RTEMS 4.11Annotated Report
Fri Jun 13 12:22:26 2014
4000aa38 <_CORE_RWLock_Release>:
CORE_RWLock_Status _CORE_RWLock_Release(
CORE_RWLock_Control *the_rwlock,
Thread_Control *executing
)
{
4000aa38: 9d e3 bf a0 save %sp, -96, %sp
* Otherwise, we have to block.
* If locked for reading and no waiters, then OK to read.
* If any thread is waiting, then we wait.
*/
_ISR_Disable( level );
4000aa3c: 7f ff e4 ce call 40003d74 <sparc_disable_interrupts>
4000aa40: 01 00 00 00 nop
if ( the_rwlock->current_state == CORE_RWLOCK_UNLOCKED){
4000aa44: c2 06 20 44 ld [ %i0 + 0x44 ], %g1
4000aa48: 80 a0 60 00 cmp %g1, 0
4000aa4c: 12 80 00 08 bne 4000aa6c <_CORE_RWLock_Release+0x34>
4000aa50: 80 a0 60 01 cmp %g1, 1
_ISR_Enable( level );
4000aa54: 7f ff e4 cb call 40003d80 <sparc_enable_interrupts>
4000aa58: b0 10 20 00 clr %i0
executing->Wait.return_code = CORE_RWLOCK_UNAVAILABLE;
4000aa5c: 82 10 20 02 mov 2, %g1
4000aa60: c2 26 60 34 st %g1, [ %i1 + 0x34 ]
4000aa64: 81 c7 e0 08 ret
4000aa68: 81 e8 00 00 restore
return CORE_RWLOCK_SUCCESSFUL;
}
if ( the_rwlock->current_state == CORE_RWLOCK_LOCKED_FOR_READING ) {
4000aa6c: 32 80 00 0b bne,a 4000aa98 <_CORE_RWLock_Release+0x60>
4000aa70: c0 26 60 34 clr [ %i1 + 0x34 ]
the_rwlock->number_of_readers -= 1;
4000aa74: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
4000aa78: 82 00 7f ff add %g1, -1, %g1
if ( the_rwlock->number_of_readers != 0 ) {
4000aa7c: 80 a0 60 00 cmp %g1, 0
4000aa80: 02 80 00 05 be 4000aa94 <_CORE_RWLock_Release+0x5c>
4000aa84: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
/* must be unlocked again */
_ISR_Enable( level );
4000aa88: 7f ff e4 be call 40003d80 <sparc_enable_interrupts>
4000aa8c: b0 10 20 00 clr %i0
return CORE_RWLOCK_SUCCESSFUL;
4000aa90: 30 80 00 24 b,a 4000ab20 <_CORE_RWLock_Release+0xe8>
}
}
/* CORE_RWLOCK_LOCKED_FOR_WRITING or READING with readers */
executing->Wait.return_code = CORE_RWLOCK_SUCCESSFUL;
4000aa94: c0 26 60 34 clr [ %i1 + 0x34 ]
/*
* Implicitly transition to "unlocked" and find another thread interested
* in obtaining this rwlock.
*/
the_rwlock->current_state = CORE_RWLOCK_UNLOCKED;
4000aa98: c0 26 20 44 clr [ %i0 + 0x44 ]
_ISR_Enable( level );
4000aa9c: 7f ff e4 b9 call 40003d80 <sparc_enable_interrupts>
4000aaa0: 01 00 00 00 nop
next = _Thread_queue_Dequeue( &the_rwlock->Wait_queue );
4000aaa4: 40 00 07 7e call 4000c89c <_Thread_queue_Dequeue>
4000aaa8: 90 10 00 18 mov %i0, %o0
if ( next ) {
4000aaac: 80 a2 20 00 cmp %o0, 0
4000aab0: 22 80 00 1c be,a 4000ab20 <_CORE_RWLock_Release+0xe8>
4000aab4: b0 10 20 00 clr %i0
if ( next->Wait.option == CORE_RWLOCK_THREAD_WAITING_FOR_WRITE ) {
4000aab8: c2 02 20 30 ld [ %o0 + 0x30 ], %g1
4000aabc: 80 a0 60 01 cmp %g1, 1
4000aac0: 32 80 00 05 bne,a 4000aad4 <_CORE_RWLock_Release+0x9c>
4000aac4: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
the_rwlock->current_state = CORE_RWLOCK_LOCKED_FOR_WRITING;
4000aac8: 82 10 20 02 mov 2, %g1
return CORE_RWLOCK_SUCCESSFUL;
4000aacc: 10 80 00 14 b 4000ab1c <_CORE_RWLock_Release+0xe4>
4000aad0: c2 26 20 44 st %g1, [ %i0 + 0x44 ]
}
/*
* Must be CORE_RWLOCK_THREAD_WAITING_FOR_READING
*/
the_rwlock->number_of_readers += 1;
4000aad4: 82 00 60 01 inc %g1
4000aad8: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
the_rwlock->current_state = CORE_RWLOCK_LOCKED_FOR_READING;
4000aadc: 82 10 20 01 mov 1, %g1
4000aae0: c2 26 20 44 st %g1, [ %i0 + 0x44 ]
/*
* Now see if more readers can be let go.
*/
while ( 1 ) {
next = _Thread_queue_First( &the_rwlock->Wait_queue );
4000aae4: 40 00 08 96 call 4000cd3c <_Thread_queue_First>
4000aae8: 90 10 00 18 mov %i0, %o0
if ( !next ||
4000aaec: 92 92 20 00 orcc %o0, 0, %o1
4000aaf0: 22 80 00 0c be,a 4000ab20 <_CORE_RWLock_Release+0xe8>
4000aaf4: b0 10 20 00 clr %i0
4000aaf8: c2 02 60 30 ld [ %o1 + 0x30 ], %g1
4000aafc: 80 a0 60 01 cmp %g1, 1
4000ab00: 02 80 00 07 be 4000ab1c <_CORE_RWLock_Release+0xe4> <== NEVER TAKEN
4000ab04: 90 10 00 18 mov %i0, %o0
next->Wait.option == CORE_RWLOCK_THREAD_WAITING_FOR_WRITE )
return CORE_RWLOCK_SUCCESSFUL;
the_rwlock->number_of_readers += 1;
4000ab08: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
4000ab0c: 82 00 60 01 inc %g1
_Thread_queue_Extract( &the_rwlock->Wait_queue, next );
4000ab10: 40 00 08 50 call 4000cc50 <_Thread_queue_Extract>
4000ab14: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
}
4000ab18: 30 bf ff f3 b,a 4000aae4 <_CORE_RWLock_Release+0xac>
}
/* indentation is to match _ISR_Disable at top */
return CORE_RWLOCK_SUCCESSFUL;
}
4000ab1c: b0 10 20 00 clr %i0
4000ab20: 81 c7 e0 08 ret
4000ab24: 81 e8 00 00 restore
4000ab28 <_CORE_RWLock_Timeout>:
void _CORE_RWLock_Timeout(
Objects_Id id,
void *ignored
)
{
4000ab28: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
4000ab2c: 90 10 00 18 mov %i0, %o0
4000ab30: 40 00 06 85 call 4000c544 <_Thread_Get>
4000ab34: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000ab38: c2 07 bf fc ld [ %fp + -4 ], %g1
4000ab3c: 80 a0 60 00 cmp %g1, 0
4000ab40: 12 80 00 07 bne 4000ab5c <_CORE_RWLock_Timeout+0x34> <== NEVER TAKEN
4000ab44: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
4000ab48: 40 00 08 be call 4000ce40 <_Thread_queue_Process_timeout>
4000ab4c: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
4000ab50: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
ISR_Level level;
_ISR_Disable( level );
#endif
--disable_level;
4000ab54: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = disable_level;
4000ab58: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
4000ab5c: 81 c7 e0 08 ret
4000ab60: 81 e8 00 00 restore
4000846c <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
4000846c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40008470: 90 10 00 18 mov %i0, %o0
40008474: 40 00 07 4a call 4000a19c <_Thread_queue_Dequeue>
40008478: ba 10 00 18 mov %i0, %i5
4000847c: 80 a2 20 00 cmp %o0, 0
40008480: 12 80 00 0e bne 400084b8 <_CORE_semaphore_Surrender+0x4c>
40008484: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40008488: 7f ff e7 eb call 40002434 <sparc_disable_interrupts>
4000848c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40008490: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
40008494: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
40008498: 80 a0 40 02 cmp %g1, %g2
4000849c: 1a 80 00 05 bcc 400084b0 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
400084a0: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
400084a4: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
400084a8: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
400084ac: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
400084b0: 7f ff e7 e4 call 40002440 <sparc_enable_interrupts>
400084b4: 01 00 00 00 nop
}
return status;
}
400084b8: 81 c7 e0 08 ret
400084bc: 81 e8 00 00 restore
400071cc <_Event_Surrender>:
rtems_event_set event_in,
Event_Control *event,
Thread_blocking_operation_States *sync_state,
States_Control wait_state
)
{
400071cc: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set seized_events;
rtems_option option_set;
option_set = the_thread->Wait.option;
_ISR_Disable( level );
400071d0: 7f ff ec 99 call 40002434 <sparc_disable_interrupts>
400071d4: fa 06 20 30 ld [ %i0 + 0x30 ], %i5
RTEMS_INLINE_ROUTINE void _Event_sets_Post(
rtems_event_set the_new_events,
rtems_event_set *the_event_set
)
{
*the_event_set |= the_new_events;
400071d8: c2 06 80 00 ld [ %i2 ], %g1
400071dc: b2 16 40 01 or %i1, %g1, %i1
400071e0: f2 26 80 00 st %i1, [ %i2 ]
/*
* At this point the event condition is a speculative quantity. Later state
* checks will show if the thread actually waits for an event.
*/
event_condition = the_thread->Wait.count;
400071e4: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
seized_events = _Event_sets_Get( pending_events, event_condition );
if (
400071e8: 82 8e 40 02 andcc %i1, %g2, %g1
400071ec: 02 80 00 31 be 400072b0 <_Event_Surrender+0xe4>
400071f0: 80 a0 40 02 cmp %g1, %g2
!_Event_sets_Is_empty( seized_events )
&& ( seized_events == event_condition || _Options_Is_any( option_set ) )
400071f4: 02 80 00 04 be 40007204 <_Event_Surrender+0x38>
400071f8: 80 8f 60 02 btst 2, %i5
400071fc: 02 80 00 2d be 400072b0 <_Event_Surrender+0xe4>
40007200: 01 00 00 00 nop
* section issue to deal with. The entity sending to the executing thread
* can be either the executing thread or an ISR. In case it is the
* executing thread, then the blocking operation state is not equal to
* THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED.
*/
if ( _Thread_Is_executing( the_thread ) &&
40007204: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
40007208: 80 a6 00 02 cmp %i0, %g2
4000720c: 32 80 00 0e bne,a 40007244 <_Event_Surrender+0x78>
40007210: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
40007214: c4 06 c0 00 ld [ %i3 ], %g2
40007218: 80 a0 a0 01 cmp %g2, 1
4000721c: 32 80 00 0a bne,a 40007244 <_Event_Surrender+0x78>
40007220: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40007224: b2 2e 40 01 andn %i1, %g1, %i1
event->pending_events = _Event_sets_Clear(
pending_events,
seized_events
);
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40007228: c4 06 20 28 ld [ %i0 + 0x28 ], %g2
* executing thread, then the blocking operation state is not equal to
* THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED.
*/
if ( _Thread_Is_executing( the_thread ) &&
*sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
event->pending_events = _Event_sets_Clear(
4000722c: f2 26 80 00 st %i1, [ %i2 ]
pending_events,
seized_events
);
the_thread->Wait.count = 0;
40007230: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40007234: c2 20 80 00 st %g1, [ %g2 ]
*sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40007238: 82 10 20 03 mov 3, %g1
4000723c: 10 80 00 1d b 400072b0 <_Event_Surrender+0xe4>
40007240: c2 26 c0 00 st %g1, [ %i3 ]
} else if ( _States_Are_set( the_thread->current_state, wait_state ) ) {
40007244: 80 8f 00 02 btst %i4, %g2
40007248: 02 80 00 1a be 400072b0 <_Event_Surrender+0xe4> <== NEVER TAKEN
4000724c: b2 2e 40 01 andn %i1, %g1, %i1
event->pending_events = _Event_sets_Clear(
pending_events,
seized_events
);
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40007250: c4 06 20 28 ld [ %i0 + 0x28 ], %g2
);
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
*sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
} else if ( _States_Are_set( the_thread->current_state, wait_state ) ) {
event->pending_events = _Event_sets_Clear(
40007254: f2 26 80 00 st %i1, [ %i2 ]
pending_events,
seized_events
);
the_thread->Wait.count = 0;
40007258: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
4000725c: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
40007260: 7f ff ec 78 call 40002440 <sparc_enable_interrupts>
40007264: 01 00 00 00 nop
40007268: 7f ff ec 73 call 40002434 <sparc_disable_interrupts>
4000726c: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40007270: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40007274: 80 a0 60 02 cmp %g1, 2
40007278: 02 80 00 06 be 40007290 <_Event_Surrender+0xc4>
4000727c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40007280: 7f ff ec 70 call 40002440 <sparc_enable_interrupts>
40007284: 33 04 03 ff sethi %hi(0x100ffc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40007288: 10 80 00 08 b 400072a8 <_Event_Surrender+0xdc>
4000728c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 100ffff8 <RAM_SIZE+0xfcffff8>
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40007290: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40007294: 7f ff ec 6b call 40002440 <sparc_enable_interrupts>
40007298: 33 04 03 ff sethi %hi(0x100ffc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
4000729c: 40 00 0f 7f call 4000b098 <_Watchdog_Remove>
400072a0: 90 06 20 48 add %i0, 0x48, %o0
400072a4: b2 16 63 f8 or %i1, 0x3f8, %i1
400072a8: 40 00 0a 31 call 40009b6c <_Thread_Clear_state>
400072ac: 81 e8 00 00 restore
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
400072b0: 7f ff ec 64 call 40002440 <sparc_enable_interrupts>
400072b4: 91 e8 00 08 restore %g0, %o0, %o0
400072b8 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *arg
)
{
400072b8: 9d e3 bf 98 save %sp, -104, %sp
ISR_Level level;
Thread_blocking_operation_States *sync_state;
sync_state = arg;
the_thread = _Thread_Get( id, &location );
400072bc: 90 10 00 18 mov %i0, %o0
400072c0: 40 00 0a e1 call 40009e44 <_Thread_Get>
400072c4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400072c8: c2 07 bf fc ld [ %fp + -4 ], %g1
400072cc: 80 a0 60 00 cmp %g1, 0
400072d0: 12 80 00 1f bne 4000734c <_Event_Timeout+0x94> <== NEVER TAKEN
400072d4: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
400072d8: 7f ff ec 57 call 40002434 <sparc_disable_interrupts>
400072dc: 01 00 00 00 nop
* This test is necessary to avoid state corruption if the timeout
* happens after the event condition is satisfied in
* _Event_Surrender(). A satisfied event condition is indicated with
* count set to zero.
*/
if ( !the_thread->Wait.count ) {
400072e0: c2 07 60 24 ld [ %i5 + 0x24 ], %g1
400072e4: 80 a0 60 00 cmp %g1, 0
400072e8: 32 80 00 05 bne,a 400072fc <_Event_Timeout+0x44>
400072ec: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_ISR_Enable( level );
400072f0: 7f ff ec 54 call 40002440 <sparc_enable_interrupts>
400072f4: 01 00 00 00 nop
400072f8: 30 80 00 12 b,a 40007340 <_Event_Timeout+0x88>
_Objects_Put_without_thread_dispatch( &the_thread->Object );
return;
}
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
400072fc: 80 a7 40 01 cmp %i5, %g1
40007300: 12 80 00 08 bne 40007320 <_Event_Timeout+0x68>
40007304: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( *sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40007308: c2 06 40 00 ld [ %i1 ], %g1
4000730c: 80 a0 60 01 cmp %g1, 1
40007310: 12 80 00 05 bne 40007324 <_Event_Timeout+0x6c> <== NEVER TAKEN
40007314: 82 10 20 06 mov 6, %g1
*sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40007318: 82 10 20 02 mov 2, %g1
4000731c: c2 26 40 00 st %g1, [ %i1 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40007320: 82 10 20 06 mov 6, %g1
40007324: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
40007328: 7f ff ec 46 call 40002440 <sparc_enable_interrupts>
4000732c: 01 00 00 00 nop
40007330: 13 04 03 ff sethi %hi(0x100ffc00), %o1
40007334: 90 10 00 1d mov %i5, %o0
40007338: 40 00 0a 0d call 40009b6c <_Thread_Clear_state>
4000733c: 92 12 63 f8 or %o1, 0x3f8, %o1
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
40007340: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
ISR_Level level;
_ISR_Disable( level );
#endif
--disable_level;
40007344: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = disable_level;
40007348: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
4000734c: 81 c7 e0 08 ret
40007350: 81 e8 00 00 restore
4000712c <_Freechain_Get>:
}
void *_Freechain_Get(Freechain_Control *freechain)
{
4000712c: 9d e3 bf a0 save %sp, -96, %sp
if ( _Chain_Is_empty( &freechain->Freechain ) ) {
40007130: c4 06 00 00 ld [ %i0 ], %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40007134: 82 06 20 04 add %i0, 4, %g1
40007138: 80 a0 80 01 cmp %g2, %g1
4000713c: 22 80 00 08 be,a 4000715c <_Freechain_Get+0x30>
40007140: c2 06 20 0c ld [ %i0 + 0xc ], %g1
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_first_unprotected(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
40007144: c2 06 00 00 ld [ %i0 ], %g1
Chain_Node *new_first = old_first->next;
40007148: c4 00 40 00 ld [ %g1 ], %g2
head->next = new_first;
4000714c: c4 26 00 00 st %g2, [ %i0 ]
new_first->previous = head;
40007150: f0 20 a0 04 st %i0, [ %g2 + 4 ]
if ( !( *freechain->extend )( freechain ) ) {
return NULL;
}
}
return _Chain_Get_first_unprotected( &freechain->Freechain );
40007154: 81 c7 e0 08 ret
40007158: 91 e8 00 01 restore %g0, %g1, %o0
}
void *_Freechain_Get(Freechain_Control *freechain)
{
if ( _Chain_Is_empty( &freechain->Freechain ) ) {
if ( !( *freechain->extend )( freechain ) ) {
4000715c: 9f c0 40 00 call %g1
40007160: 90 10 00 18 mov %i0, %o0
40007164: 80 a2 20 00 cmp %o0, 0
40007168: 32 bf ff f8 bne,a 40007148 <_Freechain_Get+0x1c> <== ALWAYS TAKEN
4000716c: c2 06 00 00 ld [ %i0 ], %g1
return NULL;
}
}
return _Chain_Get_first_unprotected( &freechain->Freechain );
}
40007170: 81 c7 e0 08 ret <== NOT EXECUTED
40007174: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
4000d8c8 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t unused __attribute__((unused))
)
{
4000d8c8: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000d8cc: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
4000d8d0: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000d8d4: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t unused __attribute__((unused))
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000d8d8: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000d8dc: ec 06 20 10 ld [ %i0 + 0x10 ], %l6
uintptr_t const min_block_size = heap->min_block_size;
4000d8e0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000d8e4: 80 a7 40 19 cmp %i5, %i1
4000d8e8: 1a 80 00 04 bcc 4000d8f8 <_Heap_Extend+0x30>
4000d8ec: e6 06 20 30 ld [ %i0 + 0x30 ], %l3
return 0;
4000d8f0: 81 c7 e0 08 ret
4000d8f4: 91 e8 20 00 restore %g0, 0, %o0
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000d8f8: 90 10 00 19 mov %i1, %o0
4000d8fc: 92 10 00 1a mov %i2, %o1
4000d900: 94 10 00 16 mov %l6, %o2
4000d904: 98 07 bf f8 add %fp, -8, %o4
4000d908: 7f ff ec 3f call 40008a04 <_Heap_Get_first_and_last_block>
4000d90c: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000d910: 80 a2 20 00 cmp %o0, 0
4000d914: 02 bf ff f7 be 4000d8f0 <_Heap_Extend+0x28>
4000d918: b6 10 00 12 mov %l2, %i3
4000d91c: a2 10 20 00 clr %l1
4000d920: a8 10 20 00 clr %l4
4000d924: b8 10 20 00 clr %i4
4000d928: a0 10 20 00 clr %l0
return 0;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000d92c: 80 a6 c0 12 cmp %i3, %l2
4000d930: 12 80 00 03 bne 4000d93c <_Heap_Extend+0x74> <== NEVER TAKEN
4000d934: aa 10 00 1b mov %i3, %l5
4000d938: ea 06 20 18 ld [ %i0 + 0x18 ], %l5
uintptr_t const sub_area_end = start_block->prev_size;
4000d93c: f4 06 c0 00 ld [ %i3 ], %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d940: 92 10 00 16 mov %l6, %o1
4000d944: 40 00 18 f8 call 40013d24 <.urem>
4000d948: 90 10 00 1a mov %i2, %o0
4000d94c: ae 06 bf f8 add %i2, -8, %l7
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000d950: 80 a5 40 1d cmp %l5, %i5
4000d954: 1a 80 00 05 bcc 4000d968 <_Heap_Extend+0xa0>
4000d958: 90 25 c0 08 sub %l7, %o0, %o0
4000d95c: 80 a6 40 1a cmp %i1, %i2
4000d960: 0a bf ff e4 bcs 4000d8f0 <_Heap_Extend+0x28>
4000d964: 01 00 00 00 nop
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return 0;
}
if ( extend_area_end == sub_area_begin ) {
4000d968: 80 a7 40 15 cmp %i5, %l5
4000d96c: 02 80 00 06 be 4000d984 <_Heap_Extend+0xbc>
4000d970: 80 a7 40 1a cmp %i5, %i2
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000d974: 2a 80 00 05 bcs,a 4000d988 <_Heap_Extend+0xc0>
4000d978: a8 10 00 1b mov %i3, %l4
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000d97c: 10 80 00 04 b 4000d98c <_Heap_Extend+0xc4>
4000d980: 80 a6 80 19 cmp %i2, %i1
4000d984: a0 10 00 1b mov %i3, %l0
4000d988: 80 a6 80 19 cmp %i2, %i1
4000d98c: 12 80 00 05 bne 4000d9a0 <_Heap_Extend+0xd8>
4000d990: 80 a6 80 19 cmp %i2, %i1
start_block->prev_size = extend_area_end;
4000d994: fa 26 c0 00 st %i5, [ %i3 ]
4000d998: 10 80 00 04 b 4000d9a8 <_Heap_Extend+0xe0>
4000d99c: b8 10 00 08 mov %o0, %i4
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000d9a0: 2a 80 00 02 bcs,a 4000d9a8 <_Heap_Extend+0xe0>
4000d9a4: a2 10 00 08 mov %o0, %l1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d9a8: f6 02 20 04 ld [ %o0 + 4 ], %i3
4000d9ac: b6 0e ff fe and %i3, -2, %i3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d9b0: b6 06 c0 08 add %i3, %o0, %i3
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000d9b4: 80 a6 c0 12 cmp %i3, %l2
4000d9b8: 12 bf ff e1 bne 4000d93c <_Heap_Extend+0x74>
4000d9bc: aa 10 00 1b mov %i3, %l5
if ( extend_area_begin < heap->area_begin ) {
4000d9c0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
4000d9c4: 80 a6 40 01 cmp %i1, %g1
4000d9c8: 3a 80 00 04 bcc,a 4000d9d8 <_Heap_Extend+0x110>
4000d9cc: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
4000d9d0: 10 80 00 05 b 4000d9e4 <_Heap_Extend+0x11c>
4000d9d4: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000d9d8: 80 a0 40 1d cmp %g1, %i5
4000d9dc: 2a 80 00 02 bcs,a 4000d9e4 <_Heap_Extend+0x11c>
4000d9e0: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000d9e4: c4 07 bf f8 ld [ %fp + -8 ], %g2
4000d9e8: c2 07 bf fc ld [ %fp + -4 ], %g1
extend_first_block->prev_size = extend_area_end;
4000d9ec: fa 20 80 00 st %i5, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000d9f0: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000d9f4: 88 10 e0 01 or %g3, 1, %g4
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000d9f8: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000d9fc: c6 20 40 00 st %g3, [ %g1 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000da00: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
4000da04: 80 a0 c0 02 cmp %g3, %g2
4000da08: 08 80 00 04 bleu 4000da18 <_Heap_Extend+0x150>
4000da0c: c0 20 60 04 clr [ %g1 + 4 ]
4000da10: 10 80 00 06 b 4000da28 <_Heap_Extend+0x160>
4000da14: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000da18: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
4000da1c: 80 a0 80 01 cmp %g2, %g1
4000da20: 2a 80 00 02 bcs,a 4000da28 <_Heap_Extend+0x160>
4000da24: c2 26 20 24 st %g1, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000da28: 80 a4 20 00 cmp %l0, 0
4000da2c: 02 80 00 14 be 4000da7c <_Heap_Extend+0x1b4>
4000da30: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000da34: f6 06 20 10 ld [ %i0 + 0x10 ], %i3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000da38: 92 10 00 1b mov %i3, %o1
4000da3c: 40 00 18 ba call 40013d24 <.urem>
4000da40: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000da44: 80 a2 20 00 cmp %o0, 0
4000da48: 02 80 00 04 be 4000da58 <_Heap_Extend+0x190>
4000da4c: c2 04 00 00 ld [ %l0 ], %g1
return value - remainder + alignment;
4000da50: b2 06 40 1b add %i1, %i3, %i1
4000da54: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000da58: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000da5c: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000da60: 82 24 00 09 sub %l0, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000da64: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000da68: 90 10 00 18 mov %i0, %o0
4000da6c: 7f ff ff 81 call 4000d870 <_Heap_Free_block>
4000da70: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000da74: 10 80 00 08 b 4000da94 <_Heap_Extend+0x1cc>
4000da78: 80 a7 20 00 cmp %i4, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000da7c: 80 a5 20 00 cmp %l4, 0
4000da80: 02 80 00 04 be 4000da90 <_Heap_Extend+0x1c8>
4000da84: a8 25 00 01 sub %l4, %g1, %l4
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000da88: a8 15 20 01 or %l4, 1, %l4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000da8c: e8 20 60 04 st %l4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000da90: 80 a7 20 00 cmp %i4, 0
4000da94: 02 80 00 15 be 4000dae8 <_Heap_Extend+0x220>
4000da98: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000da9c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000daa0: ba 27 40 1c sub %i5, %i4, %i5
4000daa4: 40 00 18 a0 call 40013d24 <.urem>
4000daa8: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000daac: c4 07 20 04 ld [ %i4 + 4 ], %g2
4000dab0: 90 27 40 08 sub %i5, %o0, %o0
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000dab4: 82 02 00 1c add %o0, %i4, %g1
(last_block->size_and_flag - last_block_new_size)
4000dab8: 84 20 80 08 sub %g2, %o0, %g2
| HEAP_PREV_BLOCK_USED;
4000dabc: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000dac0: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000dac4: c2 07 20 04 ld [ %i4 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000dac8: 92 10 00 1c mov %i4, %o1
4000dacc: 82 08 60 01 and %g1, 1, %g1
block->size_and_flag = size | flag;
4000dad0: 90 12 00 01 or %o0, %g1, %o0
4000dad4: d0 27 20 04 st %o0, [ %i4 + 4 ]
4000dad8: 7f ff ff 66 call 4000d870 <_Heap_Free_block>
4000dadc: 90 10 00 18 mov %i0, %o0
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000dae0: 10 80 00 0f b 4000db1c <_Heap_Extend+0x254>
4000dae4: 80 a7 20 00 cmp %i4, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000dae8: 80 a4 60 00 cmp %l1, 0
4000daec: 02 80 00 0b be 4000db18 <_Heap_Extend+0x250>
4000daf0: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000daf4: c6 04 60 04 ld [ %l1 + 4 ], %g3
_Heap_Link_above(
4000daf8: c2 07 bf fc ld [ %fp + -4 ], %g1
4000dafc: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000db00: 84 20 80 11 sub %g2, %l1, %g2
block->size_and_flag = size | flag;
4000db04: 84 10 c0 02 or %g3, %g2, %g2
4000db08: c4 24 60 04 st %g2, [ %l1 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000db0c: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000db10: 84 10 a0 01 or %g2, 1, %g2
4000db14: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000db18: 80 a7 20 00 cmp %i4, 0
4000db1c: 32 80 00 09 bne,a 4000db40 <_Heap_Extend+0x278>
4000db20: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
4000db24: 80 a4 20 00 cmp %l0, 0
4000db28: 32 80 00 06 bne,a 4000db40 <_Heap_Extend+0x278>
4000db2c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000db30: d2 07 bf f8 ld [ %fp + -8 ], %o1
4000db34: 7f ff ff 4f call 4000d870 <_Heap_Free_block>
4000db38: 90 10 00 18 mov %i0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000db3c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000db40: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000db44: c6 00 60 04 ld [ %g1 + 4 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000db48: 84 20 80 01 sub %g2, %g1, %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000db4c: 86 08 e0 01 and %g3, 1, %g3
block->size_and_flag = size | flag;
4000db50: 84 10 c0 02 or %g3, %g2, %g2
4000db54: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000db58: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
4000db5c: a6 20 40 13 sub %g1, %l3, %l3
/* Statistics */
stats->size += extended_size;
4000db60: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
4000db64: 82 00 40 13 add %g1, %l3, %g1
4000db68: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
return extended_size;
}
4000db6c: 81 c7 e0 08 ret
4000db70: 91 e8 00 13 restore %g0, %l3, %o0
4000d61c <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000d61c: 9d e3 bf a0 save %sp, -96, %sp
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
4000d620: 80 a6 60 00 cmp %i1, 0
4000d624: 02 80 00 7d be 4000d818 <_Heap_Free+0x1fc>
4000d628: 86 10 20 01 mov 1, %g3
4000d62c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000d630: 40 00 18 56 call 40013788 <.urem>
4000d634: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000d638: f4 06 20 20 ld [ %i0 + 0x20 ], %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d63c: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000d640: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d644: 80 a2 00 1a cmp %o0, %i2
4000d648: 0a 80 00 05 bcs 4000d65c <_Heap_Free+0x40>
4000d64c: 82 10 20 00 clr %g1
4000d650: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
4000d654: 80 a0 40 08 cmp %g1, %o0
4000d658: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000d65c: 82 08 60 01 and %g1, 1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000d660: 80 a0 60 00 cmp %g1, 0
4000d664: 02 80 00 6d be 4000d818 <_Heap_Free+0x1fc>
4000d668: 86 10 00 01 mov %g1, %g3
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
Heap_Statistics *const stats = &heap->stats;
uintptr_t alloc_begin;
Heap_Block *block;
4000d66c: f8 02 20 04 ld [ %o0 + 4 ], %i4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d670: 84 0f 3f fe and %i4, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d674: 82 00 80 08 add %g2, %o0, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d678: 80 a0 40 1a cmp %g1, %i2
4000d67c: 0a 80 00 05 bcs 4000d690 <_Heap_Free+0x74> <== NEVER TAKEN
4000d680: 88 10 20 00 clr %g4
4000d684: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
4000d688: 80 a0 c0 01 cmp %g3, %g1
4000d68c: 88 60 3f ff subx %g0, -1, %g4
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000d690: 88 09 20 01 and %g4, 1, %g4
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000d694: 80 a1 20 00 cmp %g4, 0
4000d698: 02 80 00 60 be 4000d818 <_Heap_Free+0x1fc>
4000d69c: 86 10 00 04 mov %g4, %g3
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
Heap_Statistics *const stats = &heap->stats;
uintptr_t alloc_begin;
Heap_Block *block;
Heap_Block *next_block = NULL;
4000d6a0: fa 00 60 04 ld [ %g1 + 4 ], %i5
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
4000d6a4: 80 8f 60 01 btst 1, %i5
4000d6a8: 22 80 00 5c be,a 4000d818 <_Heap_Free+0x1fc> <== NEVER TAKEN
4000d6ac: 86 10 20 00 clr %g3 <== NOT EXECUTED
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
4000d6b0: de 06 20 24 ld [ %i0 + 0x24 ], %o7
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000d6b4: 80 a0 40 0f cmp %g1, %o7
4000d6b8: 02 80 00 07 be 4000d6d4 <_Heap_Free+0xb8>
4000d6bc: ba 0f 7f fe and %i5, -2, %i5
4000d6c0: 88 00 40 1d add %g1, %i5, %g4
4000d6c4: f2 01 20 04 ld [ %g4 + 4 ], %i1
4000d6c8: b2 1e 60 01 xor %i1, 1, %i1
4000d6cc: 10 80 00 03 b 4000d6d8 <_Heap_Free+0xbc>
4000d6d0: b2 0e 60 01 and %i1, 1, %i1
4000d6d4: b2 10 20 00 clr %i1
if ( !_Heap_Is_prev_used( block ) ) {
4000d6d8: 80 8f 20 01 btst 1, %i4
4000d6dc: 12 80 00 25 bne 4000d770 <_Heap_Free+0x154>
4000d6e0: b2 0e 60 01 and %i1, 1, %i1
uintptr_t const prev_size = block->prev_size;
4000d6e4: f8 02 00 00 ld [ %o0 ], %i4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d6e8: 88 22 00 1c sub %o0, %i4, %g4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d6ec: 80 a1 00 1a cmp %g4, %i2
4000d6f0: 0a 80 00 04 bcs 4000d700 <_Heap_Free+0xe4> <== NEVER TAKEN
4000d6f4: b6 10 20 00 clr %i3
4000d6f8: 80 a3 c0 04 cmp %o7, %g4
4000d6fc: b6 60 3f ff subx %g0, -1, %i3
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000d700: b6 8e e0 01 andcc %i3, 1, %i3
4000d704: 22 80 00 45 be,a 4000d818 <_Heap_Free+0x1fc> <== NEVER TAKEN
4000d708: 86 10 00 1b mov %i3, %g3 <== NOT EXECUTED
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d70c: f6 01 20 04 ld [ %g4 + 4 ], %i3
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000d710: 80 8e e0 01 btst 1, %i3
4000d714: 02 80 00 40 be 4000d814 <_Heap_Free+0x1f8> <== NEVER TAKEN
4000d718: 80 a6 60 00 cmp %i1, 0
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000d71c: 02 80 00 0e be 4000d754 <_Heap_Free+0x138>
4000d720: b8 00 80 1c add %g2, %i4, %i4
uintptr_t const size = block_size + prev_size + next_block_size;
4000d724: ba 07 00 1d add %i4, %i5, %i5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
4000d728: f8 00 60 08 ld [ %g1 + 8 ], %i4
Heap_Block *prev = block->prev;
4000d72c: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000d730: f8 20 60 08 st %i4, [ %g1 + 8 ]
next->prev = prev;
4000d734: c2 27 20 0c st %g1, [ %i4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000d738: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
4000d73c: 82 00 7f ff add %g1, -1, %g1
4000d740: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d744: 82 17 60 01 or %i5, 1, %g1
4000d748: c2 21 20 04 st %g1, [ %g4 + 4 ]
4000d74c: 10 80 00 28 b 4000d7ec <_Heap_Free+0x1d0>
4000d750: fa 27 40 04 st %i5, [ %i5 + %g4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d754: ba 17 20 01 or %i4, 1, %i5
4000d758: fa 21 20 04 st %i5, [ %g4 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d75c: c8 00 60 04 ld [ %g1 + 4 ], %g4
4000d760: 88 09 3f fe and %g4, -2, %g4
4000d764: c8 20 60 04 st %g4, [ %g1 + 4 ]
next_block->prev_size = size;
4000d768: 10 80 00 21 b 4000d7ec <_Heap_Free+0x1d0>
4000d76c: f8 20 80 08 st %i4, [ %g2 + %o0 ]
}
} else if ( next_is_free ) { /* coalesce next */
4000d770: 80 a6 60 00 cmp %i1, 0
4000d774: 22 80 00 0d be,a 4000d7a8 <_Heap_Free+0x18c>
4000d778: c8 06 20 08 ld [ %i0 + 8 ], %g4
uintptr_t const size = block_size + next_block_size;
4000d77c: 88 07 40 02 add %i5, %g2, %g4
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
4000d780: fa 00 60 08 ld [ %g1 + 8 ], %i5
Heap_Block *prev = old_block->prev;
4000d784: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000d788: fa 22 20 08 st %i5, [ %o0 + 8 ]
new_block->prev = prev;
4000d78c: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
4000d790: d0 27 60 0c st %o0, [ %i5 + 0xc ]
prev->next = new_block;
4000d794: d0 20 60 08 st %o0, [ %g1 + 8 ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d798: 82 11 20 01 or %g4, 1, %g1
4000d79c: c2 22 20 04 st %g1, [ %o0 + 4 ]
4000d7a0: 10 80 00 13 b 4000d7ec <_Heap_Free+0x1d0>
4000d7a4: c8 21 00 08 st %g4, [ %g4 + %o0 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000d7a8: f0 22 20 0c st %i0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000d7ac: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
4000d7b0: d0 26 20 08 st %o0, [ %i0 + 8 ]
next->prev = new_block;
4000d7b4: d0 21 20 0c st %o0, [ %g4 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000d7b8: 88 10 a0 01 or %g2, 1, %g4
4000d7bc: c8 22 20 04 st %g4, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d7c0: c8 00 60 04 ld [ %g1 + 4 ], %g4
4000d7c4: 88 09 3f fe and %g4, -2, %g4
4000d7c8: c8 20 60 04 st %g4, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d7cc: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000d7d0: c4 20 80 08 st %g2, [ %g2 + %o0 ]
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d7d4: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d7d8: 82 00 60 01 inc %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d7dc: 80 a1 00 01 cmp %g4, %g1
4000d7e0: 1a 80 00 03 bcc 4000d7ec <_Heap_Free+0x1d0>
4000d7e4: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000d7e8: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
4000d7ec: c2 06 20 40 ld [ %i0 + 0x40 ], %g1
4000d7f0: 82 00 7f ff add %g1, -1, %g1
4000d7f4: c2 26 20 40 st %g1, [ %i0 + 0x40 ]
++stats->frees;
4000d7f8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
4000d7fc: 82 00 60 01 inc %g1
4000d800: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
4000d804: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
4000d808: 84 00 40 02 add %g1, %g2, %g2
return( true );
4000d80c: 10 80 00 03 b 4000d818 <_Heap_Free+0x1fc>
4000d810: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
return false;
4000d814: 86 10 20 00 clr %g3 <== NOT EXECUTED
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d818: b0 08 e0 01 and %g3, 1, %i0
4000d81c: 81 c7 e0 08 ret
4000d820: 81 e8 00 00 restore
400084d4 <_Heap_Greedy_allocate_all_except_largest>:
Heap_Block *_Heap_Greedy_allocate_all_except_largest(
Heap_Control *heap,
uintptr_t *allocatable_size
)
{
400084d4: 9d e3 bf 90 save %sp, -112, %sp
Heap_Information info;
_Heap_Get_free_information( heap, &info );
400084d8: 90 10 00 18 mov %i0, %o0
400084dc: 40 00 14 6a call 4000d684 <_Heap_Get_free_information>
400084e0: 92 07 bf f4 add %fp, -12, %o1
if ( info.largest > 0 ) {
400084e4: c2 07 bf f8 ld [ %fp + -8 ], %g1
400084e8: 80 a0 60 00 cmp %g1, 0
400084ec: 22 80 00 04 be,a 400084fc <_Heap_Greedy_allocate_all_except_largest+0x28><== NEVER TAKEN
400084f0: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED
*allocatable_size = info.largest - HEAP_BLOCK_HEADER_SIZE + HEAP_ALLOC_BONUS;
400084f4: 82 00 7f fc add %g1, -4, %g1
400084f8: c2 26 40 00 st %g1, [ %i1 ]
} else {
*allocatable_size = 0;
}
return _Heap_Greedy_allocate( heap, allocatable_size, 1 );
400084fc: 90 10 00 18 mov %i0, %o0
40008500: 92 10 00 19 mov %i1, %o1
40008504: 7f ff ff c4 call 40008414 <_Heap_Greedy_allocate>
40008508: 94 10 20 01 mov 1, %o2
}
4000850c: 81 c7 e0 08 ret
40008510: 91 e8 00 08 restore %g0, %o0, %o0
4000b840 <_Heap_Iterate>:
void _Heap_Iterate(
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
4000b840: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *current = heap->first_block;
4000b844: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *end = heap->last_block;
4000b848: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
bool stop = false;
4000b84c: 90 10 20 00 clr %o0
while ( !stop && current != end ) {
4000b850: 80 a0 40 1c cmp %g1, %i4
4000b854: 02 80 00 0e be 4000b88c <_Heap_Iterate+0x4c>
4000b858: 90 1a 20 01 xor %o0, 1, %o0
4000b85c: 80 8a 20 ff btst 0xff, %o0
4000b860: 02 80 00 0b be 4000b88c <_Heap_Iterate+0x4c> <== NEVER TAKEN
4000b864: 90 10 00 01 mov %g1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000b868: d2 00 60 04 ld [ %g1 + 4 ], %o1
4000b86c: 92 0a 7f fe and %o1, -2, %o1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000b870: ba 00 40 09 add %g1, %o1, %i5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000b874: d4 07 60 04 ld [ %i5 + 4 ], %o2
uintptr_t size = _Heap_Block_size( current );
Heap_Block *next = _Heap_Block_at( current, size );
bool used = _Heap_Is_prev_used( next );
stop = (*visitor)( current, size, used, visitor_arg );
4000b878: 96 10 00 1a mov %i2, %o3
4000b87c: 9f c6 40 00 call %i1
4000b880: 94 0a a0 01 and %o2, 1, %o2
current = next;
4000b884: 10 bf ff f3 b 4000b850 <_Heap_Iterate+0x10>
4000b888: 82 10 00 1d mov %i5, %g1
4000b88c: 81 c7 e0 08 ret
4000b890: 81 e8 00 00 restore
40015260 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
40015260: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40015264: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
40015268: 7f ff f9 48 call 40013788 <.urem>
4001526c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
40015270: c8 06 20 20 ld [ %i0 + 0x20 ], %g4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40015274: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
40015278: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4001527c: 80 a2 00 04 cmp %o0, %g4
40015280: 0a 80 00 05 bcs 40015294 <_Heap_Size_of_alloc_area+0x34>
40015284: 82 10 20 00 clr %g1
40015288: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
4001528c: 80 a0 40 08 cmp %g1, %o0
40015290: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
40015294: 82 08 60 01 and %g1, 1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
40015298: 80 a0 60 00 cmp %g1, 0
4001529c: 02 80 00 17 be 400152f8 <_Heap_Size_of_alloc_area+0x98>
400152a0: 86 10 00 01 mov %g1, %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400152a4: c2 02 20 04 ld [ %o0 + 4 ], %g1
400152a8: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400152ac: 82 00 40 08 add %g1, %o0, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400152b0: 80 a0 40 04 cmp %g1, %g4
400152b4: 0a 80 00 05 bcs 400152c8 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
400152b8: 84 10 20 00 clr %g2
400152bc: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
400152c0: 80 a0 80 01 cmp %g2, %g1
400152c4: 84 60 3f ff subx %g0, -1, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400152c8: 84 08 a0 01 and %g2, 1, %g2
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
400152cc: 80 a0 a0 00 cmp %g2, 0
400152d0: 02 80 00 0a be 400152f8 <_Heap_Size_of_alloc_area+0x98> <== NEVER TAKEN
400152d4: 86 10 00 02 mov %g2, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400152d8: c4 00 60 04 ld [ %g1 + 4 ], %g2
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
400152dc: 80 88 a0 01 btst 1, %g2
400152e0: 02 80 00 05 be 400152f4 <_Heap_Size_of_alloc_area+0x94> <== NEVER TAKEN
400152e4: 82 20 40 19 sub %g1, %i1, %g1
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
400152e8: 82 00 60 04 add %g1, 4, %g1
return true;
400152ec: 10 80 00 03 b 400152f8 <_Heap_Size_of_alloc_area+0x98>
400152f0: c2 26 80 00 st %g1, [ %i2 ]
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
return false;
400152f4: 86 10 20 00 clr %g3 <== NOT EXECUTED
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
}
400152f8: b0 08 e0 01 and %g3, 1, %i0
400152fc: 81 c7 e0 08 ret
40015300: 81 e8 00 00 restore
4000962c <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
4000962c: 9d e3 bf 80 save %sp, -128, %sp
40009630: ac 10 00 19 mov %i1, %l6
uintptr_t const page_size = heap->page_size;
40009634: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
uintptr_t const min_block_size = heap->min_block_size;
40009638: f6 06 20 14 ld [ %i0 + 0x14 ], %i3
Heap_Block *const first_block = heap->first_block;
4000963c: f2 06 20 20 ld [ %i0 + 0x20 ], %i1
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40009640: 80 a6 a0 00 cmp %i2, 0
40009644: 02 80 00 05 be 40009658 <_Heap_Walk+0x2c>
40009648: e0 06 20 24 ld [ %i0 + 0x24 ], %l0
4000964c: 3b 10 00 25 sethi %hi(0x40009400), %i5
40009650: 10 80 00 04 b 40009660 <_Heap_Walk+0x34>
40009654: ba 17 61 dc or %i5, 0x1dc, %i5 ! 400095dc <_Heap_Walk_print>
40009658: 3b 10 00 25 sethi %hi(0x40009400), %i5
4000965c: ba 17 61 d4 or %i5, 0x1d4, %i5 ! 400095d4 <_Heap_Walk_print_nothing>
40009660: 05 10 00 6a sethi %hi(0x4001a800), %g2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40009664: c4 00 a1 d4 ld [ %g2 + 0x1d4 ], %g2 ! 4001a9d4 <_System_state_Current>
40009668: 80 a0 a0 02 cmp %g2, 2
4000966c: 22 80 00 04 be,a 4000967c <_Heap_Walk+0x50>
40009670: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
return true;
40009674: 10 80 01 30 b 40009b34 <_Heap_Walk+0x508>
40009678: a6 10 20 01 mov 1, %l3
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
4000967c: da 06 20 18 ld [ %i0 + 0x18 ], %o5
40009680: c4 23 a0 5c st %g2, [ %sp + 0x5c ]
40009684: f2 23 a0 60 st %i1, [ %sp + 0x60 ]
40009688: e0 23 a0 64 st %l0, [ %sp + 0x64 ]
4000968c: c4 06 20 08 ld [ %i0 + 8 ], %g2
40009690: 90 10 00 16 mov %l6, %o0
40009694: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
40009698: c4 06 20 0c ld [ %i0 + 0xc ], %g2
4000969c: 92 10 20 00 clr %o1
400096a0: c4 23 a0 6c st %g2, [ %sp + 0x6c ]
400096a4: 15 10 00 5b sethi %hi(0x40016c00), %o2
400096a8: 96 10 00 1c mov %i4, %o3
400096ac: 94 12 a0 f0 or %o2, 0xf0, %o2
400096b0: 9f c7 40 00 call %i5
400096b4: 98 10 00 1b mov %i3, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
400096b8: 80 a7 20 00 cmp %i4, 0
400096bc: 12 80 00 07 bne 400096d8 <_Heap_Walk+0xac>
400096c0: 80 8f 20 07 btst 7, %i4
(*printer)( source, true, "page size is zero\n" );
400096c4: 15 10 00 5b sethi %hi(0x40016c00), %o2
400096c8: 90 10 00 16 mov %l6, %o0
400096cc: 92 10 20 01 mov 1, %o1
400096d0: 10 80 00 37 b 400097ac <_Heap_Walk+0x180>
400096d4: 94 12 a1 88 or %o2, 0x188, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
400096d8: 22 80 00 08 be,a 400096f8 <_Heap_Walk+0xcc>
400096dc: 90 10 00 1b mov %i3, %o0
(*printer)(
400096e0: 15 10 00 5b sethi %hi(0x40016c00), %o2
400096e4: 90 10 00 16 mov %l6, %o0
400096e8: 92 10 20 01 mov 1, %o1
400096ec: 94 12 a1 a0 or %o2, 0x1a0, %o2
400096f0: 10 80 00 4a b 40009818 <_Heap_Walk+0x1ec>
400096f4: 96 10 00 1c mov %i4, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400096f8: 7f ff e1 3d call 40001bec <.urem>
400096fc: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40009700: 80 a2 20 00 cmp %o0, 0
40009704: 22 80 00 08 be,a 40009724 <_Heap_Walk+0xf8>
40009708: 90 06 60 08 add %i1, 8, %o0
(*printer)(
4000970c: 15 10 00 5b sethi %hi(0x40016c00), %o2
40009710: 90 10 00 16 mov %l6, %o0
40009714: 92 10 20 01 mov 1, %o1
40009718: 94 12 a1 c0 or %o2, 0x1c0, %o2
4000971c: 10 80 00 3f b 40009818 <_Heap_Walk+0x1ec>
40009720: 96 10 00 1b mov %i3, %o3
40009724: 7f ff e1 32 call 40001bec <.urem>
40009728: 92 10 00 1c mov %i4, %o1
);
return false;
}
if (
4000972c: 80 a2 20 00 cmp %o0, 0
40009730: 22 80 00 07 be,a 4000974c <_Heap_Walk+0x120>
40009734: c4 06 60 04 ld [ %i1 + 4 ], %g2
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40009738: 15 10 00 5b sethi %hi(0x40016c00), %o2
4000973c: 90 10 00 16 mov %l6, %o0
40009740: 92 10 20 01 mov 1, %o1
40009744: 10 80 01 03 b 40009b50 <_Heap_Walk+0x524>
40009748: 94 12 a1 e8 or %o2, 0x1e8, %o2
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
4000974c: 80 88 a0 01 btst 1, %g2
40009750: 32 80 00 07 bne,a 4000976c <_Heap_Walk+0x140>
40009754: f4 04 20 04 ld [ %l0 + 4 ], %i2
(*printer)(
40009758: 15 10 00 5b sethi %hi(0x40016c00), %o2
4000975c: 90 10 00 16 mov %l6, %o0
40009760: 92 10 20 01 mov 1, %o1
40009764: 10 80 00 12 b 400097ac <_Heap_Walk+0x180>
40009768: 94 12 a2 20 or %o2, 0x220, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000976c: b4 0e bf fe and %i2, -2, %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40009770: b4 04 00 1a add %l0, %i2, %i2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009774: c4 06 a0 04 ld [ %i2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40009778: 80 88 a0 01 btst 1, %g2
4000977c: 12 80 00 07 bne 40009798 <_Heap_Walk+0x16c>
40009780: 80 a6 80 19 cmp %i2, %i1
(*printer)(
40009784: 15 10 00 5b sethi %hi(0x40016c00), %o2
40009788: 90 10 00 16 mov %l6, %o0
4000978c: 92 10 20 01 mov 1, %o1
40009790: 10 80 00 07 b 400097ac <_Heap_Walk+0x180>
40009794: 94 12 a2 50 or %o2, 0x250, %o2
);
return false;
}
if (
40009798: 02 80 00 0a be 400097c0 <_Heap_Walk+0x194>
4000979c: 15 10 00 5b sethi %hi(0x40016c00), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
400097a0: 90 10 00 16 mov %l6, %o0
400097a4: 92 10 20 01 mov 1, %o1
400097a8: 94 12 a2 68 or %o2, 0x268, %o2
400097ac: 9f c7 40 00 call %i5
400097b0: a6 10 20 00 clr %l3
400097b4: b0 0c e0 ff and %l3, 0xff, %i0
400097b8: 81 c7 e0 08 ret
400097bc: 81 e8 00 00 restore
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
400097c0: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
400097c4: d6 06 20 08 ld [ %i0 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
400097c8: 10 80 00 03 b 400097d4 <_Heap_Walk+0x1a8>
400097cc: b2 10 00 18 mov %i0, %i1
return false;
}
prev_block = free_block;
free_block = free_block->next;
400097d0: d6 02 e0 08 ld [ %o3 + 8 ], %o3
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400097d4: 80 a2 c0 18 cmp %o3, %i0
400097d8: 22 80 00 34 be,a 400098a8 <_Heap_Walk+0x27c>
400097dc: b2 10 00 1a mov %i2, %i1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400097e0: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
400097e4: 80 a0 c0 0b cmp %g3, %o3
400097e8: 18 80 00 05 bgu 400097fc <_Heap_Walk+0x1d0>
400097ec: 84 10 20 00 clr %g2
400097f0: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
400097f4: 80 a0 80 0b cmp %g2, %o3
400097f8: 84 60 3f ff subx %g0, -1, %g2
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
400097fc: 80 a0 a0 00 cmp %g2, 0
40009800: 12 80 00 0b bne 4000982c <_Heap_Walk+0x200>
40009804: 90 02 e0 08 add %o3, 8, %o0
(*printer)(
40009808: 15 10 00 5b sethi %hi(0x40016c00), %o2
4000980c: 90 10 00 16 mov %l6, %o0
40009810: 92 10 20 01 mov 1, %o1
40009814: 94 12 a2 98 or %o2, 0x298, %o2
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
40009818: 9f c7 40 00 call %i5
4000981c: a6 10 20 00 clr %l3
40009820: b0 0c e0 ff and %l3, 0xff, %i0
40009824: 81 c7 e0 08 ret
40009828: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
4000982c: d6 27 bf fc st %o3, [ %fp + -4 ]
40009830: 7f ff e0 ef call 40001bec <.urem>
40009834: 92 10 00 11 mov %l1, %o1
);
return false;
}
if (
40009838: 80 a2 20 00 cmp %o0, 0
4000983c: 02 80 00 07 be 40009858 <_Heap_Walk+0x22c>
40009840: d6 07 bf fc ld [ %fp + -4 ], %o3
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40009844: 15 10 00 5b sethi %hi(0x40016c00), %o2
40009848: 90 10 00 16 mov %l6, %o0
4000984c: 92 10 20 01 mov 1, %o1
40009850: 10 bf ff f2 b 40009818 <_Heap_Walk+0x1ec>
40009854: 94 12 a2 b8 or %o2, 0x2b8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40009858: c4 02 e0 04 ld [ %o3 + 4 ], %g2
4000985c: 84 08 bf fe and %g2, -2, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_used(
const Heap_Block *block
)
{
const Heap_Block *const next_block =
40009860: 84 02 c0 02 add %o3, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009864: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40009868: 80 88 a0 01 btst 1, %g2
4000986c: 22 80 00 07 be,a 40009888 <_Heap_Walk+0x25c>
40009870: d8 02 e0 0c ld [ %o3 + 0xc ], %o4
(*printer)(
40009874: 15 10 00 5b sethi %hi(0x40016c00), %o2
40009878: 90 10 00 16 mov %l6, %o0
4000987c: 92 10 20 01 mov 1, %o1
40009880: 10 bf ff e6 b 40009818 <_Heap_Walk+0x1ec>
40009884: 94 12 a2 e8 or %o2, 0x2e8, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
40009888: 80 a3 00 19 cmp %o4, %i1
4000988c: 02 bf ff d1 be 400097d0 <_Heap_Walk+0x1a4>
40009890: b2 10 00 0b mov %o3, %i1
(*printer)(
40009894: 15 10 00 5b sethi %hi(0x40016c00), %o2
40009898: 90 10 00 16 mov %l6, %o0
4000989c: 92 10 20 01 mov 1, %o1
400098a0: 10 80 00 2b b 4000994c <_Heap_Walk+0x320>
400098a4: 94 12 a3 08 or %o2, 0x308, %o2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400098a8: 23 10 00 5c sethi %hi(0x40017000), %l1
400098ac: 2f 10 00 5b sethi %hi(0x40016c00), %l7
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
400098b0: e4 06 60 04 ld [ %i1 + 4 ], %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400098b4: da 06 20 20 ld [ %i0 + 0x20 ], %o5
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
400098b8: 9e 1e 40 10 xor %i1, %l0, %o7
400098bc: 80 a0 00 0f cmp %g0, %o7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400098c0: aa 0c bf fe and %l2, -2, %l5
400098c4: 98 40 20 00 addx %g0, 0, %o4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400098c8: a8 05 40 19 add %l5, %i1, %l4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400098cc: a4 0c a0 01 and %l2, 1, %l2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400098d0: 80 a3 40 14 cmp %o5, %l4
400098d4: 18 80 00 05 bgu 400098e8 <_Heap_Walk+0x2bc> <== NEVER TAKEN
400098d8: 9e 10 20 00 clr %o7
400098dc: de 06 20 24 ld [ %i0 + 0x24 ], %o7
400098e0: 80 a3 c0 14 cmp %o7, %l4
400098e4: 9e 60 3f ff subx %g0, -1, %o7
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400098e8: 9e 0b e0 01 and %o7, 1, %o7
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
400098ec: 80 a3 e0 00 cmp %o7, 0
400098f0: 12 80 00 07 bne 4000990c <_Heap_Walk+0x2e0>
400098f4: a6 10 00 0f mov %o7, %l3
(*printer)(
400098f8: 15 10 00 5b sethi %hi(0x40016c00), %o2
400098fc: 90 10 00 16 mov %l6, %o0
40009900: 92 10 20 01 mov 1, %o1
40009904: 10 80 00 31 b 400099c8 <_Heap_Walk+0x39c>
40009908: 94 12 a3 40 or %o2, 0x340, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
4000990c: d8 27 bf f8 st %o4, [ %fp + -8 ]
40009910: 90 10 00 15 mov %l5, %o0
40009914: 7f ff e0 b6 call 40001bec <.urem>
40009918: 92 10 00 1c mov %i4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
4000991c: 80 a2 20 00 cmp %o0, 0
40009920: 02 80 00 10 be 40009960 <_Heap_Walk+0x334>
40009924: d8 07 bf f8 ld [ %fp + -8 ], %o4
40009928: 80 a3 20 00 cmp %o4, 0
4000992c: 02 80 00 0e be 40009964 <_Heap_Walk+0x338>
40009930: 80 a5 40 1b cmp %l5, %i3
(*printer)(
40009934: 15 10 00 5b sethi %hi(0x40016c00), %o2
40009938: 90 10 00 16 mov %l6, %o0
4000993c: 92 10 20 01 mov 1, %o1
40009940: 94 12 a3 70 or %o2, 0x370, %o2
40009944: 96 10 00 19 mov %i1, %o3
40009948: 98 10 00 15 mov %l5, %o4
4000994c: 9f c7 40 00 call %i5
40009950: a6 10 20 00 clr %l3
40009954: b0 0c e0 ff and %l3, 0xff, %i0
40009958: 81 c7 e0 08 ret
4000995c: 81 e8 00 00 restore
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40009960: 80 a5 40 1b cmp %l5, %i3
40009964: 9e 40 20 00 addx %g0, 0, %o7
40009968: 9e 0b 00 0f and %o4, %o7, %o7
4000996c: 80 a3 e0 00 cmp %o7, 0
40009970: 02 80 00 0c be 400099a0 <_Heap_Walk+0x374>
40009974: a6 10 00 0f mov %o7, %l3
(*printer)(
40009978: 90 10 00 16 mov %l6, %o0
4000997c: 92 10 20 01 mov 1, %o1
40009980: 15 10 00 5b sethi %hi(0x40016c00), %o2
40009984: 96 10 00 19 mov %i1, %o3
40009988: 94 12 a3 a0 or %o2, 0x3a0, %o2
4000998c: 98 10 00 15 mov %l5, %o4
40009990: 9f c7 40 00 call %i5
40009994: 9a 10 00 1b mov %i3, %o5
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009998: 10 80 00 67 b 40009b34 <_Heap_Walk+0x508>
4000999c: a6 10 20 00 clr %l3
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
400099a0: 80 a6 40 14 cmp %i1, %l4
400099a4: 2a 80 00 0f bcs,a 400099e0 <_Heap_Walk+0x3b4>
400099a8: de 05 20 04 ld [ %l4 + 4 ], %o7
400099ac: 80 a3 20 00 cmp %o4, 0
400099b0: 22 80 00 0c be,a 400099e0 <_Heap_Walk+0x3b4>
400099b4: de 05 20 04 ld [ %l4 + 4 ], %o7
(*printer)(
400099b8: 15 10 00 5b sethi %hi(0x40016c00), %o2
400099bc: 90 10 00 16 mov %l6, %o0
400099c0: 92 10 20 01 mov 1, %o1
400099c4: 94 12 a3 d0 or %o2, 0x3d0, %o2
400099c8: 96 10 00 19 mov %i1, %o3
400099cc: 9f c7 40 00 call %i5
400099d0: 98 10 00 14 mov %l4, %o4
400099d4: b0 0c e0 ff and %l3, 0xff, %i0
400099d8: 81 c7 e0 08 ret
400099dc: 81 e8 00 00 restore
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
400099e0: 80 8b e0 01 btst 1, %o7
400099e4: 12 80 00 3f bne 40009ae0 <_Heap_Walk+0x4b4>
400099e8: 90 10 00 16 mov %l6, %o0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
400099ec: da 06 60 0c ld [ %i1 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400099f0: d8 06 20 08 ld [ %i0 + 8 ], %o4
400099f4: 80 a3 40 0c cmp %o5, %o4
400099f8: 02 80 00 08 be 40009a18 <_Heap_Walk+0x3ec>
400099fc: de 06 20 0c ld [ %i0 + 0xc ], %o7
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40009a00: 80 a3 40 18 cmp %o5, %i0
40009a04: 12 80 00 07 bne 40009a20 <_Heap_Walk+0x3f4>
40009a08: 96 14 60 78 or %l1, 0x78, %o3
40009a0c: 17 10 00 5b sethi %hi(0x40016c00), %o3
40009a10: 10 80 00 04 b 40009a20 <_Heap_Walk+0x3f4>
40009a14: 96 12 e0 c0 or %o3, 0xc0, %o3 ! 40016cc0 <_Semaphore_Translate_core_mutex_return_code_+0x88>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009a18: 03 10 00 5b sethi %hi(0x40016c00), %g1
40009a1c: 96 10 60 b0 or %g1, 0xb0, %o3 ! 40016cb0 <_Semaphore_Translate_core_mutex_return_code_+0x78>
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
40009a20: d8 06 60 08 ld [ %i1 + 8 ], %o4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009a24: 80 a3 00 0f cmp %o4, %o7
40009a28: 02 80 00 06 be 40009a40 <_Heap_Walk+0x414>
40009a2c: 80 a3 00 18 cmp %o4, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40009a30: 12 80 00 06 bne 40009a48 <_Heap_Walk+0x41c>
40009a34: 9e 14 60 78 or %l1, 0x78, %o7
40009a38: 10 80 00 04 b 40009a48 <_Heap_Walk+0x41c>
40009a3c: 9e 15 e0 e0 or %l7, 0xe0, %o7
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009a40: 03 10 00 5b sethi %hi(0x40016c00), %g1
40009a44: 9e 10 60 d0 or %g1, 0xd0, %o7 ! 40016cd0 <_Semaphore_Translate_core_mutex_return_code_+0x98>
40009a48: d6 23 a0 5c st %o3, [ %sp + 0x5c ]
40009a4c: d8 23 a0 60 st %o4, [ %sp + 0x60 ]
40009a50: de 23 a0 64 st %o7, [ %sp + 0x64 ]
40009a54: 90 10 00 16 mov %l6, %o0
40009a58: 92 10 20 00 clr %o1
40009a5c: 15 10 00 5c sethi %hi(0x40017000), %o2
40009a60: 96 10 00 19 mov %i1, %o3
40009a64: 94 12 a0 08 or %o2, 8, %o2
40009a68: 9f c7 40 00 call %i5
40009a6c: 98 10 00 15 mov %l5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40009a70: da 05 00 00 ld [ %l4 ], %o5
40009a74: 80 a5 40 0d cmp %l5, %o5
40009a78: 02 80 00 0c be 40009aa8 <_Heap_Walk+0x47c>
40009a7c: 80 a4 a0 00 cmp %l2, 0
(*printer)(
40009a80: e8 23 a0 5c st %l4, [ %sp + 0x5c ]
40009a84: 90 10 00 16 mov %l6, %o0
40009a88: 92 10 20 01 mov 1, %o1
40009a8c: 15 10 00 5c sethi %hi(0x40017000), %o2
40009a90: 96 10 00 19 mov %i1, %o3
40009a94: 94 12 a0 40 or %o2, 0x40, %o2
40009a98: 9f c7 40 00 call %i5
40009a9c: 98 10 00 15 mov %l5, %o4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009aa0: 10 80 00 25 b 40009b34 <_Heap_Walk+0x508>
40009aa4: a6 10 20 00 clr %l3
);
return false;
}
if ( !prev_used ) {
40009aa8: 32 80 00 07 bne,a 40009ac4 <_Heap_Walk+0x498>
40009aac: c8 06 20 08 ld [ %i0 + 8 ], %g4
(*printer)(
40009ab0: 15 10 00 5c sethi %hi(0x40017000), %o2
40009ab4: 90 10 00 16 mov %l6, %o0
40009ab8: 92 10 20 01 mov 1, %o1
40009abc: 10 80 00 25 b 40009b50 <_Heap_Walk+0x524>
40009ac0: 94 12 a0 80 or %o2, 0x80, %o2
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40009ac4: 80 a1 00 18 cmp %g4, %i0
40009ac8: 02 80 00 1e be 40009b40 <_Heap_Walk+0x514>
40009acc: 80 a1 00 19 cmp %g4, %i1
if ( free_block == block ) {
40009ad0: 02 80 00 15 be 40009b24 <_Heap_Walk+0x4f8>
40009ad4: 80 a5 00 1a cmp %l4, %i2
return true;
}
free_block = free_block->next;
40009ad8: 10 bf ff fb b 40009ac4 <_Heap_Walk+0x498>
40009adc: c8 01 20 08 ld [ %g4 + 8 ], %g4
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
40009ae0: 80 a4 a0 00 cmp %l2, 0
40009ae4: 02 80 00 09 be 40009b08 <_Heap_Walk+0x4dc>
40009ae8: 92 10 20 00 clr %o1
(*printer)(
40009aec: 15 10 00 5c sethi %hi(0x40017000), %o2
40009af0: 96 10 00 19 mov %i1, %o3
40009af4: 94 12 a0 b0 or %o2, 0xb0, %o2
40009af8: 9f c7 40 00 call %i5
40009afc: 98 10 00 15 mov %l5, %o4
40009b00: 10 80 00 09 b 40009b24 <_Heap_Walk+0x4f8>
40009b04: 80 a5 00 1a cmp %l4, %i2
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009b08: da 06 40 00 ld [ %i1 ], %o5
40009b0c: 15 10 00 5c sethi %hi(0x40017000), %o2
40009b10: 96 10 00 19 mov %i1, %o3
40009b14: 94 12 a0 c8 or %o2, 0xc8, %o2
40009b18: 9f c7 40 00 call %i5
40009b1c: 98 10 00 15 mov %l5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009b20: 80 a5 00 1a cmp %l4, %i2
40009b24: 02 80 00 04 be 40009b34 <_Heap_Walk+0x508>
40009b28: a6 10 20 01 mov 1, %l3
40009b2c: 10 bf ff 61 b 400098b0 <_Heap_Walk+0x284>
40009b30: b2 10 00 14 mov %l4, %i1
40009b34: b0 0c e0 ff and %l3, 0xff, %i0
40009b38: 81 c7 e0 08 ret
40009b3c: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40009b40: 15 10 00 5c sethi %hi(0x40017000), %o2
40009b44: 90 10 00 16 mov %l6, %o0
40009b48: 92 10 20 01 mov 1, %o1
40009b4c: 94 12 a0 f0 or %o2, 0xf0, %o2
40009b50: 10 bf ff 32 b 40009818 <_Heap_Walk+0x1ec>
40009b54: 96 10 00 19 mov %i1, %o3
40008ab4 <_Objects_Allocate_unprotected>:
}
Objects_Control *_Objects_Allocate_unprotected(
Objects_Information *information
)
{
40008ab4: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40008ab8: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
40008abc: 80 a0 60 00 cmp %g1, 0
40008ac0: 12 80 00 04 bne 40008ad0 <_Objects_Allocate_unprotected+0x1c><== ALWAYS TAKEN
40008ac4: ba 10 00 18 mov %i0, %i5
return NULL;
40008ac8: 81 c7 e0 08 ret
40008acc: 91 e8 20 00 restore %g0, 0, %o0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40008ad0: f8 06 20 20 ld [ %i0 + 0x20 ], %i4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40008ad4: b4 06 20 24 add %i0, 0x24, %i2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40008ad8: 80 a7 00 1a cmp %i4, %i2
40008adc: 02 80 00 06 be 40008af4 <_Objects_Allocate_unprotected+0x40>
40008ae0: b6 06 20 20 add %i0, 0x20, %i3
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
40008ae4: c2 07 00 00 ld [ %i4 ], %g1
head->next = new_first;
40008ae8: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
new_first->previous = head;
40008aec: 10 80 00 03 b 40008af8 <_Objects_Allocate_unprotected+0x44>
40008af0: f6 20 60 04 st %i3, [ %g1 + 4 ]
)
{
if ( !_Chain_Is_empty(the_chain))
return _Chain_Get_first_unprotected(the_chain);
else
return NULL;
40008af4: b8 10 20 00 clr %i4
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = _Objects_Get_inactive( information );
if ( information->auto_extend ) {
40008af8: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
40008afc: 80 a0 60 00 cmp %g1, 0
40008b00: 02 80 00 20 be 40008b80 <_Objects_Allocate_unprotected+0xcc>
40008b04: b0 10 00 1c mov %i4, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40008b08: 80 a7 20 00 cmp %i4, 0
40008b0c: 32 80 00 0c bne,a 40008b3c <_Objects_Allocate_unprotected+0x88>
40008b10: c4 07 60 08 ld [ %i5 + 8 ], %g2
_Objects_Extend_information( information );
40008b14: 40 00 00 2a call 40008bbc <_Objects_Extend_information>
40008b18: 90 10 00 1d mov %i5, %o0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40008b1c: f8 07 60 20 ld [ %i5 + 0x20 ], %i4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40008b20: 80 a7 00 1a cmp %i4, %i2
40008b24: 02 bf ff e9 be 40008ac8 <_Objects_Allocate_unprotected+0x14>
40008b28: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
40008b2c: c2 07 00 00 ld [ %i4 ], %g1
head->next = new_first;
40008b30: c2 27 60 20 st %g1, [ %i5 + 0x20 ]
new_first->previous = head;
40008b34: f6 20 60 04 st %i3, [ %g1 + 4 ]
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40008b38: c4 07 60 08 ld [ %i5 + 8 ], %g2
40008b3c: d0 07 20 08 ld [ %i4 + 8 ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40008b40: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40008b44: 03 00 00 3f sethi %hi(0xfc00), %g1
40008b48: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff <_TLS_Alignment+0xfffe>
40008b4c: 90 0a 00 01 and %o0, %g1, %o0
40008b50: 82 08 80 01 and %g2, %g1, %g1
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40008b54: 40 00 2a 61 call 400134d8 <.udiv>
40008b58: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40008b5c: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
40008b60: 91 2a 20 02 sll %o0, 2, %o0
40008b64: c4 00 40 08 ld [ %g1 + %o0 ], %g2
information->inactive--;
40008b68: b0 10 00 1c mov %i4, %i0
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
40008b6c: 84 00 bf ff add %g2, -1, %g2
40008b70: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
40008b74: c2 17 60 2c lduh [ %i5 + 0x2c ], %g1
40008b78: 82 00 7f ff add %g1, -1, %g1
40008b7c: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
40008b80: 81 c7 e0 08 ret
40008b84: 81 e8 00 00 restore
40008bbc <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
40008bbc: 9d e3 bf a0 save %sp, -96, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40008bc0: f2 06 20 34 ld [ %i0 + 0x34 ], %i1
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
40008bc4: ba 10 00 18 mov %i0, %i5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008bc8: f4 16 20 0a lduh [ %i0 + 0xa ], %i2
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40008bcc: 80 a6 60 00 cmp %i1, 0
40008bd0: e8 16 20 14 lduh [ %i0 + 0x14 ], %l4
40008bd4: 02 80 00 18 be 40008c34 <_Objects_Extend_information+0x78>
40008bd8: e0 16 20 10 lduh [ %i0 + 0x10 ], %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
40008bdc: 91 2c 20 10 sll %l0, 0x10, %o0
40008be0: b1 2d 20 10 sll %l4, 0x10, %i0
40008be4: 91 32 20 10 srl %o0, 0x10, %o0
40008be8: b1 36 20 10 srl %i0, 0x10, %i0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008bec: b8 10 00 1a mov %i2, %i4
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
40008bf0: 92 10 00 18 mov %i0, %o1
40008bf4: 40 00 2a 39 call 400134d8 <.udiv>
40008bf8: b6 10 20 00 clr %i3
40008bfc: 91 2a 20 10 sll %o0, 0x10, %o0
40008c00: a7 32 20 10 srl %o0, 0x10, %l3
for ( ; block < block_count; block++ ) {
40008c04: 80 a6 c0 13 cmp %i3, %l3
40008c08: 1a 80 00 09 bcc 40008c2c <_Objects_Extend_information+0x70>
40008c0c: 83 2e e0 02 sll %i3, 2, %g1
if ( information->object_blocks[ block ] == NULL ) {
40008c10: c2 06 40 01 ld [ %i1 + %g1 ], %g1
40008c14: 80 a0 60 00 cmp %g1, 0
40008c18: 22 80 00 0b be,a 40008c44 <_Objects_Extend_information+0x88>
40008c1c: b2 10 20 00 clr %i1
do_extend = false;
break;
} else
index_base += information->allocation_size;
40008c20: b8 07 00 18 add %i4, %i0, %i4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
40008c24: 10 bf ff f8 b 40008c04 <_Objects_Extend_information+0x48>
40008c28: b6 06 e0 01 inc %i3
40008c2c: 10 80 00 06 b 40008c44 <_Objects_Extend_information+0x88>
40008c30: b2 10 20 01 mov 1, %i1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008c34: b8 10 00 1a mov %i2, %i4
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40008c38: b2 10 20 01 mov 1, %i1
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008c3c: b6 10 20 00 clr %i3
40008c40: a6 10 20 00 clr %l3
break;
} else
index_base += information->allocation_size;
}
}
index_end = index_base + information->allocation_size;
40008c44: a9 2d 20 10 sll %l4, 0x10, %l4
maximum = (uint32_t) information->maximum + information->allocation_size;
40008c48: a1 2c 20 10 sll %l0, 0x10, %l0
break;
} else
index_base += information->allocation_size;
}
}
index_end = index_base + information->allocation_size;
40008c4c: a9 35 20 10 srl %l4, 0x10, %l4
maximum = (uint32_t) information->maximum + information->allocation_size;
40008c50: a1 34 20 10 srl %l0, 0x10, %l0
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
40008c54: 03 00 00 3f sethi %hi(0xfc00), %g1
index_base += information->allocation_size;
}
}
index_end = index_base + information->allocation_size;
maximum = (uint32_t) information->maximum + information->allocation_size;
40008c58: a0 04 00 14 add %l0, %l4, %l0
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
40008c5c: 82 10 63 ff or %g1, 0x3ff, %g1
40008c60: 80 a4 00 01 cmp %l0, %g1
40008c64: 18 80 00 8d bgu 40008e98 <_Objects_Extend_information+0x2dc>
40008c68: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
40008c6c: d2 07 60 18 ld [ %i5 + 0x18 ], %o1
40008c70: 40 00 29 e0 call 400133f0 <.umul>
40008c74: 90 10 00 14 mov %l4, %o0
if ( information->auto_extend ) {
40008c78: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
40008c7c: 80 a0 60 00 cmp %g1, 0
40008c80: 02 80 00 09 be 40008ca4 <_Objects_Extend_information+0xe8>
40008c84: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
40008c88: 40 00 09 bc call 4000b378 <_Workspace_Allocate>
40008c8c: 01 00 00 00 nop
if ( !new_object_block )
40008c90: b0 92 20 00 orcc %o0, 0, %i0
40008c94: 12 80 00 08 bne 40008cb4 <_Objects_Extend_information+0xf8><== ALWAYS TAKEN
40008c98: 80 8e 60 ff btst 0xff, %i1
40008c9c: 81 c7 e0 08 ret <== NOT EXECUTED
40008ca0: 81 e8 00 00 restore <== NOT EXECUTED
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
40008ca4: 40 00 09 cc call 4000b3d4 <_Workspace_Allocate_or_fatal_error>
40008ca8: 01 00 00 00 nop
40008cac: b0 10 00 08 mov %o0, %i0
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
40008cb0: 80 8e 60 ff btst 0xff, %i1
40008cb4: 02 80 00 59 be 40008e18 <_Objects_Extend_information+0x25c>
40008cb8: a8 07 00 14 add %i4, %l4, %l4
*/
/*
* Up the block count and maximum
*/
block_count++;
40008cbc: a6 04 e0 01 inc %l3
* 1. object_blocks : void*
* 2. inactive_per_blocks : uint32_t
* 3. local_table : Objects_Name*
*/
object_blocks_size = (uintptr_t)_Addresses_Align_up(
(void*)(block_count * sizeof(void*)),
40008cc0: a7 2c e0 02 sll %l3, 2, %l3
void *address,
size_t alignment
)
{
uintptr_t mask = alignment - (uintptr_t)1;
return (void*)(((uintptr_t)address + mask) & ~mask);
40008cc4: a2 04 e0 07 add %l3, 7, %l1
40008cc8: a2 0c 7f f8 and %l1, -8, %l1
inactive_per_block_size =
(uintptr_t)_Addresses_Align_up(
(void*)(block_count * sizeof(uint32_t)),
CPU_ALIGNMENT
);
block_size = object_blocks_size + inactive_per_block_size +
40008ccc: 83 2c 60 01 sll %l1, 1, %g1
((maximum + minimum_index) * sizeof(Objects_Control *));
40008cd0: 90 04 00 1a add %l0, %i2, %o0
40008cd4: 91 2a 20 02 sll %o0, 2, %o0
inactive_per_block_size =
(uintptr_t)_Addresses_Align_up(
(void*)(block_count * sizeof(uint32_t)),
CPU_ALIGNMENT
);
block_size = object_blocks_size + inactive_per_block_size +
40008cd8: 90 00 40 08 add %g1, %o0, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
if ( information->auto_extend ) {
40008cdc: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
40008ce0: 80 a0 60 00 cmp %g1, 0
40008ce4: 02 80 00 09 be 40008d08 <_Objects_Extend_information+0x14c>
40008ce8: 01 00 00 00 nop
object_blocks = _Workspace_Allocate( block_size );
40008cec: 40 00 09 a3 call 4000b378 <_Workspace_Allocate>
40008cf0: 01 00 00 00 nop
if ( !object_blocks ) {
40008cf4: b2 92 20 00 orcc %o0, 0, %i1
40008cf8: 32 80 00 08 bne,a 40008d18 <_Objects_Extend_information+0x15c><== ALWAYS TAKEN
40008cfc: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
_Workspace_Free( new_object_block );
40008d00: 40 00 09 af call 4000b3bc <_Workspace_Free> <== NOT EXECUTED
40008d04: 81 e8 00 00 restore <== NOT EXECUTED
return;
}
} else {
object_blocks = _Workspace_Allocate_or_fatal_error( block_size );
40008d08: 40 00 09 b3 call 4000b3d4 <_Workspace_Allocate_or_fatal_error>
40008d0c: 01 00 00 00 nop
40008d10: b2 10 00 08 mov %o0, %i1
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
40008d14: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset (
const void *base,
uintptr_t offset
)
{
return (void *)((uintptr_t)base + offset);
40008d18: a4 06 40 11 add %i1, %l1, %l2
40008d1c: 80 a0 40 1a cmp %g1, %i2
40008d20: 18 80 00 04 bgu 40008d30 <_Objects_Extend_information+0x174>
40008d24: a2 04 80 11 add %l2, %l1, %l1
40008d28: 10 80 00 13 b 40008d74 <_Objects_Extend_information+0x1b8>
40008d2c: 82 10 20 00 clr %g1
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
40008d30: d2 07 60 34 ld [ %i5 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
40008d34: aa 04 ff fc add %l3, -4, %l5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
40008d38: 90 10 00 19 mov %i1, %o0
40008d3c: 40 00 1d 1f call 400101b8 <memcpy>
40008d40: 94 10 00 15 mov %l5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
40008d44: d2 07 60 30 ld [ %i5 + 0x30 ], %o1
40008d48: 94 10 00 15 mov %l5, %o2
40008d4c: 40 00 1d 1b call 400101b8 <memcpy>
40008d50: 90 10 00 12 mov %l2, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40008d54: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40008d58: d2 07 60 1c ld [ %i5 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40008d5c: 94 00 40 1a add %g1, %i2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40008d60: 90 10 00 11 mov %l1, %o0
40008d64: 40 00 1d 15 call 400101b8 <memcpy>
40008d68: 95 2a a0 02 sll %o2, 2, %o2
40008d6c: 10 80 00 09 b 40008d90 <_Objects_Extend_information+0x1d4>
40008d70: a6 04 ff fc add %l3, -4, %l3
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40008d74: 80 a0 40 1a cmp %g1, %i2
40008d78: 02 80 00 05 be 40008d8c <_Objects_Extend_information+0x1d0>
40008d7c: 85 28 60 02 sll %g1, 2, %g2
40008d80: 82 00 60 01 inc %g1
local_table[ index ] = NULL;
40008d84: 10 bf ff fc b 40008d74 <_Objects_Extend_information+0x1b8>
40008d88: c0 20 80 11 clr [ %g2 + %l1 ]
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
40008d8c: a6 04 ff fc add %l3, -4, %l3
40008d90: c0 26 40 13 clr [ %i1 + %l3 ]
inactive_per_block[block_count] = 0;
40008d94: c0 24 80 13 clr [ %l2 + %l3 ]
for ( index = index_base ; index < index_end ; ++index ) {
40008d98: 82 10 00 1c mov %i4, %g1
40008d9c: 80 a0 40 14 cmp %g1, %l4
40008da0: 1a 80 00 05 bcc 40008db4 <_Objects_Extend_information+0x1f8>
40008da4: 85 28 60 02 sll %g1, 2, %g2
40008da8: 82 00 60 01 inc %g1
local_table[ index ] = NULL;
40008dac: 10 bf ff fc b 40008d9c <_Objects_Extend_information+0x1e0>
40008db0: c0 20 80 11 clr [ %g2 + %l1 ]
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
40008db4: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
40008db8: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
40008dbc: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
}
_Thread_Disable_dispatch();
_ISR_Disable( level );
40008dc0: 7f ff e5 9d call 40002434 <sparc_disable_interrupts>
40008dc4: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008dc8: c2 07 40 00 ld [ %i5 ], %g1
40008dcc: 05 00 00 40 sethi %hi(0x10000), %g2
40008dd0: 83 28 60 18 sll %g1, 0x18, %g1
40008dd4: 82 10 40 02 or %g1, %g2, %g1
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
40008dd8: e0 37 60 10 sth %l0, [ %i5 + 0x10 ]
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008ddc: a0 10 40 10 or %g1, %l0, %l0
information->maximum_id = _Objects_Build_id(
40008de0: c2 17 60 04 lduh [ %i5 + 4 ], %g1
}
_Thread_Disable_dispatch();
_ISR_Disable( level );
old_tables = information->object_blocks;
40008de4: f4 07 60 34 ld [ %i5 + 0x34 ], %i2
40008de8: 83 28 60 1b sll %g1, 0x1b, %g1
information->object_blocks = object_blocks;
40008dec: f2 27 60 34 st %i1, [ %i5 + 0x34 ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008df0: a0 14 00 01 or %l0, %g1, %l0
information->inactive_per_block = inactive_per_block;
40008df4: e4 27 60 30 st %l2, [ %i5 + 0x30 ]
information->local_table = local_table;
40008df8: e2 27 60 1c st %l1, [ %i5 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40008dfc: e0 27 60 0c st %l0, [ %i5 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
40008e00: 7f ff e5 90 call 40002440 <sparc_enable_interrupts>
40008e04: 01 00 00 00 nop
_Thread_Enable_dispatch();
40008e08: 40 00 04 04 call 40009e18 <_Thread_Enable_dispatch>
40008e0c: 01 00 00 00 nop
_Workspace_Free( old_tables );
40008e10: 40 00 09 6b call 4000b3bc <_Workspace_Free>
40008e14: 90 10 00 1a mov %i2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40008e18: c2 07 60 34 ld [ %i5 + 0x34 ], %g1
40008e1c: b7 2e e0 02 sll %i3, 2, %i3
40008e20: f0 20 40 1b st %i0, [ %g1 + %i3 ]
/*
* Append to inactive chain.
*/
the_object = information->object_blocks[ block ];
40008e24: c2 07 60 34 ld [ %i5 + 0x34 ], %g1
40008e28: 07 00 00 40 sethi %hi(0x10000), %g3
40008e2c: c2 00 40 1b ld [ %g1 + %i3 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
40008e30: 88 07 60 24 add %i5, 0x24, %g4
for ( index = index_base ; index < index_end ; ++index ) {
40008e34: 80 a7 00 14 cmp %i4, %l4
40008e38: 3a 80 00 13 bcc,a 40008e84 <_Objects_Extend_information+0x2c8>
40008e3c: c4 07 60 30 ld [ %i5 + 0x30 ], %g2
40008e40: f4 07 40 00 ld [ %i5 ], %i2
the_object->id = _Objects_Build_id(
40008e44: c4 17 60 04 lduh [ %i5 + 4 ], %g2
40008e48: b5 2e a0 18 sll %i2, 0x18, %i2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008e4c: 85 28 a0 1b sll %g2, 0x1b, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008e50: b4 16 80 03 or %i2, %g3, %i2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008e54: 84 16 80 02 or %i2, %g2, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008e58: 84 10 80 1c or %g2, %i4, %g2
40008e5c: c4 20 60 08 st %g2, [ %g1 + 8 ]
Chain_Node *old_last = tail->previous;
40008e60: c4 07 60 28 ld [ %i5 + 0x28 ], %g2
the_node->next = tail;
40008e64: c8 20 40 00 st %g4, [ %g1 ]
tail->previous = the_node;
40008e68: c2 27 60 28 st %g1, [ %i5 + 0x28 ]
old_last->next = the_node;
40008e6c: c2 20 80 00 st %g1, [ %g2 ]
the_node->previous = old_last;
40008e70: c4 20 60 04 st %g2, [ %g1 + 4 ]
index
);
_Chain_Append_unprotected( &information->Inactive, &the_object->Node );
the_object = (Objects_Control *)
40008e74: c4 07 60 18 ld [ %i5 + 0x18 ], %g2
/*
* Append to inactive chain.
*/
the_object = information->object_blocks[ block ];
for ( index = index_base ; index < index_end ; ++index ) {
40008e78: b8 07 20 01 inc %i4
index
);
_Chain_Append_unprotected( &information->Inactive, &the_object->Node );
the_object = (Objects_Control *)
40008e7c: 10 bf ff ee b 40008e34 <_Objects_Extend_information+0x278>
40008e80: 82 00 40 02 add %g1, %g2, %g1
( (char *) the_object + information->size );
}
information->inactive_per_block[ block ] = information->allocation_size;
40008e84: c2 17 60 14 lduh [ %i5 + 0x14 ], %g1
40008e88: c2 20 80 1b st %g1, [ %g2 + %i3 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
40008e8c: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2
40008e90: 82 00 80 01 add %g2, %g1, %g1
the_object = (Objects_Control *)
( (char *) the_object + information->size );
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
40008e94: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
40008e98: 81 c7 e0 08 ret
40008e9c: 81 e8 00 00 restore
40008f60 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40008f60: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40008f64: 80 a6 60 00 cmp %i1, 0
40008f68: 12 80 00 04 bne 40008f78 <_Objects_Get_information+0x18>
40008f6c: 01 00 00 00 nop
return NULL;
40008f70: 81 c7 e0 08 ret
40008f74: 91 e8 20 00 restore %g0, 0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40008f78: 40 00 12 2b call 4000d824 <_Objects_API_maximum_class>
40008f7c: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40008f80: 80 a2 20 00 cmp %o0, 0
40008f84: 02 bf ff fb be 40008f70 <_Objects_Get_information+0x10>
40008f88: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40008f8c: 18 bf ff f9 bgu 40008f70 <_Objects_Get_information+0x10>
40008f90: 03 10 00 61 sethi %hi(0x40018400), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40008f94: b1 2e 20 02 sll %i0, 2, %i0
40008f98: 82 10 60 20 or %g1, 0x20, %g1
40008f9c: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40008fa0: 80 a0 60 00 cmp %g1, 0
40008fa4: 02 bf ff f3 be 40008f70 <_Objects_Get_information+0x10> <== NEVER TAKEN
40008fa8: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40008fac: f0 00 40 19 ld [ %g1 + %i1 ], %i0
if ( !info )
40008fb0: 80 a6 20 00 cmp %i0, 0
40008fb4: 02 bf ff ef be 40008f70 <_Objects_Get_information+0x10> <== NEVER TAKEN
40008fb8: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40008fbc: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
40008fc0: 80 a0 60 00 cmp %g1, 0
40008fc4: 02 bf ff eb be 40008f70 <_Objects_Get_information+0x10>
40008fc8: 01 00 00 00 nop
return NULL;
#endif
return info;
}
40008fcc: 81 c7 e0 08 ret
40008fd0: 81 e8 00 00 restore
4000cc1c <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
4000cc1c: c2 02 20 08 ld [ %o0 + 8 ], %g1
4000cc20: 92 22 40 01 sub %o1, %g1, %o1
if ( information->maximum >= index ) {
4000cc24: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
4000cc28: 92 02 60 01 inc %o1
if ( information->maximum >= index ) {
4000cc2c: 80 a0 40 09 cmp %g1, %o1
4000cc30: 0a 80 00 09 bcs 4000cc54 <_Objects_Get_no_protection+0x38>
4000cc34: 93 2a 60 02 sll %o1, 2, %o1
if ( (the_object = information->local_table[ index ]) != NULL ) {
4000cc38: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000cc3c: d0 00 40 09 ld [ %g1 + %o1 ], %o0
4000cc40: 80 a2 20 00 cmp %o0, 0
4000cc44: 02 80 00 05 be 4000cc58 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
4000cc48: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
4000cc4c: 81 c3 e0 08 retl
4000cc50: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
4000cc54: 82 10 20 01 mov 1, %g1
return NULL;
4000cc58: 90 10 20 00 clr %o0
}
4000cc5c: 81 c3 e0 08 retl
4000cc60: c2 22 80 00 st %g1, [ %o2 ]
4000d3b0 <_Objects_Id_to_name>:
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
4000d3b0: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Get_executing()->Object.id : id;
4000d3b4: 80 a6 20 00 cmp %i0, 0
4000d3b8: 12 80 00 05 bne 4000d3cc <_Objects_Id_to_name+0x1c>
4000d3bc: 83 36 20 18 srl %i0, 0x18, %g1
4000d3c0: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
4000d3c4: f0 00 60 08 ld [ %g1 + 8 ], %i0
4000d3c8: 83 36 20 18 srl %i0, 0x18, %g1
4000d3cc: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
4000d3d0: 84 00 7f ff add %g1, -1, %g2
4000d3d4: 80 a0 a0 02 cmp %g2, 2
4000d3d8: 08 80 00 04 bleu 4000d3e8 <_Objects_Id_to_name+0x38>
4000d3dc: 83 28 60 02 sll %g1, 2, %g1
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
4000d3e0: 81 c7 e0 08 ret
4000d3e4: 91 e8 20 03 restore %g0, 3, %o0
if ( !_Objects_Information_table[ the_api ] )
4000d3e8: 05 10 00 c0 sethi %hi(0x40030000), %g2
4000d3ec: 84 10 a3 60 or %g2, 0x360, %g2 ! 40030360 <_Objects_Information_table>
4000d3f0: c2 00 80 01 ld [ %g2 + %g1 ], %g1
4000d3f4: 80 a0 60 00 cmp %g1, 0
4000d3f8: 02 bf ff fa be 4000d3e0 <_Objects_Id_to_name+0x30>
4000d3fc: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
4000d400: 85 28 a0 02 sll %g2, 2, %g2
4000d404: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
4000d408: 80 a2 20 00 cmp %o0, 0
4000d40c: 02 bf ff f5 be 4000d3e0 <_Objects_Id_to_name+0x30> <== NEVER TAKEN
4000d410: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
4000d414: c2 0a 20 38 ldub [ %o0 + 0x38 ], %g1
4000d418: 80 a0 60 00 cmp %g1, 0
4000d41c: 12 bf ff f1 bne 4000d3e0 <_Objects_Id_to_name+0x30> <== NEVER TAKEN
4000d420: 92 10 00 18 mov %i0, %o1
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
4000d424: 7f ff ff c8 call 4000d344 <_Objects_Get>
4000d428: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
4000d42c: 80 a2 20 00 cmp %o0, 0
4000d430: 02 bf ff ec be 4000d3e0 <_Objects_Id_to_name+0x30>
4000d434: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
4000d438: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Objects_Put( the_object );
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
4000d43c: b0 10 20 00 clr %i0
RTEMS_INLINE_ROUTINE void _Objects_Put(
Objects_Control *the_object
)
{
(void) the_object;
_Thread_Enable_dispatch();
4000d440: 40 00 03 5f call 4000e1bc <_Thread_Enable_dispatch>
4000d444: c2 26 40 00 st %g1, [ %i1 ]
4000d448: 81 c7 e0 08 ret
4000d44c: 81 e8 00 00 restore
4000792c <_POSIX_Keys_Free_memory>:
#include <rtems/score/chainimpl.h>
void _POSIX_Keys_Free_memory(
POSIX_Keys_Control *the_key
)
{
4000792c: 9d e3 bf 78 save %sp, -136, %sp
POSIX_Keys_Key_value_pair search_node;
POSIX_Keys_Key_value_pair *p;
RBTree_Node *iter, *next;
Objects_Id key_id;
key_id = the_key->Object.id;
40007930: f6 06 20 08 ld [ %i0 + 8 ], %i3
search_node.key = key_id;
search_node.thread_id = 0;
iter = _RBTree_Find( &_POSIX_Keys_Key_value_lookup_tree, &search_node.Key_value_lookup_node );
40007934: 39 10 00 65 sethi %hi(0x40019400), %i4
POSIX_Keys_Key_value_pair *p;
RBTree_Node *iter, *next;
Objects_Id key_id;
key_id = the_key->Object.id;
search_node.key = key_id;
40007938: f6 27 bf f4 st %i3, [ %fp + -12 ]
search_node.thread_id = 0;
4000793c: c0 27 bf f8 clr [ %fp + -8 ]
iter = _RBTree_Find( &_POSIX_Keys_Key_value_lookup_tree, &search_node.Key_value_lookup_node );
40007940: 90 17 22 a8 or %i4, 0x2a8, %o0
40007944: 92 07 bf e4 add %fp, -28, %o1
40007948: 40 00 0a 7e call 4000a340 <_RBTree_Find>
4000794c: b2 10 00 1c mov %i4, %i1
if ( !iter )
40007950: ba 92 20 00 orcc %o0, 0, %i5
40007954: 02 80 00 2d be 40007a08 <_POSIX_Keys_Free_memory+0xdc>
40007958: 01 00 00 00 nop
return;
/**
* find the smallest thread_id node in the rbtree.
*/
next = _RBTree_Next( iter, RBT_LEFT );
4000795c: 40 00 0b 38 call 4000a63c <_RBTree_Next>
40007960: 92 10 20 00 clr %o1 ! 0 <_TLS_BSS_size>
40007964: b8 10 00 08 mov %o0, %i4
p = _RBTree_Container_of( next, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
40007968: 82 02 3f f8 add %o0, -8, %g1
while ( next != NULL && p->key == key_id) {
4000796c: 80 a7 20 00 cmp %i4, 0
40007970: 32 80 00 07 bne,a 4000798c <_POSIX_Keys_Free_memory+0x60>
40007974: c2 00 60 18 ld [ %g1 + 0x18 ], %g1
RTEMS_INLINE_ROUTINE void _POSIX_Keys_Key_value_pair_free(
POSIX_Keys_Key_value_pair *key_value_pair
)
{
_Freechain_Put( &_POSIX_Keys_Keypool, key_value_pair );
40007978: 31 10 00 65 sethi %hi(0x40019400), %i0
}
/**
* delete all nodes belongs to the_key from the rbtree and chain.
*/
p = _RBTree_Container_of( iter, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
4000797c: b8 07 7f f8 add %i5, -8, %i4
while ( iter != NULL && p->key == key_id ) {
next = _RBTree_Next( iter, RBT_RIGHT );
_RBTree_Extract( &_POSIX_Keys_Key_value_lookup_tree, iter );
40007980: b2 16 62 a8 or %i1, 0x2a8, %i1
40007984: 10 80 00 1d b 400079f8 <_POSIX_Keys_Free_memory+0xcc>
40007988: b0 16 22 64 or %i0, 0x264, %i0
/**
* find the smallest thread_id node in the rbtree.
*/
next = _RBTree_Next( iter, RBT_LEFT );
p = _RBTree_Container_of( next, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
while ( next != NULL && p->key == key_id) {
4000798c: 80 a0 40 1b cmp %g1, %i3
40007990: 12 bf ff fb bne 4000797c <_POSIX_Keys_Free_memory+0x50> <== NEVER TAKEN
40007994: 31 10 00 65 sethi %hi(0x40019400), %i0
iter = next;
next = _RBTree_Next( iter, RBT_LEFT );
40007998: 90 10 00 1c mov %i4, %o0
4000799c: 92 10 20 00 clr %o1
400079a0: 40 00 0b 27 call 4000a63c <_RBTree_Next>
400079a4: ba 10 00 1c mov %i4, %i5
p = _RBTree_Container_of( next, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
400079a8: 82 02 3f f8 add %o0, -8, %g1
*/
next = _RBTree_Next( iter, RBT_LEFT );
p = _RBTree_Container_of( next, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
while ( next != NULL && p->key == key_id) {
iter = next;
next = _RBTree_Next( iter, RBT_LEFT );
400079ac: 10 bf ff f0 b 4000796c <_POSIX_Keys_Free_memory+0x40>
400079b0: b8 10 00 08 mov %o0, %i4
/**
* delete all nodes belongs to the_key from the rbtree and chain.
*/
p = _RBTree_Container_of( iter, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
while ( iter != NULL && p->key == key_id ) {
next = _RBTree_Next( iter, RBT_RIGHT );
400079b4: 40 00 0b 22 call 4000a63c <_RBTree_Next>
400079b8: 90 10 00 1d mov %i5, %o0
_RBTree_Extract( &_POSIX_Keys_Key_value_lookup_tree, iter );
400079bc: 92 10 00 1d mov %i5, %o1
/**
* delete all nodes belongs to the_key from the rbtree and chain.
*/
p = _RBTree_Container_of( iter, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
while ( iter != NULL && p->key == key_id ) {
next = _RBTree_Next( iter, RBT_RIGHT );
400079c0: b4 10 00 08 mov %o0, %i2
_RBTree_Extract( &_POSIX_Keys_Key_value_lookup_tree, iter );
400079c4: 40 00 09 f3 call 4000a190 <_RBTree_Extract>
400079c8: 90 10 00 19 mov %i1, %o0
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
400079cc: c4 07 00 00 ld [ %i4 ], %g2
previous = the_node->previous;
400079d0: c2 07 20 04 ld [ %i4 + 4 ], %g1
400079d4: 92 10 00 1c mov %i4, %o1
next->previous = previous;
400079d8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
400079dc: c4 20 40 00 st %g2, [ %g1 ]
400079e0: 40 00 05 fa call 400091c8 <_Freechain_Put>
400079e4: 90 10 00 18 mov %i0, %o0
/**
* delete all nodes belongs to the_key from the rbtree and chain.
*/
p = _RBTree_Container_of( iter, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
while ( iter != NULL && p->key == key_id ) {
400079e8: 80 a6 a0 00 cmp %i2, 0
400079ec: 02 80 00 07 be 40007a08 <_POSIX_Keys_Free_memory+0xdc>
400079f0: b8 06 bf f8 add %i2, -8, %i4
next = _RBTree_Next( iter, RBT_RIGHT );
_RBTree_Extract( &_POSIX_Keys_Key_value_lookup_tree, iter );
_Chain_Extract_unprotected( &p->Key_values_per_thread_node );
_POSIX_Keys_Key_value_pair_free( p );
iter = next;
400079f4: ba 10 00 1a mov %i2, %i5
/**
* delete all nodes belongs to the_key from the rbtree and chain.
*/
p = _RBTree_Container_of( iter, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
while ( iter != NULL && p->key == key_id ) {
400079f8: c2 07 20 18 ld [ %i4 + 0x18 ], %g1
400079fc: 80 a0 40 1b cmp %g1, %i3
40007a00: 02 bf ff ed be 400079b4 <_POSIX_Keys_Free_memory+0x88>
40007a04: 92 10 20 01 mov 1, %o1
40007a08: 81 c7 e0 08 ret
40007a0c: 81 e8 00 00 restore
4000c774 <_POSIX_Keys_Key_value_lookup_tree_compare_function>:
int diff;
n1 = _RBTree_Container_of( node1, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
n2 = _RBTree_Container_of( node2, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
diff = n1->key - n2->key;
4000c774: c4 02 60 10 ld [ %o1 + 0x10 ], %g2
POSIX_Keys_Key_value_pair *n1;
POSIX_Keys_Key_value_pair *n2;
Objects_Id thread_id1, thread_id2;
int diff;
n1 = _RBTree_Container_of( node1, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
4000c778: 82 02 3f f8 add %o0, -8, %g1
n2 = _RBTree_Container_of( node2, POSIX_Keys_Key_value_pair, Key_value_lookup_node );
diff = n1->key - n2->key;
4000c77c: d0 02 20 10 ld [ %o0 + 0x10 ], %o0
if ( diff )
4000c780: 90 a2 00 02 subcc %o0, %g2, %o0
4000c784: 12 80 00 0c bne 4000c7b4 <_POSIX_Keys_Key_value_lookup_tree_compare_function+0x40>
4000c788: 92 02 7f f8 add %o1, -8, %o1
return diff;
thread_id1 = n1->thread_id;
4000c78c: d0 00 60 1c ld [ %g1 + 0x1c ], %o0
thread_id2 = n2->thread_id;
4000c790: c2 02 60 1c ld [ %o1 + 0x1c ], %g1
/**
* if thread_id1 or thread_id2 equals to 0, only key1 and key2 is valued.
* it enables us search node only by pthread_key_t type key.
*/
if ( thread_id1 && thread_id2 )
4000c794: 80 a0 60 00 cmp %g1, 0
4000c798: 02 80 00 06 be 4000c7b0 <_POSIX_Keys_Key_value_lookup_tree_compare_function+0x3c><== NEVER TAKEN
4000c79c: 80 a2 20 00 cmp %o0, 0
4000c7a0: 22 80 00 05 be,a 4000c7b4 <_POSIX_Keys_Key_value_lookup_tree_compare_function+0x40>
4000c7a4: 90 10 20 00 clr %o0
return thread_id1 - thread_id2;
4000c7a8: 81 c3 e0 08 retl
4000c7ac: 90 22 00 01 sub %o0, %g1, %o0
return 0;
4000c7b0: 90 10 20 00 clr %o0 <== NOT EXECUTED
}
4000c7b4: 81 c3 e0 08 retl
4000c7bc <_POSIX_Keys_Keypool_extend>:
return _Objects_Maximum_per_allocation( max );
}
static bool _POSIX_Keys_Keypool_extend( Freechain_Control *keypool )
{
4000c7bc: 9d e3 bf a0 save %sp, -96, %sp
return 0;
}
static uint32_t _POSIX_Keys_Get_keypool_bump_count( void )
{
uint32_t max = Configuration.maximum_key_value_pairs;
4000c7c0: 03 10 00 55 sethi %hi(0x40015400), %g1
4000c7c4: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 40015598 <Configuration+0x10>
return _Objects_Is_unlimited( max ) ?
4000c7c8: 80 a0 60 00 cmp %g1, 0
4000c7cc: 36 80 00 14 bge,a 4000c81c <_POSIX_Keys_Keypool_extend+0x60><== NEVER TAKEN
4000c7d0: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000c7d4: 3b 00 00 3f sethi %hi(0xfc00), %i5
4000c7d8: ba 17 63 ff or %i5, 0x3ff, %i5 ! ffff <_TLS_Alignment+0xfffe>
static bool _POSIX_Keys_Keypool_extend( Freechain_Control *keypool )
{
size_t bump_count = _POSIX_Keys_Get_keypool_bump_count();
bool ok = bump_count > 0;
if ( ok ) {
4000c7dc: ba 88 40 1d andcc %g1, %i5, %i5
4000c7e0: 12 80 00 04 bne 4000c7f0 <_POSIX_Keys_Keypool_extend+0x34><== ALWAYS TAKEN
4000c7e4: 83 2f 60 05 sll %i5, 5, %g1
return _Objects_Maximum_per_allocation( max );
}
static bool _POSIX_Keys_Keypool_extend( Freechain_Control *keypool )
{
4000c7e8: 10 80 00 0d b 4000c81c <_POSIX_Keys_Keypool_extend+0x60> <== NOT EXECUTED
4000c7ec: b0 10 20 00 clr %i0 <== NOT EXECUTED
size_t bump_count = _POSIX_Keys_Get_keypool_bump_count();
bool ok = bump_count > 0;
if ( ok ) {
size_t size = bump_count * sizeof( POSIX_Keys_Key_value_pair );
4000c7f0: 91 2f 60 02 sll %i5, 2, %o0
POSIX_Keys_Key_value_pair *nodes = _Workspace_Allocate( size );
4000c7f4: 7f ff fa e1 call 4000b378 <_Workspace_Allocate>
4000c7f8: 90 02 00 01 add %o0, %g1, %o0
ok = nodes != NULL;
if ( ok ) {
4000c7fc: 92 92 20 00 orcc %o0, 0, %o1
4000c800: 22 80 00 07 be,a 4000c81c <_POSIX_Keys_Keypool_extend+0x60><== NEVER TAKEN
4000c804: b0 10 20 00 clr %i0 <== NOT EXECUTED
_Chain_Initialize(
4000c808: 90 10 00 18 mov %i0, %o0
4000c80c: 94 10 00 1d mov %i5, %o2
4000c810: 96 10 20 24 mov 0x24, %o3
4000c814: 7f ff ee 3d call 40008108 <_Chain_Initialize>
4000c818: b0 10 20 01 mov 1, %i0
);
}
}
return ok;
}
4000c81c: b0 0e 20 01 and %i0, 1, %i0
4000c820: 81 c7 e0 08 ret
4000c824: 81 e8 00 00 restore
4000c9c8 <_POSIX_Message_queue_Receive_support>:
size_t msg_len,
unsigned int *msg_prio,
bool wait,
Watchdog_Interval timeout
)
{
4000c9c8: 9d e3 bf 90 save %sp, -112, %sp
RTEMS_INLINE_ROUTINE POSIX_Message_queue_Control_fd *_POSIX_Message_queue_Get_fd (
mqd_t id,
Objects_Locations *location
)
{
return (POSIX_Message_queue_Control_fd *) _Objects_Get(
4000c9cc: 11 10 00 a8 sethi %hi(0x4002a000), %o0
4000c9d0: 92 10 00 18 mov %i0, %o1
4000c9d4: 90 12 23 40 or %o0, 0x340, %o0
4000c9d8: 40 00 0c c8 call 4000fcf8 <_Objects_Get>
4000c9dc: 94 07 bf f8 add %fp, -8, %o2
size_t length_out;
bool do_wait;
Thread_Control *executing;
the_mq_fd = _POSIX_Message_queue_Get_fd( mqdes, &location );
switch ( location ) {
4000c9e0: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000c9e4: 80 a0 60 00 cmp %g1, 0
4000c9e8: 12 80 00 3c bne 4000cad8 <_POSIX_Message_queue_Receive_support+0x110>
4000c9ec: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( (the_mq_fd->oflag & O_ACCMODE) == O_WRONLY ) {
4000c9f0: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000c9f4: 84 08 60 03 and %g1, 3, %g2
4000c9f8: 80 a0 a0 01 cmp %g2, 1
4000c9fc: 32 80 00 05 bne,a 4000ca10 <_POSIX_Message_queue_Receive_support+0x48>
4000ca00: d0 02 20 10 ld [ %o0 + 0x10 ], %o0
RTEMS_INLINE_ROUTINE void _Objects_Put(
Objects_Control *the_object
)
{
(void) the_object;
_Thread_Enable_dispatch();
4000ca04: 40 00 10 33 call 40010ad0 <_Thread_Enable_dispatch>
4000ca08: 01 00 00 00 nop
4000ca0c: 30 80 00 33 b,a 4000cad8 <_POSIX_Message_queue_Receive_support+0x110>
rtems_set_errno_and_return_minus_one( EBADF );
}
the_mq = the_mq_fd->Queue;
if ( msg_len < the_mq->Message_queue.maximum_message_size ) {
4000ca10: c4 02 20 68 ld [ %o0 + 0x68 ], %g2
4000ca14: 80 a6 80 02 cmp %i2, %g2
4000ca18: 1a 80 00 08 bcc 4000ca38 <_POSIX_Message_queue_Receive_support+0x70>
4000ca1c: 84 10 3f ff mov -1, %g2
4000ca20: 40 00 10 2c call 40010ad0 <_Thread_Enable_dispatch>
4000ca24: 01 00 00 00 nop
_Objects_Put( &the_mq_fd->Object );
rtems_set_errno_and_return_minus_one( EMSGSIZE );
4000ca28: 40 00 29 30 call 40016ee8 <__errno>
4000ca2c: 01 00 00 00 nop
4000ca30: 10 80 00 2d b 4000cae4 <_POSIX_Message_queue_Receive_support+0x11c>
4000ca34: 82 10 20 7a mov 0x7a, %g1 ! 7a <_TLS_Alignment+0x79>
length_out = -1;
/*
* A timed receive with a bad time will do a poll regardless.
*/
if ( wait )
4000ca38: 80 a7 20 00 cmp %i4, 0
4000ca3c: 02 80 00 05 be 4000ca50 <_POSIX_Message_queue_Receive_support+0x88>
4000ca40: c4 27 bf fc st %g2, [ %fp + -4 ]
do_wait = (the_mq_fd->oflag & O_NONBLOCK) ? false : true;
4000ca44: b9 30 60 0e srl %g1, 0xe, %i4
4000ca48: b8 1f 20 01 xor %i4, 1, %i4
4000ca4c: b8 0f 20 01 and %i4, 1, %i4
do_wait = wait;
/*
* Now perform the actual message receive
*/
executing = _Thread_Executing;
4000ca50: f4 01 a0 18 ld [ %g6 + 0x18 ], %i2
_CORE_message_queue_Seize(
4000ca54: 90 02 20 1c add %o0, 0x1c, %o0
4000ca58: 92 10 00 1a mov %i2, %o1
4000ca5c: 94 10 00 18 mov %i0, %o2
4000ca60: 96 10 00 19 mov %i1, %o3
4000ca64: 98 07 bf fc add %fp, -4, %o4
4000ca68: 9a 10 00 1c mov %i4, %o5
4000ca6c: 40 00 08 4e call 4000eba4 <_CORE_message_queue_Seize>
4000ca70: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
4000ca74: 40 00 10 17 call 40010ad0 <_Thread_Enable_dispatch>
4000ca78: 01 00 00 00 nop
do_wait,
timeout
);
_Objects_Put( &the_mq_fd->Object );
if (msg_prio) {
4000ca7c: 80 a6 e0 00 cmp %i3, 0
4000ca80: 22 80 00 08 be,a 4000caa0 <_POSIX_Message_queue_Receive_support+0xd8><== NEVER TAKEN
4000ca84: c2 06 a0 34 ld [ %i2 + 0x34 ], %g1 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE unsigned int _POSIX_Message_queue_Priority_from_core(
CORE_message_queue_Submit_types priority
)
{
/* absolute value without a library dependency */
return (unsigned int) ((priority >= 0) ? priority : -priority);
4000ca88: c4 06 a0 24 ld [ %i2 + 0x24 ], %g2
4000ca8c: 83 38 a0 1f sra %g2, 0x1f, %g1
4000ca90: 84 18 40 02 xor %g1, %g2, %g2
4000ca94: 82 20 80 01 sub %g2, %g1, %g1
*msg_prio = _POSIX_Message_queue_Priority_from_core(
4000ca98: c2 26 c0 00 st %g1, [ %i3 ]
executing->Wait.count
);
}
if ( !executing->Wait.return_code )
4000ca9c: c2 06 a0 34 ld [ %i2 + 0x34 ], %g1
4000caa0: 80 a0 60 00 cmp %g1, 0
4000caa4: 12 80 00 05 bne 4000cab8 <_POSIX_Message_queue_Receive_support+0xf0>
4000caa8: 01 00 00 00 nop
return length_out;
4000caac: f0 07 bf fc ld [ %fp + -4 ], %i0
4000cab0: 81 c7 e0 08 ret
4000cab4: 81 e8 00 00 restore
rtems_set_errno_and_return_minus_one(
4000cab8: 40 00 29 0c call 40016ee8 <__errno>
4000cabc: b0 10 3f ff mov -1, %i0
4000cac0: ba 10 00 08 mov %o0, %i5
4000cac4: 40 00 00 94 call 4000cd14 <_POSIX_Message_queue_Translate_core_message_queue_return_code>
4000cac8: d0 06 a0 34 ld [ %i2 + 0x34 ], %o0
4000cacc: d0 27 40 00 st %o0, [ %i5 ]
4000cad0: 81 c7 e0 08 ret
4000cad4: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
rtems_set_errno_and_return_minus_one( EBADF );
4000cad8: 40 00 29 04 call 40016ee8 <__errno>
4000cadc: 01 00 00 00 nop
4000cae0: 82 10 20 09 mov 9, %g1 ! 9 <_TLS_Alignment+0x8>
4000cae4: c2 22 00 00 st %g1, [ %o0 ]
4000cae8: b0 10 3f ff mov -1, %i0
}
4000caec: 81 c7 e0 08 ret
4000caf0: 81 e8 00 00 restore
4000f6fc <_POSIX_Semaphore_Create_support>:
size_t name_len,
int pshared,
unsigned int value,
POSIX_Semaphore_Control **the_sem
)
{
4000f6fc: 9d e3 bf a0 save %sp, -96, %sp
POSIX_Semaphore_Control *the_semaphore;
CORE_semaphore_Attributes *the_sem_attr;
char *name;
/* Sharing semaphores among processes is not currently supported */
if (pshared != 0)
4000f700: 80 a6 a0 00 cmp %i2, 0
4000f704: 22 80 00 06 be,a 4000f71c <_POSIX_Semaphore_Create_support+0x20>
4000f708: 21 10 00 78 sethi %hi(0x4001e000), %l0
rtems_set_errno_and_return_minus_one( ENOSYS );
4000f70c: 40 00 0a c3 call 40012218 <__errno>
4000f710: 01 00 00 00 nop
4000f714: 10 80 00 0b b 4000f740 <_POSIX_Semaphore_Create_support+0x44>
4000f718: 82 10 20 58 mov 0x58, %g1 ! 58 <_TLS_Alignment+0x57>
void _POSIX_Semaphore_Manager_initialization(void);
RTEMS_INLINE_ROUTINE POSIX_Semaphore_Control *
_POSIX_Semaphore_Allocate_unprotected( void )
{
return (POSIX_Semaphore_Control *)
4000f71c: 90 14 22 e4 or %l0, 0x2e4, %o0
4000f720: 7f ff ee 77 call 4000b0fc <_Objects_Allocate_unprotected>
4000f724: a2 10 00 10 mov %l0, %l1
the_semaphore = _POSIX_Semaphore_Allocate_unprotected();
if ( !the_semaphore ) {
4000f728: ba 92 20 00 orcc %o0, 0, %i5
4000f72c: 12 80 00 08 bne 4000f74c <_POSIX_Semaphore_Create_support+0x50>
4000f730: 80 a6 20 00 cmp %i0, 0
rtems_set_errno_and_return_minus_one( ENOSPC );
4000f734: 40 00 0a b9 call 40012218 <__errno>
4000f738: 01 00 00 00 nop
4000f73c: 82 10 20 1c mov 0x1c, %g1 ! 1c <_TLS_Alignment+0x1b>
4000f740: c2 22 00 00 st %g1, [ %o0 ]
4000f744: 81 c7 e0 08 ret
4000f748: 91 e8 3f ff restore %g0, -1, %o0
/*
* Make a copy of the user's string for name just in case it was
* dynamically constructed.
*/
if ( name_arg != NULL ) {
4000f74c: 02 80 00 0e be 4000f784 <_POSIX_Semaphore_Create_support+0x88>
4000f750: 90 10 00 18 mov %i0, %o0
name = _Workspace_String_duplicate( name_arg, name_len );
4000f754: 40 00 03 1f call 400103d0 <_Workspace_String_duplicate>
4000f758: 92 10 00 19 mov %i1, %o1
if ( !name ) {
4000f75c: b4 92 20 00 orcc %o0, 0, %i2
4000f760: 12 80 00 0b bne 4000f78c <_POSIX_Semaphore_Create_support+0x90><== ALWAYS TAKEN
4000f764: 80 a6 a0 00 cmp %i2, 0
*/
RTEMS_INLINE_ROUTINE void _POSIX_Semaphore_Free (
POSIX_Semaphore_Control *the_semaphore
)
{
_Objects_Free( &_POSIX_Semaphore_Information, &the_semaphore->Object );
4000f768: 90 14 22 e4 or %l0, 0x2e4, %o0 <== NOT EXECUTED
4000f76c: 7f ff ef 5f call 4000b4e8 <_Objects_Free> <== NOT EXECUTED
4000f770: 92 10 00 1d mov %i5, %o1 <== NOT EXECUTED
_POSIX_Semaphore_Free( the_semaphore );
rtems_set_errno_and_return_minus_one( ENOMEM );
4000f774: 40 00 0a a9 call 40012218 <__errno> <== NOT EXECUTED
4000f778: 01 00 00 00 nop <== NOT EXECUTED
4000f77c: 10 bf ff f1 b 4000f740 <_POSIX_Semaphore_Create_support+0x44><== NOT EXECUTED
4000f780: 82 10 20 0c mov 0xc, %g1 ! c <_TLS_Alignment+0xb> <== NOT EXECUTED
}
} else {
name = NULL;
4000f784: b4 10 20 00 clr %i2
}
the_semaphore->process_shared = pshared;
if ( name ) {
4000f788: 80 a6 a0 00 cmp %i2, 0
4000f78c: 02 80 00 08 be 4000f7ac <_POSIX_Semaphore_Create_support+0xb0>
4000f790: c0 27 60 10 clr [ %i5 + 0x10 ]
the_semaphore->named = true;
4000f794: 82 10 20 01 mov 1, %g1
4000f798: c2 2f 60 14 stb %g1, [ %i5 + 0x14 ]
the_semaphore->open_count = 1;
4000f79c: 82 10 20 01 mov 1, %g1
4000f7a0: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
4000f7a4: 10 80 00 05 b 4000f7b8 <_POSIX_Semaphore_Create_support+0xbc>
4000f7a8: c2 2f 60 15 stb %g1, [ %i5 + 0x15 ]
the_semaphore->linked = true;
} else {
the_semaphore->named = false;
4000f7ac: c0 2f 60 14 clrb [ %i5 + 0x14 ]
the_semaphore->open_count = 0;
4000f7b0: c0 27 60 18 clr [ %i5 + 0x18 ]
the_semaphore->linked = false;
4000f7b4: c0 2f 60 15 clrb [ %i5 + 0x15 ]
the_sem_attr->discipline = CORE_SEMAPHORE_DISCIPLINES_FIFO;
/*
* This effectively disables limit checking.
*/
the_sem_attr->maximum_count = 0xFFFFFFFF;
4000f7b8: 82 10 3f ff mov -1, %g1
* blocking tasks on this semaphore should be. It could somehow
* be derived from the current scheduling policy. One
* thing is certain, no matter what we decide, it won't be
* the same as all other POSIX implementations. :)
*/
the_sem_attr->discipline = CORE_SEMAPHORE_DISCIPLINES_FIFO;
4000f7bc: c0 27 60 60 clr [ %i5 + 0x60 ]
/*
* This effectively disables limit checking.
*/
the_sem_attr->maximum_count = 0xFFFFFFFF;
4000f7c0: c2 27 60 5c st %g1, [ %i5 + 0x5c ]
_CORE_semaphore_Initialize( &the_semaphore->Semaphore, the_sem_attr, value );
4000f7c4: 90 07 60 1c add %i5, 0x1c, %o0
4000f7c8: 92 07 60 5c add %i5, 0x5c, %o1
4000f7cc: 7f ff ec 6f call 4000a988 <_CORE_semaphore_Initialize>
4000f7d0: 94 10 00 1b mov %i3, %o2
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
/* ASSERT: information->is_string */
the_object->name.name_p = name;
#endif
_Objects_Set_local_object(
4000f7d4: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
const char *name
)
{
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
/* ASSERT: information->is_string */
the_object->name.name_p = name;
4000f7d8: f4 27 60 0c st %i2, [ %i5 + 0xc ]
* @param[in] information points to an Object Information Table
* @param[in] the_object is a pointer to an object
* @param[in] name is the name of the object to make accessible
*/
RTEMS_INLINE_ROUTINE void _Objects_Open_string(
Objects_Information *information,
4000f7dc: a2 14 62 e4 or %l1, 0x2e4, %l1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000f7e0: c4 04 60 1c ld [ %l1 + 0x1c ], %g2
4000f7e4: 83 28 60 02 sll %g1, 2, %g1
4000f7e8: fa 20 80 01 st %i5, [ %g2 + %g1 ]
&_POSIX_Semaphore_Information,
&the_semaphore->Object,
name
);
*the_sem = the_semaphore;
4000f7ec: fa 27 00 00 st %i5, [ %i4 ]
return 0;
}
4000f7f0: 81 c7 e0 08 ret
4000f7f4: 91 e8 20 00 restore %g0, 0, %o0
4000c7b8 <_POSIX_Thread_Evaluate_cancellation_and_enable_dispatch>:
Thread_Control *the_thread
)
{
POSIX_API_Control *thread_support;
thread_support = the_thread->API_Extensions[ THREAD_API_POSIX ];
4000c7b8: c2 02 21 30 ld [ %o0 + 0x130 ], %g1
if ( thread_support->cancelability_state == PTHREAD_CANCEL_ENABLE &&
4000c7bc: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2
4000c7c0: 80 a0 a0 00 cmp %g2, 0
4000c7c4: 12 80 00 11 bne 4000c808 <_POSIX_Thread_Evaluate_cancellation_and_enable_dispatch+0x50><== NEVER TAKEN
4000c7c8: 01 00 00 00 nop
4000c7cc: c4 00 60 f4 ld [ %g1 + 0xf4 ], %g2
4000c7d0: 80 a0 a0 01 cmp %g2, 1
4000c7d4: 12 80 00 0d bne 4000c808 <_POSIX_Thread_Evaluate_cancellation_and_enable_dispatch+0x50>
4000c7d8: 01 00 00 00 nop
thread_support->cancelability_type == PTHREAD_CANCEL_ASYNCHRONOUS &&
4000c7dc: c2 00 60 f8 ld [ %g1 + 0xf8 ], %g1
4000c7e0: 80 a0 60 00 cmp %g1, 0
4000c7e4: 02 80 00 09 be 4000c808 <_POSIX_Thread_Evaluate_cancellation_and_enable_dispatch+0x50>
4000c7e8: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
4000c7ec: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
thread_support->cancelation_requested ) {
/* FIXME: This path is broken on SMP */
_Thread_Unnest_dispatch();
/* FIXME: Cancelability state may change here */
_POSIX_Thread_Exit( the_thread, PTHREAD_CANCELED );
4000c7f0: 92 10 3f ff mov -1, %o1
ISR_Level level;
_ISR_Disable( level );
#endif
--disable_level;
4000c7f4: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = disable_level;
4000c7f8: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
4000c7fc: 82 13 c0 00 mov %o7, %g1
4000c800: 40 00 01 f5 call 4000cfd4 <_POSIX_Thread_Exit>
4000c804: 9e 10 40 00 mov %g1, %o7
4000c808: 82 13 c0 00 mov %o7, %g1
4000c80c: 7f ff f5 a2 call 40009e94 <_Thread_Enable_dispatch>
4000c810: 9e 10 40 00 mov %g1, %o7
4000d958 <_POSIX_Thread_Translate_sched_param>:
int policy,
struct sched_param *param,
Thread_CPU_budget_algorithms *budget_algorithm,
Thread_CPU_budget_algorithm_callout *budget_callout
)
{
4000d958: 9d e3 bf a0 save %sp, -96, %sp
if ( !_POSIX_Priority_Is_valid( param->sched_priority ) )
4000d95c: 7f ff ff f4 call 4000d92c <_POSIX_Priority_Is_valid>
4000d960: d0 06 40 00 ld [ %i1 ], %o0
4000d964: 80 a2 20 00 cmp %o0, 0
4000d968: 32 80 00 04 bne,a 4000d978 <_POSIX_Thread_Translate_sched_param+0x20><== ALWAYS TAKEN
4000d96c: c0 26 80 00 clr [ %i2 ]
return EINVAL;
4000d970: 81 c7 e0 08 ret
4000d974: 91 e8 20 16 restore %g0, 0x16, %o0
*budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE;
*budget_callout = NULL;
if ( policy == SCHED_OTHER ) {
4000d978: 80 a6 20 00 cmp %i0, 0
4000d97c: 12 80 00 06 bne 4000d994 <_POSIX_Thread_Translate_sched_param+0x3c>
4000d980: c0 26 c0 00 clr [ %i3 ]
*budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000d984: 82 10 20 01 mov 1, %g1
4000d988: c2 26 80 00 st %g1, [ %i2 ]
return 0;
4000d98c: 81 c7 e0 08 ret
4000d990: 81 e8 00 00 restore
}
if ( policy == SCHED_FIFO ) {
4000d994: 80 a6 20 01 cmp %i0, 1
4000d998: 02 80 00 29 be 4000da3c <_POSIX_Thread_Translate_sched_param+0xe4>
4000d99c: 80 a6 20 02 cmp %i0, 2
*budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE;
return 0;
}
if ( policy == SCHED_RR ) {
4000d9a0: 12 80 00 04 bne 4000d9b0 <_POSIX_Thread_Translate_sched_param+0x58>
4000d9a4: 80 a6 20 04 cmp %i0, 4
*budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE;
4000d9a8: 10 80 00 25 b 4000da3c <_POSIX_Thread_Translate_sched_param+0xe4>
4000d9ac: f0 26 80 00 st %i0, [ %i2 ]
return 0;
}
if ( policy == SCHED_SPORADIC ) {
4000d9b0: 12 bf ff f0 bne 4000d970 <_POSIX_Thread_Translate_sched_param+0x18>
4000d9b4: 01 00 00 00 nop
if ( (param->sched_ss_repl_period.tv_sec == 0) &&
4000d9b8: c2 06 60 08 ld [ %i1 + 8 ], %g1
4000d9bc: 80 a0 60 00 cmp %g1, 0
4000d9c0: 32 80 00 07 bne,a 4000d9dc <_POSIX_Thread_Translate_sched_param+0x84>
4000d9c4: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
4000d9c8: c2 06 60 0c ld [ %i1 + 0xc ], %g1
4000d9cc: 80 a0 60 00 cmp %g1, 0
4000d9d0: 02 bf ff e8 be 4000d970 <_POSIX_Thread_Translate_sched_param+0x18>
4000d9d4: 01 00 00 00 nop
(param->sched_ss_repl_period.tv_nsec == 0) )
return EINVAL;
if ( (param->sched_ss_init_budget.tv_sec == 0) &&
4000d9d8: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
4000d9dc: 80 a0 60 00 cmp %g1, 0
4000d9e0: 12 80 00 06 bne 4000d9f8 <_POSIX_Thread_Translate_sched_param+0xa0>
4000d9e4: 01 00 00 00 nop
4000d9e8: c2 06 60 14 ld [ %i1 + 0x14 ], %g1
4000d9ec: 80 a0 60 00 cmp %g1, 0
4000d9f0: 02 bf ff e0 be 4000d970 <_POSIX_Thread_Translate_sched_param+0x18>
4000d9f4: 01 00 00 00 nop
(param->sched_ss_init_budget.tv_nsec == 0) )
return EINVAL;
if ( _Timespec_To_ticks( ¶m->sched_ss_repl_period ) <
4000d9f8: 7f ff f7 c8 call 4000b918 <_Timespec_To_ticks>
4000d9fc: 90 06 60 08 add %i1, 8, %o0
4000da00: ba 10 00 08 mov %o0, %i5
_Timespec_To_ticks( ¶m->sched_ss_init_budget ) )
4000da04: 7f ff f7 c5 call 4000b918 <_Timespec_To_ticks>
4000da08: 90 06 60 10 add %i1, 0x10, %o0
if ( (param->sched_ss_init_budget.tv_sec == 0) &&
(param->sched_ss_init_budget.tv_nsec == 0) )
return EINVAL;
if ( _Timespec_To_ticks( ¶m->sched_ss_repl_period ) <
4000da0c: 80 a7 40 08 cmp %i5, %o0
4000da10: 0a bf ff d8 bcs 4000d970 <_POSIX_Thread_Translate_sched_param+0x18>
4000da14: 01 00 00 00 nop
_Timespec_To_ticks( ¶m->sched_ss_init_budget ) )
return EINVAL;
if ( !_POSIX_Priority_Is_valid( param->sched_ss_low_priority ) )
4000da18: 7f ff ff c5 call 4000d92c <_POSIX_Priority_Is_valid>
4000da1c: d0 06 60 04 ld [ %i1 + 4 ], %o0
4000da20: 80 a2 20 00 cmp %o0, 0
4000da24: 02 bf ff d3 be 4000d970 <_POSIX_Thread_Translate_sched_param+0x18>
4000da28: 82 10 20 03 mov 3, %g1
return EINVAL;
*budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_CALLOUT;
4000da2c: c2 26 80 00 st %g1, [ %i2 ]
*budget_callout = _POSIX_Threads_Sporadic_budget_callout;
4000da30: 03 10 00 1e sethi %hi(0x40007800), %g1
4000da34: 82 10 62 d0 or %g1, 0x2d0, %g1 ! 40007ad0 <_POSIX_Threads_Sporadic_budget_callout>
4000da38: c2 26 c0 00 st %g1, [ %i3 ]
return 0;
}
return EINVAL;
}
4000da3c: 81 c7 e0 08 ret
4000da40: 91 e8 20 00 restore %g0, 0, %o0
40007840 <_POSIX_Threads_Initialize_user_threads_body>:
#include <rtems/posix/priorityimpl.h>
#include <rtems/posix/config.h>
#include <rtems/posix/time.h>
void _POSIX_Threads_Initialize_user_threads_body(void)
{
40007840: 9d e3 bf 50 save %sp, -176, %sp
uint32_t maximum;
posix_initialization_threads_table *user_threads;
pthread_t thread_id;
pthread_attr_t attr;
user_threads = Configuration_POSIX_API.User_initialization_threads_table;
40007844: 03 10 00 7c sethi %hi(0x4001f000), %g1
40007848: 82 10 61 1c or %g1, 0x11c, %g1 ! 4001f11c <Configuration_POSIX_API>
maximum = Configuration_POSIX_API.number_of_initialization_threads;
4000784c: f6 00 60 2c ld [ %g1 + 0x2c ], %i3
if ( !user_threads || maximum == 0 )
40007850: 80 a6 e0 00 cmp %i3, 0
40007854: 02 80 00 1b be 400078c0 <_POSIX_Threads_Initialize_user_threads_body+0x80><== NEVER TAKEN
40007858: fa 00 60 30 ld [ %g1 + 0x30 ], %i5
4000785c: 80 a7 60 00 cmp %i5, 0
40007860: 02 80 00 18 be 400078c0 <_POSIX_Threads_Initialize_user_threads_body+0x80><== NEVER TAKEN
40007864: b8 10 20 00 clr %i4
for ( index=0 ; index < maximum ; index++ ) {
/*
* There is no way for these calls to fail in this situation.
*/
eno = pthread_attr_init( &attr );
40007868: 40 00 18 77 call 4000da44 <pthread_attr_init>
4000786c: 90 07 bf b4 add %fp, -76, %o0
_Assert( eno == 0 );
eno = pthread_attr_setinheritsched( &attr, PTHREAD_EXPLICIT_SCHED );
40007870: 92 10 20 02 mov 2, %o1
40007874: 40 00 18 80 call 4000da74 <pthread_attr_setinheritsched>
40007878: 90 07 bf b4 add %fp, -76, %o0
_Assert( eno == 0 );
eno = pthread_attr_setstacksize(&attr, user_threads[ index ].stack_size);
4000787c: d2 07 60 04 ld [ %i5 + 4 ], %o1
40007880: 40 00 18 8c call 4000dab0 <pthread_attr_setstacksize>
40007884: 90 07 bf b4 add %fp, -76, %o0
_Assert( eno == 0 );
eno = pthread_create(
40007888: d4 07 40 00 ld [ %i5 ], %o2
4000788c: 92 07 bf b4 add %fp, -76, %o1
40007890: 90 07 bf b0 add %fp, -80, %o0
40007894: 7f ff ff 1f call 40007510 <pthread_create>
40007898: 96 10 20 00 clr %o3
&thread_id,
&attr,
user_threads[ index ].thread_entry,
NULL
);
if ( eno )
4000789c: 92 92 20 00 orcc %o0, 0, %o1
400078a0: 22 80 00 05 be,a 400078b4 <_POSIX_Threads_Initialize_user_threads_body+0x74>
400078a4: b8 07 20 01 inc %i4
_POSIX_Fatal_error( POSIX_FD_PTHREAD, eno );
400078a8: 40 00 04 5f call 40008a24 <_POSIX_Fatal_error>
400078ac: 90 10 20 00 clr %o0
*
* Setting the attributes explicitly is critical, since we don't want
* to inherit the idle tasks attributes.
*/
for ( index=0 ; index < maximum ; index++ ) {
400078b0: b8 07 20 01 inc %i4 <== NOT EXECUTED
400078b4: 80 a7 00 1b cmp %i4, %i3
400078b8: 12 bf ff ec bne 40007868 <_POSIX_Threads_Initialize_user_threads_body+0x28><== NEVER TAKEN
400078bc: ba 07 60 08 add %i5, 8, %i5
400078c0: 81 c7 e0 08 ret
400078c4: 81 e8 00 00 restore
4000cc10 <_POSIX_Threads_Sporadic_budget_TSR>:
*/
void _POSIX_Threads_Sporadic_budget_TSR(
Objects_Id id __attribute__((unused)),
void *argument
)
{
4000cc10: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
POSIX_API_Control *api;
the_thread = argument;
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
4000cc14: fa 06 61 30 ld [ %i1 + 0x130 ], %i5
/* ticks is guaranteed to be at least one */
ticks = _Timespec_To_ticks( &api->schedparam.sched_ss_init_budget );
4000cc18: 40 00 03 8c call 4000da48 <_Timespec_To_ticks>
4000cc1c: 90 07 60 a4 add %i5, 0xa4, %o0
*/
RTEMS_INLINE_ROUTINE Priority_Control _POSIX_Priority_To_core(
int priority
)
{
return (Priority_Control) (POSIX_SCHEDULER_MAXIMUM_PRIORITY - priority + 1);
4000cc20: 03 10 00 5a sethi %hi(0x40016800), %g1
4000cc24: d2 08 62 a4 ldub [ %g1 + 0x2a4 ], %o1 ! 40016aa4 <rtems_maximum_priority>
4000cc28: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
the_thread->cpu_time_budget = ticks;
4000cc2c: d0 26 60 74 st %o0, [ %i1 + 0x74 ]
4000cc30: 92 22 40 01 sub %o1, %g1, %o1
*/
#if 0
printk( "TSR %d %d %d\n", the_thread->resource_count,
the_thread->current_priority, new_priority );
#endif
if ( !_Thread_Owns_resources( the_thread ) ) {
4000cc34: c2 06 60 1c ld [ %i1 + 0x1c ], %g1
4000cc38: 80 a0 60 00 cmp %g1, 0
4000cc3c: 12 80 00 09 bne 4000cc60 <_POSIX_Threads_Sporadic_budget_TSR+0x50><== NEVER TAKEN
4000cc40: d2 26 60 18 st %o1, [ %i1 + 0x18 ]
/*
* If this would make them less important, then do not change it.
*/
if ( the_thread->current_priority > new_priority ) {
4000cc44: c2 06 60 14 ld [ %i1 + 0x14 ], %g1
4000cc48: 80 a0 40 09 cmp %g1, %o1
4000cc4c: 08 80 00 06 bleu 4000cc64 <_POSIX_Threads_Sporadic_budget_TSR+0x54>
4000cc50: 90 07 60 9c add %i5, 0x9c, %o0
_Thread_Change_priority( the_thread, new_priority, true );
4000cc54: 90 10 00 19 mov %i1, %o0
4000cc58: 7f ff f3 83 call 40009a64 <_Thread_Change_priority>
4000cc5c: 94 10 20 01 mov 1, %o2
#endif
}
}
/* ticks is guaranteed to be at least one */
ticks = _Timespec_To_ticks( &api->schedparam.sched_ss_repl_period );
4000cc60: 90 07 60 9c add %i5, 0x9c, %o0
4000cc64: 40 00 03 79 call 4000da48 <_Timespec_To_ticks>
4000cc68: 31 10 00 61 sethi %hi(0x40018400), %i0
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000cc6c: b0 16 20 b0 or %i0, 0xb0, %i0 ! 400184b0 <_Watchdog_Ticks_chain>
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000cc70: d0 27 60 c0 st %o0, [ %i5 + 0xc0 ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000cc74: 7f ff f8 b4 call 4000af44 <_Watchdog_Insert>
4000cc78: 93 ef 60 b4 restore %i5, 0xb4, %o1
40007ad0 <_POSIX_Threads_Sporadic_budget_callout>:
)
{
POSIX_API_Control *api;
uint32_t new_priority;
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
40007ad0: c4 02 21 30 ld [ %o0 + 0x130 ], %g2
/*
* This will prevent the thread from consuming its entire "budget"
* while at low priority.
*/
the_thread->cpu_time_budget = UINT32_MAX;
40007ad4: 86 10 3f ff mov -1, %g3
*/
RTEMS_INLINE_ROUTINE Priority_Control _POSIX_Priority_To_core(
int priority
)
{
return (Priority_Control) (POSIX_SCHEDULER_MAXIMUM_PRIORITY - priority + 1);
40007ad8: c4 00 a0 98 ld [ %g2 + 0x98 ], %g2
40007adc: c6 22 20 74 st %g3, [ %o0 + 0x74 ]
40007ae0: 07 10 00 7c sethi %hi(0x4001f000), %g3
40007ae4: d2 08 e1 14 ldub [ %g3 + 0x114 ], %o1 ! 4001f114 <rtems_maximum_priority>
40007ae8: 92 22 40 02 sub %o1, %g2, %o1
*/
#if 0
printk( "callout %d %d %d\n", the_thread->resource_count,
the_thread->current_priority, new_priority );
#endif
if ( !_Thread_Owns_resources( the_thread ) ) {
40007aec: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
40007af0: 80 a0 a0 00 cmp %g2, 0
40007af4: 12 80 00 09 bne 40007b18 <_POSIX_Threads_Sporadic_budget_callout+0x48><== NEVER TAKEN
40007af8: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
/*
* Make sure we are actually lowering it. If they have lowered it
* to logically lower than sched_ss_low_priority, then we do not want to
* change it.
*/
if ( the_thread->current_priority < new_priority ) {
40007afc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
40007b00: 80 a0 40 09 cmp %g1, %o1
40007b04: 1a 80 00 05 bcc 40007b18 <_POSIX_Threads_Sporadic_budget_callout+0x48><== NEVER TAKEN
40007b08: 94 10 20 01 mov 1, %o2
_Thread_Change_priority( the_thread, new_priority, true );
40007b0c: 82 13 c0 00 mov %o7, %g1
40007b10: 40 00 0a c8 call 4000a630 <_Thread_Change_priority>
40007b14: 9e 10 40 00 mov %g1, %o7
40007b18: 81 c3 e0 08 retl <== NOT EXECUTED
4000cc8c <_POSIX_Threads_Terminate_extension>:
}
static void _POSIX_Threads_Terminate_extension(
Thread_Control *executing
)
{
4000cc8c: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
POSIX_API_Control *api;
void **value_ptr;
api = executing->API_Extensions[ THREAD_API_POSIX ];
4000cc90: fa 06 21 30 ld [ %i0 + 0x130 ], %i5
/*
* Run the POSIX cancellation handlers
*/
_POSIX_Threads_cancel_run( executing );
4000cc94: 40 00 07 c0 call 4000eb94 <_POSIX_Threads_cancel_run>
4000cc98: 90 10 00 18 mov %i0, %o0
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
4000cc9c: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
4000cca0: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
4000cca4: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
_Thread_Disable_dispatch();
/*
* Wakeup all the tasks which joined with this one
*/
value_ptr = (void **) executing->Wait.return_argument;
4000cca8: f6 06 20 28 ld [ %i0 + 0x28 ], %i3
while ( (the_thread = _Thread_queue_Dequeue( &api->Join_List )) )
4000ccac: b8 07 60 50 add %i5, 0x50, %i4
4000ccb0: 7f ff f5 3b call 4000a19c <_Thread_queue_Dequeue>
4000ccb4: 90 10 00 1c mov %i4, %o0
4000ccb8: 80 a2 20 00 cmp %o0, 0
4000ccbc: 22 80 00 05 be,a 4000ccd0 <_POSIX_Threads_Terminate_extension+0x44><== ALWAYS TAKEN
4000ccc0: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
*(void **)the_thread->Wait.return_argument = value_ptr;
4000ccc4: c2 02 20 28 ld [ %o0 + 0x28 ], %g1 <== NOT EXECUTED
4000ccc8: 10 bf ff fa b 4000ccb0 <_POSIX_Threads_Terminate_extension+0x24><== NOT EXECUTED
4000cccc: f6 20 40 00 st %i3, [ %g1 ] <== NOT EXECUTED
if ( api->schedpolicy == SCHED_SPORADIC )
4000ccd0: 80 a0 60 04 cmp %g1, 4
4000ccd4: 12 80 00 04 bne 4000cce4 <_POSIX_Threads_Terminate_extension+0x58>
4000ccd8: 01 00 00 00 nop
(void) _Watchdog_Remove( &api->Sporadic_timer );
4000ccdc: 7f ff f8 ef call 4000b098 <_Watchdog_Remove>
4000cce0: 90 07 60 b4 add %i5, 0xb4, %o0
_Thread_Enable_dispatch();
4000cce4: 7f ff f4 4d call 40009e18 <_Thread_Enable_dispatch>
4000cce8: 81 e8 00 00 restore
40007348 <_POSIX_Timer_TSR>:
* This is the operation that is run when a timer expires
*/
void _POSIX_Timer_TSR(
Objects_Id timer __attribute__((unused)),
void *data)
{
40007348: 9d e3 bf 98 save %sp, -104, %sp
bool activated;
ptimer = (POSIX_Timer_Control *)data;
/* Increment the number of expirations. */
ptimer->overrun = ptimer->overrun + 1;
4000734c: c2 06 60 68 ld [ %i1 + 0x68 ], %g1
40007350: 82 00 60 01 inc %g1
40007354: c2 26 60 68 st %g1, [ %i1 + 0x68 ]
/* The timer must be reprogrammed */
if ( ( ptimer->timer_data.it_interval.tv_sec != 0 ) ||
40007358: c2 06 60 54 ld [ %i1 + 0x54 ], %g1
4000735c: 80 a0 60 00 cmp %g1, 0
40007360: 32 80 00 07 bne,a 4000737c <_POSIX_Timer_TSR+0x34>
40007364: d2 06 60 64 ld [ %i1 + 0x64 ], %o1
40007368: c2 06 60 58 ld [ %i1 + 0x58 ], %g1
4000736c: 80 a0 60 00 cmp %g1, 0
40007370: 02 80 00 1f be 400073ec <_POSIX_Timer_TSR+0xa4> <== NEVER TAKEN
40007374: 82 10 20 04 mov 4, %g1
( ptimer->timer_data.it_interval.tv_nsec != 0 ) ) {
activated = _POSIX_Timer_Insert_helper(
40007378: d2 06 60 64 ld [ %i1 + 0x64 ], %o1
4000737c: d4 06 60 08 ld [ %i1 + 8 ], %o2
40007380: 90 06 60 10 add %i1, 0x10, %o0
40007384: 17 10 00 1c sethi %hi(0x40007000), %o3
40007388: 98 10 00 19 mov %i1, %o4
4000738c: 40 00 18 9c call 4000d5fc <_POSIX_Timer_Insert_helper>
40007390: 96 12 e3 48 or %o3, 0x348, %o3
ptimer->ticks,
ptimer->Object.id,
_POSIX_Timer_TSR,
ptimer
);
if ( !activated )
40007394: 80 a2 20 00 cmp %o0, 0
40007398: 02 80 00 1a be 40007400 <_POSIX_Timer_TSR+0xb8> <== NEVER TAKEN
4000739c: 90 07 bf f8 add %fp, -8, %o0
tod_as_timestamp_ptr =
400073a0: 13 10 00 67 sethi %hi(0x40019c00), %o1
400073a4: 40 00 05 b7 call 40008a80 <_TOD_Get_with_nanoseconds>
400073a8: 92 12 61 40 or %o1, 0x140, %o1 ! 40019d40 <_TOD>
static inline void _TOD_Get(
struct timespec *tod_as_timespec
)
{
Timestamp_Control tod_as_timestamp;
Timestamp_Control *tod_as_timestamp_ptr;
400073ac: f8 1a 00 00 ldd [ %o0 ], %i4
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
400073b0: 94 10 20 00 clr %o2
400073b4: 90 10 00 1c mov %i4, %o0
400073b8: 92 10 00 1d mov %i5, %o1
400073bc: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
400073c0: 40 00 36 0e call 40014bf8 <__divdi3>
400073c4: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
400073c8: 90 10 00 1c mov %i4, %o0
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
400073cc: d2 26 60 6c st %o1, [ %i1 + 0x6c ]
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
400073d0: 94 10 20 00 clr %o2
400073d4: 92 10 00 1d mov %i5, %o1
400073d8: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
400073dc: 40 00 36 f9 call 40014fc0 <__moddi3>
400073e0: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
/* Store the time when the timer was started again */
_TOD_Get( &ptimer->time );
/* The state really did not change but just to be safe */
ptimer->state = POSIX_TIMER_STATE_CREATE_RUN;
400073e4: 82 10 20 03 mov 3, %g1
400073e8: d2 26 60 70 st %o1, [ %i1 + 0x70 ]
/*
* The sending of the signal to the process running the handling function
* specified for that signal is simulated
*/
if ( pthread_kill ( ptimer->thread_id, ptimer->inf.sigev_signo ) ) {
400073ec: d0 06 60 38 ld [ %i1 + 0x38 ], %o0
400073f0: d2 06 60 44 ld [ %i1 + 0x44 ], %o1
400073f4: 40 00 17 97 call 4000d250 <pthread_kill>
400073f8: c2 2e 60 3c stb %g1, [ %i1 + 0x3c ]
}
/* After the signal handler returns, the count of expirations of the
* timer must be set to 0.
*/
ptimer->overrun = 0;
400073fc: c0 26 60 68 clr [ %i1 + 0x68 ]
40007400: 81 c7 e0 08 ret
40007404: 81 e8 00 00 restore
4000ca1c <_POSIX_signals_Action_handler>:
Thread_Control *executing,
Thread_Action *action,
Per_CPU_Control *cpu,
ISR_Level level
)
{
4000ca1c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
4000ca20: 7f ff d6 88 call 40002440 <sparc_enable_interrupts>
4000ca24: 90 10 00 1b mov %i3, %o0
int hold_errno;
(void) action;
_Thread_Action_release_and_ISR_enable( cpu, level );
api = executing->API_Extensions[ THREAD_API_POSIX ];
4000ca28: fa 06 21 30 ld [ %i0 + 0x130 ], %i5
hold_errno = executing->Wait.return_code;
/*
* api may be NULL in case of a thread close in progress
*/
if ( !api )
4000ca2c: 80 a7 60 00 cmp %i5, 0
4000ca30: 02 80 00 0f be 4000ca6c <_POSIX_signals_Action_handler+0x50><== NEVER TAKEN
4000ca34: f6 06 20 34 ld [ %i0 + 0x34 ], %i3
* processed at all. No point in doing this loop otherwise.
*/
while (1) {
_POSIX_signals_Acquire( &lock_context );
if ( !(~api->signals_blocked &
(api->signals_pending | _POSIX_signals_Pending)) ) {
4000ca38: 35 10 00 63 sethi %hi(0x40018c00), %i2
{
#if defined( RTEMS_SMP )
_SMP_lock_ISR_disable_and_acquire( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Disable( context->isr_level );
4000ca3c: 7f ff d6 7e call 40002434 <sparc_disable_interrupts>
4000ca40: 01 00 00 00 nop
4000ca44: c4 06 a2 f4 ld [ %i2 + 0x2f4 ], %g2
4000ca48: c2 07 60 e0 ld [ %i5 + 0xe0 ], %g1
4000ca4c: 82 10 80 01 or %g2, %g1, %g1
* The first thing done is to check there are any signals to be
* processed at all. No point in doing this loop otherwise.
*/
while (1) {
_POSIX_signals_Acquire( &lock_context );
if ( !(~api->signals_blocked &
4000ca50: c4 07 60 dc ld [ %i5 + 0xdc ], %g2
4000ca54: 80 a8 40 02 andncc %g1, %g2, %g0
4000ca58: 12 80 00 07 bne 4000ca74 <_POSIX_signals_Action_handler+0x58>
4000ca5c: 01 00 00 00 nop
{
#if defined( RTEMS_SMP )
_SMP_lock_Release_and_ISR_enable( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Enable( context->isr_level );
4000ca60: 7f ff d6 78 call 40002440 <sparc_enable_interrupts>
4000ca64: 01 00 00 00 nop
_POSIX_signals_Check_signal( api, signo, false );
_POSIX_signals_Check_signal( api, signo, true );
}
}
executing->Wait.return_code = hold_errno;
4000ca68: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
4000ca6c: 81 c7 e0 08 ret
4000ca70: 81 e8 00 00 restore
4000ca74: 7f ff d6 73 call 40002440 <sparc_enable_interrupts>
4000ca78: b8 10 20 1b mov 0x1b, %i4
break;
}
_POSIX_signals_Release( &lock_context );
for ( signo = SIGRTMIN ; signo <= SIGRTMAX ; signo++ ) {
_POSIX_signals_Check_signal( api, signo, false );
4000ca7c: 92 10 00 1c mov %i4, %o1
4000ca80: 94 10 20 00 clr %o2
4000ca84: 40 00 08 83 call 4000ec90 <_POSIX_signals_Check_signal>
4000ca88: 90 10 00 1d mov %i5, %o0
_POSIX_signals_Check_signal( api, signo, true );
4000ca8c: 92 10 00 1c mov %i4, %o1
4000ca90: 90 10 00 1d mov %i5, %o0
4000ca94: 40 00 08 7f call 4000ec90 <_POSIX_signals_Check_signal>
4000ca98: 94 10 20 01 mov 1, %o2
_POSIX_signals_Release( &lock_context );
break;
}
_POSIX_signals_Release( &lock_context );
for ( signo = SIGRTMIN ; signo <= SIGRTMAX ; signo++ ) {
4000ca9c: b8 07 20 01 inc %i4
4000caa0: 80 a7 20 20 cmp %i4, 0x20
4000caa4: 12 bf ff f7 bne 4000ca80 <_POSIX_signals_Action_handler+0x64>
4000caa8: 92 10 00 1c mov %i4, %o1
4000caac: b8 10 20 01 mov 1, %i4
_POSIX_signals_Check_signal( api, signo, true );
}
/* Unfortunately - nothing like __SIGFIRSTNOTRT in newlib signal .h */
for ( signo = SIGHUP ; signo <= __SIGLASTNOTRT ; signo++ ) {
_POSIX_signals_Check_signal( api, signo, false );
4000cab0: 92 10 00 1c mov %i4, %o1
4000cab4: 94 10 20 00 clr %o2
4000cab8: 40 00 08 76 call 4000ec90 <_POSIX_signals_Check_signal>
4000cabc: 90 10 00 1d mov %i5, %o0
_POSIX_signals_Check_signal( api, signo, true );
4000cac0: 92 10 00 1c mov %i4, %o1
4000cac4: 90 10 00 1d mov %i5, %o0
4000cac8: 40 00 08 72 call 4000ec90 <_POSIX_signals_Check_signal>
4000cacc: 94 10 20 01 mov 1, %o2
_POSIX_signals_Check_signal( api, signo, false );
_POSIX_signals_Check_signal( api, signo, true );
}
/* Unfortunately - nothing like __SIGFIRSTNOTRT in newlib signal .h */
for ( signo = SIGHUP ; signo <= __SIGLASTNOTRT ; signo++ ) {
4000cad0: b8 07 20 01 inc %i4
4000cad4: 80 a7 20 1b cmp %i4, 0x1b
4000cad8: 12 bf ff f7 bne 4000cab4 <_POSIX_signals_Action_handler+0x98>
4000cadc: 92 10 00 1c mov %i4, %o1
4000cae0: 30 bf ff d7 b,a 4000ca3c <_POSIX_signals_Action_handler+0x20>
4000ec90 <_POSIX_signals_Check_signal>:
bool _POSIX_signals_Check_signal(
POSIX_API_Control *api,
int signo,
bool is_global
)
{
4000ec90: 9d e3 bf 68 save %sp, -152, %sp
siginfo_t siginfo_struct;
sigset_t saved_signals_blocked;
Thread_Wait_information stored_thread_wait_information;
Thread_Control *executing;
if ( ! _POSIX_signals_Clear_signals( api, signo, &siginfo_struct,
4000ec94: 98 10 20 01 mov 1, %o4
4000ec98: 90 10 00 18 mov %i0, %o0
4000ec9c: 92 10 00 19 mov %i1, %o1
4000eca0: 94 07 bf cc add %fp, -52, %o2
4000eca4: 96 10 00 1a mov %i2, %o3
4000eca8: 40 00 00 2d call 4000ed5c <_POSIX_signals_Clear_signals>
4000ecac: 9a 10 20 01 mov 1, %o5
4000ecb0: 80 a2 20 00 cmp %o0, 0
4000ecb4: 02 80 00 27 be 4000ed50 <_POSIX_signals_Check_signal+0xc0>
4000ecb8: b8 10 00 08 mov %o0, %i4
#endif
/*
* Just to prevent sending a signal which is currently being ignored.
*/
if ( _POSIX_signals_Vectors[ signo ].sa_handler == SIG_IGN )
4000ecbc: 83 2e 60 04 sll %i1, 4, %g1
4000ecc0: 23 10 00 63 sethi %hi(0x40018c00), %l1
4000ecc4: a1 2e 60 02 sll %i1, 2, %l0
4000ecc8: a2 14 61 28 or %l1, 0x128, %l1
4000eccc: a0 20 40 10 sub %g1, %l0, %l0
4000ecd0: 82 04 40 10 add %l1, %l0, %g1
4000ecd4: fa 00 60 08 ld [ %g1 + 8 ], %i5
4000ecd8: 80 a7 60 01 cmp %i5, 1
4000ecdc: 02 80 00 1c be 4000ed4c <_POSIX_signals_Check_signal+0xbc><== NEVER TAKEN
4000ece0: 90 07 bf d8 add %fp, -40, %o0
return false;
/*
* Block the signals requested in sa_mask
*/
saved_signals_blocked = api->signals_blocked;
4000ece4: f6 06 20 dc ld [ %i0 + 0xdc ], %i3
api->signals_blocked |= _POSIX_signals_Vectors[ signo ].sa_mask;
4000ece8: c2 00 60 04 ld [ %g1 + 4 ], %g1
/*
* We have to save the blocking information of the current wait queue
* because the signal handler may subsequently go on and put the thread
* on a wait queue, for its own purposes.
*/
memcpy( &stored_thread_wait_information, &executing->Wait,
4000ecec: f4 01 a0 18 ld [ %g6 + 0x18 ], %i2
/*
* Block the signals requested in sa_mask
*/
saved_signals_blocked = api->signals_blocked;
api->signals_blocked |= _POSIX_signals_Vectors[ signo ].sa_mask;
4000ecf0: 82 10 40 1b or %g1, %i3, %g1
/*
* We have to save the blocking information of the current wait queue
* because the signal handler may subsequently go on and put the thread
* on a wait queue, for its own purposes.
*/
memcpy( &stored_thread_wait_information, &executing->Wait,
4000ecf4: b4 06 a0 20 add %i2, 0x20, %i2
/*
* Block the signals requested in sa_mask
*/
saved_signals_blocked = api->signals_blocked;
api->signals_blocked |= _POSIX_signals_Vectors[ signo ].sa_mask;
4000ecf8: c2 26 20 dc st %g1, [ %i0 + 0xdc ]
/*
* We have to save the blocking information of the current wait queue
* because the signal handler may subsequently go on and put the thread
* on a wait queue, for its own purposes.
*/
memcpy( &stored_thread_wait_information, &executing->Wait,
4000ecfc: 92 10 00 1a mov %i2, %o1
4000ed00: 40 00 05 2e call 400101b8 <memcpy>
4000ed04: 94 10 20 28 mov 0x28, %o2
sizeof( stored_thread_wait_information ));
/*
* Here, the signal handler function executes
*/
switch ( _POSIX_signals_Vectors[ signo ].sa_flags ) {
4000ed08: c2 04 40 10 ld [ %l1 + %l0 ], %g1
4000ed0c: 80 a0 60 02 cmp %g1, 2
4000ed10: 12 80 00 07 bne 4000ed2c <_POSIX_signals_Check_signal+0x9c>
4000ed14: 90 10 00 19 mov %i1, %o0
case SA_SIGINFO:
(*_POSIX_signals_Vectors[ signo ].sa_sigaction)(
4000ed18: 92 07 bf cc add %fp, -52, %o1
4000ed1c: 9f c7 40 00 call %i5
4000ed20: 94 10 20 00 clr %o2
signo,
&siginfo_struct,
NULL /* context is undefined per 1003.1b-1993, p. 66 */
);
break;
4000ed24: 10 80 00 05 b 4000ed38 <_POSIX_signals_Check_signal+0xa8>
4000ed28: 90 10 00 1a mov %i2, %o0
default:
(*_POSIX_signals_Vectors[ signo ].sa_handler)( signo );
4000ed2c: 9f c7 40 00 call %i5
4000ed30: 01 00 00 00 nop
}
/*
* Restore the blocking information
*/
memcpy( &executing->Wait, &stored_thread_wait_information,
4000ed34: 90 10 00 1a mov %i2, %o0
4000ed38: 92 07 bf d8 add %fp, -40, %o1
4000ed3c: 40 00 05 1f call 400101b8 <memcpy>
4000ed40: 94 10 20 28 mov 0x28, %o2
/*
* Restore the previous set of blocked signals
*/
api->signals_blocked = saved_signals_blocked;
return true;
4000ed44: 10 80 00 03 b 4000ed50 <_POSIX_signals_Check_signal+0xc0>
4000ed48: f6 26 20 dc st %i3, [ %i0 + 0xdc ]
Thread_Wait_information stored_thread_wait_information;
Thread_Control *executing;
if ( ! _POSIX_signals_Clear_signals( api, signo, &siginfo_struct,
is_global, true, true ) )
return false;
4000ed4c: b8 10 20 00 clr %i4 <== NOT EXECUTED
* Restore the previous set of blocked signals
*/
api->signals_blocked = saved_signals_blocked;
return true;
}
4000ed50: b0 0f 20 ff and %i4, 0xff, %i0
4000ed54: 81 c7 e0 08 ret
4000ed58: 81 e8 00 00 restore
4000f920 <_POSIX_signals_Clear_process_signals>:
4000f920: 82 02 3f ff add %o0, -1, %g1
4000f924: 84 10 20 01 mov 1, %g2
4000f928: 85 28 80 01 sll %g2, %g1, %g2
_Assert( _ISR_Get_level() != 0 );
clear_signal = true;
mask = signo_to_mask( signo );
if ( _POSIX_signals_Vectors[ signo ].sa_flags == SA_SIGINFO ) {
4000f92c: 83 2a 20 02 sll %o0, 2, %g1
4000f930: 91 2a 20 04 sll %o0, 4, %o0
4000f934: 90 22 00 01 sub %o0, %g1, %o0
4000f938: 03 10 00 63 sethi %hi(0x40018c00), %g1
4000f93c: 82 10 61 28 or %g1, 0x128, %g1 ! 40018d28 <_POSIX_signals_Vectors>
4000f940: c2 00 40 08 ld [ %g1 + %o0 ], %g1
4000f944: 80 a0 60 02 cmp %g1, 2
4000f948: 12 80 00 0a bne 4000f970 <_POSIX_signals_Clear_process_signals+0x50>
4000f94c: 03 10 00 63 sethi %hi(0x40018c00), %g1
if ( !_Chain_Is_empty( &_POSIX_signals_Siginfo[ signo ] ) )
4000f950: 03 10 00 63 sethi %hi(0x40018c00), %g1
4000f954: 82 10 62 f8 or %g1, 0x2f8, %g1 ! 40018ef8 <_POSIX_signals_Siginfo>
4000f958: 86 02 00 01 add %o0, %g1, %g3
4000f95c: c2 02 00 01 ld [ %o0 + %g1 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000f960: 86 00 e0 04 add %g3, 4, %g3
4000f964: 80 a0 40 03 cmp %g1, %g3
4000f968: 12 80 00 05 bne 4000f97c <_POSIX_signals_Clear_process_signals+0x5c><== NEVER TAKEN
4000f96c: 03 10 00 63 sethi %hi(0x40018c00), %g1
clear_signal = false;
}
if ( clear_signal ) {
_POSIX_signals_Pending &= ~mask;
4000f970: c6 00 62 f4 ld [ %g1 + 0x2f4 ], %g3 ! 40018ef4 <_POSIX_signals_Pending>
4000f974: 84 28 c0 02 andn %g3, %g2, %g2
4000f978: c4 20 62 f4 st %g2, [ %g1 + 0x2f4 ]
4000f97c: 81 c3 e0 08 retl
4000818c <_POSIX_signals_Get_lowest>:
sigset_t set
)
{
int signo;
for ( signo = SIGRTMIN ; signo <= SIGRTMAX ; signo++ ) {
4000818c: 82 10 20 1b mov 0x1b, %g1
40008190: 84 10 20 01 mov 1, %g2
40008194: 86 00 7f ff add %g1, -1, %g3
40008198: 87 28 80 03 sll %g2, %g3, %g3
if ( set & signo_to_mask( signo ) ) {
4000819c: 80 88 c0 08 btst %g3, %o0
400081a0: 12 80 00 11 bne 400081e4 <_POSIX_signals_Get_lowest+0x58> <== NEVER TAKEN
400081a4: 01 00 00 00 nop
sigset_t set
)
{
int signo;
for ( signo = SIGRTMIN ; signo <= SIGRTMAX ; signo++ ) {
400081a8: 82 00 60 01 inc %g1
400081ac: 80 a0 60 20 cmp %g1, 0x20
400081b0: 12 bf ff fa bne 40008198 <_POSIX_signals_Get_lowest+0xc>
400081b4: 86 00 7f ff add %g1, -1, %g3
400081b8: 82 10 20 01 mov 1, %g1
400081bc: 84 10 20 01 mov 1, %g2
400081c0: 86 00 7f ff add %g1, -1, %g3
400081c4: 87 28 80 03 sll %g2, %g3, %g3
#if (SIGHUP != 1)
#error "Assumption that SIGHUP==1 violated!!"
#endif
for ( signo = SIGHUP ; signo <= __SIGLASTNOTRT ; signo++ ) {
if ( set & signo_to_mask( signo ) ) {
400081c8: 80 88 c0 08 btst %g3, %o0
400081cc: 12 80 00 06 bne 400081e4 <_POSIX_signals_Get_lowest+0x58>
400081d0: 01 00 00 00 nop
*/
#if (SIGHUP != 1)
#error "Assumption that SIGHUP==1 violated!!"
#endif
for ( signo = SIGHUP ; signo <= __SIGLASTNOTRT ; signo++ ) {
400081d4: 82 00 60 01 inc %g1
400081d8: 80 a0 60 1b cmp %g1, 0x1b
400081dc: 12 bf ff fa bne 400081c4 <_POSIX_signals_Get_lowest+0x38> <== ALWAYS TAKEN
400081e0: 86 00 7f ff add %g1, -1, %g3
* a return 0. This routine will NOT be called unless a signal
* is pending in the set passed in.
*/
found_it:
return signo;
}
400081e4: 81 c3 e0 08 retl
400081e8: 90 10 00 01 mov %g1, %o0
4002985c <_POSIX_signals_Unblock_thread>:
bool _POSIX_signals_Unblock_thread(
Thread_Control *the_thread,
int signo,
siginfo_t *info
)
{
4002985c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
40029860: 7f ff 64 3d call 40002954 <sparc_disable_interrupts>
40029864: fa 06 21 30 ld [ %i0 + 0x130 ], %i5
RTEMS_INLINE_ROUTINE void _Chain_Append_if_is_off_chain_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
if ( _Chain_Is_node_off_chain( the_node ) ) {
40029868: c2 07 60 e4 ld [ %i5 + 0xe4 ], %g1
4002986c: 80 a0 60 00 cmp %g1, 0
40029870: 12 80 00 08 bne 40029890 <_POSIX_signals_Unblock_thread+0x34>
40029874: 86 06 20 c8 add %i0, 0xc8, %g3
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40029878: c2 06 20 cc ld [ %i0 + 0xcc ], %g1
the_node->next = tail;
4002987c: c6 27 60 e4 st %g3, [ %i5 + 0xe4 ]
{
Per_CPU_Control *cpu;
ISR_Level level;
cpu = _Thread_Action_ISR_disable_and_acquire( thread, &level );
_Chain_Append_if_is_off_chain_unprotected(
40029880: 84 07 60 e4 add %i5, 0xe4, %g2
tail->previous = the_node;
40029884: c4 26 20 cc st %g2, [ %i0 + 0xcc ]
old_last->next = the_node;
40029888: c4 20 40 00 st %g2, [ %g1 ]
the_node->previous = old_last;
4002988c: c2 27 60 e8 st %g1, [ %i5 + 0xe8 ]
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
40029890: 7f ff 64 34 call 40002960 <sparc_enable_interrupts>
40029894: 01 00 00 00 nop
/*
* Is the thread is specifically waiting for a signal?
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
40029898: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
4002989c: 09 04 00 20 sethi %hi(0x10008000), %g4
400298a0: 84 06 7f ff add %i1, -1, %g2
400298a4: 86 10 20 01 mov 1, %g3
400298a8: b8 08 40 04 and %g1, %g4, %i4
400298ac: 80 a7 00 04 cmp %i4, %g4
400298b0: 12 80 00 1c bne 40029920 <_POSIX_signals_Unblock_thread+0xc4>
400298b4: 85 28 c0 02 sll %g3, %g2, %g2
if ( (the_thread->Wait.option & mask) || (~api->signals_blocked & mask) ) {
400298b8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
400298bc: 80 88 80 01 btst %g2, %g1
400298c0: 12 80 00 06 bne 400298d8 <_POSIX_signals_Unblock_thread+0x7c>
400298c4: 82 10 20 04 mov 4, %g1
400298c8: c2 07 60 dc ld [ %i5 + 0xdc ], %g1
400298cc: 80 a8 80 01 andncc %g2, %g1, %g0
400298d0: 02 80 00 3a be 400299b8 <_POSIX_signals_Unblock_thread+0x15c>
400298d4: 82 10 20 04 mov 4, %g1
the_thread->Wait.return_code = EINTR;
400298d8: c2 26 20 34 st %g1, [ %i0 + 0x34 ]
the_info = (siginfo_t *) the_thread->Wait.return_argument;
if ( !info ) {
400298dc: 80 a6 a0 00 cmp %i2, 0
400298e0: 12 80 00 07 bne 400298fc <_POSIX_signals_Unblock_thread+0xa0>
400298e4: d0 06 20 28 ld [ %i0 + 0x28 ], %o0
the_info->si_signo = signo;
the_info->si_code = SI_USER;
400298e8: 82 10 20 01 mov 1, %g1
the_thread->Wait.return_code = EINTR;
the_info = (siginfo_t *) the_thread->Wait.return_argument;
if ( !info ) {
the_info->si_signo = signo;
400298ec: f2 22 00 00 st %i1, [ %o0 ]
the_info->si_code = SI_USER;
400298f0: c2 22 20 04 st %g1, [ %o0 + 4 ]
400298f4: 10 80 00 05 b 40029908 <_POSIX_signals_Unblock_thread+0xac>
400298f8: c0 22 20 08 clr [ %o0 + 8 ]
the_info->si_value.sival_int = 0;
} else {
*the_info = *info;
400298fc: 92 10 00 1a mov %i2, %o1
40029900: 7f ff bf 39 call 400195e4 <memcpy>
40029904: 94 10 20 0c mov 0xc, %o2
}
_Thread_queue_Extract_with_proxy( the_thread );
40029908: 90 10 00 18 mov %i0, %o0
4002990c: 7f ff ac bf call 40014c08 <_Thread_queue_Extract_with_proxy>
40029910: b0 10 20 01 mov 1, %i0
40029914: b0 0e 20 01 and %i0, 1, %i0
40029918: 81 c7 e0 08 ret
4002991c: 81 e8 00 00 restore
}
/*
* Thread is not waiting due to a sigwait.
*/
if ( ~api->signals_blocked & mask ) {
40029920: c8 07 60 dc ld [ %i5 + 0xdc ], %g4
40029924: 80 a8 80 04 andncc %g2, %g4, %g0
40029928: 02 80 00 24 be 400299b8 <_POSIX_signals_Unblock_thread+0x15c>
4002992c: 05 04 00 00 sethi %hi(0x10000000), %g2
* it is not blocked, THEN
* we need to dispatch at the end of this ISR.
* + Any other combination, do nothing.
*/
if ( _States_Is_interruptible_by_signal( the_thread->current_state ) ) {
40029930: 80 88 40 02 btst %g1, %g2
40029934: 02 80 00 17 be 40029990 <_POSIX_signals_Unblock_thread+0x134>
40029938: 80 a0 60 00 cmp %g1, 0
the_thread->Wait.return_code = EINTR;
4002993c: 84 10 20 04 mov 4, %g2
40029940: c4 26 20 34 st %g2, [ %i0 + 0x34 ]
/*
* In pthread_cond_wait, a thread will be blocking on a thread
* queue, but is also interruptible by a POSIX signal.
*/
if ( _States_Is_waiting_on_thread_queue(the_thread->current_state) )
40029944: 05 00 02 ef sethi %hi(0xbbc00), %g2
40029948: 84 10 a2 e0 or %g2, 0x2e0, %g2 ! bbee0 <_TLS_Alignment+0xbbedf>
4002994c: 80 88 40 02 btst %g1, %g2
40029950: 02 80 00 06 be 40029968 <_POSIX_signals_Unblock_thread+0x10c>
40029954: 80 88 60 08 btst 8, %g1
_Thread_queue_Extract_with_proxy( the_thread );
40029958: 7f ff ac ac call 40014c08 <_Thread_queue_Extract_with_proxy>
4002995c: 90 10 00 18 mov %i0, %o0
} else if ( the_thread->current_state == STATES_READY ) {
_Thread_Signal_notification( the_thread );
}
}
return false;
40029960: 10 80 00 17 b 400299bc <_POSIX_signals_Unblock_thread+0x160>
40029964: b0 10 20 00 clr %i0
* In pthread_cond_wait, a thread will be blocking on a thread
* queue, but is also interruptible by a POSIX signal.
*/
if ( _States_Is_waiting_on_thread_queue(the_thread->current_state) )
_Thread_queue_Extract_with_proxy( the_thread );
else if ( _States_Is_delaying(the_thread->current_state) ) {
40029968: 22 80 00 15 be,a 400299bc <_POSIX_signals_Unblock_thread+0x160><== NEVER TAKEN
4002996c: b0 10 20 00 clr %i0 <== NOT EXECUTED
(void) _Watchdog_Remove( &the_thread->Timer );
40029970: 7f ff 96 de call 4000f4e8 <_Watchdog_Remove>
40029974: 90 06 20 48 add %i0, 0x48, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40029978: 90 10 00 18 mov %i0, %o0
4002997c: 13 04 03 ff sethi %hi(0x100ffc00), %o1
40029980: 7f ff 91 64 call 4000df10 <_Thread_Clear_state>
40029984: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 100ffff8 <RAM_SIZE+0xfcffff8>
} else if ( the_thread->current_state == STATES_READY ) {
_Thread_Signal_notification( the_thread );
}
}
return false;
40029988: 10 80 00 0d b 400299bc <_POSIX_signals_Unblock_thread+0x160>
4002998c: b0 10 20 00 clr %i0
else if ( _States_Is_delaying(the_thread->current_state) ) {
(void) _Watchdog_Remove( &the_thread->Timer );
_Thread_Unblock( the_thread );
}
} else if ( the_thread->current_state == STATES_READY ) {
40029990: 32 80 00 0b bne,a 400299bc <_POSIX_signals_Unblock_thread+0x160><== NEVER TAKEN
40029994: b0 10 20 00 clr %i0 <== NOT EXECUTED
#endif
}
RTEMS_INLINE_ROUTINE void _Thread_Signal_notification( Thread_Control *thread )
{
if ( _ISR_Is_in_progress() && _Thread_Is_executing( thread ) ) {
40029998: c4 01 a0 0c ld [ %g6 + 0xc ], %g2
4002999c: 80 a0 a0 00 cmp %g2, 0
400299a0: 22 80 00 07 be,a 400299bc <_POSIX_signals_Unblock_thread+0x160>
400299a4: b0 10 20 00 clr %i0
400299a8: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
400299ac: 80 a6 00 02 cmp %i0, %g2
400299b0: 22 80 00 02 be,a 400299b8 <_POSIX_signals_Unblock_thread+0x15c><== ALWAYS TAKEN
400299b4: c6 29 a0 14 stb %g3, [ %g6 + 0x14 ]
_Thread_Signal_notification( the_thread );
}
}
return false;
400299b8: b0 10 20 00 clr %i0
}
400299bc: b0 0e 20 01 and %i0, 1, %i0
400299c0: 81 c7 e0 08 ret
400299c4: 81 e8 00 00 restore
4000b010 <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
4000b010: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
4000b014: 80 a6 20 00 cmp %i0, 0
4000b018: 02 80 00 10 be 4000b058 <_RBTree_Initialize+0x48> <== NEVER TAKEN
4000b01c: 01 00 00 00 nop
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
4000b020: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
4000b024: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
4000b028: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
4000b02c: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
4000b030: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
the_rbtree->is_unique = is_unique;
4000b034: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
4000b038: 80 a6 e0 00 cmp %i3, 0
4000b03c: 02 80 00 07 be 4000b058 <_RBTree_Initialize+0x48>
4000b040: 92 10 00 1a mov %i2, %o1
_RBTree_Insert(the_rbtree, next);
4000b044: 90 10 00 18 mov %i0, %o0
4000b048: 7f ff ff 44 call 4000ad58 <_RBTree_Insert>
4000b04c: b4 06 80 1c add %i2, %i4, %i2
4000b050: 10 bf ff fa b 4000b038 <_RBTree_Initialize+0x28>
4000b054: b6 06 ff ff add %i3, -1, %i3
4000b058: 81 c7 e0 08 ret
4000b05c: 81 e8 00 00 restore
40007e74 <_RBTree_Insert>:
*/
RBTree_Node *_RBTree_Insert(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
40007e74: 9d e3 bf a0 save %sp, -96, %sp
if(!the_node) return (RBTree_Node*)-1;
40007e78: 80 a6 60 00 cmp %i1, 0
40007e7c: 02 80 00 80 be 4000807c <_RBTree_Insert+0x208>
40007e80: 01 00 00 00 nop
RBTree_Node *iter_node = the_rbtree->root;
40007e84: fa 06 20 04 ld [ %i0 + 4 ], %i5
int compare_result;
if (!iter_node) { /* special case: first node inserted */
40007e88: 80 a7 60 00 cmp %i5, 0
40007e8c: 32 80 00 16 bne,a 40007ee4 <_RBTree_Insert+0x70>
40007e90: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
the_node->color = RBT_BLACK;
40007e94: c0 26 60 0c clr [ %i1 + 0xc ]
the_rbtree->root = the_node;
40007e98: f2 26 20 04 st %i1, [ %i0 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
40007e9c: f2 26 20 0c st %i1, [ %i0 + 0xc ]
40007ea0: f2 26 20 08 st %i1, [ %i0 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
40007ea4: f0 26 40 00 st %i0, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
40007ea8: c0 26 60 08 clr [ %i1 + 8 ]
40007eac: c0 26 60 04 clr [ %i1 + 4 ]
40007eb0: 81 c7 e0 08 ret
40007eb4: 91 e8 20 00 restore %g0, 0, %o0
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
40007eb8: 02 80 00 73 be 40008084 <_RBTree_Insert+0x210>
40007ebc: b8 38 00 08 xnor %g0, %o0, %i4
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
40007ec0: b9 37 20 1f srl %i4, 0x1f, %i4
if (!iter_node->child[dir]) {
40007ec4: 83 2f 20 02 sll %i4, 2, %g1
40007ec8: 84 07 40 01 add %i5, %g1, %g2
40007ecc: c6 00 a0 04 ld [ %g2 + 4 ], %g3
40007ed0: 80 a0 e0 00 cmp %g3, 0
40007ed4: 22 80 00 0d be,a 40007f08 <_RBTree_Insert+0x94>
40007ed8: c0 26 60 08 clr [ %i1 + 8 ]
(dir && _RBTree_Is_greater(compare_result)) ) {
the_rbtree->first[dir] = the_node;
}
break;
} else {
iter_node = iter_node->child[dir];
40007edc: ba 10 00 03 mov %g3, %i5
the_node->parent = (RBTree_Node *) the_rbtree;
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
40007ee0: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
40007ee4: 90 10 00 19 mov %i1, %o0
40007ee8: 9f c0 40 00 call %g1
40007eec: 92 10 00 1d mov %i5, %o1
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
40007ef0: c2 0e 20 14 ldub [ %i0 + 0x14 ], %g1
40007ef4: 80 a0 60 00 cmp %g1, 0
40007ef8: 22 bf ff f2 be,a 40007ec0 <_RBTree_Insert+0x4c>
40007efc: b8 38 00 08 xnor %g0, %o0, %i4
40007f00: 10 bf ff ee b 40007eb8 <_RBTree_Insert+0x44>
40007f04: 80 a2 20 00 cmp %o0, 0
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
40007f08: c0 26 60 04 clr [ %i1 + 4 ]
the_node->color = RBT_RED;
40007f0c: 86 10 20 01 mov 1, %g3
40007f10: c6 26 60 0c st %g3, [ %i1 + 0xc ]
iter_node->child[dir] = the_node;
40007f14: f2 20 a0 04 st %i1, [ %g2 + 4 ]
the_node->parent = iter_node;
40007f18: fa 26 40 00 st %i5, [ %i1 ]
40007f1c: ba 06 00 01 add %i0, %g1, %i5
/* update min/max */
compare_result = the_rbtree->compare_function(
40007f20: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
40007f24: d2 07 60 08 ld [ %i5 + 8 ], %o1
40007f28: 9f c0 40 00 call %g1
40007f2c: 90 10 00 19 mov %i1, %o0
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
40007f30: 80 a7 20 00 cmp %i4, 0
40007f34: 12 80 00 06 bne 40007f4c <_RBTree_Insert+0xd8>
40007f38: 80 a2 20 00 cmp %o0, 0
40007f3c: 36 80 00 1e bge,a 40007fb4 <_RBTree_Insert+0x140>
40007f40: d0 06 40 00 ld [ %i1 ], %o0
(dir && _RBTree_Is_greater(compare_result)) ) {
the_rbtree->first[dir] = the_node;
40007f44: 10 80 00 1b b 40007fb0 <_RBTree_Insert+0x13c>
40007f48: f2 27 60 08 st %i1, [ %i5 + 8 ]
compare_result = the_rbtree->compare_function(
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
(dir && _RBTree_Is_greater(compare_result)) ) {
40007f4c: 34 80 00 19 bg,a 40007fb0 <_RBTree_Insert+0x13c>
40007f50: f2 27 60 08 st %i1, [ %i5 + 8 ]
*
* @note It does NOT disable interrupts to ensure the atomicity of the
* append operation.
*/
static void _RBTree_Validate_insert(
RBTree_Node *the_node
40007f54: 10 80 00 18 b 40007fb4 <_RBTree_Insert+0x140>
40007f58: d0 06 40 00 ld [ %i1 ], %o0
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
40007f5c: 82 18 60 01 xor %g1, 1, %g1
40007f60: 80 a0 00 01 cmp %g0, %g1
40007f64: 82 60 3f ff subx %g0, -1, %g1
RBTree_Node *u,*g;
/* note: the insert root case is handled already */
/* if the parent is black, nothing needs to be done
* otherwise may need to loop a few times */
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
40007f68: 80 a0 60 00 cmp %g1, 0
40007f6c: 02 80 00 3f be 40008068 <_RBTree_Insert+0x1f4>
40007f70: 80 a7 60 00 cmp %i5, 0
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
40007f74: 02 80 00 06 be 40007f8c <_RBTree_Insert+0x118> <== NEVER TAKEN
40007f78: 82 10 20 00 clr %g1
if(!(the_node->parent->parent->parent)) return NULL;
40007f7c: c2 07 40 00 ld [ %i5 ], %g1
40007f80: 80 a0 60 00 cmp %g1, 0
40007f84: 32 80 00 12 bne,a 40007fcc <_RBTree_Insert+0x158> <== ALWAYS TAKEN
40007f88: c2 07 60 04 ld [ %i5 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
40007f8c: 84 10 20 00 clr %g2 <== NOT EXECUTED
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
40007f90: 80 a0 a0 00 cmp %g2, 0
40007f94: 22 80 00 1c be,a 40008004 <_RBTree_Insert+0x190>
40007f98: c2 07 60 04 ld [ %i5 + 4 ], %g1
the_node->parent->color = RBT_BLACK;
40007f9c: c0 22 20 0c clr [ %o0 + 0xc ]
u->color = RBT_BLACK;
40007fa0: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
40007fa4: 82 10 20 01 mov 1, %g1
40007fa8: c2 27 60 0c st %g1, [ %i5 + 0xc ]
}
the_node->parent->color = RBT_BLACK;
g->color = RBT_RED;
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
40007fac: b2 10 00 1d mov %i5, %i1
*
* @note It does NOT disable interrupts to ensure the atomicity of the
* append operation.
*/
static void _RBTree_Validate_insert(
RBTree_Node *the_node
40007fb0: d0 06 40 00 ld [ %i1 ], %o0
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
40007fb4: fa 02 00 00 ld [ %o0 ], %i5
40007fb8: 80 a7 60 00 cmp %i5, 0
40007fbc: 32 bf ff e8 bne,a 40007f5c <_RBTree_Insert+0xe8>
40007fc0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
40007fc4: 10 bf ff e9 b 40007f68 <_RBTree_Insert+0xf4>
40007fc8: 82 10 20 00 clr %g1
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
40007fcc: 80 a2 00 01 cmp %o0, %g1
40007fd0: 22 80 00 02 be,a 40007fd8 <_RBTree_Insert+0x164>
40007fd4: c2 07 60 08 ld [ %i5 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
40007fd8: 80 a0 60 00 cmp %g1, 0
40007fdc: 02 bf ff ed be 40007f90 <_RBTree_Insert+0x11c>
40007fe0: 84 10 20 00 clr %g2
40007fe4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40007fe8: 80 a0 a0 01 cmp %g2, 1
40007fec: 32 bf ff e9 bne,a 40007f90 <_RBTree_Insert+0x11c>
40007ff0: 84 10 20 00 clr %g2
40007ff4: 10 80 00 02 b 40007ffc <_RBTree_Insert+0x188>
40007ff8: 84 10 20 01 mov 1, %g2
while (_RBTree_Is_red(_RBTree_Parent(the_node))) {
u = _RBTree_Parent_sibling(the_node);
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
40007ffc: 10 bf ff e6 b 40007f94 <_RBTree_Insert+0x120>
40008000: 80 a0 a0 00 cmp %g2, 0
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
40008004: 82 1a 00 01 xor %o0, %g1, %g1
40008008: 80 a0 00 01 cmp %g0, %g1
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
4000800c: c2 02 20 04 ld [ %o0 + 4 ], %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
40008010: b8 40 20 00 addx %g0, 0, %i4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
40008014: 82 1e 40 01 xor %i1, %g1, %g1
40008018: 80 a0 00 01 cmp %g0, %g1
4000801c: 82 40 20 00 addx %g0, 0, %g1
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
40008020: 80 a0 40 1c cmp %g1, %i4
40008024: 22 80 00 08 be,a 40008044 <_RBTree_Insert+0x1d0>
40008028: c2 06 40 00 ld [ %i1 ], %g1
_RBTree_Rotate(the_node->parent, pdir);
4000802c: 7f ff ff 74 call 40007dfc <_RBTree_Rotate>
40008030: 92 10 00 1c mov %i4, %o1
the_node = the_node->child[pdir];
40008034: 83 2f 20 02 sll %i4, 2, %g1
40008038: b2 06 40 01 add %i1, %g1, %i1
4000803c: f2 06 60 04 ld [ %i1 + 4 ], %i1
}
the_node->parent->color = RBT_BLACK;
40008040: c2 06 40 00 ld [ %i1 ], %g1
g->color = RBT_RED;
40008044: 92 10 20 01 mov 1, %o1
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
40008048: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
4000804c: d2 27 60 0c st %o1, [ %i5 + 0xc ]
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
40008050: 90 10 00 1d mov %i5, %o0
40008054: 92 22 40 1c sub %o1, %i4, %o1
40008058: 7f ff ff 69 call 40007dfc <_RBTree_Rotate>
4000805c: ba 10 00 19 mov %i1, %i5
40008060: 10 bf ff d4 b 40007fb0 <_RBTree_Insert+0x13c>
40008064: b2 10 00 1d mov %i5, %i1
}
}
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
40008068: 12 80 00 03 bne 40008074 <_RBTree_Insert+0x200>
4000806c: b0 10 20 00 clr %i0
40008070: c0 26 60 0c clr [ %i1 + 0xc ]
40008074: 81 c7 e0 08 ret
40008078: 81 e8 00 00 restore
RBTree_Node *_RBTree_Insert(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
if(!the_node) return (RBTree_Node*)-1;
4000807c: 81 c7 e0 08 ret
40008080: 91 e8 3f ff restore %g0, -1, %o0
40008084: b0 10 00 1d mov %i5, %i0
/* verify red-black properties */
_RBTree_Validate_insert(the_node);
}
return (RBTree_Node*)0;
}
40008088: 81 c7 e0 08 ret
4000808c: 81 e8 00 00 restore
4000a70c <_RBTree_Iterate>:
const RBTree_Control *rbtree,
RBTree_Direction dir,
RBTree_Visitor visitor,
void *visitor_arg
)
{
4000a70c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
4000a710: 80 a0 00 19 cmp %g0, %i1
4000a714: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
4000a718: 82 00 60 02 add %g1, 2, %g1
4000a71c: 83 28 60 02 sll %g1, 2, %g1
4000a720: fa 06 00 01 ld [ %i0 + %g1 ], %i5
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
4000a724: b8 10 20 00 clr %i4
while ( !stop && current != NULL ) {
4000a728: 80 a7 60 00 cmp %i5, 0
4000a72c: 02 80 00 0e be 4000a764 <_RBTree_Iterate+0x58>
4000a730: b8 1f 20 01 xor %i4, 1, %i4
4000a734: 80 8f 20 ff btst 0xff, %i4
4000a738: 02 80 00 0b be 4000a764 <_RBTree_Iterate+0x58> <== NEVER TAKEN
4000a73c: 90 10 00 1d mov %i5, %o0
stop = (*visitor)( current, dir, visitor_arg );
4000a740: 92 10 00 19 mov %i1, %o1
4000a744: 9f c6 80 00 call %i2
4000a748: 94 10 00 1b mov %i3, %o2
current = _RBTree_Next( current, dir );
4000a74c: 92 10 00 19 mov %i1, %o1
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
stop = (*visitor)( current, dir, visitor_arg );
4000a750: b8 10 00 08 mov %o0, %i4
current = _RBTree_Next( current, dir );
4000a754: 40 00 00 06 call 4000a76c <_RBTree_Next>
4000a758: 90 10 00 1d mov %i5, %o0
4000a75c: 10 bf ff f3 b 4000a728 <_RBTree_Iterate+0x1c>
4000a760: ba 10 00 08 mov %o0, %i5
4000a764: 81 c7 e0 08 ret
4000a768: 81 e8 00 00 restore
4000f3dc <_RBTree_Rotate>:
RBTree_Node *the_node,
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
4000f3dc: 80 a2 20 00 cmp %o0, 0
4000f3e0: 02 80 00 1b be 4000f44c <_RBTree_Rotate+0x70> <== NEVER TAKEN
4000f3e4: 80 a0 00 09 cmp %g0, %o1
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
4000f3e8: 84 60 3f ff subx %g0, -1, %g2
4000f3ec: 85 28 a0 02 sll %g2, 2, %g2
4000f3f0: 84 02 00 02 add %o0, %g2, %g2
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
4000f3f4: c2 00 a0 04 ld [ %g2 + 4 ], %g1
4000f3f8: 80 a0 60 00 cmp %g1, 0
4000f3fc: 02 80 00 14 be 4000f44c <_RBTree_Rotate+0x70> <== NEVER TAKEN
4000f400: 93 2a 60 02 sll %o1, 2, %o1
4000f404: 92 00 40 09 add %g1, %o1, %o1
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
4000f408: c6 02 60 04 ld [ %o1 + 4 ], %g3
4000f40c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
if (c->child[dir])
4000f410: c4 02 60 04 ld [ %o1 + 4 ], %g2
4000f414: 80 a0 a0 00 cmp %g2, 0
4000f418: 32 80 00 02 bne,a 4000f420 <_RBTree_Rotate+0x44>
4000f41c: d0 20 80 00 st %o0, [ %g2 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
4000f420: d0 22 60 04 st %o0, [ %o1 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
4000f424: c4 02 00 00 ld [ %o0 ], %g2
4000f428: c6 00 a0 04 ld [ %g2 + 4 ], %g3
4000f42c: 86 1a 00 03 xor %o0, %g3, %g3
4000f430: 80 a0 00 03 cmp %g0, %g3
4000f434: 86 40 20 00 addx %g0, 0, %g3
4000f438: 87 28 e0 02 sll %g3, 2, %g3
4000f43c: 86 00 80 03 add %g2, %g3, %g3
4000f440: c2 20 e0 04 st %g1, [ %g3 + 4 ]
c->parent = the_node->parent;
4000f444: c4 20 40 00 st %g2, [ %g1 ]
the_node->parent = c;
4000f448: c2 22 00 00 st %g1, [ %o0 ]
4000f44c: 81 c3 e0 08 retl
4000f394 <_RBTree_Sibling>:
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
4000f394: 80 a2 20 00 cmp %o0, 0
4000f398: 02 80 00 0f be 4000f3d4 <_RBTree_Sibling+0x40> <== NEVER TAKEN
4000f39c: 82 10 20 00 clr %g1
if(!(the_node->parent)) return NULL;
4000f3a0: c2 02 00 00 ld [ %o0 ], %g1
4000f3a4: 80 a0 60 00 cmp %g1, 0
4000f3a8: 02 80 00 0b be 4000f3d4 <_RBTree_Sibling+0x40> <== NEVER TAKEN
4000f3ac: 01 00 00 00 nop
if(!(the_node->parent->parent)) return NULL;
4000f3b0: c4 00 40 00 ld [ %g1 ], %g2
4000f3b4: 80 a0 a0 00 cmp %g2, 0
4000f3b8: 22 80 00 07 be,a 4000f3d4 <_RBTree_Sibling+0x40>
4000f3bc: 82 10 20 00 clr %g1
if(the_node == the_node->parent->child[RBT_LEFT])
4000f3c0: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000f3c4: 80 a2 00 02 cmp %o0, %g2
4000f3c8: 32 80 00 03 bne,a 4000f3d4 <_RBTree_Sibling+0x40>
4000f3cc: 82 10 00 02 mov %g2, %g1
4000f3d0: c2 00 60 08 ld [ %g1 + 8 ], %g1
return the_node->parent->child[RBT_RIGHT];
else
return the_node->parent->child[RBT_LEFT];
}
4000f3d4: 81 c3 e0 08 retl
4000f3d8: 90 10 00 01 mov %g1, %o0
4000d290 <_RTEMS_Tasks_Invoke_task_variable_dtor>:
void _RTEMS_Tasks_Invoke_task_variable_dtor(
Thread_Control *the_thread,
rtems_task_variable_t *tvp
)
{
4000d290: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED
void (*dtor)(void *);
void *value;
dtor = tvp->dtor;
if (_Thread_Get_executing() == the_thread) {
4000d294: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2 <== NOT EXECUTED
4000d298: 80 a0 80 18 cmp %g2, %i0 <== NOT EXECUTED
4000d29c: 12 80 00 07 bne 4000d2b8 <_RTEMS_Tasks_Invoke_task_variable_dtor+0x28><== NOT EXECUTED
4000d2a0: c2 06 60 10 ld [ %i1 + 0x10 ], %g1 <== NOT EXECUTED
value = *tvp->ptr;
4000d2a4: c4 06 60 04 ld [ %i1 + 4 ], %g2 <== NOT EXECUTED
*tvp->ptr = tvp->gval;
4000d2a8: c6 06 60 08 ld [ %i1 + 8 ], %g3 <== NOT EXECUTED
void (*dtor)(void *);
void *value;
dtor = tvp->dtor;
if (_Thread_Get_executing() == the_thread) {
value = *tvp->ptr;
4000d2ac: d0 00 80 00 ld [ %g2 ], %o0 <== NOT EXECUTED
4000d2b0: 10 80 00 03 b 4000d2bc <_RTEMS_Tasks_Invoke_task_variable_dtor+0x2c><== NOT EXECUTED
4000d2b4: c6 20 80 00 st %g3, [ %g2 ] <== NOT EXECUTED
*tvp->ptr = tvp->gval;
} else {
value = tvp->tval;
4000d2b8: d0 06 60 0c ld [ %i1 + 0xc ], %o0 <== NOT EXECUTED
}
if ( dtor )
4000d2bc: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED
4000d2c0: 02 80 00 04 be 4000d2d0 <_RTEMS_Tasks_Invoke_task_variable_dtor+0x40><== NOT EXECUTED
4000d2c4: 01 00 00 00 nop <== NOT EXECUTED
(*dtor)(value);
4000d2c8: 9f c0 40 00 call %g1 <== NOT EXECUTED
4000d2cc: 01 00 00 00 nop <== NOT EXECUTED
_Workspace_Free(tvp);
4000d2d0: 7f ff f8 3b call 4000b3bc <_Workspace_Free> <== NOT EXECUTED
4000d2d4: 91 e8 00 19 restore %g0, %i1, %o0 <== NOT EXECUTED
4000d188 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables are only enabled in uniprocessor configurations
*/
tvp = executing->task_variables;
4000d188: c2 02 21 34 ld [ %o0 + 0x134 ], %g1
while (tvp) {
4000d18c: 80 a0 60 00 cmp %g1, 0
4000d190: 22 80 00 09 be,a 4000d1b4 <_RTEMS_tasks_Switch_extension+0x2c><== ALWAYS TAKEN
4000d194: c2 02 61 34 ld [ %o1 + 0x134 ], %g1
tvp->tval = *tvp->ptr;
4000d198: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
4000d19c: c6 00 80 00 ld [ %g2 ], %g3 <== NOT EXECUTED
4000d1a0: c6 20 60 0c st %g3, [ %g1 + 0xc ] <== NOT EXECUTED
*tvp->ptr = tvp->gval;
4000d1a4: c6 00 60 08 ld [ %g1 + 8 ], %g3 <== NOT EXECUTED
4000d1a8: c6 20 80 00 st %g3, [ %g2 ] <== NOT EXECUTED
tvp = (rtems_task_variable_t *)tvp->next;
4000d1ac: 10 bf ff f8 b 4000d18c <_RTEMS_tasks_Switch_extension+0x4><== NOT EXECUTED
4000d1b0: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
}
tvp = heir->task_variables;
while (tvp) {
4000d1b4: 80 a0 60 00 cmp %g1, 0
4000d1b8: 02 80 00 09 be 4000d1dc <_RTEMS_tasks_Switch_extension+0x54><== ALWAYS TAKEN
4000d1bc: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000d1c0: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
4000d1c4: c6 00 80 00 ld [ %g2 ], %g3 <== NOT EXECUTED
4000d1c8: c6 20 60 08 st %g3, [ %g1 + 8 ] <== NOT EXECUTED
*tvp->ptr = tvp->tval;
4000d1cc: c6 00 60 0c ld [ %g1 + 0xc ], %g3 <== NOT EXECUTED
4000d1d0: c6 20 80 00 st %g3, [ %g2 ] <== NOT EXECUTED
tvp = (rtems_task_variable_t *)tvp->next;
4000d1d4: 10 bf ff f8 b 4000d1b4 <_RTEMS_tasks_Switch_extension+0x2c><== NOT EXECUTED
4000d1d8: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
}
}
4000d1dc: 81 c3 e0 08 retl
4000d20c <_RTEMS_tasks_Terminate_extension>:
}
static void _RTEMS_tasks_Terminate_extension(
Thread_Control *executing
)
{
4000d20c: 9d e3 bf a0 save %sp, -96, %sp
*/
#if !defined(RTEMS_SMP)
do {
rtems_task_variable_t *tvp, *next;
tvp = executing->task_variables;
4000d210: d2 06 21 34 ld [ %i0 + 0x134 ], %o1
executing->task_variables = NULL;
4000d214: c0 26 21 34 clr [ %i0 + 0x134 ]
while (tvp) {
4000d218: 80 a2 60 00 cmp %o1, 0
4000d21c: 02 80 00 07 be 4000d238 <_RTEMS_tasks_Terminate_extension+0x2c><== ALWAYS TAKEN
4000d220: 01 00 00 00 nop
next = (rtems_task_variable_t *)tvp->next;
4000d224: fa 02 40 00 ld [ %o1 ], %i5 <== NOT EXECUTED
_RTEMS_Tasks_Invoke_task_variable_dtor( executing, tvp );
4000d228: 40 00 00 1a call 4000d290 <_RTEMS_Tasks_Invoke_task_variable_dtor><== NOT EXECUTED
4000d22c: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
tvp = next;
4000d230: 10 bf ff fa b 4000d218 <_RTEMS_tasks_Terminate_extension+0xc><== NOT EXECUTED
4000d234: 92 10 00 1d mov %i5, %o1 <== NOT EXECUTED
#endif
/*
* Run all the key destructors
*/
_POSIX_Keys_Run_destructors( executing );
4000d238: 40 00 06 6b call 4000ebe4 <_POSIX_Keys_Run_destructors>
4000d23c: 81 e8 00 00 restore
40008148 <_Rate_monotonic_Get_status>:
bool _Rate_monotonic_Get_status(
Rate_monotonic_Control *the_period,
Rate_monotonic_Period_time_t *wall_since_last_period,
Thread_CPU_usage_t *cpu_since_last_period
)
{
40008148: 9d e3 bf 98 save %sp, -104, %sp
*/
static inline void _TOD_Get_uptime(
Timestamp_Control *time
)
{
_TOD_Get_with_nanoseconds( time, &_TOD.uptime );
4000814c: 13 10 00 68 sethi %hi(0x4001a000), %o1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
Timestamp_Control uptime;
#endif
Thread_Control *owning_thread = the_period->owner;
40008150: f6 06 20 40 ld [ %i0 + 0x40 ], %i3
40008154: 90 07 bf f8 add %fp, -8, %o0
40008158: 40 00 06 9f call 40009bd4 <_TOD_Get_with_nanoseconds>
4000815c: 92 12 63 68 or %o1, 0x368, %o1
/*
* Determine elapsed wall time since period initiated.
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40008160: c4 1f bf f8 ldd [ %fp + -8 ], %g2
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
40008164: f8 1e 20 50 ldd [ %i0 + 0x50 ], %i4
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
40008168: 82 10 20 01 mov 1, %g1
4000816c: ba a0 c0 1d subcc %g3, %i5, %i5
40008170: b8 60 80 1c subx %g2, %i4, %i4
40008174: f8 3e 40 00 std %i4, [ %i1 ]
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
40008178: fa 01 a0 18 ld [ %g6 + 0x18 ], %i5
4000817c: 80 a6 c0 1d cmp %i3, %i5
40008180: 12 80 00 15 bne 400081d4 <_Rate_monotonic_Get_status+0x8c>
40008184: d8 1e e0 80 ldd [ %i3 + 0x80 ], %o4
40008188: f8 19 a0 20 ldd [ %g6 + 0x20 ], %i4
4000818c: 86 a0 c0 1d subcc %g3, %i5, %g3
40008190: 84 60 80 1c subx %g2, %i4, %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
40008194: ba 83 40 03 addcc %o5, %g3, %i5
40008198: b8 43 00 02 addx %o4, %g2, %i4
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
4000819c: c4 1e 20 48 ldd [ %i0 + 0x48 ], %g2
400081a0: 80 a0 80 1c cmp %g2, %i4
400081a4: 34 80 00 0c bg,a 400081d4 <_Rate_monotonic_Get_status+0x8c><== NEVER TAKEN
400081a8: 82 10 20 00 clr %g1 <== NOT EXECUTED
400081ac: 32 80 00 06 bne,a 400081c4 <_Rate_monotonic_Get_status+0x7c>
400081b0: 86 a7 40 03 subcc %i5, %g3, %g3
400081b4: 80 a0 c0 1d cmp %g3, %i5
400081b8: 18 80 00 06 bgu 400081d0 <_Rate_monotonic_Get_status+0x88>
400081bc: 86 a7 40 03 subcc %i5, %g3, %g3
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
400081c0: 82 10 20 01 mov 1, %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
400081c4: 84 67 00 02 subx %i4, %g2, %g2
400081c8: 10 80 00 03 b 400081d4 <_Rate_monotonic_Get_status+0x8c>
400081cc: c4 3e 80 00 std %g2, [ %i2 ]
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
return false;
400081d0: 82 10 20 00 clr %g1
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
}
400081d4: b0 08 60 01 and %g1, 1, %i0
400081d8: 81 c7 e0 08 ret
400081dc: 81 e8 00 00 restore
400087fc <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
400087fc: 9d e3 bf 98 save %sp, -104, %sp
40008800: 11 10 00 68 sethi %hi(0x4001a000), %o0
40008804: 92 10 00 18 mov %i0, %o1
40008808: 90 12 22 a0 or %o0, 0x2a0, %o0
4000880c: 40 00 08 15 call 4000a860 <_Objects_Get>
40008810: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40008814: c2 07 bf fc ld [ %fp + -4 ], %g1
40008818: 80 a0 60 00 cmp %g1, 0
4000881c: 12 80 00 23 bne 400088a8 <_Rate_monotonic_Timeout+0xac> <== NEVER TAKEN
40008820: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
40008824: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40008828: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
4000882c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40008830: 80 88 80 01 btst %g2, %g1
40008834: 22 80 00 0b be,a 40008860 <_Rate_monotonic_Timeout+0x64>
40008838: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
4000883c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40008840: c2 07 60 08 ld [ %i5 + 8 ], %g1
40008844: 80 a0 80 01 cmp %g2, %g1
40008848: 32 80 00 06 bne,a 40008860 <_Rate_monotonic_Timeout+0x64>
4000884c: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
40008850: 13 04 03 ff sethi %hi(0x100ffc00), %o1
40008854: 40 00 0a ce call 4000b38c <_Thread_Clear_state>
40008858: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 100ffff8 <RAM_SIZE+0xfcffff8>
4000885c: 30 80 00 06 b,a 40008874 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40008860: 80 a0 60 01 cmp %g1, 1
40008864: 12 80 00 0d bne 40008898 <_Rate_monotonic_Timeout+0x9c>
40008868: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
4000886c: 82 10 20 03 mov 3, %g1
40008870: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40008874: 7f ff fe a4 call 40008304 <_Rate_monotonic_Initiate_statistics>
40008878: 90 10 00 1d mov %i5, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000887c: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008880: 11 10 00 69 sethi %hi(0x4001a400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008884: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008888: 90 12 20 10 or %o0, 0x10, %o0
4000888c: 40 00 0f fc call 4000c87c <_Watchdog_Insert>
40008890: 92 07 60 10 add %i5, 0x10, %o1
40008894: 30 80 00 02 b,a 4000889c <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40008898: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
4000889c: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
ISR_Level level;
_ISR_Disable( level );
#endif
--disable_level;
400088a0: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = disable_level;
400088a4: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
400088a8: 81 c7 e0 08 ret
400088ac: 81 e8 00 00 restore
400081e0 <_Rate_monotonic_Update_statistics>:
}
static void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
400081e0: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
400081e4: c2 06 20 58 ld [ %i0 + 0x58 ], %g1
400081e8: 82 00 60 01 inc %g1
400081ec: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
400081f0: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
400081f4: 80 a0 60 04 cmp %g1, 4
400081f8: 12 80 00 05 bne 4000820c <_Rate_monotonic_Update_statistics+0x2c>
400081fc: 90 10 00 18 mov %i0, %o0
stats->missed_count++;
40008200: c2 06 20 5c ld [ %i0 + 0x5c ], %g1
40008204: 82 00 60 01 inc %g1
40008208: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
/*
* Grab status for time statistics.
*/
valid_status =
4000820c: 92 07 bf f8 add %fp, -8, %o1
40008210: 7f ff ff ce call 40008148 <_Rate_monotonic_Get_status>
40008214: 94 07 bf f0 add %fp, -16, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
40008218: 80 a2 20 00 cmp %o0, 0
4000821c: 02 80 00 38 be 400082fc <_Rate_monotonic_Update_statistics+0x11c>
40008220: c4 1f bf f0 ldd [ %fp + -16 ], %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
40008224: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
40008228: c2 06 20 60 ld [ %i0 + 0x60 ], %g1
4000822c: b6 87 40 03 addcc %i5, %g3, %i3
40008230: b4 47 00 02 addx %i4, %g2, %i2
40008234: 80 a0 40 02 cmp %g1, %g2
40008238: 14 80 00 09 bg 4000825c <_Rate_monotonic_Update_statistics+0x7c>
4000823c: f4 3e 20 70 std %i2, [ %i0 + 0x70 ]
40008240: 80 a0 40 02 cmp %g1, %g2
40008244: 32 80 00 08 bne,a 40008264 <_Rate_monotonic_Update_statistics+0x84><== NEVER TAKEN
40008248: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED
4000824c: c2 06 20 64 ld [ %i0 + 0x64 ], %g1
40008250: 80 a0 40 03 cmp %g1, %g3
40008254: 28 80 00 04 bleu,a 40008264 <_Rate_monotonic_Update_statistics+0x84>
40008258: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
stats->min_cpu_time = executed;
4000825c: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
40008260: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
40008264: 80 a0 40 02 cmp %g1, %g2
40008268: 26 80 00 0a bl,a 40008290 <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN
4000826c: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED
40008270: 80 a0 40 02 cmp %g1, %g2
40008274: 32 80 00 08 bne,a 40008294 <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN
40008278: c4 1f bf f8 ldd [ %fp + -8 ], %g2 <== NOT EXECUTED
4000827c: c2 06 20 6c ld [ %i0 + 0x6c ], %g1
40008280: 80 a0 40 03 cmp %g1, %g3
40008284: 3a 80 00 04 bcc,a 40008294 <_Rate_monotonic_Update_statistics+0xb4>
40008288: c4 1f bf f8 ldd [ %fp + -8 ], %g2
stats->max_cpu_time = executed;
4000828c: c4 3e 20 68 std %g2, [ %i0 + 0x68 ]
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
40008290: c4 1f bf f8 ldd [ %fp + -8 ], %g2
40008294: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
40008298: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
4000829c: b6 87 40 03 addcc %i5, %g3, %i3
400082a0: b4 47 00 02 addx %i4, %g2, %i2
400082a4: 80 a0 40 02 cmp %g1, %g2
400082a8: 14 80 00 09 bg 400082cc <_Rate_monotonic_Update_statistics+0xec>
400082ac: f4 3e 20 88 std %i2, [ %i0 + 0x88 ]
400082b0: 80 a0 40 02 cmp %g1, %g2
400082b4: 32 80 00 08 bne,a 400082d4 <_Rate_monotonic_Update_statistics+0xf4><== NEVER TAKEN
400082b8: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED
400082bc: c2 06 20 7c ld [ %i0 + 0x7c ], %g1
400082c0: 80 a0 40 03 cmp %g1, %g3
400082c4: 28 80 00 04 bleu,a 400082d4 <_Rate_monotonic_Update_statistics+0xf4>
400082c8: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
stats->min_wall_time = since_last_period;
400082cc: c4 3e 20 78 std %g2, [ %i0 + 0x78 ]
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
400082d0: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
400082d4: 80 a0 40 02 cmp %g1, %g2
400082d8: 26 80 00 09 bl,a 400082fc <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
400082dc: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED
400082e0: 80 a0 40 02 cmp %g1, %g2
400082e4: 12 80 00 06 bne 400082fc <_Rate_monotonic_Update_statistics+0x11c><== NEVER TAKEN
400082e8: 01 00 00 00 nop
400082ec: c2 06 20 84 ld [ %i0 + 0x84 ], %g1
400082f0: 80 a0 40 03 cmp %g1, %g3
400082f4: 2a 80 00 02 bcs,a 400082fc <_Rate_monotonic_Update_statistics+0x11c>
400082f8: c4 3e 20 80 std %g2, [ %i0 + 0x80 ]
400082fc: 81 c7 e0 08 ret
40008300: 81 e8 00 00 restore
4000b24c <_Scheduler_CBS_Attach_thread>:
int _Scheduler_CBS_Attach_thread (
Scheduler_CBS_Server_id server_id,
rtems_id task_id
)
{
4000b24c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Locations location;
Thread_Control *the_thread;
if ( server_id >= _Scheduler_CBS_Maximum_servers )
4000b250: 03 10 00 5f sethi %hi(0x40017c00), %g1
4000b254: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 ! 40017ea0 <_Scheduler_CBS_Maximum_servers>
4000b258: 80 a6 00 01 cmp %i0, %g1
4000b25c: 0a 80 00 04 bcs 4000b26c <_Scheduler_CBS_Attach_thread+0x20>
4000b260: 83 2e 20 02 sll %i0, 2, %g1
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
4000b264: 81 c7 e0 08 ret
4000b268: 91 e8 3f ee restore %g0, -18, %o0
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id].initialized )
4000b26c: 3b 10 00 67 sethi %hi(0x40019c00), %i5
4000b270: b1 2e 20 04 sll %i0, 4, %i0
4000b274: ba 17 63 20 or %i5, 0x320, %i5
4000b278: b0 00 40 18 add %g1, %i0, %i0
4000b27c: b8 07 40 18 add %i5, %i0, %i4
4000b280: c2 0f 20 10 ldub [ %i4 + 0x10 ], %g1
4000b284: 80 a0 60 00 cmp %g1, 0
4000b288: 02 80 00 1f be 4000b304 <_Scheduler_CBS_Attach_thread+0xb8>
4000b28c: 01 00 00 00 nop
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Server is already attached to a thread. */
if ( _Scheduler_CBS_Server_list[server_id].task_id != -1 )
4000b290: c2 07 40 18 ld [ %i5 + %i0 ], %g1
4000b294: 80 a0 7f ff cmp %g1, -1
4000b298: 12 80 00 1d bne 4000b30c <_Scheduler_CBS_Attach_thread+0xc0>
4000b29c: 90 10 00 19 mov %i1, %o0
return SCHEDULER_CBS_ERROR_FULL;
the_thread = _Thread_Get(task_id, &location);
4000b2a0: 40 00 03 95 call 4000c0f4 <_Thread_Get>
4000b2a4: 92 07 bf fc add %fp, -4, %o1
/* The routine _Thread_Get may disable dispatch and not enable again. */
if ( the_thread ) {
4000b2a8: 80 a2 20 00 cmp %o0, 0
4000b2ac: 02 bf ff ee be 4000b264 <_Scheduler_CBS_Attach_thread+0x18>
4000b2b0: 01 00 00 00 nop
*
* @{
*/
RTEMS_INLINE_ROUTINE Scheduler_CBS_Node *_Scheduler_CBS_Node_get(
Thread_Control *the_thread
4000b2b4: c2 02 20 88 ld [ %o0 + 0x88 ], %g1
Scheduler_CBS_Node *node = _Scheduler_CBS_Node_get( the_thread );
/* Thread is already attached to a server. */
if ( node->cbs_server ) {
4000b2b8: c4 00 60 18 ld [ %g1 + 0x18 ], %g2
4000b2bc: 80 a0 a0 00 cmp %g2, 0
4000b2c0: 22 80 00 05 be,a 4000b2d4 <_Scheduler_CBS_Attach_thread+0x88><== ALWAYS TAKEN
4000b2c4: f2 27 40 18 st %i1, [ %i5 + %i0 ]
RTEMS_INLINE_ROUTINE void _Objects_Put(
Objects_Control *the_object
)
{
(void) the_object;
_Thread_Enable_dispatch();
4000b2c8: 40 00 03 80 call 4000c0c8 <_Thread_Enable_dispatch> <== NOT EXECUTED
4000b2cc: b0 10 3f e6 mov -26, %i0 <== NOT EXECUTED
4000b2d0: 30 80 00 10 b,a 4000b310 <_Scheduler_CBS_Attach_thread+0xc4><== NOT EXECUTED
_Objects_Put( &the_thread->Object );
return SCHEDULER_CBS_ERROR_FULL;
}
_Scheduler_CBS_Server_list[server_id].task_id = task_id;
node->cbs_server = &_Scheduler_CBS_Server_list[server_id];
4000b2d4: f8 20 60 18 st %i4, [ %g1 + 0x18 ]
the_thread->budget_callout = _Scheduler_CBS_Budget_callout;
4000b2d8: 03 10 00 2d sethi %hi(0x4000b400), %g1
4000b2dc: 82 10 63 84 or %g1, 0x384, %g1 ! 4000b784 <_Scheduler_CBS_Budget_callout>
4000b2e0: c2 22 20 7c st %g1, [ %o0 + 0x7c ]
the_thread->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_CALLOUT;
4000b2e4: 82 10 20 03 mov 3, %g1
4000b2e8: c2 22 20 78 st %g1, [ %o0 + 0x78 ]
the_thread->is_preemptible = true;
4000b2ec: 82 10 20 01 mov 1, %g1
_Objects_Put( &the_thread->Object );
} else {
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
}
return SCHEDULER_CBS_OK;
4000b2f0: b0 10 20 00 clr %i0
4000b2f4: 40 00 03 75 call 4000c0c8 <_Thread_Enable_dispatch>
4000b2f8: c2 2a 20 70 stb %g1, [ %o0 + 0x70 ]
4000b2fc: 81 c7 e0 08 ret
4000b300: 81 e8 00 00 restore
if ( server_id >= _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id].initialized )
return SCHEDULER_CBS_ERROR_NOSERVER;
4000b304: 81 c7 e0 08 ret
4000b308: 91 e8 3f e7 restore %g0, -25, %o0
/* Server is already attached to a thread. */
if ( _Scheduler_CBS_Server_list[server_id].task_id != -1 )
return SCHEDULER_CBS_ERROR_FULL;
4000b30c: b0 10 3f e6 mov -26, %i0
} else {
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
}
return SCHEDULER_CBS_OK;
}
4000b310: 81 c7 e0 08 ret
4000b314: 81 e8 00 00 restore
4000b784 <_Scheduler_CBS_Budget_callout>:
#include <rtems/score/wkspace.h>
void _Scheduler_CBS_Budget_callout(
Thread_Control *the_thread
)
{
4000b784: 9d e3 bf 98 save %sp, -104, %sp
Priority_Control new_priority;
Scheduler_CBS_Node *node;
Scheduler_CBS_Server_id server_id;
/* Put violating task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
4000b788: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
4000b78c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
4000b790: 80 a0 40 09 cmp %g1, %o1
4000b794: 32 80 00 02 bne,a 4000b79c <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN
4000b798: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
4000b79c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
4000b7a0: 80 a0 40 09 cmp %g1, %o1
4000b7a4: 02 80 00 04 be 4000b7b4 <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN
4000b7a8: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
4000b7ac: 40 00 01 5a call 4000bd14 <_Thread_Change_priority>
4000b7b0: 94 10 20 01 mov 1, %o2
4000b7b4: fa 06 20 88 ld [ %i0 + 0x88 ], %i5
/* Invoke callback function if any. */
node = _Scheduler_CBS_Node_get( the_thread );
if ( node->cbs_server->cbs_budget_overrun ) {
4000b7b8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
4000b7bc: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4000b7c0: 80 a0 a0 00 cmp %g2, 0
4000b7c4: 02 80 00 09 be 4000b7e8 <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN
4000b7c8: 01 00 00 00 nop
_Scheduler_CBS_Get_server_id(
4000b7cc: d0 00 40 00 ld [ %g1 ], %o0
4000b7d0: 7f ff ff d0 call 4000b710 <_Scheduler_CBS_Get_server_id>
4000b7d4: 92 07 bf fc add %fp, -4, %o1
node->cbs_server->task_id,
&server_id
);
node->cbs_server->cbs_budget_overrun( server_id );
4000b7d8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
4000b7dc: c2 00 60 0c ld [ %g1 + 0xc ], %g1
4000b7e0: 9f c0 40 00 call %g1
4000b7e4: d0 07 bf fc ld [ %fp + -4 ], %o0
4000b7e8: 81 c7 e0 08 ret
4000b7ec: 81 e8 00 00 restore
4000a58c <_Scheduler_CBS_Release_job>:
Thread_Control *the_thread,
uint32_t deadline
)
{
Scheduler_CBS_Node *node = _Scheduler_CBS_Node_get( the_thread );
Scheduler_CBS_Server *serv_info = node->cbs_server;
4000a58c: c2 02 60 88 ld [ %o1 + 0x88 ], %g1
void _Scheduler_CBS_Release_job(
const Scheduler_Control *scheduler,
Thread_Control *the_thread,
uint32_t deadline
)
{
4000a590: 90 10 00 09 mov %o1, %o0
Scheduler_CBS_Node *node = _Scheduler_CBS_Node_get( the_thread );
Scheduler_CBS_Server *serv_info = node->cbs_server;
Priority_Control new_priority;
if (deadline) {
4000a594: 80 a2 a0 00 cmp %o2, 0
4000a598: 02 80 00 0f be 4000a5d4 <_Scheduler_CBS_Release_job+0x48>
4000a59c: c2 00 60 18 ld [ %g1 + 0x18 ], %g1
4000a5a0: 05 10 00 61 sethi %hi(0x40018400), %g2
/* Initializing or shifting deadline. */
if (serv_info)
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
4000a5a4: d2 00 a3 80 ld [ %g2 + 0x380 ], %o1 ! 40018780 <_Watchdog_Ticks_since_boot>
Scheduler_CBS_Server *serv_info = node->cbs_server;
Priority_Control new_priority;
if (deadline) {
/* Initializing or shifting deadline. */
if (serv_info)
4000a5a8: 80 a0 60 00 cmp %g1, 0
4000a5ac: 02 80 00 07 be 4000a5c8 <_Scheduler_CBS_Release_job+0x3c>
4000a5b0: 94 02 80 09 add %o2, %o1, %o2
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
4000a5b4: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000a5b8: 92 02 40 02 add %o1, %g2, %o1
4000a5bc: 05 20 00 00 sethi %hi(0x80000000), %g2
4000a5c0: 10 80 00 08 b 4000a5e0 <_Scheduler_CBS_Release_job+0x54>
4000a5c4: 92 2a 40 02 andn %o1, %g2, %o1
& ~SCHEDULER_EDF_PRIO_MSB;
else
new_priority = (_Watchdog_Ticks_since_boot + deadline)
4000a5c8: 13 20 00 00 sethi %hi(0x80000000), %o1
4000a5cc: 10 80 00 07 b 4000a5e8 <_Scheduler_CBS_Release_job+0x5c>
4000a5d0: 92 2a 80 09 andn %o2, %o1, %o1
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
4000a5d4: 80 a0 60 00 cmp %g1, 0
4000a5d8: 02 80 00 04 be 4000a5e8 <_Scheduler_CBS_Release_job+0x5c> <== NEVER TAKEN
4000a5dc: d2 02 60 ac ld [ %o1 + 0xac ], %o1
the_thread->cpu_time_budget = serv_info->parameters.budget;
4000a5e0: c2 00 60 08 ld [ %g1 + 8 ], %g1
4000a5e4: c2 22 20 74 st %g1, [ %o0 + 0x74 ]
the_thread->real_priority = new_priority;
4000a5e8: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
_Thread_Change_priority(the_thread, new_priority, true);
4000a5ec: 94 10 20 01 mov 1, %o2
4000a5f0: 82 13 c0 00 mov %o7, %g1
4000a5f4: 40 00 01 0e call 4000aa2c <_Thread_Change_priority>
4000a5f8: 9e 10 40 00 mov %g1, %o7
4000a5fc <_Scheduler_CBS_Unblock>:
void _Scheduler_CBS_Unblock(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
4000a5fc: 9d e3 bf a0 save %sp, -96, %sp
4000a600: f8 06 60 88 ld [ %i1 + 0x88 ], %i4
{
Scheduler_EDF_Context *context =
_Scheduler_EDF_Get_context( scheduler );
Scheduler_EDF_Node *node = _Scheduler_EDF_Node_get( the_thread );
_RBTree_Insert( &context->Ready, &node->Node );
4000a604: d0 06 00 00 ld [ %i0 ], %o0
Scheduler_CBS_Node *node = _Scheduler_CBS_Node_get( the_thread );
Scheduler_CBS_Server *serv_info = node->cbs_server;
4000a608: fa 07 20 18 ld [ %i4 + 0x18 ], %i5
4000a60c: 7f ff ff 53 call 4000a358 <_RBTree_Insert>
4000a610: 92 07 20 04 add %i4, 4, %o1
node->queue_state = SCHEDULER_EDF_QUEUE_STATE_YES;
4000a614: 82 10 20 01 mov 1, %g1
* Late unblock rule for deadline-driven tasks. The remaining time to
* deadline must be sufficient to serve the remaining computation time
* without increased utilization of this task. It might cause a deadline
* miss of another task.
*/
if (serv_info) {
4000a618: 80 a7 60 00 cmp %i5, 0
4000a61c: 02 80 00 19 be 4000a680 <_Scheduler_CBS_Unblock+0x84>
4000a620: c2 27 20 14 st %g1, [ %i4 + 0x14 ]
time_t deadline = serv_info->parameters.deadline;
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
4000a624: 03 10 00 61 sethi %hi(0x40018400), %g1
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
4000a628: d2 07 60 04 ld [ %i5 + 4 ], %o1
*/
if (serv_info) {
time_t deadline = serv_info->parameters.deadline;
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
4000a62c: d0 00 63 80 ld [ %g1 + 0x380 ], %o0
4000a630: f8 06 60 18 ld [ %i1 + 0x18 ], %i4
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
4000a634: 40 00 27 98 call 40014494 <.umul>
4000a638: 90 27 00 08 sub %i4, %o0, %o0
4000a63c: d2 06 60 74 ld [ %i1 + 0x74 ], %o1
4000a640: b6 10 00 08 mov %o0, %i3
4000a644: 40 00 27 94 call 40014494 <.umul>
4000a648: d0 07 60 08 ld [ %i5 + 8 ], %o0
4000a64c: 80 a6 c0 08 cmp %i3, %o0
4000a650: 24 80 00 0d ble,a 4000a684 <_Scheduler_CBS_Unblock+0x88>
4000a654: c4 01 a0 1c ld [ %g6 + 0x1c ], %g2
/* Put late unblocked task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
4000a658: d2 06 60 ac ld [ %i1 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
4000a65c: 80 a7 00 09 cmp %i4, %o1
4000a660: 32 80 00 02 bne,a 4000a668 <_Scheduler_CBS_Unblock+0x6c>
4000a664: d2 26 60 18 st %o1, [ %i1 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
4000a668: c2 06 60 14 ld [ %i1 + 0x14 ], %g1
4000a66c: 80 a0 40 09 cmp %g1, %o1
4000a670: 02 80 00 04 be 4000a680 <_Scheduler_CBS_Unblock+0x84>
4000a674: 90 10 00 19 mov %i1, %o0
_Thread_Change_priority(the_thread, new_priority, true);
4000a678: 40 00 00 ed call 4000aa2c <_Thread_Change_priority>
4000a67c: 94 10 20 01 mov 1, %o2
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if (
_Scheduler_Is_priority_higher_than(
4000a680: c4 01 a0 1c ld [ %g6 + 0x1c ], %g2
const Scheduler_Control *scheduler,
Priority_Control p1,
Priority_Control p2
)
{
return ( *scheduler->Operations.priority_compare )( p1, p2 );
4000a684: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
4000a688: d0 06 60 14 ld [ %i1 + 0x14 ], %o0
4000a68c: 9f c0 40 00 call %g1
4000a690: d2 00 a0 14 ld [ %g2 + 0x14 ], %o1
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if (
4000a694: 80 a2 20 00 cmp %o0, 0
4000a698: 04 80 00 0e ble 4000a6d0 <_Scheduler_CBS_Unblock+0xd4>
4000a69c: 01 00 00 00 nop
the_thread->current_priority,
_Thread_Heir->current_priority
)
) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
4000a6a0: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
scheduler,
the_thread->current_priority,
_Thread_Heir->current_priority
)
) {
_Thread_Heir = the_thread;
4000a6a4: f2 21 a0 1c st %i1, [ %g6 + 0x1c ]
if ( _Thread_Executing->is_preemptible ||
4000a6a8: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
4000a6ac: 80 a0 a0 00 cmp %g2, 0
4000a6b0: 12 80 00 06 bne 4000a6c8 <_Scheduler_CBS_Unblock+0xcc>
4000a6b4: 82 10 00 06 mov %g6, %g1
4000a6b8: c4 06 60 14 ld [ %i1 + 0x14 ], %g2
4000a6bc: 80 a0 a0 00 cmp %g2, 0
4000a6c0: 12 80 00 04 bne 4000a6d0 <_Scheduler_CBS_Unblock+0xd4> <== ALWAYS TAKEN
4000a6c4: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
4000a6c8: 84 10 20 01 mov 1, %g2 ! 1 <_TLS_Alignment>
4000a6cc: c4 28 60 14 stb %g2, [ %g1 + 0x14 ]
4000a6d0: 81 c7 e0 08 ret
4000a6d4: 81 e8 00 00 restore
4000a7f8 <_Scheduler_EDF_Block>:
void _Scheduler_EDF_Block(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
4000a7f8: 9d e3 bf a0 save %sp, -96, %sp
const Scheduler_Control *,
Thread_Control *,
bool )
)
{
( *extract )( scheduler, the_thread );
4000a7fc: 90 10 00 18 mov %i0, %o0
4000a800: 7f ff ff f8 call 4000a7e0 <_Scheduler_EDF_Extract>
4000a804: 92 10 00 19 mov %i1, %o1
/* TODO: flash critical section? */
if ( _Thread_Is_executing( the_thread ) || _Thread_Is_heir( the_thread ) ) {
4000a808: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
4000a80c: 80 a6 40 02 cmp %i1, %g2
4000a810: 02 80 00 06 be 4000a828 <_Scheduler_EDF_Block+0x30>
4000a814: 01 00 00 00 nop
4000a818: c2 01 a0 1c ld [ %g6 + 0x1c ], %g1
4000a81c: 80 a6 40 01 cmp %i1, %g1
4000a820: 12 80 00 04 bne 4000a830 <_Scheduler_EDF_Block+0x38> <== ALWAYS TAKEN
4000a824: 01 00 00 00 nop
( *schedule )( scheduler, the_thread, true );
4000a828: 7f ff ff dd call 4000a79c <_Scheduler_EDF_Schedule_body>
4000a82c: 95 e8 20 01 restore %g0, 1, %o2
4000a830: 81 c7 e0 08 ret
4000a834: 81 e8 00 00 restore
4000a8f0 <_Scheduler_EDF_Schedule>:
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
4000a8f0: c2 02 00 00 ld [ %o0 ], %g1
Scheduler_EDF_Context *context =
_Scheduler_EDF_Get_context( scheduler );
RBTree_Node *first = _RBTree_First( &context->Ready, RBT_LEFT );
Scheduler_EDF_Node *node =
_RBTree_Container_of(first, Scheduler_EDF_Node, Node);
Thread_Control *heir = node->thread;
4000a8f4: c2 00 60 08 ld [ %g1 + 8 ], %g1
4000a8f8: c4 00 7f fc ld [ %g1 + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Scheduler_Update_heir(
Thread_Control *heir,
bool force_dispatch
)
{
Thread_Control *executing = _Thread_Executing;
4000a8fc: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_Thread_Heir = heir;
if ( executing != heir && ( force_dispatch || executing->is_preemptible ) )
4000a900: 80 a0 40 02 cmp %g1, %g2
4000a904: 02 80 00 07 be 4000a920 <_Scheduler_EDF_Schedule+0x30>
4000a908: c4 21 a0 1c st %g2, [ %g6 + 0x1c ]
4000a90c: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
4000a910: 80 a0 60 00 cmp %g1, 0
4000a914: 02 80 00 03 be 4000a920 <_Scheduler_EDF_Schedule+0x30> <== NEVER TAKEN
4000a918: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000a91c: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ]
4000a920: 81 c3 e0 08 retl
4000a79c <_Scheduler_EDF_Schedule_body>:
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
4000a79c: c2 02 00 00 ld [ %o0 ], %g1
Scheduler_EDF_Context *context =
_Scheduler_EDF_Get_context( scheduler );
RBTree_Node *first = _RBTree_First( &context->Ready, RBT_LEFT );
Scheduler_EDF_Node *node =
_RBTree_Container_of(first, Scheduler_EDF_Node, Node);
Thread_Control *heir = node->thread;
4000a7a0: c2 00 60 08 ld [ %g1 + 8 ], %g1
4000a7a4: c4 00 7f fc ld [ %g1 + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Scheduler_Update_heir(
Thread_Control *heir,
bool force_dispatch
)
{
Thread_Control *executing = _Thread_Executing;
4000a7a8: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_Thread_Heir = heir;
if ( executing != heir && ( force_dispatch || executing->is_preemptible ) )
4000a7ac: 80 a0 40 02 cmp %g1, %g2
4000a7b0: 02 80 00 0a be 4000a7d8 <_Scheduler_EDF_Schedule_body+0x3c><== NEVER TAKEN
4000a7b4: c4 21 a0 1c st %g2, [ %g6 + 0x1c ]
4000a7b8: 80 a2 a0 00 cmp %o2, 0
4000a7bc: 12 80 00 06 bne 4000a7d4 <_Scheduler_EDF_Schedule_body+0x38><== ALWAYS TAKEN
4000a7c0: 84 10 20 01 mov 1, %g2
4000a7c4: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 <== NOT EXECUTED
4000a7c8: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED
4000a7cc: 02 80 00 03 be 4000a7d8 <_Scheduler_EDF_Schedule_body+0x3c><== NOT EXECUTED
4000a7d0: 01 00 00 00 nop <== NOT EXECUTED
_Thread_Dispatch_necessary = true;
4000a7d4: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ]
4000a7d8: 81 c3 e0 08 retl
4000a814 <_Scheduler_EDF_Unblock>:
void _Scheduler_EDF_Unblock(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
4000a814: 9d e3 bf a0 save %sp, -96, %sp
{
return (Scheduler_EDF_Context *) _Scheduler_Get_context( scheduler );
}
RTEMS_INLINE_ROUTINE Scheduler_EDF_Node *_Scheduler_EDF_Node_get(
Thread_Control *the_thread
4000a818: fa 06 60 88 ld [ %i1 + 0x88 ], %i5
{
Scheduler_EDF_Context *context =
_Scheduler_EDF_Get_context( scheduler );
Scheduler_EDF_Node *node = _Scheduler_EDF_Node_get( the_thread );
_RBTree_Insert( &context->Ready, &node->Node );
4000a81c: d0 06 00 00 ld [ %i0 ], %o0
4000a820: 7f ff fe ce call 4000a358 <_RBTree_Insert>
4000a824: 92 07 60 04 add %i5, 4, %o1
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
4000a828: c4 01 a0 1c ld [ %g6 + 0x1c ], %g2
node->queue_state = SCHEDULER_EDF_QUEUE_STATE_YES;
4000a82c: 82 10 20 01 mov 1, %g1
const Scheduler_Control *scheduler,
Priority_Control p1,
Priority_Control p2
)
{
return ( *scheduler->Operations.priority_compare )( p1, p2 );
4000a830: d0 00 a0 14 ld [ %g2 + 0x14 ], %o0
4000a834: c2 27 60 14 st %g1, [ %i5 + 0x14 ]
4000a838: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
4000a83c: 9f c0 40 00 call %g1
4000a840: d2 06 60 14 ld [ %i1 + 0x14 ], %o1
4000a844: 80 a2 20 00 cmp %o0, 0
4000a848: 16 80 00 0e bge 4000a880 <_Scheduler_EDF_Unblock+0x6c>
4000a84c: 01 00 00 00 nop
scheduler,
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
4000a850: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
*/
if ( _Scheduler_Is_priority_lower_than(
scheduler,
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
4000a854: f2 21 a0 1c st %i1, [ %g6 + 0x1c ]
if ( _Thread_Executing->is_preemptible ||
4000a858: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
4000a85c: 80 a0 a0 00 cmp %g2, 0
4000a860: 12 80 00 06 bne 4000a878 <_Scheduler_EDF_Unblock+0x64>
4000a864: 82 10 00 06 mov %g6, %g1
4000a868: c4 06 60 14 ld [ %i1 + 0x14 ], %g2
4000a86c: 80 a0 a0 00 cmp %g2, 0
4000a870: 12 80 00 04 bne 4000a880 <_Scheduler_EDF_Unblock+0x6c> <== ALWAYS TAKEN
4000a874: 01 00 00 00 nop
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
4000a878: 84 10 20 01 mov 1, %g2 ! 1 <_TLS_Alignment>
4000a87c: c4 28 60 14 stb %g2, [ %g1 + 0x14 ]
4000a880: 81 c7 e0 08 ret
4000a884: 81 e8 00 00 restore
4000a928 <_Scheduler_EDF_Update_priority>:
{
return (Scheduler_EDF_Context *) _Scheduler_Get_context( scheduler );
}
RTEMS_INLINE_ROUTINE Scheduler_EDF_Node *_Scheduler_EDF_Node_get(
Thread_Control *the_thread
4000a928: c4 02 60 88 ld [ %o1 + 0x88 ], %g2
Scheduler_EDF_Node *node = _Scheduler_EDF_Node_get( the_thread );
(void) scheduler;
(void) new_priority;
if (node->queue_state == SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN) {
4000a92c: c2 00 a0 14 ld [ %g2 + 0x14 ], %g1
4000a930: 80 a0 60 02 cmp %g1, 2
4000a934: 12 80 00 08 bne 4000a954 <_Scheduler_EDF_Update_priority+0x2c><== NEVER TAKEN
4000a938: 03 20 00 00 sethi %hi(0x80000000), %g1
/* Shifts the priority to the region of background tasks. */
the_thread->Start.initial_priority |= (SCHEDULER_EDF_PRIO_MSB);
4000a93c: c6 02 60 ac ld [ %o1 + 0xac ], %g3
4000a940: 82 10 c0 01 or %g3, %g1, %g1
4000a944: c2 22 60 ac st %g1, [ %o1 + 0xac ]
the_thread->real_priority = the_thread->Start.initial_priority;
4000a948: c2 22 60 18 st %g1, [ %o1 + 0x18 ]
the_thread->current_priority = the_thread->Start.initial_priority;
4000a94c: c2 22 60 14 st %g1, [ %o1 + 0x14 ]
node->queue_state = SCHEDULER_EDF_QUEUE_STATE_NOT_PRESENTLY;
4000a950: c0 20 a0 14 clr [ %g2 + 0x14 ]
4000a954: 81 c3 e0 08 retl
4000a95c <_Scheduler_EDF_Yield>:
void _Scheduler_EDF_Yield(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
4000a95c: 9d e3 bf a0 save %sp, -96, %sp
/*
* The RBTree has more than one node, enqueue behind the tasks
* with the same priority in case there are such ones.
*/
_RBTree_Extract( &context->Ready, &node->Node );
4000a960: fa 06 00 00 ld [ %i0 ], %i5
4000a964: f8 06 60 88 ld [ %i1 + 0x88 ], %i4
4000a968: 90 10 00 1d mov %i5, %o0
4000a96c: b8 07 20 04 add %i4, 4, %i4
4000a970: 40 00 10 7b call 4000eb5c <_RBTree_Extract>
4000a974: 92 10 00 1c mov %i4, %o1
_RBTree_Insert( &context->Ready, &node->Node );
4000a978: 90 10 00 1d mov %i5, %o0
4000a97c: 7f ff fe 77 call 4000a358 <_RBTree_Insert>
4000a980: 92 10 00 1c mov %i4, %o1
4000a984: c2 06 00 00 ld [ %i0 ], %g1
Scheduler_EDF_Context *context =
_Scheduler_EDF_Get_context( scheduler );
RBTree_Node *first = _RBTree_First( &context->Ready, RBT_LEFT );
Scheduler_EDF_Node *node =
_RBTree_Container_of(first, Scheduler_EDF_Node, Node);
Thread_Control *heir = node->thread;
4000a988: c2 00 60 08 ld [ %g1 + 8 ], %g1
4000a98c: c4 00 7f fc ld [ %g1 + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Scheduler_Update_heir(
Thread_Control *heir,
bool force_dispatch
)
{
Thread_Control *executing = _Thread_Executing;
4000a990: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_Thread_Heir = heir;
if ( executing != heir && ( force_dispatch || executing->is_preemptible ) )
4000a994: 80 a0 40 02 cmp %g1, %g2
4000a998: 02 80 00 07 be 4000a9b4 <_Scheduler_EDF_Yield+0x58> <== NEVER TAKEN
4000a99c: c4 21 a0 1c st %g2, [ %g6 + 0x1c ]
4000a9a0: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
4000a9a4: 80 a0 60 00 cmp %g1, 0
4000a9a8: 02 80 00 03 be 4000a9b4 <_Scheduler_EDF_Yield+0x58> <== ALWAYS TAKEN
4000a9ac: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000a9b0: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ] <== NOT EXECUTED
4000a9b4: 81 c7 e0 08 ret
4000a9b8: 81 e8 00 00 restore
40009418 <_Scheduler_default_Tick>:
void _Scheduler_default_Tick(
const Scheduler_Control *scheduler,
Thread_Control *executing
)
{
40009418: 9d e3 bf a0 save %sp, -96, %sp
/*
* If the thread is not preemptible or is not ready, then
* just return.
*/
if ( !executing->is_preemptible )
4000941c: c2 0e 60 70 ldub [ %i1 + 0x70 ], %g1
40009420: 80 a0 60 00 cmp %g1, 0
40009424: 02 80 00 23 be 400094b0 <_Scheduler_default_Tick+0x98>
40009428: 01 00 00 00 nop
return;
if ( !_States_Is_ready( executing->current_state ) )
4000942c: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
40009430: 80 a0 60 00 cmp %g1, 0
40009434: 12 80 00 1f bne 400094b0 <_Scheduler_default_Tick+0x98>
40009438: 01 00 00 00 nop
/*
* The cpu budget algorithm determines what happens next.
*/
switch ( executing->budget_algorithm ) {
4000943c: c2 06 60 78 ld [ %i1 + 0x78 ], %g1
40009440: 80 a0 60 01 cmp %g1, 1
40009444: 0a 80 00 06 bcs 4000945c <_Scheduler_default_Tick+0x44>
40009448: 80 a0 60 02 cmp %g1, 2
4000944c: 08 80 00 06 bleu 40009464 <_Scheduler_default_Tick+0x4c>
40009450: 80 a0 60 03 cmp %g1, 3
40009454: 22 80 00 10 be,a 40009494 <_Scheduler_default_Tick+0x7c> <== ALWAYS TAKEN
40009458: c2 06 60 74 ld [ %i1 + 0x74 ], %g1
4000945c: 81 c7 e0 08 ret
40009460: 81 e8 00 00 restore
case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
#if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
#endif
if ( (int)(--executing->cpu_time_budget) <= 0 ) {
40009464: c2 06 60 74 ld [ %i1 + 0x74 ], %g1
40009468: 82 00 7f ff add %g1, -1, %g1
4000946c: 80 a0 60 00 cmp %g1, 0
40009470: 14 bf ff fb bg 4000945c <_Scheduler_default_Tick+0x44>
40009474: c2 26 60 74 st %g1, [ %i1 + 0x74 ]
* at the priority of the currently executing thread, then the
* executing thread's timeslice is reset. Otherwise, the
* currently executing thread is placed at the rear of the
* FIFO for this priority and a new heir is selected.
*/
_Thread_Yield( executing );
40009478: 40 00 06 12 call 4000acc0 <_Thread_Yield>
4000947c: 90 10 00 19 mov %i1, %o0
executing->cpu_time_budget =
rtems_configuration_get_ticks_per_timeslice();
40009480: 03 10 00 55 sethi %hi(0x40015400), %g1
* executing thread's timeslice is reset. Otherwise, the
* currently executing thread is placed at the rear of the
* FIFO for this priority and a new heir is selected.
*/
_Thread_Yield( executing );
executing->cpu_time_budget =
40009484: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 400155a4 <Configuration+0x1c>
40009488: c2 26 60 74 st %g1, [ %i1 + 0x74 ]
4000948c: 81 c7 e0 08 ret
40009490: 81 e8 00 00 restore
}
break;
#if defined(RTEMS_SCORE_THREAD_ENABLE_SCHEDULER_CALLOUT)
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
if ( --executing->cpu_time_budget == 0 )
40009494: 82 00 7f ff add %g1, -1, %g1
40009498: 80 a0 60 00 cmp %g1, 0
4000949c: 12 bf ff f0 bne 4000945c <_Scheduler_default_Tick+0x44>
400094a0: c2 26 60 74 st %g1, [ %i1 + 0x74 ]
(*executing->budget_callout)( executing );
400094a4: c2 06 60 7c ld [ %i1 + 0x7c ], %g1
400094a8: 9f c0 40 00 call %g1
400094ac: 90 10 00 19 mov %i1, %o0
400094b0: 81 c7 e0 08 ret
400094b4: 81 e8 00 00 restore
400094d8 <_Scheduler_priority_Schedule_body>:
* @addtogroup ScoreSchedulerDPS
*/
/**@{**/
RTEMS_INLINE_ROUTINE Scheduler_priority_Context *
_Scheduler_priority_Get_context( const Scheduler_Control *scheduler )
400094d8: c4 02 00 00 ld [ %o0 ], %g2
400094dc: 03 10 00 59 sethi %hi(0x40016400), %g1
/* Avoid problems with some inline ASM statements */
Priority_bit_map_Word tmp;
tmp = bit_map->major_bit_map;
_Bitfield_Find_first_bit( tmp, major );
400094e0: c6 10 80 00 lduh [ %g2 ], %g3
bool force_dispatch
)
{
Scheduler_priority_Context *context =
_Scheduler_priority_Get_context( scheduler );
Thread_Control *heir = _Scheduler_priority_Ready_queue_first(
400094e4: 9a 00 a0 24 add %g2, 0x24, %o5
400094e8: 87 28 e0 10 sll %g3, 0x10, %g3
400094ec: 89 30 e0 10 srl %g3, 0x10, %g4
400094f0: 80 a1 20 ff cmp %g4, 0xff
400094f4: 18 80 00 05 bgu 40009508 <_Scheduler_priority_Schedule_body+0x30>
400094f8: 82 10 61 48 or %g1, 0x148, %g1
400094fc: c6 08 40 04 ldub [ %g1 + %g4 ], %g3
40009500: 10 80 00 04 b 40009510 <_Scheduler_priority_Schedule_body+0x38>
40009504: 86 00 e0 08 add %g3, 8, %g3
40009508: 87 30 e0 18 srl %g3, 0x18, %g3
4000950c: c6 08 40 03 ldub [ %g1 + %g3 ], %g3
tmp = bit_map->bit_map[ major ];
40009510: 87 28 e0 10 sll %g3, 0x10, %g3
40009514: 89 30 e0 0f srl %g3, 0xf, %g4
40009518: 84 00 80 04 add %g2, %g4, %g2
_Bitfield_Find_first_bit( tmp, minor );
4000951c: c4 10 a0 02 lduh [ %g2 + 2 ], %g2
40009520: 85 28 a0 10 sll %g2, 0x10, %g2
40009524: 89 30 a0 10 srl %g2, 0x10, %g4
40009528: 80 a1 20 ff cmp %g4, 0xff
4000952c: 18 80 00 05 bgu 40009540 <_Scheduler_priority_Schedule_body+0x68>
40009530: 85 30 a0 18 srl %g2, 0x18, %g2
40009534: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
40009538: 10 80 00 03 b 40009544 <_Scheduler_priority_Schedule_body+0x6c>
4000953c: 82 00 60 08 add %g1, 8, %g1
40009540: c2 08 40 02 ldub [ %g1 + %g2 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
40009544: 83 28 60 10 sll %g1, 0x10, %g1
_Bitfield_Find_first_bit( tmp, major );
tmp = bit_map->bit_map[ major ];
_Bitfield_Find_first_bit( tmp, minor );
return (_Priority_Bits_index( major ) << 4) +
40009548: 87 30 e0 0c srl %g3, 0xc, %g3
_Priority_Bits_index( minor );
4000954c: 83 30 60 10 srl %g1, 0x10, %g1
Chain_Control *ready_queues
)
{
Priority_Control index = _Priority_bit_map_Get_highest( bit_map );
return (Thread_Control *) _Chain_First( &ready_queues[ index ] );
40009550: 82 00 40 03 add %g1, %g3, %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
40009554: 85 28 60 02 sll %g1, 2, %g2
40009558: 83 28 60 04 sll %g1, 4, %g1
4000955c: 82 20 40 02 sub %g1, %g2, %g1
40009560: c4 03 40 01 ld [ %o5 + %g1 ], %g2
RTEMS_INLINE_ROUTINE void _Scheduler_Update_heir(
Thread_Control *heir,
bool force_dispatch
)
{
Thread_Control *executing = _Thread_Executing;
40009564: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_Thread_Heir = heir;
if ( executing != heir && ( force_dispatch || executing->is_preemptible ) )
40009568: 80 a0 40 02 cmp %g1, %g2
4000956c: 02 80 00 0a be 40009594 <_Scheduler_priority_Schedule_body+0xbc>
40009570: c4 21 a0 1c st %g2, [ %g6 + 0x1c ]
40009574: 80 a2 a0 00 cmp %o2, 0
40009578: 12 80 00 06 bne 40009590 <_Scheduler_priority_Schedule_body+0xb8><== ALWAYS TAKEN
4000957c: 84 10 20 01 mov 1, %g2
40009580: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 <== NOT EXECUTED
40009584: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED
40009588: 02 80 00 03 be 40009594 <_Scheduler_priority_Schedule_body+0xbc><== NOT EXECUTED
4000958c: 01 00 00 00 nop <== NOT EXECUTED
_Thread_Dispatch_necessary = true;
40009590: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ]
40009594: 81 c3 e0 08 retl
4000a1b0 <_Scheduler_simple_Block>:
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
4000a1b0: c4 02 40 00 ld [ %o1 ], %g2
previous = the_node->previous;
4000a1b4: c2 02 60 04 ld [ %o1 + 4 ], %g1
next->previous = previous;
4000a1b8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000a1bc: c4 20 40 00 st %g2, [ %g1 ]
{
( *extract )( scheduler, the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_executing( the_thread ) || _Thread_Is_heir( the_thread ) ) {
4000a1c0: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
4000a1c4: 80 a2 40 02 cmp %o1, %g2
4000a1c8: 02 80 00 06 be 4000a1e0 <_Scheduler_simple_Block+0x30>
4000a1cc: 94 10 20 01 mov 1, %o2
4000a1d0: c2 01 a0 1c ld [ %g6 + 0x1c ], %g1
4000a1d4: 80 a2 40 01 cmp %o1, %g1
4000a1d8: 12 80 00 05 bne 4000a1ec <_Scheduler_simple_Block+0x3c> <== ALWAYS TAKEN
4000a1dc: 01 00 00 00 nop
( *schedule )( scheduler, the_thread, true );
4000a1e0: 82 13 c0 00 mov %o7, %g1
4000a1e4: 7f ff ff e3 call 4000a170 <_Scheduler_simple_Schedule_body>
4000a1e8: 9e 10 40 00 mov %g1, %o7
4000a1ec: 81 c3 e0 08 retl
4000a2c4 <_Scheduler_simple_Schedule>:
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
4000a2c4: c2 02 00 00 ld [ %o0 ], %g1
4000a2c8: c4 00 40 00 ld [ %g1 ], %g2
RTEMS_INLINE_ROUTINE void _Scheduler_Update_heir(
Thread_Control *heir,
bool force_dispatch
)
{
Thread_Control *executing = _Thread_Executing;
4000a2cc: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_Thread_Heir = heir;
if ( executing != heir && ( force_dispatch || executing->is_preemptible ) )
4000a2d0: 80 a0 40 02 cmp %g1, %g2
4000a2d4: 02 80 00 07 be 4000a2f0 <_Scheduler_simple_Schedule+0x2c>
4000a2d8: c4 21 a0 1c st %g2, [ %g6 + 0x1c ]
4000a2dc: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
4000a2e0: 80 a0 60 00 cmp %g1, 0
4000a2e4: 02 80 00 03 be 4000a2f0 <_Scheduler_simple_Schedule+0x2c> <== ALWAYS TAKEN
4000a2e8: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000a2ec: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ] <== NOT EXECUTED
4000a2f0: 81 c3 e0 08 retl
4000a170 <_Scheduler_simple_Schedule_body>:
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
4000a170: c2 02 00 00 ld [ %o0 ], %g1
4000a174: c4 00 40 00 ld [ %g1 ], %g2
RTEMS_INLINE_ROUTINE void _Scheduler_Update_heir(
Thread_Control *heir,
bool force_dispatch
)
{
Thread_Control *executing = _Thread_Executing;
4000a178: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_Thread_Heir = heir;
if ( executing != heir && ( force_dispatch || executing->is_preemptible ) )
4000a17c: 80 a0 40 02 cmp %g1, %g2
4000a180: 02 80 00 0a be 4000a1a8 <_Scheduler_simple_Schedule_body+0x38><== NEVER TAKEN
4000a184: c4 21 a0 1c st %g2, [ %g6 + 0x1c ]
4000a188: 80 a2 a0 00 cmp %o2, 0
4000a18c: 12 80 00 06 bne 4000a1a4 <_Scheduler_simple_Schedule_body+0x34><== ALWAYS TAKEN
4000a190: 84 10 20 01 mov 1, %g2
4000a194: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1 <== NOT EXECUTED
4000a198: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED
4000a19c: 02 80 00 03 be 4000a1a8 <_Scheduler_simple_Schedule_body+0x38><== NOT EXECUTED
4000a1a0: 01 00 00 00 nop <== NOT EXECUTED
_Thread_Dispatch_necessary = true;
4000a1a4: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ]
4000a1a8: 81 c3 e0 08 retl
4000a390 <_Scheduler_simple_Yield>:
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000a390: c2 02 60 04 ld [ %o1 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
4000a394: c6 02 40 00 ld [ %o1 ], %g3
4000a398: c4 02 00 00 ld [ %o0 ], %g2
previous = the_node->previous;
next->previous = previous;
4000a39c: c2 20 e0 04 st %g1, [ %g3 + 4 ]
previous->next = next;
4000a3a0: c6 20 40 00 st %g3, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
4000a3a4: c2 00 80 00 ld [ %g2 ], %g1
Chain_Control *chain,
Chain_Node *to_insert,
Chain_Node_order order
)
{
const Chain_Node *tail = _Chain_Immutable_tail( chain );
4000a3a8: 9a 00 a0 04 add %g2, 4, %o5
Chain_Node *next = _Chain_First( chain );
while ( next != tail && !( *order )( to_insert, next ) ) {
4000a3ac: 80 a0 40 0d cmp %g1, %o5
4000a3b0: 32 80 00 0f bne,a 4000a3ec <_Scheduler_simple_Yield+0x5c><== ALWAYS TAKEN
4000a3b4: c8 02 60 14 ld [ %o1 + 0x14 ], %g4
Chain_Node *to_insert,
Chain_Node_order order
)
{
const Chain_Node *tail = _Chain_Immutable_tail( chain );
Chain_Node *next = _Chain_First( chain );
4000a3b8: c2 00 60 04 ld [ %g1 + 4 ], %g1 <== NOT EXECUTED
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
4000a3bc: c6 00 40 00 ld [ %g1 ], %g3
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
4000a3c0: c2 22 60 04 st %g1, [ %o1 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
4000a3c4: d2 20 40 00 st %o1, [ %g1 ]
the_node->next = before_node;
4000a3c8: c6 22 40 00 st %g3, [ %o1 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
4000a3cc: c4 00 80 00 ld [ %g2 ], %g2
the_node->previous = after_node;
before_node = after_node->next;
after_node->next = the_node;
the_node->next = before_node;
before_node->previous = the_node;
4000a3d0: d2 20 e0 04 st %o1, [ %g3 + 4 ]
RTEMS_INLINE_ROUTINE void _Scheduler_Update_heir(
Thread_Control *heir,
bool force_dispatch
)
{
Thread_Control *executing = _Thread_Executing;
4000a3d4: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
_Thread_Heir = heir;
if ( executing != heir && ( force_dispatch || executing->is_preemptible ) )
4000a3d8: 80 a0 40 02 cmp %g1, %g2
4000a3dc: 12 80 00 0a bne 4000a404 <_Scheduler_simple_Yield+0x74>
4000a3e0: c4 21 a0 1c st %g2, [ %g6 + 0x1c ]
4000a3e4: 81 c3 e0 08 retl
4000a3e8: 01 00 00 00 nop
)
{
const Chain_Node *tail = _Chain_Immutable_tail( chain );
Chain_Node *next = _Chain_First( chain );
while ( next != tail && !( *order )( to_insert, next ) ) {
4000a3ec: c6 00 60 14 ld [ %g1 + 0x14 ], %g3
4000a3f0: 80 a1 00 03 cmp %g4, %g3
4000a3f4: 2a bf ff f2 bcs,a 4000a3bc <_Scheduler_simple_Yield+0x2c>
4000a3f8: c2 00 60 04 ld [ %g1 + 4 ], %g1
Chain_Node *to_insert,
Chain_Node_order order
)
{
const Chain_Node *tail = _Chain_Immutable_tail( chain );
Chain_Node *next = _Chain_First( chain );
4000a3fc: 10 bf ff ec b 4000a3ac <_Scheduler_simple_Yield+0x1c>
4000a400: c2 00 40 00 ld [ %g1 ], %g1
4000a404: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
4000a408: 80 a0 60 00 cmp %g1, 0
4000a40c: 02 bf ff f6 be 4000a3e4 <_Scheduler_simple_Yield+0x54> <== ALWAYS TAKEN
4000a410: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000a414: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ] <== NOT EXECUTED
4000a418: 81 c3 e0 08 retl <== NOT EXECUTED
4000ef50 <_Signal_Action_handler>:
Thread_Control *executing,
Thread_Action *action,
Per_CPU_Control *cpu,
ISR_Level level
)
{
4000ef50: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
4000ef54: 7f ff cd 3b call 40002440 <sparc_enable_interrupts>
4000ef58: 90 10 00 1b mov %i3, %o0
Modes_Control prev_mode;
(void) action;
_Thread_Action_release_and_ISR_enable( cpu, level );
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000ef5c: fa 06 21 2c ld [ %i0 + 0x12c ], %i5
if ( !api )
4000ef60: 80 a7 60 00 cmp %i5, 0
4000ef64: 02 80 00 1c be 4000efd4 <_Signal_Action_handler+0x84> <== NEVER TAKEN
4000ef68: 01 00 00 00 nop
{
#if defined( RTEMS_SMP )
_SMP_lock_ISR_disable_and_acquire( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Disable( context->isr_level );
4000ef6c: 7f ff cd 32 call 40002434 <sparc_disable_interrupts>
4000ef70: 01 00 00 00 nop
{
rtems_signal_set signal_set;
ISR_lock_Context lock_context;
_ISR_lock_ISR_disable_and_acquire( &asr->Lock, &lock_context );
signal_set = asr->signals_posted;
4000ef74: f8 07 60 14 ld [ %i5 + 0x14 ], %i4
asr->signals_posted = 0;
4000ef78: c0 27 60 14 clr [ %i5 + 0x14 ]
{
#if defined( RTEMS_SMP )
_SMP_lock_Release_and_ISR_enable( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Enable( context->isr_level );
4000ef7c: 7f ff cd 31 call 40002440 <sparc_enable_interrupts>
4000ef80: 01 00 00 00 nop
*/
asr = &api->Signal;
signal_set = _ASR_Get_posted_signals( asr );
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000ef84: 80 a7 20 00 cmp %i4, 0
4000ef88: 02 80 00 13 be 4000efd4 <_Signal_Action_handler+0x84> <== NEVER TAKEN
4000ef8c: 94 07 bf fc add %fp, -4, %o2
return;
asr->nest_level += 1;
4000ef90: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ef94: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
signal_set = _ASR_Get_posted_signals( asr );
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000ef98: 82 00 60 01 inc %g1
4000ef9c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000efa0: 37 00 00 3f sethi %hi(0xfc00), %i3
4000efa4: 40 00 00 0e call 4000efdc <rtems_task_mode>
4000efa8: 92 16 e3 ff or %i3, 0x3ff, %o1 ! ffff <_TLS_Alignment+0xfffe>
(*asr->handler)( signal_set );
4000efac: c2 07 60 0c ld [ %i5 + 0xc ], %g1
4000efb0: 9f c0 40 00 call %g1
4000efb4: 90 10 00 1c mov %i4, %o0
asr->nest_level -= 1;
4000efb8: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000efbc: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000efc0: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000efc4: 92 16 e3 ff or %i3, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000efc8: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000efcc: 40 00 00 04 call 4000efdc <rtems_task_mode>
4000efd0: 94 07 bf fc add %fp, -4, %o2
4000efd4: 81 c7 e0 08 ret
4000efd8: 81 e8 00 00 restore
40008598 <_TOD_Validate>:
};
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40008598: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
4000859c: 03 10 00 5c sethi %hi(0x40017000), %g1
400085a0: d2 00 61 34 ld [ %g1 + 0x134 ], %o1 ! 40017134 <Configuration+0x14>
400085a4: 11 00 03 d0 sethi %hi(0xf4000), %o0
400085a8: 40 00 32 8f call 40014fe4 <.udiv>
400085ac: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <_TLS_Alignment+0xf423f>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
400085b0: 80 a6 20 00 cmp %i0, 0
400085b4: 02 80 00 33 be 40008680 <_TOD_Validate+0xe8> <== NEVER TAKEN
400085b8: 82 10 20 00 clr %g1
400085bc: c4 06 20 18 ld [ %i0 + 0x18 ], %g2
400085c0: 80 a0 80 08 cmp %g2, %o0
400085c4: 3a 80 00 30 bcc,a 40008684 <_TOD_Validate+0xec>
400085c8: b0 08 60 01 and %g1, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
400085cc: c4 06 20 14 ld [ %i0 + 0x14 ], %g2
400085d0: 80 a0 a0 3b cmp %g2, 0x3b
400085d4: 38 80 00 2c bgu,a 40008684 <_TOD_Validate+0xec>
400085d8: b0 08 60 01 and %g1, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
400085dc: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
400085e0: 80 a0 a0 3b cmp %g2, 0x3b
400085e4: 38 80 00 28 bgu,a 40008684 <_TOD_Validate+0xec>
400085e8: b0 08 60 01 and %g1, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
400085ec: c4 06 20 0c ld [ %i0 + 0xc ], %g2
400085f0: 80 a0 a0 17 cmp %g2, 0x17
400085f4: 38 80 00 24 bgu,a 40008684 <_TOD_Validate+0xec>
400085f8: b0 08 60 01 and %g1, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
400085fc: f8 06 20 04 ld [ %i0 + 4 ], %i4
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40008600: 84 07 3f ff add %i4, -1, %g2
40008604: 80 a0 a0 0b cmp %g2, 0xb
40008608: 38 80 00 1f bgu,a 40008684 <_TOD_Validate+0xec>
4000860c: b0 08 60 01 and %g1, 1, %i0
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40008610: fa 06 00 00 ld [ %i0 ], %i5
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
40008614: 80 a7 67 c3 cmp %i5, 0x7c3
40008618: 28 80 00 1b bleu,a 40008684 <_TOD_Validate+0xec>
4000861c: b0 08 60 01 and %g1, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40008620: f6 06 20 08 ld [ %i0 + 8 ], %i3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40008624: 80 a6 e0 00 cmp %i3, 0
40008628: 02 80 00 16 be 40008680 <_TOD_Validate+0xe8> <== NEVER TAKEN
4000862c: 35 10 00 5f sethi %hi(0x40017c00), %i2
(the_tod->day == 0) )
return false;
if (((the_tod->year % 4) == 0 && (the_tod->year % 100 != 0)) ||
40008630: 80 8f 60 03 btst 3, %i5
40008634: 12 80 00 08 bne 40008654 <_TOD_Validate+0xbc>
40008638: b4 16 a1 d8 or %i2, 0x1d8, %i2
4000863c: 90 10 00 1d mov %i5, %o0
40008640: 40 00 33 15 call 40015294 <.urem>
40008644: 92 10 20 64 mov 0x64, %o1
40008648: 80 a2 20 00 cmp %o0, 0
4000864c: 32 80 00 09 bne,a 40008670 <_TOD_Validate+0xd8>
40008650: b8 07 20 0d add %i4, 0xd, %i4
(the_tod->year % 400 == 0))
40008654: 90 10 00 1d mov %i5, %o0
40008658: 40 00 33 0f call 40015294 <.urem>
4000865c: 92 10 21 90 mov 0x190, %o1
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
if (((the_tod->year % 4) == 0 && (the_tod->year % 100 != 0)) ||
40008660: 80 a2 20 00 cmp %o0, 0
40008664: 32 80 00 04 bne,a 40008674 <_TOD_Validate+0xdc>
40008668: b9 2f 20 02 sll %i4, 2, %i4
(the_tod->year % 400 == 0))
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
4000866c: b8 07 20 0d add %i4, 0xd, %i4
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40008670: b9 2f 20 02 sll %i4, 2, %i4
40008674: c2 06 80 1c ld [ %i2 + %i4 ], %g1
if ( the_tod->day > days_in_month )
40008678: 80 a0 40 1b cmp %g1, %i3
4000867c: 82 60 3f ff subx %g0, -1, %g1
return false;
return true;
}
40008680: b0 08 60 01 and %g1, 1, %i0
40008684: 81 c7 e0 08 ret
40008688: 81 e8 00 00 restore
40008a08 <_Terminate>:
void _Terminate(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40008a08: 9d e3 bf 90 save %sp, -112, %sp
ISR_Level level;
_ISR_Disable_without_giant( level );
40008a0c: 7f ff e6 8a call 40002434 <sparc_disable_interrupts>
40008a10: 01 00 00 00 nop
Internal_errors_t error
)
{
User_extensions_Fatal_context ctx = { source, is_internal, error };
_User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor );
40008a14: 13 10 00 2b sethi %hi(0x4000ac00), %o1
40008a18: 90 07 bf f4 add %fp, -12, %o0
40008a1c: 92 12 61 ec or %o1, 0x1ec, %o1
Internal_errors_Source source,
bool is_internal,
Internal_errors_t error
)
{
User_extensions_Fatal_context ctx = { source, is_internal, error };
40008a20: f0 27 bf f4 st %i0, [ %fp + -12 ]
40008a24: f2 2f bf f8 stb %i1, [ %fp + -8 ]
_User_extensions_Iterate( &ctx, _User_extensions_Fatal_visitor );
40008a28: 40 00 09 05 call 4000ae3c <_User_extensions_Iterate>
40008a2c: f4 27 bf fc st %i2, [ %fp + -4 ]
_SMP_Request_shutdown();
_User_extensions_Fatal( the_source, is_internal, the_error );
_Internal_errors_What_happened.the_source = the_source;
40008a30: 05 10 00 62 sethi %hi(0x40018800), %g2 <== NOT EXECUTED
40008a34: 82 10 a0 e8 or %g2, 0xe8, %g1 ! 400188e8 <_Internal_errors_What_happened><== NOT EXECUTED
40008a38: f0 20 a0 e8 st %i0, [ %g2 + 0xe8 ] <== NOT EXECUTED
_Internal_errors_What_happened.is_internal = is_internal;
40008a3c: f2 28 60 04 stb %i1, [ %g1 + 4 ] <== NOT EXECUTED
_Internal_errors_What_happened.the_error = the_error;
40008a40: f4 20 60 08 st %i2, [ %g1 + 8 ] <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40008a44: 84 10 20 03 mov 3, %g2 <== NOT EXECUTED
40008a48: 03 10 00 62 sethi %hi(0x40018800), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_TERMINATED );
_CPU_Fatal_halt( the_error );
40008a4c: 7f ff e6 7a call 40002434 <sparc_disable_interrupts> <== NOT EXECUTED
40008a50: c4 20 60 f4 st %g2, [ %g1 + 0xf4 ] ! 400188f4 <_System_state_Current><== NOT EXECUTED
40008a54: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40008a58: 30 80 00 00 b,a 40008a58 <_Terminate+0x50> <== NOT EXECUTED
40009a64 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40009a64: 9d e3 bf 98 save %sp, -104, %sp
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority ) {
40009a68: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40009a6c: 80 a0 40 19 cmp %g1, %i1
40009a70: 02 80 00 3d be 40009b64 <_Thread_Change_priority+0x100>
40009a74: 01 00 00 00 nop
ISR_Level level;
const Scheduler_Control *scheduler;
_ISR_Disable( level );
40009a78: 7f ff e2 6f call 40002434 <sparc_disable_interrupts>
40009a7c: 01 00 00 00 nop
40009a80: ba 10 00 08 mov %o0, %i5
scheduler = _Scheduler_Get( the_thread );
the_thread->current_priority = new_priority;
if ( _States_Is_ready( the_thread->current_state ) ) {
40009a84: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
const Scheduler_Control *scheduler;
_ISR_Disable( level );
scheduler = _Scheduler_Get( the_thread );
the_thread->current_priority = new_priority;
40009a88: f2 26 20 14 st %i1, [ %i0 + 0x14 ]
if ( _States_Is_ready( the_thread->current_state ) ) {
40009a8c: 80 a0 60 00 cmp %g1, 0
40009a90: 03 10 00 55 sethi %hi(0x40015400), %g1
40009a94: 12 80 00 12 bne 40009adc <_Thread_Change_priority+0x78>
40009a98: 90 10 62 6c or %g1, 0x26c, %o0 ! 4001566c <_Scheduler_Table>
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
( *scheduler->Operations.change_priority )(
40009a9c: c4 02 20 18 ld [ %o0 + 0x18 ], %g2
40009aa0: 92 10 00 18 mov %i0, %o1
40009aa4: 94 10 00 19 mov %i1, %o2
40009aa8: 9f c0 80 00 call %g2
40009aac: 96 10 00 1a mov %i2, %o3
the_thread,
new_priority,
prepend_it
);
_ISR_Flash( level );
40009ab0: 7f ff e2 64 call 40002440 <sparc_enable_interrupts>
40009ab4: 90 10 00 1d mov %i5, %o0
40009ab8: 7f ff e2 5f call 40002434 <sparc_disable_interrupts>
40009abc: 01 00 00 00 nop
40009ac0: ba 10 00 08 mov %o0, %i5
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
( *scheduler->Operations.schedule )( scheduler, the_thread );
40009ac4: 11 10 00 55 sethi %hi(0x40015400), %o0
40009ac8: 90 12 22 6c or %o0, 0x26c, %o0 ! 4001566c <_Scheduler_Table>
40009acc: c2 02 20 08 ld [ %o0 + 8 ], %g1
40009ad0: 9f c0 40 00 call %g1
40009ad4: 92 10 00 18 mov %i0, %o1
40009ad8: 30 80 00 05 b,a 40009aec <_Thread_Change_priority+0x88>
const Scheduler_Control *scheduler,
Thread_Control *the_thread,
Priority_Control new_priority
)
{
( *scheduler->Operations.update_priority )(
40009adc: c4 02 20 24 ld [ %o0 + 0x24 ], %g2
40009ae0: 92 10 00 18 mov %i0, %o1
40009ae4: 9f c0 80 00 call %g2
40009ae8: 94 10 00 19 mov %i1, %o2
scheduler = _Scheduler_Get( the_thread );
_Scheduler_Schedule( scheduler, the_thread );
} else {
_Scheduler_Update_priority( scheduler, the_thread, new_priority );
}
_ISR_Enable( level );
40009aec: 7f ff e2 55 call 40002440 <sparc_enable_interrupts>
40009af0: 90 10 00 1d mov %i5, %o0
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40009af4: fa 06 20 44 ld [ %i0 + 0x44 ], %i5
{
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40009af8: 80 a7 60 00 cmp %i5, 0
40009afc: 02 80 00 1a be 40009b64 <_Thread_Change_priority+0x100>
40009b00: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40009b04: c2 07 60 34 ld [ %i5 + 0x34 ], %g1
40009b08: 80 a0 60 01 cmp %g1, 1
40009b0c: 12 80 00 16 bne 40009b64 <_Thread_Change_priority+0x100>
40009b10: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40009b14: 7f ff e2 48 call 40002434 <sparc_disable_interrupts>
40009b18: 01 00 00 00 nop
40009b1c: b8 10 00 08 mov %o0, %i4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
40009b20: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40009b24: 03 00 02 ef sethi %hi(0xbbc00), %g1
40009b28: 82 10 62 e0 or %g1, 0x2e0, %g1 ! bbee0 <_TLS_Alignment+0xbbedf>
40009b2c: 80 88 80 01 btst %g2, %g1
40009b30: 02 80 00 0b be 40009b5c <_Thread_Change_priority+0xf8> <== NEVER TAKEN
40009b34: 82 10 20 01 mov 1, %g1
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper(
40009b38: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
40009b3c: 90 10 00 18 mov %i0, %o0
40009b40: 94 10 20 01 mov 1, %o2
40009b44: 40 00 02 76 call 4000a51c <_Thread_queue_Extract_priority_helper>
40009b48: c2 27 60 30 st %g1, [ %i5 + 0x30 ]
the_thread,
the_thread->Wait.return_code,
true
);
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40009b4c: 90 10 00 1d mov %i5, %o0
40009b50: 92 10 00 18 mov %i0, %o1
40009b54: 40 00 02 0f call 4000a390 <_Thread_queue_Enqueue_priority>
40009b58: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
40009b5c: 7f ff e2 39 call 40002440 <sparc_enable_interrupts>
40009b60: 90 10 00 1c mov %i4, %o0
40009b64: 81 c7 e0 08 ret
40009b68: 81 e8 00 00 restore
4000aa78 <_Thread_Close>:
}
}
}
void _Thread_Close( Thread_Control *the_thread, Thread_Control *executing )
{
4000aa78: 9d e3 bf a0 save %sp, -96, %sp
_Assert( _Thread_Is_life_protected( executing->Life.state ) );
_Objects_Close(
4000aa7c: d0 06 20 08 ld [ %i0 + 8 ], %o0
4000aa80: 7f ff f9 31 call 40008f44 <_Objects_Get_information_id>
4000aa84: ba 10 00 18 mov %i0, %i5
4000aa88: 7f ff f8 46 call 40008ba0 <_Objects_Close>
4000aa8c: 92 10 00 18 mov %i0, %o1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_dormant (
States_Control the_states
)
{
return (the_states & STATES_DORMANT);
4000aa90: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
_Objects_Get_information_id( the_thread->Object.id ),
&the_thread->Object
);
if ( _States_Is_dormant( the_thread->current_state ) ) {
4000aa94: 80 88 60 01 btst 1, %g1
4000aa98: 02 80 00 04 be 4000aaa8 <_Thread_Close+0x30>
4000aa9c: 80 a6 00 19 cmp %i0, %i1
_Thread_Make_zombie( the_thread );
4000aaa0: 7f ff ff 0c call 4000a6d0 <_Thread_Make_zombie>
4000aaa4: 81 e8 00 00 restore
} else {
if (
4000aaa8: 22 80 00 0b be,a 4000aad4 <_Thread_Close+0x5c>
4000aaac: f4 06 60 14 ld [ %i1 + 0x14 ], %i2
RTEMS_INLINE_ROUTINE bool _Thread_Is_life_terminating(
Thread_Life_state life_state
)
{
return ( life_state & THREAD_LIFE_TERMINATING ) != 0;
4000aab0: c2 06 61 50 ld [ %i1 + 0x150 ], %g1
the_thread != executing
&& !_Thread_Is_life_terminating( executing->Life.state )
4000aab4: 80 88 60 04 btst 4, %g1
4000aab8: 32 80 00 07 bne,a 4000aad4 <_Thread_Close+0x5c> <== NEVER TAKEN
4000aabc: f4 06 60 14 ld [ %i1 + 0x14 ], %i2 <== NOT EXECUTED
/*
* Wait for termination of victim thread. If the executing thread is
* also terminated, then do not wait. This avoids potential cyclic
* dependencies and thus dead lock.
*/
the_thread->Life.terminator = executing;
4000aac0: f2 26 21 54 st %i1, [ %i0 + 0x154 ]
_Thread_Set_state( executing, STATES_WAITING_FOR_TERMINATION );
4000aac4: 90 10 00 19 mov %i1, %o0
4000aac8: 40 00 00 2b call 4000ab74 <_Thread_Set_state>
4000aacc: 13 00 04 00 sethi %hi(0x100000), %o1
}
_Thread_Request_life_change(
4000aad0: f4 06 60 14 ld [ %i1 + 0x14 ], %i2
4000aad4: b0 10 00 1d mov %i5, %i0
4000aad8: 7f ff ff 36 call 4000a7b0 <_Thread_Request_life_change>
4000aadc: 97 e8 20 04 restore %g0, 4, %o3
40009c68 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40009c68: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40009c6c: 90 10 00 18 mov %i0, %o0
40009c70: 40 00 00 75 call 40009e44 <_Thread_Get>
40009c74: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40009c78: c2 07 bf fc ld [ %fp + -4 ], %g1
40009c7c: 80 a0 60 00 cmp %g1, 0
40009c80: 12 80 00 07 bne 40009c9c <_Thread_Delay_ended+0x34> <== NEVER TAKEN
40009c84: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40009c88: 7f ff ff b9 call 40009b6c <_Thread_Clear_state>
40009c8c: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
40009c90: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
ISR_Level level;
_ISR_Disable( level );
#endif
--disable_level;
40009c94: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = disable_level;
40009c98: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
40009c9c: 81 c7 e0 08 ret
40009ca0: 81 e8 00 00 restore
40009ca4 <_Thread_Dispatch>:
_Thread_Action_release_and_ISR_enable( cpu_self, level );
}
void _Thread_Dispatch( void )
{
40009ca4: 9d e3 bf 98 save %sp, -104, %sp
#endif
cpu_self = _Per_CPU_Get();
_Assert( cpu_self->thread_dispatch_disable_level == 0 );
_Profiling_Thread_dispatch_disable( cpu_self, 0 );
cpu_self->thread_dispatch_disable_level = 1;
40009ca8: 82 10 20 01 mov 1, %g1
* to this function.
*/
_ISR_Disable_without_giant( level );
#endif
cpu_self = _Per_CPU_Get();
40009cac: b6 10 00 06 mov %g6, %i3
_Assert( cpu_self->thread_dispatch_disable_level == 0 );
_Profiling_Thread_dispatch_disable( cpu_self, 0 );
cpu_self->thread_dispatch_disable_level = 1;
40009cb0: c2 21 a0 10 st %g1, [ %g6 + 0x10 ]
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = cpu_self->executing;
#if !defined( RTEMS_SMP )
_ISR_Disable( level );
40009cb4: 7f ff e1 e0 call 40002434 <sparc_disable_interrupts>
40009cb8: e6 01 a0 18 ld [ %g6 + 0x18 ], %l3
*/
static inline void _TOD_Get_uptime(
Timestamp_Control *time
)
{
_TOD_Get_with_nanoseconds( time, &_TOD.uptime );
40009cbc: 23 10 00 61 sethi %hi(0x40018400), %l1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40009cc0: 33 10 00 5b sethi %hi(0x40016c00), %i1
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = rtems_configuration_get_ticks_per_timeslice();
40009cc4: 21 10 00 55 sethi %hi(0x40015400), %l0
40009cc8: b2 16 60 18 or %i1, 0x18, %i1
40009ccc: a2 14 60 08 or %l1, 8, %l1
{
const Chain_Control *chain = &_User_extensions_Switches_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
if ( node != tail ) {
40009cd0: b0 06 60 04 add %i1, 4, %i0
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
40009cd4: a4 04 e0 d0 add %l3, 0xd0, %l2
#endif
#if defined( RTEMS_SMP )
if ( cpu_self->dispatch_necessary ) {
#else
while ( cpu_self->dispatch_necessary ) {
40009cd8: c2 0e e0 14 ldub [ %i3 + 0x14 ], %g1
40009cdc: 80 a0 60 00 cmp %g1, 0
40009ce0: 02 80 00 07 be 40009cfc <_Thread_Dispatch+0x58>
40009ce4: 01 00 00 00 nop
* _Scheduler_SMP_Update_heir().
*/
_Atomic_Fence( ATOMIC_ORDER_SEQ_CST );
#endif
heir = cpu_self->heir;
40009ce8: e8 06 e0 1c ld [ %i3 + 0x1c ], %l4
Per_CPU_Control *cpu_self
)
{
Thread_Control *heir;
cpu_self->dispatch_necessary = false;
40009cec: c0 2e e0 14 clrb [ %i3 + 0x14 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40009cf0: 80 a5 00 13 cmp %l4, %l3
40009cf4: 12 80 00 10 bne 40009d34 <_Thread_Dispatch+0x90>
40009cf8: e8 26 e0 18 st %l4, [ %i3 + 0x18 ]
#endif
}
post_switch:
_Assert( cpu_self->thread_dispatch_disable_level == 1 );
cpu_self->thread_dispatch_disable_level = 0;
40009cfc: c0 26 e0 10 clr [ %i3 + 0x10 ]
_Profiling_Thread_dispatch_enable( cpu_self, 0 );
_ISR_Enable_without_giant( level );
40009d00: 7f ff e1 d0 call 40002440 <sparc_enable_interrupts>
40009d04: 01 00 00 00 nop
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
40009d08: 7f ff e1 cb call 40002434 <sparc_disable_interrupts>
40009d0c: 01 00 00 00 nop
40009d10: 96 10 00 08 mov %o0, %o3
40009d14: d2 04 e0 c4 ld [ %l3 + 0xc4 ], %o1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40009d18: ba 04 e0 c8 add %l3, 0xc8, %i5
#if defined(RTEMS_SMP)
return thread->cpu;
#else
(void) thread;
return _Per_CPU_Get();
40009d1c: 94 10 00 06 mov %g6, %o2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40009d20: 80 a2 40 1d cmp %o1, %i5
40009d24: 12 80 00 35 bne 40009df8 <_Thread_Dispatch+0x154>
40009d28: b8 04 e0 c4 add %l3, 0xc4, %i4
return _Chain_Get_first_unprotected(the_chain);
else
return NULL;
40009d2c: 10 80 00 25 b 40009dc0 <_Thread_Dispatch+0x11c>
40009d30: 92 10 20 00 clr %o1
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40009d34: c2 05 20 78 ld [ %l4 + 0x78 ], %g1
40009d38: 80 a0 60 01 cmp %g1, 1
40009d3c: 12 80 00 04 bne 40009d4c <_Thread_Dispatch+0xa8>
40009d40: 82 14 21 88 or %l0, 0x188, %g1
heir->cpu_time_budget = rtems_configuration_get_ticks_per_timeslice();
40009d44: c2 00 60 1c ld [ %g1 + 0x1c ], %g1
40009d48: c2 25 20 74 st %g1, [ %l4 + 0x74 ]
#if !defined( RTEMS_SMP )
_ISR_Enable( level );
40009d4c: 7f ff e1 bd call 40002440 <sparc_enable_interrupts>
40009d50: 01 00 00 00 nop
40009d54: 90 07 bf f8 add %fp, -8, %o0
40009d58: 7f ff f9 da call 400084c0 <_TOD_Get_with_nanoseconds>
40009d5c: 92 10 00 11 mov %l1, %o1
{
Timestamp_Control uptime;
Timestamp_Control ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40009d60: c4 1f bf f8 ldd [ %fp + -8 ], %g2
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
40009d64: f8 1e e0 20 ldd [ %i3 + 0x20 ], %i4
time_of_last_context_switch,
&uptime,
&ran
);
*time_of_last_context_switch = uptime;
40009d68: c4 3e e0 20 std %g2, [ %i3 + 0x20 ]
40009d6c: ba a0 c0 1d subcc %g3, %i5, %i5
40009d70: b8 60 80 1c subx %g2, %i4, %i4
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
40009d74: c4 1c e0 80 ldd [ %l3 + 0x80 ], %g2
40009d78: b6 80 c0 1d addcc %g3, %i5, %i3
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40009d7c: fa 06 40 00 ld [ %i1 ], %i5
40009d80: b4 40 80 1c addx %g2, %i4, %i2
40009d84: f4 3c e0 80 std %i2, [ %l3 + 0x80 ]
40009d88: 80 a7 40 18 cmp %i5, %i0
40009d8c: 02 80 00 08 be 40009dac <_Thread_Dispatch+0x108>
40009d90: 90 10 00 12 mov %l2, %o0
while ( node != tail ) {
const User_extensions_Switch_control *extension =
(const User_extensions_Switch_control *) node;
(*extension->thread_switch)( executing, heir );
40009d94: c2 07 60 08 ld [ %i5 + 8 ], %g1
40009d98: 90 10 00 13 mov %l3, %o0
40009d9c: 9f c0 40 00 call %g1
40009da0: 92 10 00 14 mov %l4, %o1
Thread_Control *heir
)
{
const Chain_Control *chain = &_User_extensions_Switches_list;
const Chain_Node *tail = _Chain_Immutable_tail( chain );
const Chain_Node *node = _Chain_Immutable_first( chain );
40009da4: 10 bf ff f9 b 40009d88 <_Thread_Dispatch+0xe4>
40009da8: fa 07 40 00 ld [ %i5 ], %i5
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
40009dac: 40 00 2a c7 call 400148c8 <_CPU_Context_switch>
40009db0: 92 05 20 d0 add %l4, 0xd0, %o1
cpu_self = _Per_CPU_Get();
_Thread_Debug_set_real_processor( executing, cpu_self );
#if !defined( RTEMS_SMP )
_ISR_Disable( level );
40009db4: 7f ff e1 a0 call 40002434 <sparc_disable_interrupts>
40009db8: b6 10 00 06 mov %g6, %i3
40009dbc: 30 bf ff c7 b,a 40009cd8 <_Thread_Dispatch+0x34>
Thread_Action *action;
cpu_self = _Thread_Action_ISR_disable_and_acquire( executing, &level );
action = _Thread_Get_post_switch_action( executing );
while ( action != NULL ) {
40009dc0: 80 a2 60 00 cmp %o1, 0
40009dc4: 02 80 00 11 be 40009e08 <_Thread_Dispatch+0x164>
40009dc8: 01 00 00 00 nop
_Chain_Set_off_chain( &action->Node );
( *action->handler )( executing, action, cpu_self, level );
40009dcc: c2 02 60 08 ld [ %o1 + 8 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = NULL;
40009dd0: c0 22 40 00 clr [ %o1 ]
40009dd4: 9f c0 40 00 call %g1
40009dd8: 90 10 00 13 mov %l3, %o0
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
40009ddc: 7f ff e1 96 call 40002434 <sparc_disable_interrupts>
40009de0: 01 00 00 00 nop
40009de4: 96 10 00 08 mov %o0, %o3
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40009de8: d2 04 e0 c4 ld [ %l3 + 0xc4 ], %o1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40009dec: 80 a2 40 1d cmp %o1, %i5
40009df0: 02 80 00 06 be 40009e08 <_Thread_Dispatch+0x164> <== ALWAYS TAKEN
40009df4: 94 10 00 06 mov %g6, %o2
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
40009df8: c2 02 40 00 ld [ %o1 ], %g1
head->next = new_first;
40009dfc: c2 24 e0 c4 st %g1, [ %l3 + 0xc4 ]
new_first->previous = head;
40009e00: 10 bf ff f0 b 40009dc0 <_Thread_Dispatch+0x11c>
40009e04: f8 20 60 04 st %i4, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
40009e08: 7f ff e1 8e call 40002440 <sparc_enable_interrupts>
40009e0c: 90 10 00 0b mov %o3, %o0
40009e10: 81 c7 e0 08 ret
40009e14: 81 e8 00 00 restore
4000f828 <_Thread_Handler>:
return doCons;
}
#endif
void _Thread_Handler( void )
{
4000f828: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *executing;
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
bool doCons;
#endif
executing = _Thread_Executing;
4000f82c: fa 01 a0 18 ld [ %g6 + 0x18 ], %i5
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000f830: 3f 10 00 3e sethi %hi(0x4000f800), %i7
4000f834: be 17 e0 28 or %i7, 0x28, %i7 ! 4000f828 <_Thread_Handler>
#if !defined(RTEMS_SMP)
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000f838: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0
_ISR_Set_level( level );
4000f83c: 7f ff cb 01 call 40002440 <sparc_enable_interrupts>
4000f840: 91 2a 20 08 sll %o0, 8, %o0
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
(void) executing;
doCons = !doneConstructors;
4000f844: 03 10 00 5f sethi %hi(0x40017c00), %g1
doneConstructors = true;
4000f848: 84 10 20 01 mov 1, %g2
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
(void) executing;
doCons = !doneConstructors;
4000f84c: f8 08 62 c8 ldub [ %g1 + 0x2c8 ], %i4
);
}
static inline void _User_extensions_Thread_begin( Thread_Control *executing )
{
_User_extensions_Iterate(
4000f850: 90 10 00 1d mov %i5, %o0
4000f854: 13 10 00 2b sethi %hi(0x4000ac00), %o1
4000f858: 92 12 61 a4 or %o1, 0x1a4, %o1 ! 4000ada4 <_User_extensions_Thread_begin_visitor>
4000f85c: 7f ff ed 78 call 4000ae3c <_User_extensions_Iterate>
4000f860: c4 28 62 c8 stb %g2, [ %g1 + 0x2c8 ]
* no thread dispatch necessary update.
*/
_Thread_Dispatch();
}
#else
_Thread_Enable_dispatch();
4000f864: 7f ff e9 6d call 40009e18 <_Thread_Enable_dispatch>
4000f868: 01 00 00 00 nop
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
4000f86c: 80 8f 20 ff btst 0xff, %i4
4000f870: 32 80 00 05 bne,a 4000f884 <_Thread_Handler+0x5c>
4000f874: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
INIT_NAME ();
4000f878: 40 00 1c 7c call 40016a68 <_init>
4000f87c: 01 00 00 00 nop
/*
* RTEMS supports multiple APIs and each API can define a different
* thread/task prototype. The following code supports invoking the
* user thread entry point using the prototype expected.
*/
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000f880: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
4000f884: 80 a0 60 00 cmp %g1, 0
4000f888: 12 80 00 05 bne 4000f89c <_Thread_Handler+0x74>
4000f88c: 80 a0 60 01 cmp %g1, 1
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000f890: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
4000f894: 10 80 00 06 b 4000f8ac <_Thread_Handler+0x84>
4000f898: d0 07 60 98 ld [ %i5 + 0x98 ], %o0
executing->Start.numeric_argument
);
}
#if defined(RTEMS_POSIX_API)
else if ( executing->Start.prototype == THREAD_START_POINTER ) {
4000f89c: 12 80 00 08 bne 4000f8bc <_Thread_Handler+0x94> <== NEVER TAKEN
4000f8a0: 90 10 00 1d mov %i5, %o0
executing->Wait.return_argument =
(*(Thread_Entry_pointer) executing->Start.entry_point)(
4000f8a4: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
4000f8a8: d0 07 60 94 ld [ %i5 + 0x94 ], %o0
4000f8ac: 9f c0 40 00 call %g1
4000f8b0: 01 00 00 00 nop
executing->Start.numeric_argument
);
}
#if defined(RTEMS_POSIX_API)
else if ( executing->Start.prototype == THREAD_START_POINTER ) {
executing->Wait.return_argument =
4000f8b4: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
}
}
static inline void _User_extensions_Thread_exitted( Thread_Control *executing )
{
_User_extensions_Iterate(
4000f8b8: 90 10 00 1d mov %i5, %o0
4000f8bc: 13 10 00 2b sethi %hi(0x4000ac00), %o1
4000f8c0: 7f ff ed 5f call 4000ae3c <_User_extensions_Iterate>
4000f8c4: 92 12 61 c8 or %o1, 0x1c8, %o1 ! 4000adc8 <_User_extensions_Thread_exitted_visitor>
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
_Terminate(
4000f8c8: 90 10 20 00 clr %o0
4000f8cc: 92 10 20 01 mov 1, %o1
4000f8d0: 7f ff e4 4e call 40008a08 <_Terminate>
4000f8d4: 94 10 20 05 mov 5, %o2
4000a11c <_Thread_Handler_initialization>:
#include <rtems/score/threadimpl.h>
#include <rtems/score/interr.h>
void _Thread_Handler_initialization(void)
{
4000a11c: 9d e3 bf 98 save %sp, -104, %sp
rtems_stack_allocate_init_hook stack_allocate_init_hook =
4000a120: 03 10 00 55 sethi %hi(0x40015400), %g1
4000a124: 82 10 61 88 or %g1, 0x188, %g1 ! 40015588 <Configuration>
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
4000a128: c6 00 60 30 ld [ %g1 + 0x30 ], %g3
4000a12c: 80 a0 e0 00 cmp %g3, 0
4000a130: 02 80 00 06 be 4000a148 <_Thread_Handler_initialization+0x2c><== NEVER TAKEN
4000a134: c4 00 60 2c ld [ %g1 + 0x2c ], %g2
4000a138: c6 00 60 34 ld [ %g1 + 0x34 ], %g3
4000a13c: 80 a0 e0 00 cmp %g3, 0
4000a140: 12 80 00 06 bne 4000a158 <_Thread_Handler_initialization+0x3c>
4000a144: 80 a0 a0 00 cmp %g2, 0
rtems_configuration_get_stack_free_hook() == NULL)
_Terminate(
4000a148: 90 10 20 00 clr %o0
4000a14c: 92 10 20 01 mov 1, %o1
4000a150: 7f ff fa 2e call 40008a08 <_Terminate>
4000a154: 94 10 20 0e mov 0xe, %o2
INTERNAL_ERROR_CORE,
true,
INTERNAL_ERROR_BAD_STACK_HOOK
);
if ( stack_allocate_init_hook != NULL )
4000a158: 22 80 00 05 be,a 4000a16c <_Thread_Handler_initialization+0x50>
4000a15c: 03 10 00 55 sethi %hi(0x40015400), %g1
(*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() );
4000a160: 9f c0 80 00 call %g2
4000a164: d0 00 60 04 ld [ %g1 + 4 ], %o0 ! 40015404 <__EH_FRAME_BEGIN__+0x44>
/*
* Initialize the internal class of threads. We need an IDLE thread
* per CPU in an SMP system. In addition, if this is a loosely
* coupled multiprocessing system, account for the MPCI Server Thread.
*/
_Objects_Initialize_information(
4000a168: 03 10 00 55 sethi %hi(0x40015400), %g1
4000a16c: d8 10 61 f2 lduh [ %g1 + 0x1f2 ], %o4 ! 400155f2 <_Thread_Control_size+0x2>
4000a170: 82 10 20 08 mov 8, %g1
4000a174: 11 10 00 61 sethi %hi(0x40018400), %o0
4000a178: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
4000a17c: 90 12 20 c8 or %o0, 0xc8, %o0
4000a180: 92 10 20 01 mov 1, %o1
4000a184: 94 10 20 01 mov 1, %o2
4000a188: 96 10 20 01 mov 1, %o3
4000a18c: 7f ff fb c8 call 400090ac <_Objects_Initialize_information>
4000a190: 9a 10 20 00 clr %o5
4000a194: 81 c7 e0 08 ret
4000a198: 81 e8 00 00 restore
40009ed4 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
40009ed4: 9d e3 bf 98 save %sp, -104, %sp
40009ed8: c2 07 a0 70 ld [ %fp + 0x70 ], %g1
40009edc: fa 07 a0 5c ld [ %fp + 0x5c ], %i5
40009ee0: e2 00 40 00 ld [ %g1 ], %l1
40009ee4: e0 07 a0 64 ld [ %fp + 0x64 ], %l0
{
/*
* Do not use _TLS_Size here since this will lead GCC to assume that this
* symbol is not 0 and the tests for 0 will be optimized away.
*/
return (uintptr_t) _TLS_BSS_end - (uintptr_t) _TLS_Data_begin;
40009ee8: 03 10 00 5a sethi %hi(0x40016800), %g1
40009eec: e4 0f a0 63 ldub [ %fp + 0x63 ], %l2
40009ef0: 82 10 62 a0 or %g1, 0x2a0, %g1
40009ef4: 27 10 00 5a sethi %hi(0x40016800), %l3
40009ef8: a6 14 e2 a0 or %l3, 0x2a0, %l3 ! 40016aa0 <_RTEMS_tasks_Initialize_user_tasks_p>
40009efc: a6 24 c0 01 sub %l3, %g1, %l3
if ( rtems_configuration_is_smp_enabled() && !is_preemptible ) {
return false;
}
#endif
for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
40009f00: 03 10 00 55 sethi %hi(0x40015400), %g1
40009f04: 84 10 20 00 clr %g2
40009f08: c6 00 61 cc ld [ %g1 + 0x1cc ], %g3
40009f0c: 03 10 00 55 sethi %hi(0x40015400), %g1
40009f10: 82 10 61 d0 or %g1, 0x1d0, %g1 ! 400155d0 <_Thread_Control_add_ons>
40009f14: 80 a0 80 03 cmp %g2, %g3
40009f18: 02 80 00 08 be 40009f38 <_Thread_Initialize+0x64>
40009f1c: 84 00 a0 01 inc %g2
const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];
*(void **) ( (char *) the_thread + add_on->destination_offset ) =
(char *) the_thread + add_on->source_offset;
40009f20: de 00 60 04 ld [ %g1 + 4 ], %o7
#endif
for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];
*(void **) ( (char *) the_thread + add_on->destination_offset ) =
40009f24: c8 00 40 00 ld [ %g1 ], %g4
(char *) the_thread + add_on->source_offset;
40009f28: 9e 06 40 0f add %i1, %o7, %o7
#endif
for ( i = 0 ; i < _Thread_Control_add_on_count ; ++i ) {
const Thread_Control_add_on *add_on = &_Thread_Control_add_ons[ i ];
*(void **) ( (char *) the_thread + add_on->destination_offset ) =
40009f2c: de 26 40 04 st %o7, [ %i1 + %g4 ]
40009f30: 10 bf ff f9 b 40009f14 <_Thread_Initialize+0x40>
40009f34: 82 00 60 08 add %g1, 8, %g1
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
stack = the_thread->Start.stack;
#else
if ( !stack_area ) {
40009f38: 80 a6 e0 00 cmp %i3, 0
40009f3c: 12 80 00 0e bne 40009f74 <_Thread_Initialize+0xa0>
40009f40: c0 26 60 c0 clr [ %i1 + 0xc0 ]
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40009f44: 90 10 00 19 mov %i1, %o0
40009f48: 40 00 03 1d call 4000abbc <_Thread_Stack_Allocate>
40009f4c: 92 10 00 1c mov %i4, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40009f50: 80 a2 00 1c cmp %o0, %i4
40009f54: 0a 80 00 6e bcs 4000a10c <_Thread_Initialize+0x238>
40009f58: 80 a2 20 00 cmp %o0, 0
40009f5c: 02 80 00 6c be 4000a10c <_Thread_Initialize+0x238> <== NEVER TAKEN
40009f60: 82 10 20 01 mov 1, %g1
return false; /* stack allocation failed */
stack = the_thread->Start.stack;
40009f64: f6 06 60 bc ld [ %i1 + 0xbc ], %i3
the_thread->Start.core_allocated_stack = true;
40009f68: c2 2e 60 b0 stb %g1, [ %i1 + 0xb0 ]
40009f6c: 10 80 00 03 b 40009f78 <_Thread_Initialize+0xa4>
40009f70: b8 10 00 08 mov %o0, %i4
} else {
stack = stack_area;
actual_stack_size = stack_size;
the_thread->Start.core_allocated_stack = false;
40009f74: c0 2e 60 b0 clrb [ %i1 + 0xb0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40009f78: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ]
stack,
actual_stack_size
);
/* Thread-local storage (TLS) area allocation */
if ( tls_size > 0 ) {
40009f7c: 80 a4 e0 00 cmp %l3, 0
40009f80: 12 80 00 0b bne 40009fac <_Thread_Initialize+0xd8>
40009f84: f8 26 60 b4 st %i4, [ %i1 + 0xb4 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call. The object index starts with one, so the first extension context is
* unused.
*/
for ( i = 1 ; i <= rtems_configuration_get_maximum_extensions() ; ++i )
40009f88: 05 10 00 55 sethi %hi(0x40015400), %g2
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40009f8c: c0 26 60 50 clr [ %i1 + 0x50 ]
40009f90: 84 10 a1 88 or %g2, 0x188, %g2
the_watchdog->routine = routine;
40009f94: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40009f98: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
40009f9c: c0 26 60 6c clr [ %i1 + 0x6c ]
40009fa0: c6 00 a0 08 ld [ %g2 + 8 ], %g3
40009fa4: 10 80 00 13 b 40009ff0 <_Thread_Initialize+0x11c>
40009fa8: 82 10 20 01 mov 1, %g1
static inline uintptr_t _TLS_Heap_align_up( uintptr_t val )
{
uintptr_t msk = CPU_HEAP_ALIGNMENT - 1;
return (val + msk) & ~msk;
40009fac: 13 00 00 00 sethi %hi(0), %o1
40009fb0: a6 04 e0 07 add %l3, 7, %l3
40009fb4: 92 12 60 01 or %o1, 1, %o1
40009fb8: a6 0c ff f8 and %l3, -8, %l3
40009fbc: 92 02 60 07 add %o1, 7, %o1
40009fc0: 92 0a 7f f8 and %o1, -8, %o1
static inline uintptr_t _TLS_Get_thread_control_block_area_size(
uintptr_t alignment
)
{
return alignment <= sizeof(TLS_Thread_control_block) ?
40009fc4: 80 a2 60 08 cmp %o1, 8
40009fc8: 1a 80 00 03 bcc 40009fd4 <_Thread_Initialize+0x100> <== ALWAYS TAKEN
40009fcc: 82 10 00 09 mov %o1, %g1
40009fd0: 82 10 20 08 mov 8, %g1 <== NOT EXECUTED
)
{
uintptr_t aligned_size = _TLS_Heap_align_up( size );
return _TLS_Get_thread_control_block_area_size( alignment )
+ aligned_size + sizeof(TLS_Dynamic_thread_vector);
40009fd4: 90 04 c0 01 add %l3, %g1, %o0
if ( tls_size > 0 ) {
uintptr_t tls_align = _TLS_Heap_align_up( (uintptr_t) _TLS_Alignment );
uintptr_t tls_alloc = _TLS_Get_allocation_size( tls_size, tls_align );
the_thread->Start.tls_area =
_Workspace_Allocate_aligned( tls_alloc, tls_align );
40009fd8: 40 00 04 f0 call 4000b398 <_Workspace_Allocate_aligned>
40009fdc: 90 02 20 08 add %o0, 8, %o0
if ( the_thread->Start.tls_area == NULL ) {
40009fe0: 80 a2 20 00 cmp %o0, 0
40009fe4: 12 bf ff e9 bne 40009f88 <_Thread_Initialize+0xb4> <== ALWAYS TAKEN
40009fe8: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
40009fec: 30 80 00 44 b,a 4000a0fc <_Thread_Initialize+0x228> <== NOT EXECUTED
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call. The object index starts with one, so the first extension context is
* unused.
*/
for ( i = 1 ; i <= rtems_configuration_get_maximum_extensions() ; ++i )
40009ff0: 80 a0 40 03 cmp %g1, %g3
40009ff4: 18 80 00 06 bgu 4000a00c <_Thread_Initialize+0x138>
40009ff8: 89 28 60 02 sll %g1, 2, %g4
40009ffc: 82 00 60 01 inc %g1
4000a000: 88 06 40 04 add %i1, %g4, %g4
the_thread->extensions[ i ] = NULL;
4000a004: 10 bf ff fb b 40009ff0 <_Thread_Initialize+0x11c>
4000a008: c0 21 21 58 clr [ %g4 + 0x158 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
4000a00c: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
4000a010: e4 2e 60 9c stb %l2, [ %i1 + 0x9c ]
the_thread->Start.budget_algorithm = budget_algorithm;
4000a014: e0 26 60 a0 st %l0, [ %i1 + 0xa0 ]
the_thread->Start.budget_callout = budget_callout;
switch ( budget_algorithm ) {
4000a018: 80 a4 20 02 cmp %l0, 2
4000a01c: 12 80 00 04 bne 4000a02c <_Thread_Initialize+0x158>
4000a020: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
case THREAD_CPU_BUDGET_ALGORITHM_NONE:
case THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE:
break;
#if defined(RTEMS_SCORE_THREAD_ENABLE_EXHAUST_TIMESLICE)
case THREAD_CPU_BUDGET_ALGORITHM_EXHAUST_TIMESLICE:
the_thread->cpu_time_budget =
4000a024: c2 00 a0 1c ld [ %g2 + 0x1c ], %g1
4000a028: c2 26 60 74 st %g1, [ %i1 + 0x74 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
4000a02c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
_Thread_Debug_set_real_processor( the_thread, cpu );
/* Initialize the CPU for the non-SMP schedulers */
_Thread_Set_CPU( the_thread, cpu );
the_thread->current_state = STATES_DORMANT;
4000a030: b8 10 20 01 mov 1, %i4
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
4000a034: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
RTEMS_INLINE_ROUTINE void _Scheduler_Node_initialize(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
return ( *scheduler->Operations.node_initialize )( scheduler, the_thread );
4000a038: c2 06 a0 1c ld [ %i2 + 0x1c ], %g1
4000a03c: 90 10 00 1a mov %i2, %o0
4000a040: 92 10 00 19 mov %i1, %o1
_Thread_Debug_set_real_processor( the_thread, cpu );
/* Initialize the CPU for the non-SMP schedulers */
_Thread_Set_CPU( the_thread, cpu );
the_thread->current_state = STATES_DORMANT;
4000a044: f8 26 60 10 st %i4, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
4000a048: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
4000a04c: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
4000a050: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
4000a054: 9f c0 40 00 call %g1
4000a058: fa 26 60 ac st %i5, [ %i1 + 0xac ]
the_thread->Start.initial_priority = priority;
_Scheduler_Node_initialize( scheduler, the_thread );
scheduler_node_initialized = true;
_Thread_Set_priority( the_thread, priority );
4000a05c: 90 10 00 19 mov %i1, %o0
4000a060: 40 00 02 bb call 4000ab4c <_Thread_Set_priority>
4000a064: 92 10 00 1d mov %i5, %o1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000a068: 82 06 61 38 add %i1, 0x138, %g1
4000a06c: 84 06 61 3c add %i1, 0x13c, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
4000a070: c2 26 61 40 st %g1, [ %i1 + 0x140 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000a074: 82 06 60 c4 add %i1, 0xc4, %g1
head->next = tail;
4000a078: c4 26 61 38 st %g2, [ %i1 + 0x138 ]
head->previous = NULL;
tail->previous = head;
4000a07c: c2 26 60 cc st %g1, [ %i1 + 0xcc ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000a080: 84 06 60 c8 add %i1, 0xc8, %g2
RTEMS_INLINE_ROUTINE void _Thread_Action_initialize(
Thread_Action *action,
Thread_Action_handler handler
)
{
action->handler = handler;
4000a084: 03 10 00 2a sethi %hi(0x4000a800), %g1
4000a088: 82 10 61 d0 or %g1, 0x1d0, %g1 ! 4000a9d0 <_Thread_Life_action_handler>
head->next = tail;
head->previous = NULL;
4000a08c: c0 26 61 3c clr [ %i1 + 0x13c ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4000a090: c4 26 60 c4 st %g2, [ %i1 + 0xc4 ]
head->previous = NULL;
4000a094: c0 26 60 c8 clr [ %i1 + 0xc8 ]
4000a098: c2 26 61 4c st %g1, [ %i1 + 0x14c ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = NULL;
4000a09c: c0 26 61 44 clr [ %i1 + 0x144 ]
Objects_Name name
)
{
the_object->name = name;
_Objects_Set_local_object(
4000a0a0: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000a0a4: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
static inline void _Timestamp64_implementation_Set_to_zero(
Timestamp64_Control *_time
)
{
*_time = 0;
4000a0a8: c0 26 60 80 clr [ %i1 + 0x80 ]
4000a0ac: c0 26 60 84 clr [ %i1 + 0x84 ]
_Thread_Action_initialize(
&the_thread->Life.Action,
_Thread_Life_action_handler
);
the_thread->Life.state = THREAD_LIFE_NORMAL;
4000a0b0: c0 26 61 50 clr [ %i1 + 0x150 ]
the_thread->Life.terminator = NULL;
4000a0b4: c0 26 61 54 clr [ %i1 + 0x154 ]
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
the_object->name = name;
4000a0b8: e2 26 60 0c st %l1, [ %i1 + 0xc ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000a0bc: 83 28 60 02 sll %g1, 2, %g1
4000a0c0: f2 20 80 01 st %i1, [ %g2 + %g1 ]
*/
/**@{**/
static inline bool _User_extensions_Thread_create( Thread_Control *created )
{
User_extensions_Thread_create_context ctx = { created, true };
4000a0c4: f2 27 bf f8 st %i1, [ %fp + -8 ]
4000a0c8: f8 2f bf fc stb %i4, [ %fp + -4 ]
_User_extensions_Iterate( &ctx, _User_extensions_Thread_create_visitor );
4000a0cc: 90 07 bf f8 add %fp, -8, %o0
4000a0d0: 13 10 00 2b sethi %hi(0x4000ac00), %o1
4000a0d4: 40 00 03 5a call 4000ae3c <_User_extensions_Iterate>
4000a0d8: 92 12 60 f8 or %o1, 0xf8, %o1 ! 4000acf8 <_User_extensions_Thread_create_visitor>
return ctx.ok;
4000a0dc: f0 0f bf fc ldub [ %fp + -4 ], %i0
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
if ( extension_status )
4000a0e0: 80 8e 20 ff btst 0xff, %i0
4000a0e4: 32 80 00 0c bne,a 4000a114 <_Thread_Initialize+0x240>
4000a0e8: b0 0e 20 ff and %i0, 0xff, %i0
RTEMS_INLINE_ROUTINE void _Scheduler_Node_destroy(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
( *scheduler->Operations.node_destroy )( scheduler, the_thread );
4000a0ec: c2 06 a0 20 ld [ %i2 + 0x20 ], %g1
4000a0f0: 90 10 00 1a mov %i2, %o0
4000a0f4: 9f c0 40 00 call %g1
4000a0f8: 92 10 00 19 mov %i1, %o1
if ( scheduler_node_initialized ) {
_Scheduler_Node_destroy( scheduler, the_thread );
}
_Workspace_Free( the_thread->Start.tls_area );
4000a0fc: 40 00 04 b0 call 4000b3bc <_Workspace_Free>
4000a100: d0 06 60 c0 ld [ %i1 + 0xc0 ], %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
#endif
_Thread_Stack_Free( the_thread );
4000a104: 40 00 02 be call 4000abfc <_Thread_Stack_Free>
4000a108: 90 10 00 19 mov %i1, %o0
stack = the_thread->Start.stack;
#else
if ( !stack_area ) {
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
4000a10c: b0 10 20 00 clr %i0
4000a110: b0 0e 20 ff and %i0, 0xff, %i0
4000a114: 81 c7 e0 08 ret
4000a118: 81 e8 00 00 restore
4000a9d0 <_Thread_Life_action_handler>:
Thread_Control *executing,
Thread_Action *action,
Per_CPU_Control *cpu,
ISR_Level level
)
{
4000a9d0: 9d e3 bf a0 save %sp, -96, %sp
Thread_Life_state previous_life_state;
(void) action;
previous_life_state = executing->Life.state;
executing->Life.state = THREAD_LIFE_PROTECTED;
4000a9d4: 82 10 20 01 mov 1, %g1
{
Thread_Life_state previous_life_state;
(void) action;
previous_life_state = executing->Life.state;
4000a9d8: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
executing->Life.state = THREAD_LIFE_PROTECTED;
4000a9dc: c2 26 21 50 st %g1, [ %i0 + 0x150 ]
4000a9e0: 7f ff de 98 call 40002440 <sparc_enable_interrupts>
4000a9e4: 90 10 00 1b mov %i3, %o0
_Thread_Action_release_and_ISR_enable( cpu, level );
if ( _Thread_Is_life_terminating( previous_life_state ) ) {
4000a9e8: ba 8f 60 04 andcc %i5, 4, %i5
4000a9ec: 02 80 00 05 be 4000aa00 <_Thread_Life_action_handler+0x30>
4000a9f0: 90 10 00 18 mov %i0, %o0
static inline void _User_extensions_Thread_terminate(
Thread_Control *executing
)
{
_User_extensions_Iterate(
4000a9f4: 13 10 00 2b sethi %hi(0x4000ac00), %o1
4000a9f8: 10 80 00 04 b 4000aa08 <_Thread_Life_action_handler+0x38>
4000a9fc: 92 12 62 18 or %o1, 0x218, %o1 ! 4000ae18 <_User_extensions_Thread_terminate_visitor>
);
}
static inline void _User_extensions_Thread_restart( Thread_Control *restarted )
{
_User_extensions_Iterate(
4000aa00: 13 10 00 2b sethi %hi(0x4000ac00), %o1
4000aa04: 92 12 61 80 or %o1, 0x180, %o1 ! 4000ad80 <_User_extensions_Thread_restart_visitor>
4000aa08: 40 00 01 0d call 4000ae3c <_User_extensions_Iterate>
4000aa0c: 01 00 00 00 nop
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
4000aa10: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
4000aa14: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
4000aa18: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
_User_extensions_Thread_restart( executing );
}
_Thread_Disable_dispatch();
if ( _Thread_Is_life_terminating( previous_life_state ) ) {
4000aa1c: 80 a7 60 00 cmp %i5, 0
4000aa20: 22 80 00 0c be,a 4000aa50 <_Thread_Life_action_handler+0x80>
4000aa24: c2 06 21 50 ld [ %i0 + 0x150 ], %g1
_Thread_Make_zombie( executing );
4000aa28: 7f ff ff 2a call 4000a6d0 <_Thread_Make_zombie>
4000aa2c: 90 10 00 18 mov %i0, %o0
if ( executing->Life.terminator != NULL ) {
4000aa30: d0 06 21 54 ld [ %i0 + 0x154 ], %o0
4000aa34: 80 a2 20 00 cmp %o0, 0
4000aa38: 02 80 00 04 be 4000aa48 <_Thread_Life_action_handler+0x78>
4000aa3c: 01 00 00 00 nop
_Thread_Clear_state(
4000aa40: 7f ff fc 4b call 40009b6c <_Thread_Clear_state>
4000aa44: 13 00 04 00 sethi %hi(0x100000), %o1
executing->Life.terminator,
STATES_WAITING_FOR_TERMINATION
);
}
_Thread_Enable_dispatch();
4000aa48: 7f ff fc f4 call 40009e18 <_Thread_Enable_dispatch>
4000aa4c: 81 e8 00 00 restore
_Assert_Not_reached();
} else {
_Assert( _Thread_Is_life_restarting( previous_life_state ) );
if ( _Thread_Is_life_terminating( executing->Life.state ) ) {
4000aa50: 80 88 60 04 btst 4, %g1
4000aa54: 22 80 00 04 be,a 4000aa64 <_Thread_Life_action_handler+0x94><== ALWAYS TAKEN
4000aa58: 90 10 00 18 mov %i0, %o0
/* Someone deleted us in the mean-time */
_Thread_Start_life_change_for_executing( executing );
4000aa5c: 7f ff ff 45 call 4000a770 <_Thread_Start_life_change_for_executing><== NOT EXECUTED
4000aa60: 81 e8 00 00 restore <== NOT EXECUTED
|| executing->current_state == STATES_SUSPENDED
);
executing->Life.state = THREAD_LIFE_NORMAL;
_Thread_Load_environment( executing );
4000aa64: 40 00 0b 79 call 4000d848 <_Thread_Load_environment>
4000aa68: c0 26 21 50 clr [ %i0 + 0x150 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
_CPU_Context_Restart_self( &executing->Registers );
4000aa6c: 40 00 27 d8 call 400149cc <_CPU_Context_restore>
4000aa70: 90 06 20 d0 add %i0, 0xd0, %o0
4000a7b0 <_Thread_Request_life_change>:
Thread_Control *the_thread,
Thread_Control *executing,
Priority_Control priority,
Thread_Life_state additional_life_state
)
{
4000a7b0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
4000a7b4: 7f ff df 20 call 40002434 <sparc_disable_interrupts>
4000a7b8: 01 00 00 00 nop
Per_CPU_Control *cpu;
ISR_Level level;
const Scheduler_Control *scheduler;
cpu = _Thread_Action_ISR_disable_and_acquire( the_thread, &level );
previous_life_state = the_thread->Life.state;
4000a7bc: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
the_thread->Life.state = previous_life_state | additional_life_state;
4000a7c0: 82 16 c0 1d or %i3, %i5, %g1
4000a7c4: c2 26 21 50 st %g1, [ %i0 + 0x150 ]
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
4000a7c8: 7f ff df 1e call 40002440 <sparc_enable_interrupts>
4000a7cc: 01 00 00 00 nop
_Thread_Action_release_and_ISR_enable( cpu, level );
scheduler = _Scheduler_Get( the_thread );
if ( the_thread == executing ) {
4000a7d0: 80 a6 00 19 cmp %i0, %i1
4000a7d4: 12 80 00 0d bne 4000a808 <_Thread_Request_life_change+0x58>
4000a7d8: 80 a7 60 00 cmp %i5, 0
Priority_Control priority
)
{
Priority_Control current = the_thread->current_priority;
if ( _Scheduler_Is_priority_higher_than( scheduler, priority, current ) ) {
4000a7dc: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
executing->real_priority = priority;
4000a7e0: f4 26 20 18 st %i2, [ %i0 + 0x18 ]
4000a7e4: 7f ff ff d8 call 4000a744 <_Scheduler_Is_priority_higher_than.constprop.19>
4000a7e8: 90 10 00 1a mov %i2, %o0
4000a7ec: 80 a2 20 00 cmp %o0, 0
4000a7f0: 02 80 00 04 be 4000a800 <_Thread_Request_life_change+0x50><== ALWAYS TAKEN
4000a7f4: 90 10 00 18 mov %i0, %o0
_Thread_Set_priority( the_thread, priority );
4000a7f8: 40 00 00 d5 call 4000ab4c <_Thread_Set_priority> <== NOT EXECUTED
4000a7fc: 92 10 00 1a mov %i2, %o1 <== NOT EXECUTED
_Scheduler_Set_priority_if_higher( scheduler, the_thread, priority );
_Thread_Start_life_change_for_executing( executing );
4000a800: 7f ff ff dc call 4000a770 <_Thread_Start_life_change_for_executing>
4000a804: 81 e8 00 00 restore
} else if ( previous_life_state == THREAD_LIFE_NORMAL ) {
4000a808: 12 80 00 27 bne 4000a8a4 <_Thread_Request_life_change+0xf4>
4000a80c: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread,
const Scheduler_Control *scheduler,
Priority_Control priority
)
{
the_thread->is_preemptible = the_thread->Start.is_preemptible;
4000a810: c2 0e 20 9c ldub [ %i0 + 0x9c ], %g1
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
the_thread->budget_callout = the_thread->Start.budget_callout;
the_thread->real_priority = priority;
_Thread_Set_state( the_thread, STATES_RESTARTING );
4000a814: 13 00 20 00 sethi %hi(0x800000), %o1
Thread_Control *the_thread,
const Scheduler_Control *scheduler,
Priority_Control priority
)
{
the_thread->is_preemptible = the_thread->Start.is_preemptible;
4000a818: c2 2e 20 70 stb %g1, [ %i0 + 0x70 ]
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
4000a81c: c2 06 20 a0 ld [ %i0 + 0xa0 ], %g1
4000a820: c2 26 20 78 st %g1, [ %i0 + 0x78 ]
the_thread->budget_callout = the_thread->Start.budget_callout;
4000a824: c2 06 20 a4 ld [ %i0 + 0xa4 ], %g1
the_thread->real_priority = priority;
4000a828: f4 26 20 18 st %i2, [ %i0 + 0x18 ]
_Thread_Set_state( the_thread, STATES_RESTARTING );
4000a82c: 40 00 00 d2 call 4000ab74 <_Thread_Set_state>
4000a830: c2 26 20 7c st %g1, [ %i0 + 0x7c ]
_Thread_queue_Extract_with_proxy( the_thread );
4000a834: 40 00 0c 51 call 4000d978 <_Thread_queue_Extract_with_proxy>
4000a838: 90 10 00 18 mov %i0, %o0
_Watchdog_Remove( &the_thread->Timer );
4000a83c: 40 00 02 17 call 4000b098 <_Watchdog_Remove>
4000a840: 90 06 20 48 add %i0, 0x48, %o0
Priority_Control priority
)
{
Priority_Control current = the_thread->current_priority;
if ( _Scheduler_Is_priority_higher_than( scheduler, priority, current ) ) {
4000a844: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
4000a848: 7f ff ff bf call 4000a744 <_Scheduler_Is_priority_higher_than.constprop.19>
4000a84c: 90 10 00 1a mov %i2, %o0
4000a850: 80 a2 20 00 cmp %o0, 0
4000a854: 02 80 00 04 be 4000a864 <_Thread_Request_life_change+0xb4>
4000a858: 90 10 00 18 mov %i0, %o0
_Thread_Set_priority( the_thread, priority );
4000a85c: 40 00 00 bc call 4000ab4c <_Thread_Set_priority>
4000a860: 92 10 00 1a mov %i2, %o1
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
4000a864: 7f ff de f4 call 40002434 <sparc_disable_interrupts>
4000a868: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Chain_Append_if_is_off_chain_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
if ( _Chain_Is_node_off_chain( the_node ) ) {
4000a86c: c2 06 21 44 ld [ %i0 + 0x144 ], %g1
4000a870: 80 a0 60 00 cmp %g1, 0
4000a874: 12 80 00 08 bne 4000a894 <_Thread_Request_life_change+0xe4><== NEVER TAKEN
4000a878: 84 06 21 44 add %i0, 0x144, %g2
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
4000a87c: c2 06 20 cc ld [ %i0 + 0xcc ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
4000a880: 86 06 20 c8 add %i0, 0xc8, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
4000a884: c4 26 20 cc st %g2, [ %i0 + 0xcc ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
4000a888: c6 26 21 44 st %g3, [ %i0 + 0x144 ]
tail->previous = the_node;
old_last->next = the_node;
4000a88c: c4 20 40 00 st %g2, [ %g1 ]
the_node->previous = old_last;
4000a890: c2 26 21 48 st %g1, [ %i0 + 0x148 ]
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
4000a894: 7f ff de eb call 40002440 <sparc_enable_interrupts>
4000a898: 01 00 00 00 nop
_Scheduler_Set_priority_if_higher( scheduler, the_thread, priority );
_Thread_Add_post_switch_action( the_thread, &the_thread->Life.Action );
_Thread_Ready( the_thread );
4000a89c: 40 00 0c 5f call 4000da18 <_Thread_Ready>
4000a8a0: 81 e8 00 00 restore
_Scheduler_Set_priority_if_higher( scheduler, the_thread, priority );
_Thread_Start_life_change_for_executing( executing );
} else if ( previous_life_state == THREAD_LIFE_NORMAL ) {
_Thread_Start_life_change( the_thread, scheduler, priority );
} else {
_Thread_Clear_state( the_thread, STATES_SUSPENDED );
4000a8a4: 7f ff fc b2 call 40009b6c <_Thread_Clear_state>
4000a8a8: 92 10 20 02 mov 2, %o1
if ( _Thread_Is_life_terminating( additional_life_state ) ) {
4000a8ac: 80 8e e0 04 btst 4, %i3
4000a8b0: 02 80 00 12 be 4000a8f8 <_Thread_Request_life_change+0x148><== NEVER TAKEN
4000a8b4: 92 10 00 1a mov %i2, %o1
the_thread->real_priority = _Scheduler_Highest_priority_of_two(
4000a8b8: fa 06 20 18 ld [ %i0 + 0x18 ], %i5
const Scheduler_Control *scheduler,
Priority_Control p1,
Priority_Control p2
)
{
return _Scheduler_Is_priority_higher_than( scheduler, p1, p2 ) ? p1 : p2;
4000a8bc: 7f ff ff a2 call 4000a744 <_Scheduler_Is_priority_higher_than.constprop.19>
4000a8c0: 90 10 00 1d mov %i5, %o0
4000a8c4: 80 a2 20 00 cmp %o0, 0
4000a8c8: 02 80 00 03 be 4000a8d4 <_Thread_Request_life_change+0x124><== ALWAYS TAKEN
4000a8cc: 82 10 00 1a mov %i2, %g1
4000a8d0: 82 10 00 1d mov %i5, %g1 <== NOT EXECUTED
bool prepend_it
)
{
Priority_Control current = the_thread->current_priority;
if ( _Scheduler_Is_priority_higher_than( scheduler, priority, current ) ) {
4000a8d4: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
4000a8d8: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
4000a8dc: 7f ff ff 9a call 4000a744 <_Scheduler_Is_priority_higher_than.constprop.19>
4000a8e0: 90 10 00 1a mov %i2, %o0
4000a8e4: 80 a2 20 00 cmp %o0, 0
4000a8e8: 02 80 00 04 be 4000a8f8 <_Thread_Request_life_change+0x148><== NEVER TAKEN
4000a8ec: b2 10 00 1a mov %i2, %i1
_Thread_Change_priority( the_thread, priority, prepend_it );
4000a8f0: 7f ff fc 5d call 40009a64 <_Thread_Change_priority>
4000a8f4: 95 e8 20 00 restore %g0, 0, %o2
4000a8f8: 81 c7 e0 08 ret <== NOT EXECUTED
4000a8fc: 81 e8 00 00 restore <== NOT EXECUTED
4000abfc <_Thread_Stack_Free>:
#include <rtems/config.h>
void _Thread_Stack_Free(
Thread_Control *the_thread
)
{
4000abfc: 9d e3 bf a0 save %sp, -96, %sp
#if defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
/*
* If the API provided the stack space, then don't free it.
*/
if ( !the_thread->Start.core_allocated_stack )
4000ac00: c4 0e 20 b0 ldub [ %i0 + 0xb0 ], %g2
void _Thread_Stack_Free(
Thread_Control *the_thread
)
{
rtems_stack_free_hook stack_free_hook =
4000ac04: 03 10 00 55 sethi %hi(0x40015400), %g1
#if defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
/*
* If the API provided the stack space, then don't free it.
*/
if ( !the_thread->Start.core_allocated_stack )
4000ac08: 80 a0 a0 00 cmp %g2, 0
4000ac0c: 02 80 00 04 be 4000ac1c <_Thread_Stack_Free+0x20> <== NEVER TAKEN
4000ac10: c2 00 61 bc ld [ %g1 + 0x1bc ], %g1
* Call ONLY the CPU table stack free hook, or the
* the RTEMS workspace free. This is so the free
* routine properly matches the allocation of the stack.
*/
(*stack_free_hook)( the_thread->Start.Initial_stack.area );
4000ac14: 9f c0 40 00 call %g1
4000ac18: d0 06 20 b8 ld [ %i0 + 0xb8 ], %o0
4000ac1c: 81 c7 e0 08 ret
4000ac20: 81 e8 00 00 restore
4000a770 <_Thread_Start_life_change_for_executing>:
}
static void _Thread_Start_life_change_for_executing(
Thread_Control *executing
)
{
4000a770: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
4000a774: 7f ff df 30 call 40002434 <sparc_disable_interrupts>
4000a778: ba 10 00 18 mov %i0, %i5
4000a77c: b0 10 00 08 mov %o0, %i0
RTEMS_INLINE_ROUTINE void _Chain_Append_if_is_off_chain_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
if ( _Chain_Is_node_off_chain( the_node ) ) {
4000a780: c2 07 61 44 ld [ %i5 + 0x144 ], %g1
4000a784: 80 a0 60 00 cmp %g1, 0
4000a788: 12 80 00 08 bne 4000a7a8 <_Thread_Start_life_change_for_executing+0x38><== NEVER TAKEN
4000a78c: 84 07 61 44 add %i5, 0x144, %g2
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
4000a790: c2 07 60 cc ld [ %i5 + 0xcc ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
4000a794: 86 07 60 c8 add %i5, 0xc8, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
4000a798: c4 27 60 cc st %g2, [ %i5 + 0xcc ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
4000a79c: c6 27 61 44 st %g3, [ %i5 + 0x144 ]
tail->previous = the_node;
old_last->next = the_node;
4000a7a0: c4 20 40 00 st %g2, [ %g1 ]
the_node->previous = old_last;
4000a7a4: c2 27 61 48 st %g1, [ %i5 + 0x148 ]
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
4000a7a8: 7f ff df 26 call 40002440 <sparc_enable_interrupts>
4000a7ac: 81 e8 00 00 restore
4000acc0 <_Thread_Yield>:
#include <rtems/score/threadimpl.h>
#include <rtems/score/schedulerimpl.h>
void _Thread_Yield( Thread_Control *executing )
{
4000acc0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000acc4: 7f ff dd dc call 40002434 <sparc_disable_interrupts>
4000acc8: ba 10 00 18 mov %i0, %i5
4000accc: b0 10 00 08 mov %o0, %i0
if ( _States_Is_ready( executing->current_state ) ) {
4000acd0: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
4000acd4: 80 a0 60 00 cmp %g1, 0
4000acd8: 12 80 00 06 bne 4000acf0 <_Thread_Yield+0x30> <== NEVER TAKEN
4000acdc: 11 10 00 55 sethi %hi(0x40015400), %o0
RTEMS_INLINE_ROUTINE void _Scheduler_Yield(
const Scheduler_Control *scheduler,
Thread_Control *the_thread
)
{
( *scheduler->Operations.yield )( scheduler, the_thread );
4000ace0: 90 12 22 6c or %o0, 0x26c, %o0 ! 4001566c <_Scheduler_Table>
4000ace4: c2 02 20 0c ld [ %o0 + 0xc ], %g1
4000ace8: 9f c0 40 00 call %g1
4000acec: 92 10 00 1d mov %i5, %o1
_Scheduler_Yield( _Scheduler_Get( executing ), executing );
}
_ISR_Enable( level );
4000acf0: 7f ff dd d4 call 40002440 <sparc_enable_interrupts>
4000acf4: 81 e8 00 00 restore
400143f4 <_Thread_queue_First_fifo>:
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
400143f4: c2 02 00 00 ld [ %o0 ], %g1 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
400143f8: 90 02 20 04 add %o0, 4, %o0 <== NOT EXECUTED
)
{
if ( !_Chain_Is_empty( &the_thread_queue->Queues.Fifo ) )
return (Thread_Control *) _Chain_First( &the_thread_queue->Queues.Fifo );
return NULL;
400143fc: 90 18 40 08 xor %g1, %o0, %o0 <== NOT EXECUTED
40014400: 80 a0 00 08 cmp %g0, %o0 <== NOT EXECUTED
40014404: 90 60 20 00 subx %g0, 0, %o0 <== NOT EXECUTED
}
40014408: 81 c3 e0 08 retl <== NOT EXECUTED
4001440c: 90 08 40 08 and %g1, %o0, %o0 <== NOT EXECUTED
4000a694 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000a694: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
4000a698: 90 10 00 18 mov %i0, %o0
4000a69c: 7f ff fd ea call 40009e44 <_Thread_Get>
4000a6a0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000a6a4: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a6a8: 80 a0 60 00 cmp %g1, 0
4000a6ac: 12 80 00 07 bne 4000a6c8 <_Thread_queue_Timeout+0x34> <== NEVER TAKEN
4000a6b0: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
4000a6b4: 40 00 0c bb call 4000d9a0 <_Thread_queue_Process_timeout>
4000a6b8: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
4000a6bc: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
ISR_Level level;
_ISR_Disable( level );
#endif
--disable_level;
4000a6c0: 84 00 bf ff add %g2, -1, %g2
_Thread_Dispatch_disable_level = disable_level;
4000a6c4: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
4000a6c8: 81 c7 e0 08 ret
4000a6cc: 81 e8 00 00 restore
40008d4c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40008d4c: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40008d50: 2b 10 00 67 sethi %hi(0x40019c00), %l5
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008d54: b2 07 bf e8 add %fp, -24, %i1
40008d58: a0 07 bf ec add %fp, -20, %l0
40008d5c: b8 07 bf f4 add %fp, -12, %i4
40008d60: b6 07 bf f8 add %fp, -8, %i3
40008d64: e0 27 bf e8 st %l0, [ %fp + -24 ]
head->previous = NULL;
40008d68: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
40008d6c: f2 27 bf f0 st %i1, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008d70: f6 27 bf f4 st %i3, [ %fp + -12 ]
head->previous = NULL;
40008d74: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
40008d78: f8 27 bf fc st %i4, [ %fp + -4 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40008d7c: a2 06 20 30 add %i0, 0x30, %l1
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40008d80: b4 06 20 68 add %i0, 0x68, %i2
#endif
_Timer_server_SMP_lock_release();
_Timer_server_SMP_lock_aquire();
ts->active = true;
40008d84: a8 10 20 01 mov 1, %l4
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40008d88: a6 06 20 08 add %i0, 8, %l3
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40008d8c: a4 06 20 40 add %i0, 0x40, %l2
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
40008d90: f2 26 20 78 st %i1, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40008d94: c2 05 63 60 ld [ %l5 + 0x360 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40008d98: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40008d9c: 94 10 00 1c mov %i4, %o2
40008da0: 90 10 00 11 mov %l1, %o0
40008da4: 92 20 40 09 sub %g1, %o1, %o1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40008da8: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40008dac: 40 00 0e 41 call 4000c6b0 <_Watchdog_Adjust_to_chain>
40008db0: 01 00 00 00 nop
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40008db4: 40 00 03 58 call 40009b14 <_TOD_Seconds_since_epoch>
40008db8: 01 00 00 00 nop
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40008dbc: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40008dc0: 80 a2 00 0a cmp %o0, %o2
40008dc4: 08 80 00 07 bleu 40008de0 <_Timer_server_Body+0x94>
40008dc8: ba 10 00 08 mov %o0, %i5
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40008dcc: 92 27 40 0a sub %i5, %o2, %o1
40008dd0: 90 10 00 1a mov %i2, %o0
40008dd4: 40 00 0e 37 call 4000c6b0 <_Watchdog_Adjust_to_chain>
40008dd8: 94 10 00 1c mov %i4, %o2
40008ddc: 30 80 00 06 b,a 40008df4 <_Timer_server_Body+0xa8>
} else if ( snapshot < last_snapshot ) {
40008de0: 1a 80 00 05 bcc 40008df4 <_Timer_server_Body+0xa8>
40008de4: 90 10 00 1a mov %i2, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40008de8: 92 10 20 01 mov 1, %o1
40008dec: 40 00 0e 09 call 4000c610 <_Watchdog_Adjust>
40008df0: 94 22 80 1d sub %o2, %i5, %o2
}
watchdogs->last_snapshot = snapshot;
40008df4: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40008df8: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
40008dfc: 40 00 02 29 call 400096a0 <_Chain_Get>
40008e00: 01 00 00 00 nop
if ( timer == NULL ) {
40008e04: 92 92 20 00 orcc %o0, 0, %o1
40008e08: 02 80 00 0c be 40008e38 <_Timer_server_Body+0xec>
40008e0c: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40008e10: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
40008e14: 80 a0 60 01 cmp %g1, 1
40008e18: 02 80 00 05 be 40008e2c <_Timer_server_Body+0xe0>
40008e1c: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40008e20: 80 a0 60 03 cmp %g1, 3
40008e24: 12 bf ff f5 bne 40008df8 <_Timer_server_Body+0xac> <== NEVER TAKEN
40008e28: 90 10 00 1a mov %i2, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40008e2c: 40 00 0e 4b call 4000c758 <_Watchdog_Insert>
40008e30: 92 02 60 10 add %o1, 0x10, %o1
40008e34: 30 bf ff f1 b,a 40008df8 <_Timer_server_Body+0xac>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
40008e38: 7f ff e7 df call 40002db4 <sparc_disable_interrupts>
40008e3c: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
40008e40: c2 07 bf e8 ld [ %fp + -24 ], %g1
40008e44: 80 a0 40 10 cmp %g1, %l0
40008e48: 12 80 00 0a bne 40008e70 <_Timer_server_Body+0x124> <== NEVER TAKEN
40008e4c: 01 00 00 00 nop
ts->insert_chain = NULL;
40008e50: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
40008e54: 7f ff e7 db call 40002dc0 <sparc_enable_interrupts>
40008e58: 01 00 00 00 nop
_Timer_server_SMP_lock_aquire();
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40008e5c: c2 07 bf f4 ld [ %fp + -12 ], %g1
40008e60: 80 a0 40 1b cmp %g1, %i3
40008e64: 12 80 00 06 bne 40008e7c <_Timer_server_Body+0x130>
40008e68: 01 00 00 00 nop
40008e6c: 30 80 00 18 b,a 40008ecc <_Timer_server_Body+0x180>
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
40008e70: 7f ff e7 d4 call 40002dc0 <sparc_enable_interrupts> <== NOT EXECUTED
40008e74: 01 00 00 00 nop <== NOT EXECUTED
40008e78: 30 bf ff c7 b,a 40008d94 <_Timer_server_Body+0x48> <== NOT EXECUTED
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40008e7c: 7f ff e7 ce call 40002db4 <sparc_disable_interrupts>
40008e80: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40008e84: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40008e88: 80 a7 40 1b cmp %i5, %i3
40008e8c: 02 80 00 0d be 40008ec0 <_Timer_server_Body+0x174>
40008e90: 01 00 00 00 nop
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
40008e94: c2 07 40 00 ld [ %i5 ], %g1
head->next = new_first;
new_first->previous = head;
40008e98: f8 20 60 04 st %i4, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
40008e9c: c2 27 bf f4 st %g1, [ %fp + -12 ]
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
40008ea0: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
40008ea4: 7f ff e7 c7 call 40002dc0 <sparc_enable_interrupts>
40008ea8: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40008eac: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
40008eb0: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
40008eb4: 9f c0 40 00 call %g1
40008eb8: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
40008ebc: 30 bf ff f0 b,a 40008e7c <_Timer_server_Body+0x130>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
40008ec0: 7f ff e7 c0 call 40002dc0 <sparc_enable_interrupts>
40008ec4: 01 00 00 00 nop
40008ec8: 30 bf ff b2 b,a 40008d90 <_Timer_server_Body+0x44>
(*watchdog->routine)( watchdog->id, watchdog->user_data );
_Timer_server_SMP_lock_aquire();
}
} else {
ts->active = false;
40008ecc: c0 2e 20 7c clrb [ %i0 + 0x7c ]
#if defined ( __THREAD_DO_NOT_INLINE_DISABLE_DISPATCH__ )
void _Thread_Disable_dispatch( void );
#else
RTEMS_INLINE_ROUTINE void _Thread_Disable_dispatch( void )
{
_Thread_Dispatch_increment_disable_level();
40008ed0: 7f ff ff 72 call 40008c98 <_Thread_Dispatch_increment_disable_level>
40008ed4: 01 00 00 00 nop
* Block until there is something to do.
*/
#if !defined( RTEMS_SMP )
_Thread_Disable_dispatch();
#endif
_Thread_Set_state( ts->thread, STATES_DELAYING );
40008ed8: d0 06 00 00 ld [ %i0 ], %o0
40008edc: 40 00 0c d9 call 4000c240 <_Thread_Set_state>
40008ee0: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
40008ee4: 7f ff ff 72 call 40008cac <_Timer_server_Reset_interval_system_watchdog>
40008ee8: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
40008eec: 7f ff ff 84 call 40008cfc <_Timer_server_Reset_tod_system_watchdog>
40008ef0: 90 10 00 18 mov %i0, %o0
#if !defined( RTEMS_SMP )
_Thread_Enable_dispatch();
40008ef4: 40 00 09 7c call 4000b4e4 <_Thread_Enable_dispatch>
40008ef8: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40008efc: 90 10 00 13 mov %l3, %o0
#endif
_Timer_server_SMP_lock_release();
_Timer_server_SMP_lock_aquire();
ts->active = true;
40008f00: e8 2e 20 7c stb %l4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40008f04: 40 00 0e 6a call 4000c8ac <_Watchdog_Remove>
40008f08: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40008f0c: 40 00 0e 68 call 4000c8ac <_Watchdog_Remove>
40008f10: 90 10 00 12 mov %l2, %o0
40008f14: 30 bf ff 9f b,a 40008d90 <_Timer_server_Body+0x44>
40008f18 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40008f18: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40008f1c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
40008f20: 80 a0 60 00 cmp %g1, 0
40008f24: 12 80 00 4b bne 40009050 <_Timer_server_Schedule_operation_method+0x138>
40008f28: ba 10 00 19 mov %i1, %i5
40008f2c: 7f ff ff 5b call 40008c98 <_Thread_Dispatch_increment_disable_level>
40008f30: 01 00 00 00 nop
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40008f34: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40008f38: 80 a0 60 01 cmp %g1, 1
40008f3c: 12 80 00 1f bne 40008fb8 <_Timer_server_Schedule_operation_method+0xa0>
40008f40: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40008f44: 7f ff e7 9c call 40002db4 <sparc_disable_interrupts>
40008f48: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40008f4c: 03 10 00 67 sethi %hi(0x40019c00), %g1
40008f50: c4 00 63 60 ld [ %g1 + 0x360 ], %g2 ! 40019f60 <_Watchdog_Ticks_since_boot>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40008f54: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40008f58: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40008f5c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
40008f60: 80 a0 40 03 cmp %g1, %g3
40008f64: 02 80 00 08 be 40008f84 <_Timer_server_Schedule_operation_method+0x6c>
40008f68: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40008f6c: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
if (delta_interval > delta) {
40008f70: 80 a7 00 04 cmp %i4, %g4
40008f74: 08 80 00 03 bleu 40008f80 <_Timer_server_Schedule_operation_method+0x68>
40008f78: 86 10 20 00 clr %g3
delta_interval -= delta;
40008f7c: 86 27 00 04 sub %i4, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40008f80: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
40008f84: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
40008f88: 7f ff e7 8e call 40002dc0 <sparc_enable_interrupts>
40008f8c: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40008f90: 90 06 20 30 add %i0, 0x30, %o0
40008f94: 40 00 0d f1 call 4000c758 <_Watchdog_Insert>
40008f98: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
40008f9c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40008fa0: 80 a0 60 00 cmp %g1, 0
40008fa4: 12 80 00 29 bne 40009048 <_Timer_server_Schedule_operation_method+0x130>
40008fa8: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40008fac: 7f ff ff 40 call 40008cac <_Timer_server_Reset_interval_system_watchdog>
40008fb0: 90 10 00 18 mov %i0, %o0
40008fb4: 30 80 00 25 b,a 40009048 <_Timer_server_Schedule_operation_method+0x130>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40008fb8: 12 80 00 24 bne 40009048 <_Timer_server_Schedule_operation_method+0x130>
40008fbc: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40008fc0: 7f ff e7 7d call 40002db4 <sparc_disable_interrupts>
40008fc4: 01 00 00 00 nop
40008fc8: b6 10 00 08 mov %o0, %i3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40008fcc: 40 00 02 d2 call 40009b14 <_TOD_Seconds_since_epoch>
40008fd0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40008fd4: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
last_snapshot = ts->TOD_watchdogs.last_snapshot;
40008fd8: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40008fdc: 88 06 20 6c add %i0, 0x6c, %g4
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
40008fe0: 80 a0 80 04 cmp %g2, %g4
40008fe4: 02 80 00 0d be 40009018 <_Timer_server_Schedule_operation_method+0x100>
40008fe8: 80 a2 00 03 cmp %o0, %g3
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
40008fec: 08 80 00 08 bleu 4000900c <_Timer_server_Schedule_operation_method+0xf4>
40008ff0: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
40008ff4: b8 22 00 03 sub %o0, %g3, %i4
if (delta_interval > delta) {
40008ff8: 80 a1 00 1c cmp %g4, %i4
40008ffc: 08 80 00 06 bleu 40009014 <_Timer_server_Schedule_operation_method+0xfc><== NEVER TAKEN
40009000: 86 10 20 00 clr %g3
delta_interval -= delta;
40009004: 10 80 00 04 b 40009014 <_Timer_server_Schedule_operation_method+0xfc>
40009008: 86 21 00 1c sub %g4, %i4, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
4000900c: 86 01 00 03 add %g4, %g3, %g3
delta_interval += delta;
40009010: 86 20 c0 08 sub %g3, %o0, %g3
}
first_watchdog->delta_interval = delta_interval;
40009014: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
40009018: d0 26 20 74 st %o0, [ %i0 + 0x74 ]
_ISR_Enable( level );
4000901c: 7f ff e7 69 call 40002dc0 <sparc_enable_interrupts>
40009020: 90 10 00 1b mov %i3, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40009024: 90 06 20 68 add %i0, 0x68, %o0
40009028: 40 00 0d cc call 4000c758 <_Watchdog_Insert>
4000902c: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
40009030: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40009034: 80 a0 60 00 cmp %g1, 0
40009038: 12 80 00 04 bne 40009048 <_Timer_server_Schedule_operation_method+0x130>
4000903c: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
40009040: 7f ff ff 2f call 40008cfc <_Timer_server_Reset_tod_system_watchdog>
40009044: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
40009048: 40 00 09 27 call 4000b4e4 <_Thread_Enable_dispatch>
4000904c: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40009050: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
40009054: 40 00 01 87 call 40009670 <_Chain_Append>
40009058: 81 e8 00 00 restore
4000c834 <_Timestamp64_Divide>:
const Timestamp64_Control *_lhs,
const Timestamp64_Control *_rhs,
uint32_t *_ival_percentage,
uint32_t *_fval_percentage
)
{
4000c834: 9d e3 bf a0 save %sp, -96, %sp
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
4000c838: d4 1e 40 00 ldd [ %i1 ], %o2
4000c83c: 80 92 80 0b orcc %o2, %o3, %g0
4000c840: 32 80 00 06 bne,a 4000c858 <_Timestamp64_Divide+0x24> <== ALWAYS TAKEN
4000c844: d8 1e 00 00 ldd [ %i0 ], %o4
*_ival_percentage = 0;
4000c848: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
*_fval_percentage = 0;
4000c84c: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED
return;
4000c850: 81 c7 e0 08 ret <== NOT EXECUTED
4000c854: 81 e8 00 00 restore <== NOT EXECUTED
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
4000c858: 83 2b 20 02 sll %o4, 2, %g1
4000c85c: 87 2b 60 02 sll %o5, 2, %g3
4000c860: 89 33 60 1e srl %o5, 0x1e, %g4
4000c864: bb 28 e0 05 sll %g3, 5, %i5
4000c868: 84 11 00 01 or %g4, %g1, %g2
4000c86c: 83 30 e0 1b srl %g3, 0x1b, %g1
4000c870: b9 28 a0 05 sll %g2, 5, %i4
4000c874: 86 a7 40 03 subcc %i5, %g3, %g3
4000c878: b8 10 40 1c or %g1, %i4, %i4
4000c87c: 84 67 00 02 subx %i4, %g2, %g2
4000c880: b2 80 c0 0d addcc %g3, %o5, %i1
4000c884: b0 40 80 0c addx %g2, %o4, %i0
4000c888: 83 36 60 1e srl %i1, 0x1e, %g1
4000c88c: 87 2e 60 02 sll %i1, 2, %g3
4000c890: 85 2e 20 02 sll %i0, 2, %g2
4000c894: 84 10 40 02 or %g1, %g2, %g2
4000c898: ba 86 40 03 addcc %i1, %g3, %i5
4000c89c: b8 46 00 02 addx %i0, %g2, %i4
4000c8a0: 83 37 60 1e srl %i5, 0x1e, %g1
4000c8a4: 87 2f 60 02 sll %i5, 2, %g3
4000c8a8: 85 2f 20 02 sll %i4, 2, %g2
4000c8ac: 84 10 40 02 or %g1, %g2, %g2
4000c8b0: 92 87 40 03 addcc %i5, %g3, %o1
4000c8b4: 90 47 00 02 addx %i4, %g2, %o0
4000c8b8: 87 32 60 1b srl %o1, 0x1b, %g3
4000c8bc: 85 2a 20 05 sll %o0, 5, %g2
4000c8c0: 83 2a 60 05 sll %o1, 5, %g1
4000c8c4: 90 10 c0 02 or %g3, %g2, %o0
4000c8c8: 40 00 23 1f call 40015544 <__divdi3>
4000c8cc: 92 10 00 01 mov %g1, %o1
*_ival_percentage = answer / 1000;
4000c8d0: 94 10 20 00 clr %o2
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
4000c8d4: b8 10 00 08 mov %o0, %i4
4000c8d8: ba 10 00 09 mov %o1, %i5
*_ival_percentage = answer / 1000;
4000c8dc: 40 00 23 1a call 40015544 <__divdi3>
4000c8e0: 96 10 23 e8 mov 0x3e8, %o3
*_fval_percentage = answer % 1000;
4000c8e4: 90 10 00 1c mov %i4, %o0
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
*_ival_percentage = answer / 1000;
4000c8e8: d2 26 80 00 st %o1, [ %i2 ]
*_fval_percentage = answer % 1000;
4000c8ec: 94 10 20 00 clr %o2
4000c8f0: 92 10 00 1d mov %i5, %o1
4000c8f4: 40 00 24 06 call 4001590c <__moddi3>
4000c8f8: 96 10 23 e8 mov 0x3e8, %o3
4000c8fc: d2 26 c0 00 st %o1, [ %i3 ]
4000c900: 81 c7 e0 08 ret
4000c904: 81 e8 00 00 restore
4000af04 <_User_extensions_Handler_initialization>:
}
}
void _User_extensions_Handler_initialization(void)
{
4000af04: 9d e3 bf 98 save %sp, -104, %sp
uint32_t number_of_initial_extensions =
4000af08: 03 10 00 55 sethi %hi(0x40015400), %g1
4000af0c: c2 00 61 c4 ld [ %g1 + 0x1c4 ], %g1 ! 400155c4 <Configuration+0x3c>
rtems_configuration_get_number_of_initial_extensions();
if ( number_of_initial_extensions > 0 ) {
4000af10: 80 a0 60 00 cmp %g1, 0
4000af14: 02 80 00 0a be 4000af3c <_User_extensions_Handler_initialization+0x38><== NEVER TAKEN
4000af18: 91 28 60 02 sll %g1, 2, %o0
User_extensions_Switch_control *initial_extension_switch_controls =
_Workspace_Allocate_or_fatal_error(
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
4000af1c: 83 28 60 04 sll %g1, 4, %g1
{
uint32_t number_of_initial_extensions =
rtems_configuration_get_number_of_initial_extensions();
if ( number_of_initial_extensions > 0 ) {
User_extensions_Switch_control *initial_extension_switch_controls =
4000af20: 40 00 01 2d call 4000b3d4 <_Workspace_Allocate_or_fatal_error>
4000af24: 90 20 40 08 sub %g1, %o0, %o0
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
);
User_extensions_Switch_context ctx = { initial_extension_switch_controls };
_User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor );
4000af28: 13 10 00 2b sethi %hi(0x4000ac00), %o1
User_extensions_Switch_control *initial_extension_switch_controls =
_Workspace_Allocate_or_fatal_error(
number_of_initial_extensions
* sizeof( *initial_extension_switch_controls )
);
User_extensions_Switch_context ctx = { initial_extension_switch_controls };
4000af2c: d0 27 bf fc st %o0, [ %fp + -4 ]
_User_extensions_Iterate( &ctx, _User_extensions_Switch_visitor );
4000af30: 92 12 62 c0 or %o1, 0x2c0, %o1
4000af34: 7f ff ff c2 call 4000ae3c <_User_extensions_Iterate>
4000af38: 90 07 bf fc add %fp, -4, %o0
4000af3c: 81 c7 e0 08 ret
4000af40: 81 e8 00 00 restore
4000acf8 <_User_extensions_Thread_create_visitor>:
void _User_extensions_Thread_create_visitor(
Thread_Control *executing,
void *arg,
const User_extensions_Table *callouts
)
{
4000acf8: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_thread_create_extension callout = callouts->thread_create;
4000acfc: c2 06 80 00 ld [ %i2 ], %g1
if ( callout != NULL ) {
4000ad00: 80 a0 60 00 cmp %g1, 0
4000ad04: 02 80 00 0b be 4000ad30 <_User_extensions_Thread_create_visitor+0x38>
4000ad08: 01 00 00 00 nop
User_extensions_Thread_create_context *ctx = arg;
ctx->ok = ctx->ok && (*callout)( executing, ctx->created );
4000ad0c: c4 0e 60 04 ldub [ %i1 + 4 ], %g2
4000ad10: 80 a0 a0 00 cmp %g2, 0
4000ad14: 02 80 00 05 be 4000ad28 <_User_extensions_Thread_create_visitor+0x30><== NEVER TAKEN
4000ad18: 90 10 20 00 clr %o0
4000ad1c: d2 06 40 00 ld [ %i1 ], %o1
4000ad20: 9f c0 40 00 call %g1
4000ad24: 90 10 00 18 mov %i0, %o0
4000ad28: 90 0a 20 01 and %o0, 1, %o0
4000ad2c: d0 2e 60 04 stb %o0, [ %i1 + 4 ]
4000ad30: 81 c7 e0 08 ret
4000ad34: 81 e8 00 00 restore
4000cbb8 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000cbb8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000cbbc: 7f ff d9 be call 400032b4 <sparc_disable_interrupts>
4000cbc0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
4000cbc4: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000cbc8: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000cbcc: 80 a0 40 1c cmp %g1, %i4
4000cbd0: 02 80 00 20 be 4000cc50 <_Watchdog_Adjust+0x98>
4000cbd4: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000cbd8: 02 80 00 07 be 4000cbf4 <_Watchdog_Adjust+0x3c>
4000cbdc: 80 a6 60 01 cmp %i1, 1
4000cbe0: 12 80 00 1c bne 4000cc50 <_Watchdog_Adjust+0x98> <== NEVER TAKEN
4000cbe4: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000cbe8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000cbec: 10 80 00 18 b 4000cc4c <_Watchdog_Adjust+0x94>
4000cbf0: b4 00 80 1a add %g2, %i2, %i2
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000cbf4: 10 80 00 0d b 4000cc28 <_Watchdog_Adjust+0x70>
4000cbf8: b6 10 20 01 mov 1, %i3
4000cbfc: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000cc00: 7f ff d9 b0 call 400032c0 <sparc_enable_interrupts>
4000cc04: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000cc08: 40 00 00 91 call 4000ce4c <_Watchdog_Tickle>
4000cc0c: 90 10 00 18 mov %i0, %o0
_ISR_Disable( level );
4000cc10: 7f ff d9 a9 call 400032b4 <sparc_disable_interrupts>
4000cc14: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000cc18: c2 06 00 00 ld [ %i0 ], %g1
4000cc1c: 80 a0 40 1c cmp %g1, %i4
4000cc20: 02 80 00 0c be 4000cc50 <_Watchdog_Adjust+0x98>
4000cc24: 01 00 00 00 nop
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000cc28: 80 a6 a0 00 cmp %i2, 0
4000cc2c: 02 80 00 09 be 4000cc50 <_Watchdog_Adjust+0x98> <== NEVER TAKEN
4000cc30: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
4000cc34: c2 06 00 00 ld [ %i0 ], %g1
if ( units < _Watchdog_First( header )->delta_interval ) {
4000cc38: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000cc3c: 80 a6 80 02 cmp %i2, %g2
4000cc40: 3a bf ff ef bcc,a 4000cbfc <_Watchdog_Adjust+0x44>
4000cc44: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval -= units;
4000cc48: b4 20 80 1a sub %g2, %i2, %i2
4000cc4c: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000cc50: 7f ff d9 9c call 400032c0 <sparc_enable_interrupts>
4000cc54: 91 e8 00 08 restore %g0, %o0, %o0
4000b098 <_Watchdog_Remove>:
#include <rtems/score/watchdogimpl.h>
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
4000b098: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
4000b09c: 7f ff dc e6 call 40002434 <sparc_disable_interrupts>
4000b0a0: ba 10 00 18 mov %i0, %i5
previous_state = the_watchdog->state;
4000b0a4: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
4000b0a8: 80 a6 20 01 cmp %i0, 1
4000b0ac: 22 80 00 1c be,a 4000b11c <_Watchdog_Remove+0x84>
4000b0b0: c0 27 60 08 clr [ %i5 + 8 ]
4000b0b4: 0a 80 00 1a bcs 4000b11c <_Watchdog_Remove+0x84>
4000b0b8: 80 a6 20 03 cmp %i0, 3
4000b0bc: 28 80 00 04 bleu,a 4000b0cc <_Watchdog_Remove+0x34> <== ALWAYS TAKEN
4000b0c0: c2 07 40 00 ld [ %i5 ], %g1
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000b0c4: 10 80 00 17 b 4000b120 <_Watchdog_Remove+0x88> <== NOT EXECUTED
4000b0c8: 03 10 00 61 sethi %hi(0x40018400), %g1 <== NOT EXECUTED
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
4000b0cc: c0 27 60 08 clr [ %i5 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
4000b0d0: c4 00 40 00 ld [ %g1 ], %g2
4000b0d4: 80 a0 a0 00 cmp %g2, 0
4000b0d8: 02 80 00 07 be 4000b0f4 <_Watchdog_Remove+0x5c>
4000b0dc: 05 10 00 61 sethi %hi(0x40018400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
4000b0e0: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000b0e4: c4 07 60 10 ld [ %i5 + 0x10 ], %g2
4000b0e8: 84 00 c0 02 add %g3, %g2, %g2
4000b0ec: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
4000b0f0: 05 10 00 61 sethi %hi(0x40018400), %g2
4000b0f4: c4 00 a0 bc ld [ %g2 + 0xbc ], %g2 ! 400184bc <_Watchdog_Sync_count>
4000b0f8: 80 a0 a0 00 cmp %g2, 0
4000b0fc: 22 80 00 06 be,a 4000b114 <_Watchdog_Remove+0x7c>
4000b100: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
4000b104: c6 01 a0 0c ld [ %g6 + 0xc ], %g3
4000b108: 05 10 00 61 sethi %hi(0x40018400), %g2
4000b10c: c6 20 a0 9c st %g3, [ %g2 + 0x9c ] ! 4001849c <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000b110: c4 07 60 04 ld [ %i5 + 4 ], %g2
next->previous = previous;
4000b114: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
4000b118: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000b11c: 03 10 00 61 sethi %hi(0x40018400), %g1
4000b120: c2 00 60 c0 ld [ %g1 + 0xc0 ], %g1 ! 400184c0 <_Watchdog_Ticks_since_boot>
4000b124: c2 27 60 18 st %g1, [ %i5 + 0x18 ]
_ISR_Enable( level );
4000b128: 7f ff dc c6 call 40002440 <sparc_enable_interrupts>
4000b12c: 01 00 00 00 nop
return( previous_state );
}
4000b130: 81 c7 e0 08 ret
4000b134: 81 e8 00 00 restore
4000b138 <_Watchdog_Tickle>:
#include <rtems/score/watchdogimpl.h>
void _Watchdog_Tickle(
Chain_Control *header
)
{
4000b138: 9d e3 bf a0 save %sp, -96, %sp
* See the comment in watchdoginsert.c and watchdogadjust.c
* about why it's safe not to declare header a pointer to
* volatile data - till, 2003/7
*/
_ISR_Disable( level );
4000b13c: 7f ff dc be call 40002434 <sparc_disable_interrupts>
4000b140: b8 10 00 18 mov %i0, %i4
4000b144: b0 10 00 08 mov %o0, %i0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
4000b148: fa 07 00 00 ld [ %i4 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b14c: b6 07 20 04 add %i4, 4, %i3
if ( _Chain_Is_empty( header ) )
4000b150: 80 a7 40 1b cmp %i5, %i3
4000b154: 02 80 00 1f be 4000b1d0 <_Watchdog_Tickle+0x98>
4000b158: 01 00 00 00 nop
* to be inserted has already had its delta_interval adjusted to 0, and
* so is added to the head of the chain with a delta_interval of 0.
*
* Steven Johnson - 12/2005 (gcc-3.2.3 -O3 on powerpc)
*/
if (the_watchdog->delta_interval != 0) {
4000b15c: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
4000b160: 80 a0 60 00 cmp %g1, 0
4000b164: 02 80 00 06 be 4000b17c <_Watchdog_Tickle+0x44> <== NEVER TAKEN
4000b168: 82 00 7f ff add %g1, -1, %g1
the_watchdog->delta_interval--;
4000b16c: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
if ( the_watchdog->delta_interval != 0 )
4000b170: 80 a0 60 00 cmp %g1, 0
4000b174: 12 80 00 17 bne 4000b1d0 <_Watchdog_Tickle+0x98>
4000b178: 01 00 00 00 nop
goto leave;
}
do {
watchdog_state = _Watchdog_Remove( the_watchdog );
4000b17c: 7f ff ff c7 call 4000b098 <_Watchdog_Remove>
4000b180: 90 10 00 1d mov %i5, %o0
4000b184: b4 10 00 08 mov %o0, %i2
_ISR_Enable( level );
4000b188: 7f ff dc ae call 40002440 <sparc_enable_interrupts>
4000b18c: 90 10 00 18 mov %i0, %o0
switch( watchdog_state ) {
4000b190: 80 a6 a0 02 cmp %i2, 2
4000b194: 12 80 00 06 bne 4000b1ac <_Watchdog_Tickle+0x74>
4000b198: 01 00 00 00 nop
case WATCHDOG_ACTIVE:
(*the_watchdog->routine)(
4000b19c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
4000b1a0: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
4000b1a4: 9f c0 40 00 call %g1
4000b1a8: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
case WATCHDOG_REMOVE_IT:
break;
}
_ISR_Disable( level );
4000b1ac: 7f ff dc a2 call 40002434 <sparc_disable_interrupts>
4000b1b0: 01 00 00 00 nop
4000b1b4: b0 10 00 08 mov %o0, %i0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
4000b1b8: fa 07 00 00 ld [ %i4 ], %i5
the_watchdog = _Watchdog_First( header );
} while ( !_Chain_Is_empty( header ) &&
(the_watchdog->delta_interval == 0) );
4000b1bc: 80 a7 40 1b cmp %i5, %i3
4000b1c0: 02 80 00 04 be 4000b1d0 <_Watchdog_Tickle+0x98>
4000b1c4: 01 00 00 00 nop
}
_ISR_Disable( level );
the_watchdog = _Watchdog_First( header );
} while ( !_Chain_Is_empty( header ) &&
4000b1c8: 10 bf ff ea b 4000b170 <_Watchdog_Tickle+0x38>
4000b1cc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
(the_watchdog->delta_interval == 0) );
leave:
_ISR_Enable(level);
4000b1d0: 7f ff dc 9c call 40002440 <sparc_enable_interrupts>
4000b1d4: 81 e8 00 00 restore
4000b1d8 <_Workspace_Handler_initialization>:
void _Workspace_Handler_initialization(
Heap_Area *areas,
size_t area_count,
Heap_Initialization_or_extend_handler extend
)
{
4000b1d8: 9d e3 bf a0 save %sp, -96, %sp
Heap_Initialization_or_extend_handler init_or_extend = _Heap_Initialize;
uintptr_t remaining = rtems_configuration_get_work_space_size();
4000b1dc: 05 10 00 55 sethi %hi(0x40015400), %g2
4000b1e0: 82 10 a1 88 or %g2, 0x188, %g1 ! 40015588 <Configuration>
4000b1e4: c6 08 60 3a ldub [ %g1 + 0x3a ], %g3
4000b1e8: fa 00 a1 88 ld [ %g2 + 0x188 ], %i5
4000b1ec: 80 a0 e0 00 cmp %g3, 0
4000b1f0: 12 80 00 03 bne 4000b1fc <_Workspace_Handler_initialization+0x24>
4000b1f4: 84 10 20 00 clr %g2
4000b1f8: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000b1fc: ba 00 80 1d add %g2, %i5, %i5
bool do_zero = rtems_configuration_get_do_zero_of_workspace();
4000b200: e2 08 60 38 ldub [ %g1 + 0x38 ], %l1
bool unified = rtems_configuration_get_unified_work_area();
4000b204: e4 08 60 39 ldub [ %g1 + 0x39 ], %l2
{
/*
* Do not use _TLS_Size here since this will lead GCC to assume that this
* symbol is not 0 and the tests for 0 will be optimized away.
*/
return (uintptr_t) _TLS_BSS_end - (uintptr_t) _TLS_Data_begin;
4000b208: 05 10 00 5a sethi %hi(0x40016800), %g2
4000b20c: 03 10 00 5a sethi %hi(0x40016800), %g1
4000b210: 84 10 a2 a0 or %g2, 0x2a0, %g2
4000b214: 82 10 62 a0 or %g1, 0x2a0, %g1
* workspace is large enough to fulfill all requests known at configuration
* time (so excluding the unlimited option). It is not possible to estimate
* the TLS size in the configuration at compile-time. The TLS size is
* determined at application link-time.
*/
if ( tls_size > 0 ) {
4000b218: 90 a0 80 01 subcc %g2, %g1, %o0
4000b21c: 02 80 00 1a be 4000b284 <_Workspace_Handler_initialization+0xac>
4000b220: 03 00 00 00 sethi %hi(0), %g1
static inline uintptr_t _TLS_Heap_align_up( uintptr_t val )
{
uintptr_t msk = CPU_HEAP_ALIGNMENT - 1;
return (val + msk) & ~msk;
4000b224: 82 10 60 01 or %g1, 1, %g1 ! 1 <_TLS_Alignment>
4000b228: 82 00 60 07 add %g1, 7, %g1
4000b22c: 82 08 7f f8 and %g1, -8, %g1
static inline uintptr_t _TLS_Get_thread_control_block_area_size(
uintptr_t alignment
)
{
return alignment <= sizeof(TLS_Thread_control_block) ?
4000b230: 80 a0 60 08 cmp %g1, 8
4000b234: 2a 80 00 02 bcs,a 4000b23c <_Workspace_Handler_initialization+0x64><== NEVER TAKEN
4000b238: 82 10 20 08 mov 8, %g1 <== NOT EXECUTED
{
uint32_t thread_count = 0;
thread_count += _Thread_Get_maximum_internal_threads();
thread_count += rtems_resource_maximum_per_allocation(
4000b23c: 05 10 00 5a sethi %hi(0x40016800), %g2
Configuration_RTEMS_API.maximum_tasks
);
#if defined(RTEMS_POSIX_API)
thread_count += rtems_resource_maximum_per_allocation(
4000b240: 07 10 00 5c sethi %hi(0x40017000), %g3
{
uint32_t thread_count = 0;
thread_count += _Thread_Get_maximum_internal_threads();
thread_count += rtems_resource_maximum_per_allocation(
4000b244: d2 00 a2 ac ld [ %g2 + 0x2ac ], %o1
Configuration_RTEMS_API.maximum_tasks
);
#if defined(RTEMS_POSIX_API)
thread_count += rtems_resource_maximum_per_allocation(
4000b248: c6 00 e0 84 ld [ %g3 + 0x84 ], %g3
{
uint32_t thread_count = 0;
thread_count += _Thread_Get_maximum_internal_threads();
thread_count += rtems_resource_maximum_per_allocation(
4000b24c: 05 00 00 3f sethi %hi(0xfc00), %g2
4000b250: 84 10 a3 ff or %g2, 0x3ff, %g2 ! ffff <_TLS_Alignment+0xfffe>
4000b254: 92 0a 40 02 and %o1, %g2, %o1
Configuration_RTEMS_API.maximum_tasks
);
#if defined(RTEMS_POSIX_API)
thread_count += rtems_resource_maximum_per_allocation(
4000b258: 84 08 c0 02 and %g3, %g2, %g2
static inline uintptr_t _TLS_Heap_align_up( uintptr_t val )
{
uintptr_t msk = CPU_HEAP_ALIGNMENT - 1;
return (val + msk) & ~msk;
4000b25c: 90 02 20 07 add %o0, 7, %o0
{
uint32_t thread_count = 0;
thread_count += _Thread_Get_maximum_internal_threads();
thread_count += rtems_resource_maximum_per_allocation(
4000b260: 92 02 40 02 add %o1, %g2, %o1
4000b264: 90 0a 3f f8 and %o0, -8, %o0
* size.
*/
remaining += _Heap_Min_block_size( page_size );
remaining += _Get_maximum_thread_count()
* _Heap_Size_with_overhead( page_size, tls_alloc, tls_align );
4000b268: 92 02 60 01 inc %o1
uintptr_t alignment
)
{
uintptr_t aligned_size = _TLS_Heap_align_up( size );
return _TLS_Get_thread_control_block_area_size( alignment )
4000b26c: 90 02 00 01 add %o0, %g1, %o0
if ( page_size < alignment ) {
page_size = alignment;
}
return HEAP_BLOCK_HEADER_SIZE + page_size - 1 + size;
4000b270: 90 02 20 0f add %o0, 0xf, %o0
4000b274: 40 00 20 5f call 400133f0 <.umul>
4000b278: 90 02 00 01 add %o0, %g1, %o0
/*
* Memory allocated with an alignment constraint is allocated from the end
* of a free block. The last allocation may need one free block of minimum
* size.
*/
remaining += _Heap_Min_block_size( page_size );
4000b27c: 90 02 20 10 add %o0, 0x10, %o0
remaining += _Get_maximum_thread_count()
4000b280: ba 07 40 08 add %i5, %o0, %i5
remaining -= space_available;
} else {
remaining = 0;
}
init_or_extend = extend;
4000b284: 21 10 00 21 sethi %hi(0x40008400), %l0
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
4000b288: 27 10 00 61 sethi %hi(0x40018400), %l3
remaining -= space_available;
} else {
remaining = 0;
}
init_or_extend = extend;
4000b28c: b6 10 20 00 clr %i3
4000b290: a0 14 23 ac or %l0, 0x3ac, %l0
}
for (i = 0; i < area_count; ++i) {
Heap_Area *area = &areas [i];
if ( do_zero ) {
4000b294: a2 0c 60 ff and %l1, 0xff, %l1
if ( area->size > overhead ) {
uintptr_t space_available;
uintptr_t size;
if ( unified ) {
4000b298: a4 0c a0 ff and %l2, 0xff, %l2
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
4000b29c: a6 14 e0 3c or %l3, 0x3c, %l3
remaining += _Get_maximum_thread_count()
* _Heap_Size_with_overhead( page_size, tls_alloc, tls_align );
}
for (i = 0; i < area_count; ++i) {
4000b2a0: 80 a6 c0 19 cmp %i3, %i1
4000b2a4: 02 80 00 2d be 4000b358 <_Workspace_Handler_initialization+0x180>
4000b2a8: 80 a4 60 00 cmp %l1, 0
Heap_Area *area = &areas [i];
if ( do_zero ) {
4000b2ac: 22 80 00 07 be,a 4000b2c8 <_Workspace_Handler_initialization+0xf0>
4000b2b0: f8 06 20 04 ld [ %i0 + 4 ], %i4
memset( area->begin, 0, area->size );
4000b2b4: d0 06 00 00 ld [ %i0 ], %o0
4000b2b8: d4 06 20 04 ld [ %i0 + 4 ], %o2
4000b2bc: 40 00 13 fe call 400102b4 <memset>
4000b2c0: 92 10 20 00 clr %o1
}
if ( area->size > overhead ) {
4000b2c4: f8 06 20 04 ld [ %i0 + 4 ], %i4
4000b2c8: 80 a7 20 16 cmp %i4, 0x16
4000b2cc: 28 80 00 21 bleu,a 4000b350 <_Workspace_Handler_initialization+0x178>
4000b2d0: b6 06 e0 01 inc %i3
uintptr_t space_available;
uintptr_t size;
if ( unified ) {
4000b2d4: 80 a4 a0 00 cmp %l2, 0
4000b2d8: 32 80 00 0c bne,a 4000b308 <_Workspace_Handler_initialization+0x130>
4000b2dc: d2 06 00 00 ld [ %i0 ], %o1
size = area->size;
} else {
if ( remaining > 0 ) {
4000b2e0: 80 a7 60 00 cmp %i5, 0
4000b2e4: 22 80 00 08 be,a 4000b304 <_Workspace_Handler_initialization+0x12c><== NEVER TAKEN
4000b2e8: b8 10 20 00 clr %i4 <== NOT EXECUTED
size = remaining < area->size - overhead ?
4000b2ec: 82 07 3f ea add %i4, -22, %g1
remaining + overhead : area->size;
4000b2f0: 80 a7 40 01 cmp %i5, %g1
4000b2f4: 2a 80 00 04 bcs,a 4000b304 <_Workspace_Handler_initialization+0x12c><== ALWAYS TAKEN
4000b2f8: b8 07 60 16 add %i5, 0x16, %i4
4000b2fc: 10 80 00 03 b 4000b308 <_Workspace_Handler_initialization+0x130><== NOT EXECUTED
4000b300: d2 06 00 00 ld [ %i0 ], %o1 <== NOT EXECUTED
} else {
size = 0;
}
}
space_available = (*init_or_extend)(
4000b304: d2 06 00 00 ld [ %i0 ], %o1
4000b308: 94 10 00 1c mov %i4, %o2
4000b30c: 90 10 00 13 mov %l3, %o0
4000b310: 9f c4 00 00 call %l0
4000b314: 96 10 20 08 mov 8, %o3
area->begin,
size,
page_size
);
area->begin = (char *) area->begin + size;
4000b318: c2 06 00 00 ld [ %i0 ], %g1
area->size -= size;
if ( space_available < remaining ) {
4000b31c: 80 a2 00 1d cmp %o0, %i5
area->begin,
size,
page_size
);
area->begin = (char *) area->begin + size;
4000b320: 82 00 40 1c add %g1, %i4, %g1
4000b324: c2 26 00 00 st %g1, [ %i0 ]
area->size -= size;
4000b328: c2 06 20 04 ld [ %i0 + 4 ], %g1
4000b32c: b8 20 40 1c sub %g1, %i4, %i4
if ( space_available < remaining ) {
4000b330: 1a 80 00 05 bcc 4000b344 <_Workspace_Handler_initialization+0x16c><== ALWAYS TAKEN
4000b334: f8 26 20 04 st %i4, [ %i0 + 4 ]
remaining -= space_available;
4000b338: ba 27 40 08 sub %i5, %o0, %i5 <== NOT EXECUTED
4000b33c: 10 80 00 04 b 4000b34c <_Workspace_Handler_initialization+0x174><== NOT EXECUTED
4000b340: a0 10 00 1a mov %i2, %l0 <== NOT EXECUTED
} else {
remaining = 0;
}
init_or_extend = extend;
4000b344: a0 10 00 1a mov %i2, %l0
area->size -= size;
if ( space_available < remaining ) {
remaining -= space_available;
} else {
remaining = 0;
4000b348: ba 10 20 00 clr %i5
remaining += _Get_maximum_thread_count()
* _Heap_Size_with_overhead( page_size, tls_alloc, tls_align );
}
for (i = 0; i < area_count; ++i) {
4000b34c: b6 06 e0 01 inc %i3
4000b350: 10 bf ff d4 b 4000b2a0 <_Workspace_Handler_initialization+0xc8>
4000b354: b0 06 20 08 add %i0, 8, %i0
init_or_extend = extend;
}
}
if ( remaining > 0 ) {
4000b358: 80 a7 60 00 cmp %i5, 0
4000b35c: 02 80 00 05 be 4000b370 <_Workspace_Handler_initialization+0x198>
4000b360: 90 10 20 00 clr %o0
_Terminate(
4000b364: 92 10 20 01 mov 1, %o1
4000b368: 7f ff f5 a8 call 40008a08 <_Terminate>
4000b36c: 94 10 20 02 mov 2, %o2
4000b370: 81 c7 e0 08 ret
4000b374: 81 e8 00 00 restore
400076dc <aio_cancel>:
#include <stdlib.h>
#include <rtems/system.h>
#include <rtems/seterr.h>
int aio_cancel(int fildes, struct aiocb *aiocbp)
{
400076dc: 9d e3 bf a0 save %sp, -96, %sp
rtems_chain_control *idle_req_chain = &aio_request_queue.idle_req;
rtems_chain_control *work_req_chain = &aio_request_queue.work_req;
rtems_aio_request_chain *r_chain;
int result;
pthread_mutex_lock (&aio_request_queue.mutex);
400076e0: 3b 10 00 6a sethi %hi(0x4001a800), %i5
400076e4: 40 00 04 a7 call 40008980 <pthread_mutex_lock>
400076e8: 90 17 60 88 or %i5, 0x88, %o0 ! 4001a888 <aio_request_queue>
if (fcntl (fildes, F_GETFD) < 0) {
400076ec: 90 10 00 18 mov %i0, %o0
400076f0: 92 10 20 01 mov 1, %o1
400076f4: 40 00 1b b9 call 4000e5d8 <fcntl>
400076f8: b4 10 00 1d mov %i5, %i2
400076fc: 80 a2 20 00 cmp %o0, 0
40007700: 16 80 00 08 bge 40007720 <aio_cancel+0x44>
40007704: 80 a6 60 00 cmp %i1, 0
pthread_mutex_unlock(&aio_request_queue.mutex);
40007708: 40 00 04 bd call 400089fc <pthread_mutex_unlock>
4000770c: 90 17 60 88 or %i5, 0x88, %o0
rtems_set_errno_and_return_minus_one (EBADF);
40007710: 40 00 2a 67 call 400120ac <__errno>
40007714: 01 00 00 00 nop
40007718: 10 80 00 53 b 40007864 <aio_cancel+0x188>
4000771c: 82 10 20 09 mov 9, %g1 ! 9 <_TLS_Alignment+0x8>
}
/* if aiocbp is NULL remove all request for given file descriptor */
if (aiocbp == NULL) {
40007720: 32 80 00 34 bne,a 400077f0 <aio_cancel+0x114>
40007724: f8 06 40 00 ld [ %i1 ], %i4
AIO_printf ("Cancel all requests\n");
r_chain = rtems_aio_search_fd (work_req_chain, fildes, 0);
40007728: 11 10 00 6a sethi %hi(0x4001a800), %o0
4000772c: 92 10 00 18 mov %i0, %o1
40007730: 90 12 20 dc or %o0, 0xdc, %o0
40007734: 40 00 01 6d call 40007ce8 <rtems_aio_search_fd>
40007738: 94 10 20 00 clr %o2
if (r_chain == NULL) {
4000773c: b8 92 20 00 orcc %o0, 0, %i4
40007740: 12 80 00 1f bne 400077bc <aio_cancel+0xe0>
40007744: b6 07 20 1c add %i4, 0x1c, %i3
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40007748: ba 17 60 88 or %i5, 0x88, %i5
AIO_printf ("Request chain not on [WQ]\n");
if (!rtems_chain_is_empty (idle_req_chain)) {
4000774c: c4 07 60 60 ld [ %i5 + 0x60 ], %g2
40007750: 82 07 60 64 add %i5, 0x64, %g1
40007754: 80 a0 80 01 cmp %g2, %g1
40007758: 02 80 00 08 be 40007778 <aio_cancel+0x9c> <== NEVER TAKEN
4000775c: 90 07 60 60 add %i5, 0x60, %o0
r_chain = rtems_aio_search_fd (idle_req_chain, fildes, 0);
40007760: 92 10 00 18 mov %i0, %o1
40007764: 40 00 01 61 call 40007ce8 <rtems_aio_search_fd>
40007768: 94 10 20 00 clr %o2
if (r_chain == NULL) {
4000776c: b8 92 20 00 orcc %o0, 0, %i4
40007770: 12 80 00 07 bne 4000778c <aio_cancel+0xb0>
40007774: 01 00 00 00 nop
pthread_mutex_unlock(&aio_request_queue.mutex);
40007778: 90 16 a0 88 or %i2, 0x88, %o0
4000777c: 40 00 04 a0 call 400089fc <pthread_mutex_unlock>
40007780: b0 10 20 02 mov 2, %i0
return AIO_ALLDONE;
40007784: 81 c7 e0 08 ret
40007788: 81 e8 00 00 restore
#else
RTEMS_INLINE_ROUTINE void rtems_chain_extract(
rtems_chain_node *the_node
)
{
_Chain_Extract( the_node );
4000778c: 40 00 0b 06 call 4000a3a4 <_Chain_Extract>
40007790: b6 07 20 1c add %i4, 0x1c, %i3
}
AIO_printf ("Request chain on [IQ]\n");
rtems_chain_extract (&r_chain->next_fd);
rtems_aio_remove_fd (r_chain);
40007794: 40 00 01 7d call 40007d88 <rtems_aio_remove_fd>
40007798: 90 10 00 1c mov %i4, %o0
pthread_mutex_destroy (&r_chain->mutex);
4000779c: 40 00 03 c6 call 400086b4 <pthread_mutex_destroy>
400077a0: 90 10 00 1b mov %i3, %o0
pthread_cond_destroy (&r_chain->mutex);
400077a4: 40 00 02 ae call 4000825c <pthread_cond_destroy>
400077a8: 90 10 00 1b mov %i3, %o0
free (r_chain);
400077ac: 7f ff f1 bb call 40003e98 <free>
400077b0: 90 10 00 1c mov %i4, %o0
pthread_mutex_unlock (&aio_request_queue.mutex);
400077b4: 10 80 00 0b b 400077e0 <aio_cancel+0x104>
400077b8: 90 10 00 1d mov %i5, %o0
return AIO_ALLDONE;
}
AIO_printf ("Request chain on [WQ]\n");
pthread_mutex_lock (&r_chain->mutex);
400077bc: 40 00 04 71 call 40008980 <pthread_mutex_lock>
400077c0: 90 10 00 1b mov %i3, %o0
400077c4: 40 00 0a f8 call 4000a3a4 <_Chain_Extract>
400077c8: 90 10 00 1c mov %i4, %o0
rtems_chain_extract (&r_chain->next_fd);
rtems_aio_remove_fd (r_chain);
400077cc: 40 00 01 6f call 40007d88 <rtems_aio_remove_fd>
400077d0: 90 10 00 1c mov %i4, %o0
pthread_mutex_unlock (&r_chain->mutex);
400077d4: 40 00 04 8a call 400089fc <pthread_mutex_unlock>
400077d8: 90 10 00 1b mov %i3, %o0
pthread_mutex_unlock (&aio_request_queue.mutex);
400077dc: 90 17 60 88 or %i5, 0x88, %o0
400077e0: 40 00 04 87 call 400089fc <pthread_mutex_unlock>
400077e4: b0 10 20 00 clr %i0
return AIO_CANCELED;
400077e8: 81 c7 e0 08 ret
400077ec: 81 e8 00 00 restore
} else {
AIO_printf ("Cancel request\n");
if (aiocbp->aio_fildes != fildes) {
400077f0: 80 a7 00 18 cmp %i4, %i0
400077f4: 12 80 00 17 bne 40007850 <aio_cancel+0x174>
400077f8: 90 17 60 88 or %i5, 0x88, %o0
pthread_mutex_unlock (&aio_request_queue.mutex);
rtems_set_errno_and_return_minus_one (EINVAL);
}
r_chain = rtems_aio_search_fd (work_req_chain, fildes, 0);
400077fc: 11 10 00 6a sethi %hi(0x4001a800), %o0
40007800: 92 10 00 1c mov %i4, %o1
40007804: 90 12 20 dc or %o0, 0xdc, %o0
40007808: 40 00 01 38 call 40007ce8 <rtems_aio_search_fd>
4000780c: 94 10 20 00 clr %o2
if (r_chain == NULL) {
40007810: b6 92 20 00 orcc %o0, 0, %i3
40007814: 32 80 00 1c bne,a 40007884 <aio_cancel+0x1a8>
40007818: b8 06 e0 1c add %i3, 0x1c, %i4
4000781c: ba 17 60 88 or %i5, 0x88, %i5
if (!rtems_chain_is_empty (idle_req_chain)) {
40007820: c4 07 60 60 ld [ %i5 + 0x60 ], %g2
40007824: 82 07 60 64 add %i5, 0x64, %g1
40007828: 80 a0 80 01 cmp %g2, %g1
4000782c: 02 bf ff d3 be 40007778 <aio_cancel+0x9c> <== NEVER TAKEN
40007830: 90 07 60 60 add %i5, 0x60, %o0
r_chain = rtems_aio_search_fd (idle_req_chain, fildes, 0);
40007834: 92 10 00 1c mov %i4, %o1
40007838: 40 00 01 2c call 40007ce8 <rtems_aio_search_fd>
4000783c: 94 10 20 00 clr %o2
if (r_chain == NULL) {
40007840: 80 a2 20 00 cmp %o0, 0
40007844: 12 80 00 0b bne 40007870 <aio_cancel+0x194>
40007848: 90 02 20 08 add %o0, 8, %o0
pthread_mutex_unlock (&aio_request_queue.mutex);
4000784c: 90 10 00 1d mov %i5, %o0
40007850: 40 00 04 6b call 400089fc <pthread_mutex_unlock>
40007854: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one (EINVAL);
40007858: 40 00 2a 15 call 400120ac <__errno>
4000785c: 01 00 00 00 nop
40007860: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
40007864: c2 22 00 00 st %g1, [ %o0 ]
40007868: 81 c7 e0 08 ret
4000786c: 91 e8 3f ff restore %g0, -1, %o0
}
AIO_printf ("Request on [IQ]\n");
result = rtems_aio_remove_req (&r_chain->perfd, aiocbp);
40007870: 40 00 01 5b call 40007ddc <rtems_aio_remove_req>
40007874: 92 10 00 19 mov %i1, %o1
40007878: b0 10 00 08 mov %o0, %i0
pthread_mutex_unlock (&aio_request_queue.mutex);
4000787c: 10 80 00 0b b 400078a8 <aio_cancel+0x1cc>
40007880: 90 10 00 1d mov %i5, %o0
return AIO_ALLDONE;
}
}
AIO_printf ("Request on [WQ]\n");
pthread_mutex_lock (&r_chain->mutex);
40007884: 40 00 04 3f call 40008980 <pthread_mutex_lock>
40007888: 90 10 00 1c mov %i4, %o0
result = rtems_aio_remove_req (&r_chain->perfd, aiocbp);
4000788c: 92 10 00 19 mov %i1, %o1
40007890: 40 00 01 53 call 40007ddc <rtems_aio_remove_req>
40007894: 90 06 e0 08 add %i3, 8, %o0
40007898: b0 10 00 08 mov %o0, %i0
pthread_mutex_unlock (&r_chain->mutex);
4000789c: 40 00 04 58 call 400089fc <pthread_mutex_unlock>
400078a0: 90 10 00 1c mov %i4, %o0
pthread_mutex_unlock (&aio_request_queue.mutex);
400078a4: 90 17 60 88 or %i5, 0x88, %o0
400078a8: 40 00 04 55 call 400089fc <pthread_mutex_unlock>
400078ac: 01 00 00 00 nop
return result;
}
return AIO_ALLDONE;
}
400078b0: 81 c7 e0 08 ret
400078b4: 81 e8 00 00 restore
400078c0 <aio_fsync>:
int aio_fsync(
int op,
struct aiocb *aiocbp
)
{
400078c0: 9d e3 bf a0 save %sp, -96, %sp
rtems_aio_request *req;
int mode;
if (op != O_SYNC)
400078c4: 03 00 00 08 sethi %hi(0x2000), %g1
400078c8: 80 a6 00 01 cmp %i0, %g1
400078cc: 12 80 00 10 bne 4000790c <aio_fsync+0x4c>
400078d0: ba 10 20 16 mov 0x16, %i5
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
400078d4: d0 06 40 00 ld [ %i1 ], %o0
400078d8: 40 00 1b 40 call 4000e5d8 <fcntl>
400078dc: 92 10 20 03 mov 3, %o1
if (!(((mode & O_ACCMODE) == O_WRONLY) || ((mode & O_ACCMODE) == O_RDWR)))
400078e0: 90 0a 20 03 and %o0, 3, %o0
400078e4: 90 02 3f ff add %o0, -1, %o0
400078e8: 80 a2 20 01 cmp %o0, 1
400078ec: 18 80 00 08 bgu 4000790c <aio_fsync+0x4c>
400078f0: ba 10 20 09 mov 9, %i5
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
req = malloc (sizeof (rtems_aio_request));
400078f4: 7f ff f2 87 call 40004310 <malloc>
400078f8: 90 10 20 18 mov 0x18, %o0
if (req == NULL)
400078fc: b0 92 20 00 orcc %o0, 0, %i0
40007900: 32 80 00 0b bne,a 4000792c <aio_fsync+0x6c> <== ALWAYS TAKEN
40007904: f2 26 20 14 st %i1, [ %i0 + 0x14 ]
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
40007908: ba 10 20 0b mov 0xb, %i5 <== NOT EXECUTED
4000790c: 82 10 3f ff mov -1, %g1
40007910: fa 26 60 34 st %i5, [ %i1 + 0x34 ]
40007914: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
40007918: 40 00 29 e5 call 400120ac <__errno>
4000791c: b0 10 3f ff mov -1, %i0
40007920: fa 22 00 00 st %i5, [ %o0 ]
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_SYNC;
return rtems_aio_enqueue (req);
}
40007924: 81 c7 e0 08 ret
40007928: 81 e8 00 00 restore
req = malloc (sizeof (rtems_aio_request));
if (req == NULL)
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_SYNC;
4000792c: 82 10 20 03 mov 3, %g1
40007930: c2 26 60 30 st %g1, [ %i1 + 0x30 ]
return rtems_aio_enqueue (req);
40007934: 40 00 01 48 call 40007e54 <rtems_aio_enqueue>
40007938: 81 e8 00 00 restore
4000807c <aio_read>:
* 0 - otherwise
*/
int
aio_read (struct aiocb *aiocbp)
{
4000807c: 9d e3 bf a0 save %sp, -96, %sp
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
40008080: d0 06 00 00 ld [ %i0 ], %o0
40008084: 92 10 20 03 mov 3, %o1
40008088: 40 00 19 54 call 4000e5d8 <fcntl>
4000808c: ba 10 00 18 mov %i0, %i5
if (!(((mode & O_ACCMODE) == O_RDONLY) || ((mode & O_ACCMODE) == O_RDWR)))
40008090: 80 8a 20 01 btst 1, %o0
40008094: 12 80 00 11 bne 400080d8 <aio_read+0x5c>
40008098: b8 10 20 09 mov 9, %i4
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
if (aiocbp->aio_reqprio < 0 || aiocbp->aio_reqprio > AIO_PRIO_DELTA_MAX)
4000809c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
400080a0: 80 a0 60 00 cmp %g1, 0
400080a4: 22 80 00 04 be,a 400080b4 <aio_read+0x38>
400080a8: c2 06 20 08 ld [ %i0 + 8 ], %g1
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
400080ac: 10 80 00 0b b 400080d8 <aio_read+0x5c>
400080b0: b8 10 20 16 mov 0x16, %i4
if (aiocbp->aio_offset < 0)
400080b4: 80 a0 60 00 cmp %g1, 0
400080b8: 06 80 00 08 bl 400080d8 <aio_read+0x5c>
400080bc: b8 10 20 16 mov 0x16, %i4
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
req = malloc (sizeof (rtems_aio_request));
400080c0: 7f ff f0 94 call 40004310 <malloc>
400080c4: 90 10 20 18 mov 0x18, %o0
if (req == NULL)
400080c8: b0 92 20 00 orcc %o0, 0, %i0
400080cc: 32 80 00 0b bne,a 400080f8 <aio_read+0x7c> <== ALWAYS TAKEN
400080d0: fa 26 20 14 st %i5, [ %i0 + 0x14 ]
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
400080d4: b8 10 20 0b mov 0xb, %i4 <== NOT EXECUTED
400080d8: 82 10 3f ff mov -1, %g1
400080dc: f8 27 60 34 st %i4, [ %i5 + 0x34 ]
400080e0: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
400080e4: 40 00 27 f2 call 400120ac <__errno>
400080e8: b0 10 3f ff mov -1, %i0
400080ec: f8 22 00 00 st %i4, [ %o0 ]
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_READ;
return rtems_aio_enqueue (req);
}
400080f0: 81 c7 e0 08 ret
400080f4: 81 e8 00 00 restore
req = malloc (sizeof (rtems_aio_request));
if (req == NULL)
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_READ;
400080f8: 82 10 20 01 mov 1, %g1
400080fc: c2 27 60 30 st %g1, [ %i5 + 0x30 ]
return rtems_aio_enqueue (req);
40008100: 7f ff ff 55 call 40007e54 <rtems_aio_enqueue>
40008104: 81 e8 00 00 restore
40008110 <aio_write>:
* 0 - otherwise
*/
int
aio_write (struct aiocb *aiocbp)
{
40008110: 9d e3 bf a0 save %sp, -96, %sp
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
40008114: d0 06 00 00 ld [ %i0 ], %o0
40008118: 40 00 19 30 call 4000e5d8 <fcntl>
4000811c: 92 10 20 03 mov 3, %o1
* 0 - otherwise
*/
int
aio_write (struct aiocb *aiocbp)
{
40008120: ba 10 00 18 mov %i0, %i5
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
if (!(((mode & O_ACCMODE) == O_WRONLY) || ((mode & O_ACCMODE) == O_RDWR)))
40008124: 90 0a 20 03 and %o0, 3, %o0
40008128: 90 02 3f ff add %o0, -1, %o0
4000812c: 80 a2 20 01 cmp %o0, 1
40008130: 18 80 00 11 bgu 40008174 <aio_write+0x64>
40008134: b8 10 20 09 mov 9, %i4
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
if (aiocbp->aio_reqprio < 0 || aiocbp->aio_reqprio > AIO_PRIO_DELTA_MAX)
40008138: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
4000813c: 80 a0 60 00 cmp %g1, 0
40008140: 22 80 00 04 be,a 40008150 <aio_write+0x40>
40008144: c2 06 20 08 ld [ %i0 + 8 ], %g1
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
40008148: 10 80 00 0b b 40008174 <aio_write+0x64>
4000814c: b8 10 20 16 mov 0x16, %i4
if (aiocbp->aio_offset < 0)
40008150: 80 a0 60 00 cmp %g1, 0
40008154: 06 80 00 08 bl 40008174 <aio_write+0x64>
40008158: b8 10 20 16 mov 0x16, %i4
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
req = malloc (sizeof (rtems_aio_request));
4000815c: 7f ff f0 6d call 40004310 <malloc>
40008160: 90 10 20 18 mov 0x18, %o0
if (req == NULL)
40008164: b0 92 20 00 orcc %o0, 0, %i0
40008168: 32 80 00 0b bne,a 40008194 <aio_write+0x84> <== ALWAYS TAKEN
4000816c: fa 26 20 14 st %i5, [ %i0 + 0x14 ]
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
40008170: b8 10 20 0b mov 0xb, %i4 <== NOT EXECUTED
40008174: 82 10 3f ff mov -1, %g1
40008178: f8 27 60 34 st %i4, [ %i5 + 0x34 ]
4000817c: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
40008180: 40 00 27 cb call 400120ac <__errno>
40008184: b0 10 3f ff mov -1, %i0
40008188: f8 22 00 00 st %i4, [ %o0 ]
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_WRITE;
return rtems_aio_enqueue (req);
}
4000818c: 81 c7 e0 08 ret
40008190: 81 e8 00 00 restore
req = malloc (sizeof (rtems_aio_request));
if (req == NULL)
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_WRITE;
40008194: 82 10 20 02 mov 2, %g1
40008198: c2 27 60 30 st %g1, [ %i5 + 0x30 ]
return rtems_aio_enqueue (req);
4000819c: 7f ff ff 2e call 40007e54 <rtems_aio_enqueue>
400081a0: 81 e8 00 00 restore
40006e6c <clock_gettime>:
int clock_gettime(
clockid_t clock_id,
struct timespec *tp
)
{
40006e6c: 9d e3 bf 98 save %sp, -104, %sp
if ( !tp )
40006e70: 80 a6 60 00 cmp %i1, 0
40006e74: 12 80 00 06 bne 40006e8c <clock_gettime+0x20>
40006e78: 80 a6 20 01 cmp %i0, 1
rtems_set_errno_and_return_minus_one( EINVAL );
40006e7c: 40 00 24 35 call 4000ff50 <__errno>
40006e80: 01 00 00 00 nop
40006e84: 10 80 00 25 b 40006f18 <clock_gettime+0xac>
40006e88: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
if ( clock_id == CLOCK_REALTIME ) {
40006e8c: 12 80 00 16 bne 40006ee4 <clock_gettime+0x78>
40006e90: 80 a6 20 04 cmp %i0, 4
)
{
Timestamp_Control tod_as_timestamp;
Timestamp_Control *tod_as_timestamp_ptr;
tod_as_timestamp_ptr =
40006e94: 90 07 bf f8 add %fp, -8, %o0
40006e98: 13 10 00 6a sethi %hi(0x4001a800), %o1
40006e9c: 40 00 06 65 call 40008830 <_TOD_Get_with_nanoseconds>
40006ea0: 92 12 61 20 or %o1, 0x120, %o1 ! 4001a920 <_TOD>
static inline void _TOD_Get(
struct timespec *tod_as_timespec
)
{
Timestamp_Control tod_as_timestamp;
Timestamp_Control *tod_as_timestamp_ptr;
40006ea4: f8 1a 00 00 ldd [ %o0 ], %i4
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
40006ea8: 94 10 20 00 clr %o2
40006eac: 90 10 00 1c mov %i4, %o0
40006eb0: 92 10 00 1d mov %i5, %o1
40006eb4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
40006eb8: 40 00 3b 45 call 40015bcc <__divdi3>
40006ebc: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
40006ec0: 90 10 00 1c mov %i4, %o0
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
40006ec4: d2 26 40 00 st %o1, [ %i1 ]
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
40006ec8: 94 10 20 00 clr %o2
40006ecc: 92 10 00 1d mov %i5, %o1
40006ed0: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
40006ed4: 40 00 3c 30 call 40015f94 <__moddi3>
40006ed8: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
40006edc: 10 80 00 06 b 40006ef4 <clock_gettime+0x88>
40006ee0: d2 26 60 04 st %o1, [ %i1 + 4 ]
_TOD_Get(tp);
return 0;
}
#ifdef CLOCK_MONOTONIC
if ( clock_id == CLOCK_MONOTONIC ) {
40006ee4: 12 80 00 06 bne 40006efc <clock_gettime+0x90> <== ALWAYS TAKEN
40006ee8: 80 a6 20 02 cmp %i0, 2
_TOD_Get_uptime_as_timespec( tp );
40006eec: 40 00 06 62 call 40008874 <_TOD_Get_uptime_as_timespec>
40006ef0: 90 10 00 19 mov %i1, %o0
return 0;
40006ef4: 81 c7 e0 08 ret
40006ef8: 91 e8 20 00 restore %g0, 0, %o0
}
#endif
#ifdef _POSIX_CPUTIME
if ( clock_id == CLOCK_PROCESS_CPUTIME_ID ) {
40006efc: 02 bf ff fc be 40006eec <clock_gettime+0x80>
40006f00: 80 a6 20 03 cmp %i0, 3
return 0;
}
#endif
#ifdef _POSIX_THREAD_CPUTIME
if ( clock_id == CLOCK_THREAD_CPUTIME_ID )
40006f04: 12 bf ff de bne 40006e7c <clock_gettime+0x10>
40006f08: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( ENOSYS );
40006f0c: 40 00 24 11 call 4000ff50 <__errno>
40006f10: 01 00 00 00 nop
40006f14: 82 10 20 58 mov 0x58, %g1 ! 58 <_TLS_Alignment+0x57>
40006f18: c2 22 00 00 st %g1, [ %o0 ]
#endif
rtems_set_errno_and_return_minus_one( EINVAL );
return 0;
}
40006f1c: 81 c7 e0 08 ret
40006f20: 91 e8 3f ff restore %g0, -1, %o0
400072e4 <clock_settime>:
int clock_settime(
clockid_t clock_id,
const struct timespec *tp
)
{
400072e4: 9d e3 bf 98 save %sp, -104, %sp
if ( !tp )
400072e8: 82 96 60 00 orcc %i1, 0, %g1
400072ec: 12 80 00 06 bne 40007304 <clock_settime+0x20> <== ALWAYS TAKEN
400072f0: 80 a6 20 01 cmp %i0, 1
rtems_set_errno_and_return_minus_one( EINVAL );
400072f4: 40 00 26 31 call 40010bb8 <__errno>
400072f8: 01 00 00 00 nop
400072fc: 10 80 00 4a b 40007424 <clock_settime+0x140>
40007300: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
if ( clock_id == CLOCK_REALTIME ) {
40007304: 32 80 00 42 bne,a 4000740c <clock_settime+0x128>
40007308: b0 06 3f fe add %i0, -2, %i0
if ( tp->tv_sec < TOD_SECONDS_1970_THROUGH_1988 )
4000730c: c6 00 40 00 ld [ %g1 ], %g3
40007310: 05 08 76 b9 sethi %hi(0x21dae400), %g2
40007314: 84 10 a0 ff or %g2, 0xff, %g2 ! 21dae4ff <RAM_SIZE+0x219ae4ff>
40007318: 80 a0 c0 02 cmp %g3, %g2
4000731c: 08 bf ff f6 bleu 400072f4 <clock_settime+0x10>
40007320: 01 00 00 00 nop
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
40007324: c6 01 a0 10 ld [ %g6 + 0x10 ], %g3
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
40007328: 86 00 e0 01 inc %g3
_Thread_Dispatch_disable_level = disable_level;
4000732c: c6 21 a0 10 st %g3, [ %g6 + 0x10 ]
const struct timespec *tod_as_timespec
)
{
Timestamp_Control tod_as_timestamp;
_Timestamp_Set(
40007330: c8 00 40 00 ld [ %g1 ], %g4
40007334: c2 00 60 04 ld [ %g1 + 4 ], %g1
40007338: 86 10 00 04 mov %g4, %g3
4000733c: 85 39 20 1f sra %g4, 0x1f, %g2
Timestamp64_Control *_time,
Timestamp64_Control _seconds,
Timestamp64_Control _nanoseconds
)
{
*_time = _seconds * 1000000000L + _nanoseconds;
40007340: b7 31 20 1d srl %g4, 0x1d, %i3
40007344: 89 28 a0 03 sll %g2, 3, %g4
40007348: bb 28 e0 03 sll %g3, 3, %i5
4000734c: b8 16 c0 04 or %i3, %g4, %i4
40007350: 89 37 60 1b srl %i5, 0x1b, %g4
40007354: b5 2f 20 05 sll %i4, 5, %i2
40007358: b7 2f 60 05 sll %i5, 5, %i3
4000735c: b4 11 00 1a or %g4, %i2, %i2
40007360: ba a6 c0 1d subcc %i3, %i5, %i5
40007364: 89 37 60 1a srl %i5, 0x1a, %g4
40007368: b8 66 80 1c subx %i2, %i4, %i4
4000736c: b7 2f 60 06 sll %i5, 6, %i3
40007370: b5 2f 20 06 sll %i4, 6, %i2
40007374: b6 a6 c0 1d subcc %i3, %i5, %i3
40007378: b4 11 00 1a or %g4, %i2, %i2
4000737c: b4 66 80 1c subx %i2, %i4, %i2
40007380: b2 86 c0 03 addcc %i3, %g3, %i1
40007384: b0 46 80 02 addx %i2, %g2, %i0
40007388: 89 36 60 1e srl %i1, 0x1e, %g4
4000738c: 85 2e 20 02 sll %i0, 2, %g2
40007390: 84 11 00 02 or %g4, %g2, %g2
40007394: 87 2e 60 02 sll %i1, 2, %g3
40007398: ba 86 40 03 addcc %i1, %g3, %i5
4000739c: b8 46 00 02 addx %i0, %g2, %i4
400073a0: 89 37 60 1e srl %i5, 0x1e, %g4
400073a4: 85 2f 20 02 sll %i4, 2, %g2
400073a8: 84 11 00 02 or %g4, %g2, %g2
400073ac: 87 2f 60 02 sll %i5, 2, %g3
400073b0: b6 87 40 03 addcc %i5, %g3, %i3
400073b4: b4 47 00 02 addx %i4, %g2, %i2
400073b8: 85 36 e0 1e srl %i3, 0x1e, %g2
400073bc: bb 2e e0 02 sll %i3, 2, %i5
400073c0: b9 2e a0 02 sll %i2, 2, %i4
400073c4: 86 86 c0 1d addcc %i3, %i5, %g3
400073c8: b8 10 80 1c or %g2, %i4, %i4
400073cc: 84 46 80 1c addx %i2, %i4, %g2
400073d0: 89 28 e0 09 sll %g3, 9, %g4
400073d4: b9 30 e0 17 srl %g3, 0x17, %i4
400073d8: b6 81 00 01 addcc %g4, %g1, %i3
&tod_as_timestamp,
tod_as_timespec->tv_sec,
tod_as_timespec->tv_nsec
);
_TOD_Set_with_timestamp( &tod_as_timestamp );
400073dc: 90 07 bf f8 add %fp, -8, %o0
400073e0: bb 28 a0 09 sll %g2, 9, %i5
400073e4: 84 17 00 1d or %i4, %i5, %g2
rtems_set_errno_and_return_minus_one( ENOSYS );
#endif
else
rtems_set_errno_and_return_minus_one( EINVAL );
return 0;
400073e8: b0 10 20 00 clr %i0
const struct timespec *tod_as_timespec
)
{
Timestamp_Control tod_as_timestamp;
_Timestamp_Set(
400073ec: b9 38 60 1f sra %g1, 0x1f, %i4
400073f0: b4 40 80 1c addx %g2, %i4, %i2
&tod_as_timestamp,
tod_as_timespec->tv_sec,
tod_as_timespec->tv_nsec
);
_TOD_Set_with_timestamp( &tod_as_timestamp );
400073f4: 40 00 07 e8 call 40009394 <_TOD_Set_with_timestamp>
400073f8: f4 3f bf f8 std %i2, [ %fp + -8 ]
if ( tp->tv_sec < TOD_SECONDS_1970_THROUGH_1988 )
rtems_set_errno_and_return_minus_one( EINVAL );
_Thread_Disable_dispatch();
_TOD_Set( tp );
_Thread_Enable_dispatch();
400073fc: 40 00 0e 26 call 4000ac94 <_Thread_Enable_dispatch>
40007400: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( ENOSYS );
#endif
else
rtems_set_errno_and_return_minus_one( EINVAL );
return 0;
40007404: 81 c7 e0 08 ret
40007408: 81 e8 00 00 restore
_Thread_Disable_dispatch();
_TOD_Set( tp );
_Thread_Enable_dispatch();
}
#ifdef _POSIX_CPUTIME
else if ( clock_id == CLOCK_PROCESS_CPUTIME_ID )
4000740c: 80 a6 20 01 cmp %i0, 1
40007410: 18 bf ff b9 bgu 400072f4 <clock_settime+0x10>
40007414: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( ENOSYS );
40007418: 40 00 25 e8 call 40010bb8 <__errno>
4000741c: 01 00 00 00 nop
40007420: 82 10 20 58 mov 0x58, %g1 ! 58 <_TLS_Alignment+0x57>
40007424: c2 22 00 00 st %g1, [ %o0 ]
#endif
else
rtems_set_errno_and_return_minus_one( EINVAL );
return 0;
}
40007428: 81 c7 e0 08 ret
4000742c: 91 e8 3f ff restore %g0, -1, %o0
40029570 <killinfo>:
int killinfo(
pid_t pid,
int sig,
const union sigval *value
)
{
40029570: 9d e3 bf 90 save %sp, -112, %sp
POSIX_signals_Siginfo_node *psiginfo;
/*
* Only supported for the "calling process" (i.e. this node).
*/
if ( pid != getpid() )
40029574: 7f ff ff 2c call 40029224 <getpid>
40029578: 01 00 00 00 nop
4002957c: 80 a6 00 08 cmp %i0, %o0
40029580: 02 80 00 06 be 40029598 <killinfo+0x28>
40029584: 80 a6 60 00 cmp %i1, 0
rtems_set_errno_and_return_minus_one( ESRCH );
40029588: 7f ff b9 41 call 40017a8c <__errno>
4002958c: 01 00 00 00 nop
40029590: 10 80 00 07 b 400295ac <killinfo+0x3c>
40029594: 82 10 20 03 mov 3, %g1 ! 3 <_TLS_Alignment+0x2>
/*
* Validate the signal passed.
*/
if ( !sig )
40029598: 12 80 00 08 bne 400295b8 <killinfo+0x48>
4002959c: ba 06 7f ff add %i1, -1, %i5
rtems_set_errno_and_return_minus_one( EINVAL );
400295a0: 7f ff b9 3b call 40017a8c <__errno>
400295a4: 01 00 00 00 nop
400295a8: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
400295ac: c2 22 00 00 st %g1, [ %o0 ]
400295b0: 81 c7 e0 08 ret
400295b4: 91 e8 3f ff restore %g0, -1, %o0
if ( !is_valid_signo(sig) )
400295b8: 80 a7 60 1f cmp %i5, 0x1f
400295bc: 18 bf ff f9 bgu 400295a0 <killinfo+0x30>
400295c0: 23 10 00 c3 sethi %hi(0x40030c00), %l1
rtems_set_errno_and_return_minus_one( EINVAL );
/*
* If the signal is being ignored, then we are out of here.
*/
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN )
400295c4: b1 2e 60 02 sll %i1, 2, %i0
400295c8: a2 14 60 cc or %l1, 0xcc, %l1
400295cc: a1 2e 60 04 sll %i1, 4, %l0
400295d0: 82 24 00 18 sub %l0, %i0, %g1
400295d4: 82 04 40 01 add %l1, %g1, %g1
400295d8: c2 00 60 08 ld [ %g1 + 8 ], %g1
400295dc: 80 a0 60 01 cmp %g1, 1
400295e0: 02 80 00 92 be 40029828 <killinfo+0x2b8>
400295e4: 80 a6 60 08 cmp %i1, 8
/*
* P1003.1c/Draft 10, p. 33 says that certain signals should always
* be directed to the executing thread such as those caused by hardware
* faults.
*/
if ( (sig == SIGFPE) || (sig == SIGILL) || (sig == SIGSEGV ) )
400295e8: 02 80 00 06 be 40029600 <killinfo+0x90>
400295ec: 80 a6 60 04 cmp %i1, 4
400295f0: 02 80 00 04 be 40029600 <killinfo+0x90>
400295f4: 80 a6 60 0b cmp %i1, 0xb
400295f8: 12 80 00 08 bne 40029618 <killinfo+0xa8>
400295fc: 82 10 20 01 mov 1, %g1
return pthread_kill( pthread_self(), sig );
40029600: 40 00 01 1f call 40029a7c <pthread_self>
40029604: 01 00 00 00 nop
40029608: 40 00 00 f0 call 400299c8 <pthread_kill>
4002960c: 92 10 00 19 mov %i1, %o1
40029610: 81 c7 e0 08 ret
40029614: 91 e8 00 08 restore %g0, %o0, %o0
/*
* Build up a siginfo structure
*/
siginfo = &siginfo_struct;
siginfo->si_signo = sig;
40029618: f2 27 bf f4 st %i1, [ %fp + -12 ]
siginfo->si_code = SI_USER;
4002961c: c2 27 bf f8 st %g1, [ %fp + -8 ]
if ( !value ) {
40029620: 80 a6 a0 00 cmp %i2, 0
40029624: 12 80 00 04 bne 40029634 <killinfo+0xc4>
40029628: bb 28 40 1d sll %g1, %i5, %i5
4002962c: 10 80 00 04 b 4002963c <killinfo+0xcc>
40029630: c0 27 bf fc clr [ %fp + -4 ]
siginfo->si_value.sival_int = 0;
} else {
siginfo->si_value = *value;
40029634: c2 06 80 00 ld [ %i2 ], %g1
40029638: c2 27 bf fc st %g1, [ %fp + -4 ]
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
4002963c: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
40029640: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
40029644: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
/*
* Is the currently executing thread interested? If so then it will
* get it an execute it as soon as the dispatcher executes.
*/
the_thread = _Thread_Executing;
40029648: d0 01 a0 18 ld [ %g6 + 0x18 ], %o0
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
if ( _POSIX_signals_Is_interested( api, mask ) ) {
4002964c: c4 02 21 30 ld [ %o0 + 0x130 ], %g2
40029650: c4 00 a0 dc ld [ %g2 + 0xdc ], %g2
40029654: 80 af 40 02 andncc %i5, %g2, %g0
40029658: 12 80 00 50 bne 40029798 <killinfo+0x228>
4002965c: 03 10 00 c3 sethi %hi(0x40030c00), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
40029660: d0 00 62 58 ld [ %g1 + 0x258 ], %o0 ! 40030e58 <_POSIX_signals_Wait_queue>
/* XXX violation of visibility -- need to define thread queue support */
the_chain = &_POSIX_signals_Wait_queue.Queues.Fifo;
for ( the_node = _Chain_First( the_chain );
40029664: 05 10 00 c3 sethi %hi(0x40030c00), %g2
40029668: 84 10 a2 5c or %g2, 0x25c, %g2 ! 40030e5c <_POSIX_signals_Wait_queue+0x4>
4002966c: 80 a2 00 02 cmp %o0, %g2
40029670: 02 80 00 0c be 400296a0 <killinfo+0x130>
40029674: 03 10 00 b8 sethi %hi(0x4002e000), %g1
#endif
/*
* Is this thread is actually blocked waiting for the signal?
*/
if (the_thread->Wait.option & mask)
40029678: c8 02 20 30 ld [ %o0 + 0x30 ], %g4
4002967c: 80 8f 40 04 btst %i5, %g4
40029680: 12 80 00 46 bne 40029798 <killinfo+0x228>
40029684: c6 02 21 30 ld [ %o0 + 0x130 ], %g3
/*
* Is this thread is blocked waiting for another signal but has
* not blocked this one?
*/
if (~api->signals_blocked & mask)
40029688: c6 00 e0 dc ld [ %g3 + 0xdc ], %g3
4002968c: 80 af 40 03 andncc %i5, %g3, %g0
40029690: 12 80 00 43 bne 4002979c <killinfo+0x22c>
40029694: 92 10 00 19 mov %i1, %o1
the_chain = &_POSIX_signals_Wait_queue.Queues.Fifo;
for ( the_node = _Chain_First( the_chain );
!_Chain_Is_tail( the_chain, the_node ) ;
the_node = the_node->next ) {
40029698: 10 bf ff f5 b 4002966c <killinfo+0xfc>
4002969c: d0 02 00 00 ld [ %o0 ], %o0
* NOTES:
*
* + rtems internal threads do not receive signals.
*/
interested = NULL;
interested_priority = PRIORITY_MAXIMUM + 1;
400296a0: c6 08 60 f8 ldub [ %g1 + 0xf8 ], %g3
*
* NOTES:
*
* + rtems internal threads do not receive signals.
*/
interested = NULL;
400296a4: 90 10 20 00 clr %o0
interested_priority = PRIORITY_MAXIMUM + 1;
400296a8: 86 00 e0 01 inc %g3
for (the_api = OBJECTS_CLASSIC_API; the_api <= OBJECTS_APIS_LAST; the_api++) {
400296ac: b8 10 20 02 mov 2, %i4
/*
* This can occur when no one is interested and an API is not configured.
*/
if ( !_Objects_Information_table[ the_api ] )
400296b0: 19 10 00 c0 sethi %hi(0x40030000), %o4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_interruptible_by_signal (
States_Control the_states
)
{
return (the_states & STATES_INTERRUPTIBLE_BY_SIGNAL);
400296b4: 35 04 00 00 sethi %hi(0x10000000), %i2
400296b8: 85 2f 20 02 sll %i4, 2, %g2
400296bc: 88 13 23 60 or %o4, 0x360, %g4
400296c0: c4 01 00 02 ld [ %g4 + %g2 ], %g2
400296c4: 80 a0 a0 00 cmp %g2, 0
400296c8: 02 80 00 2d be 4002977c <killinfo+0x20c> <== NEVER TAKEN
400296cc: b6 10 20 01 mov 1, %i3
continue;
the_info = _Objects_Information_table[ the_api ][ 1 ];
400296d0: c4 00 a0 04 ld [ %g2 + 4 ], %g2
*/
if ( !the_info )
continue;
#endif
maximum = the_info->maximum;
400296d4: d6 10 a0 10 lduh [ %g2 + 0x10 ], %o3
object_table = the_info->local_table;
400296d8: d4 00 a0 1c ld [ %g2 + 0x1c ], %o2
for ( index = 1 ; index <= maximum ; index++ ) {
400296dc: 80 a6 c0 0b cmp %i3, %o3
400296e0: 18 80 00 27 bgu 4002977c <killinfo+0x20c>
400296e4: 85 2e e0 02 sll %i3, 2, %g2
the_thread = (Thread_Control *) object_table[ index ];
400296e8: c4 02 80 02 ld [ %o2 + %g2 ], %g2
if ( !the_thread )
400296ec: 80 a0 a0 00 cmp %g2, 0
400296f0: 22 bf ff fb be,a 400296dc <killinfo+0x16c>
400296f4: b6 06 e0 01 inc %i3
/*
* If this thread is of lower priority than the interested thread,
* go on to the next thread.
*/
if ( the_thread->current_priority > interested_priority )
400296f8: c8 00 a0 14 ld [ %g2 + 0x14 ], %g4
400296fc: 80 a1 00 03 cmp %g4, %g3
40029700: 38 bf ff f7 bgu,a 400296dc <killinfo+0x16c>
40029704: b6 06 e0 01 inc %i3
#if defined(RTEMS_DEBUG)
if ( !api )
continue;
#endif
if ( !_POSIX_signals_Is_interested( api, mask ) )
40029708: de 00 a1 30 ld [ %g2 + 0x130 ], %o7
4002970c: de 03 e0 dc ld [ %o7 + 0xdc ], %o7
40029710: 80 af 40 0f andncc %i5, %o7, %g0
40029714: 22 bf ff f2 be,a 400296dc <killinfo+0x16c>
40029718: b6 06 e0 01 inc %i3
*
* NOTE: We initialized interested_priority to PRIORITY_MAXIMUM + 1
* so we never have to worry about deferencing a NULL
* interested thread.
*/
if ( the_thread->current_priority < interested_priority ) {
4002971c: 80 a1 00 03 cmp %g4, %g3
40029720: 2a 80 00 14 bcs,a 40029770 <killinfo+0x200>
40029724: 86 10 00 04 mov %g4, %g3
* and blocking interruptibutable by signal.
*
* If the interested thread is ready, don't think about changing.
*/
if ( interested && !_States_Is_ready( interested->current_state ) ) {
40029728: 80 a2 20 00 cmp %o0, 0
4002972c: 22 bf ff ec be,a 400296dc <killinfo+0x16c> <== NEVER TAKEN
40029730: b6 06 e0 01 inc %i3 <== NOT EXECUTED
40029734: da 02 20 10 ld [ %o0 + 0x10 ], %o5
40029738: 80 a3 60 00 cmp %o5, 0
4002973c: 22 bf ff e8 be,a 400296dc <killinfo+0x16c> <== NEVER TAKEN
40029740: b6 06 e0 01 inc %i3 <== NOT EXECUTED
/* preferred ready over blocked */
DEBUG_STEP("5");
if ( _States_Is_ready( the_thread->current_state ) ) {
40029744: de 00 a0 10 ld [ %g2 + 0x10 ], %o7
40029748: 80 a3 e0 00 cmp %o7, 0
4002974c: 22 80 00 09 be,a 40029770 <killinfo+0x200>
40029750: 86 10 00 04 mov %g4, %g3
continue;
}
DEBUG_STEP("6");
/* prefer blocked/interruptible over blocked/not interruptible */
if ( !_States_Is_interruptible_by_signal(interested->current_state) ) {
40029754: 80 8b 40 1a btst %o5, %i2
40029758: 32 bf ff e1 bne,a 400296dc <killinfo+0x16c>
4002975c: b6 06 e0 01 inc %i3
DEBUG_STEP("7");
if ( _States_Is_interruptible_by_signal(the_thread->current_state) ) {
40029760: 80 8b c0 1a btst %o7, %i2
40029764: 22 bf ff de be,a 400296dc <killinfo+0x16c>
40029768: b6 06 e0 01 inc %i3
4002976c: 86 10 00 04 mov %g4, %g3
40029770: 90 10 00 02 mov %g2, %o0
#endif
maximum = the_info->maximum;
object_table = the_info->local_table;
for ( index = 1 ; index <= maximum ; index++ ) {
40029774: 10 bf ff da b 400296dc <killinfo+0x16c>
40029778: b6 06 e0 01 inc %i3
* + rtems internal threads do not receive signals.
*/
interested = NULL;
interested_priority = PRIORITY_MAXIMUM + 1;
for (the_api = OBJECTS_CLASSIC_API; the_api <= OBJECTS_APIS_LAST; the_api++) {
4002977c: b8 07 20 01 inc %i4
40029780: 80 a7 20 04 cmp %i4, 4
40029784: 12 bf ff ce bne 400296bc <killinfo+0x14c>
40029788: 85 2f 20 02 sll %i4, 2, %g2
}
}
}
}
if ( interested ) {
4002978c: 80 a2 20 00 cmp %o0, 0
40029790: 02 80 00 0b be 400297bc <killinfo+0x24c>
40029794: 01 00 00 00 nop
/*
* Returns true if the signal was synchronously given to a thread
* blocked waiting for the signal.
*/
if ( _POSIX_signals_Unblock_thread( the_thread, sig, siginfo ) ) {
40029798: 92 10 00 19 mov %i1, %o1
4002979c: 40 00 00 30 call 4002985c <_POSIX_signals_Unblock_thread>
400297a0: 94 07 bf f4 add %fp, -12, %o2
400297a4: 80 a2 20 00 cmp %o0, 0
400297a8: 02 80 00 05 be 400297bc <killinfo+0x24c>
400297ac: 01 00 00 00 nop
_Thread_Enable_dispatch();
400297b0: 7f ff 92 83 call 4000e1bc <_Thread_Enable_dispatch>
400297b4: b0 10 20 00 clr %i0 ! 0 <_TLS_BSS_size>
400297b8: 30 80 00 1d b,a 4002982c <killinfo+0x2bc>
/*
* We may have woken up a thread but we definitely need to post the
* signal to the process wide information set.
*/
_POSIX_signals_Set_process_signals( mask );
400297bc: 40 00 00 1e call 40029834 <_POSIX_signals_Set_process_signals>
400297c0: 90 10 00 1d mov %i5, %o0
if ( _POSIX_signals_Vectors[ sig ].sa_flags == SA_SIGINFO ) {
400297c4: b8 24 00 18 sub %l0, %i0, %i4
400297c8: c2 04 40 1c ld [ %l1 + %i4 ], %g1
400297cc: 80 a0 60 02 cmp %g1, 2
400297d0: 12 bf ff f8 bne 400297b0 <killinfo+0x240>
400297d4: 11 10 00 c3 sethi %hi(0x40030c00), %o0
psiginfo = (POSIX_signals_Siginfo_node *)
400297d8: 7f ff 8a df call 4000c354 <_Chain_Get>
400297dc: 90 12 22 4c or %o0, 0x24c, %o0 ! 40030e4c <_POSIX_signals_Inactive_siginfo>
_Chain_Get( &_POSIX_signals_Inactive_siginfo );
if ( !psiginfo ) {
400297e0: ba 92 20 00 orcc %o0, 0, %i5
400297e4: 12 80 00 08 bne 40029804 <killinfo+0x294>
400297e8: 92 07 bf f4 add %fp, -12, %o1
_Thread_Enable_dispatch();
400297ec: 7f ff 92 74 call 4000e1bc <_Thread_Enable_dispatch>
400297f0: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( EAGAIN );
400297f4: 7f ff b8 a6 call 40017a8c <__errno>
400297f8: 01 00 00 00 nop
400297fc: 10 bf ff 6c b 400295ac <killinfo+0x3c>
40029800: 82 10 20 0b mov 0xb, %g1 ! b <_TLS_Alignment+0xa>
}
psiginfo->Info = *siginfo;
40029804: 90 07 60 08 add %i5, 8, %o0
40029808: 7f ff bf 77 call 400195e4 <memcpy>
4002980c: 94 10 20 0c mov 0xc, %o2
_Chain_Append( &_POSIX_signals_Siginfo[ sig ], &psiginfo->Node );
40029810: 11 10 00 c3 sethi %hi(0x40030c00), %o0
40029814: 92 10 00 1d mov %i5, %o1
40029818: 90 12 22 9c or %o0, 0x29c, %o0
4002981c: 7f ff 8a c2 call 4000c324 <_Chain_Append>
40029820: 90 02 00 1c add %o0, %i4, %o0
40029824: 30 bf ff e3 b,a 400297b0 <killinfo+0x240>
/*
* If the signal is being ignored, then we are out of here.
*/
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN )
return 0;
40029828: b0 10 20 00 clr %i0
}
DEBUG_STEP("\n");
_Thread_Enable_dispatch();
return 0;
}
4002982c: 81 c7 e0 08 ret
40029830: 81 e8 00 00 restore
4000c908 <pthread_attr_setschedpolicy>:
int pthread_attr_setschedpolicy(
pthread_attr_t *attr,
int policy
)
{
4000c908: 82 10 00 08 mov %o0, %g1
if ( !attr || !attr->is_initialized )
4000c90c: 80 a0 60 00 cmp %g1, 0
4000c910: 02 80 00 0f be 4000c94c <pthread_attr_setschedpolicy+0x44>
4000c914: 90 10 20 16 mov 0x16, %o0
4000c918: c4 00 40 00 ld [ %g1 ], %g2
4000c91c: 80 a0 a0 00 cmp %g2, 0
4000c920: 02 80 00 0b be 4000c94c <pthread_attr_setschedpolicy+0x44>
4000c924: 80 a2 60 04 cmp %o1, 4
case SCHED_SPORADIC:
attr->schedpolicy = policy;
return 0;
default:
return ENOTSUP;
4000c928: 18 80 00 09 bgu 4000c94c <pthread_attr_setschedpolicy+0x44>
4000c92c: 90 10 20 86 mov 0x86, %o0
4000c930: 84 10 20 01 mov 1, %g2
4000c934: 85 28 80 09 sll %g2, %o1, %g2
4000c938: 80 88 a0 17 btst 0x17, %g2
4000c93c: 02 80 00 04 be 4000c94c <pthread_attr_setschedpolicy+0x44><== NEVER TAKEN
4000c940: 01 00 00 00 nop
switch ( policy ) {
case SCHED_OTHER:
case SCHED_FIFO:
case SCHED_RR:
case SCHED_SPORADIC:
attr->schedpolicy = policy;
4000c944: d2 20 60 14 st %o1, [ %g1 + 0x14 ]
return 0;
4000c948: 90 10 20 00 clr %o0
default:
return ENOTSUP;
}
}
4000c94c: 81 c3 e0 08 retl
40007ae4 <pthread_barrier_init>:
int pthread_barrier_init(
pthread_barrier_t *barrier,
const pthread_barrierattr_t *attr,
unsigned int count
)
{
40007ae4: 9d e3 bf 90 save %sp, -112, %sp
const pthread_barrierattr_t *the_attr;
/*
* Error check parameters
*/
if ( !barrier )
40007ae8: 80 a6 20 00 cmp %i0, 0
40007aec: 02 80 00 2e be 40007ba4 <pthread_barrier_init+0xc0>
40007af0: 80 a6 a0 00 cmp %i2, 0
return EINVAL;
if ( count == 0 )
40007af4: 02 80 00 2d be 40007ba8 <pthread_barrier_init+0xc4>
40007af8: b8 10 20 16 mov 0x16, %i4
return EINVAL;
/*
* If the user passed in NULL, use the default attributes
*/
if ( attr ) {
40007afc: 80 a6 60 00 cmp %i1, 0
40007b00: 32 80 00 06 bne,a 40007b18 <pthread_barrier_init+0x34>
40007b04: c2 06 40 00 ld [ %i1 ], %g1
the_attr = attr;
} else {
(void) pthread_barrierattr_init( &my_attr );
40007b08: 90 07 bf f8 add %fp, -8, %o0
40007b0c: 7f ff ff 81 call 40007910 <pthread_barrierattr_init>
40007b10: b2 07 bf f8 add %fp, -8, %i1
}
/*
* Now start error checking the attributes that we are going to use
*/
if ( !the_attr->is_initialized )
40007b14: c2 06 40 00 ld [ %i1 ], %g1
40007b18: 80 a0 60 00 cmp %g1, 0
40007b1c: 02 80 00 23 be 40007ba8 <pthread_barrier_init+0xc4>
40007b20: b8 10 20 16 mov 0x16, %i4
return EINVAL;
switch ( the_attr->process_shared ) {
40007b24: f8 06 60 04 ld [ %i1 + 4 ], %i4
40007b28: 80 a7 20 00 cmp %i4, 0
40007b2c: 32 80 00 1f bne,a 40007ba8 <pthread_barrier_init+0xc4> <== NEVER TAKEN
40007b30: b8 10 20 16 mov 0x16, %i4 <== NOT EXECUTED
/*
* Convert from POSIX attributes to Core Barrier attributes
*/
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
the_attributes.maximum_count = count;
40007b34: f4 27 bf f4 st %i2, [ %fp + -12 ]
}
/*
* Convert from POSIX attributes to Core Barrier attributes
*/
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
40007b38: c0 27 bf f0 clr [ %fp + -16 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE POSIX_Barrier_Control *_POSIX_Barrier_Allocate( void )
{
return (POSIX_Barrier_Control *)
40007b3c: 37 10 00 67 sethi %hi(0x40019c00), %i3
40007b40: 35 10 00 66 sethi %hi(0x40019800), %i2
40007b44: 40 00 08 92 call 40009d8c <_Objects_Allocate>
40007b48: 90 16 e0 98 or %i3, 0x98, %o0
the_attributes.maximum_count = count;
the_barrier = _POSIX_Barrier_Allocate();
if ( !the_barrier ) {
40007b4c: ba 92 20 00 orcc %o0, 0, %i5
40007b50: 12 80 00 07 bne 40007b6c <pthread_barrier_init+0x88>
40007b54: 90 07 60 10 add %i5, 0x10, %o0
40007b58: d0 06 a1 d8 ld [ %i2 + 0x1d8 ], %o0
40007b5c: 40 00 05 98 call 400091bc <_API_Mutex_Unlock>
40007b60: b8 10 20 0b mov 0xb, %i4
);
*barrier = the_barrier->Object.id;
_Objects_Allocator_unlock();
return 0;
}
40007b64: 81 c7 e0 08 ret
40007b68: 91 e8 00 1c restore %g0, %i4, %o0
if ( !the_barrier ) {
_Objects_Allocator_unlock();
return EAGAIN;
}
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
40007b6c: 40 00 05 d0 call 400092ac <_CORE_barrier_Initialize>
40007b70: 92 07 bf f0 add %fp, -16, %o1
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
40007b74: c4 17 60 0a lduh [ %i5 + 0xa ], %g2
Objects_Control *the_object,
uint32_t name
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
40007b78: c0 27 60 0c clr [ %i5 + 0xc ]
* @param[in] information points to an Object Information Table
* @param[in] the_object is a pointer to an object
* @param[in] name is the name of the object to make accessible
*/
RTEMS_INLINE_ROUTINE void _Objects_Open_u32(
Objects_Information *information,
40007b7c: b6 16 e0 98 or %i3, 0x98, %i3
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40007b80: c6 06 e0 1c ld [ %i3 + 0x1c ], %g3
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
40007b84: c2 07 60 08 ld [ %i5 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40007b88: 85 28 a0 02 sll %g2, 2, %g2
40007b8c: fa 20 c0 02 st %i5, [ %g3 + %g2 ]
40007b90: d0 06 a1 d8 ld [ %i2 + 0x1d8 ], %o0
40007b94: 40 00 05 8a call 400091bc <_API_Mutex_Unlock>
40007b98: c2 26 00 00 st %g1, [ %i0 ]
);
*barrier = the_barrier->Object.id;
_Objects_Allocator_unlock();
return 0;
}
40007b9c: 81 c7 e0 08 ret
40007ba0: 91 e8 00 1c restore %g0, %i4, %o0
switch ( the_attr->process_shared ) {
case PTHREAD_PROCESS_PRIVATE: /* only supported values */
break;
case PTHREAD_PROCESS_SHARED:
default:
return EINVAL;
40007ba4: b8 10 20 16 mov 0x16, %i4
);
*barrier = the_barrier->Object.id;
_Objects_Allocator_unlock();
return 0;
}
40007ba8: b0 10 00 1c mov %i4, %i0
40007bac: 81 c7 e0 08 ret
40007bb0: 81 e8 00 00 restore
40010838 <pthread_cond_init>:
*/
int pthread_cond_init(
pthread_cond_t *cond,
const pthread_condattr_t *attr
)
{
40010838: 9d e3 bf a0 save %sp, -96, %sp
POSIX_Condition_variables_Control *the_cond;
const pthread_condattr_t *the_attr;
if ( attr ) the_attr = attr;
4001083c: 80 a6 60 00 cmp %i1, 0
40010840: 32 80 00 05 bne,a 40010854 <pthread_cond_init+0x1c>
40010844: c4 06 60 04 ld [ %i1 + 4 ], %g2
else the_attr = &_POSIX_Condition_variables_Default_attributes;
40010848: 33 10 00 6a sethi %hi(0x4001a800), %i1
4001084c: b2 16 62 d0 or %i1, 0x2d0, %i1 ! 4001aad0 <_POSIX_Condition_variables_Default_attributes>
/*
* Be careful about attributes when global!!!
*/
if ( the_attr->process_shared == PTHREAD_PROCESS_SHARED )
40010850: c4 06 60 04 ld [ %i1 + 4 ], %g2
40010854: 80 a0 a0 01 cmp %g2, 1
40010858: 02 80 00 22 be 400108e0 <pthread_cond_init+0xa8> <== NEVER TAKEN
4001085c: 82 10 20 16 mov 0x16, %g1
return EINVAL;
if ( !the_attr->is_initialized )
40010860: c4 06 40 00 ld [ %i1 ], %g2
40010864: 80 a0 a0 00 cmp %g2, 0
40010868: 02 80 00 1e be 400108e0 <pthread_cond_init+0xa8>
4001086c: 39 10 00 73 sethi %hi(0x4001cc00), %i4
40010870: 37 10 00 72 sethi %hi(0x4001c800), %i3
* the inactive chain of free condition variable control blocks.
*/
RTEMS_INLINE_ROUTINE POSIX_Condition_variables_Control *
_POSIX_Condition_variables_Allocate( void )
{
return (POSIX_Condition_variables_Control *)
40010874: 7f ff e6 3a call 4000a15c <_Objects_Allocate>
40010878: 90 17 20 08 or %i4, 8, %o0
return EINVAL;
the_cond = _POSIX_Condition_variables_Allocate();
if ( !the_cond ) {
4001087c: ba 92 20 00 orcc %o0, 0, %i5
40010880: 32 80 00 06 bne,a 40010898 <pthread_cond_init+0x60>
40010884: c2 06 60 04 ld [ %i1 + 4 ], %g1
40010888: 7f ff e3 8f call 400096c4 <_API_Mutex_Unlock>
4001088c: d0 06 e0 b8 ld [ %i3 + 0xb8 ], %o0
_Objects_Allocator_unlock();
return ENOMEM;
40010890: 10 80 00 14 b 400108e0 <pthread_cond_init+0xa8>
40010894: 82 10 20 0c mov 0xc, %g1
the_cond->process_shared = the_attr->process_shared;
the_cond->Mutex = POSIX_CONDITION_VARIABLES_NO_MUTEX;
_Thread_queue_Initialize(
40010898: 90 07 60 18 add %i5, 0x18, %o0
if ( !the_cond ) {
_Objects_Allocator_unlock();
return ENOMEM;
}
the_cond->process_shared = the_attr->process_shared;
4001089c: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
the_cond->Mutex = POSIX_CONDITION_VARIABLES_NO_MUTEX;
_Thread_queue_Initialize(
400108a0: 92 10 20 00 clr %o1
400108a4: 15 04 00 02 sethi %hi(0x10000800), %o2
400108a8: 96 10 20 74 mov 0x74, %o3
400108ac: 7f ff ec cb call 4000bbd8 <_Thread_queue_Initialize>
400108b0: c0 27 60 14 clr [ %i5 + 0x14 ]
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
400108b4: c4 17 60 0a lduh [ %i5 + 0xa ], %g2
Objects_Control *the_object,
uint32_t name
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
400108b8: c0 27 60 0c clr [ %i5 + 0xc ]
* @param[in] information points to an Object Information Table
* @param[in] the_object is a pointer to an object
* @param[in] name is the name of the object to make accessible
*/
RTEMS_INLINE_ROUTINE void _Objects_Open_u32(
Objects_Information *information,
400108bc: b8 17 20 08 or %i4, 8, %i4
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
400108c0: c6 07 20 1c ld [ %i4 + 0x1c ], %g3
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
400108c4: c2 07 60 08 ld [ %i5 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
400108c8: 85 28 a0 02 sll %g2, 2, %g2
400108cc: fa 20 c0 02 st %i5, [ %g3 + %g2 ]
400108d0: d0 06 e0 b8 ld [ %i3 + 0xb8 ], %o0
400108d4: 7f ff e3 7c call 400096c4 <_API_Mutex_Unlock>
400108d8: c2 26 00 00 st %g1, [ %i0 ]
*cond = the_cond->Object.id;
_Objects_Allocator_unlock();
return 0;
400108dc: 82 10 20 00 clr %g1
}
400108e0: 81 c7 e0 08 ret
400108e4: 91 e8 00 01 restore %g0, %g1, %o0
40008224 <pthread_condattr_destroy>:
*/
int pthread_condattr_destroy(
pthread_condattr_t *attr
)
{
40008224: 82 10 00 08 mov %o0, %g1
if ( !attr || attr->is_initialized == false )
40008228: 80 a0 60 00 cmp %g1, 0
4000822c: 02 80 00 08 be 4000824c <pthread_condattr_destroy+0x28>
40008230: 90 10 20 16 mov 0x16, %o0
40008234: c4 00 40 00 ld [ %g1 ], %g2
40008238: 80 a0 a0 00 cmp %g2, 0
4000823c: 02 80 00 04 be 4000824c <pthread_condattr_destroy+0x28> <== NEVER TAKEN
40008240: 01 00 00 00 nop
return EINVAL;
attr->is_initialized = false;
40008244: c0 20 40 00 clr [ %g1 ]
return 0;
40008248: 90 10 20 00 clr %o0
}
4000824c: 81 c3 e0 08 retl
40007510 <pthread_create>:
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)( void * ),
void *arg
)
{
40007510: 9d e3 bf 58 save %sp, -168, %sp
int schedpolicy = SCHED_RR;
struct sched_param schedparam;
Objects_Name name;
int rc;
if ( !start_routine )
40007514: 80 a6 a0 00 cmp %i2, 0
40007518: 02 80 00 94 be 40007768 <pthread_create+0x258>
4000751c: ba 10 20 0e mov 0xe, %i5
return EFAULT;
the_attr = (attr) ? attr : &_POSIX_Threads_Default_attributes;
40007520: 80 a6 60 00 cmp %i1, 0
40007524: 32 80 00 05 bne,a 40007538 <pthread_create+0x28>
40007528: c2 06 40 00 ld [ %i1 ], %g1
4000752c: 33 10 00 7c sethi %hi(0x4001f000), %i1
40007530: b2 16 62 c4 or %i1, 0x2c4, %i1 ! 4001f2c4 <_POSIX_Threads_Default_attributes>
if ( !the_attr->is_initialized )
40007534: c2 06 40 00 ld [ %i1 ], %g1
40007538: 80 a0 60 00 cmp %g1, 0
4000753c: 22 80 00 8b be,a 40007768 <pthread_create+0x258>
40007540: ba 10 20 16 mov 0x16, %i5
* stack space if it is allowed to allocate it itself.
*
* NOTE: If the user provides the stack we will let it drop below
* twice the minimum.
*/
if ( the_attr->stackaddr && !_Stack_Is_enough(the_attr->stacksize) )
40007544: c2 06 60 04 ld [ %i1 + 4 ], %g1
40007548: 80 a0 60 00 cmp %g1, 0
4000754c: 02 80 00 07 be 40007568 <pthread_create+0x58>
40007550: 03 10 00 7c sethi %hi(0x4001f000), %g1
40007554: c4 06 60 08 ld [ %i1 + 8 ], %g2
40007558: c2 00 61 18 ld [ %g1 + 0x118 ], %g1
4000755c: 80 a0 80 01 cmp %g2, %g1
40007560: 2a 80 00 82 bcs,a 40007768 <pthread_create+0x258>
40007564: ba 10 20 16 mov 0x16, %i5
* If inheritsched is set to PTHREAD_INHERIT_SCHED, then this thread
* inherits scheduling attributes from the creating thread. If it is
* PTHREAD_EXPLICIT_SCHED, then scheduling parameters come from the
* attributes structure.
*/
switch ( the_attr->inheritsched ) {
40007568: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
4000756c: 80 a0 60 01 cmp %g1, 1
40007570: 02 80 00 09 be 40007594 <pthread_create+0x84>
40007574: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
40007578: 80 a0 60 02 cmp %g1, 2
4000757c: 12 80 00 7b bne 40007768 <pthread_create+0x258>
40007580: ba 10 20 16 mov 0x16, %i5
schedpolicy = api->schedpolicy;
schedparam = api->schedparam;
break;
case PTHREAD_EXPLICIT_SCHED:
schedpolicy = the_attr->schedpolicy;
40007584: e2 06 60 14 ld [ %i1 + 0x14 ], %l1
schedparam = the_attr->schedparam;
40007588: 90 07 bf e4 add %fp, -28, %o0
4000758c: 10 80 00 06 b 400075a4 <pthread_create+0x94>
40007590: 92 06 60 18 add %i1, 0x18, %o1
* PTHREAD_EXPLICIT_SCHED, then scheduling parameters come from the
* attributes structure.
*/
switch ( the_attr->inheritsched ) {
case PTHREAD_INHERIT_SCHED:
api = executing->API_Extensions[ THREAD_API_POSIX ];
40007594: d2 00 a1 30 ld [ %g2 + 0x130 ], %o1
schedpolicy = api->schedpolicy;
schedparam = api->schedparam;
40007598: 90 07 bf e4 add %fp, -28, %o0
* attributes structure.
*/
switch ( the_attr->inheritsched ) {
case PTHREAD_INHERIT_SCHED:
api = executing->API_Extensions[ THREAD_API_POSIX ];
schedpolicy = api->schedpolicy;
4000759c: e2 02 60 90 ld [ %o1 + 0x90 ], %l1
schedparam = api->schedparam;
400075a0: 92 02 60 94 add %o1, 0x94, %o1
break;
case PTHREAD_EXPLICIT_SCHED:
schedpolicy = the_attr->schedpolicy;
schedparam = the_attr->schedparam;
400075a4: 40 00 24 02 call 400105ac <memcpy>
400075a8: 94 10 20 1c mov 0x1c, %o2
/*
* Check the contentionscope since rtems only supports PROCESS wide
* contention (i.e. no system wide contention).
*/
if ( the_attr->contentionscope != PTHREAD_SCOPE_PROCESS )
400075ac: fa 06 60 0c ld [ %i1 + 0xc ], %i5
400075b0: 80 a7 60 00 cmp %i5, 0
400075b4: 32 80 00 6d bne,a 40007768 <pthread_create+0x258>
400075b8: ba 10 20 86 mov 0x86, %i5
return ENOTSUP;
/*
* Interpret the scheduling parameters.
*/
if ( !_POSIX_Priority_Is_valid( schedparam.sched_priority ) )
400075bc: 40 00 18 dc call 4000d92c <_POSIX_Priority_Is_valid>
400075c0: d0 07 bf e4 ld [ %fp + -28 ], %o0
400075c4: 80 a2 20 00 cmp %o0, 0
400075c8: 22 80 00 68 be,a 40007768 <pthread_create+0x258> <== NEVER TAKEN
400075cc: ba 10 20 16 mov 0x16, %i5 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE Priority_Control _POSIX_Priority_To_core(
int priority
)
{
return (Priority_Control) (POSIX_SCHEDULER_MAXIMUM_PRIORITY - priority + 1);
400075d0: 03 10 00 7c sethi %hi(0x4001f000), %g1
return EINVAL;
core_priority = _POSIX_Priority_To_core( schedparam.sched_priority );
400075d4: e8 07 bf e4 ld [ %fp + -28 ], %l4
400075d8: ea 08 61 14 ldub [ %g1 + 0x114 ], %l5
/*
* Set the core scheduling policy information.
*/
rc = _POSIX_Thread_Translate_sched_param(
400075dc: 90 10 00 11 mov %l1, %o0
400075e0: 92 07 bf e4 add %fp, -28, %o1
400075e4: 94 07 bf dc add %fp, -36, %o2
400075e8: 40 00 18 dc call 4000d958 <_POSIX_Thread_Translate_sched_param>
400075ec: 96 07 bf e0 add %fp, -32, %o3
schedpolicy,
&schedparam,
&budget_algorithm,
&budget_callout
);
if ( rc )
400075f0: 80 a2 20 00 cmp %o0, 0
400075f4: 32 80 00 5d bne,a 40007768 <pthread_create+0x258>
400075f8: ba 10 00 08 mov %o0, %i5
*/
SCORE_EXTERN API_Mutex_Control *_RTEMS_Allocator_Mutex;
static inline void _RTEMS_Lock_allocator( void )
{
_API_Mutex_Lock( _RTEMS_Allocator_Mutex );
400075fc: 39 10 00 82 sethi %hi(0x40020800), %i4
40007600: d0 07 22 f8 ld [ %i4 + 0x2f8 ], %o0 ! 40020af8 <_RTEMS_Allocator_Mutex>
40007604: 40 00 05 74 call 40008bd4 <_API_Mutex_Lock>
40007608: 27 10 00 83 sethi %hi(0x40020c00), %l3
RTEMS_INLINE_ROUTINE Thread_Control *_POSIX_Threads_Allocate(void)
{
_Objects_Allocator_lock();
_Thread_Kill_zombies();
4000760c: 40 00 0f b0 call 4000b4cc <_Thread_Kill_zombies>
40007610: a4 10 00 1c mov %i4, %l2
return (Thread_Control *)
40007614: 40 00 08 40 call 40009714 <_Objects_Allocate_unprotected>
40007618: 90 14 e0 50 or %l3, 0x50, %o0
* Allocate the thread control block.
*
* NOTE: Global threads are not currently supported.
*/
the_thread = _POSIX_Threads_Allocate();
if ( !the_thread ) {
4000761c: a0 92 20 00 orcc %o0, 0, %l0
40007620: 12 80 00 04 bne 40007630 <pthread_create+0x120>
40007624: 90 10 00 13 mov %l3, %o0
}
static inline void _RTEMS_Unlock_allocator( void )
{
_API_Mutex_Unlock( _RTEMS_Allocator_Mutex );
40007628: 10 80 00 24 b 400076b8 <pthread_create+0x1a8>
4000762c: d0 07 22 f8 ld [ %i4 + 0x2f8 ], %o0
*
* @return This method returns the minimum stack size;
*/
RTEMS_INLINE_ROUTINE uint32_t _Stack_Minimum (void)
{
return rtems_minimum_stack_size;
40007630: 03 10 00 7c sethi %hi(0x4001f000), %g1
static inline size_t _POSIX_Threads_Ensure_minimum_stack (
size_t size
)
{
if ( size >= PTHREAD_MINIMUM_STACK_SIZE )
40007634: d8 00 61 18 ld [ %g1 + 0x118 ], %o4 ! 4001f118 <rtems_minimum_stack_size>
40007638: c2 06 60 08 ld [ %i1 + 8 ], %g1
/*
* Initialize the core thread for this task.
*/
name.name_p = NULL; /* posix threads don't have a name by default */
status = _Thread_Initialize(
4000763c: c0 27 bf d4 clr [ %fp + -44 ]
40007640: 99 2b 20 01 sll %o4, 1, %o4
40007644: 80 a3 00 01 cmp %o4, %g1
40007648: 1a 80 00 03 bcc 40007654 <pthread_create+0x144>
4000764c: d6 06 60 04 ld [ %i1 + 4 ], %o3
40007650: 98 10 00 01 mov %g1, %o4
40007654: 82 10 20 01 mov 1, %g1
40007658: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
4000765c: c2 07 bf dc ld [ %fp + -36 ], %g1
40007660: aa 0d 60 ff and %l5, 0xff, %l5
40007664: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
40007668: c2 07 bf e0 ld [ %fp + -32 ], %g1
4000766c: a8 25 40 14 sub %l5, %l4, %l4
40007670: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
40007674: 82 07 bf d4 add %fp, -44, %g1
40007678: e8 23 a0 5c st %l4, [ %sp + 0x5c ]
4000767c: c0 23 a0 6c clr [ %sp + 0x6c ]
40007680: c2 23 a0 70 st %g1, [ %sp + 0x70 ]
40007684: 90 12 20 50 or %o0, 0x50, %o0
40007688: 92 10 00 10 mov %l0, %o1
4000768c: 15 10 00 77 sethi %hi(0x4001dc00), %o2
40007690: 9a 10 20 00 clr %o5
40007694: 40 00 0d 03 call 4000aaa0 <_Thread_Initialize>
40007698: 94 12 a1 5c or %o2, 0x15c, %o2
budget_algorithm,
budget_callout,
0, /* isr level */
name /* posix threads don't have a name */
);
if ( !status ) {
4000769c: 80 a2 20 00 cmp %o0, 0
400076a0: 12 80 00 0a bne 400076c8 <pthread_create+0x1b8>
400076a4: 11 10 00 83 sethi %hi(0x40020c00), %o0
RTEMS_INLINE_ROUTINE void _POSIX_Threads_Free (
Thread_Control *the_pthread
)
{
_Objects_Free( &_POSIX_Threads_Information, &the_pthread->Object );
400076a8: 92 10 00 10 mov %l0, %o1
400076ac: 40 00 09 15 call 40009b00 <_Objects_Free>
400076b0: 90 12 20 50 or %o0, 0x50, %o0
400076b4: d0 04 a2 f8 ld [ %l2 + 0x2f8 ], %o0
400076b8: 40 00 05 7e call 40008cb0 <_API_Mutex_Unlock>
400076bc: ba 10 20 0b mov 0xb, %i5
*/
*thread = the_thread->Object.id;
_Objects_Allocator_unlock();
return 0;
}
400076c0: 81 c7 e0 08 ret
400076c4: 91 e8 00 1d restore %g0, %i5, %o0
#endif
/*
* finish initializing the per API structure
*/
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
400076c8: f8 04 21 30 ld [ %l0 + 0x130 ], %i4
RTEMS_INLINE_ROUTINE void _POSIX_Threads_Copy_attributes(
pthread_attr_t *dst_attr,
const pthread_attr_t *src_attr
)
{
*dst_attr = *src_attr;
400076cc: 92 10 00 19 mov %i1, %o1
400076d0: 90 10 00 1c mov %i4, %o0
400076d4: 40 00 23 b6 call 400105ac <memcpy>
400076d8: 94 10 20 4c mov 0x4c, %o2
_POSIX_Threads_Copy_attributes( &api->Attributes, the_attr );
api->detachstate = the_attr->detachstate;
400076dc: c2 06 60 3c ld [ %i1 + 0x3c ], %g1
api->schedpolicy = schedpolicy;
api->schedparam = schedparam;
400076e0: 90 07 20 94 add %i4, 0x94, %o0
* finish initializing the per API structure
*/
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
_POSIX_Threads_Copy_attributes( &api->Attributes, the_attr );
api->detachstate = the_attr->detachstate;
400076e4: c2 27 20 4c st %g1, [ %i4 + 0x4c ]
api->schedpolicy = schedpolicy;
400076e8: e2 27 20 90 st %l1, [ %i4 + 0x90 ]
api->schedparam = schedparam;
400076ec: 92 07 bf e4 add %fp, -28, %o1
400076f0: 40 00 23 af call 400105ac <memcpy>
400076f4: 94 10 20 1c mov 0x1c, %o2
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
400076f8: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
400076fc: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
40007700: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
_Thread_Disable_dispatch();
/*
* POSIX threads are allocated and started in one operation.
*/
status = _Thread_Start(
40007704: 92 10 20 01 mov 1, %o1
40007708: 90 10 00 10 mov %l0, %o0
4000770c: 94 10 00 1a mov %i2, %o2
40007710: 96 10 00 1b mov %i3, %o3
40007714: 98 10 20 00 clr %o4
40007718: 40 00 10 3d call 4000b80c <_Thread_Start>
4000771c: 9a 10 20 00 clr %o5
_Objects_Allocator_unlock();
return EINVAL;
}
#endif
if ( schedpolicy == SCHED_SPORADIC ) {
40007720: 80 a4 60 04 cmp %l1, 4
40007724: 12 80 00 09 bne 40007748 <pthread_create+0x238>
40007728: 01 00 00 00 nop
_Watchdog_Insert_ticks(
4000772c: 40 00 10 7b call 4000b918 <_Timespec_To_ticks>
40007730: 90 07 20 9c add %i4, 0x9c, %o0
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007734: 92 07 20 b4 add %i4, 0xb4, %o1
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007738: d0 27 20 c0 st %o0, [ %i4 + 0xc0 ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000773c: 11 10 00 82 sethi %hi(0x40020800), %o0
40007740: 40 00 11 3e call 4000bc38 <_Watchdog_Insert>
40007744: 90 12 23 10 or %o0, 0x310, %o0 ! 40020b10 <_Watchdog_Ticks_chain>
&api->Sporadic_timer,
_Timespec_To_ticks( &api->schedparam.sched_ss_repl_period )
);
}
_Thread_Enable_dispatch();
40007748: 40 00 0c a7 call 4000a9e4 <_Thread_Enable_dispatch>
4000774c: 01 00 00 00 nop
/*
* Return the id and indicate we successfully created the thread
*/
*thread = the_thread->Object.id;
40007750: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007754: d0 04 a2 f8 ld [ %l2 + 0x2f8 ], %o0
40007758: 40 00 05 56 call 40008cb0 <_API_Mutex_Unlock>
4000775c: c2 26 00 00 st %g1, [ %i0 ]
_Objects_Allocator_unlock();
return 0;
}
40007760: 81 c7 e0 08 ret
40007764: 91 e8 00 1d restore %g0, %i5, %o0
40007768: b0 10 00 1d mov %i5, %i0
4000776c: 81 c7 e0 08 ret
40007770: 81 e8 00 00 restore
400299c8 <pthread_kill>:
int pthread_kill(
pthread_t thread,
int sig
)
{
400299c8: 9d e3 bf 98 save %sp, -104, %sp
POSIX_API_Control *api;
Thread_Control *the_thread;
Objects_Locations location;
if ( !sig )
400299cc: 80 a6 60 00 cmp %i1, 0
400299d0: 12 80 00 06 bne 400299e8 <pthread_kill+0x20>
400299d4: ba 06 7f ff add %i1, -1, %i5
rtems_set_errno_and_return_minus_one( EINVAL );
400299d8: 7f ff b8 2d call 40017a8c <__errno>
400299dc: 01 00 00 00 nop
400299e0: 10 80 00 24 b 40029a70 <pthread_kill+0xa8>
400299e4: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
if ( !is_valid_signo(sig) )
400299e8: 80 a7 60 1f cmp %i5, 0x1f
400299ec: 18 bf ff fb bgu 400299d8 <pthread_kill+0x10>
400299f0: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( EINVAL );
the_thread = _Thread_Get( thread, &location );
400299f4: 90 10 00 18 mov %i0, %o0
400299f8: 7f ff 91 fc call 4000e1e8 <_Thread_Get>
400299fc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40029a00: c4 07 bf fc ld [ %fp + -4 ], %g2
40029a04: 80 a0 a0 00 cmp %g2, 0
40029a08: 12 80 00 17 bne 40029a64 <pthread_kill+0x9c> <== NEVER TAKEN
40029a0c: 87 2e 60 02 sll %i1, 2, %g3
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
if ( sig ) {
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN ) {
40029a10: 89 2e 60 04 sll %i1, 4, %g4
40029a14: 05 10 00 c3 sethi %hi(0x40030c00), %g2
40029a18: 86 21 00 03 sub %g4, %g3, %g3
40029a1c: 84 10 a0 cc or %g2, 0xcc, %g2
40029a20: 84 00 80 03 add %g2, %g3, %g2
40029a24: c4 00 a0 08 ld [ %g2 + 8 ], %g2
40029a28: 80 a0 a0 01 cmp %g2, 1
40029a2c: 02 80 00 0a be 40029a54 <pthread_kill+0x8c>
40029a30: c2 02 21 30 ld [ %o0 + 0x130 ], %g1
40029a34: 84 10 20 01 mov 1, %g2
40029a38: bb 28 80 1d sll %g2, %i5, %i5
return 0;
}
/* XXX critical section */
api->signals_pending |= signo_to_mask( sig );
40029a3c: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2
(void) _POSIX_signals_Unblock_thread( the_thread, sig, NULL );
40029a40: 92 10 00 19 mov %i1, %o1
return 0;
}
/* XXX critical section */
api->signals_pending |= signo_to_mask( sig );
40029a44: ba 10 80 1d or %g2, %i5, %i5
(void) _POSIX_signals_Unblock_thread( the_thread, sig, NULL );
40029a48: 94 10 20 00 clr %o2
40029a4c: 7f ff ff 84 call 4002985c <_POSIX_signals_Unblock_thread>
40029a50: fa 20 60 e0 st %i5, [ %g1 + 0xe0 ]
40029a54: 7f ff 91 da call 4000e1bc <_Thread_Enable_dispatch>
40029a58: b0 10 20 00 clr %i0
}
_Objects_Put( &the_thread->Object );
return 0;
40029a5c: 81 c7 e0 08 ret
40029a60: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
rtems_set_errno_and_return_minus_one( ESRCH );
40029a64: 7f ff b8 0a call 40017a8c <__errno> <== NOT EXECUTED
40029a68: 01 00 00 00 nop <== NOT EXECUTED
40029a6c: 82 10 20 03 mov 3, %g1 ! 3 <_TLS_Alignment+0x2> <== NOT EXECUTED
40029a70: c2 22 00 00 st %g1, [ %o0 ]
}
40029a74: 81 c7 e0 08 ret
40029a78: 91 e8 3f ff restore %g0, -1, %o0
40010e74 <pthread_mutex_init>:
int pthread_mutex_init(
pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr
)
{
40010e74: 9d e3 bf a0 save %sp, -96, %sp
POSIX_Mutex_Control *the_mutex;
CORE_mutex_Attributes *the_mutex_attr;
const pthread_mutexattr_t *the_attr;
CORE_mutex_Disciplines the_discipline;
if ( attr ) the_attr = attr;
40010e78: 80 a6 60 00 cmp %i1, 0
40010e7c: 12 80 00 04 bne 40010e8c <pthread_mutex_init+0x18>
40010e80: 80 a6 20 00 cmp %i0, 0
else the_attr = &_POSIX_Mutex_Default_attributes;
40010e84: 33 10 00 72 sethi %hi(0x4001c800), %i1
40010e88: b2 16 63 b4 or %i1, 0x3b4, %i1 ! 4001cbb4 <_POSIX_Mutex_Default_attributes>
/* Check for NULL mutex */
if ( !mutex )
40010e8c: 02 80 00 52 be 40010fd4 <pthread_mutex_init+0x160>
40010e90: b8 10 20 16 mov 0x16, %i4
}
}
}
#endif
if ( !the_attr->is_initialized )
40010e94: c2 06 40 00 ld [ %i1 ], %g1
40010e98: 80 a0 60 00 cmp %g1, 0
40010e9c: 22 80 00 4f be,a 40010fd8 <pthread_mutex_init+0x164>
40010ea0: b0 10 00 1c mov %i4, %i0
return EINVAL;
/*
* We only support process private mutexes.
*/
if ( the_attr->process_shared == PTHREAD_PROCESS_SHARED )
40010ea4: f8 06 60 04 ld [ %i1 + 4 ], %i4
40010ea8: 80 a7 20 01 cmp %i4, 1
40010eac: 02 80 00 47 be 40010fc8 <pthread_mutex_init+0x154>
40010eb0: 80 a7 20 00 cmp %i4, 0
return ENOSYS;
if ( the_attr->process_shared != PTHREAD_PROCESS_PRIVATE )
40010eb4: 32 80 00 48 bne,a 40010fd4 <pthread_mutex_init+0x160>
40010eb8: b8 10 20 16 mov 0x16, %i4
return EINVAL;
/*
* Determine the discipline of the mutex
*/
switch ( the_attr->protocol ) {
40010ebc: c2 06 60 0c ld [ %i1 + 0xc ], %g1
40010ec0: 80 a0 60 01 cmp %g1, 1
40010ec4: 02 80 00 09 be 40010ee8 <pthread_mutex_init+0x74>
40010ec8: 80 a0 60 02 cmp %g1, 2
40010ecc: 02 80 00 05 be 40010ee0 <pthread_mutex_init+0x6c>
40010ed0: 80 a0 60 00 cmp %g1, 0
40010ed4: 12 80 00 3f bne 40010fd0 <pthread_mutex_init+0x15c>
40010ed8: b6 10 20 00 clr %i3
40010edc: 30 80 00 04 b,a 40010eec <pthread_mutex_init+0x78>
case PTHREAD_PRIO_INHERIT:
the_discipline = CORE_MUTEX_DISCIPLINES_PRIORITY_INHERIT;
break;
case PTHREAD_PRIO_PROTECT:
the_discipline = CORE_MUTEX_DISCIPLINES_PRIORITY_CEILING;
break;
40010ee0: 10 80 00 03 b 40010eec <pthread_mutex_init+0x78>
40010ee4: b6 10 20 03 mov 3, %i3
switch ( the_attr->protocol ) {
case PTHREAD_PRIO_NONE:
the_discipline = CORE_MUTEX_DISCIPLINES_FIFO;
break;
case PTHREAD_PRIO_INHERIT:
the_discipline = CORE_MUTEX_DISCIPLINES_PRIORITY_INHERIT;
40010ee8: b6 10 20 02 mov 2, %i3
}
/*
* Validate the priority ceiling field -- should always be valid.
*/
if ( !_POSIX_Priority_Is_valid( the_attr->prio_ceiling ) )
40010eec: 40 00 01 20 call 4001136c <_POSIX_Priority_Is_valid>
40010ef0: d0 06 60 08 ld [ %i1 + 8 ], %o0
40010ef4: 80 a2 20 00 cmp %o0, 0
40010ef8: 22 80 00 37 be,a 40010fd4 <pthread_mutex_init+0x160>
40010efc: b8 10 20 16 mov 0x16, %i4
#if defined(_UNIX98_THREAD_MUTEX_ATTRIBUTES)
/*
* Validate the mutex type and set appropriate SuperCore mutex
* attributes.
*/
switch ( the_attr->type ) {
40010f00: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
40010f04: 80 a0 60 03 cmp %g1, 3
40010f08: 38 80 00 33 bgu,a 40010fd4 <pthread_mutex_init+0x160>
40010f0c: b8 10 20 16 mov 0x16, %i4
* This function allocates a mutexes control block from
* the inactive chain of free mutexes control blocks.
*/
RTEMS_INLINE_ROUTINE POSIX_Mutex_Control *_POSIX_Mutex_Allocate( void )
{
return (POSIX_Mutex_Control *) _Objects_Allocate( &_POSIX_Mutex_Information );
40010f10: 35 10 00 72 sethi %hi(0x4001c800), %i2
40010f14: 90 16 a3 3c or %i2, 0x33c, %o0 ! 4001cb3c <_POSIX_Mutex_Information>
40010f18: 7f ff e4 91 call 4000a15c <_Objects_Allocate>
40010f1c: a0 10 00 1a mov %i2, %l0
}
#endif
the_mutex = _POSIX_Mutex_Allocate();
if ( !the_mutex ) {
40010f20: ba 92 20 00 orcc %o0, 0, %i5
40010f24: 12 80 00 07 bne 40010f40 <pthread_mutex_init+0xcc>
40010f28: 35 10 00 72 sethi %hi(0x4001c800), %i2
40010f2c: d0 06 a0 b8 ld [ %i2 + 0xb8 ], %o0 ! 4001c8b8 <_RTEMS_Allocator_Mutex>
40010f30: 7f ff e1 e5 call 400096c4 <_API_Mutex_Unlock>
40010f34: b8 10 20 0b mov 0xb, %i4
*mutex = the_mutex->Object.id;
_Objects_Allocator_unlock();
return 0;
}
40010f38: 81 c7 e0 08 ret
40010f3c: 91 e8 00 1c restore %g0, %i4, %o0
if ( !the_mutex ) {
_Objects_Allocator_unlock();
return EAGAIN;
}
the_mutex->process_shared = the_attr->process_shared;
40010f40: c2 06 60 04 ld [ %i1 + 4 ], %g1
40010f44: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
the_mutex_attr = &the_mutex->Mutex.Attributes;
if ( the_attr->type == PTHREAD_MUTEX_RECURSIVE )
40010f48: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
40010f4c: 80 a0 60 01 cmp %g1, 1
40010f50: 12 80 00 04 bne 40010f60 <pthread_mutex_init+0xec> <== ALWAYS TAKEN
40010f54: 94 07 60 54 add %i5, 0x54, %o2
40010f58: 10 80 00 04 b 40010f68 <pthread_mutex_init+0xf4> <== NOT EXECUTED
40010f5c: c0 27 60 54 clr [ %i5 + 0x54 ] <== NOT EXECUTED
the_mutex_attr->lock_nesting_behavior = CORE_MUTEX_NESTING_ACQUIRES;
else
the_mutex_attr->lock_nesting_behavior = CORE_MUTEX_NESTING_IS_ERROR;
40010f60: 82 10 20 01 mov 1, %g1
40010f64: c2 27 60 54 st %g1, [ %i5 + 0x54 ]
the_mutex_attr->only_owner_release = true;
40010f68: 82 10 20 01 mov 1, %g1
40010f6c: c2 2f 60 58 stb %g1, [ %i5 + 0x58 ]
*/
RTEMS_INLINE_ROUTINE Priority_Control _POSIX_Priority_To_core(
int priority
)
{
return (Priority_Control) (POSIX_SCHEDULER_MAXIMUM_PRIORITY - priority + 1);
40010f70: 03 10 00 6b sethi %hi(0x4001ac00), %g1
40010f74: c4 08 63 a4 ldub [ %g1 + 0x3a4 ], %g2 ! 4001afa4 <rtems_maximum_priority>
40010f78: c2 06 60 08 ld [ %i1 + 8 ], %g1
the_mutex_attr->discipline = the_discipline;
/*
* Must be initialized to unlocked.
*/
_CORE_mutex_Initialize( &the_mutex->Mutex, NULL, the_mutex_attr, false );
40010f7c: 90 07 60 14 add %i5, 0x14, %o0
40010f80: 82 20 80 01 sub %g2, %g1, %g1
else
the_mutex_attr->lock_nesting_behavior = CORE_MUTEX_NESTING_IS_ERROR;
the_mutex_attr->only_owner_release = true;
the_mutex_attr->priority_ceiling =
_POSIX_Priority_To_core( the_attr->prio_ceiling );
the_mutex_attr->discipline = the_discipline;
40010f84: f6 27 60 5c st %i3, [ %i5 + 0x5c ]
if ( the_attr->type == PTHREAD_MUTEX_RECURSIVE )
the_mutex_attr->lock_nesting_behavior = CORE_MUTEX_NESTING_ACQUIRES;
else
the_mutex_attr->lock_nesting_behavior = CORE_MUTEX_NESTING_IS_ERROR;
the_mutex_attr->only_owner_release = true;
the_mutex_attr->priority_ceiling =
40010f88: c2 27 60 60 st %g1, [ %i5 + 0x60 ]
the_mutex_attr->discipline = the_discipline;
/*
* Must be initialized to unlocked.
*/
_CORE_mutex_Initialize( &the_mutex->Mutex, NULL, the_mutex_attr, false );
40010f8c: 92 10 20 00 clr %o1
40010f90: 7f ff e2 0c call 400097c0 <_CORE_mutex_Initialize>
40010f94: 96 10 20 00 clr %o3
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
40010f98: c4 17 60 0a lduh [ %i5 + 0xa ], %g2
Objects_Control *the_object,
uint32_t name
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
40010f9c: c0 27 60 0c clr [ %i5 + 0xc ]
* @param[in] information points to an Object Information Table
* @param[in] the_object is a pointer to an object
* @param[in] name is the name of the object to make accessible
*/
RTEMS_INLINE_ROUTINE void _Objects_Open_u32(
Objects_Information *information,
40010fa0: a0 14 23 3c or %l0, 0x33c, %l0
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40010fa4: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
40010fa8: c2 07 60 08 ld [ %i5 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40010fac: 85 28 a0 02 sll %g2, 2, %g2
40010fb0: fa 20 c0 02 st %i5, [ %g3 + %g2 ]
40010fb4: d0 06 a0 b8 ld [ %i2 + 0xb8 ], %o0
40010fb8: 7f ff e1 c3 call 400096c4 <_API_Mutex_Unlock>
40010fbc: c2 26 00 00 st %g1, [ %i0 ]
*mutex = the_mutex->Object.id;
_Objects_Allocator_unlock();
return 0;
}
40010fc0: 81 c7 e0 08 ret
40010fc4: 91 e8 00 1c restore %g0, %i4, %o0
/*
* We only support process private mutexes.
*/
if ( the_attr->process_shared == PTHREAD_PROCESS_SHARED )
return ENOSYS;
40010fc8: 10 80 00 03 b 40010fd4 <pthread_mutex_init+0x160>
40010fcc: b8 10 20 58 mov 0x58, %i4
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_DEFAULT:
break;
default:
return EINVAL;
40010fd0: b8 10 20 16 mov 0x16, %i4
*mutex = the_mutex->Object.id;
_Objects_Allocator_unlock();
return 0;
}
40010fd4: b0 10 00 1c mov %i4, %i0
40010fd8: 81 c7 e0 08 ret
40010fdc: 81 e8 00 00 restore
40009ddc <pthread_mutex_timedlock>:
*/
int pthread_mutex_timedlock(
pthread_mutex_t *mutex,
const struct timespec *abstime
)
{
40009ddc: 9d e3 bf 98 save %sp, -104, %sp
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
40009de0: 92 07 bf fc add %fp, -4, %o1
40009de4: 40 00 00 35 call 40009eb8 <_POSIX_Absolute_timeout_to_ticks>
40009de8: 90 10 00 19 mov %i1, %o0
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
do_wait = false;
lock_status = _POSIX_Mutex_Lock_support( mutex, do_wait, ticks );
40009dec: d4 07 bf fc ld [ %fp + -4 ], %o2
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
40009df0: 82 1a 20 03 xor %o0, 3, %g1
40009df4: 80 a0 00 01 cmp %g0, %g1
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
40009df8: ba 10 00 08 mov %o0, %i5
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
40009dfc: b8 60 3f ff subx %g0, -1, %i4
do_wait = false;
lock_status = _POSIX_Mutex_Lock_support( mutex, do_wait, ticks );
40009e00: 90 10 00 18 mov %i0, %o0
40009e04: 7f ff ff b7 call 40009ce0 <_POSIX_Mutex_Lock_support>
40009e08: 92 10 00 1c mov %i4, %o1
* This service only gives us the option to block. We used a polling
* attempt to lock if the abstime was not in the future. If we did
* not obtain the mutex, then not look at the status immediately,
* make sure the right reason is returned.
*/
if ( !do_wait && (lock_status == EBUSY) ) {
40009e0c: 80 a7 20 00 cmp %i4, 0
40009e10: 32 80 00 0d bne,a 40009e44 <pthread_mutex_timedlock+0x68>
40009e14: b0 10 00 08 mov %o0, %i0
40009e18: 80 a2 20 10 cmp %o0, 0x10
40009e1c: 32 80 00 0a bne,a 40009e44 <pthread_mutex_timedlock+0x68>
40009e20: b0 10 00 08 mov %o0, %i0
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
40009e24: 80 a7 60 00 cmp %i5, 0
40009e28: 02 80 00 07 be 40009e44 <pthread_mutex_timedlock+0x68> <== NEVER TAKEN
40009e2c: b0 10 20 16 mov 0x16, %i0
return EINVAL;
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
40009e30: ba 07 7f ff add %i5, -1, %i5
40009e34: 80 a7 60 01 cmp %i5, 1
40009e38: 18 80 00 03 bgu 40009e44 <pthread_mutex_timedlock+0x68> <== NEVER TAKEN
40009e3c: b0 10 20 10 mov 0x10, %i0
40009e40: b0 10 20 74 mov 0x74, %i0
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
return lock_status;
}
40009e44: 81 c7 e0 08 ret
40009e48: 81 e8 00 00 restore
40006e60 <pthread_mutexattr_gettype>:
#if defined(_UNIX98_THREAD_MUTEX_ATTRIBUTES)
int pthread_mutexattr_gettype(
const pthread_mutexattr_t *attr,
int *type
)
{
40006e60: 82 10 00 08 mov %o0, %g1
if ( !attr )
40006e64: 80 a0 60 00 cmp %g1, 0
40006e68: 02 80 00 0b be 40006e94 <pthread_mutexattr_gettype+0x34>
40006e6c: 90 10 20 16 mov 0x16, %o0
return EINVAL;
if ( !attr->is_initialized )
40006e70: c4 00 40 00 ld [ %g1 ], %g2
40006e74: 80 a0 a0 00 cmp %g2, 0
40006e78: 02 80 00 07 be 40006e94 <pthread_mutexattr_gettype+0x34>
40006e7c: 80 a2 60 00 cmp %o1, 0
return EINVAL;
if ( !type )
40006e80: 02 80 00 05 be 40006e94 <pthread_mutexattr_gettype+0x34> <== NEVER TAKEN
40006e84: 01 00 00 00 nop
return EINVAL;
*type = attr->type;
40006e88: c2 00 60 10 ld [ %g1 + 0x10 ], %g1
return 0;
40006e8c: 90 10 20 00 clr %o0
return EINVAL;
if ( !type )
return EINVAL;
*type = attr->type;
40006e90: c2 22 40 00 st %g1, [ %o1 ]
return 0;
}
40006e94: 81 c3 e0 08 retl
4000997c <pthread_mutexattr_setpshared>:
int pthread_mutexattr_setpshared(
pthread_mutexattr_t *attr,
int pshared
)
{
4000997c: 82 10 00 08 mov %o0, %g1
if ( !attr || !attr->is_initialized )
40009980: 80 a0 60 00 cmp %g1, 0
40009984: 02 80 00 0a be 400099ac <pthread_mutexattr_setpshared+0x30>
40009988: 90 10 20 16 mov 0x16, %o0
4000998c: c4 00 40 00 ld [ %g1 ], %g2
40009990: 80 a0 a0 00 cmp %g2, 0
40009994: 02 80 00 06 be 400099ac <pthread_mutexattr_setpshared+0x30>
40009998: 80 a2 60 01 cmp %o1, 1
return EINVAL;
switch ( pshared ) {
4000999c: 18 80 00 04 bgu 400099ac <pthread_mutexattr_setpshared+0x30><== NEVER TAKEN
400099a0: 01 00 00 00 nop
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
400099a4: d2 20 60 04 st %o1, [ %g1 + 4 ]
return 0;
400099a8: 90 10 20 00 clr %o0
default:
return EINVAL;
}
}
400099ac: 81 c3 e0 08 retl
40006ecc <pthread_mutexattr_settype>:
#if defined(_UNIX98_THREAD_MUTEX_ATTRIBUTES)
int pthread_mutexattr_settype(
pthread_mutexattr_t *attr,
int type
)
{
40006ecc: 82 10 00 08 mov %o0, %g1
if ( !attr || !attr->is_initialized )
40006ed0: 80 a0 60 00 cmp %g1, 0
40006ed4: 02 80 00 0a be 40006efc <pthread_mutexattr_settype+0x30>
40006ed8: 90 10 20 16 mov 0x16, %o0
40006edc: c4 00 40 00 ld [ %g1 ], %g2
40006ee0: 80 a0 a0 00 cmp %g2, 0
40006ee4: 02 80 00 06 be 40006efc <pthread_mutexattr_settype+0x30> <== NEVER TAKEN
40006ee8: 80 a2 60 03 cmp %o1, 3
return EINVAL;
switch ( type ) {
40006eec: 18 80 00 04 bgu 40006efc <pthread_mutexattr_settype+0x30>
40006ef0: 01 00 00 00 nop
case PTHREAD_MUTEX_NORMAL:
case PTHREAD_MUTEX_RECURSIVE:
case PTHREAD_MUTEX_ERRORCHECK:
case PTHREAD_MUTEX_DEFAULT:
attr->type = type;
40006ef4: d2 20 60 10 st %o1, [ %g1 + 0x10 ]
return 0;
40006ef8: 90 10 20 00 clr %o0
default:
return EINVAL;
}
}
40006efc: 81 c3 e0 08 retl
400115f0 <pthread_once>:
int pthread_once(
pthread_once_t *once_control,
void (*init_routine)(void)
)
{
if ( !once_control || !init_routine )
400115f0: 80 a2 20 00 cmp %o0, 0
400115f4: 02 80 00 0c be 40011624 <pthread_once+0x34>
400115f8: 80 a2 60 00 cmp %o1, 0
400115fc: 02 80 00 0a be 40011624 <pthread_once+0x34>
40011600: 01 00 00 00 nop
return EINVAL;
if ( once_control->is_initialized != 1 )
40011604: c2 02 00 00 ld [ %o0 ], %g1
40011608: 80 a0 60 01 cmp %g1, 1
4001160c: 12 80 00 06 bne 40011624 <pthread_once+0x34> <== NEVER TAKEN
40011610: 01 00 00 00 nop
return EINVAL;
return _Once( &once_control->init_executed, init_routine );
40011614: 90 02 20 04 add %o0, 4, %o0
40011618: 82 13 c0 00 mov %o7, %g1
4001161c: 40 00 03 0b call 40012248 <_Once>
40011620: 9e 10 40 00 mov %g1, %o7
}
40011624: 81 c3 e0 08 retl
40011628: 90 10 20 16 mov 0x16, %o0
40008448 <pthread_rwlock_init>:
int pthread_rwlock_init(
pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr
)
{
40008448: 9d e3 bf 90 save %sp, -112, %sp
const pthread_rwlockattr_t *the_attr;
/*
* Error check parameters
*/
if ( !rwlock )
4000844c: 80 a6 20 00 cmp %i0, 0
40008450: 02 80 00 2a be 400084f8 <pthread_rwlock_init+0xb0>
40008454: 80 a6 60 00 cmp %i1, 0
return EINVAL;
/*
* If the user passed in NULL, use the default attributes
*/
if ( attr ) {
40008458: 32 80 00 06 bne,a 40008470 <pthread_rwlock_init+0x28>
4000845c: c2 06 40 00 ld [ %i1 ], %g1
the_attr = attr;
} else {
(void) pthread_rwlockattr_init( &default_attr );
40008460: 90 07 bf f8 add %fp, -8, %o0
40008464: 40 00 01 b5 call 40008b38 <pthread_rwlockattr_init>
40008468: b2 07 bf f8 add %fp, -8, %i1
}
/*
* Now start error checking the attributes that we are going to use
*/
if ( !the_attr->is_initialized )
4000846c: c2 06 40 00 ld [ %i1 ], %g1
40008470: 80 a0 60 00 cmp %g1, 0
40008474: 02 80 00 22 be 400084fc <pthread_rwlock_init+0xb4> <== NEVER TAKEN
40008478: b8 10 20 16 mov 0x16, %i4
return EINVAL;
switch ( the_attr->process_shared ) {
4000847c: f8 06 60 04 ld [ %i1 + 4 ], %i4
40008480: 80 a7 20 00 cmp %i4, 0
40008484: 32 80 00 1e bne,a 400084fc <pthread_rwlock_init+0xb4> <== NEVER TAKEN
40008488: b8 10 20 16 mov 0x16, %i4 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _CORE_RWLock_Initialize_attributes(
CORE_RWLock_Attributes *the_attributes
)
{
the_attributes->XXX = 0;
4000848c: c0 27 bf f4 clr [ %fp + -12 ]
* This function allocates a RWLock control block from
* the inactive chain of free RWLock control blocks.
*/
RTEMS_INLINE_ROUTINE POSIX_RWLock_Control *_POSIX_RWLock_Allocate( void )
{
return (POSIX_RWLock_Control *)
40008490: 37 10 00 78 sethi %hi(0x4001e000), %i3
40008494: 35 10 00 78 sethi %hi(0x4001e000), %i2
40008498: 40 00 0b 4e call 4000b1d0 <_Objects_Allocate>
4000849c: 90 16 e2 30 or %i3, 0x230, %o0
*/
_CORE_RWLock_Initialize_attributes( &the_attributes );
the_rwlock = _POSIX_RWLock_Allocate();
if ( !the_rwlock ) {
400084a0: ba 92 20 00 orcc %o0, 0, %i5
400084a4: 12 80 00 07 bne 400084c0 <pthread_rwlock_init+0x78>
400084a8: 90 07 60 10 add %i5, 0x10, %o0
400084ac: d0 06 a0 d8 ld [ %i2 + 0xd8 ], %o0
400084b0: 40 00 07 f4 call 4000a480 <_API_Mutex_Unlock>
400084b4: b8 10 20 0b mov 0xb, %i4
*rwlock = the_rwlock->Object.id;
_Objects_Allocator_unlock();
return 0;
}
400084b8: 81 c7 e0 08 ret
400084bc: 91 e8 00 1c restore %g0, %i4, %o0
if ( !the_rwlock ) {
_Objects_Allocator_unlock();
return EAGAIN;
}
_CORE_RWLock_Initialize( &the_rwlock->RWLock, &the_attributes );
400084c0: 40 00 09 25 call 4000a954 <_CORE_RWLock_Initialize>
400084c4: 92 07 bf f4 add %fp, -12, %o1
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
400084c8: c4 17 60 0a lduh [ %i5 + 0xa ], %g2
Objects_Control *the_object,
uint32_t name
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
400084cc: c0 27 60 0c clr [ %i5 + 0xc ]
* @param[in] information points to an Object Information Table
* @param[in] the_object is a pointer to an object
* @param[in] name is the name of the object to make accessible
*/
RTEMS_INLINE_ROUTINE void _Objects_Open_u32(
Objects_Information *information,
400084d0: b6 16 e2 30 or %i3, 0x230, %i3
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
400084d4: c6 06 e0 1c ld [ %i3 + 0x1c ], %g3
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
400084d8: c2 07 60 08 ld [ %i5 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
400084dc: 85 28 a0 02 sll %g2, 2, %g2
400084e0: fa 20 c0 02 st %i5, [ %g3 + %g2 ]
400084e4: d0 06 a0 d8 ld [ %i2 + 0xd8 ], %o0
400084e8: 40 00 07 e6 call 4000a480 <_API_Mutex_Unlock>
400084ec: c2 26 00 00 st %g1, [ %i0 ]
*rwlock = the_rwlock->Object.id;
_Objects_Allocator_unlock();
return 0;
}
400084f0: 81 c7 e0 08 ret
400084f4: 91 e8 00 1c restore %g0, %i4, %o0
switch ( the_attr->process_shared ) {
case PTHREAD_PROCESS_PRIVATE: /* only supported values */
break;
case PTHREAD_PROCESS_SHARED:
default:
return EINVAL;
400084f8: b8 10 20 16 mov 0x16, %i4
*rwlock = the_rwlock->Object.id;
_Objects_Allocator_unlock();
return 0;
}
400084fc: b0 10 00 1c mov %i4, %i0
40008500: 81 c7 e0 08 ret
40008504: 81 e8 00 00 restore
40008b14 <pthread_rwlock_timedrdlock>:
int pthread_rwlock_timedrdlock(
pthread_rwlock_t *rwlock,
const struct timespec *abstime
)
{
40008b14: 9d e3 bf 98 save %sp, -104, %sp
Watchdog_Interval ticks;
bool do_wait = true;
POSIX_Absolute_timeout_conversion_results_t status;
Thread_Control *executing;
if ( !rwlock )
40008b18: 80 a6 20 00 cmp %i0, 0
40008b1c: 02 80 00 2b be 40008bc8 <pthread_rwlock_timedrdlock+0xb4>
40008b20: 92 07 bf fc add %fp, -4, %o1
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
40008b24: 40 00 19 fe call 4000f31c <_POSIX_Absolute_timeout_to_ticks>
40008b28: 90 10 00 19 mov %i1, %o0
40008b2c: d2 06 00 00 ld [ %i0 ], %o1
40008b30: ba 10 00 08 mov %o0, %i5
40008b34: 94 07 bf f8 add %fp, -8, %o2
40008b38: 11 10 00 71 sethi %hi(0x4001c400), %o0
40008b3c: 40 00 0b 26 call 4000b7d4 <_Objects_Get>
40008b40: 90 12 20 f4 or %o0, 0xf4, %o0 ! 4001c4f4 <_POSIX_RWLock_Information>
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
do_wait = false;
the_rwlock = _POSIX_RWLock_Get( rwlock, &location );
switch ( location ) {
40008b44: c2 07 bf f8 ld [ %fp + -8 ], %g1
40008b48: 80 a0 60 00 cmp %g1, 0
40008b4c: 32 80 00 20 bne,a 40008bcc <pthread_rwlock_timedrdlock+0xb8>
40008b50: b0 10 20 16 mov 0x16, %i0
case OBJECTS_LOCAL:
executing = _Thread_Executing;
40008b54: f8 01 a0 18 ld [ %g6 + 0x18 ], %i4
_CORE_RWLock_Obtain_for_reading(
40008b58: d4 06 00 00 ld [ %i0 ], %o2
40008b5c: d8 07 bf fc ld [ %fp + -4 ], %o4
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
40008b60: 82 1f 60 03 xor %i5, 3, %g1
switch ( location ) {
case OBJECTS_LOCAL:
executing = _Thread_Executing;
_CORE_RWLock_Obtain_for_reading(
40008b64: 90 02 20 10 add %o0, 0x10, %o0
40008b68: 80 a0 00 01 cmp %g0, %g1
40008b6c: 92 10 00 1c mov %i4, %o1
40008b70: b6 60 3f ff subx %g0, -1, %i3
40008b74: 9a 10 20 00 clr %o5
40008b78: 40 00 07 62 call 4000a900 <_CORE_RWLock_Obtain_for_reading>
40008b7c: 96 10 00 1b mov %i3, %o3
40008b80: 40 00 0e 66 call 4000c518 <_Thread_Enable_dispatch>
40008b84: 01 00 00 00 nop
ticks,
NULL
);
_Objects_Put( &the_rwlock->Object );
if ( !do_wait ) {
40008b88: 80 a6 e0 00 cmp %i3, 0
40008b8c: 12 80 00 0b bne 40008bb8 <pthread_rwlock_timedrdlock+0xa4>
40008b90: d0 07 20 34 ld [ %i4 + 0x34 ], %o0
if ( executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE ) {
40008b94: 80 a2 20 02 cmp %o0, 2
40008b98: 12 80 00 08 bne 40008bb8 <pthread_rwlock_timedrdlock+0xa4>
40008b9c: 80 a7 60 00 cmp %i5, 0
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
40008ba0: 22 80 00 0b be,a 40008bcc <pthread_rwlock_timedrdlock+0xb8><== NEVER TAKEN
40008ba4: b0 10 20 16 mov 0x16, %i0 <== NOT EXECUTED
return EINVAL;
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
40008ba8: ba 07 7f ff add %i5, -1, %i5
40008bac: 80 a7 60 01 cmp %i5, 1
40008bb0: 08 80 00 07 bleu 40008bcc <pthread_rwlock_timedrdlock+0xb8><== ALWAYS TAKEN
40008bb4: b0 10 20 74 mov 0x74, %i0
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
40008bb8: 40 00 00 37 call 40008c94 <_POSIX_RWLock_Translate_core_RWLock_return_code>
40008bbc: 01 00 00 00 nop
40008bc0: 81 c7 e0 08 ret
40008bc4: 91 e8 00 08 restore %g0, %o0, %o0
#endif
case OBJECTS_ERROR:
break;
}
return EINVAL;
40008bc8: b0 10 20 16 mov 0x16, %i0
}
40008bcc: 81 c7 e0 08 ret
40008bd0: 81 e8 00 00 restore
40008bd4 <pthread_rwlock_timedwrlock>:
int pthread_rwlock_timedwrlock(
pthread_rwlock_t *rwlock,
const struct timespec *abstime
)
{
40008bd4: 9d e3 bf 98 save %sp, -104, %sp
Watchdog_Interval ticks;
bool do_wait = true;
POSIX_Absolute_timeout_conversion_results_t status;
Thread_Control *executing;
if ( !rwlock )
40008bd8: 80 a6 20 00 cmp %i0, 0
40008bdc: 02 80 00 2b be 40008c88 <pthread_rwlock_timedwrlock+0xb4>
40008be0: 92 07 bf fc add %fp, -4, %o1
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
40008be4: 40 00 19 ce call 4000f31c <_POSIX_Absolute_timeout_to_ticks>
40008be8: 90 10 00 19 mov %i1, %o0
40008bec: d2 06 00 00 ld [ %i0 ], %o1
40008bf0: ba 10 00 08 mov %o0, %i5
40008bf4: 94 07 bf f8 add %fp, -8, %o2
40008bf8: 11 10 00 71 sethi %hi(0x4001c400), %o0
40008bfc: 40 00 0a f6 call 4000b7d4 <_Objects_Get>
40008c00: 90 12 20 f4 or %o0, 0xf4, %o0 ! 4001c4f4 <_POSIX_RWLock_Information>
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
do_wait = false;
the_rwlock = _POSIX_RWLock_Get( rwlock, &location );
switch ( location ) {
40008c04: c2 07 bf f8 ld [ %fp + -8 ], %g1
40008c08: 80 a0 60 00 cmp %g1, 0
40008c0c: 32 80 00 20 bne,a 40008c8c <pthread_rwlock_timedwrlock+0xb8>
40008c10: b0 10 20 16 mov 0x16, %i0
case OBJECTS_LOCAL:
executing = _Thread_Executing;
40008c14: f8 01 a0 18 ld [ %g6 + 0x18 ], %i4
_CORE_RWLock_Obtain_for_writing(
40008c18: d4 06 00 00 ld [ %i0 ], %o2
40008c1c: d8 07 bf fc ld [ %fp + -4 ], %o4
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
40008c20: 82 1f 60 03 xor %i5, 3, %g1
switch ( location ) {
case OBJECTS_LOCAL:
executing = _Thread_Executing;
_CORE_RWLock_Obtain_for_writing(
40008c24: 90 02 20 10 add %o0, 0x10, %o0
40008c28: 80 a0 00 01 cmp %g0, %g1
40008c2c: 92 10 00 1c mov %i4, %o1
40008c30: b6 60 3f ff subx %g0, -1, %i3
40008c34: 9a 10 20 00 clr %o5
40008c38: 40 00 07 60 call 4000a9b8 <_CORE_RWLock_Obtain_for_writing>
40008c3c: 96 10 00 1b mov %i3, %o3
40008c40: 40 00 0e 36 call 4000c518 <_Thread_Enable_dispatch>
40008c44: 01 00 00 00 nop
ticks,
NULL
);
_Objects_Put( &the_rwlock->Object );
if ( !do_wait &&
40008c48: 80 a6 e0 00 cmp %i3, 0
40008c4c: 12 80 00 0b bne 40008c78 <pthread_rwlock_timedwrlock+0xa4>
40008c50: d0 07 20 34 ld [ %i4 + 0x34 ], %o0
40008c54: 80 a2 20 02 cmp %o0, 2
40008c58: 12 80 00 08 bne 40008c78 <pthread_rwlock_timedwrlock+0xa4>
40008c5c: 80 a7 60 00 cmp %i5, 0
(executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE) ) {
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
40008c60: 22 80 00 0b be,a 40008c8c <pthread_rwlock_timedwrlock+0xb8><== NEVER TAKEN
40008c64: b0 10 20 16 mov 0x16, %i0 <== NOT EXECUTED
return EINVAL;
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
40008c68: ba 07 7f ff add %i5, -1, %i5
40008c6c: 80 a7 60 01 cmp %i5, 1
40008c70: 08 80 00 07 bleu 40008c8c <pthread_rwlock_timedwrlock+0xb8><== ALWAYS TAKEN
40008c74: b0 10 20 74 mov 0x74, %i0
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
40008c78: 40 00 00 07 call 40008c94 <_POSIX_RWLock_Translate_core_RWLock_return_code>
40008c7c: 01 00 00 00 nop
40008c80: 81 c7 e0 08 ret
40008c84: 91 e8 00 08 restore %g0, %o0, %o0
#endif
case OBJECTS_ERROR:
break;
}
return EINVAL;
40008c88: b0 10 20 16 mov 0x16, %i0
}
40008c8c: 81 c7 e0 08 ret
40008c90: 81 e8 00 00 restore
4000943c <pthread_rwlockattr_setpshared>:
int pthread_rwlockattr_setpshared(
pthread_rwlockattr_t *attr,
int pshared
)
{
4000943c: 82 10 00 08 mov %o0, %g1
if ( !attr )
40009440: 80 a0 60 00 cmp %g1, 0
40009444: 02 80 00 0a be 4000946c <pthread_rwlockattr_setpshared+0x30>
40009448: 90 10 20 16 mov 0x16, %o0
return EINVAL;
if ( !attr->is_initialized )
4000944c: c4 00 40 00 ld [ %g1 ], %g2
40009450: 80 a0 a0 00 cmp %g2, 0
40009454: 02 80 00 06 be 4000946c <pthread_rwlockattr_setpshared+0x30>
40009458: 80 a2 60 01 cmp %o1, 1
return EINVAL;
switch ( pshared ) {
4000945c: 18 80 00 04 bgu 4000946c <pthread_rwlockattr_setpshared+0x30><== NEVER TAKEN
40009460: 01 00 00 00 nop
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
40009464: d2 20 60 04 st %o1, [ %g1 + 4 ]
return 0;
40009468: 90 10 20 00 clr %o0
default:
return EINVAL;
}
}
4000946c: 81 c3 e0 08 retl
4000a674 <pthread_setschedparam>:
int pthread_setschedparam(
pthread_t thread,
int policy,
struct sched_param *param
)
{
4000a674: 9d e3 bf 90 save %sp, -112, %sp
int rc;
/*
* Check all the parameters
*/
if ( !param )
4000a678: 80 a6 a0 00 cmp %i2, 0
4000a67c: 02 80 00 43 be 4000a788 <pthread_setschedparam+0x114>
4000a680: 90 10 20 16 mov 0x16, %o0
return EINVAL;
rc = _POSIX_Thread_Translate_sched_param(
4000a684: 90 10 00 19 mov %i1, %o0
4000a688: 92 10 00 1a mov %i2, %o1
4000a68c: 94 07 bf f4 add %fp, -12, %o2
4000a690: 40 00 17 ed call 40010644 <_POSIX_Thread_Translate_sched_param>
4000a694: 96 07 bf f8 add %fp, -8, %o3
policy,
param,
&budget_algorithm,
&budget_callout
);
if ( rc )
4000a698: 80 a2 20 00 cmp %o0, 0
4000a69c: 12 80 00 3b bne 4000a788 <pthread_setschedparam+0x114>
4000a6a0: 01 00 00 00 nop
return rc;
/*
* Actually change the scheduling policy and parameters
*/
the_thread = _Thread_Get( thread, &location );
4000a6a4: 90 10 00 18 mov %i0, %o0
4000a6a8: 40 00 0b da call 4000d610 <_Thread_Get>
4000a6ac: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000a6b0: c2 07 bf fc ld [ %fp + -4 ], %g1
return rc;
/*
* Actually change the scheduling policy and parameters
*/
the_thread = _Thread_Get( thread, &location );
4000a6b4: b8 10 00 08 mov %o0, %i4
switch ( location ) {
4000a6b8: 80 a0 60 00 cmp %g1, 0
4000a6bc: 12 80 00 33 bne 4000a788 <pthread_setschedparam+0x114>
4000a6c0: 90 10 20 03 mov 3, %o0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
4000a6c4: fa 07 21 30 ld [ %i4 + 0x130 ], %i5
if ( api->schedpolicy == SCHED_SPORADIC )
4000a6c8: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
4000a6cc: 80 a0 60 04 cmp %g1, 4
4000a6d0: 12 80 00 05 bne 4000a6e4 <pthread_setschedparam+0x70>
4000a6d4: 92 10 00 1a mov %i2, %o1
(void) _Watchdog_Remove( &api->Sporadic_timer );
4000a6d8: 40 00 10 f3 call 4000eaa4 <_Watchdog_Remove>
4000a6dc: 90 07 60 b4 add %i5, 0xb4, %o0
api->schedpolicy = policy;
api->schedparam = *param;
4000a6e0: 92 10 00 1a mov %i2, %o1
4000a6e4: 94 10 20 1c mov 0x1c, %o2
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
if ( api->schedpolicy == SCHED_SPORADIC )
(void) _Watchdog_Remove( &api->Sporadic_timer );
api->schedpolicy = policy;
4000a6e8: f2 27 60 90 st %i1, [ %i5 + 0x90 ]
api->schedparam = *param;
4000a6ec: 40 00 22 fa call 400132d4 <memcpy>
4000a6f0: 90 07 60 94 add %i5, 0x94, %o0
api->Attributes.schedpolicy = policy;
api->Attributes.schedparam = *param;
4000a6f4: 90 07 60 18 add %i5, 0x18, %o0
if ( api->schedpolicy == SCHED_SPORADIC )
(void) _Watchdog_Remove( &api->Sporadic_timer );
api->schedpolicy = policy;
api->schedparam = *param;
api->Attributes.schedpolicy = policy;
4000a6f8: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
api->Attributes.schedparam = *param;
4000a6fc: 92 10 00 1a mov %i2, %o1
4000a700: 40 00 22 f5 call 400132d4 <memcpy>
4000a704: 94 10 20 1c mov 0x1c, %o2
the_thread->budget_algorithm = budget_algorithm;
4000a708: c2 07 bf f4 ld [ %fp + -12 ], %g1
the_thread->budget_callout = budget_callout;
switch ( api->schedpolicy ) {
4000a70c: 80 a6 60 00 cmp %i1, 0
api->schedpolicy = policy;
api->schedparam = *param;
api->Attributes.schedpolicy = policy;
api->Attributes.schedparam = *param;
the_thread->budget_algorithm = budget_algorithm;
4000a710: c2 27 20 78 st %g1, [ %i4 + 0x78 ]
the_thread->budget_callout = budget_callout;
4000a714: c2 07 bf f8 ld [ %fp + -8 ], %g1
switch ( api->schedpolicy ) {
4000a718: 06 80 00 19 bl 4000a77c <pthread_setschedparam+0x108> <== NEVER TAKEN
4000a71c: c2 27 20 7c st %g1, [ %i4 + 0x7c ]
4000a720: 80 a6 60 02 cmp %i1, 2
4000a724: 04 80 00 0b ble 4000a750 <pthread_setschedparam+0xdc>
4000a728: 80 a6 60 04 cmp %i1, 4
4000a72c: 12 80 00 14 bne 4000a77c <pthread_setschedparam+0x108> <== NEVER TAKEN
4000a730: 90 07 60 b4 add %i5, 0xb4, %o0
true
);
break;
case SCHED_SPORADIC:
api->ss_high_priority = api->schedparam.sched_priority;
4000a734: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
_Watchdog_Remove( &api->Sporadic_timer );
4000a738: 40 00 10 db call 4000eaa4 <_Watchdog_Remove>
4000a73c: c2 27 60 b0 st %g1, [ %i5 + 0xb0 ]
_POSIX_Threads_Sporadic_budget_TSR( 0, the_thread );
4000a740: 90 10 20 00 clr %o0
4000a744: 7f ff ff 29 call 4000a3e8 <_POSIX_Threads_Sporadic_budget_TSR>
4000a748: 92 10 00 1c mov %i4, %o1
break;
4000a74c: 30 80 00 0c b,a 4000a77c <pthread_setschedparam+0x108>
switch ( api->schedpolicy ) {
case SCHED_OTHER:
case SCHED_FIFO:
case SCHED_RR:
the_thread->cpu_time_budget =
rtems_configuration_get_ticks_per_timeslice();
4000a750: 03 10 00 6b sethi %hi(0x4001ac00), %g1
switch ( api->schedpolicy ) {
case SCHED_OTHER:
case SCHED_FIFO:
case SCHED_RR:
the_thread->cpu_time_budget =
4000a754: c2 00 63 dc ld [ %g1 + 0x3dc ], %g1 ! 4001afdc <Configuration+0x1c>
rtems_configuration_get_ticks_per_timeslice();
the_thread->real_priority =
_POSIX_Priority_To_core( api->schedparam.sched_priority );
_Thread_Change_priority(
4000a758: 90 10 00 1c mov %i4, %o0
switch ( api->schedpolicy ) {
case SCHED_OTHER:
case SCHED_FIFO:
case SCHED_RR:
the_thread->cpu_time_budget =
4000a75c: c2 27 20 74 st %g1, [ %i4 + 0x74 ]
4000a760: 03 10 00 71 sethi %hi(0x4001c400), %g1
4000a764: d2 08 60 94 ldub [ %g1 + 0x94 ], %o1 ! 4001c494 <rtems_maximum_priority>
4000a768: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
rtems_configuration_get_ticks_per_timeslice();
the_thread->real_priority =
_POSIX_Priority_To_core( api->schedparam.sched_priority );
_Thread_Change_priority(
4000a76c: 94 10 20 01 mov 1, %o2
4000a770: 92 22 40 01 sub %o1, %g1, %o1
4000a774: 40 00 0a af call 4000d230 <_Thread_Change_priority>
4000a778: d2 27 20 18 st %o1, [ %i4 + 0x18 ]
4000a77c: 40 00 0b 9a call 4000d5e4 <_Thread_Enable_dispatch>
4000a780: 01 00 00 00 nop
_POSIX_Threads_Sporadic_budget_TSR( 0, the_thread );
break;
}
_Objects_Put( &the_thread->Object );
return 0;
4000a784: 90 10 20 00 clr %o0 ! 0 <_TLS_BSS_size>
case OBJECTS_ERROR:
break;
}
return ESRCH;
}
4000a788: 81 c7 e0 08 ret
4000a78c: 91 e8 00 08 restore %g0, %o0, %o0
40006134 <pthread_setspecific>:
int pthread_setspecific(
pthread_key_t key,
const void *value
)
{
40006134: 9d e3 bf 78 save %sp, -136, %sp
40006138: 11 10 00 53 sethi %hi(0x40014c00), %o0
4000613c: 92 10 00 18 mov %i0, %o1
40006140: 90 12 22 0c or %o0, 0x20c, %o0
40006144: 40 00 06 74 call 40007b14 <_Objects_Get>
40006148: 94 07 bf d8 add %fp, -40, %o2
POSIX_Keys_Key_value_pair *value_pair_ptr;
RBTree_Node *p;
POSIX_Keys_Key_value_pair search_node;
the_key = _POSIX_Keys_Get( key, &location );
switch ( location ) {
4000614c: c2 07 bf d8 ld [ %fp + -40 ], %g1
40006150: 80 a0 60 00 cmp %g1, 0
40006154: 12 80 00 29 bne 400061f8 <pthread_setspecific+0xc4>
40006158: 39 10 00 53 sethi %hi(0x40014c00), %i4
case OBJECTS_LOCAL:
search_node.key = key;
search_node.thread_id = _Thread_Executing->Object.id;
4000615c: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
the_key = _POSIX_Keys_Get( key, &location );
switch ( location ) {
case OBJECTS_LOCAL:
search_node.key = key;
40006160: f0 27 bf f4 st %i0, [ %fp + -12 ]
search_node.thread_id = _Thread_Executing->Object.id;
40006164: c2 00 60 08 ld [ %g1 + 8 ], %g1
40006168: c2 27 bf f8 st %g1, [ %fp + -8 ]
p = _RBTree_Find( &_POSIX_Keys_Key_value_lookup_tree,
4000616c: 90 17 22 c8 or %i4, 0x2c8, %o0
40006170: 40 00 07 09 call 40007d94 <_RBTree_Find>
40006174: 92 07 bf e4 add %fp, -28, %o1
&search_node.Key_value_lookup_node );
if ( p ) {
40006178: 80 a2 20 00 cmp %o0, 0
4000617c: 22 80 00 04 be,a 4000618c <pthread_setspecific+0x58>
40006180: 11 10 00 53 sethi %hi(0x40014c00), %o0
40006184: 10 80 00 19 b 400061e8 <pthread_setspecific+0xb4>
40006188: f2 22 20 18 st %i1, [ %o0 + 0x18 ] ! 40014c18 <_POSIX_RWLock_Information+0x4>
}
RTEMS_INLINE_ROUTINE POSIX_Keys_Key_value_pair *
_POSIX_Keys_Key_value_pair_allocate( void )
{
return (POSIX_Keys_Key_value_pair *) _Freechain_Get( &_POSIX_Keys_Keypool );
4000618c: 40 00 03 e8 call 4000712c <_Freechain_Get>
40006190: 90 12 22 84 or %o0, 0x284, %o0
value_pair_ptr->value = value;
} else {
value_pair_ptr = _POSIX_Keys_Key_value_pair_allocate();
if ( !value_pair_ptr ) {
40006194: ba 92 20 00 orcc %o0, 0, %i5
40006198: 32 80 00 06 bne,a 400061b0 <pthread_setspecific+0x7c> <== ALWAYS TAKEN
4000619c: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
400061a0: 40 00 0a 13 call 400089ec <_Thread_Enable_dispatch> <== NOT EXECUTED
400061a4: b0 10 20 0c mov 0xc, %i0 <== NOT EXECUTED
_Objects_Put( &the_key->Object );
return ENOMEM;
400061a8: 81 c7 e0 08 ret <== NOT EXECUTED
400061ac: 81 e8 00 00 restore <== NOT EXECUTED
}
value_pair_ptr->key = key;
400061b0: f0 27 60 18 st %i0, [ %i5 + 0x18 ]
value_pair_ptr->thread_id = _Thread_Executing->Object.id;
400061b4: c2 00 60 08 ld [ %g1 + 8 ], %g1
value_pair_ptr->value = value;
/* The insert can only go wrong if the same node is already in a unique
* tree. This has been already checked with the _RBTree_Find() */
(void) _RBTree_Insert( &_POSIX_Keys_Key_value_lookup_tree,
400061b8: 90 17 22 c8 or %i4, 0x2c8, %o0
return ENOMEM;
}
value_pair_ptr->key = key;
value_pair_ptr->thread_id = _Thread_Executing->Object.id;
400061bc: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
value_pair_ptr->value = value;
400061c0: f2 27 60 20 st %i1, [ %i5 + 0x20 ]
/* The insert can only go wrong if the same node is already in a unique
* tree. This has been already checked with the _RBTree_Find() */
(void) _RBTree_Insert( &_POSIX_Keys_Key_value_lookup_tree,
400061c4: 40 00 07 2c call 40007e74 <_RBTree_Insert>
400061c8: 92 07 60 08 add %i5, 8, %o1
&(value_pair_ptr->Key_value_lookup_node) );
/** append rb_node to the thread API extension's chain */
_Chain_Append_unprotected(
&_Thread_Executing->Key_Chain,
400061cc: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
400061d0: c4 00 61 40 ld [ %g1 + 0x140 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
400061d4: 86 00 61 3c add %g1, 0x13c, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
400061d8: c6 27 40 00 st %g3, [ %i5 ]
tail->previous = the_node;
400061dc: fa 20 61 40 st %i5, [ %g1 + 0x140 ]
old_last->next = the_node;
400061e0: fa 20 80 00 st %i5, [ %g2 ]
the_node->previous = old_last;
400061e4: c4 27 60 04 st %g2, [ %i5 + 4 ]
400061e8: 40 00 0a 01 call 400089ec <_Thread_Enable_dispatch>
400061ec: b0 10 20 00 clr %i0
);
}
_Objects_Put( &the_key->Object );
return 0;
400061f0: 81 c7 e0 08 ret
400061f4: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return EINVAL;
}
400061f8: 81 c7 e0 08 ret
400061fc: 91 e8 20 16 restore %g0, 0x16, %o0
400078fc <pthread_testcancel>:
/*
* 18.2.2 Setting Cancelability State, P1003.1c/Draft 10, p. 183
*/
void pthread_testcancel( void )
{
400078fc: 9d e3 bf a0 save %sp, -96, %sp
* Don't even think about deleting a resource from an ISR.
* Besides this request is supposed to be for _Thread_Executing
* and the ISR context is not a thread.
*/
if ( _ISR_Is_in_progress() )
40007900: c4 01 a0 0c ld [ %g6 + 0xc ], %g2
40007904: 80 a0 a0 00 cmp %g2, 0
40007908: 12 80 00 15 bne 4000795c <pthread_testcancel+0x60> <== NEVER TAKEN
4000790c: 01 00 00 00 nop
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
40007910: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
40007914: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
40007918: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
return;
_Thread_Disable_dispatch();
executing = _Thread_Executing;
4000791c: f0 01 a0 18 ld [ %g6 + 0x18 ], %i0
thread_support = executing->API_Extensions[ THREAD_API_POSIX ];
40007920: c2 06 21 30 ld [ %i0 + 0x130 ], %g1
if ( thread_support->cancelability_state == PTHREAD_CANCEL_ENABLE &&
40007924: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2
40007928: 80 a0 a0 00 cmp %g2, 0
4000792c: 12 80 00 05 bne 40007940 <pthread_testcancel+0x44> <== NEVER TAKEN
40007930: ba 10 20 00 clr %i5
40007934: c2 00 60 f8 ld [ %g1 + 0xf8 ], %g1
40007938: 80 a0 00 01 cmp %g0, %g1
4000793c: ba 40 20 00 addx %g0, 0, %i5
thread_support->cancelation_requested )
cancel = true;
_Thread_Enable_dispatch();
40007940: 40 00 0b 5e call 4000a6b8 <_Thread_Enable_dispatch>
40007944: 01 00 00 00 nop
if ( cancel )
40007948: 80 8f 60 ff btst 0xff, %i5
4000794c: 02 80 00 04 be 4000795c <pthread_testcancel+0x60>
40007950: 01 00 00 00 nop
_POSIX_Thread_Exit( executing, PTHREAD_CANCELED );
40007954: 40 00 17 9f call 4000d7d0 <_POSIX_Thread_Exit>
40007958: 93 e8 3f ff restore %g0, -1, %o1
4000795c: 81 c7 e0 08 ret
40007960: 81 e8 00 00 restore
40007e54 <rtems_aio_enqueue>:
* errno - otherwise
*/
int
rtems_aio_enqueue (rtems_aio_request *req)
{
40007e54: 9d e3 bf 78 save %sp, -136, %sp
struct sched_param param;
/* The queue should be initialized */
AIO_assert (aio_request_queue.initialized == AIO_QUEUE_INITIALIZED);
result = pthread_mutex_lock (&aio_request_queue.mutex);
40007e58: 3b 10 00 6a sethi %hi(0x4001a800), %i5
40007e5c: 90 17 60 88 or %i5, 0x88, %o0 ! 4001a888 <aio_request_queue>
40007e60: 40 00 02 c8 call 40008980 <pthread_mutex_lock>
40007e64: a0 10 00 1d mov %i5, %l0
if (result != 0) {
40007e68: b8 92 20 00 orcc %o0, 0, %i4
40007e6c: 02 80 00 06 be 40007e84 <rtems_aio_enqueue+0x30> <== ALWAYS TAKEN
40007e70: 90 10 00 18 mov %i0, %o0
free (req);
40007e74: 7f ff f0 09 call 40003e98 <free> <== NOT EXECUTED
40007e78: b0 10 00 1c mov %i4, %i0 <== NOT EXECUTED
return result;
40007e7c: 81 c7 e0 08 ret <== NOT EXECUTED
40007e80: 81 e8 00 00 restore <== NOT EXECUTED
}
/* _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined,
we can use aio_reqprio to lower the priority of the request */
pthread_getschedparam (pthread_self(), &policy, ¶m);
40007e84: 40 00 04 d7 call 400091e0 <pthread_self>
40007e88: ba 17 60 88 or %i5, 0x88, %i5
40007e8c: 92 07 bf e0 add %fp, -32, %o1
40007e90: 40 00 03 e8 call 40008e30 <pthread_getschedparam>
40007e94: 94 07 bf e4 add %fp, -28, %o2
req->caller_thread = pthread_self ();
40007e98: 40 00 04 d2 call 400091e0 <pthread_self>
40007e9c: b8 10 00 1d mov %i5, %i4
req->priority = param.sched_priority - req->aiocbp->aio_reqprio;
40007ea0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40007ea4: c6 07 bf e4 ld [ %fp + -28 ], %g3
40007ea8: c4 00 60 18 ld [ %g1 + 0x18 ], %g2
/* _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined,
we can use aio_reqprio to lower the priority of the request */
pthread_getschedparam (pthread_self(), &policy, ¶m);
req->caller_thread = pthread_self ();
40007eac: d0 26 20 10 st %o0, [ %i0 + 0x10 ]
req->priority = param.sched_priority - req->aiocbp->aio_reqprio;
40007eb0: 84 20 c0 02 sub %g3, %g2, %g2
40007eb4: c4 26 20 0c st %g2, [ %i0 + 0xc ]
req->policy = policy;
40007eb8: c4 07 bf e0 ld [ %fp + -32 ], %g2
40007ebc: c4 26 20 08 st %g2, [ %i0 + 8 ]
req->aiocbp->error_code = EINPROGRESS;
40007ec0: 84 10 20 77 mov 0x77, %g2
40007ec4: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
req->aiocbp->return_value = 0;
if ((aio_request_queue.idle_threads == 0) &&
40007ec8: c4 07 60 74 ld [ %i5 + 0x74 ], %g2
req->caller_thread = pthread_self ();
req->priority = param.sched_priority - req->aiocbp->aio_reqprio;
req->policy = policy;
req->aiocbp->error_code = EINPROGRESS;
req->aiocbp->return_value = 0;
40007ecc: c0 20 60 38 clr [ %g1 + 0x38 ]
if ((aio_request_queue.idle_threads == 0) &&
40007ed0: 80 a0 a0 00 cmp %g2, 0
40007ed4: 12 80 00 33 bne 40007fa0 <rtems_aio_enqueue+0x14c> <== NEVER TAKEN
40007ed8: d2 00 40 00 ld [ %g1 ], %o1
40007edc: c2 07 60 70 ld [ %i5 + 0x70 ], %g1
40007ee0: 80 a0 60 04 cmp %g1, 4
40007ee4: 14 80 00 30 bg 40007fa4 <rtems_aio_enqueue+0x150>
40007ee8: 11 10 00 6a sethi %hi(0x4001a800), %o0
aio_request_queue.active_threads < AIO_MAX_THREADS)
/* we still have empty places on the active_threads chain */
{
chain = &aio_request_queue.work_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
40007eec: 90 07 60 54 add %i5, 0x54, %o0
40007ef0: 7f ff ff 7e call 40007ce8 <rtems_aio_search_fd>
40007ef4: 94 10 20 01 mov 1, %o2
if (r_chain->new_fd == 1) {
40007ef8: c2 02 20 18 ld [ %o0 + 0x18 ], %g1
if ((aio_request_queue.idle_threads == 0) &&
aio_request_queue.active_threads < AIO_MAX_THREADS)
/* we still have empty places on the active_threads chain */
{
chain = &aio_request_queue.work_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
40007efc: b8 10 00 08 mov %o0, %i4
if (r_chain->new_fd == 1) {
40007f00: 80 a0 60 01 cmp %g1, 1
40007f04: b2 02 20 08 add %o0, 8, %i1
40007f08: b6 02 20 1c add %o0, 0x1c, %i3
40007f0c: 12 80 00 1c bne 40007f7c <rtems_aio_enqueue+0x128>
40007f10: b4 02 20 20 add %o0, 0x20, %i2
RTEMS_INLINE_ROUTINE void _Chain_Prepend(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
_Chain_Insert(_Chain_Head(the_chain), the_node);
40007f14: 92 10 00 18 mov %i0, %o1
40007f18: 40 00 09 3c call 4000a408 <_Chain_Insert>
40007f1c: 90 10 00 19 mov %i1, %o0
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
pthread_mutex_init (&r_chain->mutex, NULL);
40007f20: 92 10 20 00 clr %o1
chain = &aio_request_queue.work_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
if (r_chain->new_fd == 1) {
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
40007f24: c0 27 20 18 clr [ %i4 + 0x18 ]
pthread_mutex_init (&r_chain->mutex, NULL);
40007f28: 40 00 02 3b call 40008814 <pthread_mutex_init>
40007f2c: 90 10 00 1b mov %i3, %o0
pthread_cond_init (&r_chain->cond, NULL);
40007f30: 92 10 20 00 clr %o1
40007f34: 40 00 01 07 call 40008350 <pthread_cond_init>
40007f38: 90 10 00 1a mov %i2, %o0
AIO_printf ("New thread \n");
result = pthread_create (&thid, &aio_request_queue.attr,
40007f3c: 90 07 bf dc add %fp, -36, %o0
40007f40: 92 07 60 08 add %i5, 8, %o1
40007f44: 15 10 00 1e sethi %hi(0x40007800), %o2
40007f48: 96 10 00 1c mov %i4, %o3
40007f4c: 40 00 03 20 call 40008bcc <pthread_create>
40007f50: 94 12 a1 98 or %o2, 0x198, %o2
rtems_aio_handle, (void *) r_chain);
if (result != 0) {
40007f54: b0 92 20 00 orcc %o0, 0, %i0
40007f58: 22 80 00 06 be,a 40007f70 <rtems_aio_enqueue+0x11c> <== ALWAYS TAKEN
40007f5c: c2 07 60 70 ld [ %i5 + 0x70 ], %g1
pthread_mutex_unlock (&aio_request_queue.mutex);
40007f60: 40 00 02 a7 call 400089fc <pthread_mutex_unlock> <== NOT EXECUTED
40007f64: 90 10 00 1d mov %i5, %o0 <== NOT EXECUTED
return result;
40007f68: 81 c7 e0 08 ret <== NOT EXECUTED
40007f6c: 81 e8 00 00 restore <== NOT EXECUTED
}
++aio_request_queue.active_threads;
40007f70: 82 00 60 01 inc %g1
40007f74: 10 80 00 3d b 40008068 <rtems_aio_enqueue+0x214>
40007f78: c2 27 60 70 st %g1, [ %i5 + 0x70 ]
}
else {
/* put request in the fd chain it belongs to */
pthread_mutex_lock (&r_chain->mutex);
40007f7c: 40 00 02 81 call 40008980 <pthread_mutex_lock>
40007f80: 90 10 00 1b mov %i3, %o0
rtems_aio_insert_prio (&r_chain->perfd, req);
40007f84: 90 10 00 19 mov %i1, %o0
40007f88: 7f ff fe 6d call 4000793c <rtems_aio_insert_prio>
40007f8c: 92 10 00 18 mov %i0, %o1
pthread_cond_signal (&r_chain->cond);
40007f90: 40 00 01 1c call 40008400 <pthread_cond_signal>
40007f94: 90 10 00 1a mov %i2, %o0
pthread_mutex_unlock (&r_chain->mutex);
40007f98: 10 80 00 12 b 40007fe0 <rtems_aio_enqueue+0x18c>
40007f9c: 90 10 00 1b mov %i3, %o0
else
{
/* the maximum number of threads has been already created
even though some of them might be idle.
The request belongs to one of the active fd chain */
r_chain = rtems_aio_search_fd (&aio_request_queue.work_req,
40007fa0: 11 10 00 6a sethi %hi(0x4001a800), %o0 <== NOT EXECUTED
40007fa4: 94 10 20 00 clr %o2
40007fa8: 7f ff ff 50 call 40007ce8 <rtems_aio_search_fd>
40007fac: 90 12 20 dc or %o0, 0xdc, %o0
req->aiocbp->aio_fildes, 0);
if (r_chain != NULL)
40007fb0: ba 92 20 00 orcc %o0, 0, %i5
40007fb4: 22 80 00 0f be,a 40007ff0 <rtems_aio_enqueue+0x19c>
40007fb8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
{
pthread_mutex_lock (&r_chain->mutex);
40007fbc: b8 07 60 1c add %i5, 0x1c, %i4
40007fc0: 40 00 02 70 call 40008980 <pthread_mutex_lock>
40007fc4: 90 10 00 1c mov %i4, %o0
rtems_aio_insert_prio (&r_chain->perfd, req);
40007fc8: 90 07 60 08 add %i5, 8, %o0
40007fcc: 7f ff fe 5c call 4000793c <rtems_aio_insert_prio>
40007fd0: 92 10 00 18 mov %i0, %o1
pthread_cond_signal (&r_chain->cond);
40007fd4: 40 00 01 0b call 40008400 <pthread_cond_signal>
40007fd8: 90 07 60 20 add %i5, 0x20, %o0
pthread_mutex_unlock (&r_chain->mutex);
40007fdc: 90 10 00 1c mov %i4, %o0
40007fe0: 40 00 02 87 call 400089fc <pthread_mutex_unlock>
40007fe4: 01 00 00 00 nop
40007fe8: 10 80 00 21 b 4000806c <rtems_aio_enqueue+0x218>
40007fec: 90 14 20 88 or %l0, 0x88, %o0
} else {
/* or to the idle chain */
chain = &aio_request_queue.idle_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
40007ff0: 11 10 00 6a sethi %hi(0x4001a800), %o0
40007ff4: d2 00 40 00 ld [ %g1 ], %o1
40007ff8: 90 12 20 e8 or %o0, 0xe8, %o0
40007ffc: 7f ff ff 3b call 40007ce8 <rtems_aio_search_fd>
40008000: 94 10 20 01 mov 1, %o2
if (r_chain->new_fd == 1) {
40008004: c2 02 20 18 ld [ %o0 + 0x18 ], %g1
} else {
/* or to the idle chain */
chain = &aio_request_queue.idle_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
40008008: ba 10 00 08 mov %o0, %i5
4000800c: 92 10 00 18 mov %i0, %o1
if (r_chain->new_fd == 1) {
40008010: 80 a0 60 01 cmp %g1, 1
40008014: 12 80 00 0d bne 40008048 <rtems_aio_enqueue+0x1f4>
40008018: 90 02 20 08 add %o0, 8, %o0
4000801c: 40 00 08 fb call 4000a408 <_Chain_Insert>
40008020: 01 00 00 00 nop
/* If this is a new fd chain we signal the idle threads that
might be waiting for requests */
AIO_printf (" New chain on waiting queue \n ");
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
pthread_mutex_init (&r_chain->mutex, NULL);
40008024: 90 07 60 1c add %i5, 0x1c, %o0
if (r_chain->new_fd == 1) {
/* If this is a new fd chain we signal the idle threads that
might be waiting for requests */
AIO_printf (" New chain on waiting queue \n ");
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
40008028: c0 27 60 18 clr [ %i5 + 0x18 ]
pthread_mutex_init (&r_chain->mutex, NULL);
4000802c: 40 00 01 fa call 40008814 <pthread_mutex_init>
40008030: 92 10 20 00 clr %o1
pthread_cond_init (&r_chain->cond, NULL);
40008034: 90 07 60 20 add %i5, 0x20, %o0
40008038: 40 00 00 c6 call 40008350 <pthread_cond_init>
4000803c: 92 10 20 00 clr %o1
40008040: 10 80 00 05 b 40008054 <rtems_aio_enqueue+0x200>
40008044: c2 07 20 74 ld [ %i4 + 0x74 ], %g1
} else
/* just insert the request in the existing fd chain */
rtems_aio_insert_prio (&r_chain->perfd, req);
40008048: 7f ff fe 3d call 4000793c <rtems_aio_insert_prio>
4000804c: 01 00 00 00 nop
if (aio_request_queue.idle_threads > 0)
40008050: c2 07 20 74 ld [ %i4 + 0x74 ], %g1
40008054: 80 a0 60 00 cmp %g1, 0
40008058: 04 80 00 05 ble 4000806c <rtems_aio_enqueue+0x218> <== ALWAYS TAKEN
4000805c: 90 14 20 88 or %l0, 0x88, %o0
pthread_cond_signal (&aio_request_queue.new_req);
40008060: 40 00 00 e8 call 40008400 <pthread_cond_signal> <== NOT EXECUTED
40008064: 90 07 20 04 add %i4, 4, %o0 <== NOT EXECUTED
}
}
pthread_mutex_unlock (&aio_request_queue.mutex);
40008068: 90 14 20 88 or %l0, 0x88, %o0
4000806c: 40 00 02 64 call 400089fc <pthread_mutex_unlock>
40008070: b0 10 20 00 clr %i0
return 0;
}
40008074: 81 c7 e0 08 ret
40008078: 81 e8 00 00 restore
40007998 <rtems_aio_handle>:
* NULL - if error
*/
static void *
rtems_aio_handle (void *arg)
{
40007998: 9d e3 bf 78 save %sp, -136, %sp
struct timespec timeout;
AIO_printf ("Chain is empty [WQ], wait for work\n");
pthread_mutex_unlock (&r_chain->mutex);
pthread_mutex_lock (&aio_request_queue.mutex);
4000799c: 3b 10 00 6a sethi %hi(0x4001a800), %i5
400079a0: ba 17 60 88 or %i5, 0x88, %i5 ! 4001a888 <aio_request_queue>
}
}
/* If there was a request added in the initial fd chain then release
the mutex and process it */
pthread_mutex_unlock (&aio_request_queue.mutex);
400079a4: b4 10 00 1d mov %i5, %i2
pthread_cond_destroy (&r_chain->cond);
free (r_chain);
/* If the idle chain is empty sleep for 3 seconds and wait for a
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
400079a8: b2 07 60 64 add %i5, 0x64, %i1
rtems_chain_node *node;
node = rtems_chain_first (work_req_chain);
temp = (rtems_aio_request_chain *) node;
while (temp->fildes < r_chain->fildes &&
400079ac: a0 07 60 58 add %i5, 0x58, %l0
/* acquire the mutex of the current fd chain.
we don't need to lock the queue mutex since we can
add requests to idle fd chains or even active ones
if the working request has been extracted from the
chain */
result = pthread_mutex_lock (&r_chain->mutex);
400079b0: b6 06 20 1c add %i0, 0x1c, %i3
400079b4: 40 00 03 f3 call 40008980 <pthread_mutex_lock>
400079b8: 90 10 00 1b mov %i3, %o0
if (result != 0)
400079bc: 80 a2 20 00 cmp %o0, 0
400079c0: 12 80 00 93 bne 40007c0c <rtems_aio_handle+0x274> <== NEVER TAKEN
400079c4: 82 06 20 0c add %i0, 0xc, %g1
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
400079c8: f8 06 20 08 ld [ %i0 + 8 ], %i4
/* If the locked chain is not empty, take the first
request extract it, unlock the chain and process
the request, in this way the user can supply more
requests to this fd chain */
if (!rtems_chain_is_empty (chain)) {
400079cc: 80 a7 00 01 cmp %i4, %g1
400079d0: 02 80 00 3b be 40007abc <rtems_aio_handle+0x124>
400079d4: 01 00 00 00 nop
node = rtems_chain_first (chain);
req = (rtems_aio_request *) node;
/* See _POSIX_PRIORITIZE_IO and _POSIX_PRIORITY_SCHEDULING
discussion in rtems_aio_enqueue () */
pthread_getschedparam (pthread_self(), &policy, ¶m);
400079d8: 40 00 06 02 call 400091e0 <pthread_self>
400079dc: 01 00 00 00 nop
400079e0: 92 07 bf d8 add %fp, -40, %o1
400079e4: 40 00 05 13 call 40008e30 <pthread_getschedparam>
400079e8: 94 07 bf e4 add %fp, -28, %o2
param.sched_priority = req->priority;
400079ec: c2 07 20 0c ld [ %i4 + 0xc ], %g1
pthread_setschedparam (pthread_self(), req->policy, ¶m);
400079f0: 40 00 05 fc call 400091e0 <pthread_self>
400079f4: c2 27 bf e4 st %g1, [ %fp + -28 ]
400079f8: d2 07 20 08 ld [ %i4 + 8 ], %o1
400079fc: 40 00 05 fc call 400091ec <pthread_setschedparam>
40007a00: 94 07 bf e4 add %fp, -28, %o2
#else
RTEMS_INLINE_ROUTINE void rtems_chain_extract(
rtems_chain_node *the_node
)
{
_Chain_Extract( the_node );
40007a04: 40 00 0a 68 call 4000a3a4 <_Chain_Extract>
40007a08: 90 10 00 1c mov %i4, %o0
rtems_chain_extract (node);
pthread_mutex_unlock (&r_chain->mutex);
40007a0c: 40 00 03 fc call 400089fc <pthread_mutex_unlock>
40007a10: 90 10 00 1b mov %i3, %o0
switch (req->aiocbp->aio_lio_opcode) {
40007a14: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
40007a18: c4 00 60 30 ld [ %g1 + 0x30 ], %g2
40007a1c: 80 a0 a0 02 cmp %g2, 2
40007a20: 22 80 00 10 be,a 40007a60 <rtems_aio_handle+0xc8>
40007a24: c4 18 60 08 ldd [ %g1 + 8 ], %g2
40007a28: 80 a0 a0 03 cmp %g2, 3
40007a2c: 02 80 00 15 be 40007a80 <rtems_aio_handle+0xe8> <== NEVER TAKEN
40007a30: 80 a0 a0 01 cmp %g2, 1
40007a34: 32 80 00 19 bne,a 40007a98 <rtems_aio_handle+0x100> <== NEVER TAKEN
40007a38: f8 07 20 14 ld [ %i4 + 0x14 ], %i4 <== NOT EXECUTED
case LIO_READ:
AIO_printf ("read\n");
result = pread (req->aiocbp->aio_fildes,
40007a3c: c4 18 60 08 ldd [ %g1 + 8 ], %g2
40007a40: d0 00 40 00 ld [ %g1 ], %o0
40007a44: d2 00 60 10 ld [ %g1 + 0x10 ], %o1
40007a48: d4 00 60 14 ld [ %g1 + 0x14 ], %o2
40007a4c: 96 10 00 02 mov %g2, %o3
40007a50: 40 00 2a 7c call 40012440 <pread>
40007a54: 98 10 00 03 mov %g3, %o4
(void *) req->aiocbp->aio_buf,
req->aiocbp->aio_nbytes, req->aiocbp->aio_offset);
break;
40007a58: 10 80 00 0d b 40007a8c <rtems_aio_handle+0xf4>
40007a5c: 80 a2 3f ff cmp %o0, -1
case LIO_WRITE:
AIO_printf ("write\n");
result = pwrite (req->aiocbp->aio_fildes,
40007a60: d0 00 40 00 ld [ %g1 ], %o0
40007a64: d2 00 60 10 ld [ %g1 + 0x10 ], %o1
40007a68: d4 00 60 14 ld [ %g1 + 0x14 ], %o2
40007a6c: 96 10 00 02 mov %g2, %o3
40007a70: 40 00 2a b0 call 40012530 <pwrite>
40007a74: 98 10 00 03 mov %g3, %o4
(void *) req->aiocbp->aio_buf,
req->aiocbp->aio_nbytes, req->aiocbp->aio_offset);
break;
40007a78: 10 80 00 05 b 40007a8c <rtems_aio_handle+0xf4>
40007a7c: 80 a2 3f ff cmp %o0, -1
case LIO_SYNC:
AIO_printf ("sync\n");
result = fsync (req->aiocbp->aio_fildes);
40007a80: 40 00 1b a6 call 4000e918 <fsync> <== NOT EXECUTED
40007a84: d0 00 40 00 ld [ %g1 ], %o0 <== NOT EXECUTED
break;
default:
result = -1;
}
if (result == -1) {
40007a88: 80 a2 3f ff cmp %o0, -1 <== NOT EXECUTED
40007a8c: 32 80 00 09 bne,a 40007ab0 <rtems_aio_handle+0x118> <== ALWAYS TAKEN
40007a90: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
req->aiocbp->return_value = -1;
40007a94: f8 07 20 14 ld [ %i4 + 0x14 ], %i4 <== NOT EXECUTED
40007a98: 82 10 3f ff mov -1, %g1 <== NOT EXECUTED
req->aiocbp->error_code = errno;
40007a9c: 40 00 29 84 call 400120ac <__errno> <== NOT EXECUTED
40007aa0: c2 27 20 38 st %g1, [ %i4 + 0x38 ] <== NOT EXECUTED
40007aa4: c2 02 00 00 ld [ %o0 ], %g1 <== NOT EXECUTED
40007aa8: 10 bf ff c2 b 400079b0 <rtems_aio_handle+0x18> <== NOT EXECUTED
40007aac: c2 27 20 34 st %g1, [ %i4 + 0x34 ] <== NOT EXECUTED
} else {
req->aiocbp->return_value = result;
40007ab0: d0 20 60 38 st %o0, [ %g1 + 0x38 ]
req->aiocbp->error_code = 0;
40007ab4: 10 bf ff bf b 400079b0 <rtems_aio_handle+0x18>
40007ab8: c0 20 60 34 clr [ %g1 + 0x34 ]
struct timespec timeout;
AIO_printf ("Chain is empty [WQ], wait for work\n");
pthread_mutex_unlock (&r_chain->mutex);
40007abc: 40 00 03 d0 call 400089fc <pthread_mutex_unlock>
40007ac0: 90 10 00 1b mov %i3, %o0
pthread_mutex_lock (&aio_request_queue.mutex);
40007ac4: 40 00 03 af call 40008980 <pthread_mutex_lock>
40007ac8: 90 10 00 1d mov %i5, %o0
if (rtems_chain_is_empty (chain))
40007acc: c2 06 20 08 ld [ %i0 + 8 ], %g1
40007ad0: 80 a0 40 1c cmp %g1, %i4
40007ad4: 12 80 00 4a bne 40007bfc <rtems_aio_handle+0x264> <== NEVER TAKEN
40007ad8: 92 07 bf dc add %fp, -36, %o1
{
clock_gettime (CLOCK_REALTIME, &timeout);
40007adc: 40 00 01 b2 call 400081a4 <clock_gettime>
40007ae0: 90 10 20 01 mov 1, %o0
timeout.tv_sec += 3;
40007ae4: c2 07 bf dc ld [ %fp + -36 ], %g1
timeout.tv_nsec = 0;
40007ae8: c0 27 bf e0 clr [ %fp + -32 ]
pthread_mutex_lock (&aio_request_queue.mutex);
if (rtems_chain_is_empty (chain))
{
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
40007aec: 82 00 60 03 add %g1, 3, %g1
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&r_chain->cond,
40007af0: b8 06 20 20 add %i0, 0x20, %i4
pthread_mutex_lock (&aio_request_queue.mutex);
if (rtems_chain_is_empty (chain))
{
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
40007af4: c2 27 bf dc st %g1, [ %fp + -36 ]
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&r_chain->cond,
40007af8: 90 10 00 1c mov %i4, %o0
40007afc: 92 10 00 1d mov %i5, %o1
40007b00: 40 00 02 5d call 40008474 <pthread_cond_timedwait>
40007b04: 94 07 bf dc add %fp, -36, %o2
&aio_request_queue.mutex,
&timeout);
/* If no requests were added to the chain we delete the fd chain from
the queue and start working with idle fd chains */
if (result == ETIMEDOUT) {
40007b08: 80 a2 20 74 cmp %o0, 0x74
40007b0c: 12 80 00 3c bne 40007bfc <rtems_aio_handle+0x264> <== NEVER TAKEN
40007b10: 01 00 00 00 nop
40007b14: 40 00 0a 24 call 4000a3a4 <_Chain_Extract>
40007b18: 90 10 00 18 mov %i0, %o0
rtems_chain_extract (&r_chain->next_fd);
pthread_mutex_destroy (&r_chain->mutex);
40007b1c: 40 00 02 e6 call 400086b4 <pthread_mutex_destroy>
40007b20: 90 10 00 1b mov %i3, %o0
pthread_cond_destroy (&r_chain->cond);
40007b24: 40 00 01 ce call 4000825c <pthread_cond_destroy>
40007b28: 90 10 00 1c mov %i4, %o0
free (r_chain);
40007b2c: 7f ff f0 db call 40003e98 <free>
40007b30: 90 10 00 18 mov %i0, %o0
/* If the idle chain is empty sleep for 3 seconds and wait for a
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
40007b34: c2 07 60 60 ld [ %i5 + 0x60 ], %g1
40007b38: 80 a0 40 19 cmp %g1, %i1
40007b3c: 12 80 00 1b bne 40007ba8 <rtems_aio_handle+0x210>
40007b40: c2 07 60 74 ld [ %i5 + 0x74 ], %g1
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
--aio_request_queue.active_threads;
clock_gettime (CLOCK_REALTIME, &timeout);
40007b44: 92 07 bf dc add %fp, -36, %o1
/* If the idle chain is empty sleep for 3 seconds and wait for a
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
40007b48: 82 00 60 01 inc %g1
40007b4c: c2 27 60 74 st %g1, [ %i5 + 0x74 ]
--aio_request_queue.active_threads;
40007b50: c2 07 60 70 ld [ %i5 + 0x70 ], %g1
clock_gettime (CLOCK_REALTIME, &timeout);
40007b54: 90 10 20 01 mov 1, %o0
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
--aio_request_queue.active_threads;
40007b58: 82 00 7f ff add %g1, -1, %g1
clock_gettime (CLOCK_REALTIME, &timeout);
40007b5c: 40 00 01 92 call 400081a4 <clock_gettime>
40007b60: c2 27 60 70 st %g1, [ %i5 + 0x70 ]
timeout.tv_sec += 3;
40007b64: c2 07 bf dc ld [ %fp + -36 ], %g1
timeout.tv_nsec = 0;
40007b68: c0 27 bf e0 clr [ %fp + -32 ]
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
--aio_request_queue.active_threads;
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
40007b6c: 82 00 60 03 add %g1, 3, %g1
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&aio_request_queue.new_req,
40007b70: 90 07 60 04 add %i5, 4, %o0
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
--aio_request_queue.active_threads;
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
40007b74: c2 27 bf dc st %g1, [ %fp + -36 ]
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&aio_request_queue.new_req,
40007b78: 92 10 00 1d mov %i5, %o1
40007b7c: 40 00 02 3e call 40008474 <pthread_cond_timedwait>
40007b80: 94 07 bf dc add %fp, -36, %o2
&aio_request_queue.mutex,
&timeout);
/* If no new fd chain was added in the idle requests
then this thread is finished */
if (result == ETIMEDOUT) {
40007b84: 80 a2 20 74 cmp %o0, 0x74
40007b88: 12 80 00 08 bne 40007ba8 <rtems_aio_handle+0x210> <== NEVER TAKEN
40007b8c: c2 07 60 74 ld [ %i5 + 0x74 ], %g1
AIO_printf ("Etimeout\n");
--aio_request_queue.idle_threads;
pthread_mutex_unlock (&aio_request_queue.mutex);
40007b90: 90 10 00 1d mov %i5, %o0
/* If no new fd chain was added in the idle requests
then this thread is finished */
if (result == ETIMEDOUT) {
AIO_printf ("Etimeout\n");
--aio_request_queue.idle_threads;
40007b94: 82 00 7f ff add %g1, -1, %g1
pthread_mutex_unlock (&aio_request_queue.mutex);
40007b98: 40 00 03 99 call 400089fc <pthread_mutex_unlock>
40007b9c: c2 27 60 74 st %g1, [ %i5 + 0x74 ]
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
40007ba0: 81 c7 e0 08 ret
40007ba4: 91 e8 20 00 restore %g0, 0, %o0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
40007ba8: f0 07 60 60 ld [ %i5 + 0x60 ], %i0
}
}
/* Otherwise move this chain to the working chain and
start the loop all over again */
AIO_printf ("Work on idle\n");
--aio_request_queue.idle_threads;
40007bac: 82 00 7f ff add %g1, -1, %g1
40007bb0: c2 27 60 74 st %g1, [ %i5 + 0x74 ]
++aio_request_queue.active_threads;
40007bb4: c2 07 60 70 ld [ %i5 + 0x70 ], %g1
40007bb8: 90 10 00 18 mov %i0, %o0
40007bbc: 82 00 60 01 inc %g1
40007bc0: 40 00 09 f9 call 4000a3a4 <_Chain_Extract>
40007bc4: c2 27 60 70 st %g1, [ %i5 + 0x70 ]
40007bc8: c2 07 60 54 ld [ %i5 + 0x54 ], %g1
rtems_chain_node *node;
node = rtems_chain_first (work_req_chain);
temp = (rtems_aio_request_chain *) node;
while (temp->fildes < r_chain->fildes &&
40007bcc: c4 06 20 14 ld [ %i0 + 0x14 ], %g2
40007bd0: c6 00 60 14 ld [ %g1 + 0x14 ], %g3
40007bd4: 80 a0 c0 02 cmp %g3, %g2
40007bd8: 16 80 00 06 bge 40007bf0 <rtems_aio_handle+0x258>
40007bdc: 80 a0 40 10 cmp %g1, %l0
40007be0: 22 80 00 05 be,a 40007bf4 <rtems_aio_handle+0x25c> <== NEVER TAKEN
40007be4: d0 00 60 04 ld [ %g1 + 4 ], %o0 <== NOT EXECUTED
* @param[in] the_node is the node to be operated upon.
*
* @return This method returns the next node on the chain.
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_next(
rtems_chain_node *the_node
40007be8: 10 bf ff fa b 40007bd0 <rtems_aio_handle+0x238>
40007bec: c2 00 40 00 ld [ %g1 ], %g1
RTEMS_INLINE_ROUTINE void rtems_chain_insert(
rtems_chain_node *after_node,
rtems_chain_node *the_node
)
{
_Chain_Insert( after_node, the_node );
40007bf0: d0 00 60 04 ld [ %g1 + 4 ], %o0
40007bf4: 40 00 0a 05 call 4000a408 <_Chain_Insert>
40007bf8: 92 10 00 18 mov %i0, %o1
}
}
/* If there was a request added in the initial fd chain then release
the mutex and process it */
pthread_mutex_unlock (&aio_request_queue.mutex);
40007bfc: 40 00 03 80 call 400089fc <pthread_mutex_unlock>
40007c00: 90 10 00 1a mov %i2, %o0
40007c04: 10 bf ff 6c b 400079b4 <rtems_aio_handle+0x1c>
40007c08: b6 06 20 1c add %i0, 0x1c, %i3
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
40007c0c: b0 10 20 00 clr %i0 <== NOT EXECUTED
40007c10: 81 c7 e0 08 ret <== NOT EXECUTED
40007c14: 81 e8 00 00 restore <== NOT EXECUTED
40007c18 <rtems_aio_init>:
* 0 - if initialization succeeded
*/
int
rtems_aio_init (void)
{
40007c18: 9d e3 bf a0 save %sp, -96, %sp
int result = 0;
result = pthread_attr_init (&aio_request_queue.attr);
40007c1c: 3b 10 00 6a sethi %hi(0x4001a800), %i5
40007c20: 40 00 03 d1 call 40008b64 <pthread_attr_init>
40007c24: 90 17 60 90 or %i5, 0x90, %o0 ! 4001a890 <aio_request_queue+0x8>
if (result != 0)
40007c28: b0 92 20 00 orcc %o0, 0, %i0
40007c2c: 12 80 00 2d bne 40007ce0 <rtems_aio_init+0xc8> <== NEVER TAKEN
40007c30: 90 17 60 90 or %i5, 0x90, %o0
return result;
result =
40007c34: 40 00 03 d8 call 40008b94 <pthread_attr_setdetachstate>
40007c38: 92 10 20 00 clr %o1
pthread_attr_setdetachstate (&aio_request_queue.attr,
PTHREAD_CREATE_DETACHED);
if (result != 0)
40007c3c: 80 a2 20 00 cmp %o0, 0
40007c40: 02 80 00 05 be 40007c54 <rtems_aio_init+0x3c> <== ALWAYS TAKEN
40007c44: 39 10 00 6a sethi %hi(0x4001a800), %i4
pthread_attr_destroy (&aio_request_queue.attr);
40007c48: 40 00 03 bb call 40008b34 <pthread_attr_destroy> <== NOT EXECUTED
40007c4c: 90 17 60 90 or %i5, 0x90, %o0 <== NOT EXECUTED
result = pthread_mutex_init (&aio_request_queue.mutex, NULL);
40007c50: 39 10 00 6a sethi %hi(0x4001a800), %i4 <== NOT EXECUTED
40007c54: 92 10 20 00 clr %o1
40007c58: 40 00 02 ef call 40008814 <pthread_mutex_init>
40007c5c: 90 17 20 88 or %i4, 0x88, %o0
if (result != 0)
40007c60: 80 a2 20 00 cmp %o0, 0
40007c64: 22 80 00 05 be,a 40007c78 <rtems_aio_init+0x60> <== ALWAYS TAKEN
40007c68: 11 10 00 6a sethi %hi(0x4001a800), %o0
pthread_attr_destroy (&aio_request_queue.attr);
40007c6c: 40 00 03 b2 call 40008b34 <pthread_attr_destroy> <== NOT EXECUTED
40007c70: 90 17 60 90 or %i5, 0x90, %o0 <== NOT EXECUTED
result = pthread_cond_init (&aio_request_queue.new_req, NULL);
40007c74: 11 10 00 6a sethi %hi(0x4001a800), %o0 <== NOT EXECUTED
40007c78: 92 10 20 00 clr %o1
40007c7c: 40 00 01 b5 call 40008350 <pthread_cond_init>
40007c80: 90 12 20 8c or %o0, 0x8c, %o0
if (result != 0) {
40007c84: b0 92 20 00 orcc %o0, 0, %i0
40007c88: 02 80 00 07 be 40007ca4 <rtems_aio_init+0x8c> <== ALWAYS TAKEN
40007c8c: 82 17 20 88 or %i4, 0x88, %g1
pthread_mutex_destroy (&aio_request_queue.mutex);
40007c90: 40 00 02 89 call 400086b4 <pthread_mutex_destroy> <== NOT EXECUTED
40007c94: 90 17 20 88 or %i4, 0x88, %o0 <== NOT EXECUTED
pthread_attr_destroy (&aio_request_queue.attr);
40007c98: 40 00 03 a7 call 40008b34 <pthread_attr_destroy> <== NOT EXECUTED
40007c9c: 90 17 60 90 or %i5, 0x90, %o0 <== NOT EXECUTED
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40007ca0: 82 17 20 88 or %i4, 0x88, %g1 <== NOT EXECUTED
40007ca4: 84 00 60 58 add %g1, 0x58, %g2
40007ca8: c4 20 60 54 st %g2, [ %g1 + 0x54 ]
head->previous = NULL;
tail->previous = head;
40007cac: 84 00 60 54 add %g1, 0x54, %g2
40007cb0: c4 20 60 5c st %g2, [ %g1 + 0x5c ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40007cb4: 84 00 60 64 add %g1, 0x64, %g2
40007cb8: c4 20 60 60 st %g2, [ %g1 + 0x60 ]
head->previous = NULL;
tail->previous = head;
40007cbc: 84 00 60 60 add %g1, 0x60, %g2
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
40007cc0: c0 20 60 58 clr [ %g1 + 0x58 ]
tail->previous = head;
40007cc4: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
40007cc8: c0 20 60 64 clr [ %g1 + 0x64 ]
rtems_chain_initialize_empty (&aio_request_queue.work_req);
rtems_chain_initialize_empty (&aio_request_queue.idle_req);
aio_request_queue.active_threads = 0;
aio_request_queue.idle_threads = 0;
aio_request_queue.initialized = AIO_QUEUE_INITIALIZED;
40007ccc: 05 00 00 2c sethi %hi(0xb000), %g2
}
rtems_chain_initialize_empty (&aio_request_queue.work_req);
rtems_chain_initialize_empty (&aio_request_queue.idle_req);
aio_request_queue.active_threads = 0;
40007cd0: c0 20 60 70 clr [ %g1 + 0x70 ]
aio_request_queue.idle_threads = 0;
aio_request_queue.initialized = AIO_QUEUE_INITIALIZED;
40007cd4: 84 10 a0 0b or %g2, 0xb, %g2
rtems_chain_initialize_empty (&aio_request_queue.work_req);
rtems_chain_initialize_empty (&aio_request_queue.idle_req);
aio_request_queue.active_threads = 0;
aio_request_queue.idle_threads = 0;
40007cd8: c0 20 60 74 clr [ %g1 + 0x74 ]
aio_request_queue.initialized = AIO_QUEUE_INITIALIZED;
40007cdc: c4 20 60 6c st %g2, [ %g1 + 0x6c ]
return result;
}
40007ce0: 81 c7 e0 08 ret
40007ce4: 81 e8 00 00 restore
4000793c <rtems_aio_insert_prio>:
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
4000793c: c2 02 00 00 ld [ %o0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40007940: 86 02 20 04 add %o0, 4, %g3
rtems_chain_node *node;
AIO_printf ("FD exists \n");
node = rtems_chain_first (chain);
if (rtems_chain_is_empty (chain)) {
40007944: 80 a0 40 03 cmp %g1, %g3
40007948: 02 80 00 0b be 40007974 <rtems_aio_insert_prio+0x38> <== NEVER TAKEN
4000794c: 84 10 00 09 mov %o1, %g2
AIO_printf ("First in chain \n");
rtems_chain_prepend (chain, &req->next_prio);
} else {
AIO_printf ("Add by priority \n");
int prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
40007950: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
while (req->aiocbp->aio_reqprio > prio &&
40007954: da 02 60 14 ld [ %o1 + 0x14 ], %o5
if (rtems_chain_is_empty (chain)) {
AIO_printf ("First in chain \n");
rtems_chain_prepend (chain, &req->next_prio);
} else {
AIO_printf ("Add by priority \n");
int prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
40007958: c8 01 20 18 ld [ %g4 + 0x18 ], %g4
while (req->aiocbp->aio_reqprio > prio &&
4000795c: da 03 60 18 ld [ %o5 + 0x18 ], %o5
40007960: 80 a3 40 04 cmp %o5, %g4
40007964: 14 80 00 07 bg 40007980 <rtems_aio_insert_prio+0x44> <== NEVER TAKEN
40007968: 80 a0 40 03 cmp %g1, %g3
RTEMS_INLINE_ROUTINE void rtems_chain_insert(
rtems_chain_node *after_node,
rtems_chain_node *the_node
)
{
_Chain_Insert( after_node, the_node );
4000796c: d0 00 60 04 ld [ %g1 + 4 ], %o0
40007970: 92 10 00 02 mov %g2, %o1
40007974: 82 13 c0 00 mov %o7, %g1
40007978: 40 00 0a a4 call 4000a408 <_Chain_Insert>
4000797c: 9e 10 40 00 mov %g1, %o7
40007980: 22 bf ff fc be,a 40007970 <rtems_aio_insert_prio+0x34> <== NOT EXECUTED
40007984: d0 00 60 04 ld [ %g1 + 4 ], %o0 <== NOT EXECUTED
* @param[in] the_node is the node to be operated upon.
*
* @return This method returns the next node on the chain.
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_next(
rtems_chain_node *the_node
40007988: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
!rtems_chain_is_tail (chain, node)) {
node = rtems_chain_next (node);
prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
4000798c: c8 00 60 14 ld [ %g1 + 0x14 ], %g4 <== NOT EXECUTED
40007990: 10 bf ff f4 b 40007960 <rtems_aio_insert_prio+0x24> <== NOT EXECUTED
40007994: c8 01 20 18 ld [ %g4 + 0x18 ], %g4 <== NOT EXECUTED
40007ddc <rtems_aio_remove_req>:
* AIO_NOTCANCELED - if request was not canceled
* AIO_CANCELED - if request was canceled
*/
int rtems_aio_remove_req (rtems_chain_control *chain, struct aiocb *aiocbp)
{
40007ddc: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
40007de0: fa 06 00 00 ld [ %i0 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40007de4: 82 06 20 04 add %i0, 4, %g1
if (rtems_chain_is_empty (chain))
40007de8: 80 a7 40 01 cmp %i5, %g1
40007dec: 02 80 00 18 be 40007e4c <rtems_aio_remove_req+0x70>
40007df0: b0 10 20 02 mov 2, %i0
rtems_chain_node *node = rtems_chain_first (chain);
rtems_aio_request *current;
current = (rtems_aio_request *) node;
while (!rtems_chain_is_tail (chain, node) && current->aiocbp != aiocbp) {
40007df4: c4 07 60 14 ld [ %i5 + 0x14 ], %g2
40007df8: 80 a0 80 19 cmp %g2, %i1
40007dfc: 02 80 00 08 be 40007e1c <rtems_aio_remove_req+0x40> <== ALWAYS TAKEN
40007e00: 80 a7 40 01 cmp %i5, %g1
40007e04: fa 07 40 00 ld [ %i5 ], %i5 <== NOT EXECUTED
40007e08: 80 a7 40 01 cmp %i5, %g1 <== NOT EXECUTED
40007e0c: 32 bf ff fb bne,a 40007df8 <rtems_aio_remove_req+0x1c> <== NOT EXECUTED
40007e10: c4 07 60 14 ld [ %i5 + 0x14 ], %g2 <== NOT EXECUTED
node = rtems_chain_next (node);
current = (rtems_aio_request *) node;
}
if (rtems_chain_is_tail (chain, node))
return AIO_NOTCANCELED;
40007e14: 81 c7 e0 08 ret <== NOT EXECUTED
40007e18: 91 e8 20 01 restore %g0, 1, %o0 <== NOT EXECUTED
while (!rtems_chain_is_tail (chain, node) && current->aiocbp != aiocbp) {
node = rtems_chain_next (node);
current = (rtems_aio_request *) node;
}
if (rtems_chain_is_tail (chain, node))
40007e1c: 02 80 00 0c be 40007e4c <rtems_aio_remove_req+0x70> <== NEVER TAKEN
40007e20: b0 10 20 01 mov 1, %i0
#else
RTEMS_INLINE_ROUTINE void rtems_chain_extract(
rtems_chain_node *the_node
)
{
_Chain_Extract( the_node );
40007e24: 40 00 09 60 call 4000a3a4 <_Chain_Extract>
40007e28: 90 10 00 1d mov %i5, %o0
return AIO_NOTCANCELED;
else
{
rtems_chain_extract (node);
current->aiocbp->error_code = ECANCELED;
40007e2c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
40007e30: 84 10 20 8c mov 0x8c, %g2
40007e34: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
current->aiocbp->return_value = -1;
40007e38: 84 10 3f ff mov -1, %g2
free (current);
40007e3c: 90 10 00 1d mov %i5, %o0
return AIO_NOTCANCELED;
else
{
rtems_chain_extract (node);
current->aiocbp->error_code = ECANCELED;
current->aiocbp->return_value = -1;
40007e40: c4 20 60 38 st %g2, [ %g1 + 0x38 ]
free (current);
40007e44: 7f ff f0 15 call 40003e98 <free>
40007e48: b0 10 20 00 clr %i0
}
return AIO_CANCELED;
40007e4c: 81 c7 e0 08 ret
40007e50: 81 e8 00 00 restore
400085e4 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
400085e4: 9d e3 bf 98 save %sp, -104, %sp
#else
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
400085e8: 40 00 01 80 call 40008be8 <_Chain_Get>
400085ec: 90 10 00 18 mov %i0, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
400085f0: ba 92 20 00 orcc %o0, 0, %i5
400085f4: 12 80 00 0b bne 40008620 <rtems_chain_get_with_wait+0x3c>
400085f8: 90 10 00 19 mov %i1, %o0
) {
rtems_event_set out;
sc = rtems_event_receive(
400085fc: 92 10 20 00 clr %o1
40008600: 94 10 00 1a mov %i2, %o2
40008604: 7f ff fd 06 call 40007a1c <rtems_event_receive>
40008608: 96 07 bf fc add %fp, -4, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
4000860c: 80 a2 20 00 cmp %o0, 0
40008610: 02 bf ff f6 be 400085e8 <rtems_chain_get_with_wait+0x4> <== NEVER TAKEN
40008614: 01 00 00 00 nop
40008618: 10 80 00 04 b 40008628 <rtems_chain_get_with_wait+0x44>
4000861c: fa 26 c0 00 st %i5, [ %i3 ]
40008620: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40008624: fa 26 c0 00 st %i5, [ %i3 ]
return sc;
}
40008628: 81 c7 e0 08 ret
4000862c: 91 e8 00 08 restore %g0, %o0, %o0
40006f90 <rtems_clock_tick>:
#include <rtems/score/threadimpl.h>
#include <rtems/score/todimpl.h>
#include <rtems/score/watchdogimpl.h>
rtems_status_code rtems_clock_tick( void )
{
40006f90: 9d e3 bf a0 save %sp, -96, %sp
#if defined( RTEMS_SMP )
_Thread_Disable_dispatch();
#endif
_TOD_Tickle_ticks();
40006f94: 40 00 05 6b call 40008540 <_TOD_Tickle_ticks>
40006f98: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_ticks( void )
{
_Watchdog_Tickle( &_Watchdog_Ticks_chain );
40006f9c: 11 10 00 61 sethi %hi(0x40018400), %o0
40006fa0: 40 00 10 66 call 4000b138 <_Watchdog_Tickle>
40006fa4: 90 12 20 b0 or %o0, 0xb0, %o0 ! 400184b0 <_Watchdog_Ticks_chain>
uint32_t cpu_index;
for ( cpu_index = 0 ; cpu_index < cpu_count ; ++cpu_index ) {
const Per_CPU_Control *cpu = _Per_CPU_Get_by_index( cpu_index );
const Scheduler_Control *scheduler = _Scheduler_Get_by_CPU( cpu );
Thread_Control *executing = cpu->executing;
40006fa8: 03 10 00 63 sethi %hi(0x40018c00), %g1
40006fac: d2 00 61 18 ld [ %g1 + 0x118 ], %o1 ! 40018d18 <_Per_CPU_Information+0x18>
if ( scheduler != NULL && executing != NULL ) {
40006fb0: 80 a2 60 00 cmp %o1, 0
40006fb4: 02 80 00 06 be 40006fcc <rtems_clock_tick+0x3c> <== NEVER TAKEN
40006fb8: 11 10 00 55 sethi %hi(0x40015400), %o0
( *scheduler->Operations.tick )( scheduler, executing );
40006fbc: 90 12 22 6c or %o0, 0x26c, %o0 ! 4001566c <_Scheduler_Table>
40006fc0: c2 02 20 30 ld [ %o0 + 0x30 ], %g1
40006fc4: 9f c0 40 00 call %g1
40006fc8: 01 00 00 00 nop
_Scheduler_Tick();
#if defined( RTEMS_SMP )
_Thread_Enable_dispatch();
#else
if ( _Thread_Is_context_switch_necessary() &&
40006fcc: c4 09 a0 14 ldub [ %g6 + 0x14 ], %g2
40006fd0: 80 a0 a0 00 cmp %g2, 0
40006fd4: 02 80 00 08 be 40006ff4 <rtems_clock_tick+0x64>
40006fd8: 01 00 00 00 nop
ISR_Level level;
_ISR_Disable_without_giant( level );
#endif
enabled = _Thread_Dispatch_disable_level == 0;
40006fdc: c2 01 a0 10 ld [ %g6 + 0x10 ], %g1
40006fe0: 80 a0 60 00 cmp %g1, 0
40006fe4: 12 80 00 04 bne 40006ff4 <rtems_clock_tick+0x64>
40006fe8: 01 00 00 00 nop
_Thread_Dispatch_is_enabled() )
_Thread_Dispatch();
40006fec: 40 00 0b 2e call 40009ca4 <_Thread_Dispatch>
40006ff0: 01 00 00 00 nop
#endif
return RTEMS_SUCCESSFUL;
}
40006ff4: 81 c7 e0 08 ret
40006ff8: 91 e8 20 00 restore %g0, 0, %o0
4000cd3c <rtems_iterate_over_all_threads>:
#include <rtems/score/thread.h>
#include <rtems/score/objectimpl.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
4000cd3c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
4000cd40: ba 10 20 01 mov 1, %i5
4000cd44: 80 a6 20 00 cmp %i0, 0
4000cd48: 02 80 00 1a be 4000cdb0 <rtems_iterate_over_all_threads+0x74><== NEVER TAKEN
4000cd4c: 35 10 00 c0 sethi %hi(0x40030000), %i2
4000cd50: 83 2f 60 02 sll %i5, 2, %g1
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
4000cd54: 84 16 a3 60 or %i2, 0x360, %g2
4000cd58: c2 00 80 01 ld [ %g2 + %g1 ], %g1
4000cd5c: f6 00 60 04 ld [ %g1 + 4 ], %i3
if ( !information )
4000cd60: 80 a6 e0 00 cmp %i3, 0
4000cd64: 22 80 00 10 be,a 4000cda4 <rtems_iterate_over_all_threads+0x68>
4000cd68: ba 07 60 01 inc %i5
4000cd6c: 10 80 00 09 b 4000cd90 <rtems_iterate_over_all_threads+0x54>
4000cd70: b8 10 20 01 mov 1, %i4
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
the_thread = (Thread_Control *)information->local_table[ i ];
4000cd74: 83 2f 20 02 sll %i4, 2, %g1
4000cd78: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
4000cd7c: 80 a2 20 00 cmp %o0, 0
4000cd80: 02 80 00 04 be 4000cd90 <rtems_iterate_over_all_threads+0x54><== NEVER TAKEN
4000cd84: b8 07 20 01 inc %i4
continue;
(*routine)(the_thread);
4000cd88: 9f c6 00 00 call %i0
4000cd8c: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000cd90: c2 16 e0 10 lduh [ %i3 + 0x10 ], %g1
4000cd94: 80 a7 00 01 cmp %i4, %g1
4000cd98: 28 bf ff f7 bleu,a 4000cd74 <rtems_iterate_over_all_threads+0x38>
4000cd9c: c4 06 e0 1c ld [ %i3 + 0x1c ], %g2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
4000cda0: ba 07 60 01 inc %i5
4000cda4: 80 a7 60 04 cmp %i5, 4
4000cda8: 12 bf ff eb bne 4000cd54 <rtems_iterate_over_all_threads+0x18>
4000cdac: 83 2f 60 02 sll %i5, 2, %g1
4000cdb0: 81 c7 e0 08 ret
4000cdb4: 81 e8 00 00 restore
40009398 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40009398: 9d e3 bf a0 save %sp, -96, %sp
Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
4000939c: 80 a6 20 00 cmp %i0, 0
400093a0: 02 80 00 36 be 40009478 <rtems_partition_create+0xe0>
400093a4: 82 10 20 03 mov 3, %g1
return RTEMS_INVALID_NAME;
if ( !starting_address )
400093a8: 80 a6 60 00 cmp %i1, 0
400093ac: 02 80 00 33 be 40009478 <rtems_partition_create+0xe0>
400093b0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
400093b4: 80 a7 60 00 cmp %i5, 0
400093b8: 02 80 00 30 be 40009478 <rtems_partition_create+0xe0> <== NEVER TAKEN
400093bc: 80 a6 a0 00 cmp %i2, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
400093c0: 02 80 00 2e be 40009478 <rtems_partition_create+0xe0>
400093c4: 82 10 20 08 mov 8, %g1
400093c8: 80 a6 e0 00 cmp %i3, 0
400093cc: 02 80 00 2b be 40009478 <rtems_partition_create+0xe0>
400093d0: 80 a6 80 1b cmp %i2, %i3
400093d4: 0a 80 00 29 bcs 40009478 <rtems_partition_create+0xe0>
400093d8: 80 8e e0 07 btst 7, %i3
400093dc: 12 80 00 27 bne 40009478 <rtems_partition_create+0xe0>
400093e0: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
400093e4: 12 80 00 25 bne 40009478 <rtems_partition_create+0xe0>
400093e8: 82 10 20 09 mov 9, %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
400093ec: 23 10 00 77 sethi %hi(0x4001dc00), %l1
400093f0: 25 10 00 78 sethi %hi(0x4001e000), %l2
400093f4: 40 00 07 77 call 4000b1d0 <_Objects_Allocate>
400093f8: 90 14 62 c4 or %l1, 0x2c4, %o0
return RTEMS_MP_NOT_CONFIGURED;
#endif
the_partition = _Partition_Allocate();
if ( !the_partition ) {
400093fc: a0 92 20 00 orcc %o0, 0, %l0
40009400: 32 80 00 06 bne,a 40009418 <rtems_partition_create+0x80>
40009404: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
40009408: 40 00 04 1e call 4000a480 <_API_Mutex_Unlock>
4000940c: d0 04 a0 d8 ld [ %l2 + 0xd8 ], %o0
_Objects_Allocator_unlock();
return RTEMS_TOO_MANY;
40009410: 10 80 00 1a b 40009478 <rtems_partition_create+0xe0>
40009414: 82 10 20 05 mov 5, %g1
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40009418: 92 10 00 1b mov %i3, %o1
_Objects_Allocator_unlock();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
4000941c: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
40009420: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
40009424: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
40009428: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
4000942c: 40 00 32 67 call 40015dc8 <.udiv>
40009430: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40009434: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40009438: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
4000943c: 96 10 00 1b mov %i3, %o3
40009440: b8 04 20 24 add %l0, 0x24, %i4
40009444: 40 00 04 3d call 4000a538 <_Chain_Initialize>
40009448: 90 10 00 1c mov %i4, %o0
Objects_Name name
)
{
the_object->name = name;
_Objects_Set_local_object(
4000944c: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
* @param[in] information points to an Object Information Table
* @param[in] the_object is a pointer to an object
* @param[in] name is the name of the object to make accessible
*/
RTEMS_INLINE_ROUTINE void _Objects_Open(
Objects_Information *information,
40009450: a2 14 62 c4 or %l1, 0x2c4, %l1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40009454: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
the_object->name = name;
40009458: f0 24 20 0c st %i0, [ %l0 + 0xc ]
_Objects_Set_local_object(
4000945c: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40009460: 85 28 a0 02 sll %g2, 2, %g2
40009464: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
40009468: d0 04 a0 d8 ld [ %l2 + 0xd8 ], %o0
4000946c: 40 00 04 05 call 4000a480 <_API_Mutex_Unlock>
40009470: c2 27 40 00 st %g1, [ %i5 ]
0 /* Not used */
);
#endif
_Objects_Allocator_unlock();
return RTEMS_SUCCESSFUL;
40009474: 82 10 20 00 clr %g1
}
40009478: 81 c7 e0 08 ret
4000947c: 91 e8 00 01 restore %g0, %g1, %o0
4000806c <rtems_partition_return_buffer>:
rtems_status_code rtems_partition_return_buffer(
rtems_id id,
void *buffer
)
{
4000806c: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Partition_Control *)
40008070: 11 10 00 69 sethi %hi(0x4001a400), %o0
40008074: 92 10 00 18 mov %i0, %o1
40008078: 90 12 22 10 or %o0, 0x210, %o0
4000807c: 40 00 07 4c call 40009dac <_Objects_Get>
40008080: 94 07 bf fc add %fp, -4, %o2
Partition_Control *the_partition;
Objects_Locations location;
the_partition = _Partition_Get( id, &location );
switch ( location ) {
40008084: c2 07 bf fc ld [ %fp + -4 ], %g1
40008088: 80 a0 60 00 cmp %g1, 0
4000808c: 12 80 00 21 bne 40008110 <rtems_partition_return_buffer+0xa4>
40008090: ba 10 00 08 mov %o0, %i5
)
{
void *starting;
void *ending;
starting = the_partition->starting_address;
40008094: d0 02 20 10 ld [ %o0 + 0x10 ], %o0
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset (
const void *base,
uintptr_t offset
)
{
return (void *)((uintptr_t)base + offset);
40008098: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
4000809c: 82 02 00 01 add %o0, %g1, %g1
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
400080a0: 80 a6 40 01 cmp %i1, %g1
400080a4: 18 80 00 0b bgu 400080d0 <rtems_partition_return_buffer+0x64>
400080a8: 82 10 20 00 clr %g1
400080ac: 80 a6 40 08 cmp %i1, %o0
400080b0: 0a 80 00 09 bcs 400080d4 <rtems_partition_return_buffer+0x68><== NEVER TAKEN
400080b4: 80 a0 60 00 cmp %g1, 0
offset = (uint32_t) _Addresses_Subtract(
the_buffer,
the_partition->starting_address
);
return ((offset % the_partition->buffer_size) == 0);
400080b8: d2 07 60 18 ld [ %i5 + 0x18 ], %o1
400080bc: 40 00 30 fd call 400144b0 <.urem>
400080c0: 90 26 40 08 sub %i1, %o0, %o0
starting = the_partition->starting_address;
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
400080c4: 80 a0 00 08 cmp %g0, %o0
400080c8: 10 80 00 02 b 400080d0 <rtems_partition_return_buffer+0x64>
400080cc: 82 60 3f ff subx %g0, -1, %g1
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
400080d0: 80 a0 60 00 cmp %g1, 0
400080d4: 02 80 00 0b be 40008100 <rtems_partition_return_buffer+0x94>
400080d8: 90 07 60 24 add %i5, 0x24, %o0
RTEMS_INLINE_ROUTINE void _Partition_Free_buffer (
Partition_Control *the_partition,
Chain_Node *the_buffer
)
{
_Chain_Append( &the_partition->Memory, the_buffer );
400080dc: 40 00 03 4b call 40008e08 <_Chain_Append>
400080e0: 92 10 00 19 mov %i1, %o1
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
400080e4: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
_Objects_Put( &the_partition->Object );
return RTEMS_SUCCESSFUL;
400080e8: b0 10 20 00 clr %i0
switch ( location ) {
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
400080ec: 82 00 7f ff add %g1, -1, %g1
400080f0: 40 00 0a a5 call 4000ab84 <_Thread_Enable_dispatch>
400080f4: c2 27 60 20 st %g1, [ %i5 + 0x20 ]
_Objects_Put( &the_partition->Object );
return RTEMS_SUCCESSFUL;
400080f8: 81 c7 e0 08 ret
400080fc: 81 e8 00 00 restore
40008100: 40 00 0a a1 call 4000ab84 <_Thread_Enable_dispatch>
40008104: b0 10 20 09 mov 9, %i0
}
_Objects_Put( &the_partition->Object );
return RTEMS_INVALID_ADDRESS;
40008108: 81 c7 e0 08 ret
4000810c: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40008110: 81 c7 e0 08 ret
40008114: 91 e8 20 04 restore %g0, 4, %o0
40007300 <rtems_pthread_attribute_compare>:
int rtems_pthread_attribute_compare(
const pthread_attr_t *attr1,
const pthread_attr_t *attr2
)
{
40007300: 9d e3 bf a0 save %sp, -96, %sp
if ( attr1->is_initialized != attr2->is_initialized )
40007304: c4 06 00 00 ld [ %i0 ], %g2
40007308: c2 06 40 00 ld [ %i1 ], %g1
4000730c: 80 a0 80 01 cmp %g2, %g1
40007310: 12 80 00 50 bne 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
40007314: 90 10 20 01 mov 1, %o0
return 1;
if ( attr1->stackaddr != attr2->stackaddr )
40007318: c4 06 20 04 ld [ %i0 + 4 ], %g2
4000731c: c2 06 60 04 ld [ %i1 + 4 ], %g1
40007320: 80 a0 80 01 cmp %g2, %g1
40007324: 12 80 00 4b bne 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
40007328: 01 00 00 00 nop
return 1;
if ( attr1->stacksize != attr2->stacksize )
4000732c: c4 06 20 08 ld [ %i0 + 8 ], %g2
40007330: c2 06 60 08 ld [ %i1 + 8 ], %g1
40007334: 80 a0 80 01 cmp %g2, %g1
40007338: 12 80 00 46 bne 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
4000733c: 01 00 00 00 nop
return 1;
if ( attr1->contentionscope != attr2->contentionscope )
40007340: c4 06 20 0c ld [ %i0 + 0xc ], %g2
40007344: c2 06 60 0c ld [ %i1 + 0xc ], %g1
40007348: 80 a0 80 01 cmp %g2, %g1
4000734c: 12 80 00 41 bne 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
40007350: 01 00 00 00 nop
return 1;
if ( attr1->inheritsched != attr2->inheritsched )
40007354: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
40007358: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
4000735c: 80 a0 80 01 cmp %g2, %g1
40007360: 12 80 00 3c bne 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
40007364: 01 00 00 00 nop
return 1;
if ( attr1->schedpolicy != attr2->schedpolicy )
40007368: c4 06 20 14 ld [ %i0 + 0x14 ], %g2
4000736c: c2 06 60 14 ld [ %i1 + 0x14 ], %g1
40007370: 80 a0 80 01 cmp %g2, %g1
40007374: 12 80 00 37 bne 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
40007378: 92 06 60 18 add %i1, 0x18, %o1
return 1;
if (memcmp(
4000737c: 90 06 20 18 add %i0, 0x18, %o0
40007380: 40 00 26 49 call 40010ca4 <memcmp>
40007384: 94 10 20 1c mov 0x1c, %o2
40007388: 80 a2 20 00 cmp %o0, 0
4000738c: 32 80 00 31 bne,a 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
40007390: 90 10 20 01 mov 1, %o0 <== NOT EXECUTED
sizeof(struct sched_param)
))
return 1;
#if HAVE_DECL_PTHREAD_ATTR_SETGUARDSIZE
if ( attr1->guardsize != attr2->guardsize )
40007394: c4 06 20 34 ld [ %i0 + 0x34 ], %g2
40007398: c2 06 60 34 ld [ %i1 + 0x34 ], %g1
4000739c: 80 a0 80 01 cmp %g2, %g1
400073a0: 32 80 00 2c bne,a 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
400073a4: 90 10 20 01 mov 1, %o0 <== NOT EXECUTED
return 1;
#endif
#if defined(_POSIX_THREAD_CPUTIME)
if ( attr1->cputime_clock_allowed != attr2->cputime_clock_allowed )
400073a8: c4 06 20 38 ld [ %i0 + 0x38 ], %g2
400073ac: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
400073b0: 80 a0 80 01 cmp %g2, %g1
400073b4: 32 80 00 27 bne,a 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
400073b8: 90 10 20 01 mov 1, %o0 <== NOT EXECUTED
return 1;
#endif
if ( attr1->detachstate != attr2->detachstate )
400073bc: c4 06 20 3c ld [ %i0 + 0x3c ], %g2
400073c0: c2 06 60 3c ld [ %i1 + 0x3c ], %g1
400073c4: 80 a0 80 01 cmp %g2, %g1
400073c8: 32 80 00 22 bne,a 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
400073cc: 90 10 20 01 mov 1, %o0 <== NOT EXECUTED
return 1;
#if defined(__RTEMS_HAVE_SYS_CPUSET_H__)
if ( attr1->affinitysetsize != attr2->affinitysetsize )
400073d0: c4 06 20 40 ld [ %i0 + 0x40 ], %g2
400073d4: c2 06 60 40 ld [ %i1 + 0x40 ], %g1
400073d8: 80 a0 80 01 cmp %g2, %g1
400073dc: 32 80 00 1d bne,a 40007450 <rtems_pthread_attribute_compare+0x150><== NEVER TAKEN
400073e0: 90 10 20 01 mov 1, %o0 <== NOT EXECUTED
}
static __inline int CPU_EQUAL_S(size_t setsize, const cpu_set_t *set1,
const cpu_set_t *set2)
{
const cpu_set_word_t *w1 = &set1->__bits[0];
400073e4: c8 06 20 44 ld [ %i0 + 0x44 ], %g4
const cpu_set_word_t *w2 = &set2->__bits[0];
400073e8: fa 06 60 44 ld [ %i1 + 0x44 ], %i5
size_t n = setsize / sizeof(*w1);
400073ec: 85 30 a0 02 srl %g2, 2, %g2
size_t i;
for (i = 0; i < n; ++i)
400073f0: 82 10 20 00 clr %g1
400073f4: 80 a0 40 02 cmp %g1, %g2
400073f8: 02 80 00 09 be 4000741c <rtems_pthread_attribute_compare+0x11c><== ALWAYS TAKEN
400073fc: 87 28 60 02 sll %g1, 2, %g3
if (w1[i] != w2[i])
40007400: f8 01 00 03 ld [ %g4 + %g3 ], %i4 <== NOT EXECUTED
40007404: c6 07 40 03 ld [ %i5 + %g3 ], %g3 <== NOT EXECUTED
40007408: 80 a7 00 03 cmp %i4, %g3 <== NOT EXECUTED
4000740c: 02 bf ff fa be 400073f4 <rtems_pthread_attribute_compare+0xf4><== NOT EXECUTED
40007410: 82 00 60 01 inc %g1 <== NOT EXECUTED
const pthread_attr_t *attr1,
const pthread_attr_t *attr2
)
{
if ( attr1->is_initialized != attr2->is_initialized )
return 1;
40007414: 10 80 00 0f b 40007450 <rtems_pthread_attribute_compare+0x150><== NOT EXECUTED
40007418: 90 10 20 01 mov 1, %o0 <== NOT EXECUTED
}
static __inline int CPU_EQUAL_S(size_t setsize, const cpu_set_t *set1,
const cpu_set_t *set2)
{
const cpu_set_word_t *w1 = &set1->__bits[0];
4000741c: b0 06 20 48 add %i0, 0x48, %i0
const cpu_set_word_t *w2 = &set2->__bits[0];
40007420: b2 06 60 48 add %i1, 0x48, %i1
size_t n = setsize / sizeof(*w1);
size_t i;
for (i = 0; i < n; ++i)
40007424: 82 10 20 00 clr %g1
40007428: 80 a0 40 02 cmp %g1, %g2
4000742c: 02 80 00 09 be 40007450 <rtems_pthread_attribute_compare+0x150><== ALWAYS TAKEN
40007430: 87 28 60 02 sll %g1, 2, %g3
if (w1[i] != w2[i])
40007434: c8 06 00 03 ld [ %i0 + %g3 ], %g4 <== NOT EXECUTED
40007438: c6 06 40 03 ld [ %i1 + %g3 ], %g3 <== NOT EXECUTED
4000743c: 80 a1 00 03 cmp %g4, %g3 <== NOT EXECUTED
40007440: 12 bf ff f5 bne 40007414 <rtems_pthread_attribute_compare+0x114><== NOT EXECUTED
40007444: 82 00 60 01 inc %g1 <== NOT EXECUTED
const cpu_set_word_t *w1 = &set1->__bits[0];
const cpu_set_word_t *w2 = &set2->__bits[0];
size_t n = setsize / sizeof(*w1);
size_t i;
for (i = 0; i < n; ++i)
40007448: 10 bf ff f9 b 4000742c <rtems_pthread_attribute_compare+0x12c><== NOT EXECUTED
4000744c: 80 a0 40 02 cmp %g1, %g2 <== NOT EXECUTED
))
return 1;
#endif
return 0;
}
40007450: 81 c7 e0 08 ret
40007454: 91 e8 00 08 restore %g0, %o0, %o0
40008370 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40008370: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
40008374: 11 10 00 68 sethi %hi(0x4001a000), %o0
40008378: 92 10 00 18 mov %i0, %o1
4000837c: 90 12 22 a0 or %o0, 0x2a0, %o0
40008380: 40 00 09 38 call 4000a860 <_Objects_Get>
40008384: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40008388: c2 07 bf fc ld [ %fp + -4 ], %g1
4000838c: 80 a0 60 00 cmp %g1, 0
40008390: 12 80 00 6c bne 40008540 <rtems_rate_monotonic_period+0x1d0>
40008394: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40008398: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
4000839c: c2 01 a0 18 ld [ %g6 + 0x18 ], %g1
400083a0: 80 a0 80 01 cmp %g2, %g1
400083a4: 02 80 00 06 be 400083bc <rtems_rate_monotonic_period+0x4c>
400083a8: 80 a6 60 00 cmp %i1, 0
RTEMS_INLINE_ROUTINE void _Objects_Put(
Objects_Control *the_object
)
{
(void) the_object;
_Thread_Enable_dispatch();
400083ac: 40 00 0c a3 call 4000b638 <_Thread_Enable_dispatch>
400083b0: b0 10 20 17 mov 0x17, %i0
_Objects_Put( &the_period->Object );
return RTEMS_NOT_OWNER_OF_RESOURCE;
400083b4: 81 c7 e0 08 ret
400083b8: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
400083bc: 12 80 00 0f bne 400083f8 <rtems_rate_monotonic_period+0x88>
400083c0: 01 00 00 00 nop
switch ( the_period->state ) {
400083c4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
400083c8: 80 a0 60 00 cmp %g1, 0
400083cc: 02 80 00 07 be 400083e8 <rtems_rate_monotonic_period+0x78>
400083d0: b0 10 20 0b mov 0xb, %i0
400083d4: 82 00 7f fd add %g1, -3, %g1
400083d8: 80 a0 60 01 cmp %g1, 1
400083dc: 18 80 00 03 bgu 400083e8 <rtems_rate_monotonic_period+0x78>
400083e0: b0 10 20 00 clr %i0
case RATE_MONOTONIC_INACTIVE:
return_value = RTEMS_NOT_DEFINED;
break;
case RATE_MONOTONIC_EXPIRED:
case RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING:
return_value = RTEMS_TIMEOUT;
400083e4: b0 10 20 06 mov 6, %i0
400083e8: 40 00 0c 94 call 4000b638 <_Thread_Enable_dispatch>
400083ec: 01 00 00 00 nop
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Objects_Put( &the_period->Object );
return( return_value );
400083f0: 81 c7 e0 08 ret
400083f4: 81 e8 00 00 restore
}
_ISR_Disable( level );
400083f8: 7f ff eb 3f call 400030f4 <sparc_disable_interrupts>
400083fc: 01 00 00 00 nop
40008400: b8 10 00 08 mov %o0, %i4
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40008404: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
40008408: 80 a0 60 00 cmp %g1, 0
4000840c: 12 80 00 15 bne 40008460 <rtems_rate_monotonic_period+0xf0>
40008410: 80 a0 60 02 cmp %g1, 2
_ISR_Enable( level );
40008414: 7f ff eb 3b call 40003100 <sparc_enable_interrupts>
40008418: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
4000841c: 90 10 00 1d mov %i5, %o0
40008420: 7f ff ff b9 call 40008304 <_Rate_monotonic_Initiate_statistics>
40008424: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
40008428: 82 10 20 02 mov 2, %g1
4000842c: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40008430: 03 10 00 21 sethi %hi(0x40008400), %g1
40008434: 82 10 63 fc or %g1, 0x3fc, %g1 ! 400087fc <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40008438: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
4000843c: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
the_watchdog->id = id;
40008440: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
the_watchdog->user_data = user_data;
40008444: c0 27 60 34 clr [ %i5 + 0x34 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008448: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000844c: 11 10 00 69 sethi %hi(0x4001a400), %o0
40008450: 92 07 60 10 add %i5, 0x10, %o1
40008454: 40 00 11 0a call 4000c87c <_Watchdog_Insert>
40008458: 90 12 20 10 or %o0, 0x10, %o0
4000845c: 30 80 00 1c b,a 400084cc <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Objects_Put( &the_period->Object );
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40008460: 12 80 00 1f bne 400084dc <rtems_rate_monotonic_period+0x16c>
40008464: 80 a0 60 04 cmp %g1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40008468: 7f ff ff 5e call 400081e0 <_Rate_monotonic_Update_statistics>
4000846c: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40008470: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40008474: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40008478: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
4000847c: 7f ff eb 21 call 40003100 <sparc_enable_interrupts>
40008480: 90 10 00 1c mov %i4, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40008484: c2 07 60 08 ld [ %i5 + 8 ], %g1
40008488: d0 01 a0 18 ld [ %g6 + 0x18 ], %o0
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
4000848c: 13 00 00 10 sethi %hi(0x4000), %o1
40008490: 40 00 0f c1 call 4000c394 <_Thread_Set_state>
40008494: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40008498: 7f ff eb 17 call 400030f4 <sparc_disable_interrupts>
4000849c: 01 00 00 00 nop
local_state = the_period->state;
the_period->state = RATE_MONOTONIC_ACTIVE;
400084a0: 82 10 20 02 mov 2, %g1 ! 2 <_TLS_Alignment+0x1>
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
local_state = the_period->state;
400084a4: f8 07 60 38 ld [ %i5 + 0x38 ], %i4
the_period->state = RATE_MONOTONIC_ACTIVE;
400084a8: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_ISR_Enable( level );
400084ac: 7f ff eb 15 call 40003100 <sparc_enable_interrupts>
400084b0: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
400084b4: 80 a7 20 03 cmp %i4, 3
400084b8: 12 80 00 05 bne 400084cc <rtems_rate_monotonic_period+0x15c>
400084bc: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400084c0: d0 01 a0 18 ld [ %g6 + 0x18 ], %o0
400084c4: 40 00 0b b2 call 4000b38c <_Thread_Clear_state>
400084c8: 13 00 00 10 sethi %hi(0x4000), %o1
400084cc: 40 00 0c 5b call 4000b638 <_Thread_Enable_dispatch>
400084d0: b0 10 20 00 clr %i0
_Objects_Put( &the_period->Object );
return RTEMS_SUCCESSFUL;
400084d4: 81 c7 e0 08 ret
400084d8: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
400084dc: 12 bf ff b6 bne 400083b4 <rtems_rate_monotonic_period+0x44><== NEVER TAKEN
400084e0: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
400084e4: 7f ff ff 3f call 400081e0 <_Rate_monotonic_Update_statistics>
400084e8: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
400084ec: 7f ff eb 05 call 40003100 <sparc_enable_interrupts>
400084f0: 90 10 00 1c mov %i4, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400084f4: 82 10 20 02 mov 2, %g1
400084f8: 92 07 60 10 add %i5, 0x10, %o1
400084fc: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
40008500: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008504: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008508: 11 10 00 69 sethi %hi(0x4001a400), %o0
4000850c: 40 00 10 dc call 4000c87c <_Watchdog_Insert>
40008510: 90 12 20 10 or %o0, 0x10, %o0 ! 4001a410 <_Watchdog_Ticks_chain>
40008514: d2 07 60 40 ld [ %i5 + 0x40 ], %o1
40008518: d4 07 60 3c ld [ %i5 + 0x3c ], %o2
4000851c: 11 10 00 5c sethi %hi(0x40017000), %o0
40008520: 90 12 21 34 or %o0, 0x134, %o0 ! 40017134 <_Scheduler_Table>
40008524: c2 02 20 2c ld [ %o0 + 0x2c ], %g1
40008528: 9f c0 40 00 call %g1
4000852c: b0 10 20 06 mov 6, %i0
40008530: 40 00 0c 42 call 4000b638 <_Thread_Enable_dispatch>
40008534: 01 00 00 00 nop
_Scheduler_Get( the_period->owner ),
the_period->owner,
the_period->next_length
);
_Objects_Put( &the_period->Object );
return RTEMS_TIMEOUT;
40008538: 81 c7 e0 08 ret
4000853c: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40008540: b0 10 20 04 mov 4, %i0
}
40008544: 81 c7 e0 08 ret
40008548: 81 e8 00 00 restore
4000854c <rtems_rate_monotonic_report_statistics_with_plugin>:
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
4000854c: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
40008550: 80 a6 60 00 cmp %i1, 0
40008554: 02 80 00 76 be 4000872c <rtems_rate_monotonic_report_statistics_with_plugin+0x1e0><== NEVER TAKEN
40008558: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
4000855c: 13 10 00 5e sethi %hi(0x40017800), %o1
40008560: 9f c6 40 00 call %i1
40008564: 92 12 62 18 or %o1, 0x218, %o1 ! 40017a18 <rtems_filesystem_null_handlers+0x58>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
40008568: 90 10 00 18 mov %i0, %o0
4000856c: 13 10 00 5e sethi %hi(0x40017800), %o1
40008570: 9f c6 40 00 call %i1
40008574: 92 12 62 38 or %o1, 0x238, %o1 ! 40017a38 <rtems_filesystem_null_handlers+0x78>
(*print)( context, "--- Wall times are in seconds ---\n" );
40008578: 90 10 00 18 mov %i0, %o0
4000857c: 13 10 00 5e sethi %hi(0x40017800), %o1
40008580: 9f c6 40 00 call %i1
40008584: 92 12 62 60 or %o1, 0x260, %o1 ! 40017a60 <rtems_filesystem_null_handlers+0xa0>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40008588: 90 10 00 18 mov %i0, %o0
4000858c: 13 10 00 5e sethi %hi(0x40017800), %o1
40008590: 9f c6 40 00 call %i1
40008594: 92 12 62 88 or %o1, 0x288, %o1 ! 40017a88 <rtems_filesystem_null_handlers+0xc8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40008598: 90 10 00 18 mov %i0, %o0
4000859c: 13 10 00 5e sethi %hi(0x40017800), %o1
400085a0: 9f c6 40 00 call %i1
400085a4: 92 12 62 d8 or %o1, 0x2d8, %o1 ! 40017ad8 <rtems_filesystem_null_handlers+0x118>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400085a8: 03 10 00 68 sethi %hi(0x4001a000), %g1
400085ac: 82 10 62 a0 or %g1, 0x2a0, %g1 ! 4001a2a0 <_Rate_monotonic_Information>
400085b0: fa 00 60 08 ld [ %g1 + 8 ], %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400085b4: 37 10 00 5e sethi %hi(0x40017800), %i3
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
400085b8: 35 10 00 5e sethi %hi(0x40017800), %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
400085bc: 21 10 00 5e sethi %hi(0x40017800), %l0
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
400085c0: 23 10 00 5b sethi %hi(0x40016c00), %l1
400085c4: b8 10 00 01 mov %g1, %i4
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400085c8: b6 16 e3 28 or %i3, 0x328, %i3
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
400085cc: b4 16 a3 40 or %i2, 0x340, %i2
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
400085d0: a0 14 23 60 or %l0, 0x360, %l0
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
400085d4: a2 14 63 d8 or %l1, 0x3d8, %l1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400085d8: c2 07 20 0c ld [ %i4 + 0xc ], %g1
400085dc: 80 a7 40 01 cmp %i5, %g1
400085e0: 18 80 00 53 bgu 4000872c <rtems_rate_monotonic_report_statistics_with_plugin+0x1e0>
400085e4: 90 10 00 1d mov %i5, %o0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
400085e8: 40 00 18 d5 call 4000e93c <rtems_rate_monotonic_get_statistics>
400085ec: 92 07 bf c8 add %fp, -56, %o1
if ( status != RTEMS_SUCCESSFUL )
400085f0: 80 a2 20 00 cmp %o0, 0
400085f4: 32 bf ff f9 bne,a 400085d8 <rtems_rate_monotonic_report_statistics_with_plugin+0x8c>
400085f8: ba 07 60 01 inc %i5
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
400085fc: 92 07 bf b0 add %fp, -80, %o1
40008600: 40 00 19 40 call 4000eb00 <rtems_rate_monotonic_get_status>
40008604: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40008608: d0 07 bf b0 ld [ %fp + -80 ], %o0
4000860c: 92 10 20 05 mov 5, %o1
40008610: 40 00 00 a8 call 400088b0 <rtems_object_get_name>
40008614: 94 07 bf a0 add %fp, -96, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40008618: d8 1f bf c8 ldd [ %fp + -56 ], %o4
4000861c: 92 10 00 1b mov %i3, %o1
40008620: 90 10 00 18 mov %i0, %o0
40008624: 94 10 00 1d mov %i5, %o2
40008628: 9f c6 40 00 call %i1
4000862c: 96 07 bf a0 add %fp, -96, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40008630: d2 07 bf c8 ld [ %fp + -56 ], %o1
40008634: 80 a2 60 00 cmp %o1, 0
40008638: 12 80 00 07 bne 40008654 <rtems_rate_monotonic_report_statistics_with_plugin+0x108>
4000863c: 94 07 bf a8 add %fp, -88, %o2
(*print)( context, "\n" );
40008640: 90 10 00 18 mov %i0, %o0
40008644: 9f c6 40 00 call %i1
40008648: 92 10 00 11 mov %l1, %o1
continue;
4000864c: 10 bf ff e3 b 400085d8 <rtems_rate_monotonic_report_statistics_with_plugin+0x8c>
40008650: ba 07 60 01 inc %i5
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40008654: 40 00 0f b1 call 4000c518 <_Timespec_Divide_by_integer>
40008658: 90 07 bf e0 add %fp, -32, %o0
(*print)( context,
4000865c: d0 07 bf d4 ld [ %fp + -44 ], %o0
40008660: 40 00 32 36 call 40014f38 <.div>
40008664: 92 10 23 e8 mov 0x3e8, %o1
40008668: a8 10 00 08 mov %o0, %l4
4000866c: d0 07 bf dc ld [ %fp + -36 ], %o0
40008670: 40 00 32 32 call 40014f38 <.div>
40008674: 92 10 23 e8 mov 0x3e8, %o1
40008678: c2 07 bf a8 ld [ %fp + -88 ], %g1
4000867c: a4 10 00 08 mov %o0, %l2
40008680: d0 07 bf ac ld [ %fp + -84 ], %o0
40008684: ea 07 bf d0 ld [ %fp + -48 ], %l5
40008688: e6 07 bf d8 ld [ %fp + -40 ], %l3
4000868c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008690: 40 00 32 2a call 40014f38 <.div>
40008694: 92 10 23 e8 mov 0x3e8, %o1
40008698: 96 10 00 14 mov %l4, %o3
4000869c: 98 10 00 13 mov %l3, %o4
400086a0: 9a 10 00 12 mov %l2, %o5
400086a4: 94 10 00 15 mov %l5, %o2
400086a8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400086ac: 92 10 00 1a mov %i2, %o1
400086b0: 9f c6 40 00 call %i1
400086b4: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
400086b8: d2 07 bf c8 ld [ %fp + -56 ], %o1
400086bc: 94 07 bf a8 add %fp, -88, %o2
400086c0: 40 00 0f 96 call 4000c518 <_Timespec_Divide_by_integer>
400086c4: 90 07 bf f8 add %fp, -8, %o0
(*print)( context,
400086c8: d0 07 bf ec ld [ %fp + -20 ], %o0
400086cc: 40 00 32 1b call 40014f38 <.div>
400086d0: 92 10 23 e8 mov 0x3e8, %o1
400086d4: a8 10 00 08 mov %o0, %l4
400086d8: d0 07 bf f4 ld [ %fp + -12 ], %o0
400086dc: 40 00 32 17 call 40014f38 <.div>
400086e0: 92 10 23 e8 mov 0x3e8, %o1
400086e4: c2 07 bf a8 ld [ %fp + -88 ], %g1
400086e8: a4 10 00 08 mov %o0, %l2
400086ec: d0 07 bf ac ld [ %fp + -84 ], %o0
400086f0: ea 07 bf e8 ld [ %fp + -24 ], %l5
400086f4: e6 07 bf f0 ld [ %fp + -16 ], %l3
400086f8: 92 10 23 e8 mov 0x3e8, %o1
400086fc: 40 00 32 0f call 40014f38 <.div>
40008700: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008704: 92 10 00 10 mov %l0, %o1
40008708: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
4000870c: 94 10 00 15 mov %l5, %o2
40008710: 90 10 00 18 mov %i0, %o0
40008714: 96 10 00 14 mov %l4, %o3
40008718: 98 10 00 13 mov %l3, %o4
4000871c: 9f c6 40 00 call %i1
40008720: 9a 10 00 12 mov %l2, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008724: 10 bf ff ad b 400085d8 <rtems_rate_monotonic_report_statistics_with_plugin+0x8c>
40008728: ba 07 60 01 inc %i5
4000872c: 81 c7 e0 08 ret
40008730: 81 e8 00 00 restore
40008874 <rtems_rbheap_allocate>:
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
40008874: 9d e3 bf a0 save %sp, -96, %sp
void *ptr = NULL;
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
40008878: fa 06 20 30 ld [ %i0 + 0x30 ], %i5
#include <stdlib.h>
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
4000887c: 90 10 00 19 mov %i1, %o0
40008880: 92 10 00 1d mov %i5, %o1
40008884: 40 00 2f 9b call 400146f0 <.urem>
40008888: b6 10 00 19 mov %i1, %i3
if (excess > 0) {
4000888c: 80 a2 20 00 cmp %o0, 0
40008890: 02 80 00 05 be 400088a4 <rtems_rbheap_allocate+0x30>
40008894: 80 a6 c0 19 cmp %i3, %i1
value += alignment - excess;
40008898: b6 06 40 1d add %i1, %i5, %i3
4000889c: b6 26 c0 08 sub %i3, %o0, %i3
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
400088a0: 80 a6 c0 19 cmp %i3, %i1
400088a4: 0a 80 00 04 bcs 400088b4 <rtems_rbheap_allocate+0x40> <== NEVER TAKEN
400088a8: 80 a6 60 00 cmp %i1, 0
400088ac: 32 80 00 04 bne,a 400088bc <rtems_rbheap_allocate+0x48>
400088b0: c2 06 00 00 ld [ %i0 ], %g1
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
void *ptr = NULL;
400088b4: 81 c7 e0 08 ret
400088b8: 91 e8 20 00 restore %g0, 0, %o0
rtems_chain_control *free_chain,
size_t size
)
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
400088bc: 84 06 20 04 add %i0, 4, %g2
rtems_rbheap_chunk *big_enough = NULL;
400088c0: ba 10 20 00 clr %i5
while (current != tail && big_enough == NULL) {
400088c4: 80 a7 60 00 cmp %i5, 0
400088c8: 12 80 00 0a bne 400088f0 <rtems_rbheap_allocate+0x7c>
400088cc: 80 a0 40 02 cmp %g1, %g2
400088d0: 02 80 00 09 be 400088f4 <rtems_rbheap_allocate+0x80>
400088d4: 80 a7 60 00 cmp %i5, 0
rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current;
if (free_chunk->size >= size) {
400088d8: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
400088dc: 80 a0 c0 1b cmp %g3, %i3
400088e0: ba 40 3f ff addx %g0, -1, %i5
400088e4: ba 08 40 1d and %g1, %i5, %i5
* @param[in] the_node is the node to be operated upon.
*
* @return This method returns the next node on the chain.
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_next(
rtems_chain_node *the_node
400088e8: 10 bf ff f7 b 400088c4 <rtems_rbheap_allocate+0x50>
400088ec: c2 00 40 00 ld [ %g1 ], %g1
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size);
if (free_chunk != NULL) {
400088f0: 80 a7 60 00 cmp %i5, 0
400088f4: 02 bf ff f0 be 400088b4 <rtems_rbheap_allocate+0x40>
400088f8: 01 00 00 00 nop
uintptr_t free_size = free_chunk->size;
400088fc: f4 07 60 1c ld [ %i5 + 0x1c ], %i2
if (free_size > aligned_size) {
40008900: 80 a6 80 1b cmp %i2, %i3
40008904: 28 80 00 13 bleu,a 40008950 <rtems_rbheap_allocate+0xdc>
40008908: c4 07 40 00 ld [ %i5 ], %g2
rtems_rbheap_chunk *new_chunk = get_chunk(control);
4000890c: 7f ff ff 5c call 4000867c <get_chunk>
40008910: 90 10 00 18 mov %i0, %o0
if (new_chunk != NULL) {
40008914: b8 92 20 00 orcc %o0, 0, %i4
40008918: 02 bf ff e7 be 400088b4 <rtems_rbheap_allocate+0x40>
4000891c: b4 26 80 1b sub %i2, %i3, %i2
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
40008920: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
rtems_rbheap_chunk *new_chunk = get_chunk(control);
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
40008924: f4 27 60 1c st %i2, [ %i5 + 0x1c ]
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
40008928: f6 27 20 1c st %i3, [ %i4 + 0x1c ]
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
4000892c: b4 06 80 01 add %i2, %g1, %i2
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = NULL;
40008930: c0 27 00 00 clr [ %i4 ]
40008934: f4 27 20 18 st %i2, [ %i4 + 0x18 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_chunk *chunk
)
{
_RBTree_Insert(tree, &chunk->tree_node);
40008938: 90 06 20 18 add %i0, 0x18, %o0
4000893c: 40 00 06 ed call 4000a4f0 <_RBTree_Insert>
40008940: 92 07 20 08 add %i4, 8, %o1
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
rtems_chain_set_off_chain(&new_chunk->chain_node);
insert_into_tree(chunk_tree, new_chunk);
ptr = (void *) new_chunk->begin;
40008944: f0 07 20 18 ld [ %i4 + 0x18 ], %i0
40008948: 81 c7 e0 08 ret
4000894c: 81 e8 00 00 restore
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40008950: c2 07 60 04 ld [ %i5 + 4 ], %g1
}
} else {
rtems_chain_extract_unprotected(&free_chunk->chain_node);
rtems_chain_set_off_chain(&free_chunk->chain_node);
ptr = (void *) free_chunk->begin;
40008954: f0 07 60 18 ld [ %i5 + 0x18 ], %i0
next->previous = previous;
40008958: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000895c: c4 20 40 00 st %g2, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = NULL;
40008960: c0 27 40 00 clr [ %i5 ]
}
}
}
return ptr;
}
40008964: 81 c7 e0 08 ret
40008968: 81 e8 00 00 restore
40007f0c <rtems_scheduler_ident>:
rtems_id *id
)
{
rtems_status_code sc;
if ( id != NULL ) {
40007f0c: 80 a2 60 00 cmp %o1, 0
40007f10: 02 80 00 13 be 40007f5c <rtems_scheduler_ident+0x50>
40007f14: 82 10 20 09 mov 9, %g1
sc = RTEMS_INVALID_NAME;
for ( i = 0 ; i < n && sc == RTEMS_INVALID_NAME ; ++i ) {
const Scheduler_Control *scheduler = &_Scheduler_Table[ i ];
if ( scheduler->name == name ) {
40007f18: 03 10 00 59 sethi %hi(0x40016400), %g1
if ( _Scheduler_Get_processor_count( scheduler ) > 0 ) {
*id = _Scheduler_Build_id( i );
40007f1c: 09 03 c0 40 sethi %hi(0xf010000), %g4
sc = RTEMS_INVALID_NAME;
for ( i = 0 ; i < n && sc == RTEMS_INVALID_NAME ; ++i ) {
const Scheduler_Control *scheduler = &_Scheduler_Table[ i ];
if ( scheduler->name == name ) {
40007f20: c6 00 61 b4 ld [ %g1 + 0x1b4 ], %g3
40007f24: 84 10 20 00 clr %g2
40007f28: 82 10 20 03 mov 3, %g1
if ( _Scheduler_Get_processor_count( scheduler ) > 0 ) {
*id = _Scheduler_Build_id( i );
40007f2c: 88 11 20 01 or %g4, 1, %g4
size_t n = _Scheduler_Count;
size_t i;
sc = RTEMS_INVALID_NAME;
for ( i = 0 ; i < n && sc == RTEMS_INVALID_NAME ; ++i ) {
40007f30: 80 a0 a0 00 cmp %g2, 0
40007f34: 12 80 00 0a bne 40007f5c <rtems_scheduler_ident+0x50>
40007f38: 80 a0 60 03 cmp %g1, 3
40007f3c: 12 80 00 08 bne 40007f5c <rtems_scheduler_ident+0x50> <== NEVER TAKEN
40007f40: 80 a0 c0 08 cmp %g3, %o0
const Scheduler_Control *scheduler = &_Scheduler_Table[ i ];
if ( scheduler->name == name ) {
40007f44: 12 80 00 04 bne 40007f54 <rtems_scheduler_ident+0x48>
40007f48: 82 10 20 03 mov 3, %g1
if ( _Scheduler_Get_processor_count( scheduler ) > 0 ) {
*id = _Scheduler_Build_id( i );
40007f4c: c8 22 40 00 st %g4, [ %o1 ]
sc = RTEMS_SUCCESSFUL;
40007f50: 82 10 20 00 clr %g1
size_t n = _Scheduler_Count;
size_t i;
sc = RTEMS_INVALID_NAME;
for ( i = 0 ; i < n && sc == RTEMS_INVALID_NAME ; ++i ) {
40007f54: 10 bf ff f7 b 40007f30 <rtems_scheduler_ident+0x24>
40007f58: 84 10 20 01 mov 1, %g2
} else {
sc = RTEMS_INVALID_ADDRESS;
}
return sc;
}
40007f5c: 81 c3 e0 08 retl
40007f60: 90 10 00 01 mov %g1, %o0
4000888c <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
4000888c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
40008890: 80 a6 60 00 cmp %i1, 0
40008894: 02 80 00 41 be 40008998 <rtems_signal_send+0x10c>
40008898: 82 10 20 0a mov 0xa, %g1
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
4000889c: 90 10 00 18 mov %i0, %o0
400088a0: 40 00 0a 4d call 4000b1d4 <_Thread_Get>
400088a4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400088a8: c2 07 bf fc ld [ %fp + -4 ], %g1
400088ac: 80 a0 60 00 cmp %g1, 0
400088b0: 12 80 00 39 bne 40008994 <rtems_signal_send+0x108>
400088b4: b8 10 00 08 mov %o0, %i4
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400088b8: fa 02 21 2c ld [ %o0 + 0x12c ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400088bc: c2 07 60 0c ld [ %i5 + 0xc ], %g1
400088c0: 80 a0 60 00 cmp %g1, 0
400088c4: 02 80 00 30 be 40008984 <rtems_signal_send+0xf8>
400088c8: 01 00 00 00 nop
if ( asr->is_enabled ) {
400088cc: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
400088d0: 80 a0 60 00 cmp %g1, 0
400088d4: 02 80 00 21 be 40008958 <rtems_signal_send+0xcc>
400088d8: 01 00 00 00 nop
{
#if defined( RTEMS_SMP )
_SMP_lock_ISR_disable_and_acquire( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Disable( context->isr_level );
400088dc: 7f ff ea be call 400033d4 <sparc_disable_interrupts>
400088e0: 01 00 00 00 nop
)
{
ISR_lock_Context lock_context;
_ISR_lock_ISR_disable_and_acquire( &asr->Lock, &lock_context );
*signal_set |= signals;
400088e4: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
400088e8: b2 10 40 19 or %g1, %i1, %i1
400088ec: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
{
#if defined( RTEMS_SMP )
_SMP_lock_Release_and_ISR_enable( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Enable( context->isr_level );
400088f0: 7f ff ea bc call 400033e0 <sparc_enable_interrupts>
400088f4: 01 00 00 00 nop
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
400088f8: 7f ff ea b7 call 400033d4 <sparc_disable_interrupts>
400088fc: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Chain_Append_if_is_off_chain_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
if ( _Chain_Is_node_off_chain( the_node ) ) {
40008900: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
40008904: 80 a0 60 00 cmp %g1, 0
40008908: 12 80 00 08 bne 40008928 <rtems_signal_send+0x9c>
4000890c: 86 07 20 c8 add %i4, 0xc8, %g3
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40008910: c2 07 20 cc ld [ %i4 + 0xcc ], %g1
the_node->next = tail;
40008914: c6 27 60 20 st %g3, [ %i5 + 0x20 ]
{
Per_CPU_Control *cpu;
ISR_Level level;
cpu = _Thread_Action_ISR_disable_and_acquire( thread, &level );
_Chain_Append_if_is_off_chain_unprotected(
40008918: 84 07 60 20 add %i5, 0x20, %g2
tail->previous = the_node;
4000891c: c4 27 20 cc st %g2, [ %i4 + 0xcc ]
old_last->next = the_node;
40008920: c4 20 40 00 st %g2, [ %g1 ]
the_node->previous = old_last;
40008924: c2 27 60 24 st %g1, [ %i5 + 0x24 ]
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
40008928: 7f ff ea ae call 400033e0 <sparc_enable_interrupts>
4000892c: 01 00 00 00 nop
#endif
}
RTEMS_INLINE_ROUTINE void _Thread_Signal_notification( Thread_Control *thread )
{
if ( _ISR_Is_in_progress() && _Thread_Is_executing( thread ) ) {
40008930: c4 01 a0 0c ld [ %g6 + 0xc ], %g2
40008934: 80 a0 a0 00 cmp %g2, 0
40008938: 02 80 00 0f be 40008974 <rtems_signal_send+0xe8>
4000893c: 01 00 00 00 nop
40008940: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
40008944: 80 a7 00 02 cmp %i4, %g2
40008948: 12 80 00 0b bne 40008974 <rtems_signal_send+0xe8> <== NEVER TAKEN
4000894c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40008950: c4 29 a0 14 stb %g2, [ %g6 + 0x14 ]
40008954: 30 80 00 08 b,a 40008974 <rtems_signal_send+0xe8>
{
#if defined( RTEMS_SMP )
_SMP_lock_ISR_disable_and_acquire( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Disable( context->isr_level );
40008958: 7f ff ea 9f call 400033d4 <sparc_disable_interrupts>
4000895c: 01 00 00 00 nop
40008960: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
40008964: b2 10 40 19 or %g1, %i1, %i1
40008968: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
{
#if defined( RTEMS_SMP )
_SMP_lock_Release_and_ISR_enable( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Enable( context->isr_level );
4000896c: 7f ff ea 9d call 400033e0 <sparc_enable_interrupts>
40008970: 01 00 00 00 nop
40008974: 40 00 0a 0d call 4000b1a8 <_Thread_Enable_dispatch>
40008978: 01 00 00 00 nop
_Thread_Signal_notification( the_thread );
} else {
_ASR_Post_signals( asr, signal_set, &asr->signals_pending );
}
_Objects_Put( &the_thread->Object );
return RTEMS_SUCCESSFUL;
4000897c: 10 80 00 07 b 40008998 <rtems_signal_send+0x10c>
40008980: 82 10 20 00 clr %g1 ! 0 <_TLS_BSS_size>
40008984: 40 00 0a 09 call 4000b1a8 <_Thread_Enable_dispatch>
40008988: 01 00 00 00 nop
}
_Objects_Put( &the_thread->Object );
return RTEMS_NOT_DEFINED;
4000898c: 10 80 00 03 b 40008998 <rtems_signal_send+0x10c>
40008990: 82 10 20 0b mov 0xb, %g1 ! b <_TLS_Alignment+0xa>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40008994: 82 10 20 04 mov 4, %g1
}
40008998: 81 c7 e0 08 ret
4000899c: 91 e8 00 01 restore %g0, %g1, %o0
4000d0c4 <rtems_status_code_to_errno>:
[RTEMS_IO_ERROR] = EIO,
[RTEMS_PROXY_BLOCKING] = EIO
};
int rtems_status_code_to_errno(rtems_status_code sc)
{
4000d0c4: 9d e3 bf a0 save %sp, -96, %sp
if (sc == RTEMS_SUCCESSFUL) {
4000d0c8: 80 a6 20 00 cmp %i0, 0
4000d0cc: 02 80 00 0d be 4000d100 <rtems_status_code_to_errno+0x3c>
4000d0d0: 82 10 20 00 clr %g1
return 0;
} else {
int eno = EINVAL;
if ((unsigned) sc <= RTEMS_STATUS_CODES_LAST) {
4000d0d4: 80 a6 20 1c cmp %i0, 0x1c
4000d0d8: 18 80 00 06 bgu 4000d0f0 <rtems_status_code_to_errno+0x2c><== NEVER TAKEN
4000d0dc: ba 10 20 16 mov 0x16, %i5
eno = status_code_to_errno [sc];
4000d0e0: b1 2e 20 02 sll %i0, 2, %i0
4000d0e4: 03 10 00 59 sethi %hi(0x40016400), %g1
4000d0e8: 82 10 60 bc or %g1, 0xbc, %g1 ! 400164bc <status_code_to_errno>
4000d0ec: fa 00 40 18 ld [ %g1 + %i0 ], %i5
}
errno = eno;
4000d0f0: 40 00 0a 4c call 4000fa20 <__errno>
4000d0f4: 01 00 00 00 nop
return -1;
4000d0f8: 82 10 3f ff mov -1, %g1 ! ffffffff <RAM_END+0xbfbfffff>
if ((unsigned) sc <= RTEMS_STATUS_CODES_LAST) {
eno = status_code_to_errno [sc];
}
errno = eno;
4000d0fc: fa 22 00 00 st %i5, [ %o0 ]
return -1;
}
}
4000d100: 81 c7 e0 08 ret
4000d104: 91 e8 00 01 restore %g0, %g1, %o0
4000efdc <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000efdc: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
bool needs_asr_dispatching;
rtems_mode old_mode;
if ( !previous_mode_set )
4000efe0: 80 a6 a0 00 cmp %i2, 0
4000efe4: 02 80 00 65 be 4000f178 <rtems_task_mode+0x19c>
4000efe8: 82 10 20 09 mov 9, %g1
4000efec: fa 01 a0 18 ld [ %g6 + 0x18 ], %i5
executing = _Thread_Get_executing();
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000eff0: c2 0f 60 70 ldub [ %i5 + 0x70 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Get_executing();
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000eff4: f8 07 61 2c ld [ %i5 + 0x12c ], %i4
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000eff8: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000effc: c2 07 60 78 ld [ %i5 + 0x78 ], %g1
executing = _Thread_Get_executing();
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000f000: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000f004: 80 a0 60 00 cmp %g1, 0
4000f008: 02 80 00 03 be 4000f014 <rtems_task_mode+0x38>
4000f00c: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000f010: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000f014: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
4000f018: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000f01c: 7f ff f0 fe call 4000b414 <_CPU_ISR_Get_level>
4000f020: a0 60 3f ff subx %g0, -1, %l0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000f024: a1 2c 20 0a sll %l0, 0xa, %l0
4000f028: 90 14 00 08 or %l0, %o0, %o0
old_mode |= _ISR_Get_level();
4000f02c: b6 12 00 1b or %o0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK ) {
4000f030: 80 8e 61 00 btst 0x100, %i1
4000f034: 02 80 00 06 be 4000f04c <rtems_task_mode+0x70>
4000f038: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000f03c: 83 36 20 08 srl %i0, 8, %g1
4000f040: 82 18 60 01 xor %g1, 1, %g1
4000f044: 82 08 60 01 and %g1, 1, %g1
!_Modes_Is_preempt( mode_set ) ) {
return RTEMS_NOT_IMPLEMENTED;
}
#endif
executing->is_preemptible = _Modes_Is_preempt( mode_set );
4000f048: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
}
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000f04c: 80 8e 62 00 btst 0x200, %i1
4000f050: 02 80 00 0b be 4000f07c <rtems_task_mode+0xa0>
4000f054: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000f058: 80 8e 22 00 btst 0x200, %i0
4000f05c: 22 80 00 07 be,a 4000f078 <rtems_task_mode+0x9c>
4000f060: c0 27 60 78 clr [ %i5 + 0x78 ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000f064: 82 10 20 01 mov 1, %g1
4000f068: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
executing->cpu_time_budget =
rtems_configuration_get_ticks_per_timeslice();
4000f06c: 03 10 00 55 sethi %hi(0x40015400), %g1
}
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget =
4000f070: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 400155a4 <Configuration+0x1c>
4000f074: c2 27 60 74 st %g1, [ %i5 + 0x74 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000f078: 80 8e 60 0f btst 0xf, %i1
4000f07c: 02 80 00 06 be 4000f094 <rtems_task_mode+0xb8>
4000f080: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000f084: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000f088: 7f ff cc ee call 40002440 <sparc_enable_interrupts>
4000f08c: 91 2a 20 08 sll %o0, 8, %o0
/*
* This is specific to the RTEMS API
*/
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000f090: 80 8e 64 00 btst 0x400, %i1
4000f094: 32 80 00 04 bne,a 4000f0a4 <rtems_task_mode+0xc8>
4000f098: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
_Modes_Set_interrupt_level( mode_set );
/*
* This is specific to the RTEMS API
*/
needs_asr_dispatching = false;
4000f09c: 10 80 00 23 b 4000f128 <rtems_task_mode+0x14c>
4000f0a0: 86 10 20 00 clr %g3
if ( mask & RTEMS_ASR_MASK ) {
bool is_asr_enabled = !_Modes_Is_asr_disabled( mode_set );
4000f0a4: b1 36 20 0a srl %i0, 0xa, %i0
4000f0a8: b0 1e 20 01 xor %i0, 1, %i0
4000f0ac: b0 0e 20 01 and %i0, 1, %i0
if ( is_asr_enabled != asr->is_enabled ) {
4000f0b0: 80 a6 00 01 cmp %i0, %g1
4000f0b4: 02 80 00 1d be 4000f128 <rtems_task_mode+0x14c>
4000f0b8: 86 10 20 00 clr %g3
{
#if defined( RTEMS_SMP )
_SMP_lock_ISR_disable_and_acquire( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Disable( context->isr_level );
4000f0bc: 7f ff cc de call 40002434 <sparc_disable_interrupts>
4000f0c0: f0 2f 20 08 stb %i0, [ %i4 + 8 ]
{
rtems_signal_set _signals;
ISR_lock_Context lock_context;
_ISR_lock_ISR_disable_and_acquire( &asr->Lock, &lock_context );
_signals = asr->signals_pending;
4000f0c4: c2 07 20 18 ld [ %i4 + 0x18 ], %g1
asr->signals_pending = asr->signals_posted;
4000f0c8: c4 07 20 14 ld [ %i4 + 0x14 ], %g2
asr->signals_posted = _signals;
4000f0cc: c2 27 20 14 st %g1, [ %i4 + 0x14 ]
rtems_signal_set _signals;
ISR_lock_Context lock_context;
_ISR_lock_ISR_disable_and_acquire( &asr->Lock, &lock_context );
_signals = asr->signals_pending;
asr->signals_pending = asr->signals_posted;
4000f0d0: c4 27 20 18 st %g2, [ %i4 + 0x18 ]
{
#if defined( RTEMS_SMP )
_SMP_lock_Release_and_ISR_enable( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Enable( context->isr_level );
4000f0d4: 7f ff cc db call 40002440 <sparc_enable_interrupts>
4000f0d8: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000f0dc: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
4000f0e0: 80 a0 60 00 cmp %g1, 0
4000f0e4: 02 80 00 11 be 4000f128 <rtems_task_mode+0x14c>
4000f0e8: 86 10 20 00 clr %g3
ISR_Level *level
)
{
Per_CPU_Control *cpu;
_ISR_Disable_without_giant( *level );
4000f0ec: 7f ff cc d2 call 40002434 <sparc_disable_interrupts>
4000f0f0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Chain_Append_if_is_off_chain_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
if ( _Chain_Is_node_off_chain( the_node ) ) {
4000f0f4: c2 07 20 20 ld [ %i4 + 0x20 ], %g1
4000f0f8: 80 a0 60 00 cmp %g1, 0
4000f0fc: 12 80 00 08 bne 4000f11c <rtems_task_mode+0x140> <== NEVER TAKEN
4000f100: 86 07 60 c8 add %i5, 0xc8, %g3
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
4000f104: c2 07 60 cc ld [ %i5 + 0xcc ], %g1
the_node->next = tail;
4000f108: c6 27 20 20 st %g3, [ %i4 + 0x20 ]
{
Per_CPU_Control *cpu;
ISR_Level level;
cpu = _Thread_Action_ISR_disable_and_acquire( thread, &level );
_Chain_Append_if_is_off_chain_unprotected(
4000f10c: 84 07 20 20 add %i4, 0x20, %g2
tail->previous = the_node;
4000f110: c4 27 60 cc st %g2, [ %i5 + 0xcc ]
old_last->next = the_node;
4000f114: c4 20 40 00 st %g2, [ %g1 ]
the_node->previous = old_last;
4000f118: c2 27 20 24 st %g1, [ %i4 + 0x24 ]
RTEMS_INLINE_ROUTINE void _Thread_Action_release_and_ISR_enable(
Per_CPU_Control *cpu,
ISR_Level level
)
{
_Per_CPU_Release_and_ISR_enable( cpu, level );
4000f11c: 7f ff cc c9 call 40002440 <sparc_enable_interrupts>
4000f120: 01 00 00 00 nop
needs_asr_dispatching = true;
4000f124: 86 10 20 01 mov 1, %g3 ! 1 <_TLS_Alignment>
ISR_Level level;
_ISR_Disable_without_giant( level );
#endif
enabled = _Thread_Dispatch_disable_level == 0;
4000f128: c8 01 a0 10 ld [ %g6 + 0x10 ], %g4
static void _RTEMS_Tasks_Dispatch_if_necessary(
Thread_Control *executing,
bool needs_asr_dispatching
)
{
if ( _Thread_Dispatch_is_enabled() ) {
4000f12c: 80 a1 20 00 cmp %g4, 0
4000f130: 12 80 00 12 bne 4000f178 <rtems_task_mode+0x19c> <== NEVER TAKEN
4000f134: 82 10 20 00 clr %g1
ISR_Level level;
_ISR_Disable_without_giant( level );
#endif
if ( !_Thread_Is_heir( executing ) && executing->is_preemptible ) {
4000f138: c2 01 a0 1c ld [ %g6 + 0x1c ], %g1
4000f13c: 80 a7 40 01 cmp %i5, %g1
4000f140: 02 80 00 09 be 4000f164 <rtems_task_mode+0x188>
4000f144: 80 88 e0 ff btst 0xff, %g3
4000f148: c2 0f 60 70 ldub [ %i5 + 0x70 ], %g1
4000f14c: 80 a0 60 00 cmp %g1, 0
4000f150: 02 80 00 05 be 4000f164 <rtems_task_mode+0x188> <== NEVER TAKEN
4000f154: 80 88 e0 ff btst 0xff, %g3
dispatch_necessary = true;
_Thread_Dispatch_necessary = dispatch_necessary;
4000f158: 82 10 20 01 mov 1, %g1
4000f15c: c2 29 a0 14 stb %g1, [ %g6 + 0x14 ]
4000f160: 30 80 00 03 b,a 4000f16c <rtems_task_mode+0x190>
#if defined( RTEMS_SMP )
_ISR_Enable_without_giant( level );
#endif
if ( dispatch_necessary ) {
4000f164: 02 80 00 05 be 4000f178 <rtems_task_mode+0x19c>
4000f168: 82 10 20 00 clr %g1
_Thread_Dispatch();
4000f16c: 7f ff ea ce call 40009ca4 <_Thread_Dispatch>
4000f170: 01 00 00 00 nop
}
}
_RTEMS_Tasks_Dispatch_if_necessary( executing, needs_asr_dispatching );
return RTEMS_SUCCESSFUL;
4000f174: 82 10 20 00 clr %g1 ! 0 <_TLS_BSS_size>
}
4000f178: 81 c7 e0 08 ret
4000f17c: 91 e8 00 01 restore %g0, %g1, %o0
4000c290 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000c290: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000c294: 80 a6 60 00 cmp %i1, 0
4000c298: 02 80 00 08 be 4000c2b8 <rtems_task_set_priority+0x28>
4000c29c: 80 a6 a0 00 cmp %i2, 0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000c2a0: 03 10 00 6c sethi %hi(0x4001b000), %g1
4000c2a4: c4 08 62 54 ldub [ %g1 + 0x254 ], %g2 ! 4001b254 <rtems_maximum_priority>
4000c2a8: 80 a6 40 02 cmp %i1, %g2
4000c2ac: 18 80 00 1e bgu 4000c324 <rtems_task_set_priority+0x94>
4000c2b0: 82 10 20 13 mov 0x13, %g1
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000c2b4: 80 a6 a0 00 cmp %i2, 0
4000c2b8: 02 80 00 1b be 4000c324 <rtems_task_set_priority+0x94>
4000c2bc: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000c2c0: 90 10 00 18 mov %i0, %o0
4000c2c4: 40 00 09 6f call 4000e880 <_Thread_Get>
4000c2c8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000c2cc: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c2d0: 80 a0 60 00 cmp %g1, 0
4000c2d4: 12 80 00 14 bne 4000c324 <rtems_task_set_priority+0x94>
4000c2d8: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
*old_priority = _RTEMS_tasks_Priority_from_Core(
4000c2dc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
the_thread->current_priority
);
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000c2e0: 80 a6 60 00 cmp %i1, 0
4000c2e4: 02 80 00 0d be 4000c318 <rtems_task_set_priority+0x88>
4000c2e8: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = _RTEMS_tasks_Priority_to_Core(
new_priority
);
if ( !_Thread_Owns_resources( the_thread ) ||
4000c2ec: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000c2f0: 80 a0 60 00 cmp %g1, 0
4000c2f4: 02 80 00 06 be 4000c30c <rtems_task_set_priority+0x7c>
4000c2f8: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000c2fc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000c300: 80 a0 40 19 cmp %g1, %i1
4000c304: 08 80 00 05 bleu 4000c318 <rtems_task_set_priority+0x88> <== ALWAYS TAKEN
4000c308: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000c30c: 92 10 00 19 mov %i1, %o1
4000c310: 40 00 08 64 call 4000e4a0 <_Thread_Change_priority>
4000c314: 94 10 20 00 clr %o2
4000c318: 40 00 09 4f call 4000e854 <_Thread_Enable_dispatch>
4000c31c: 01 00 00 00 nop
4000c320: 82 10 20 00 clr %g1 ! 0 <_TLS_BSS_size>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4000c324: 81 c7 e0 08 ret
4000c328: 91 e8 00 01 restore %g0, %g1, %o0
40009d90 <rtems_task_variable_add>:
rtems_status_code rtems_task_variable_add(
rtems_id tid,
void **ptr,
void (*dtor)(void *)
)
{
40009d90: 9d e3 bf 98 save %sp, -104, %sp
if ( rtems_configuration_is_smp_enabled() ) {
return RTEMS_NOT_IMPLEMENTED;
}
#endif
if ( !ptr )
40009d94: 80 a6 60 00 cmp %i1, 0
40009d98: 02 80 00 27 be 40009e34 <rtems_task_variable_add+0xa4> <== NEVER TAKEN
40009d9c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
40009da0: 90 10 00 18 mov %i0, %o0
40009da4: 40 00 09 cd call 4000c4d8 <_Thread_Get>
40009da8: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40009dac: c2 07 bf fc ld [ %fp + -4 ], %g1
40009db0: 80 a0 60 00 cmp %g1, 0
40009db4: 12 80 00 1f bne 40009e30 <rtems_task_variable_add+0xa0> <== NEVER TAKEN
40009db8: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
/*
* Figure out if the variable is already in this task's list.
*/
tvp = the_thread->task_variables;
40009dbc: c2 02 21 34 ld [ %o0 + 0x134 ], %g1
while (tvp) {
40009dc0: 80 a0 60 00 cmp %g1, 0
40009dc4: 02 80 00 08 be 40009de4 <rtems_task_variable_add+0x54>
40009dc8: 01 00 00 00 nop
if (tvp->ptr == ptr) {
40009dcc: c4 00 60 04 ld [ %g1 + 4 ], %g2
40009dd0: 80 a0 80 19 cmp %g2, %i1
40009dd4: 32 bf ff fb bne,a 40009dc0 <rtems_task_variable_add+0x30><== NEVER TAKEN
40009dd8: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
tvp->dtor = dtor;
40009ddc: 10 80 00 11 b 40009e20 <rtems_task_variable_add+0x90>
40009de0: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
/*
* Now allocate memory for this task variable.
*/
new = (rtems_task_variable_t *)
40009de4: 40 00 0f 3f call 4000dae0 <_Workspace_Allocate>
40009de8: 90 10 20 14 mov 0x14, %o0
_Workspace_Allocate(sizeof(rtems_task_variable_t));
if (new == NULL) {
40009dec: 80 a2 20 00 cmp %o0, 0
40009df0: 32 80 00 06 bne,a 40009e08 <rtems_task_variable_add+0x78><== ALWAYS TAKEN
40009df4: c4 06 40 00 ld [ %i1 ], %g2
40009df8: 40 00 09 ad call 4000c4ac <_Thread_Enable_dispatch> <== NOT EXECUTED
40009dfc: 01 00 00 00 nop <== NOT EXECUTED
_Objects_Put( &the_thread->Object );
return RTEMS_NO_MEMORY;
40009e00: 10 80 00 0d b 40009e34 <rtems_task_variable_add+0xa4> <== NOT EXECUTED
40009e04: 82 10 20 1a mov 0x1a, %g1 ! 1a <_TLS_Alignment+0x19> <== NOT EXECUTED
}
new->gval = *ptr;
new->ptr = ptr;
40009e08: f2 22 20 04 st %i1, [ %o0 + 4 ]
_Workspace_Allocate(sizeof(rtems_task_variable_t));
if (new == NULL) {
_Objects_Put( &the_thread->Object );
return RTEMS_NO_MEMORY;
}
new->gval = *ptr;
40009e0c: c4 22 20 08 st %g2, [ %o0 + 8 ]
new->ptr = ptr;
new->dtor = dtor;
new->next = (struct rtems_task_variable_tt *)the_thread->task_variables;
40009e10: c4 07 61 34 ld [ %i5 + 0x134 ], %g2
_Objects_Put( &the_thread->Object );
return RTEMS_NO_MEMORY;
}
new->gval = *ptr;
new->ptr = ptr;
new->dtor = dtor;
40009e14: f4 22 20 10 st %i2, [ %o0 + 0x10 ]
new->next = (struct rtems_task_variable_tt *)the_thread->task_variables;
40009e18: c4 22 00 00 st %g2, [ %o0 ]
the_thread->task_variables = new;
40009e1c: d0 27 61 34 st %o0, [ %i5 + 0x134 ]
40009e20: 40 00 09 a3 call 4000c4ac <_Thread_Enable_dispatch>
40009e24: 01 00 00 00 nop
_Objects_Put( &the_thread->Object );
return RTEMS_SUCCESSFUL;
40009e28: 10 80 00 03 b 40009e34 <rtems_task_variable_add+0xa4>
40009e2c: 82 10 20 00 clr %g1 ! 0 <_TLS_BSS_size>
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40009e30: 82 10 20 04 mov 4, %g1 <== NOT EXECUTED
}
40009e34: 81 c7 e0 08 ret
40009e38: 91 e8 00 01 restore %g0, %g1, %o0
4000b7c0 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
4000b7c0: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
4000b7c4: 11 10 00 79 sethi %hi(0x4001e400), %o0
4000b7c8: 92 10 00 18 mov %i0, %o1
4000b7cc: 90 12 20 40 or %o0, 0x40, %o0
4000b7d0: 40 00 06 19 call 4000d034 <_Objects_Get>
4000b7d4: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
4000b7d8: c2 07 bf fc ld [ %fp + -4 ], %g1
4000b7dc: 80 a0 60 00 cmp %g1, 0
4000b7e0: 12 80 00 0c bne 4000b810 <rtems_timer_cancel+0x50>
4000b7e4: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
4000b7e8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
4000b7ec: 80 a0 60 04 cmp %g1, 4
4000b7f0: 02 80 00 04 be 4000b800 <rtems_timer_cancel+0x40> <== NEVER TAKEN
4000b7f4: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
4000b7f8: 40 00 0e 28 call 4000f098 <_Watchdog_Remove>
4000b7fc: 90 02 20 10 add %o0, 0x10, %o0
4000b800: 40 00 09 5e call 4000dd78 <_Thread_Enable_dispatch>
4000b804: b0 10 20 00 clr %i0
_Objects_Put( &the_timer->Object );
return RTEMS_SUCCESSFUL;
4000b808: 81 c7 e0 08 ret
4000b80c: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4000b810: 81 c7 e0 08 ret
4000b814: 91 e8 20 04 restore %g0, 4, %o0
4000b830 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
4000b830: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
4000b834: 03 10 00 74 sethi %hi(0x4001d000), %g1
4000b838: f8 00 61 9c ld [ %g1 + 0x19c ], %i4 ! 4001d19c <_Timer_server>
if ( !timer_server )
4000b83c: 80 a7 20 00 cmp %i4, 0
4000b840: 02 80 00 33 be 4000b90c <rtems_timer_server_fire_when+0xdc>
4000b844: 82 10 20 0e mov 0xe, %g1
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set() )
4000b848: 03 10 00 74 sethi %hi(0x4001d000), %g1
4000b84c: c4 08 62 38 ldub [ %g1 + 0x238 ], %g2 ! 4001d238 <_TOD+0x18>
4000b850: 80 a0 a0 00 cmp %g2, 0
4000b854: 02 80 00 2e be 4000b90c <rtems_timer_server_fire_when+0xdc><== NEVER TAKEN
4000b858: 82 10 20 0b mov 0xb, %g1
return RTEMS_NOT_DEFINED;
if ( !routine )
4000b85c: 80 a6 a0 00 cmp %i2, 0
4000b860: 02 80 00 2b be 4000b90c <rtems_timer_server_fire_when+0xdc>
4000b864: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
4000b868: 7f ff fb c8 call 4000a788 <_TOD_Validate>
4000b86c: 90 10 00 19 mov %i1, %o0
4000b870: 80 a2 20 00 cmp %o0, 0
4000b874: 02 80 00 26 be 4000b90c <rtems_timer_server_fire_when+0xdc>
4000b878: 82 10 20 14 mov 0x14, %g1
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
4000b87c: 7f ff fb 89 call 4000a6a0 <_TOD_To_seconds>
4000b880: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
4000b884: 40 00 03 c3 call 4000c790 <_TOD_Seconds_since_epoch>
4000b888: b2 10 00 08 mov %o0, %i1
4000b88c: 80 a6 40 08 cmp %i1, %o0
4000b890: 08 80 00 1f bleu 4000b90c <rtems_timer_server_fire_when+0xdc>
4000b894: 82 10 20 14 mov 0x14, %g1
4000b898: 11 10 00 74 sethi %hi(0x4001d000), %o0
4000b89c: 92 10 00 18 mov %i0, %o1
4000b8a0: 90 12 21 60 or %o0, 0x160, %o0
4000b8a4: 40 00 06 b9 call 4000d388 <_Objects_Get>
4000b8a8: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
4000b8ac: c2 07 bf fc ld [ %fp + -4 ], %g1
4000b8b0: 80 a0 60 00 cmp %g1, 0
4000b8b4: 12 80 00 15 bne 4000b908 <rtems_timer_server_fire_when+0xd8>
4000b8b8: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
4000b8bc: 40 00 0f 1b call 4000f528 <_Watchdog_Remove>
4000b8c0: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
4000b8c4: 82 10 20 03 mov 3, %g1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
4000b8c8: c0 27 60 18 clr [ %i5 + 0x18 ]
4000b8cc: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_watchdog->routine = routine;
4000b8d0: f4 27 60 2c st %i2, [ %i5 + 0x2c ]
the_watchdog->id = id;
4000b8d4: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4000b8d8: 40 00 03 ae call 4000c790 <_TOD_Seconds_since_epoch>
4000b8dc: f6 27 60 34 st %i3, [ %i5 + 0x34 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
4000b8e0: c2 07 20 04 ld [ %i4 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4000b8e4: 90 26 40 08 sub %i1, %o0, %o0
(*timer_server->schedule_operation)( timer_server, the_timer );
4000b8e8: 92 10 00 1d mov %i5, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4000b8ec: d0 27 60 1c st %o0, [ %i5 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
4000b8f0: 9f c0 40 00 call %g1
4000b8f4: 90 10 00 1c mov %i4, %o0
4000b8f8: 40 00 0a 1a call 4000e160 <_Thread_Enable_dispatch>
4000b8fc: 01 00 00 00 nop
_Objects_Put( &the_timer->Object );
return RTEMS_SUCCESSFUL;
4000b900: 10 80 00 03 b 4000b90c <rtems_timer_server_fire_when+0xdc>
4000b904: 82 10 20 00 clr %g1 ! 0 <_TLS_BSS_size>
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
4000b908: 82 10 20 04 mov 4, %g1
}
4000b90c: 81 c7 e0 08 ret
4000b910: 91 e8 00 01 restore %g0, %g1, %o0
40007b7c <sched_get_priority_max>:
#include <rtems/posix/priorityimpl.h>
int sched_get_priority_max(
int policy
)
{
40007b7c: 9d e3 bf a0 save %sp, -96, %sp
40007b80: 80 a6 20 04 cmp %i0, 4
40007b84: 18 80 00 06 bgu 40007b9c <sched_get_priority_max+0x20>
40007b88: 82 10 20 01 mov 1, %g1
40007b8c: b1 28 40 18 sll %g1, %i0, %i0
40007b90: 80 8e 20 17 btst 0x17, %i0
default:
rtems_set_errno_and_return_minus_one( EINVAL );
}
return POSIX_SCHEDULER_MAXIMUM_PRIORITY;
40007b94: 12 80 00 08 bne 40007bb4 <sched_get_priority_max+0x38> <== ALWAYS TAKEN
40007b98: 03 10 00 7c sethi %hi(0x4001f000), %g1
case SCHED_RR:
case SCHED_SPORADIC:
break;
default:
rtems_set_errno_and_return_minus_one( EINVAL );
40007b9c: 40 00 22 56 call 400104f4 <__errno>
40007ba0: b0 10 3f ff mov -1, %i0
40007ba4: 82 10 20 16 mov 0x16, %g1
40007ba8: c2 22 00 00 st %g1, [ %o0 ]
40007bac: 81 c7 e0 08 ret
40007bb0: 81 e8 00 00 restore
}
return POSIX_SCHEDULER_MAXIMUM_PRIORITY;
40007bb4: f0 08 61 14 ldub [ %g1 + 0x114 ], %i0
}
40007bb8: 81 c7 e0 08 ret
40007bbc: 91 ee 3f ff restore %i0, -1, %o0
40007bc0 <sched_get_priority_min>:
* 13.3.6 Get Scheduling Parameter Limits, P1003.1b-1993, p. 258
*/
int sched_get_priority_min(
int policy
)
{
40007bc0: 9d e3 bf a0 save %sp, -96, %sp
40007bc4: 80 a6 20 04 cmp %i0, 4
40007bc8: 18 80 00 06 bgu 40007be0 <sched_get_priority_min+0x20>
40007bcc: 82 10 20 01 mov 1, %g1
40007bd0: 83 28 40 18 sll %g1, %i0, %g1
40007bd4: 80 88 60 17 btst 0x17, %g1
default:
rtems_set_errno_and_return_minus_one( EINVAL );
}
return POSIX_SCHEDULER_MINIMUM_PRIORITY;
40007bd8: 12 80 00 06 bne 40007bf0 <sched_get_priority_min+0x30> <== ALWAYS TAKEN
40007bdc: b0 10 20 01 mov 1, %i0
case SCHED_RR:
case SCHED_SPORADIC:
break;
default:
rtems_set_errno_and_return_minus_one( EINVAL );
40007be0: 40 00 22 45 call 400104f4 <__errno>
40007be4: b0 10 3f ff mov -1, %i0
40007be8: 82 10 20 16 mov 0x16, %g1
40007bec: c2 22 00 00 st %g1, [ %o0 ]
}
return POSIX_SCHEDULER_MINIMUM_PRIORITY;
}
40007bf0: 81 c7 e0 08 ret
40007bf4: 81 e8 00 00 restore
40007bf8 <sched_rr_get_interval>:
int sched_rr_get_interval(
pid_t pid,
struct timespec *interval
)
{
40007bf8: 9d e3 bf a0 save %sp, -96, %sp
/*
* Only supported for the "calling process" (i.e. this node).
*/
if ( pid && pid != getpid() )
40007bfc: 80 a6 20 00 cmp %i0, 0
40007c00: 02 80 00 0b be 40007c2c <sched_rr_get_interval+0x34> <== NEVER TAKEN
40007c04: 80 a6 60 00 cmp %i1, 0
40007c08: 7f ff f0 73 call 40003dd4 <getpid>
40007c0c: 01 00 00 00 nop
40007c10: 80 a6 00 08 cmp %i0, %o0
40007c14: 02 80 00 06 be 40007c2c <sched_rr_get_interval+0x34>
40007c18: 80 a6 60 00 cmp %i1, 0
rtems_set_errno_and_return_minus_one( ESRCH );
40007c1c: 40 00 22 36 call 400104f4 <__errno>
40007c20: 01 00 00 00 nop
40007c24: 10 80 00 07 b 40007c40 <sched_rr_get_interval+0x48>
40007c28: 82 10 20 03 mov 3, %g1 ! 3 <_TLS_Alignment+0x2>
if ( !interval )
40007c2c: 12 80 00 08 bne 40007c4c <sched_rr_get_interval+0x54>
40007c30: 03 10 00 77 sethi %hi(0x4001dc00), %g1
rtems_set_errno_and_return_minus_one( EINVAL );
40007c34: 40 00 22 30 call 400104f4 <__errno>
40007c38: 01 00 00 00 nop
40007c3c: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
40007c40: c2 22 00 00 st %g1, [ %o0 ]
40007c44: 81 c7 e0 08 ret
40007c48: 91 e8 3f ff restore %g0, -1, %o0
_Timespec_From_ticks(
40007c4c: d0 00 60 94 ld [ %g1 + 0x94 ], %o0
40007c50: 92 10 00 19 mov %i1, %o1
40007c54: 40 00 0f 1c call 4000b8c4 <_Timespec_From_ticks>
40007c58: b0 10 20 00 clr %i0
rtems_configuration_get_ticks_per_timeslice(),
interval
);
return 0;
}
40007c5c: 81 c7 e0 08 ret
40007c60: 81 e8 00 00 restore
40008b74 <sem_open>:
int oflag,
...
/* mode_t mode, */
/* unsigned int value */
)
{
40008b74: 9d e3 bf 88 save %sp, -120, %sp
POSIX_Semaphore_Control *the_semaphore;
Objects_Locations location;
size_t name_len;
if ( oflag & O_CREAT ) {
va_start(arg, oflag);
40008b78: f4 27 a0 4c st %i2, [ %fp + 0x4c ]
40008b7c: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40008b80: f6 27 a0 50 st %i3, [ %fp + 0x50 ]
40008b84: fa 27 a0 58 st %i5, [ %fp + 0x58 ]
Objects_Id the_semaphore_id;
POSIX_Semaphore_Control *the_semaphore;
Objects_Locations location;
size_t name_len;
if ( oflag & O_CREAT ) {
40008b88: b4 8e 62 00 andcc %i1, 0x200, %i2
40008b8c: 02 80 00 05 be 40008ba0 <sem_open+0x2c>
40008b90: b8 10 20 00 clr %i4
va_start(arg, oflag);
40008b94: 82 07 a0 4c add %fp, 0x4c, %g1
mode = va_arg( arg, mode_t );
value = va_arg( arg, unsigned int );
40008b98: b8 10 00 1b mov %i3, %i4
POSIX_Semaphore_Control *the_semaphore;
Objects_Locations location;
size_t name_len;
if ( oflag & O_CREAT ) {
va_start(arg, oflag);
40008b9c: c2 27 bf ec st %g1, [ %fp + -20 ]
*/
SCORE_EXTERN API_Mutex_Control *_RTEMS_Allocator_Mutex;
static inline void _RTEMS_Lock_allocator( void )
{
_API_Mutex_Lock( _RTEMS_Allocator_Mutex );
40008ba0: 03 10 00 78 sethi %hi(0x4001e000), %g1
40008ba4: d0 00 60 d8 ld [ %g1 + 0xd8 ], %o0 ! 4001e0d8 <_RTEMS_Allocator_Mutex>
40008ba8: 40 00 05 ff call 4000a3a4 <_API_Mutex_Lock>
40008bac: 37 10 00 78 sethi %hi(0x4001e000), %i3
const char *name,
Objects_Id *id,
size_t *len
)
{
return _POSIX_Name_to_id( &_POSIX_Semaphore_Information, name, id, len );
40008bb0: 90 16 e2 e4 or %i3, 0x2e4, %o0 ! 4001e2e4 <_POSIX_Semaphore_Information>
40008bb4: 92 10 00 18 mov %i0, %o1
40008bb8: 94 07 bf f0 add %fp, -16, %o2
40008bbc: 7f ff fe 74 call 4000858c <_POSIX_Name_to_id>
40008bc0: 96 07 bf fc add %fp, -4, %o3
* and we can just return a pointer to the id. Otherwise we may
* need to check to see if this is a "semaphore does not exist"
* or some other miscellaneous error on the name.
*/
if ( status ) {
40008bc4: ba 92 20 00 orcc %o0, 0, %i5
40008bc8: 22 80 00 0e be,a 40008c00 <sem_open+0x8c>
40008bcc: b2 0e 6a 00 and %i1, 0xa00, %i1
/*
* Unless provided a valid name that did not already exist
* and we are willing to create then it is an error.
*/
if ( !( status == ENOENT && (oflag & O_CREAT) ) ) {
40008bd0: 80 a7 60 02 cmp %i5, 2
40008bd4: 12 80 00 04 bne 40008be4 <sem_open+0x70>
40008bd8: 80 a6 a0 00 cmp %i2, 0
40008bdc: 12 80 00 20 bne 40008c5c <sem_open+0xe8>
40008be0: d2 07 bf fc ld [ %fp + -4 ], %o1
* previous thread life protection state and thus may not return if the
* executing thread was restarted or deleted in the mean-time.
*/
RTEMS_INLINE_ROUTINE void _Objects_Allocator_unlock( void )
{
_RTEMS_Unlock_allocator();
40008be4: 7f ff ff df call 40008b60 <_RTEMS_Unlock_allocator>
40008be8: b0 10 3f ff mov -1, %i0
_Objects_Allocator_unlock();
rtems_set_errno_and_return_minus_one_cast( status, sem_t * );
40008bec: 40 00 25 8b call 40012218 <__errno>
40008bf0: 01 00 00 00 nop
40008bf4: fa 22 00 00 st %i5, [ %o0 ]
40008bf8: 81 c7 e0 08 ret
40008bfc: 81 e8 00 00 restore
/*
* Check for existence with creation.
*/
if ( (oflag & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL) ) {
40008c00: 80 a6 6a 00 cmp %i1, 0xa00
40008c04: 12 80 00 0a bne 40008c2c <sem_open+0xb8>
40008c08: d2 07 bf f0 ld [ %fp + -16 ], %o1
40008c0c: 7f ff ff d5 call 40008b60 <_RTEMS_Unlock_allocator>
40008c10: b0 10 3f ff mov -1, %i0
_Objects_Allocator_unlock();
rtems_set_errno_and_return_minus_one_cast( EEXIST, sem_t * );
40008c14: 40 00 25 81 call 40012218 <__errno>
40008c18: 01 00 00 00 nop
40008c1c: 82 10 20 11 mov 0x11, %g1 ! 11 <_TLS_Alignment+0x10>
40008c20: c2 22 00 00 st %g1, [ %o0 ]
40008c24: 81 c7 e0 08 ret
40008c28: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE POSIX_Semaphore_Control *_POSIX_Semaphore_Get (
sem_t *id,
Objects_Locations *location
)
{
return (POSIX_Semaphore_Control *)
40008c2c: 94 07 bf f8 add %fp, -8, %o2
40008c30: 40 00 0a 96 call 4000b688 <_Objects_Get>
40008c34: 90 16 e2 e4 or %i3, 0x2e4, %o0
}
the_semaphore = _POSIX_Semaphore_Get( (sem_t *) &the_semaphore_id, &location );
the_semaphore->open_count += 1;
40008c38: c2 02 20 18 ld [ %o0 + 0x18 ], %g1
if ( (oflag & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL) ) {
_Objects_Allocator_unlock();
rtems_set_errno_and_return_minus_one_cast( EEXIST, sem_t * );
}
the_semaphore = _POSIX_Semaphore_Get( (sem_t *) &the_semaphore_id, &location );
40008c3c: d0 27 bf f4 st %o0, [ %fp + -12 ]
the_semaphore->open_count += 1;
40008c40: 82 00 60 01 inc %g1
_Thread_Enable_dispatch();
40008c44: 40 00 0e 1a call 4000c4ac <_Thread_Enable_dispatch>
40008c48: c2 22 20 18 st %g1, [ %o0 + 0x18 ]
40008c4c: 7f ff ff c5 call 40008b60 <_RTEMS_Unlock_allocator>
40008c50: 01 00 00 00 nop
return_id:
#if defined(RTEMS_USE_16_BIT_OBJECT)
the_semaphore->Semaphore_id = the_semaphore->Object.id;
return &the_semaphore->Semaphore_id;
#else
return (sem_t *)&the_semaphore->Object.id;
40008c54: 10 80 00 0d b 40008c88 <sem_open+0x114>
40008c58: f0 07 bf f4 ld [ %fp + -12 ], %i0
/*
* At this point, the semaphore does not exist and everything has been
* checked. We should go ahead and create a semaphore.
*/
status =_POSIX_Semaphore_Create_support(
40008c5c: 94 10 20 00 clr %o2
40008c60: 96 10 00 1c mov %i4, %o3
40008c64: 98 07 bf f4 add %fp, -12, %o4
40008c68: 40 00 1a a5 call 4000f6fc <_POSIX_Semaphore_Create_support>
40008c6c: 90 10 00 18 mov %i0, %o0
40008c70: 7f ff ff bc call 40008b60 <_RTEMS_Unlock_allocator>
40008c74: ba 10 00 08 mov %o0, %i5
* errno was set by Create_support, so don't set it again.
*/
_Objects_Allocator_unlock();
if ( status == -1 )
40008c78: 80 a7 7f ff cmp %i5, -1
40008c7c: 22 80 00 04 be,a 40008c8c <sem_open+0x118> <== NEVER TAKEN
40008c80: b0 10 3f ff mov -1, %i0 <== NOT EXECUTED
return_id:
#if defined(RTEMS_USE_16_BIT_OBJECT)
the_semaphore->Semaphore_id = the_semaphore->Object.id;
return &the_semaphore->Semaphore_id;
#else
return (sem_t *)&the_semaphore->Object.id;
40008c84: f0 07 bf f4 ld [ %fp + -12 ], %i0
40008c88: b0 06 20 08 add %i0, 8, %i0
#endif
}
40008c8c: 81 c7 e0 08 ret
40008c90: 81 e8 00 00 restore
4000aee0 <sem_timedwait>:
int sem_timedwait(
sem_t *__restrict sem,
const struct timespec *__restrict abstime
)
{
4000aee0: 9d e3 bf 98 save %sp, -104, %sp
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
4000aee4: 92 07 bf fc add %fp, -4, %o1
4000aee8: 40 00 16 87 call 40010904 <_POSIX_Absolute_timeout_to_ticks>
4000aeec: 90 10 00 19 mov %i1, %o0
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
do_wait = false;
lock_status = _POSIX_Semaphore_Wait_support( sem, do_wait, ticks );
4000aef0: d4 07 bf fc ld [ %fp + -4 ], %o2
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
4000aef4: 90 1a 20 03 xor %o0, 3, %o0
4000aef8: 80 a0 00 08 cmp %g0, %o0
do_wait = false;
lock_status = _POSIX_Semaphore_Wait_support( sem, do_wait, ticks );
4000aefc: 90 10 00 18 mov %i0, %o0
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
4000af00: ba 60 3f ff subx %g0, -1, %i5
do_wait = false;
lock_status = _POSIX_Semaphore_Wait_support( sem, do_wait, ticks );
4000af04: 40 00 19 2e call 400113bc <_POSIX_Semaphore_Wait_support>
4000af08: 92 10 00 1d mov %i5, %o1
* This service only gives us the option to block. We used a polling
* attempt to obtain if the abstime was not in the future. If we did
* not obtain the semaphore, then not look at the status immediately,
* make sure the right reason is returned.
*/
if ( !do_wait && (lock_status == EBUSY) ) {
4000af0c: 80 a7 60 00 cmp %i5, 0
4000af10: 12 80 00 06 bne 4000af28 <sem_timedwait+0x48> <== ALWAYS TAKEN
4000af14: 80 a2 20 10 cmp %o0, 0x10
4000af18: 12 80 00 04 bne 4000af28 <sem_timedwait+0x48> <== NOT EXECUTED
4000af1c: 01 00 00 00 nop <== NOT EXECUTED
4000af20: 81 c7 e0 08 ret <== NOT EXECUTED
4000af24: 91 e8 20 10 restore %g0, 0x10, %o0 <== NOT EXECUTED
lock_status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
rtems_set_errno_and_return_minus_one( ETIMEDOUT );
}
return lock_status;
}
4000af28: 81 c7 e0 08 ret
4000af2c: 91 e8 00 08 restore %g0, %o0, %o0
40007c64 <sigaction>:
int sigaction(
int sig,
const struct sigaction *__restrict act,
struct sigaction *__restrict oact
)
{
40007c64: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
if ( !sig )
40007c68: 82 06 3f ff add %i0, -1, %g1
40007c6c: 80 a0 60 1f cmp %g1, 0x1f
40007c70: 08 80 00 08 bleu 40007c90 <sigaction+0x2c>
40007c74: 80 a6 20 09 cmp %i0, 9
rtems_set_errno_and_return_minus_one( EINVAL );
40007c78: 40 00 23 d0 call 40010bb8 <__errno>
40007c7c: b0 10 3f ff mov -1, %i0
40007c80: 82 10 20 16 mov 0x16, %g1
40007c84: c2 22 00 00 st %g1, [ %o0 ]
40007c88: 81 c7 e0 08 ret
40007c8c: 81 e8 00 00 restore
*
* NOTE: Solaris documentation claims to "silently enforce" this which
* contradicts the POSIX specification.
*/
if ( sig == SIGKILL )
40007c90: 02 bf ff fa be 40007c78 <sigaction+0x14>
40007c94: 01 00 00 00 nop
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
40007c98: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
40007c9c: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
40007ca0: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
rtems_set_errno_and_return_minus_one( EINVAL );
_Thread_Disable_dispatch();
if ( oact )
40007ca4: 80 a6 a0 00 cmp %i2, 0
40007ca8: 02 80 00 0a be 40007cd0 <sigaction+0x6c>
40007cac: 83 2e 20 02 sll %i0, 2, %g1
*oact = _POSIX_signals_Vectors[ sig ];
40007cb0: 85 2e 20 04 sll %i0, 4, %g2
40007cb4: 82 20 80 01 sub %g2, %g1, %g1
40007cb8: 13 10 00 70 sethi %hi(0x4001c000), %o1
40007cbc: 90 10 00 1a mov %i2, %o0
40007cc0: 92 12 62 a8 or %o1, 0x2a8, %o1
40007cc4: 94 10 20 0c mov 0xc, %o2
40007cc8: 40 00 25 a6 call 40011360 <memcpy>
40007ccc: 92 02 40 01 add %o1, %g1, %o1
/*
* Evaluate the new action structure and set the global signal vector
* appropriately.
*/
if ( act ) {
40007cd0: 80 a6 60 00 cmp %i1, 0
40007cd4: 02 80 00 1b be 40007d40 <sigaction+0xdc> <== NEVER TAKEN
40007cd8: 01 00 00 00 nop
/*
* Unless the user is installing the default signal actions, then
* we can just copy the provided sigaction structure into the vectors.
*/
_ISR_Disable( level );
40007cdc: 7f ff ea c6 call 400027f4 <sparc_disable_interrupts>
40007ce0: 01 00 00 00 nop
40007ce4: b4 10 00 08 mov %o0, %i2
if ( act->sa_handler == SIG_DFL ) {
40007ce8: c2 06 60 08 ld [ %i1 + 8 ], %g1
40007cec: 3b 10 00 70 sethi %hi(0x4001c000), %i5
40007cf0: 80 a0 60 00 cmp %g1, 0
40007cf4: ba 17 62 a8 or %i5, 0x2a8, %i5
40007cf8: b9 2e 20 02 sll %i0, 2, %i4
40007cfc: 12 80 00 08 bne 40007d1c <sigaction+0xb8>
40007d00: b7 2e 20 04 sll %i0, 4, %i3
_POSIX_signals_Vectors[ sig ] = _POSIX_signals_Default_vectors[ sig ];
40007d04: b8 26 c0 1c sub %i3, %i4, %i4
40007d08: 13 10 00 65 sethi %hi(0x40019400), %o1
40007d0c: 90 07 40 1c add %i5, %i4, %o0
40007d10: 92 12 63 44 or %o1, 0x344, %o1
40007d14: 10 80 00 07 b 40007d30 <sigaction+0xcc>
40007d18: 92 02 40 1c add %o1, %i4, %o1
} else {
_POSIX_signals_Clear_process_signals( sig );
40007d1c: 40 00 17 73 call 4000dae8 <_POSIX_signals_Clear_process_signals>
40007d20: 90 10 00 18 mov %i0, %o0
_POSIX_signals_Vectors[ sig ] = *act;
40007d24: 90 26 c0 1c sub %i3, %i4, %o0
40007d28: 92 10 00 19 mov %i1, %o1
40007d2c: 90 07 40 08 add %i5, %o0, %o0
40007d30: 40 00 25 8c call 40011360 <memcpy>
40007d34: 94 10 20 0c mov 0xc, %o2
}
_ISR_Enable( level );
40007d38: 7f ff ea b2 call 40002800 <sparc_enable_interrupts>
40007d3c: 90 10 00 1a mov %i2, %o0
}
_Thread_Enable_dispatch();
40007d40: 40 00 0b d5 call 4000ac94 <_Thread_Enable_dispatch>
40007d44: b0 10 20 00 clr %i0
return 0;
}
40007d48: 81 c7 e0 08 ret
40007d4c: 81 e8 00 00 restore
400081ec <sigtimedwait>:
int sigtimedwait(
const sigset_t *__restrict set,
siginfo_t *__restrict info,
const struct timespec *__restrict timeout
)
{
400081ec: 9d e3 bf 90 save %sp, -112, %sp
ISR_lock_Context lock_context;
/*
* Error check parameters before disabling interrupts.
*/
if ( !set )
400081f0: 80 a6 20 00 cmp %i0, 0
400081f4: 02 80 00 0e be 4000822c <sigtimedwait+0x40>
400081f8: 80 a6 a0 00 cmp %i2, 0
/* NOTE: This is very specifically a RELATIVE not ABSOLUTE time
* in the Open Group specification.
*/
interval = 0;
if ( timeout ) {
400081fc: 22 80 00 10 be,a 4000823c <sigtimedwait+0x50>
40008200: b4 10 20 00 clr %i2
if ( !_Timespec_Is_valid( timeout ) )
40008204: 40 00 0f c6 call 4000c11c <_Timespec_Is_valid>
40008208: 90 10 00 1a mov %i2, %o0
4000820c: 80 a2 20 00 cmp %o0, 0
40008210: 02 80 00 07 be 4000822c <sigtimedwait+0x40>
40008214: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( EINVAL );
interval = _Timespec_To_ticks( timeout );
40008218: 40 00 0f d3 call 4000c164 <_Timespec_To_ticks>
4000821c: 90 10 00 1a mov %i2, %o0
if ( !interval )
40008220: b4 92 20 00 orcc %o0, 0, %i2
40008224: 12 80 00 07 bne 40008240 <sigtimedwait+0x54> <== ALWAYS TAKEN
40008228: 80 a6 60 00 cmp %i1, 0
rtems_set_errno_and_return_minus_one( EINVAL );
4000822c: 40 00 24 44 call 4001133c <__errno>
40008230: 01 00 00 00 nop
40008234: 10 80 00 64 b 400083c4 <sigtimedwait+0x1d8>
40008238: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
/*
* Initialize local variables.
*/
the_info = ( info ) ? info : &signal_information;
4000823c: 80 a6 60 00 cmp %i1, 0
40008240: 22 80 00 02 be,a 40008248 <sigtimedwait+0x5c>
40008244: b2 07 bf f4 add %fp, -12, %i1
ISR_Level level;
_ISR_Disable_without_giant( level );
#endif
executing = _Thread_Executing;
40008248: fa 01 a0 18 ld [ %g6 + 0x18 ], %i5
{
#if defined( RTEMS_SMP )
_SMP_lock_ISR_disable_and_acquire( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Disable( context->isr_level );
4000824c: 7f ff ea 62 call 40002bd4 <sparc_disable_interrupts>
40008250: f8 07 61 30 ld [ %i5 + 0x130 ], %i4
40008254: b6 10 00 08 mov %o0, %i3
*/
/* API signals pending? */
_POSIX_signals_Acquire( &lock_context );
if ( *set & api->signals_pending ) {
40008258: c2 06 00 00 ld [ %i0 ], %g1
4000825c: d0 07 20 e0 ld [ %i4 + 0xe0 ], %o0
40008260: 80 88 40 08 btst %g1, %o0
40008264: 02 80 00 13 be 400082b0 <sigtimedwait+0xc4>
40008268: 05 10 00 73 sethi %hi(0x4001cc00), %g2
/* XXX real info later */
the_info->si_signo = _POSIX_signals_Get_lowest( api->signals_pending );
4000826c: 7f ff ff c8 call 4000818c <_POSIX_signals_Get_lowest>
40008270: 01 00 00 00 nop
_POSIX_signals_Clear_signals(
40008274: 94 10 00 19 mov %i1, %o2
/* API signals pending? */
_POSIX_signals_Acquire( &lock_context );
if ( *set & api->signals_pending ) {
/* XXX real info later */
the_info->si_signo = _POSIX_signals_Get_lowest( api->signals_pending );
40008278: 92 10 00 08 mov %o0, %o1
4000827c: d0 26 40 00 st %o0, [ %i1 ]
_POSIX_signals_Clear_signals(
40008280: 96 10 20 00 clr %o3
40008284: 90 10 00 1c mov %i4, %o0
40008288: 98 10 20 00 clr %o4
4000828c: 40 00 18 36 call 4000e364 <_POSIX_signals_Clear_signals>
40008290: 9a 10 20 00 clr %o5
{
#if defined( RTEMS_SMP )
_SMP_lock_Release_and_ISR_enable( &lock->lock, &context->lock_context );
#else
(void) lock;
_ISR_Enable( context->isr_level );
40008294: 7f ff ea 53 call 40002be0 <sparc_enable_interrupts>
40008298: 90 10 00 1b mov %i3, %o0
false,
false
);
_POSIX_signals_Release( &lock_context );
the_info->si_code = SI_USER;
4000829c: 82 10 20 01 mov 1, %g1
the_info->si_value.sival_int = 0;
400082a0: c0 26 60 08 clr [ %i1 + 8 ]
false,
false
);
_POSIX_signals_Release( &lock_context );
the_info->si_code = SI_USER;
400082a4: c2 26 60 04 st %g1, [ %i1 + 4 ]
the_info->si_value.sival_int = 0;
return the_info->si_signo;
400082a8: 10 80 00 49 b 400083cc <sigtimedwait+0x1e0>
400082ac: d0 06 40 00 ld [ %i1 ], %o0
}
/* Process pending signals? */
if ( *set & _POSIX_signals_Pending ) {
400082b0: d0 00 a0 d4 ld [ %g2 + 0xd4 ], %o0
400082b4: 80 88 40 08 btst %g1, %o0
400082b8: 02 80 00 14 be 40008308 <sigtimedwait+0x11c>
400082bc: 01 00 00 00 nop
signo = _POSIX_signals_Get_lowest( _POSIX_signals_Pending );
400082c0: 7f ff ff b3 call 4000818c <_POSIX_signals_Get_lowest>
400082c4: 01 00 00 00 nop
_POSIX_signals_Clear_signals( api, signo, the_info, true, false, false );
400082c8: 94 10 00 19 mov %i1, %o2
}
/* Process pending signals? */
if ( *set & _POSIX_signals_Pending ) {
signo = _POSIX_signals_Get_lowest( _POSIX_signals_Pending );
400082cc: ba 10 00 08 mov %o0, %i5
_POSIX_signals_Clear_signals( api, signo, the_info, true, false, false );
400082d0: 96 10 20 01 mov 1, %o3
400082d4: 90 10 00 1c mov %i4, %o0
400082d8: 92 10 00 1d mov %i5, %o1
400082dc: 98 10 20 00 clr %o4
400082e0: 40 00 18 21 call 4000e364 <_POSIX_signals_Clear_signals>
400082e4: 9a 10 20 00 clr %o5
400082e8: 7f ff ea 3e call 40002be0 <sparc_enable_interrupts>
400082ec: 90 10 00 1b mov %i3, %o0
_POSIX_signals_Release( &lock_context );
the_info->si_signo = signo;
the_info->si_code = SI_USER;
400082f0: 82 10 20 01 mov 1, %g1
if ( *set & _POSIX_signals_Pending ) {
signo = _POSIX_signals_Get_lowest( _POSIX_signals_Pending );
_POSIX_signals_Clear_signals( api, signo, the_info, true, false, false );
_POSIX_signals_Release( &lock_context );
the_info->si_signo = signo;
400082f4: fa 26 40 00 st %i5, [ %i1 ]
the_info->si_code = SI_USER;
400082f8: c2 26 60 04 st %g1, [ %i1 + 4 ]
the_info->si_value.sival_int = 0;
400082fc: c0 26 60 08 clr [ %i1 + 8 ]
return signo;
40008300: 10 80 00 33 b 400083cc <sigtimedwait+0x1e0>
40008304: 90 10 00 1d mov %i5, %o0
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
uint32_t disable_level = _Thread_Dispatch_disable_level;
40008308: c4 01 a0 10 ld [ %g6 + 0x10 ], %g2
}
the_info->si_signo = -1;
4000830c: 82 10 3f ff mov -1, %g1
40008310: c2 26 40 00 st %g1, [ %i1 ]
_ISR_Disable( level );
_Profiling_Thread_dispatch_disable( _Per_CPU_Get(), disable_level );
#endif
++disable_level;
40008314: 84 00 a0 01 inc %g2
_Thread_Dispatch_disable_level = disable_level;
40008318: c4 21 a0 10 st %g2, [ %g6 + 0x10 ]
_Thread_Disable_dispatch();
executing->Wait.queue = &_POSIX_signals_Wait_queue;
executing->Wait.return_code = EINTR;
4000831c: 84 10 20 04 mov 4, %g2
40008320: c4 27 60 34 st %g2, [ %i5 + 0x34 ]
executing->Wait.option = *set;
40008324: c4 06 00 00 ld [ %i0 ], %g2
executing->Wait.return_argument = the_info;
40008328: f2 27 60 28 st %i1, [ %i5 + 0x28 ]
the_info->si_signo = -1;
_Thread_Disable_dispatch();
executing->Wait.queue = &_POSIX_signals_Wait_queue;
executing->Wait.return_code = EINTR;
executing->Wait.option = *set;
4000832c: c4 27 60 30 st %g2, [ %i5 + 0x30 ]
}
the_info->si_signo = -1;
_Thread_Disable_dispatch();
executing->Wait.queue = &_POSIX_signals_Wait_queue;
40008330: 03 10 00 73 sethi %hi(0x4001cc00), %g1
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40008334: 84 10 20 01 mov 1, %g2
40008338: 82 10 60 94 or %g1, 0x94, %g1
4000833c: c2 27 60 44 st %g1, [ %i5 + 0x44 ]
40008340: c4 20 60 30 st %g2, [ %g1 + 0x30 ]
40008344: 7f ff ea 27 call 40002be0 <sparc_enable_interrupts>
40008348: 90 10 00 1b mov %i3, %o0
executing->Wait.return_code = EINTR;
executing->Wait.option = *set;
executing->Wait.return_argument = the_info;
_Thread_queue_Enter_critical_section( &_POSIX_signals_Wait_queue );
_POSIX_signals_Release( &lock_context );
_Thread_queue_Enqueue( &_POSIX_signals_Wait_queue, executing, interval );
4000834c: 92 10 00 1d mov %i5, %o1
40008350: 94 10 00 1a mov %i2, %o2
40008354: 11 10 00 73 sethi %hi(0x4001cc00), %o0
40008358: 17 10 00 2e sethi %hi(0x4000b800), %o3
4000835c: 90 12 20 94 or %o0, 0x94, %o0
40008360: 40 00 0c f2 call 4000b728 <_Thread_queue_Enqueue_with_handler>
40008364: 96 12 e2 b8 or %o3, 0x2b8, %o3
_Thread_Enable_dispatch();
40008368: 40 00 0b b5 call 4000b23c <_Thread_Enable_dispatch>
4000836c: 01 00 00 00 nop
/*
* When the thread is set free by a signal, it is need to eliminate
* the signal.
*/
_POSIX_signals_Clear_signals(
40008370: d2 06 40 00 ld [ %i1 ], %o1
40008374: 90 10 00 1c mov %i4, %o0
40008378: 94 10 00 19 mov %i1, %o2
4000837c: 96 10 20 00 clr %o3
40008380: 98 10 20 00 clr %o4
40008384: 40 00 17 f8 call 4000e364 <_POSIX_signals_Clear_signals>
40008388: 9a 10 20 01 mov 1, %o5
/* Set errno only if return code is not EINTR or
* if EINTR was caused by a signal being caught, which
* was not in our set.
*/
if ( (executing->Wait.return_code != EINTR)
4000838c: c2 07 60 34 ld [ %i5 + 0x34 ], %g1
40008390: 80 a0 60 04 cmp %g1, 4
40008394: 12 80 00 09 bne 400083b8 <sigtimedwait+0x1cc>
40008398: 84 10 20 01 mov 1, %g2
|| !(*set & signo_to_mask( the_info->si_signo )) ) {
4000839c: d0 06 40 00 ld [ %i1 ], %o0
400083a0: 82 02 3f ff add %o0, -1, %g1
400083a4: 85 28 80 01 sll %g2, %g1, %g2
400083a8: c2 06 00 00 ld [ %i0 ], %g1
400083ac: 80 88 80 01 btst %g2, %g1
400083b0: 12 80 00 07 bne 400083cc <sigtimedwait+0x1e0>
400083b4: 01 00 00 00 nop
errno = executing->Wait.return_code;
400083b8: 40 00 23 e1 call 4001133c <__errno>
400083bc: 01 00 00 00 nop
400083c0: c2 07 60 34 ld [ %i5 + 0x34 ], %g1
400083c4: c2 22 00 00 st %g1, [ %o0 ]
return -1;
400083c8: 90 10 3f ff mov -1, %o0
}
return the_info->si_signo;
}
400083cc: 81 c7 e0 08 ret
400083d0: 91 e8 00 08 restore %g0, %o0, %o0
4000a1c8 <sigwait>:
int sigwait(
const sigset_t *__restrict set,
int *__restrict sig
)
{
4000a1c8: 9d e3 bf a0 save %sp, -96, %sp
int status;
status = sigtimedwait( set, NULL, NULL );
4000a1cc: 92 10 20 00 clr %o1
4000a1d0: 90 10 00 18 mov %i0, %o0
4000a1d4: 7f ff ff 7f call 40009fd0 <sigtimedwait>
4000a1d8: 94 10 20 00 clr %o2
if ( status != -1 ) {
4000a1dc: 80 a2 3f ff cmp %o0, -1
4000a1e0: 02 80 00 06 be 4000a1f8 <sigwait+0x30>
4000a1e4: 80 a6 60 00 cmp %i1, 0
if ( sig )
4000a1e8: 32 80 00 09 bne,a 4000a20c <sigwait+0x44> <== ALWAYS TAKEN
4000a1ec: d0 26 40 00 st %o0, [ %i1 ]
*sig = status;
return 0;
4000a1f0: 81 c7 e0 08 ret <== NOT EXECUTED
4000a1f4: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
}
return errno;
4000a1f8: 40 00 23 8e call 40013030 <__errno>
4000a1fc: 01 00 00 00 nop
4000a200: f0 02 00 00 ld [ %o0 ], %i0
4000a204: 81 c7 e0 08 ret
4000a208: 81 e8 00 00 restore
status = sigtimedwait( set, NULL, NULL );
if ( status != -1 ) {
if ( sig )
*sig = status;
return 0;
4000a20c: b0 10 20 00 clr %i0
}
return errno;
}
4000a210: 81 c7 e0 08 ret
4000a214: 81 e8 00 00 restore
40006f10 <sysconf>:
*/
long sysconf(
int name
)
{
40006f10: 9d e3 bf a0 save %sp, -96, %sp
if ( name == _SC_CLK_TCK )
40006f14: 80 a6 20 02 cmp %i0, 2
40006f18: 12 80 00 09 bne 40006f3c <sysconf+0x2c>
40006f1c: 03 10 00 5e sethi %hi(0x40017800), %g1
return (TOD_MICROSECONDS_PER_SECOND /
40006f20: 03 10 00 58 sethi %hi(0x40016000), %g1
40006f24: d2 00 60 1c ld [ %g1 + 0x1c ], %o1 ! 4001601c <Configuration+0x14>
40006f28: 11 00 03 d0 sethi %hi(0xf4000), %o0
40006f2c: 40 00 33 cc call 40013e5c <.udiv>
40006f30: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <_TLS_Alignment+0xf423f>
40006f34: 81 c7 e0 08 ret
40006f38: 91 e8 00 08 restore %g0, %o0, %o0
rtems_configuration_get_microseconds_per_tick());
if ( name == _SC_OPEN_MAX )
40006f3c: 80 a6 20 04 cmp %i0, 4
40006f40: 02 80 00 13 be 40006f8c <sysconf+0x7c>
40006f44: d0 00 60 c0 ld [ %g1 + 0xc0 ], %o0
return rtems_libio_number_iops;
if ( name == _SC_GETPW_R_SIZE_MAX )
40006f48: 80 a6 20 33 cmp %i0, 0x33
40006f4c: 02 80 00 10 be 40006f8c <sysconf+0x7c>
40006f50: 90 10 24 00 mov 0x400, %o0
return 1024;
if ( name == _SC_PAGESIZE )
40006f54: 80 a6 20 08 cmp %i0, 8
40006f58: 02 80 00 0d be 40006f8c <sysconf+0x7c>
40006f5c: 11 00 00 04 sethi %hi(0x1000), %o0
return PAGE_SIZE;
if ( name == _SC_SYMLOOP_MAX )
40006f60: 80 a6 20 4f cmp %i0, 0x4f
40006f64: 02 80 00 0a be 40006f8c <sysconf+0x7c> <== NEVER TAKEN
40006f68: 90 10 20 20 mov 0x20, %o0
return RTEMS_FILESYSTEM_SYMLOOP_MAX;
#if defined(__sparc__)
if ( name == 515 ) /* Solaris _SC_STACK_PROT */
40006f6c: 80 a6 22 03 cmp %i0, 0x203
40006f70: 02 80 00 07 be 40006f8c <sysconf+0x7c> <== NEVER TAKEN
40006f74: 90 10 20 00 clr %o0
return 0;
#endif
rtems_set_errno_and_return_minus_one( EINVAL );
40006f78: 40 00 23 7e call 4000fd70 <__errno>
40006f7c: 01 00 00 00 nop
40006f80: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
40006f84: c2 22 00 00 st %g1, [ %o0 ]
40006f88: 90 10 3f ff mov -1, %o0
}
40006f8c: b0 10 00 08 mov %o0, %i0
40006f90: 81 c7 e0 08 ret
40006f94: 81 e8 00 00 restore
40008c94 <timer_create>:
int timer_create(
clockid_t clock_id,
struct sigevent *__restrict evp,
timer_t *__restrict timerid
)
{
40008c94: 9d e3 bf a0 save %sp, -96, %sp
POSIX_Timer_Control *ptimer;
if ( clock_id != CLOCK_REALTIME )
40008c98: 80 a6 20 01 cmp %i0, 1
40008c9c: 02 80 00 06 be 40008cb4 <timer_create+0x20>
40008ca0: 80 a6 a0 00 cmp %i2, 0
rtems_set_errno_and_return_minus_one( EINVAL );
40008ca4: 40 00 25 5d call 40012218 <__errno>
40008ca8: 01 00 00 00 nop
40008cac: 10 80 00 1a b 40008d14 <timer_create+0x80>
40008cb0: 82 10 20 16 mov 0x16, %g1 ! 16 <_TLS_Alignment+0x15>
if ( !timerid )
40008cb4: 02 bf ff fc be 40008ca4 <timer_create+0x10>
40008cb8: 80 a6 60 00 cmp %i1, 0
/*
* The data of the structure evp are checked in order to verify if they
* are coherent.
*/
if (evp != NULL) {
40008cbc: 02 80 00 0c be 40008cec <timer_create+0x58>
40008cc0: 3b 10 00 78 sethi %hi(0x4001e000), %i5
/* The structure has data */
if ( ( evp->sigev_notify != SIGEV_NONE ) &&
40008cc4: c2 06 40 00 ld [ %i1 ], %g1
40008cc8: 82 00 7f ff add %g1, -1, %g1
40008ccc: 80 a0 60 01 cmp %g1, 1
40008cd0: 18 bf ff f5 bgu 40008ca4 <timer_create+0x10> <== NEVER TAKEN
40008cd4: 01 00 00 00 nop
( evp->sigev_notify != SIGEV_SIGNAL ) ) {
/* The value of the field sigev_notify is not valid */
rtems_set_errno_and_return_minus_one( EINVAL );
}
if ( !evp->sigev_signo )
40008cd8: c2 06 60 04 ld [ %i1 + 4 ], %g1
40008cdc: 82 00 7f ff add %g1, -1, %g1
40008ce0: 80 a0 60 1f cmp %g1, 0x1f
40008ce4: 18 bf ff f0 bgu 40008ca4 <timer_create+0x10> <== NEVER TAKEN
40008ce8: 01 00 00 00 nop
* This function allocates a timer control block from
* the inactive chain of free timer control blocks.
*/
RTEMS_INLINE_ROUTINE POSIX_Timer_Control *_POSIX_Timer_Allocate( void )
{
return (POSIX_Timer_Control *) _Objects_Allocate( &_POSIX_Timer_Information );
40008cec: 40 00 09 39 call 4000b1d0 <_Objects_Allocate>
40008cf0: 90 17 63 20 or %i5, 0x320, %o0
/*
* Allocate a timer
*/
ptimer = _POSIX_Timer_Allocate();
if ( !ptimer ) {
40008cf4: 80 a2 20 00 cmp %o0, 0
40008cf8: 12 80 00 0a bne 40008d20 <timer_create+0x8c>
40008cfc: 03 10 00 78 sethi %hi(0x4001e000), %g1
}
static inline void _RTEMS_Unlock_allocator( void )
{
_API_Mutex_Unlock( _RTEMS_Allocator_Mutex );
40008d00: 40 00 05 e0 call 4000a480 <_API_Mutex_Unlock>
40008d04: d0 00 60 d8 ld [ %g1 + 0xd8 ], %o0 ! 4001e0d8 <_RTEMS_Allocator_Mutex>
_Objects_Allocator_unlock();
rtems_set_errno_and_return_minus_one( EAGAIN );
40008d08: 40 00 25 44 call 40012218 <__errno>
40008d0c: 01 00 00 00 nop
40008d10: 82 10 20 0b mov 0xb, %g1 ! b <_TLS_Alignment+0xa>
40008d14: c2 22 00 00 st %g1, [ %o0 ]
40008d18: 81 c7 e0 08 ret
40008d1c: 91 e8 3f ff restore %g0, -1, %o0
}
/* The data of the created timer are stored to use them later */
ptimer->state = POSIX_TIMER_STATE_CREATE_NEW;
40008d20: 84 10 20 02 mov 2, %g2
40008d24: c4 2a 20 3c stb %g2, [ %o0 + 0x3c ]
ptimer->thread_id = _Thread_Get_executing()->Object.id;
40008d28: c4 01 a0 18 ld [ %g6 + 0x18 ], %g2
if ( evp != NULL ) {
40008d2c: 80 a6 60 00 cmp %i1, 0
}
/* The data of the created timer are stored to use them later */
ptimer->state = POSIX_TIMER_STATE_CREATE_NEW;
ptimer->thread_id = _Thread_Get_executing()->Object.id;
40008d30: c4 00 a0 08 ld [ %g2 + 8 ], %g2
if ( evp != NULL ) {
40008d34: 02 80 00 08 be 40008d54 <timer_create+0xc0>
40008d38: c4 22 20 38 st %g2, [ %o0 + 0x38 ]
ptimer->inf.sigev_notify = evp->sigev_notify;
40008d3c: c4 06 40 00 ld [ %i1 ], %g2
40008d40: c4 22 20 40 st %g2, [ %o0 + 0x40 ]
ptimer->inf.sigev_signo = evp->sigev_signo;
40008d44: c4 06 60 04 ld [ %i1 + 4 ], %g2
40008d48: c4 22 20 44 st %g2, [ %o0 + 0x44 ]
ptimer->inf.sigev_value = evp->sigev_value;
40008d4c: c4 06 60 08 ld [ %i1 + 8 ], %g2
40008d50: c4 22 20 48 st %g2, [ %o0 + 0x48 ]
Objects_Control *the_object,
uint32_t name
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
40008d54: c0 22 20 0c clr [ %o0 + 0xc ]
_Objects_Set_local_object(
40008d58: c6 12 20 0a lduh [ %o0 + 0xa ], %g3
* @param[in] information points to an Object Information Table
* @param[in] the_object is a pointer to an object
* @param[in] name is the name of the object to make accessible
*/
RTEMS_INLINE_ROUTINE void _Objects_Open_u32(
Objects_Information *information,
40008d5c: ba 17 63 20 or %i5, 0x320, %i5
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40008d60: c8 07 60 1c ld [ %i5 + 0x1c ], %g4
}
ptimer->overrun = 0;
40008d64: c0 22 20 68 clr [ %o0 + 0x68 ]
ptimer->timer_data.it_value.tv_sec = 0;
40008d68: c0 22 20 5c clr [ %o0 + 0x5c ]
ptimer->timer_data.it_value.tv_nsec = 0;
40008d6c: c0 22 20 60 clr [ %o0 + 0x60 ]
ptimer->timer_data.it_interval.tv_sec = 0;
40008d70: c0 22 20 54 clr [ %o0 + 0x54 ]
ptimer->timer_data.it_interval.tv_nsec = 0;
40008d74: c0 22 20 58 clr [ %o0 + 0x58 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40008d78: c0 22 20 18 clr [ %o0 + 0x18 ]
the_watchdog->routine = routine;
40008d7c: c0 22 20 2c clr [ %o0 + 0x2c ]
the_watchdog->id = id;
40008d80: c0 22 20 30 clr [ %o0 + 0x30 ]
the_watchdog->user_data = user_data;
40008d84: c0 22 20 34 clr [ %o0 + 0x34 ]
)
{
/* ASSERT: information->is_string == false */
the_object->name.name_u32 = name;
_Objects_Set_local_object(
40008d88: c4 02 20 08 ld [ %o0 + 8 ], %g2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40008d8c: 87 28 e0 02 sll %g3, 2, %g3
40008d90: d0 21 00 03 st %o0, [ %g4 + %g3 ]
40008d94: d0 00 60 d8 ld [ %g1 + 0xd8 ], %o0
_Watchdog_Initialize( &ptimer->Timer, NULL, 0, NULL );
_Objects_Open_u32(&_POSIX_Timer_Information, &ptimer->Object, 0);
*timerid = ptimer->Object.id;
40008d98: c4 26 80 00 st %g2, [ %i2 ]
40008d9c: 40 00 05 b9 call 4000a480 <_API_Mutex_Unlock>
40008da0: b0 10 20 00 clr %i0
_Objects_Allocator_unlock();
return 0;
}
40008da4: 81 c7 e0 08 ret
40008da8: 81 e8 00 00 restore
40007118 <timer_settime>:
timer_t timerid,
int flags,
const struct itimerspec *__restrict value,
struct itimerspec *__restrict ovalue
)
{
40007118: 9d e3 bf 80 save %sp, -128, %sp
Objects_Locations location;
bool activated;
uint32_t initial_period;
struct itimerspec normalize;
if ( !value )
4000711c: 80 a6 a0 00 cmp %i2, 0
40007120: 02 80 00 84 be 40007330 <timer_settime+0x218> <== NEVER TAKEN
40007124: a0 10 00 18 mov %i0, %l0
/*
* First, it verifies if the structure "value" is correct
* if the number of nanoseconds is not correct return EINVAL
*/
if ( !_Timespec_Is_valid( &(value->it_value) ) ) {
40007128: 40 00 10 3f call 4000b224 <_Timespec_Is_valid>
4000712c: 90 06 a0 08 add %i2, 8, %o0
40007130: 80 a2 20 00 cmp %o0, 0
40007134: 02 80 00 7f be 40007330 <timer_settime+0x218>
40007138: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( EINVAL );
}
if ( !_Timespec_Is_valid( &(value->it_interval) ) ) {
4000713c: 40 00 10 3a call 4000b224 <_Timespec_Is_valid>
40007140: 90 10 00 1a mov %i2, %o0
40007144: 80 a2 20 00 cmp %o0, 0
40007148: 02 80 00 7a be 40007330 <timer_settime+0x218> <== NEVER TAKEN
4000714c: 01 00 00 00 nop
rtems_set_errno_and_return_minus_one( EINVAL );
}
if ( flags != TIMER_ABSTIME && flags != POSIX_TIMER_RELATIVE ) {
40007150: b0 8e 7f fb andcc %i1, -5, %i0
40007154: 12 80 00 77 bne 40007330 <timer_settime+0x218>
40007158: 90 07 bf f0 add %fp, -16, %o0
rtems_set_errno_and_return_minus_one( EINVAL );
}
normalize = *value;
4000715c: 92 10 00 1a mov %i2, %o1
40007160: 40 00 26 39 call 40010a44 <memcpy>
40007164: 94 10 20 10 mov 0x10, %o2
/* Convert absolute to relative time */
if (flags == TIMER_ABSTIME) {
40007168: 80 a6 60 04 cmp %i1, 4
4000716c: 12 80 00 1f bne 400071e8 <timer_settime+0xd0>
40007170: 11 10 00 67 sethi %hi(0x40019c00), %o0
)
{
Timestamp_Control tod_as_timestamp;
Timestamp_Control *tod_as_timestamp_ptr;
tod_as_timestamp_ptr =
40007174: 90 07 bf e0 add %fp, -32, %o0
40007178: 13 10 00 67 sethi %hi(0x40019c00), %o1
4000717c: 40 00 06 41 call 40008a80 <_TOD_Get_with_nanoseconds>
40007180: 92 12 61 40 or %o1, 0x140, %o1 ! 40019d40 <_TOD>
static inline void _TOD_Get(
struct timespec *tod_as_timespec
)
{
Timestamp_Control tod_as_timestamp;
Timestamp_Control *tod_as_timestamp_ptr;
40007184: f8 1a 00 00 ldd [ %o0 ], %i4
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
40007188: 94 10 20 00 clr %o2
4000718c: 90 10 00 1c mov %i4, %o0
40007190: 92 10 00 1d mov %i5, %o1
40007194: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
40007198: 40 00 36 98 call 40014bf8 <__divdi3>
4000719c: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
400071a0: 94 10 20 00 clr %o2
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
400071a4: d2 27 bf e8 st %o1, [ %fp + -24 ]
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
400071a8: 90 10 00 1c mov %i4, %o0
400071ac: 92 10 00 1d mov %i5, %o1
400071b0: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
400071b4: 40 00 37 83 call 40014fc0 <__moddi3>
400071b8: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
struct timespec now;
_TOD_Get( &now );
/* Check for seconds in the past */
if ( _Timespec_Greater_than( &now, &normalize.it_value ) )
400071bc: 90 07 bf f8 add %fp, -8, %o0
400071c0: d2 27 bf ec st %o1, [ %fp + -20 ]
400071c4: 40 00 10 2a call 4000b26c <_Timespec_Less_than>
400071c8: 92 07 bf e8 add %fp, -24, %o1
400071cc: 80 a2 20 00 cmp %o0, 0
400071d0: 12 80 00 58 bne 40007330 <timer_settime+0x218>
400071d4: 92 07 bf f8 add %fp, -8, %o1
rtems_set_errno_and_return_minus_one( EINVAL );
_Timespec_Subtract( &now, &normalize.it_value, &normalize.it_value );
400071d8: 90 07 bf e8 add %fp, -24, %o0
400071dc: 40 00 10 34 call 4000b2ac <_Timespec_Subtract>
400071e0: 94 10 00 09 mov %o1, %o2
RTEMS_INLINE_ROUTINE POSIX_Timer_Control *_POSIX_Timer_Get (
timer_t id,
Objects_Locations *location
)
{
return (POSIX_Timer_Control *)
400071e4: 11 10 00 67 sethi %hi(0x40019c00), %o0
400071e8: 92 10 00 10 mov %l0, %o1
400071ec: 90 12 23 e4 or %o0, 0x3e4, %o0
400071f0: 40 00 09 04 call 40009600 <_Objects_Get>
400071f4: 94 07 bf e0 add %fp, -32, %o2
* something with the structure of times of the timer: to stop, start
* or start it again
*/
ptimer = _POSIX_Timer_Get( timerid, &location );
switch ( location ) {
400071f8: c2 07 bf e0 ld [ %fp + -32 ], %g1
400071fc: 80 a0 60 00 cmp %g1, 0
40007200: 12 80 00 4c bne 40007330 <timer_settime+0x218>
40007204: b2 10 00 08 mov %o0, %i1
case OBJECTS_LOCAL:
/* First, it verifies if the timer must be stopped */
if ( normalize.it_value.tv_sec == 0 && normalize.it_value.tv_nsec == 0 ) {
40007208: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000720c: 80 a0 60 00 cmp %g1, 0
40007210: 12 80 00 16 bne 40007268 <timer_settime+0x150>
40007214: ba 02 20 10 add %o0, 0x10, %i5
40007218: c2 07 bf fc ld [ %fp + -4 ], %g1
4000721c: 80 a0 60 00 cmp %g1, 0
40007220: 12 80 00 12 bne 40007268 <timer_settime+0x150>
40007224: 01 00 00 00 nop
/* Stop the timer */
(void) _Watchdog_Remove( &ptimer->Timer );
40007228: 40 00 11 36 call 4000b700 <_Watchdog_Remove>
4000722c: 90 10 00 1d mov %i5, %o0
/* The old data of the timer are returned */
if ( ovalue )
40007230: 80 a6 e0 00 cmp %i3, 0
40007234: 02 80 00 06 be 4000724c <timer_settime+0x134>
40007238: ba 06 60 54 add %i1, 0x54, %i5
*ovalue = ptimer->timer_data;
4000723c: 90 10 00 1b mov %i3, %o0
40007240: 92 10 00 1d mov %i5, %o1
40007244: 40 00 26 00 call 40010a44 <memcpy>
40007248: 94 10 20 10 mov 0x10, %o2
/* The new data are set */
ptimer->timer_data = normalize;
4000724c: 90 10 00 1d mov %i5, %o0
40007250: 92 07 bf f0 add %fp, -16, %o1
40007254: 40 00 25 fc call 40010a44 <memcpy>
40007258: 94 10 20 10 mov 0x10, %o2
/* Indicates that the timer is created and stopped */
ptimer->state = POSIX_TIMER_STATE_CREATE_STOP;
4000725c: 82 10 20 04 mov 4, %g1
40007260: 10 80 00 30 b 40007320 <timer_settime+0x208>
40007264: c2 2e 60 3c stb %g1, [ %i1 + 0x3c ]
_Objects_Put( &ptimer->Object );
return 0;
}
/* Convert from seconds and nanoseconds to ticks */
ptimer->ticks = _Timespec_To_ticks( &value->it_interval );
40007268: 40 00 10 22 call 4000b2f0 <_Timespec_To_ticks>
4000726c: 90 10 00 1a mov %i2, %o0
40007270: d0 26 60 64 st %o0, [ %i1 + 0x64 ]
initial_period = _Timespec_To_ticks( &normalize.it_value );
40007274: 40 00 10 1f call 4000b2f0 <_Timespec_To_ticks>
40007278: 90 07 bf f8 add %fp, -8, %o0
activated = _POSIX_Timer_Insert_helper(
4000727c: d4 06 60 08 ld [ %i1 + 8 ], %o2
return 0;
}
/* Convert from seconds and nanoseconds to ticks */
ptimer->ticks = _Timespec_To_ticks( &value->it_interval );
initial_period = _Timespec_To_ticks( &normalize.it_value );
40007280: 92 10 00 08 mov %o0, %o1
activated = _POSIX_Timer_Insert_helper(
40007284: 17 10 00 1c sethi %hi(0x40007000), %o3
40007288: 90 10 00 1d mov %i5, %o0
4000728c: 96 12 e3 48 or %o3, 0x348, %o3
40007290: 40 00 18 db call 4000d5fc <_POSIX_Timer_Insert_helper>
40007294: 98 10 00 19 mov %i1, %o4
initial_period,
ptimer->Object.id,
_POSIX_Timer_TSR,
ptimer
);
if ( !activated ) {
40007298: 80 a2 20 00 cmp %o0, 0
4000729c: 02 80 00 21 be 40007320 <timer_settime+0x208>
400072a0: 80 a6 e0 00 cmp %i3, 0
/*
* The timer has been started and is running. So we return the
* old ones in "ovalue"
*/
if ( ovalue )
400072a4: 02 80 00 06 be 400072bc <timer_settime+0x1a4>
400072a8: ba 06 60 54 add %i1, 0x54, %i5
*ovalue = ptimer->timer_data;
400072ac: 90 10 00 1b mov %i3, %o0
400072b0: 92 10 00 1d mov %i5, %o1
400072b4: 40 00 25 e4 call 40010a44 <memcpy>
400072b8: 94 10 20 10 mov 0x10, %o2
ptimer->timer_data = normalize;
400072bc: 94 10 20 10 mov 0x10, %o2
400072c0: 90 10 00 1d mov %i5, %o0
400072c4: 40 00 25 e0 call 40010a44 <memcpy>
400072c8: 92 07 bf f0 add %fp, -16, %o1
/* Indicate that the time is running */
ptimer->state = POSIX_TIMER_STATE_CREATE_RUN;
400072cc: 82 10 20 03 mov 3, %g1
tod_as_timestamp_ptr =
400072d0: 90 07 bf e8 add %fp, -24, %o0
400072d4: c2 2e 60 3c stb %g1, [ %i1 + 0x3c ]
400072d8: 13 10 00 67 sethi %hi(0x40019c00), %o1
400072dc: 40 00 05 e9 call 40008a80 <_TOD_Get_with_nanoseconds>
400072e0: 92 12 61 40 or %o1, 0x140, %o1 ! 40019d40 <_TOD>
static inline void _TOD_Get(
struct timespec *tod_as_timespec
)
{
Timestamp_Control tod_as_timestamp;
Timestamp_Control *tod_as_timestamp_ptr;
400072e4: f8 1a 00 00 ldd [ %o0 ], %i4
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
400072e8: 94 10 20 00 clr %o2
400072ec: 90 10 00 1c mov %i4, %o0
400072f0: 92 10 00 1d mov %i5, %o1
400072f4: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
400072f8: 40 00 36 40 call 40014bf8 <__divdi3>
400072fc: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
40007300: 90 10 00 1c mov %i4, %o0
static inline void _Timestamp64_implementation_To_timespec(
const Timestamp64_Control *_timestamp,
struct timespec *_timespec
)
{
_timespec->tv_sec = (time_t) (*_timestamp / 1000000000L);
40007304: d2 26 60 6c st %o1, [ %i1 + 0x6c ]
_timespec->tv_nsec = (long) (*_timestamp % 1000000000L);
40007308: 94 10 20 00 clr %o2
4000730c: 92 10 00 1d mov %i5, %o1
40007310: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
40007314: 40 00 37 2b call 40014fc0 <__moddi3>
40007318: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_SIZE+0x3b5aca00>
4000731c: d2 26 60 70 st %o1, [ %i1 + 0x70 ]
RTEMS_INLINE_ROUTINE void _Objects_Put(
Objects_Control *the_object
)
{
(void) the_object;
_Thread_Enable_dispatch();
40007320: 40 00 0c 09 call 4000a344 <_Thread_Enable_dispatch>
40007324: 01 00 00 00 nop
_TOD_Get( &ptimer->time );
_Objects_Put( &ptimer->Object );
return 0;
40007328: 81 c7 e0 08 ret
4000732c: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
rtems_set_errno_and_return_minus_one( EINVAL );
40007330: 40 00 23 df call 400102ac <__errno>
40007334: b0 10 3f ff mov -1, %i0
40007338: 82 10 20 16 mov 0x16, %g1
4000733c: c2 22 00 00 st %g1, [ %o0 ]
}
40007340: 81 c7 e0 08 ret
40007344: 81 e8 00 00 restore
400073a8 <wait>:
#include <rtems/seterr.h>
int wait(
int *stat_loc
)
{
400073a8: 9d e3 bf a0 save %sp, -96, %sp
rtems_set_errno_and_return_minus_one( ENOSYS );
400073ac: 40 00 23 83 call 400101b8 <__errno>
400073b0: b0 10 3f ff mov -1, %i0
400073b4: 82 10 20 58 mov 0x58, %g1
400073b8: c2 22 00 00 st %g1, [ %o0 ]
}
400073bc: 81 c7 e0 08 ret
400073c0: 81 e8 00 00 restore