 4001740c: 94 10 00 14 mov %l4, %o2 40017410: 30 80 00 06 b,a 40017428 <_Timer_server_Body+0xa4>
} else if ( snapshot < last_snapshot ) { 40017414: 1a 80 00 05 bcc 40017428 <_Timer_server_Body+0xa4>
40017418: 90 10 00 11 mov %l1, %o0
/* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
4001741c: 92 10 20 01 mov 1, %o1 40017420: 40 00 11 5d call 4001b994 <_Watchdog_Adjust> 40017424: 94 22 80 10 sub %o2, %l0, %o2
} watchdogs->last_snapshot = snapshot;
40017428: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
} static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
4001742c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 40017430: 40 00 02 bc call 40017f20 <_Chain_Get> 40017434: 01 00 00 00 nop
if ( timer == NULL ) {
40017438: 92 92 20 00 orcc %o0, 0, %o1
4001743c: 02 80 00 0c be 4001746c <_Timer_server_Body+0xe8>
40017440: 01 00 00 00 nop
static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017444: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 40017448: 80 a0 60 01 cmp %g1, 1
4001744c: 02 80 00 05 be 40017460 <_Timer_server_Body+0xdc>
40017450: 90 10 00 15 mov %l5, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40017454: 80 a0 60 03 cmp %g1, 3
40017458: 12 bf ff f5 bne 4001742c <_Timer_server_Body+0xa8> <== NEVER TAKEN
4001745c: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017460: 40 00 11 a9 call 4001bb04 <_Watchdog_Insert> 40017464: 92 02 60 10 add %o1, 0x10, %o1 40017468: 30 bf ff f1 b,a 4001742c <_Timer_server_Body+0xa8>
* of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level );
4001746c: 7f ff e0 11 call 4000f4b0 <sparc_disable_interrupts> 40017470: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
40017474: c2 07 bf f4 ld [ %fp + -12 ], %g1 40017478: 80 a0 40 16 cmp %g1, %l6
4001747c: 12 80 00 0a bne 400174a4 <_Timer_server_Body+0x120> <== NEVER TAKEN
40017480: 01 00 00 00 nop
ts->insert_chain = NULL;
40017484: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
40017488: 7f ff e0 0e call 4000f4c0 <sparc_enable_interrupts> 4001748c: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) {
40017490: c2 07 bf e8 ld [ %fp + -24 ], %g1 40017494: 80 a0 40 13 cmp %g1, %l3
40017498: 12 80 00 06 bne 400174b0 <_Timer_server_Body+0x12c>
4001749c: 01 00 00 00 nop 400174a0: 30 80 00 1a b,a 40017508 <_Timer_server_Body+0x184>
ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level );
400174a4: 7f ff e0 07 call 4000f4c0 <sparc_enable_interrupts> <== NOT EXECUTED 400174a8: 01 00 00 00 nop <== NOT EXECUTED 400174ac: 30 bf ff ca b,a 400173d4 <_Timer_server_Body+0x50> <== NOT EXECUTED
/* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level );
400174b0: 7f ff e0 00 call 4000f4b0 <sparc_disable_interrupts> 400174b4: 01 00 00 00 nop 400174b8: 84 10 00 08 mov %o0, %g2
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
400174bc: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain))
400174c0: 80 a4 00 13 cmp %l0, %l3
400174c4: 02 80 00 0e be 400174fc <_Timer_server_Body+0x178>
400174c8: 80 a4 20 00 cmp %l0, 0
{ Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next;
400174cc: c2 04 00 00 ld [ %l0 ], %g1
the_chain->first = new_first;
400174d0: c2 27 bf e8 st %g1, [ %fp + -24 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) {
400174d4: 02 80 00 0a be 400174fc <_Timer_server_Body+0x178> <== NEVER TAKEN
400174d8: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
400174dc: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
400174e0: 7f ff df f8 call 4000f4c0 <sparc_enable_interrupts> 400174e4: 01 00 00 00 nop
/* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data );
400174e8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 400174ec: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 400174f0: 9f c0 40 00 call %g1 400174f4: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
400174f8: 30 bf ff ee b,a 400174b0 <_Timer_server_Body+0x12c>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level );
400174fc: 7f ff df f1 call 4000f4c0 <sparc_enable_interrupts> 40017500: 90 10 00 02 mov %g2, %o0 40017504: 30 bf ff b3 b,a 400173d0 <_Timer_server_Body+0x4c>
* the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false;
40017508: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/* * Block until there is something to do. */ _Thread_Disable_dispatch();
4001750c: 7f ff ff 6e call 400172c4 <_Thread_Disable_dispatch> 40017510: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
40017514: d0 06 00 00 ld [ %i0 ], %o0 40017518: 40 00 0e 9b call 4001af84 <_Thread_Set_state> 4001751c: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
40017520: 7f ff ff 6f call 400172dc <_Timer_server_Reset_interval_system_watchdog> 40017524: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
40017528: 7f ff ff 82 call 40017330 <_Timer_server_Reset_tod_system_watchdog> 4001752c: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
40017530: 40 00 0b fd call 4001a524 <_Thread_Enable_dispatch> 40017534: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40017538: 90 10 00 1d mov %i5, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true;
4001753c: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40017540: 40 00 11 cb call 4001bc6c <_Watchdog_Remove> 40017544: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40017548: 40 00 11 c9 call 4001bc6c <_Watchdog_Remove> 4001754c: 90 10 00 17 mov %l7, %o0 40017550: 30 bf ff a0 b,a 400173d0 <_Timer_server_Body+0x4c>
40017554 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) {
40017554: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40017558: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 4001755c: 80 a0 60 00 cmp %g1, 0
40017560: 12 80 00 49 bne 40017684 <_Timer_server_Schedule_operation_method+0x130>
40017564: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch();
40017568: 7f ff ff 57 call 400172c4 <_Thread_Disable_dispatch> 4001756c: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017570: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 40017574: 80 a0 60 01 cmp %g1, 1
40017578: 12 80 00 1f bne 400175f4 <_Timer_server_Schedule_operation_method+0xa0>
4001757c: 80 a0 60 03 cmp %g1, 3
/* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
40017580: 7f ff df cc call 4000f4b0 <sparc_disable_interrupts> 40017584: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40017588: 03 10 00 f6 sethi %hi(0x4003d800), %g1 4001758c: c4 00 63 34 ld [ %g1 + 0x334 ], %g2 ! 4003db34 <_Watchdog_Ticks_since_boot>
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
40017590: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40017594: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40017598: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
4001759c: 80 a0 40 03 cmp %g1, %g3
400175a0: 02 80 00 08 be 400175c0 <_Timer_server_Schedule_operation_method+0x6c>
400175a4: 88 20 80 04 sub %g2, %g4, %g4
/* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval;
400175a8: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
400175ac: 80 a3 40 04 cmp %o5, %g4
400175b0: 08 80 00 03 bleu 400175bc <_Timer_server_Schedule_operation_method+0x68>
400175b4: 86 10 20 00 clr %g3
delta_interval -= delta;
400175b8: 86 23 40 04 sub %o5, %g4, %g3
} else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval;
400175bc: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
} ts->Interval_watchdogs.last_snapshot = snapshot;
400175c0: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
400175c4: 7f ff df bf call 4000f4c0 <sparc_enable_interrupts> 400175c8: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
400175cc: 90 06 20 30 add %i0, 0x30, %o0 400175d0: 40 00 11 4d call 4001bb04 <_Watchdog_Insert> 400175d4: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400175d8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 400175dc: 80 a0 60 00 cmp %g1, 0
400175e0: 12 80 00 27 bne 4001767c <_Timer_server_Schedule_operation_method+0x128>
400175e4: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
400175e8: 7f ff ff 3d call 400172dc <_Timer_server_Reset_interval_system_watchdog> 400175ec: 90 10 00 18 mov %i0, %o0 400175f0: 30 80 00 23 b,a 4001767c <_Timer_server_Schedule_operation_method+0x128>
} } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 400175f4: 12 80 00 22 bne 4001767c <_Timer_server_Schedule_operation_method+0x128>
400175f8: 01 00 00 00 nop
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level );
400175fc: 7f ff df ad call 4000f4b0 <sparc_disable_interrupts> 40017600: 01 00 00 00 nop
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
40017604: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot;
40017608: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001760c: 03 10 00 f6 sethi %hi(0x4003d800), %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
40017610: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
40017614: 80 a0 80 03 cmp %g2, %g3
40017618: 02 80 00 0d be 4001764c <_Timer_server_Schedule_operation_method+0xf8>
4001761c: c2 00 62 80 ld [ %g1 + 0x280 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval;
40017620: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
40017624: 80 a0 40 0d cmp %g1, %o5
} } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot;
40017628: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 4001762c: 08 80 00 07 bleu 40017648 <_Timer_server_Schedule_operation_method+0xf4>
40017630: 86 20 c0 01 sub %g3, %g1, %g3
/* * We advanced in time. */ delta = snapshot - last_snapshot;
40017634: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
40017638: 80 a1 00 0d cmp %g4, %o5
4001763c: 08 80 00 03 bleu 40017648 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
40017640: 86 10 20 00 clr %g3
delta_interval -= delta;
40017644: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval;
40017648: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
} ts->TOD_watchdogs.last_snapshot = snapshot;
4001764c: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
40017650: 7f ff df 9c call 4000f4c0 <sparc_enable_interrupts> 40017654: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017658: 90 06 20 68 add %i0, 0x68, %o0 4001765c: 40 00 11 2a call 4001bb04 <_Watchdog_Insert> 40017660: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017664: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 40017668: 80 a0 60 00 cmp %g1, 0
4001766c: 12 80 00 04 bne 4001767c <_Timer_server_Schedule_operation_method+0x128>
40017670: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
40017674: 7f ff ff 2f call 40017330 <_Timer_server_Reset_tod_system_watchdog> 40017678: 90 10 00 18 mov %i0, %o0
} } _Thread_Enable_dispatch();
4001767c: 40 00 0b aa call 4001a524 <_Thread_Enable_dispatch> 40017680: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node );
40017684: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 40017688: 40 00 02 10 call 40017ec8 <_Chain_Append> 4001768c: 81 e8 00 00 restore
4000bab4 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec )
4000bab4: c6 02 00 00 ld [ %o0 ], %g3 4000bab8: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) {
4000babc: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000bac0: 80 a0 c0 02 cmp %g3, %g2
4000bac4: 14 80 00 0b bg 4000baf0 <_Timespec_Greater_than+0x3c>
4000bac8: 90 10 20 01 mov 1, %o0
return true; if ( lhs->tv_sec < rhs->tv_sec )
4000bacc: 80 a0 c0 02 cmp %g3, %g2
4000bad0: 06 80 00 08 bl 4000baf0 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
4000bad4: 90 10 20 00 clr %o0
#include <rtems/system.h> #include <rtems/score/timespec.h> #include <rtems/score/tod.h> bool _Timespec_Greater_than(
4000bad8: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000badc: c2 02 60 04 ld [ %o1 + 4 ], %g1 4000bae0: 80 a0 80 01 cmp %g2, %g1
4000bae4: 14 80 00 03 bg 4000baf0 <_Timespec_Greater_than+0x3c>
4000bae8: 90 10 20 01 mov 1, %o0 4000baec: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; }
4000baf0: 81 c3 e0 08 retl
40009c04 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) {
40009c04: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40009c08: 23 10 00 55 sethi %hi(0x40015400), %l1
the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009c0c: b2 0e 60 ff and %i1, 0xff, %i1
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40009c10: a2 14 61 88 or %l1, 0x188, %l1 40009c14: 10 80 00 09 b 40009c38 <_User_extensions_Fatal+0x34> 40009c18: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL )
40009c1c: 80 a0 60 00 cmp %g1, 0
40009c20: 02 80 00 05 be 40009c34 <_User_extensions_Fatal+0x30>
40009c24: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40009c28: 92 10 00 19 mov %i1, %o1 40009c2c: 9f c0 40 00 call %g1 40009c30: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) {
40009c34: e0 04 20 04 ld [ %l0 + 4 ], %l0
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40009c38: 80 a4 00 11 cmp %l0, %l1
40009c3c: 32 bf ff f8 bne,a 40009c1c <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN
40009c40: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } }
40009c44: 81 c7 e0 08 ret <== NOT EXECUTED 40009c48: 81 e8 00 00 restore <== NOT EXECUTED
40009ac8 <_User_extensions_Handler_initialization>: #include <rtems/score/userext.h> #include <rtems/score/wkspace.h> #include <string.h> void _User_extensions_Handler_initialization(void) {
40009ac8: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
40009acc: 03 10 00 52 sethi %hi(0x40014800), %g1 40009ad0: 82 10 61 38 or %g1, 0x138, %g1 ! 40014938 <Configuration>
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40009ad4: 05 10 00 55 sethi %hi(0x40015400), %g2
initial_extensions = Configuration.User_extension_table;
40009ad8: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions;
40009adc: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 40009ae0: 82 10 a1 88 or %g2, 0x188, %g1 40009ae4: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
40009ae8: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
40009aec: c2 20 60 08 st %g1, [ %g1 + 8 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40009af0: c6 20 a1 88 st %g3, [ %g2 + 0x188 ] 40009af4: 05 10 00 54 sethi %hi(0x40015000), %g2 40009af8: 82 10 a3 6c or %g2, 0x36c, %g1 ! 4001536c <_User_extensions_Switches_list> 40009afc: 86 00 60 04 add %g1, 4, %g3
the_chain->permanent_null = NULL;
40009b00: c0 20 60 04 clr [ %g1 + 4 ]
*/ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain);
40009b04: c6 20 a3 6c st %g3, [ %g2 + 0x36c ]
initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) {
40009b08: 80 a4 e0 00 cmp %l3, 0
40009b0c: 02 80 00 1b be 40009b78 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40009b10: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control )
40009b14: 83 2c a0 02 sll %l2, 2, %g1 40009b18: a1 2c a0 04 sll %l2, 4, %l0 40009b1c: a0 24 00 01 sub %l0, %g1, %l0 40009b20: a0 04 00 12 add %l0, %l2, %l0 40009b24: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
40009b28: 40 00 01 6a call 4000a0d0 <_Workspace_Allocate_or_fatal_error> 40009b2c: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
40009b30: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error(
40009b34: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control ) ); memset (
40009b38: 92 10 20 00 clr %o1 40009b3c: 40 00 14 37 call 4000ec18 <memset> 40009b40: a0 10 20 00 clr %l0
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009b44: 10 80 00 0b b 40009b70 <_User_extensions_Handler_initialization+0xa8> 40009b48: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table;
40009b4c: 90 04 60 14 add %l1, 0x14, %o0 40009b50: 92 04 c0 09 add %l3, %o1, %o1 40009b54: 40 00 13 f2 call 4000eb1c <memcpy> 40009b58: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
40009b5c: 90 10 00 11 mov %l1, %o0 40009b60: 40 00 0b c6 call 4000ca78 <_User_extensions_Add_set> 40009b64: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++;
40009b68: a2 04 60 34 add %l1, 0x34, %l1
extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) {
40009b6c: 80 a4 00 12 cmp %l0, %l2
40009b70: 0a bf ff f7 bcs 40009b4c <_User_extensions_Handler_initialization+0x84>
40009b74: 93 2c 20 05 sll %l0, 5, %o1 40009b78: 81 c7 e0 08 ret 40009b7c: 81 e8 00 00 restore
40009bc4 <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) {
40009bc4: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40009bc8: 23 10 00 55 sethi %hi(0x40015400), %l1 40009bcc: a2 14 61 88 or %l1, 0x188, %l1 ! 40015588 <_User_extensions_List> 40009bd0: 10 80 00 08 b 40009bf0 <_User_extensions_Thread_exitted+0x2c> 40009bd4: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL )
40009bd8: 80 a0 60 00 cmp %g1, 0
40009bdc: 22 80 00 05 be,a 40009bf0 <_User_extensions_Thread_exitted+0x2c>
40009be0: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
40009be4: 9f c0 40 00 call %g1 40009be8: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) {
40009bec: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ;
40009bf0: 80 a4 00 11 cmp %l0, %l1
40009bf4: 32 bf ff f9 bne,a 40009bd8 <_User_extensions_Thread_exitted+0x14>
40009bf8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } }
40009bfc: 81 c7 e0 08 ret 40009c00: 81 e8 00 00 restore
4000bf78 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) {
4000bf78: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; _ISR_Disable( level );
4000bf7c: 7f ff db 79 call 40002d60 <sparc_disable_interrupts> 4000bf80: a0 10 00 18 mov %i0, %l0
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
4000bf84: c2 06 00 00 ld [ %i0 ], %g1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000bf88: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) {
4000bf8c: 80 a0 40 11 cmp %g1, %l1
4000bf90: 02 80 00 1f be 4000c00c <_Watchdog_Adjust+0x94>
4000bf94: 80 a6 60 00 cmp %i1, 0
switch ( direction ) { 4000bf98: 02 80 00 1a be 4000c000 <_Watchdog_Adjust+0x88>
4000bf9c: a4 10 20 01 mov 1, %l2 4000bfa0: 80 a6 60 01 cmp %i1, 1
4000bfa4: 12 80 00 1a bne 4000c00c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000bfa8: 01 00 00 00 nop
case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units;
4000bfac: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 4000bfb0: 10 80 00 07 b 4000bfcc <_Watchdog_Adjust+0x54> 4000bfb4: b4 00 80 1a add %g2, %i2, %i2
break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) {
4000bfb8: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 4000bfbc: 80 a6 80 19 cmp %i2, %i1
4000bfc0: 3a 80 00 05 bcc,a 4000bfd4 <_Watchdog_Adjust+0x5c>
4000bfc4: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
4000bfc8: b4 26 40 1a sub %i1, %i2, %i2
break;
4000bfcc: 10 80 00 10 b 4000c00c <_Watchdog_Adjust+0x94> 4000bfd0: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level );
4000bfd4: 7f ff db 67 call 40002d70 <sparc_enable_interrupts> 4000bfd8: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000bfdc: 40 00 00 92 call 4000c224 <_Watchdog_Tickle> 4000bfe0: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000bfe4: 7f ff db 5f call 40002d60 <sparc_disable_interrupts> 4000bfe8: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000bfec: c2 04 00 00 ld [ %l0 ], %g1 4000bff0: 80 a0 40 11 cmp %g1, %l1
4000bff4: 02 80 00 06 be 4000c00c <_Watchdog_Adjust+0x94>
4000bff8: 01 00 00 00 nop
while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval;
4000bffc: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) {
4000c000: 80 a6 a0 00 cmp %i2, 0
4000c004: 32 bf ff ed bne,a 4000bfb8 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
4000c008: c2 04 00 00 ld [ %l0 ], %g1
} break; } } _ISR_Enable( level );
4000c00c: 7f ff db 59 call 40002d70 <sparc_enable_interrupts> 4000c010: 91 e8 00 08 restore %g0, %o0, %o0
40009ee4 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) {
40009ee4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level );
40009ee8: 7f ff df 93 call 40001d34 <sparc_disable_interrupts> 40009eec: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
40009ef0: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
40009ef4: 80 a6 20 01 cmp %i0, 1
40009ef8: 22 80 00 1d be,a 40009f6c <_Watchdog_Remove+0x88>
40009efc: c0 24 20 08 clr [ %l0 + 8 ]
40009f00: 0a 80 00 1c bcs 40009f70 <_Watchdog_Remove+0x8c>
40009f04: 03 10 00 55 sethi %hi(0x40015400), %g1 40009f08: 80 a6 20 03 cmp %i0, 3
40009f0c: 18 80 00 19 bgu 40009f70 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
40009f10: 01 00 00 00 nop 40009f14: c2 04 00 00 ld [ %l0 ], %g1
break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE;
40009f18: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) )
40009f1c: c4 00 40 00 ld [ %g1 ], %g2 40009f20: 80 a0 a0 00 cmp %g2, 0
40009f24: 02 80 00 07 be 40009f40 <_Watchdog_Remove+0x5c>
40009f28: 05 10 00 55 sethi %hi(0x40015400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
40009f2c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 40009f30: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 40009f34: 84 00 c0 02 add %g3, %g2, %g2 40009f38: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009f3c: 05 10 00 55 sethi %hi(0x40015400), %g2 40009f40: c4 00 a0 a0 ld [ %g2 + 0xa0 ], %g2 ! 400154a0 <_Watchdog_Sync_count> 40009f44: 80 a0 a0 00 cmp %g2, 0
40009f48: 22 80 00 07 be,a 40009f64 <_Watchdog_Remove+0x80>
40009f4c: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009f50: 05 10 00 55 sethi %hi(0x40015400), %g2 40009f54: c6 00 a1 d4 ld [ %g2 + 0x1d4 ], %g3 ! 400155d4 <_Per_CPU_Information+0x8> 40009f58: 05 10 00 55 sethi %hi(0x40015400), %g2 40009f5c: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] ! 40015410 <_Watchdog_Sync_level>
{ Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous;
40009f60: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
40009f64: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
40009f68: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009f6c: 03 10 00 55 sethi %hi(0x40015400), %g1 40009f70: c2 00 60 a4 ld [ %g1 + 0xa4 ], %g1 ! 400154a4 <_Watchdog_Ticks_since_boot> 40009f74: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
40009f78: 7f ff df 73 call 40001d44 <sparc_enable_interrupts> 40009f7c: 01 00 00 00 nop
return( previous_state ); }
40009f80: 81 c7 e0 08 ret 40009f84: 81 e8 00 00 restore
4000b78c <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) {
4000b78c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level; Chain_Node *node; _ISR_Disable( level );
4000b790: 7f ff dc 4b call 400028bc <sparc_disable_interrupts> 4000b794: a0 10 00 18 mov %i0, %l0 4000b798: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000b79c: 11 10 00 75 sethi %hi(0x4001d400), %o0 4000b7a0: 94 10 00 19 mov %i1, %o2 4000b7a4: 90 12 21 20 or %o0, 0x120, %o0 4000b7a8: 7f ff e6 47 call 400050c4 <printk> 4000b7ac: 92 10 00 10 mov %l0, %o1
*/ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain));
4000b7b0: e2 06 40 00 ld [ %i1 ], %l1
*/ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null;
4000b7b4: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
4000b7b8: 80 a4 40 19 cmp %l1, %i1
4000b7bc: 02 80 00 0e be 4000b7f4 <_Watchdog_Report_chain+0x68>
4000b7c0: 11 10 00 75 sethi %hi(0x4001d400), %o0
node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch );
4000b7c4: 92 10 00 11 mov %l1, %o1 4000b7c8: 40 00 00 10 call 4000b808 <_Watchdog_Report> 4000b7cc: 90 10 20 00 clr %o0
_ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next )
4000b7d0: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ;
4000b7d4: 80 a4 40 19 cmp %l1, %i1
4000b7d8: 12 bf ff fc bne 4000b7c8 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000b7dc: 92 10 00 11 mov %l1, %o1
{ Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name );
4000b7e0: 11 10 00 75 sethi %hi(0x4001d400), %o0 4000b7e4: 92 10 00 10 mov %l0, %o1 4000b7e8: 7f ff e6 37 call 400050c4 <printk> 4000b7ec: 90 12 21 38 or %o0, 0x138, %o0 4000b7f0: 30 80 00 03 b,a 4000b7fc <_Watchdog_Report_chain+0x70>
} else { printk( "Chain is empty\n" );
4000b7f4: 7f ff e6 34 call 400050c4 <printk> 4000b7f8: 90 12 21 48 or %o0, 0x148, %o0
} _ISR_Enable( level );
4000b7fc: 7f ff dc 34 call 400028cc <sparc_enable_interrupts> 4000b800: 81 e8 00 00 restore
40009ad4 <rtems_iterate_over_all_threads>: #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) {
40009ad4: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine )
40009ad8: 80 a6 20 00 cmp %i0, 0
40009adc: 02 80 00 1d be 40009b50 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
40009ae0: 21 10 00 9d sethi %hi(0x40027400), %l0 40009ae4: a0 14 22 e0 or %l0, 0x2e0, %l0 ! 400276e0 <_Objects_Information_table+0x4>
#endif #include <rtems/system.h> #include <rtems/score/thread.h> void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
40009ae8: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { if ( !_Objects_Information_table[ api_index ] )
40009aec: c2 04 00 00 ld [ %l0 ], %g1 40009af0: 80 a0 60 00 cmp %g1, 0
40009af4: 22 80 00 14 be,a 40009b44 <rtems_iterate_over_all_threads+0x70>
40009af8: a0 04 20 04 add %l0, 4, %l0
continue; information = _Objects_Information_table[ api_index ][ 1 ];
40009afc: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
40009b00: 80 a4 a0 00 cmp %l2, 0
40009b04: 12 80 00 0b bne 40009b30 <rtems_iterate_over_all_threads+0x5c>
40009b08: a2 10 20 01 mov 1, %l1
continue; for ( i=1 ; i <= information->maximum ; i++ ) {
40009b0c: 10 80 00 0e b 40009b44 <rtems_iterate_over_all_threads+0x70> 40009b10: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40009b14: 83 2c 60 02 sll %l1, 2, %g1 40009b18: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
40009b1c: 80 a2 20 00 cmp %o0, 0
40009b20: 02 80 00 04 be 40009b30 <rtems_iterate_over_all_threads+0x5c><== NEVER TAKEN
40009b24: a2 04 60 01 inc %l1
continue; (*routine)(the_thread);
40009b28: 9f c6 00 00 call %i0 40009b2c: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) {
40009b30: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 40009b34: 80 a4 40 01 cmp %l1, %g1
40009b38: 28 bf ff f7 bleu,a 40009b14 <rtems_iterate_over_all_threads+0x40>
40009b3c: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 40009b40: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40009b44: 80 a4 00 13 cmp %l0, %l3
40009b48: 32 bf ff ea bne,a 40009af0 <rtems_iterate_over_all_threads+0x1c>
40009b4c: c2 04 00 00 ld [ %l0 ], %g1 40009b50: 81 c7 e0 08 ret 40009b54: 81 e8 00 00 restore
40014d24 <rtems_partition_create>: uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) {
40014d24: 9d e3 bf a0 save %sp, -96, %sp 40014d28: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) )
40014d2c: 80 a4 20 00 cmp %l0, 0
40014d30: 02 80 00 1f be 40014dac <rtems_partition_create+0x88>
40014d34: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME; if ( !starting_address )
40014d38: 80 a6 60 00 cmp %i1, 0
40014d3c: 02 80 00 1c be 40014dac <rtems_partition_create+0x88>
40014d40: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !id )
40014d44: 80 a7 60 00 cmp %i5, 0
40014d48: 02 80 00 19 be 40014dac <rtems_partition_create+0x88> <== NEVER TAKEN
40014d4c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 40014d50: 02 80 00 32 be 40014e18 <rtems_partition_create+0xf4>
40014d54: 80 a6 a0 00 cmp %i2, 0
40014d58: 02 80 00 30 be 40014e18 <rtems_partition_create+0xf4>
40014d5c: 80 a6 80 1b cmp %i2, %i3
40014d60: 0a 80 00 13 bcs 40014dac <rtems_partition_create+0x88>
40014d64: b0 10 20 08 mov 8, %i0 40014d68: 80 8e e0 07 btst 7, %i3
40014d6c: 12 80 00 10 bne 40014dac <rtems_partition_create+0x88>
40014d70: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 40014d74: 12 80 00 0e bne 40014dac <rtems_partition_create+0x88>
40014d78: b0 10 20 09 mov 9, %i0 40014d7c: 03 10 00 f6 sethi %hi(0x4003d800), %g1 40014d80: c4 00 61 f8 ld [ %g1 + 0x1f8 ], %g2 ! 4003d9f8 <_Thread_Dispatch_disable_level> 40014d84: 84 00 a0 01 inc %g2 40014d88: c4 20 61 f8 st %g2, [ %g1 + 0x1f8 ]
* This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40014d8c: 25 10 00 f6 sethi %hi(0x4003d800), %l2 40014d90: 40 00 12 4a call 400196b8 <_Objects_Allocate> 40014d94: 90 14 a0 04 or %l2, 4, %o0 ! 4003d804 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) {
40014d98: a2 92 20 00 orcc %o0, 0, %l1
40014d9c: 12 80 00 06 bne 40014db4 <rtems_partition_create+0x90>
40014da0: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
40014da4: 40 00 15 e0 call 4001a524 <_Thread_Enable_dispatch> 40014da8: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40014dac: 81 c7 e0 08 ret 40014db0: 81 e8 00 00 restore
_Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address;
40014db4: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40014db8: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40014dbc: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
40014dc0: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
40014dc4: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size );
40014dc8: 40 00 5e f1 call 4002c98c <.udiv> 40014dcc: 90 10 00 1a mov %i2, %o0
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
40014dd0: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40014dd4: 94 10 00 08 mov %o0, %o2
the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address,
40014dd8: 96 10 00 1b mov %i3, %o3 40014ddc: a6 04 60 24 add %l1, 0x24, %l3 40014de0: 40 00 0c 5f call 40017f5c <_Chain_Initialize> 40014de4: 90 10 00 13 mov %l3, %o0
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
40014de8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
40014dec: a4 14 a0 04 or %l2, 4, %l2
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
40014df0: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object(
40014df4: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object;
40014df8: 85 28 a0 02 sll %g2, 2, %g2 40014dfc: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name;
40014e00: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id;
40014e04: c2 27 40 00 st %g1, [ %i5 ]
name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch();
40014e08: 40 00 15 c7 call 4001a524 <_Thread_Enable_dispatch> 40014e0c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40014e10: 81 c7 e0 08 ret 40014e14: 81 e8 00 00 restore
if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE;
40014e18: b0 10 20 08 mov 8, %i0
); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; }
40014e1c: 81 c7 e0 08 ret 40014e20: 81 e8 00 00 restore
40007d5c <rtems_rate_monotonic_period>: rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) {
40007d5c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location );
40007d60: 11 10 00 7b sethi %hi(0x4001ec00), %o0 40007d64: 92 10 00 18 mov %i0, %o1 40007d68: 90 12 23 44 or %o0, 0x344, %o0 40007d6c: 40 00 08 ee call 4000a124 <_Objects_Get> 40007d70: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) {
40007d74: c2 07 bf fc ld [ %fp + -4 ], %g1 40007d78: 80 a0 60 00 cmp %g1, 0
40007d7c: 12 80 00 66 bne 40007f14 <rtems_rate_monotonic_period+0x1b8>
40007d80: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing );
40007d84: 25 10 00 7c sethi %hi(0x4001f000), %l2
case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) {
40007d88: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 40007d8c: a4 14 a3 1c or %l2, 0x31c, %l2 40007d90: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 40007d94: 80 a0 80 01 cmp %g2, %g1
40007d98: 02 80 00 06 be 40007db0 <rtems_rate_monotonic_period+0x54>
40007d9c: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40007da0: 40 00 0b 2d call 4000aa54 <_Thread_Enable_dispatch> 40007da4: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40007da8: 81 c7 e0 08 ret 40007dac: 81 e8 00 00 restore
} if ( length == RTEMS_PERIOD_STATUS ) { 40007db0: 12 80 00 0e bne 40007de8 <rtems_rate_monotonic_period+0x8c>
40007db4: 01 00 00 00 nop
switch ( the_period->state ) {
40007db8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40007dbc: 80 a0 60 04 cmp %g1, 4
40007dc0: 18 80 00 06 bgu 40007dd8 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
40007dc4: b0 10 20 00 clr %i0 40007dc8: 83 28 60 02 sll %g1, 2, %g1 40007dcc: 05 10 00 74 sethi %hi(0x4001d000), %g2 40007dd0: 84 10 a1 94 or %g2, 0x194, %g2 ! 4001d194 <CSWTCH.2> 40007dd4: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch();
40007dd8: 40 00 0b 1f call 4000aa54 <_Thread_Enable_dispatch> 40007ddc: 01 00 00 00 nop
return( return_value );
40007de0: 81 c7 e0 08 ret 40007de4: 81 e8 00 00 restore
} _ISR_Disable( level );
40007de8: 7f ff eb 98 call 40002c48 <sparc_disable_interrupts> 40007dec: 01 00 00 00 nop 40007df0: a6 10 00 08 mov %o0, %l3
switch ( the_period->state ) {
40007df4: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 40007df8: 80 a4 60 02 cmp %l1, 2
40007dfc: 02 80 00 19 be 40007e60 <rtems_rate_monotonic_period+0x104>
40007e00: 80 a4 60 04 cmp %l1, 4
40007e04: 02 80 00 33 be 40007ed0 <rtems_rate_monotonic_period+0x174>
40007e08: 80 a4 60 00 cmp %l1, 0
40007e0c: 12 80 00 44 bne 40007f1c <rtems_rate_monotonic_period+0x1c0><== NEVER TAKEN
40007e10: 01 00 00 00 nop
case RATE_MONOTONIC_INACTIVE: { _ISR_Enable( level );
40007e14: 7f ff eb 91 call 40002c58 <sparc_enable_interrupts> 40007e18: 01 00 00 00 nop
/* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period );
40007e1c: 7f ff ff 76 call 40007bf4 <_Rate_monotonic_Initiate_statistics> 40007e20: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e24: 82 10 20 02 mov 2, %g1 40007e28: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine;
40007e2c: 03 10 00 20 sethi %hi(0x40008000), %g1 40007e30: 82 10 61 e8 or %g1, 0x1e8, %g1 ! 400081e8 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40007e34: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
40007e38: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
40007e3c: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
40007e40: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length;
40007e44: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40007e48: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007e4c: 11 10 00 7c sethi %hi(0x4001f000), %o0 40007e50: 92 04 20 10 add %l0, 0x10, %o1 40007e54: 40 00 0f f9 call 4000be38 <_Watchdog_Insert> 40007e58: 90 12 21 7c or %o0, 0x17c, %o0 40007e5c: 30 80 00 19 b,a 40007ec0 <rtems_rate_monotonic_period+0x164>
case RATE_MONOTONIC_ACTIVE: /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period );
40007e60: 7f ff ff 81 call 40007c64 <_Rate_monotonic_Update_statistics> 40007e64: 90 10 00 10 mov %l0, %o0
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007e68: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40007e6c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007e70: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length; _ISR_Enable( level );
40007e74: 7f ff eb 79 call 40002c58 <sparc_enable_interrupts> 40007e78: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40007e7c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40007e80: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007e84: 13 00 00 10 sethi %hi(0x4000), %o1 40007e88: 40 00 0d 39 call 4000b36c <_Thread_Set_state> 40007e8c: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level );
40007e90: 7f ff eb 6e call 40002c48 <sparc_disable_interrupts> 40007e94: 01 00 00 00 nop
local_state = the_period->state;
40007e98: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40007e9c: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007ea0: 7f ff eb 6e call 40002c58 <sparc_enable_interrupts> 40007ea4: 01 00 00 00 nop
/* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007ea8: 80 a4 e0 03 cmp %l3, 3
40007eac: 12 80 00 05 bne 40007ec0 <rtems_rate_monotonic_period+0x164>
40007eb0: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007eb4: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40007eb8: 40 00 09 fc call 4000a6a8 <_Thread_Clear_state> 40007ebc: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
40007ec0: 40 00 0a e5 call 4000aa54 <_Thread_Enable_dispatch> 40007ec4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40007ec8: 81 c7 e0 08 ret 40007ecc: 81 e8 00 00 restore
case RATE_MONOTONIC_EXPIRED: /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period );
40007ed0: 7f ff ff 65 call 40007c64 <_Rate_monotonic_Update_statistics> 40007ed4: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
40007ed8: 7f ff eb 60 call 40002c58 <sparc_enable_interrupts> 40007edc: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007ee0: 82 10 20 02 mov 2, %g1 40007ee4: 92 04 20 10 add %l0, 0x10, %o1 40007ee8: 11 10 00 7c sethi %hi(0x4001f000), %o0 40007eec: 90 12 21 7c or %o0, 0x17c, %o0 ! 4001f17c <_Watchdog_Ticks_chain> 40007ef0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
40007ef4: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units;
40007ef8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007efc: 40 00 0f cf call 4000be38 <_Watchdog_Insert> 40007f00: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch();
40007f04: 40 00 0a d4 call 4000aa54 <_Thread_Enable_dispatch> 40007f08: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007f0c: 81 c7 e0 08 ret 40007f10: 81 e8 00 00 restore
#endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID;
40007f14: 81 c7 e0 08 ret 40007f18: 91 e8 20 04 restore %g0, 4, %o0
}
40007f1c: 81 c7 e0 08 ret <== NOT EXECUTED 40007f20: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
40007f24 <rtems_rate_monotonic_report_statistics_with_plugin>: */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) {
40007f24: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print )
40007f28: 80 a6 60 00 cmp %i1, 0
40007f2c: 02 80 00 79 be 40008110 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
40007f30: 90 10 00 18 mov %i0, %o0
return; (*print)( context, "Period information by period\n" );
40007f34: 13 10 00 74 sethi %hi(0x4001d000), %o1 40007f38: 9f c6 40 00 call %i1 40007f3c: 92 12 61 a8 or %o1, 0x1a8, %o1 ! 4001d1a8 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" );
40007f40: 90 10 00 18 mov %i0, %o0 40007f44: 13 10 00 74 sethi %hi(0x4001d000), %o1 40007f48: 9f c6 40 00 call %i1 40007f4c: 92 12 61 c8 or %o1, 0x1c8, %o1 ! 4001d1c8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007f50: 90 10 00 18 mov %i0, %o0 40007f54: 13 10 00 74 sethi %hi(0x4001d000), %o1 40007f58: 9f c6 40 00 call %i1 40007f5c: 92 12 61 f0 or %o1, 0x1f0, %o1 ! 4001d1f0 <CSWTCH.2+0x5c>
Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED "
40007f60: 90 10 00 18 mov %i0, %o0 40007f64: 13 10 00 74 sethi %hi(0x4001d000), %o1 40007f68: 9f c6 40 00 call %i1 40007f6c: 92 12 62 18 or %o1, 0x218, %o1 ! 4001d218 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " "
40007f70: 90 10 00 18 mov %i0, %o0 40007f74: 13 10 00 74 sethi %hi(0x4001d000), %o1 40007f78: 9f c6 40 00 call %i1 40007f7c: 92 12 62 68 or %o1, 0x268, %o1 ! 4001d268 <CSWTCH.2+0xd4>
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40007f80: 3b 10 00 7b sethi %hi(0x4001ec00), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context,
40007f84: 2b 10 00 74 sethi %hi(0x4001d000), %l5
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40007f88: 82 17 63 44 or %i5, 0x344, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context,
40007f8c: 27 10 00 74 sethi %hi(0x4001d000), %l3
struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context,
40007f90: 35 10 00 74 sethi %hi(0x4001d000), %i2
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40007f94: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007f98: ae 07 bf a0 add %fp, -96, %l7
if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status );
40007f9c: ac 07 bf d8 add %fp, -40, %l6
#if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name );
40007fa0: a4 07 bf f8 add %fp, -8, %l2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
40007fa4: aa 15 62 b8 or %l5, 0x2b8, %l5
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time;
40007fa8: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007fac: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
40007fb0: a6 14 e2 d0 or %l3, 0x2d0, %l3
{ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time;
40007fb4: b8 07 bf d0 add %fp, -48, %i4
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40007fb8: 10 80 00 52 b 40008100 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc> 40007fbc: b4 16 a2 f0 or %i2, 0x2f0, %i2
id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007fc0: 40 00 17 a7 call 4000de5c <rtems_rate_monotonic_get_statistics> 40007fc4: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
40007fc8: 80 a2 20 00 cmp %o0, 0
40007fcc: 32 80 00 4c bne,a 400080fc <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007fd0: a0 04 20 01 inc %l0
continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status );
40007fd4: 92 10 00 16 mov %l6, %o1 40007fd8: 40 00 17 ce call 4000df10 <rtems_rate_monotonic_get_status> 40007fdc: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name );
40007fe0: d0 07 bf d8 ld [ %fp + -40 ], %o0 40007fe4: 92 10 20 05 mov 5, %o1 40007fe8: 40 00 00 ae call 400082a0 <rtems_object_get_name> 40007fec: 94 10 00 12 mov %l2, %o2
/* * Print part of report line that is not dependent on granularity */ (*print)( context,
40007ff0: d8 1f bf a0 ldd [ %fp + -96 ], %o4 40007ff4: 92 10 00 15 mov %l5, %o1 40007ff8: 90 10 00 18 mov %i0, %o0 40007ffc: 94 10 00 10 mov %l0, %o2 40008000: 9f c6 40 00 call %i1 40008004: 96 10 00 12 mov %l2, %o3
); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) {
40008008: d2 07 bf a0 ld [ %fp + -96 ], %o1 4000800c: 80 a2 60 00 cmp %o1, 0
40008010: 12 80 00 08 bne 40008030 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
40008014: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
40008018: 90 10 00 18 mov %i0, %o0 4000801c: 13 10 00 71 sethi %hi(0x4001c400), %o1 40008020: 9f c6 40 00 call %i1 40008024: 92 12 60 88 or %o1, 0x88, %o1 ! 4001c488 <_rodata_start+0x158>
continue;
40008028: 10 80 00 35 b 400080fc <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8> 4000802c: a0 04 20 01 inc %l0
struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40008030: 40 00 0e 5f call 4000b9ac <_Timespec_Divide_by_integer> 40008034: 90 10 00 14 mov %l4, %o0
(*print)( context,
40008038: d0 07 bf ac ld [ %fp + -84 ], %o0 4000803c: 40 00 44 1a call 400190a4 <.div> 40008040: 92 10 23 e8 mov 0x3e8, %o1 40008044: 96 10 00 08 mov %o0, %o3 40008048: d0 07 bf b4 ld [ %fp + -76 ], %o0 4000804c: d6 27 bf 9c st %o3, [ %fp + -100 ] 40008050: 40 00 44 15 call 400190a4 <.div> 40008054: 92 10 23 e8 mov 0x3e8, %o1 40008058: c2 07 bf f0 ld [ %fp + -16 ], %g1 4000805c: b6 10 00 08 mov %o0, %i3 40008060: d0 07 bf f4 ld [ %fp + -12 ], %o0 40008064: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40008068: 40 00 44 0f call 400190a4 <.div> 4000806c: 92 10 23 e8 mov 0x3e8, %o1 40008070: d8 07 bf b0 ld [ %fp + -80 ], %o4 40008074: d6 07 bf 9c ld [ %fp + -100 ], %o3 40008078: d4 07 bf a8 ld [ %fp + -88 ], %o2 4000807c: 9a 10 00 1b mov %i3, %o5 40008080: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 40008084: 92 10 00 13 mov %l3, %o1 40008088: 9f c6 40 00 call %i1 4000808c: 90 10 00 18 mov %i0, %o0
struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40008090: d2 07 bf a0 ld [ %fp + -96 ], %o1 40008094: 94 10 00 11 mov %l1, %o2 40008098: 40 00 0e 45 call 4000b9ac <_Timespec_Divide_by_integer> 4000809c: 90 10 00 1c mov %i4, %o0
(*print)( context,
400080a0: d0 07 bf c4 ld [ %fp + -60 ], %o0 400080a4: 40 00 44 00 call 400190a4 <.div> 400080a8: 92 10 23 e8 mov 0x3e8, %o1 400080ac: 96 10 00 08 mov %o0, %o3 400080b0: d0 07 bf cc ld [ %fp + -52 ], %o0 400080b4: d6 27 bf 9c st %o3, [ %fp + -100 ] 400080b8: 40 00 43 fb call 400190a4 <.div> 400080bc: 92 10 23 e8 mov 0x3e8, %o1 400080c0: c2 07 bf f0 ld [ %fp + -16 ], %g1 400080c4: b6 10 00 08 mov %o0, %i3 400080c8: d0 07 bf f4 ld [ %fp + -12 ], %o0 400080cc: 92 10 23 e8 mov 0x3e8, %o1 400080d0: 40 00 43 f5 call 400190a4 <.div> 400080d4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 400080d8: d4 07 bf c0 ld [ %fp + -64 ], %o2 400080dc: d6 07 bf 9c ld [ %fp + -100 ], %o3 400080e0: d8 07 bf c8 ld [ %fp + -56 ], %o4 400080e4: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 400080e8: 92 10 00 1a mov %i2, %o1 400080ec: 90 10 00 18 mov %i0, %o0 400080f0: 9f c6 40 00 call %i1 400080f4: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) {
400080f8: a0 04 20 01 inc %l0
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ;
400080fc: 82 17 63 44 or %i5, 0x344, %g1
/* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ;
40008100: c2 00 60 0c ld [ %g1 + 0xc ], %g1 40008104: 80 a4 00 01 cmp %l0, %g1
40008108: 08 bf ff ae bleu 40007fc0 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
4000810c: 90 10 00 10 mov %l0, %o0 40008110: 81 c7 e0 08 ret 40008114: 81 e8 00 00 restore
400162d4 <rtems_signal_send>: rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) {
400162d4: 9d e3 bf 98 save %sp, -104, %sp 400162d8: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set )
400162dc: 80 a6 60 00 cmp %i1, 0
400162e0: 02 80 00 2e be 40016398 <rtems_signal_send+0xc4>
400162e4: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
400162e8: 40 00 10 9c call 4001a558 <_Thread_Get> 400162ec: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400162f0: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location );
400162f4: a2 10 00 08 mov %o0, %l1
switch ( location ) {
400162f8: 80 a0 60 00 cmp %g1, 0
400162fc: 12 80 00 27 bne 40016398 <rtems_signal_send+0xc4>
40016300: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40016304: e0 02 21 5c ld [ %o0 + 0x15c ], %l0
asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) {
40016308: c2 04 20 0c ld [ %l0 + 0xc ], %g1 4001630c: 80 a0 60 00 cmp %g1, 0
40016310: 02 80 00 24 be 400163a0 <rtems_signal_send+0xcc>
40016314: 01 00 00 00 nop
if ( asr->is_enabled ) {
40016318: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 4001631c: 80 a0 60 00 cmp %g1, 0
40016320: 02 80 00 15 be 40016374 <rtems_signal_send+0xa0>
40016324: 01 00 00 00 nop
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
40016328: 7f ff e4 62 call 4000f4b0 <sparc_disable_interrupts> 4001632c: 01 00 00 00 nop
*signal_set |= signals;
40016330: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 40016334: b2 10 40 19 or %g1, %i1, %i1 40016338: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
4001633c: 7f ff e4 61 call 4000f4c0 <sparc_enable_interrupts> 40016340: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
40016344: 03 10 00 f7 sethi %hi(0x4003dc00), %g1 40016348: 82 10 60 64 or %g1, 0x64, %g1 ! 4003dc64 <_Per_CPU_Information> 4001634c: c4 00 60 08 ld [ %g1 + 8 ], %g2 40016350: 80 a0 a0 00 cmp %g2, 0
40016354: 02 80 00 0f be 40016390 <rtems_signal_send+0xbc>
40016358: 01 00 00 00 nop 4001635c: c4 00 60 0c ld [ %g1 + 0xc ], %g2 40016360: 80 a4 40 02 cmp %l1, %g2
40016364: 12 80 00 0b bne 40016390 <rtems_signal_send+0xbc> <== NEVER TAKEN
40016368: 84 10 20 01 mov 1, %g2
_Context_Switch_necessary = true;
4001636c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 40016370: 30 80 00 08 b,a 40016390 <rtems_signal_send+0xbc>
rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level );
40016374: 7f ff e4 4f call 4000f4b0 <sparc_disable_interrupts> 40016378: 01 00 00 00 nop
*signal_set |= signals;
4001637c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 40016380: b2 10 40 19 or %g1, %i1, %i1 40016384: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
40016388: 7f ff e4 4e call 4000f4c0 <sparc_enable_interrupts> 4001638c: 01 00 00 00 nop
} else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch();
40016390: 40 00 10 65 call 4001a524 <_Thread_Enable_dispatch> 40016394: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
40016398: 81 c7 e0 08 ret 4001639c: 81 e8 00 00 restore
} _Thread_Enable_dispatch();
400163a0: 40 00 10 61 call 4001a524 <_Thread_Enable_dispatch> 400163a4: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
400163a8: 81 c7 e0 08 ret 400163ac: 81 e8 00 00 restore
4000dcf4 <rtems_task_mode>: rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) {
4000dcf4: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set )
4000dcf8: 80 a6 a0 00 cmp %i2, 0
4000dcfc: 02 80 00 5f be 4000de78 <rtems_task_mode+0x184>
4000dd00: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing;
4000dd04: 03 10 00 55 sethi %hi(0x40015400), %g1 4000dd08: e2 00 61 d8 ld [ %g1 + 0x1d8 ], %l1 ! 400155d8 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dd0c: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000dd10: e0 04 61 5c ld [ %l1 + 0x15c ], %l0
asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dd14: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dd18: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000dd1c: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000dd20: 80 a0 60 00 cmp %g1, 0
4000dd24: 02 80 00 03 be 4000dd30 <rtems_task_mode+0x3c>
4000dd28: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE;
4000dd2c: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dd30: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 4000dd34: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000dd38: 7f ff f1 f8 call 4000a518 <_CPU_ISR_Get_level> 4000dd3c: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000dd40: a7 2c e0 0a sll %l3, 0xa, %l3 4000dd44: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
4000dd48: a4 14 c0 12 or %l3, %l2, %l2
/* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK )
4000dd4c: 80 8e 61 00 btst 0x100, %i1
4000dd50: 02 80 00 06 be 4000dd68 <rtems_task_mode+0x74>
4000dd54: e4 26 80 00 st %l2, [ %i2 ]
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000dd58: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000dd5c: 80 a0 00 01 cmp %g0, %g1 4000dd60: 82 60 3f ff subx %g0, -1, %g1 4000dd64: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000dd68: 80 8e 62 00 btst 0x200, %i1
4000dd6c: 02 80 00 0b be 4000dd98 <rtems_task_mode+0xa4>
4000dd70: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000dd74: 80 8e 22 00 btst 0x200, %i0
4000dd78: 22 80 00 07 be,a 4000dd94 <rtems_task_mode+0xa0>
4000dd7c: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000dd80: 82 10 20 01 mov 1, %g1 4000dd84: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000dd88: 03 10 00 54 sethi %hi(0x40015000), %g1 4000dd8c: c2 00 62 c8 ld [ %g1 + 0x2c8 ], %g1 ! 400152c8 <_Thread_Ticks_per_timeslice> 4000dd90: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
/* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK )
4000dd94: 80 8e 60 0f btst 0xf, %i1
4000dd98: 02 80 00 06 be 4000ddb0 <rtems_task_mode+0xbc>
4000dd9c: 80 8e 64 00 btst 0x400, %i1
*/ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK );
4000dda0: 90 0e 20 0f and %i0, 0xf, %o0
*/ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000dda4: 7f ff cf e8 call 40001d44 <sparc_enable_interrupts> 4000dda8: 91 2a 20 08 sll %o0, 8, %o0
*/ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) {
4000ddac: 80 8e 64 00 btst 0x400, %i1
4000ddb0: 02 80 00 14 be 4000de00 <rtems_task_mode+0x10c>
4000ddb4: 84 10 20 00 clr %g2
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
4000ddb8: c6 0c 20 08 ldub [ %l0 + 8 ], %g3
*/ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000ddbc: b0 0e 24 00 and %i0, 0x400, %i0
* Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode(
4000ddc0: 80 a0 00 18 cmp %g0, %i0 4000ddc4: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) {
4000ddc8: 80 a0 40 03 cmp %g1, %g3
4000ddcc: 22 80 00 0e be,a 4000de04 <rtems_task_mode+0x110>
4000ddd0: 03 10 00 55 sethi %hi(0x40015400), %g1
) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level );
4000ddd4: 7f ff cf d8 call 40001d34 <sparc_disable_interrupts> 4000ddd8: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
4000dddc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
4000dde0: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
4000dde4: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted;
4000dde8: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals; _ISR_Enable( _level );
4000ddec: 7f ff cf d6 call 40001d44 <sparc_enable_interrupts> 4000ddf0: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) {
4000ddf4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false;
4000ddf8: 80 a0 00 01 cmp %g0, %g1 4000ddfc: 84 40 20 00 addx %g0, 0, %g2
needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) )
4000de00: 03 10 00 55 sethi %hi(0x40015400), %g1 4000de04: c6 00 60 ec ld [ %g1 + 0xec ], %g3 ! 400154ec <_System_state_Current> 4000de08: 80 a0 e0 03 cmp %g3, 3
4000de0c: 12 80 00 1b bne 4000de78 <rtems_task_mode+0x184> <== NEVER TAKEN
4000de10: 82 10 20 00 clr %g1
*/ RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void ) { Thread_Control *executing; executing = _Thread_Executing;
4000de14: 07 10 00 55 sethi %hi(0x40015400), %g3 4000de18: 86 10 e1 cc or %g3, 0x1cc, %g3 ! 400155cc <_Per_CPU_Information> 4000de1c: c2 00 e0 0c ld [ %g3 + 0xc ], %g1
if ( !_States_Is_ready( executing->current_state ) ||
4000de20: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 4000de24: 80 a1 20 00 cmp %g4, 0
4000de28: 32 80 00 0b bne,a 4000de54 <rtems_task_mode+0x160> <== NEVER TAKEN
4000de2c: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED
4000de30: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 4000de34: 80 a0 40 03 cmp %g1, %g3
4000de38: 02 80 00 0b be 4000de64 <rtems_task_mode+0x170>
4000de3c: 80 88 a0 ff btst 0xff, %g2
( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) {
4000de40: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 4000de44: 80 a0 60 00 cmp %g1, 0
4000de48: 02 80 00 07 be 4000de64 <rtems_task_mode+0x170> <== NEVER TAKEN
4000de4c: 80 88 a0 ff btst 0xff, %g2
_Context_Switch_necessary = true;
4000de50: 84 10 20 01 mov 1, %g2 4000de54: 03 10 00 55 sethi %hi(0x40015400), %g1 4000de58: 82 10 61 cc or %g1, 0x1cc, %g1 ! 400155cc <_Per_CPU_Information> 4000de5c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 4000de60: 30 80 00 03 b,a 4000de6c <rtems_task_mode+0x178>
if ( _Thread_Evaluate_mode() || needs_asr_dispatching ) 4000de64: 02 80 00 05 be 4000de78 <rtems_task_mode+0x184>
4000de68: 82 10 20 00 clr %g1
_Thread_Dispatch();
4000de6c: 7f ff eb 4f call 40008ba8 <_Thread_Dispatch> 4000de70: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4000de74: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000de78: 81 c7 e0 08 ret 4000de7c: 91 e8 00 01 restore %g0, %g1, %o0
4000b57c <rtems_task_set_priority>: rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) {
4000b57c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000b580: 80 a6 60 00 cmp %i1, 0
4000b584: 02 80 00 07 be 4000b5a0 <rtems_task_set_priority+0x24>
4000b588: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000b58c: 03 10 00 64 sethi %hi(0x40019000), %g1 4000b590: c2 08 62 94 ldub [ %g1 + 0x294 ], %g1 ! 40019294 <rtems_maximum_priority> 4000b594: 80 a6 40 01 cmp %i1, %g1
4000b598: 18 80 00 1c bgu 4000b608 <rtems_task_set_priority+0x8c>
4000b59c: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority )
4000b5a0: 80 a6 a0 00 cmp %i2, 0
4000b5a4: 02 80 00 19 be 4000b608 <rtems_task_set_priority+0x8c>
4000b5a8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location );
4000b5ac: 40 00 07 fb call 4000d598 <_Thread_Get> 4000b5b0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000b5b4: c2 07 bf fc ld [ %fp + -4 ], %g1 4000b5b8: 80 a0 60 00 cmp %g1, 0
4000b5bc: 12 80 00 13 bne 4000b608 <rtems_task_set_priority+0x8c>
4000b5c0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority;
4000b5c4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000b5c8: 80 a6 60 00 cmp %i1, 0
4000b5cc: 02 80 00 0d be 4000b600 <rtems_task_set_priority+0x84>
4000b5d0: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 ||
4000b5d4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 4000b5d8: 80 a0 60 00 cmp %g1, 0
4000b5dc: 02 80 00 06 be 4000b5f4 <rtems_task_set_priority+0x78>
4000b5e0: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 4000b5e4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 4000b5e8: 80 a0 40 19 cmp %g1, %i1
4000b5ec: 08 80 00 05 bleu 4000b600 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000b5f0: 01 00 00 00 nop
the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false );
4000b5f4: 92 10 00 19 mov %i1, %o1 4000b5f8: 40 00 06 77 call 4000cfd4 <_Thread_Change_priority> 4000b5fc: 94 10 20 00 clr %o2
} _Thread_Enable_dispatch();
4000b600: 40 00 07 d9 call 4000d564 <_Thread_Enable_dispatch> 4000b604: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000b608: 81 c7 e0 08 ret 4000b60c: 81 e8 00 00 restore
40016cec <rtems_timer_cancel>: */ rtems_status_code rtems_timer_cancel( rtems_id id ) {
40016cec: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location );
40016cf0: 11 10 00 f7 sethi %hi(0x4003dc00), %o0 40016cf4: 92 10 00 18 mov %i0, %o1 40016cf8: 90 12 20 c4 or %o0, 0xc4, %o0 40016cfc: 40 00 0b be call 40019bf4 <_Objects_Get> 40016d00: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) {
40016d04: c2 07 bf fc ld [ %fp + -4 ], %g1 40016d08: 80 a0 60 00 cmp %g1, 0
40016d0c: 12 80 00 0c bne 40016d3c <rtems_timer_cancel+0x50>
40016d10: 01 00 00 00 nop
case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40016d14: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40016d18: 80 a0 60 04 cmp %g1, 4
40016d1c: 02 80 00 04 be 40016d2c <rtems_timer_cancel+0x40> <== NEVER TAKEN
40016d20: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40016d24: 40 00 13 d2 call 4001bc6c <_Watchdog_Remove> 40016d28: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40016d2c: 40 00 0d fe call 4001a524 <_Thread_Enable_dispatch> 40016d30: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40016d34: 81 c7 e0 08 ret 40016d38: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
40016d3c: 81 c7 e0 08 ret 40016d40: 91 e8 20 04 restore %g0, 4, %o0
400171d4 <rtems_timer_server_fire_when>: rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
400171d4: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server;
400171d8: 03 10 00 f7 sethi %hi(0x4003dc00), %g1 400171dc: e2 00 61 04 ld [ %g1 + 0x104 ], %l1 ! 4003dd04 <_Timer_server>
rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) {
400171e0: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server )
400171e4: 80 a4 60 00 cmp %l1, 0
400171e8: 02 80 00 33 be 400172b4 <rtems_timer_server_fire_when+0xe0>
400171ec: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set )
400171f0: 03 10 00 f6 sethi %hi(0x4003d800), %g1 400171f4: c2 08 62 08 ldub [ %g1 + 0x208 ], %g1 ! 4003da08 <_TOD_Is_set> 400171f8: 80 a0 60 00 cmp %g1, 0
400171fc: 02 80 00 2e be 400172b4 <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
40017200: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED; if ( !routine )
40017204: 80 a6 a0 00 cmp %i2, 0
40017208: 02 80 00 2b be 400172b4 <rtems_timer_server_fire_when+0xe0>
4001720c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) )
40017210: 90 10 00 19 mov %i1, %o0 40017214: 7f ff f4 01 call 40014218 <_TOD_Validate> 40017218: b0 10 20 14 mov 0x14, %i0 4001721c: 80 8a 20 ff btst 0xff, %o0
40017220: 02 80 00 27 be 400172bc <rtems_timer_server_fire_when+0xe8>
40017224: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time );
40017228: 7f ff f3 c8 call 40014148 <_TOD_To_seconds> 4001722c: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
40017230: 27 10 00 f6 sethi %hi(0x4003d800), %l3 40017234: c2 04 e2 80 ld [ %l3 + 0x280 ], %g1 ! 4003da80 <_TOD_Now> 40017238: 80 a2 00 01 cmp %o0, %g1
4001723c: 08 80 00 1e bleu 400172b4 <rtems_timer_server_fire_when+0xe0>
40017240: a4 10 00 08 mov %o0, %l2 40017244: 11 10 00 f7 sethi %hi(0x4003dc00), %o0 40017248: 92 10 00 10 mov %l0, %o1 4001724c: 90 12 20 c4 or %o0, 0xc4, %o0 40017250: 40 00 0a 69 call 40019bf4 <_Objects_Get> 40017254: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) {
40017258: c2 07 bf fc ld [ %fp + -4 ], %g1 4001725c: b2 10 00 08 mov %o0, %i1 40017260: 80 a0 60 00 cmp %g1, 0
40017264: 12 80 00 14 bne 400172b4 <rtems_timer_server_fire_when+0xe0>
40017268: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker );
4001726c: 40 00 12 80 call 4001bc6c <_Watchdog_Remove> 40017270: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40017274: 82 10 20 03 mov 3, %g1 40017278: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001727c: c2 04 e2 80 ld [ %l3 + 0x280 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
40017280: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017284: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
40017288: c2 04 60 04 ld [ %l1 + 4 ], %g1 4001728c: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE;
40017290: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
40017294: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
40017298: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
4001729c: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400172a0: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
400172a4: 9f c0 40 00 call %g1 400172a8: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
400172ac: 40 00 0c 9e call 4001a524 <_Thread_Enable_dispatch> 400172b0: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400172b4: 81 c7 e0 08 ret 400172b8: 81 e8 00 00 restore
case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; }
400172bc: 81 c7 e0 08 ret 400172c0: 81 e8 00 00 restore