RTEMS 4.11Annotated Report
Fri Mar 18 22:08:16 2011
40007a68 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
40007a68: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
40007a6c: 23 10 00 59 sethi %hi(0x40016400), %l1
40007a70: e0 04 62 04 ld [ %l1 + 0x204 ], %l0 ! 40016604 <_API_extensions_List>
40007a74: a2 14 62 04 or %l1, 0x204, %l1
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40007a78: a2 04 60 04 add %l1, 4, %l1
40007a7c: 80 a4 00 11 cmp %l0, %l1
40007a80: 02 80 00 09 be 40007aa4 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
40007a84: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
40007a88: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007a8c: 9f c0 40 00 call %g1
40007a90: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40007a94: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40007a98: 80 a4 00 11 cmp %l0, %l1
40007a9c: 32 bf ff fc bne,a 40007a8c <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
40007aa0: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
40007aa4: 81 c7 e0 08 ret
40007aa8: 81 e8 00 00 restore
40007aac <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
40007aac: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
40007ab0: 23 10 00 59 sethi %hi(0x40016400), %l1
40007ab4: e0 04 62 04 ld [ %l1 + 0x204 ], %l0 ! 40016604 <_API_extensions_List>
40007ab8: a2 14 62 04 or %l1, 0x204, %l1
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40007abc: a2 04 60 04 add %l1, 4, %l1
40007ac0: 80 a4 00 11 cmp %l0, %l1
40007ac4: 02 80 00 0a be 40007aec <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
40007ac8: 25 10 00 59 sethi %hi(0x40016400), %l2
40007acc: a4 14 a2 3c or %l2, 0x23c, %l2 ! 4001663c <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
40007ad0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007ad4: 9f c0 40 00 call %g1
40007ad8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40007adc: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40007ae0: 80 a4 00 11 cmp %l0, %l1
40007ae4: 32 bf ff fc bne,a 40007ad4 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
40007ae8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
40007aec: 81 c7 e0 08 ret
40007af0: 81 e8 00 00 restore
400119d8 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400119d8: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
400119dc: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
400119e0: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
400119e4: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400119e8: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
400119ec: 80 8e e0 03 btst 3, %i3
400119f0: 02 80 00 07 be 40011a0c <_CORE_message_queue_Initialize+0x34>
400119f4: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
400119f8: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
400119fc: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
40011a00: 80 a6 c0 12 cmp %i3, %l2
40011a04: 18 80 00 22 bgu 40011a8c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40011a08: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
40011a0c: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
40011a10: 92 10 00 1a mov %i2, %o1
40011a14: 90 10 00 11 mov %l1, %o0
40011a18: 40 00 3f e0 call 40021998 <.umul>
40011a1c: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40011a20: 80 a2 00 12 cmp %o0, %l2
40011a24: 0a 80 00 1a bcs 40011a8c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40011a28: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
40011a2c: 40 00 0c aa call 40014cd4 <_Workspace_Allocate>
40011a30: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
40011a34: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
40011a38: 80 a2 20 00 cmp %o0, 0
40011a3c: 02 80 00 14 be 40011a8c <_CORE_message_queue_Initialize+0xb4>
40011a40: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
40011a44: 90 04 20 60 add %l0, 0x60, %o0
40011a48: 94 10 00 1a mov %i2, %o2
40011a4c: 40 00 14 8c call 40016c7c <_Chain_Initialize>
40011a50: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40011a54: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
40011a58: c0 24 20 54 clr [ %l0 + 0x54 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40011a5c: 84 04 20 54 add %l0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
40011a60: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40011a64: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40011a68: c2 06 40 00 ld [ %i1 ], %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
40011a6c: b0 10 20 01 mov 1, %i0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40011a70: 82 18 60 01 xor %g1, 1, %g1
40011a74: 80 a0 00 01 cmp %g0, %g1
40011a78: 90 10 00 10 mov %l0, %o0
40011a7c: 94 10 20 80 mov 0x80, %o2
40011a80: 92 60 3f ff subx %g0, -1, %o1
40011a84: 40 00 09 e0 call 40014204 <_Thread_queue_Initialize>
40011a88: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
40011a8c: 81 c7 e0 08 ret
40011a90: 81 e8 00 00 restore
40007df8 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40007df8: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40007dfc: 21 10 00 59 sethi %hi(0x40016400), %l0
40007e00: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 ! 40016410 <_Thread_Dispatch_disable_level>
40007e04: 80 a0 60 00 cmp %g1, 0
40007e08: 02 80 00 05 be 40007e1c <_CORE_mutex_Seize+0x24>
40007e0c: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40007e10: 80 8e a0 ff btst 0xff, %i2
40007e14: 12 80 00 1a bne 40007e7c <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
40007e18: 03 10 00 59 sethi %hi(0x40016400), %g1
40007e1c: 90 10 00 18 mov %i0, %o0
40007e20: 40 00 13 ac call 4000ccd0 <_CORE_mutex_Seize_interrupt_trylock>
40007e24: 92 07 a0 54 add %fp, 0x54, %o1
40007e28: 80 a2 20 00 cmp %o0, 0
40007e2c: 02 80 00 12 be 40007e74 <_CORE_mutex_Seize+0x7c>
40007e30: 80 8e a0 ff btst 0xff, %i2
40007e34: 02 80 00 1a be 40007e9c <_CORE_mutex_Seize+0xa4>
40007e38: 01 00 00 00 nop
40007e3c: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
40007e40: 03 10 00 59 sethi %hi(0x40016400), %g1
40007e44: c2 00 62 48 ld [ %g1 + 0x248 ], %g1 ! 40016648 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40007e48: 86 10 20 01 mov 1, %g3
40007e4c: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
40007e50: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40007e54: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40007e58: 82 00 a0 01 add %g2, 1, %g1
40007e5c: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
40007e60: 7f ff e8 00 call 40001e60 <sparc_enable_interrupts>
40007e64: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007e68: 90 10 00 18 mov %i0, %o0
40007e6c: 7f ff ff c0 call 40007d6c <_CORE_mutex_Seize_interrupt_blocking>
40007e70: 92 10 00 1b mov %i3, %o1
40007e74: 81 c7 e0 08 ret
40007e78: 81 e8 00 00 restore
40007e7c: c2 00 61 68 ld [ %g1 + 0x168 ], %g1
40007e80: 80 a0 60 01 cmp %g1, 1
40007e84: 28 bf ff e7 bleu,a 40007e20 <_CORE_mutex_Seize+0x28>
40007e88: 90 10 00 18 mov %i0, %o0
40007e8c: 90 10 20 00 clr %o0
40007e90: 92 10 20 00 clr %o1
40007e94: 40 00 01 d8 call 400085f4 <_Internal_error_Occurred>
40007e98: 94 10 20 12 mov 0x12, %o2
40007e9c: 7f ff e7 f1 call 40001e60 <sparc_enable_interrupts>
40007ea0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007ea4: 03 10 00 59 sethi %hi(0x40016400), %g1
40007ea8: c2 00 62 48 ld [ %g1 + 0x248 ], %g1 ! 40016648 <_Per_CPU_Information+0xc>
40007eac: 84 10 20 01 mov 1, %g2
40007eb0: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40007eb4: 81 c7 e0 08 ret
40007eb8: 81 e8 00 00 restore
40008038 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40008038: 9d e3 bf a0 save %sp, -96, %sp
4000803c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40008040: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40008044: 40 00 07 46 call 40009d5c <_Thread_queue_Dequeue>
40008048: 90 10 00 10 mov %l0, %o0
4000804c: 80 a2 20 00 cmp %o0, 0
40008050: 02 80 00 04 be 40008060 <_CORE_semaphore_Surrender+0x28>
40008054: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
40008058: 81 c7 e0 08 ret
4000805c: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40008060: 7f ff e7 7c call 40001e50 <sparc_disable_interrupts>
40008064: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40008068: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
4000806c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40008070: 80 a0 40 02 cmp %g1, %g2
40008074: 1a 80 00 05 bcc 40008088 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
40008078: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
4000807c: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40008080: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40008084: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40008088: 7f ff e7 76 call 40001e60 <sparc_enable_interrupts>
4000808c: 01 00 00 00 nop
}
return status;
}
40008090: 81 c7 e0 08 ret
40008094: 81 e8 00 00 restore
4000cc68 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
4000cc68: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
4000cc6c: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000cc70: a0 06 20 04 add %i0, 4, %l0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000cc74: 80 a6 a0 00 cmp %i2, 0
4000cc78: 02 80 00 12 be 4000ccc0 <_Chain_Initialize+0x58> <== NEVER TAKEN
4000cc7c: 90 10 00 18 mov %i0, %o0
4000cc80: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
4000cc84: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
4000cc88: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
4000cc8c: 10 80 00 05 b 4000cca0 <_Chain_Initialize+0x38>
4000cc90: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000cc94: 84 10 00 01 mov %g1, %g2
4000cc98: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
4000cc9c: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
4000cca0: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
4000cca4: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000cca8: 80 a6 a0 00 cmp %i2, 0
4000ccac: 12 bf ff fa bne 4000cc94 <_Chain_Initialize+0x2c>
4000ccb0: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
4000ccb4: 40 00 16 80 call 400126b4 <.umul>
4000ccb8: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000ccbc: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
4000ccc0: e0 22 00 00 st %l0, [ %o0 ]
tail->previous = current;
4000ccc4: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
4000ccc8: 81 c7 e0 08 ret
4000cccc: 81 e8 00 00 restore
40006cf8 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40006cf8: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40006cfc: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
40006d00: 7f ff ec 54 call 40001e50 <sparc_disable_interrupts>
40006d04: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
40006d08: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
40006d0c: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40006d10: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40006d14: 86 88 40 02 andcc %g1, %g2, %g3
40006d18: 02 80 00 3e be 40006e10 <_Event_Surrender+0x118>
40006d1c: 09 10 00 59 sethi %hi(0x40016400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40006d20: 88 11 22 3c or %g4, 0x23c, %g4 ! 4001663c <_Per_CPU_Information>
40006d24: da 01 20 08 ld [ %g4 + 8 ], %o5
40006d28: 80 a3 60 00 cmp %o5, 0
40006d2c: 32 80 00 1d bne,a 40006da0 <_Event_Surrender+0xa8>
40006d30: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
40006d34: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40006d38: 80 89 21 00 btst 0x100, %g4
40006d3c: 02 80 00 33 be 40006e08 <_Event_Surrender+0x110>
40006d40: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40006d44: 02 80 00 04 be 40006d54 <_Event_Surrender+0x5c>
40006d48: 80 8c a0 02 btst 2, %l2
40006d4c: 02 80 00 2f be 40006e08 <_Event_Surrender+0x110> <== NEVER TAKEN
40006d50: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006d54: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40006d58: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40006d5c: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40006d60: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006d64: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
40006d68: 7f ff ec 3e call 40001e60 <sparc_enable_interrupts>
40006d6c: 90 10 00 11 mov %l1, %o0
40006d70: 7f ff ec 38 call 40001e50 <sparc_disable_interrupts>
40006d74: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40006d78: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40006d7c: 80 a0 60 02 cmp %g1, 2
40006d80: 02 80 00 26 be 40006e18 <_Event_Surrender+0x120>
40006d84: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40006d88: 90 10 00 11 mov %l1, %o0
40006d8c: 7f ff ec 35 call 40001e60 <sparc_enable_interrupts>
40006d90: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006d94: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40006d98: 40 00 0a 50 call 400096d8 <_Thread_Clear_state>
40006d9c: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40006da0: 80 a6 00 04 cmp %i0, %g4
40006da4: 32 bf ff e5 bne,a 40006d38 <_Event_Surrender+0x40>
40006da8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006dac: 09 10 00 59 sethi %hi(0x40016400), %g4
40006db0: da 01 22 90 ld [ %g4 + 0x290 ], %o5 ! 40016690 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40006db4: 80 a3 60 02 cmp %o5, 2
40006db8: 02 80 00 07 be 40006dd4 <_Event_Surrender+0xdc> <== NEVER TAKEN
40006dbc: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40006dc0: da 01 22 90 ld [ %g4 + 0x290 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006dc4: 80 a3 60 01 cmp %o5, 1
40006dc8: 32 bf ff dc bne,a 40006d38 <_Event_Surrender+0x40>
40006dcc: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40006dd0: 80 a0 40 03 cmp %g1, %g3
40006dd4: 02 80 00 04 be 40006de4 <_Event_Surrender+0xec>
40006dd8: 80 8c a0 02 btst 2, %l2
40006ddc: 02 80 00 09 be 40006e00 <_Event_Surrender+0x108> <== NEVER TAKEN
40006de0: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006de4: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
40006de8: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40006dec: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40006df0: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006df4: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40006df8: 82 10 20 03 mov 3, %g1
40006dfc: c2 21 22 90 st %g1, [ %g4 + 0x290 ]
}
_ISR_Enable( level );
40006e00: 7f ff ec 18 call 40001e60 <sparc_enable_interrupts>
40006e04: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40006e08: 7f ff ec 16 call 40001e60 <sparc_enable_interrupts>
40006e0c: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
40006e10: 7f ff ec 14 call 40001e60 <sparc_enable_interrupts>
40006e14: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40006e18: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40006e1c: 7f ff ec 11 call 40001e60 <sparc_enable_interrupts>
40006e20: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40006e24: 40 00 0f 31 call 4000aae8 <_Watchdog_Remove>
40006e28: 90 06 20 48 add %i0, 0x48, %o0
40006e2c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40006e30: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40006e34: 40 00 0a 29 call 400096d8 <_Thread_Clear_state>
40006e38: 81 e8 00 00 restore
40006e40 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40006e40: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40006e44: 90 10 00 18 mov %i0, %o0
40006e48: 40 00 0b 0e call 40009a80 <_Thread_Get>
40006e4c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40006e50: c2 07 bf fc ld [ %fp + -4 ], %g1
40006e54: 80 a0 60 00 cmp %g1, 0
40006e58: 12 80 00 15 bne 40006eac <_Event_Timeout+0x6c> <== NEVER TAKEN
40006e5c: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40006e60: 7f ff eb fc call 40001e50 <sparc_disable_interrupts>
40006e64: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40006e68: 03 10 00 59 sethi %hi(0x40016400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40006e6c: c2 00 62 48 ld [ %g1 + 0x248 ], %g1 ! 40016648 <_Per_CPU_Information+0xc>
40006e70: 80 a4 00 01 cmp %l0, %g1
40006e74: 02 80 00 10 be 40006eb4 <_Event_Timeout+0x74>
40006e78: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006e7c: 82 10 20 06 mov 6, %g1
40006e80: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40006e84: 7f ff eb f7 call 40001e60 <sparc_enable_interrupts>
40006e88: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006e8c: 90 10 00 10 mov %l0, %o0
40006e90: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40006e94: 40 00 0a 11 call 400096d8 <_Thread_Clear_state>
40006e98: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40006e9c: 03 10 00 59 sethi %hi(0x40016400), %g1
40006ea0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 ! 40016410 <_Thread_Dispatch_disable_level>
40006ea4: 84 00 bf ff add %g2, -1, %g2
40006ea8: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40006eac: 81 c7 e0 08 ret
40006eb0: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40006eb4: 03 10 00 59 sethi %hi(0x40016400), %g1
40006eb8: c4 00 62 90 ld [ %g1 + 0x290 ], %g2 ! 40016690 <_Event_Sync_state>
40006ebc: 80 a0 a0 01 cmp %g2, 1
40006ec0: 32 bf ff f0 bne,a 40006e80 <_Event_Timeout+0x40>
40006ec4: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40006ec8: 84 10 20 02 mov 2, %g2
40006ecc: c4 20 62 90 st %g2, [ %g1 + 0x290 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006ed0: 10 bf ff ec b 40006e80 <_Event_Timeout+0x40>
40006ed4: 82 10 20 06 mov 6, %g1
4000cea0 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
4000cea0: 9d e3 bf 98 save %sp, -104, %sp
4000cea4: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000cea8: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
4000ceac: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
4000ceb0: 80 a6 40 12 cmp %i1, %l2
4000ceb4: 18 80 00 6e bgu 4000d06c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000ceb8: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
4000cebc: 80 a6 e0 00 cmp %i3, 0
4000cec0: 12 80 00 75 bne 4000d094 <_Heap_Allocate_aligned_with_boundary+0x1f4>
4000cec4: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000cec8: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000cecc: 80 a4 00 14 cmp %l0, %l4
4000ced0: 02 80 00 67 be 4000d06c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000ced4: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000ced8: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000cedc: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000cee0: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000cee4: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000cee8: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
4000ceec: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000cef0: 80 a4 80 13 cmp %l2, %l3
4000cef4: 3a 80 00 4b bcc,a 4000d020 <_Heap_Allocate_aligned_with_boundary+0x180>
4000cef8: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
4000cefc: 80 a6 a0 00 cmp %i2, 0
4000cf00: 02 80 00 44 be 4000d010 <_Heap_Allocate_aligned_with_boundary+0x170>
4000cf04: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000cf08: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000cf0c: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000cf10: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000cf14: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
4000cf18: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000cf1c: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
4000cf20: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000cf24: a6 00 40 13 add %g1, %l3, %l3
4000cf28: 40 00 16 c9 call 40012a4c <.urem>
4000cf2c: 90 10 00 18 mov %i0, %o0
4000cf30: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
4000cf34: 80 a4 c0 18 cmp %l3, %i0
4000cf38: 1a 80 00 06 bcc 4000cf50 <_Heap_Allocate_aligned_with_boundary+0xb0>
4000cf3c: ac 05 20 08 add %l4, 8, %l6
4000cf40: 90 10 00 13 mov %l3, %o0
4000cf44: 40 00 16 c2 call 40012a4c <.urem>
4000cf48: 92 10 00 1a mov %i2, %o1
4000cf4c: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
4000cf50: 80 a6 e0 00 cmp %i3, 0
4000cf54: 02 80 00 24 be 4000cfe4 <_Heap_Allocate_aligned_with_boundary+0x144>
4000cf58: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
4000cf5c: a6 06 00 19 add %i0, %i1, %l3
4000cf60: 92 10 00 1b mov %i3, %o1
4000cf64: 40 00 16 ba call 40012a4c <.urem>
4000cf68: 90 10 00 13 mov %l3, %o0
4000cf6c: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000cf70: 80 a2 00 13 cmp %o0, %l3
4000cf74: 1a 80 00 1b bcc 4000cfe0 <_Heap_Allocate_aligned_with_boundary+0x140>
4000cf78: 80 a6 00 08 cmp %i0, %o0
4000cf7c: 1a 80 00 1a bcc 4000cfe4 <_Heap_Allocate_aligned_with_boundary+0x144>
4000cf80: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000cf84: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
4000cf88: 80 a5 40 08 cmp %l5, %o0
4000cf8c: 28 80 00 09 bleu,a 4000cfb0 <_Heap_Allocate_aligned_with_boundary+0x110>
4000cf90: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000cf94: 10 80 00 23 b 4000d020 <_Heap_Allocate_aligned_with_boundary+0x180>
4000cf98: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000cf9c: 1a 80 00 11 bcc 4000cfe0 <_Heap_Allocate_aligned_with_boundary+0x140>
4000cfa0: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
4000cfa4: 38 80 00 1f bgu,a 4000d020 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000cfa8: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
4000cfac: b0 22 00 19 sub %o0, %i1, %i0
4000cfb0: 92 10 00 1a mov %i2, %o1
4000cfb4: 40 00 16 a6 call 40012a4c <.urem>
4000cfb8: 90 10 00 18 mov %i0, %o0
4000cfbc: 92 10 00 1b mov %i3, %o1
4000cfc0: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
4000cfc4: a6 06 00 19 add %i0, %i1, %l3
4000cfc8: 40 00 16 a1 call 40012a4c <.urem>
4000cfcc: 90 10 00 13 mov %l3, %o0
4000cfd0: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000cfd4: 80 a2 00 13 cmp %o0, %l3
4000cfd8: 0a bf ff f1 bcs 4000cf9c <_Heap_Allocate_aligned_with_boundary+0xfc>
4000cfdc: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
4000cfe0: 80 a5 80 18 cmp %l6, %i0
4000cfe4: 38 80 00 0f bgu,a 4000d020 <_Heap_Allocate_aligned_with_boundary+0x180>
4000cfe8: e8 05 20 08 ld [ %l4 + 8 ], %l4
4000cfec: 82 10 3f f8 mov -8, %g1
4000cff0: 90 10 00 18 mov %i0, %o0
4000cff4: a6 20 40 14 sub %g1, %l4, %l3
4000cff8: 92 10 00 1d mov %i5, %o1
4000cffc: 40 00 16 94 call 40012a4c <.urem>
4000d000: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000d004: 90 a4 c0 08 subcc %l3, %o0, %o0
4000d008: 12 80 00 1b bne 4000d074 <_Heap_Allocate_aligned_with_boundary+0x1d4>
4000d00c: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
4000d010: 80 a6 20 00 cmp %i0, 0
4000d014: 32 80 00 08 bne,a 4000d034 <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
4000d018: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
4000d01c: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000d020: 80 a4 00 14 cmp %l0, %l4
4000d024: 02 80 00 1a be 4000d08c <_Heap_Allocate_aligned_with_boundary+0x1ec>
4000d028: 82 04 60 01 add %l1, 1, %g1
4000d02c: 10 bf ff b0 b 4000ceec <_Heap_Allocate_aligned_with_boundary+0x4c>
4000d030: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
4000d034: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000d038: 84 00 a0 01 inc %g2
stats->searches += search_count;
4000d03c: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000d040: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
4000d044: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000d048: 90 10 00 10 mov %l0, %o0
4000d04c: 92 10 00 14 mov %l4, %o1
4000d050: 94 10 00 18 mov %i0, %o2
4000d054: 7f ff ed 1c call 400084c4 <_Heap_Block_allocate>
4000d058: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000d05c: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
4000d060: 80 a0 40 11 cmp %g1, %l1
4000d064: 2a 80 00 02 bcs,a 4000d06c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000d068: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d06c: 81 c7 e0 08 ret
4000d070: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000d074: 1a bf ff e8 bcc 4000d014 <_Heap_Allocate_aligned_with_boundary+0x174>
4000d078: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000d07c: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000d080: 80 a4 00 14 cmp %l0, %l4
4000d084: 12 bf ff ea bne 4000d02c <_Heap_Allocate_aligned_with_boundary+0x18c>
4000d088: 82 04 60 01 add %l1, 1, %g1
4000d08c: 10 bf ff f4 b 4000d05c <_Heap_Allocate_aligned_with_boundary+0x1bc>
4000d090: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
4000d094: 18 bf ff f6 bgu 4000d06c <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000d098: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
4000d09c: 22 bf ff 8b be,a 4000cec8 <_Heap_Allocate_aligned_with_boundary+0x28>
4000d0a0: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d0a4: 10 bf ff 8a b 4000cecc <_Heap_Allocate_aligned_with_boundary+0x2c>
4000d0a8: e8 04 20 08 ld [ %l0 + 8 ], %l4
4000d3b4 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000d3b4: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000d3b8: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000d3bc: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000d3c0: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000d3c4: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000d3c8: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000d3cc: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000d3d0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
4000d3d4: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000d3d8: 80 a6 40 11 cmp %i1, %l1
4000d3dc: 18 80 00 86 bgu 4000d5f4 <_Heap_Extend+0x240>
4000d3e0: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000d3e4: 90 10 00 19 mov %i1, %o0
4000d3e8: 92 10 00 1a mov %i2, %o1
4000d3ec: 94 10 00 13 mov %l3, %o2
4000d3f0: 98 07 bf fc add %fp, -4, %o4
4000d3f4: 7f ff ec 95 call 40008648 <_Heap_Get_first_and_last_block>
4000d3f8: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000d3fc: 80 8a 20 ff btst 0xff, %o0
4000d400: 02 80 00 7d be 4000d5f4 <_Heap_Extend+0x240>
4000d404: ba 10 20 00 clr %i5
4000d408: b0 10 00 12 mov %l2, %i0
4000d40c: b8 10 20 00 clr %i4
4000d410: ac 10 20 00 clr %l6
4000d414: 10 80 00 14 b 4000d464 <_Heap_Extend+0xb0>
4000d418: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000d41c: 2a 80 00 02 bcs,a 4000d424 <_Heap_Extend+0x70>
4000d420: b8 10 00 18 mov %i0, %i4
4000d424: 90 10 00 15 mov %l5, %o0
4000d428: 40 00 16 dc call 40012f98 <.urem>
4000d42c: 92 10 00 13 mov %l3, %o1
4000d430: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000d434: 80 a5 40 19 cmp %l5, %i1
4000d438: 02 80 00 1c be 4000d4a8 <_Heap_Extend+0xf4>
4000d43c: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000d440: 80 a6 40 15 cmp %i1, %l5
4000d444: 38 80 00 02 bgu,a 4000d44c <_Heap_Extend+0x98>
4000d448: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d44c: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000d450: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d454: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000d458: 80 a4 80 18 cmp %l2, %i0
4000d45c: 22 80 00 1b be,a 4000d4c8 <_Heap_Extend+0x114>
4000d460: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000d464: 80 a6 00 12 cmp %i0, %l2
4000d468: 02 80 00 65 be 4000d5fc <_Heap_Extend+0x248>
4000d46c: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000d470: 80 a0 40 11 cmp %g1, %l1
4000d474: 0a 80 00 6f bcs 4000d630 <_Heap_Extend+0x27c>
4000d478: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000d47c: 80 a0 40 11 cmp %g1, %l1
4000d480: 12 bf ff e7 bne 4000d41c <_Heap_Extend+0x68>
4000d484: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d488: 90 10 00 15 mov %l5, %o0
4000d48c: 40 00 16 c3 call 40012f98 <.urem>
4000d490: 92 10 00 13 mov %l3, %o1
4000d494: 82 05 7f f8 add %l5, -8, %g1
4000d498: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000d49c: 80 a5 40 19 cmp %l5, %i1
4000d4a0: 12 bf ff e8 bne 4000d440 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
4000d4a4: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
4000d4a8: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d4ac: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000d4b0: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d4b4: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000d4b8: 80 a4 80 18 cmp %l2, %i0
4000d4bc: 12 bf ff ea bne 4000d464 <_Heap_Extend+0xb0> <== NEVER TAKEN
4000d4c0: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
4000d4c4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000d4c8: 80 a6 40 01 cmp %i1, %g1
4000d4cc: 3a 80 00 54 bcc,a 4000d61c <_Heap_Extend+0x268>
4000d4d0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000d4d4: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000d4d8: c2 07 bf fc ld [ %fp + -4 ], %g1
4000d4dc: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000d4e0: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000d4e4: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
4000d4e8: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000d4ec: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000d4f0: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000d4f4: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000d4f8: 80 a1 00 01 cmp %g4, %g1
4000d4fc: 08 80 00 42 bleu 4000d604 <_Heap_Extend+0x250>
4000d500: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
4000d504: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000d508: 80 a5 e0 00 cmp %l7, 0
4000d50c: 02 80 00 62 be 4000d694 <_Heap_Extend+0x2e0>
4000d510: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000d514: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000d518: 92 10 00 12 mov %l2, %o1
4000d51c: 40 00 16 9f call 40012f98 <.urem>
4000d520: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000d524: 80 a2 20 00 cmp %o0, 0
4000d528: 02 80 00 04 be 4000d538 <_Heap_Extend+0x184>
4000d52c: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
4000d530: b2 06 40 12 add %i1, %l2, %i1
4000d534: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000d538: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000d53c: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000d540: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000d544: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
4000d548: 90 10 00 10 mov %l0, %o0
4000d54c: 92 10 00 01 mov %g1, %o1
4000d550: 7f ff ff 8e call 4000d388 <_Heap_Free_block>
4000d554: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000d558: 80 a5 a0 00 cmp %l6, 0
4000d55c: 02 80 00 3a be 4000d644 <_Heap_Extend+0x290>
4000d560: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d564: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000d568: a2 24 40 16 sub %l1, %l6, %l1
4000d56c: 40 00 16 8b call 40012f98 <.urem>
4000d570: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000d574: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000d578: a2 24 40 08 sub %l1, %o0, %l1
4000d57c: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
4000d580: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000d584: 84 04 40 16 add %l1, %l6, %g2
4000d588: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d58c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000d590: 90 10 00 10 mov %l0, %o0
4000d594: 82 08 60 01 and %g1, 1, %g1
4000d598: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
4000d59c: a2 14 40 01 or %l1, %g1, %l1
4000d5a0: 7f ff ff 7a call 4000d388 <_Heap_Free_block>
4000d5a4: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000d5a8: 80 a5 a0 00 cmp %l6, 0
4000d5ac: 02 80 00 33 be 4000d678 <_Heap_Extend+0x2c4>
4000d5b0: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d5b4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000d5b8: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d5bc: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000d5c0: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000d5c4: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000d5c8: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d5cc: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
4000d5d0: 88 13 40 04 or %o5, %g4, %g4
4000d5d4: c8 20 60 04 st %g4, [ %g1 + 4 ]
4000d5d8: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000d5dc: 82 00 80 14 add %g2, %l4, %g1
4000d5e0: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
4000d5e4: 80 a6 e0 00 cmp %i3, 0
4000d5e8: 02 80 00 03 be 4000d5f4 <_Heap_Extend+0x240> <== NEVER TAKEN
4000d5ec: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
4000d5f0: e8 26 c0 00 st %l4, [ %i3 ]
4000d5f4: 81 c7 e0 08 ret
4000d5f8: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000d5fc: 10 bf ff 9d b 4000d470 <_Heap_Extend+0xbc>
4000d600: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000d604: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000d608: 80 a0 40 02 cmp %g1, %g2
4000d60c: 2a bf ff bf bcs,a 4000d508 <_Heap_Extend+0x154>
4000d610: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000d614: 10 bf ff be b 4000d50c <_Heap_Extend+0x158>
4000d618: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000d61c: 80 a4 40 01 cmp %l1, %g1
4000d620: 38 bf ff ae bgu,a 4000d4d8 <_Heap_Extend+0x124>
4000d624: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000d628: 10 bf ff ad b 4000d4dc <_Heap_Extend+0x128>
4000d62c: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000d630: 80 a6 40 15 cmp %i1, %l5
4000d634: 1a bf ff 93 bcc 4000d480 <_Heap_Extend+0xcc>
4000d638: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d63c: 81 c7 e0 08 ret
4000d640: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000d644: 80 a7 60 00 cmp %i5, 0
4000d648: 02 bf ff d8 be 4000d5a8 <_Heap_Extend+0x1f4>
4000d64c: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d650: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
4000d654: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000d658: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000d65c: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
4000d660: 84 10 80 03 or %g2, %g3, %g2
4000d664: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000d668: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000d66c: 84 10 a0 01 or %g2, 1, %g2
4000d670: 10 bf ff ce b 4000d5a8 <_Heap_Extend+0x1f4>
4000d674: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000d678: 32 bf ff d0 bne,a 4000d5b8 <_Heap_Extend+0x204>
4000d67c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000d680: d2 07 bf fc ld [ %fp + -4 ], %o1
4000d684: 7f ff ff 41 call 4000d388 <_Heap_Free_block>
4000d688: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d68c: 10 bf ff cb b 4000d5b8 <_Heap_Extend+0x204>
4000d690: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000d694: 80 a7 20 00 cmp %i4, 0
4000d698: 02 bf ff b1 be 4000d55c <_Heap_Extend+0x1a8>
4000d69c: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000d6a0: b8 27 00 02 sub %i4, %g2, %i4
4000d6a4: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000d6a8: 10 bf ff ad b 4000d55c <_Heap_Extend+0x1a8>
4000d6ac: f8 20 a0 04 st %i4, [ %g2 + 4 ]
4000d0ac <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000d0ac: 9d e3 bf a0 save %sp, -96, %sp
4000d0b0: a0 10 00 18 mov %i0, %l0
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
4000d0b4: 80 a6 60 00 cmp %i1, 0
4000d0b8: 02 80 00 56 be 4000d210 <_Heap_Free+0x164>
4000d0bc: b0 10 20 01 mov 1, %i0
4000d0c0: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
4000d0c4: 40 00 16 62 call 40012a4c <.urem>
4000d0c8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000d0cc: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d0d0: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000d0d4: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d0d8: 80 a2 00 01 cmp %o0, %g1
4000d0dc: 0a 80 00 4d bcs 4000d210 <_Heap_Free+0x164>
4000d0e0: b0 10 20 00 clr %i0
4000d0e4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000d0e8: 80 a2 00 03 cmp %o0, %g3
4000d0ec: 18 80 00 49 bgu 4000d210 <_Heap_Free+0x164>
4000d0f0: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d0f4: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d0f8: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d0fc: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d100: 80 a0 40 02 cmp %g1, %g2
4000d104: 18 80 00 43 bgu 4000d210 <_Heap_Free+0x164> <== NEVER TAKEN
4000d108: 80 a0 c0 02 cmp %g3, %g2
4000d10c: 0a 80 00 41 bcs 4000d210 <_Heap_Free+0x164> <== NEVER TAKEN
4000d110: 01 00 00 00 nop
4000d114: d8 00 a0 04 ld [ %g2 + 4 ], %o4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
4000d118: 80 8b 20 01 btst 1, %o4
4000d11c: 02 80 00 3d be 4000d210 <_Heap_Free+0x164> <== NEVER TAKEN
4000d120: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000d124: 80 a0 c0 02 cmp %g3, %g2
4000d128: 02 80 00 06 be 4000d140 <_Heap_Free+0x94>
4000d12c: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d130: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d134: d8 03 20 04 ld [ %o4 + 4 ], %o4
4000d138: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
4000d13c: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
4000d140: 80 8b 60 01 btst 1, %o5
4000d144: 12 80 00 1d bne 4000d1b8 <_Heap_Free+0x10c>
4000d148: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
4000d14c: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d150: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d154: 80 a0 40 0d cmp %g1, %o5
4000d158: 18 80 00 2e bgu 4000d210 <_Heap_Free+0x164> <== NEVER TAKEN
4000d15c: b0 10 20 00 clr %i0
4000d160: 80 a0 c0 0d cmp %g3, %o5
4000d164: 0a 80 00 2b bcs 4000d210 <_Heap_Free+0x164> <== NEVER TAKEN
4000d168: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d16c: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000d170: 80 88 60 01 btst 1, %g1
4000d174: 02 80 00 27 be 4000d210 <_Heap_Free+0x164> <== NEVER TAKEN
4000d178: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000d17c: 22 80 00 39 be,a 4000d260 <_Heap_Free+0x1b4>
4000d180: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d184: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000d188: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000d18c: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
4000d190: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
4000d194: c4 20 60 0c st %g2, [ %g1 + 0xc ]
4000d198: 82 00 ff ff add %g3, -1, %g1
4000d19c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
4000d1a0: 96 01 00 0b add %g4, %o3, %o3
4000d1a4: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d1a8: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000d1ac: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d1b0: 10 80 00 0e b 4000d1e8 <_Heap_Free+0x13c>
4000d1b4: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000d1b8: 22 80 00 18 be,a 4000d218 <_Heap_Free+0x16c>
4000d1bc: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d1c0: c6 00 a0 08 ld [ %g2 + 8 ], %g3
4000d1c4: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
4000d1c8: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
4000d1cc: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
4000d1d0: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
4000d1d4: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d1d8: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
4000d1dc: d0 20 60 08 st %o0, [ %g1 + 8 ]
4000d1e0: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000d1e4: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d1e8: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
4000d1ec: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
4000d1f0: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d1f4: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
4000d1f8: 82 00 60 01 inc %g1
stats->free_size += block_size;
4000d1fc: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d200: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
4000d204: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000d208: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
4000d20c: b0 10 20 01 mov 1, %i0
}
4000d210: 81 c7 e0 08 ret
4000d214: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000d218: 82 11 20 01 or %g4, 1, %g1
4000d21c: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d220: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d224: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000d228: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000d22c: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000d230: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000d234: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d238: 86 0b 7f fe and %o5, -2, %g3
4000d23c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d240: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d244: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000d248: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d24c: 80 a0 40 02 cmp %g1, %g2
4000d250: 08 bf ff e6 bleu 4000d1e8 <_Heap_Free+0x13c>
4000d254: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000d258: 10 bf ff e4 b 4000d1e8 <_Heap_Free+0x13c>
4000d25c: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d260: 82 12 a0 01 or %o2, 1, %g1
4000d264: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d268: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
4000d26c: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d270: 82 08 7f fe and %g1, -2, %g1
4000d274: 10 bf ff dd b 4000d1e8 <_Heap_Free+0x13c>
4000d278: c2 20 a0 04 st %g1, [ %g2 + 4 ]
4000dddc <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
4000dddc: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
4000dde0: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
4000dde4: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
4000dde8: c0 26 40 00 clr [ %i1 ]
4000ddec: c0 26 60 04 clr [ %i1 + 4 ]
4000ddf0: c0 26 60 08 clr [ %i1 + 8 ]
4000ddf4: c0 26 60 0c clr [ %i1 + 0xc ]
4000ddf8: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
4000ddfc: 80 a0 40 02 cmp %g1, %g2
4000de00: 02 80 00 17 be 4000de5c <_Heap_Get_information+0x80> <== NEVER TAKEN
4000de04: c0 26 60 14 clr [ %i1 + 0x14 ]
4000de08: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000de0c: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000de10: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
4000de14: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
4000de18: 80 8b 60 01 btst 1, %o5
4000de1c: 02 80 00 03 be 4000de28 <_Heap_Get_information+0x4c>
4000de20: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
4000de24: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
4000de28: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
4000de2c: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
4000de30: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000de34: 94 02 a0 01 inc %o2
info->total += the_size;
4000de38: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000de3c: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
4000de40: 80 a3 00 04 cmp %o4, %g4
4000de44: 1a 80 00 03 bcc 4000de50 <_Heap_Get_information+0x74>
4000de48: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
4000de4c: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
4000de50: 80 a0 80 01 cmp %g2, %g1
4000de54: 12 bf ff ef bne 4000de10 <_Heap_Get_information+0x34>
4000de58: 88 0b 7f fe and %o5, -2, %g4
4000de5c: 81 c7 e0 08 ret
4000de60: 81 e8 00 00 restore
400146f0 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
400146f0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400146f4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
400146f8: 7f ff f8 d5 call 40012a4c <.urem>
400146fc: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
40014700: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
40014704: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40014708: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4001470c: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40014710: 80 a0 80 01 cmp %g2, %g1
40014714: 0a 80 00 15 bcs 40014768 <_Heap_Size_of_alloc_area+0x78>
40014718: b0 10 20 00 clr %i0
4001471c: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
40014720: 80 a0 80 03 cmp %g2, %g3
40014724: 18 80 00 11 bgu 40014768 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014728: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4001472c: c8 00 a0 04 ld [ %g2 + 4 ], %g4
40014730: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40014734: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40014738: 80 a0 40 02 cmp %g1, %g2
4001473c: 18 80 00 0b bgu 40014768 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014740: 80 a0 c0 02 cmp %g3, %g2
40014744: 0a 80 00 09 bcs 40014768 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014748: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4001474c: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
40014750: 80 88 60 01 btst 1, %g1
40014754: 02 80 00 05 be 40014768 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014758: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
4001475c: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
40014760: 84 00 a0 04 add %g2, 4, %g2
40014764: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
40014768: 81 c7 e0 08 ret
4001476c: 81 e8 00 00 restore
400094c8 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
400094c8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
400094cc: 23 10 00 25 sethi %hi(0x40009400), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
400094d0: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
400094d4: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
400094d8: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
400094dc: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
400094e0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
400094e4: 80 8e a0 ff btst 0xff, %i2
400094e8: 02 80 00 04 be 400094f8 <_Heap_Walk+0x30>
400094ec: a2 14 60 5c or %l1, 0x5c, %l1
400094f0: 23 10 00 25 sethi %hi(0x40009400), %l1
400094f4: a2 14 60 64 or %l1, 0x64, %l1 ! 40009464 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
400094f8: 03 10 00 63 sethi %hi(0x40018c00), %g1
400094fc: c2 00 61 98 ld [ %g1 + 0x198 ], %g1 ! 40018d98 <_System_state_Current>
40009500: 80 a0 60 03 cmp %g1, 3
40009504: 12 80 00 33 bne 400095d0 <_Heap_Walk+0x108>
40009508: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
4000950c: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40009510: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
40009514: c4 04 20 08 ld [ %l0 + 8 ], %g2
40009518: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000951c: 90 10 00 19 mov %i1, %o0
40009520: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40009524: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
40009528: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
4000952c: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
40009530: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
40009534: 92 10 20 00 clr %o1
40009538: 96 10 00 14 mov %l4, %o3
4000953c: 15 10 00 59 sethi %hi(0x40016400), %o2
40009540: 98 10 00 13 mov %l3, %o4
40009544: 9f c4 40 00 call %l1
40009548: 94 12 a1 38 or %o2, 0x138, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
4000954c: 80 a5 20 00 cmp %l4, 0
40009550: 02 80 00 2a be 400095f8 <_Heap_Walk+0x130>
40009554: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40009558: 12 80 00 30 bne 40009618 <_Heap_Walk+0x150>
4000955c: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009560: 7f ff e1 61 call 40001ae4 <.urem>
40009564: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40009568: 80 a2 20 00 cmp %o0, 0
4000956c: 12 80 00 34 bne 4000963c <_Heap_Walk+0x174>
40009570: 90 04 a0 08 add %l2, 8, %o0
40009574: 7f ff e1 5c call 40001ae4 <.urem>
40009578: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
4000957c: 80 a2 20 00 cmp %o0, 0
40009580: 32 80 00 38 bne,a 40009660 <_Heap_Walk+0x198>
40009584: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40009588: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
4000958c: 80 8f 20 01 btst 1, %i4
40009590: 22 80 00 4d be,a 400096c4 <_Heap_Walk+0x1fc>
40009594: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40009598: c2 05 60 04 ld [ %l5 + 4 ], %g1
4000959c: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400095a0: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400095a4: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
400095a8: 80 88 a0 01 btst 1, %g2
400095ac: 02 80 00 0b be 400095d8 <_Heap_Walk+0x110>
400095b0: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
400095b4: 02 80 00 33 be 40009680 <_Heap_Walk+0x1b8>
400095b8: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
400095bc: 92 10 20 01 mov 1, %o1
400095c0: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400095c4: b0 10 20 00 clr %i0
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
400095c8: 9f c4 40 00 call %l1
400095cc: 94 12 a2 b0 or %o2, 0x2b0, %o2
400095d0: 81 c7 e0 08 ret
400095d4: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
400095d8: 90 10 00 19 mov %i1, %o0
400095dc: 92 10 20 01 mov 1, %o1
400095e0: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400095e4: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
400095e8: 9f c4 40 00 call %l1
400095ec: 94 12 a2 98 or %o2, 0x298, %o2
400095f0: 81 c7 e0 08 ret
400095f4: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400095f8: 90 10 00 19 mov %i1, %o0
400095fc: 92 10 20 01 mov 1, %o1
40009600: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009604: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
40009608: 9f c4 40 00 call %l1
4000960c: 94 12 a1 d0 or %o2, 0x1d0, %o2
40009610: 81 c7 e0 08 ret
40009614: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
40009618: 90 10 00 19 mov %i1, %o0
4000961c: 92 10 20 01 mov 1, %o1
40009620: 96 10 00 14 mov %l4, %o3
40009624: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009628: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
4000962c: 9f c4 40 00 call %l1
40009630: 94 12 a1 e8 or %o2, 0x1e8, %o2
40009634: 81 c7 e0 08 ret
40009638: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
4000963c: 90 10 00 19 mov %i1, %o0
40009640: 92 10 20 01 mov 1, %o1
40009644: 96 10 00 13 mov %l3, %o3
40009648: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000964c: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40009650: 9f c4 40 00 call %l1
40009654: 94 12 a2 08 or %o2, 0x208, %o2
40009658: 81 c7 e0 08 ret
4000965c: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40009660: 92 10 20 01 mov 1, %o1
40009664: 96 10 00 12 mov %l2, %o3
40009668: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000966c: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40009670: 9f c4 40 00 call %l1
40009674: 94 12 a2 30 or %o2, 0x230, %o2
40009678: 81 c7 e0 08 ret
4000967c: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40009680: ee 04 20 08 ld [ %l0 + 8 ], %l7
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40009684: 80 a4 00 17 cmp %l0, %l7
40009688: 02 80 01 18 be 40009ae8 <_Heap_Walk+0x620>
4000968c: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
40009690: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40009694: 80 a0 40 17 cmp %g1, %l7
40009698: 08 80 00 12 bleu 400096e0 <_Heap_Walk+0x218> <== ALWAYS TAKEN
4000969c: ac 10 00 17 mov %l7, %l6
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
400096a0: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
400096a4: 92 10 20 01 mov 1, %o1
400096a8: 96 10 00 16 mov %l6, %o3
400096ac: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400096b0: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
400096b4: 9f c4 40 00 call %l1
400096b8: 94 12 a2 e0 or %o2, 0x2e0, %o2
400096bc: 81 c7 e0 08 ret
400096c0: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
400096c4: 92 10 20 01 mov 1, %o1
400096c8: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400096cc: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
400096d0: 9f c4 40 00 call %l1
400096d4: 94 12 a2 68 or %o2, 0x268, %o2
400096d8: 81 c7 e0 08 ret
400096dc: 81 e8 00 00 restore
400096e0: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
400096e4: 80 a7 40 17 cmp %i5, %l7
400096e8: 0a bf ff ef bcs 400096a4 <_Heap_Walk+0x1dc> <== NEVER TAKEN
400096ec: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400096f0: c2 27 bf fc st %g1, [ %fp + -4 ]
400096f4: 90 05 e0 08 add %l7, 8, %o0
400096f8: 7f ff e0 fb call 40001ae4 <.urem>
400096fc: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
40009700: 80 a2 20 00 cmp %o0, 0
40009704: 12 80 00 2d bne 400097b8 <_Heap_Walk+0x2f0> <== NEVER TAKEN
40009708: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000970c: c4 05 e0 04 ld [ %l7 + 4 ], %g2
40009710: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
40009714: 84 05 c0 02 add %l7, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009718: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
4000971c: 80 88 a0 01 btst 1, %g2
40009720: 12 80 00 2f bne 400097dc <_Heap_Walk+0x314> <== NEVER TAKEN
40009724: 84 10 00 10 mov %l0, %g2
40009728: 10 80 00 17 b 40009784 <_Heap_Walk+0x2bc>
4000972c: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40009730: 80 a4 00 16 cmp %l0, %l6
40009734: 02 80 00 33 be 40009800 <_Heap_Walk+0x338>
40009738: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000973c: 18 bf ff da bgu 400096a4 <_Heap_Walk+0x1dc>
40009740: 90 10 00 19 mov %i1, %o0
40009744: 80 a5 80 1d cmp %l6, %i5
40009748: 18 bf ff d8 bgu 400096a8 <_Heap_Walk+0x1e0> <== NEVER TAKEN
4000974c: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009750: 90 05 a0 08 add %l6, 8, %o0
40009754: 7f ff e0 e4 call 40001ae4 <.urem>
40009758: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
4000975c: 80 a2 20 00 cmp %o0, 0
40009760: 12 80 00 16 bne 400097b8 <_Heap_Walk+0x2f0>
40009764: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40009768: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000976c: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40009770: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009774: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40009778: 80 88 60 01 btst 1, %g1
4000977c: 12 80 00 18 bne 400097dc <_Heap_Walk+0x314>
40009780: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
40009784: d8 05 e0 0c ld [ %l7 + 0xc ], %o4
40009788: 80 a3 00 02 cmp %o4, %g2
4000978c: 22 bf ff e9 be,a 40009730 <_Heap_Walk+0x268>
40009790: ec 05 e0 08 ld [ %l7 + 8 ], %l6
(*printer)(
40009794: 90 10 00 19 mov %i1, %o0
40009798: 92 10 20 01 mov 1, %o1
4000979c: 96 10 00 17 mov %l7, %o3
400097a0: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400097a4: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
400097a8: 9f c4 40 00 call %l1
400097ac: 94 12 a3 50 or %o2, 0x350, %o2
400097b0: 81 c7 e0 08 ret
400097b4: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
400097b8: 90 10 00 19 mov %i1, %o0
400097bc: 92 10 20 01 mov 1, %o1
400097c0: 96 10 00 16 mov %l6, %o3
400097c4: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400097c8: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
400097cc: 9f c4 40 00 call %l1
400097d0: 94 12 a3 00 or %o2, 0x300, %o2
400097d4: 81 c7 e0 08 ret
400097d8: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400097dc: 90 10 00 19 mov %i1, %o0
400097e0: 92 10 20 01 mov 1, %o1
400097e4: 96 10 00 16 mov %l6, %o3
400097e8: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400097ec: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
400097f0: 9f c4 40 00 call %l1
400097f4: 94 12 a3 30 or %o2, 0x330, %o2
400097f8: 81 c7 e0 08 ret
400097fc: 81 e8 00 00 restore
40009800: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009804: 35 10 00 5a sethi %hi(0x40016800), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40009808: 31 10 00 5a sethi %hi(0x40016800), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
4000980c: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009810: b4 16 a1 10 or %i2, 0x110, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40009814: b0 16 20 f8 or %i0, 0xf8, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40009818: 37 10 00 5a sethi %hi(0x40016800), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000981c: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40009820: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40009824: 80 a0 40 16 cmp %g1, %l6
40009828: 28 80 00 0c bleu,a 40009858 <_Heap_Walk+0x390> <== ALWAYS TAKEN
4000982c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
40009830: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40009834: 92 10 20 01 mov 1, %o1
40009838: 96 10 00 17 mov %l7, %o3
4000983c: 15 10 00 59 sethi %hi(0x40016400), %o2
40009840: 98 10 00 16 mov %l6, %o4
40009844: 94 12 a3 88 or %o2, 0x388, %o2
40009848: 9f c4 40 00 call %l1
4000984c: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
40009850: 81 c7 e0 08 ret
40009854: 81 e8 00 00 restore
40009858: 80 a0 40 16 cmp %g1, %l6
4000985c: 0a bf ff f6 bcs 40009834 <_Heap_Walk+0x36c>
40009860: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40009864: 82 1d c0 15 xor %l7, %l5, %g1
40009868: 80 a0 00 01 cmp %g0, %g1
4000986c: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009870: 90 10 00 1d mov %i5, %o0
40009874: c2 27 bf fc st %g1, [ %fp + -4 ]
40009878: 7f ff e0 9b call 40001ae4 <.urem>
4000987c: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40009880: 80 a2 20 00 cmp %o0, 0
40009884: 02 80 00 05 be 40009898 <_Heap_Walk+0x3d0>
40009888: c2 07 bf fc ld [ %fp + -4 ], %g1
4000988c: 80 88 60 ff btst 0xff, %g1
40009890: 12 80 00 79 bne 40009a74 <_Heap_Walk+0x5ac>
40009894: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40009898: 80 a4 c0 1d cmp %l3, %i5
4000989c: 08 80 00 05 bleu 400098b0 <_Heap_Walk+0x3e8>
400098a0: 80 a5 c0 16 cmp %l7, %l6
400098a4: 80 88 60 ff btst 0xff, %g1
400098a8: 12 80 00 7c bne 40009a98 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
400098ac: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
400098b0: 2a 80 00 06 bcs,a 400098c8 <_Heap_Walk+0x400>
400098b4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
400098b8: 80 88 60 ff btst 0xff, %g1
400098bc: 12 80 00 82 bne 40009ac4 <_Heap_Walk+0x5fc>
400098c0: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400098c4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
400098c8: 80 88 60 01 btst 1, %g1
400098cc: 02 80 00 19 be 40009930 <_Heap_Walk+0x468>
400098d0: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
400098d4: 80 a7 20 00 cmp %i4, 0
400098d8: 22 80 00 0e be,a 40009910 <_Heap_Walk+0x448>
400098dc: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
400098e0: 90 10 00 19 mov %i1, %o0
400098e4: 92 10 20 00 clr %o1
400098e8: 94 10 00 18 mov %i0, %o2
400098ec: 96 10 00 17 mov %l7, %o3
400098f0: 9f c4 40 00 call %l1
400098f4: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400098f8: 80 a4 80 16 cmp %l2, %l6
400098fc: 02 80 00 43 be 40009a08 <_Heap_Walk+0x540>
40009900: ae 10 00 16 mov %l6, %l7
40009904: f8 05 a0 04 ld [ %l6 + 4 ], %i4
40009908: 10 bf ff c5 b 4000981c <_Heap_Walk+0x354>
4000990c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009910: 96 10 00 17 mov %l7, %o3
40009914: 90 10 00 19 mov %i1, %o0
40009918: 92 10 20 00 clr %o1
4000991c: 94 10 00 1a mov %i2, %o2
40009920: 9f c4 40 00 call %l1
40009924: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009928: 10 bf ff f5 b 400098fc <_Heap_Walk+0x434>
4000992c: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
40009930: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009934: c2 04 20 08 ld [ %l0 + 8 ], %g1
40009938: 05 10 00 59 sethi %hi(0x40016400), %g2
block = next_block;
} while ( block != first_block );
return true;
}
4000993c: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009940: 80 a0 40 0d cmp %g1, %o5
40009944: 02 80 00 05 be 40009958 <_Heap_Walk+0x490>
40009948: 86 10 a0 f8 or %g2, 0xf8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
4000994c: 80 a4 00 0d cmp %l0, %o5
40009950: 02 80 00 3e be 40009a48 <_Heap_Walk+0x580>
40009954: 86 16 e0 c0 or %i3, 0xc0, %g3
block->next,
block->next == last_free_block ?
40009958: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
4000995c: 19 10 00 59 sethi %hi(0x40016400), %o4
40009960: 80 a1 00 01 cmp %g4, %g1
40009964: 02 80 00 05 be 40009978 <_Heap_Walk+0x4b0>
40009968: 84 13 21 18 or %o4, 0x118, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
4000996c: 80 a4 00 01 cmp %l0, %g1
40009970: 02 80 00 33 be 40009a3c <_Heap_Walk+0x574>
40009974: 84 16 e0 c0 or %i3, 0xc0, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009978: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
4000997c: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
40009980: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
40009984: 90 10 00 19 mov %i1, %o0
40009988: 92 10 20 00 clr %o1
4000998c: 15 10 00 5a sethi %hi(0x40016800), %o2
40009990: 96 10 00 17 mov %l7, %o3
40009994: 94 12 a0 50 or %o2, 0x50, %o2
40009998: 9f c4 40 00 call %l1
4000999c: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
400099a0: da 05 80 00 ld [ %l6 ], %o5
400099a4: 80 a7 40 0d cmp %i5, %o5
400099a8: 12 80 00 1a bne 40009a10 <_Heap_Walk+0x548>
400099ac: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
400099b0: 02 80 00 29 be 40009a54 <_Heap_Walk+0x58c>
400099b4: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
400099b8: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
400099bc: 80 a4 00 01 cmp %l0, %g1
400099c0: 02 80 00 0b be 400099ec <_Heap_Walk+0x524> <== NEVER TAKEN
400099c4: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
400099c8: 80 a5 c0 01 cmp %l7, %g1
400099cc: 02 bf ff cc be 400098fc <_Heap_Walk+0x434>
400099d0: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
400099d4: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
400099d8: 80 a4 00 01 cmp %l0, %g1
400099dc: 12 bf ff fc bne 400099cc <_Heap_Walk+0x504>
400099e0: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400099e4: 90 10 00 19 mov %i1, %o0
400099e8: 92 10 20 01 mov 1, %o1
400099ec: 96 10 00 17 mov %l7, %o3
400099f0: 15 10 00 5a sethi %hi(0x40016800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
400099f4: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400099f8: 9f c4 40 00 call %l1
400099fc: 94 12 a1 38 or %o2, 0x138, %o2
40009a00: 81 c7 e0 08 ret
40009a04: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40009a08: 81 c7 e0 08 ret
40009a0c: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
40009a10: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
40009a14: 90 10 00 19 mov %i1, %o0
40009a18: 92 10 20 01 mov 1, %o1
40009a1c: 96 10 00 17 mov %l7, %o3
40009a20: 15 10 00 5a sethi %hi(0x40016800), %o2
40009a24: 98 10 00 1d mov %i5, %o4
40009a28: 94 12 a0 88 or %o2, 0x88, %o2
40009a2c: 9f c4 40 00 call %l1
40009a30: b0 10 20 00 clr %i0
40009a34: 81 c7 e0 08 ret
40009a38: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40009a3c: 09 10 00 59 sethi %hi(0x40016400), %g4
40009a40: 10 bf ff ce b 40009978 <_Heap_Walk+0x4b0>
40009a44: 84 11 21 28 or %g4, 0x128, %g2 ! 40016528 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40009a48: 19 10 00 59 sethi %hi(0x40016400), %o4
40009a4c: 10 bf ff c3 b 40009958 <_Heap_Walk+0x490>
40009a50: 86 13 21 08 or %o4, 0x108, %g3 ! 40016508 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
40009a54: 92 10 20 01 mov 1, %o1
40009a58: 96 10 00 17 mov %l7, %o3
40009a5c: 15 10 00 5a sethi %hi(0x40016800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
40009a60: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
40009a64: 9f c4 40 00 call %l1
40009a68: 94 12 a0 c8 or %o2, 0xc8, %o2
40009a6c: 81 c7 e0 08 ret
40009a70: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
40009a74: 92 10 20 01 mov 1, %o1
40009a78: 96 10 00 17 mov %l7, %o3
40009a7c: 15 10 00 59 sethi %hi(0x40016400), %o2
40009a80: 98 10 00 1d mov %i5, %o4
40009a84: 94 12 a3 b8 or %o2, 0x3b8, %o2
40009a88: 9f c4 40 00 call %l1
40009a8c: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
40009a90: 81 c7 e0 08 ret
40009a94: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
40009a98: 90 10 00 19 mov %i1, %o0
40009a9c: 92 10 20 01 mov 1, %o1
40009aa0: 96 10 00 17 mov %l7, %o3
40009aa4: 15 10 00 59 sethi %hi(0x40016400), %o2
40009aa8: 98 10 00 1d mov %i5, %o4
40009aac: 94 12 a3 e8 or %o2, 0x3e8, %o2
40009ab0: 9a 10 00 13 mov %l3, %o5
40009ab4: 9f c4 40 00 call %l1
40009ab8: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
40009abc: 81 c7 e0 08 ret
40009ac0: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
40009ac4: 92 10 20 01 mov 1, %o1
40009ac8: 96 10 00 17 mov %l7, %o3
40009acc: 15 10 00 5a sethi %hi(0x40016800), %o2
40009ad0: 98 10 00 16 mov %l6, %o4
40009ad4: 94 12 a0 18 or %o2, 0x18, %o2
40009ad8: 9f c4 40 00 call %l1
40009adc: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
40009ae0: 81 c7 e0 08 ret
40009ae4: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40009ae8: 10 bf ff 47 b 40009804 <_Heap_Walk+0x33c>
40009aec: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000797c <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
4000797c: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40007980: 23 10 00 59 sethi %hi(0x40016400), %l1
40007984: c2 04 62 d4 ld [ %l1 + 0x2d4 ], %g1 ! 400166d4 <_IO_Number_of_drivers>
40007988: 80 a0 60 00 cmp %g1, 0
4000798c: 02 80 00 0c be 400079bc <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
40007990: a0 10 20 00 clr %l0
40007994: a2 14 62 d4 or %l1, 0x2d4, %l1
(void) rtems_io_initialize( major, 0, NULL );
40007998: 90 10 00 10 mov %l0, %o0
4000799c: 92 10 20 00 clr %o1
400079a0: 40 00 14 9b call 4000cc0c <rtems_io_initialize>
400079a4: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
400079a8: c2 04 40 00 ld [ %l1 ], %g1
400079ac: a0 04 20 01 inc %l0
400079b0: 80 a0 40 10 cmp %g1, %l0
400079b4: 18 bf ff fa bgu 4000799c <_IO_Initialize_all_drivers+0x20>
400079b8: 90 10 00 10 mov %l0, %o0
400079bc: 81 c7 e0 08 ret
400079c0: 81 e8 00 00 restore
400078b0 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
400078b0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
400078b4: 03 10 00 56 sethi %hi(0x40015800), %g1
400078b8: 82 10 61 a8 or %g1, 0x1a8, %g1 ! 400159a8 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
400078bc: e2 00 60 30 ld [ %g1 + 0x30 ], %l1
number_of_drivers = Configuration.maximum_drivers;
400078c0: e8 00 60 2c ld [ %g1 + 0x2c ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
400078c4: 80 a4 40 14 cmp %l1, %l4
400078c8: 0a 80 00 08 bcs 400078e8 <_IO_Manager_initialization+0x38>
400078cc: e0 00 60 34 ld [ %g1 + 0x34 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
400078d0: 03 10 00 59 sethi %hi(0x40016400), %g1
400078d4: e0 20 62 d8 st %l0, [ %g1 + 0x2d8 ] ! 400166d8 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
400078d8: 03 10 00 59 sethi %hi(0x40016400), %g1
400078dc: e2 20 62 d4 st %l1, [ %g1 + 0x2d4 ] ! 400166d4 <_IO_Number_of_drivers>
return;
400078e0: 81 c7 e0 08 ret
400078e4: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
400078e8: 83 2d 20 03 sll %l4, 3, %g1
400078ec: a7 2d 20 05 sll %l4, 5, %l3
400078f0: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
400078f4: 40 00 0d 09 call 4000ad18 <_Workspace_Allocate_or_fatal_error>
400078f8: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
400078fc: 03 10 00 59 sethi %hi(0x40016400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40007900: 25 10 00 59 sethi %hi(0x40016400), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40007904: e8 20 62 d4 st %l4, [ %g1 + 0x2d4 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40007908: d0 24 a2 d8 st %o0, [ %l2 + 0x2d8 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
4000790c: 92 10 20 00 clr %o1
40007910: 40 00 1f ea call 4000f8b8 <memset>
40007914: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007918: 80 a4 60 00 cmp %l1, 0
4000791c: 02 bf ff f1 be 400078e0 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
40007920: da 04 a2 d8 ld [ %l2 + 0x2d8 ], %o5
40007924: 82 10 20 00 clr %g1
40007928: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
4000792c: c4 04 00 01 ld [ %l0 + %g1 ], %g2
40007930: 86 04 00 01 add %l0, %g1, %g3
40007934: c4 23 40 01 st %g2, [ %o5 + %g1 ]
40007938: d8 00 e0 04 ld [ %g3 + 4 ], %o4
4000793c: 84 03 40 01 add %o5, %g1, %g2
40007940: d8 20 a0 04 st %o4, [ %g2 + 4 ]
40007944: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007948: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
4000794c: d8 20 a0 08 st %o4, [ %g2 + 8 ]
40007950: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007954: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
40007958: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
4000795c: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007960: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
40007964: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
40007968: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
4000796c: 18 bf ff f0 bgu 4000792c <_IO_Manager_initialization+0x7c>
40007970: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
40007974: 81 c7 e0 08 ret
40007978: 81 e8 00 00 restore
400085f4 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
400085f4: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
400085f8: 1b 10 00 59 sethi %hi(0x40016400), %o5
400085fc: 86 13 60 a4 or %o5, 0xa4, %g3 ! 400164a4 <_Internal_errors_What_happened>
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
40008600: 90 10 00 18 mov %i0, %o0
40008604: 92 0e 60 ff and %i1, 0xff, %o1
40008608: 94 10 00 1a mov %i2, %o2
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
4000860c: f0 23 60 a4 st %i0, [ %o5 + 0xa4 ]
_Internal_errors_What_happened.is_internal = is_internal;
40008610: f2 28 e0 04 stb %i1, [ %g3 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
40008614: 40 00 08 5f call 4000a790 <_User_extensions_Fatal>
40008618: f4 20 e0 08 st %i2, [ %g3 + 8 ]
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
4000861c: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40008620: 03 10 00 59 sethi %hi(0x40016400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40008624: 7f ff e6 0b call 40001e50 <sparc_disable_interrupts> <== NOT EXECUTED
40008628: c4 20 61 68 st %g2, [ %g1 + 0x168 ] ! 40016568 <_System_state_Current><== NOT EXECUTED
4000862c: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40008630: 30 80 00 00 b,a 40008630 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
400086a8 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400086a8: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400086ac: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400086b0: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400086b4: 80 a0 60 00 cmp %g1, 0
400086b8: 02 80 00 19 be 4000871c <_Objects_Allocate+0x74> <== NEVER TAKEN
400086bc: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400086c0: a2 04 20 20 add %l0, 0x20, %l1
400086c4: 7f ff fd 5c call 40007c34 <_Chain_Get>
400086c8: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
400086cc: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
400086d0: 80 a0 60 00 cmp %g1, 0
400086d4: 02 80 00 12 be 4000871c <_Objects_Allocate+0x74>
400086d8: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
400086dc: 80 a2 20 00 cmp %o0, 0
400086e0: 02 80 00 11 be 40008724 <_Objects_Allocate+0x7c>
400086e4: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
400086e8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
400086ec: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
400086f0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
400086f4: 40 00 28 2a call 4001279c <.udiv>
400086f8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
400086fc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40008700: 91 2a 20 02 sll %o0, 2, %o0
40008704: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
40008708: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
4000870c: 86 00 ff ff add %g3, -1, %g3
40008710: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
40008714: 82 00 bf ff add %g2, -1, %g1
40008718: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
4000871c: 81 c7 e0 08 ret
40008720: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
40008724: 40 00 00 11 call 40008768 <_Objects_Extend_information>
40008728: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
4000872c: 7f ff fd 42 call 40007c34 <_Chain_Get>
40008730: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40008734: b0 92 20 00 orcc %o0, 0, %i0
40008738: 32 bf ff ed bne,a 400086ec <_Objects_Allocate+0x44>
4000873c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
40008740: 81 c7 e0 08 ret
40008744: 81 e8 00 00 restore
40008768 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
40008768: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
4000876c: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
40008770: 80 a5 20 00 cmp %l4, 0
40008774: 02 80 00 a6 be 40008a0c <_Objects_Extend_information+0x2a4>
40008778: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
4000877c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40008780: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
40008784: ab 2d 60 10 sll %l5, 0x10, %l5
40008788: 92 10 00 13 mov %l3, %o1
4000878c: 40 00 28 04 call 4001279c <.udiv>
40008790: 91 35 60 10 srl %l5, 0x10, %o0
40008794: bb 2a 20 10 sll %o0, 0x10, %i5
40008798: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
4000879c: 80 a7 60 00 cmp %i5, 0
400087a0: 02 80 00 a3 be 40008a2c <_Objects_Extend_information+0x2c4><== NEVER TAKEN
400087a4: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
400087a8: c2 05 00 00 ld [ %l4 ], %g1
400087ac: 80 a0 60 00 cmp %g1, 0
400087b0: 02 80 00 a3 be 40008a3c <_Objects_Extend_information+0x2d4><== NEVER TAKEN
400087b4: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400087b8: 10 80 00 06 b 400087d0 <_Objects_Extend_information+0x68>
400087bc: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
400087c0: c2 05 00 01 ld [ %l4 + %g1 ], %g1
400087c4: 80 a0 60 00 cmp %g1, 0
400087c8: 22 80 00 08 be,a 400087e8 <_Objects_Extend_information+0x80>
400087cc: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400087d0: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
400087d4: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400087d8: 80 a7 40 10 cmp %i5, %l0
400087dc: 18 bf ff f9 bgu 400087c0 <_Objects_Extend_information+0x58>
400087e0: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400087e4: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400087e8: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
400087ec: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400087f0: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
400087f4: 82 10 63 ff or %g1, 0x3ff, %g1
400087f8: 80 a5 40 01 cmp %l5, %g1
400087fc: 18 80 00 95 bgu 40008a50 <_Objects_Extend_information+0x2e8>
40008800: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
40008804: 40 00 27 ac call 400126b4 <.umul>
40008808: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
4000880c: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
40008810: 80 a0 60 00 cmp %g1, 0
40008814: 02 80 00 6a be 400089bc <_Objects_Extend_information+0x254>
40008818: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
4000881c: 40 00 09 2f call 4000acd8 <_Workspace_Allocate>
40008820: 01 00 00 00 nop
if ( !new_object_block )
40008824: a6 92 20 00 orcc %o0, 0, %l3
40008828: 02 80 00 8a be 40008a50 <_Objects_Extend_information+0x2e8>
4000882c: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
40008830: 80 8d 20 ff btst 0xff, %l4
40008834: 22 80 00 3f be,a 40008930 <_Objects_Extend_information+0x1c8>
40008838: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
4000883c: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
40008840: 91 2d 20 01 sll %l4, 1, %o0
40008844: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
40008848: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
4000884c: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
40008850: 40 00 09 22 call 4000acd8 <_Workspace_Allocate>
40008854: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
40008858: ac 92 20 00 orcc %o0, 0, %l6
4000885c: 02 80 00 7b be 40008a48 <_Objects_Extend_information+0x2e0>
40008860: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
40008864: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
40008868: 80 a4 80 01 cmp %l2, %g1
4000886c: ae 05 80 14 add %l6, %l4, %l7
40008870: 0a 80 00 57 bcs 400089cc <_Objects_Extend_information+0x264>
40008874: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40008878: 80 a4 a0 00 cmp %l2, 0
4000887c: 02 80 00 07 be 40008898 <_Objects_Extend_information+0x130><== NEVER TAKEN
40008880: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
40008884: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40008888: 82 00 60 01 inc %g1
4000888c: 80 a4 80 01 cmp %l2, %g1
40008890: 18 bf ff fd bgu 40008884 <_Objects_Extend_information+0x11c><== NEVER TAKEN
40008894: c0 20 80 14 clr [ %g2 + %l4 ]
40008898: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
4000889c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
400088a0: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
400088a4: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400088a8: 80 a4 40 03 cmp %l1, %g3
400088ac: 1a 80 00 0a bcc 400088d4 <_Objects_Extend_information+0x16c><== NEVER TAKEN
400088b0: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
400088b4: 83 2c 60 02 sll %l1, 2, %g1
400088b8: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400088bc: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
400088c0: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
400088c4: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400088c8: 80 a0 80 03 cmp %g2, %g3
400088cc: 0a bf ff fd bcs 400088c0 <_Objects_Extend_information+0x158>
400088d0: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
400088d4: 7f ff e5 5f call 40001e50 <sparc_disable_interrupts>
400088d8: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400088dc: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
400088e0: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
400088e4: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
400088e8: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
400088ec: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400088f0: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
400088f4: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
400088f8: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
400088fc: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40008900: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008904: 03 00 00 40 sethi %hi(0x10000), %g1
40008908: ab 35 60 10 srl %l5, 0x10, %l5
4000890c: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008910: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008914: 82 10 40 15 or %g1, %l5, %g1
40008918: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
4000891c: 7f ff e5 51 call 40001e60 <sparc_enable_interrupts>
40008920: 01 00 00 00 nop
_Workspace_Free( old_tables );
40008924: 40 00 08 f6 call 4000acfc <_Workspace_Free>
40008928: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
4000892c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40008930: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
40008934: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
40008938: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
4000893c: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40008940: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40008944: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40008948: 90 10 00 12 mov %l2, %o0
4000894c: 40 00 10 c7 call 4000cc68 <_Chain_Initialize>
40008950: 29 00 00 40 sethi %hi(0x10000), %l4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40008954: 10 80 00 0d b 40008988 <_Objects_Extend_information+0x220>
40008958: a6 06 20 20 add %i0, 0x20, %l3
the_object->id = _Objects_Build_id(
4000895c: c6 16 20 04 lduh [ %i0 + 4 ], %g3
40008960: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008964: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008968: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
4000896c: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008970: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40008974: 90 10 00 13 mov %l3, %o0
40008978: 92 10 00 01 mov %g1, %o1
index++;
4000897c: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40008980: 7f ff fc 97 call 40007bdc <_Chain_Append>
40008984: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40008988: 7f ff fc ab call 40007c34 <_Chain_Get>
4000898c: 90 10 00 12 mov %l2, %o0
40008990: 82 92 20 00 orcc %o0, 0, %g1
40008994: 32 bf ff f2 bne,a 4000895c <_Objects_Extend_information+0x1f4>
40008998: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
4000899c: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
400089a0: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400089a4: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400089a8: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400089ac: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
400089b0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
400089b4: 81 c7 e0 08 ret
400089b8: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
400089bc: 40 00 08 d7 call 4000ad18 <_Workspace_Allocate_or_fatal_error>
400089c0: 01 00 00 00 nop
400089c4: 10 bf ff 9b b 40008830 <_Objects_Extend_information+0xc8>
400089c8: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400089cc: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
400089d0: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400089d4: 40 00 1b 80 call 4000f7d4 <memcpy>
400089d8: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
400089dc: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
400089e0: 94 10 00 1d mov %i5, %o2
400089e4: 40 00 1b 7c call 4000f7d4 <memcpy>
400089e8: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
400089ec: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
400089f0: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
400089f4: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
400089f8: 90 10 00 14 mov %l4, %o0
400089fc: 40 00 1b 76 call 4000f7d4 <memcpy>
40008a00: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40008a04: 10 bf ff a7 b 400088a0 <_Objects_Extend_information+0x138>
40008a08: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40008a0c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40008a10: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008a14: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40008a18: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008a1c: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
40008a20: ba 10 20 00 clr %i5
40008a24: 10 bf ff 71 b 400087e8 <_Objects_Extend_information+0x80>
40008a28: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008a2c: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40008a30: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008a34: 10 bf ff 6d b 400087e8 <_Objects_Extend_information+0x80> <== NOT EXECUTED
40008a38: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
40008a3c: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008a40: 10 bf ff 6a b 400087e8 <_Objects_Extend_information+0x80> <== NOT EXECUTED
40008a44: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
40008a48: 40 00 08 ad call 4000acfc <_Workspace_Free>
40008a4c: 90 10 00 13 mov %l3, %o0
return;
40008a50: 81 c7 e0 08 ret
40008a54: 81 e8 00 00 restore
40008b04 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40008b04: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40008b08: b3 2e 60 10 sll %i1, 0x10, %i1
40008b0c: b3 36 60 10 srl %i1, 0x10, %i1
40008b10: 80 a6 60 00 cmp %i1, 0
40008b14: 12 80 00 04 bne 40008b24 <_Objects_Get_information+0x20>
40008b18: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
40008b1c: 81 c7 e0 08 ret
40008b20: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40008b24: 40 00 11 d6 call 4000d27c <_Objects_API_maximum_class>
40008b28: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40008b2c: 80 a2 20 00 cmp %o0, 0
40008b30: 02 bf ff fb be 40008b1c <_Objects_Get_information+0x18>
40008b34: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40008b38: 0a bf ff f9 bcs 40008b1c <_Objects_Get_information+0x18>
40008b3c: 03 10 00 58 sethi %hi(0x40016000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40008b40: b1 2e 20 02 sll %i0, 2, %i0
40008b44: 82 10 63 78 or %g1, 0x378, %g1
40008b48: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40008b4c: 80 a0 60 00 cmp %g1, 0
40008b50: 02 bf ff f3 be 40008b1c <_Objects_Get_information+0x18> <== NEVER TAKEN
40008b54: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40008b58: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40008b5c: 80 a4 20 00 cmp %l0, 0
40008b60: 02 bf ff ef be 40008b1c <_Objects_Get_information+0x18> <== NEVER TAKEN
40008b64: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40008b68: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40008b6c: 80 a0 00 01 cmp %g0, %g1
40008b70: 82 60 20 00 subx %g0, 0, %g1
40008b74: 10 bf ff ea b 40008b1c <_Objects_Get_information+0x18>
40008b78: a0 0c 00 01 and %l0, %g1, %l0
4000a8f4 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
4000a8f4: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
4000a8f8: 80 a6 60 00 cmp %i1, 0
4000a8fc: 12 80 00 05 bne 4000a910 <_Objects_Get_name_as_string+0x1c>
4000a900: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
4000a904: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
4000a908: 81 c7 e0 08 ret
4000a90c: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
4000a910: 02 bf ff fe be 4000a908 <_Objects_Get_name_as_string+0x14>
4000a914: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
4000a918: 12 80 00 04 bne 4000a928 <_Objects_Get_name_as_string+0x34>
4000a91c: 03 10 00 84 sethi %hi(0x40021000), %g1
4000a920: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 40021378 <_Per_CPU_Information+0xc>
4000a924: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
4000a928: 7f ff ff b1 call 4000a7ec <_Objects_Get_information_id>
4000a92c: 90 10 00 18 mov %i0, %o0
if ( !information )
4000a930: 80 a2 20 00 cmp %o0, 0
4000a934: 22 bf ff f5 be,a 4000a908 <_Objects_Get_name_as_string+0x14>
4000a938: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
4000a93c: 92 10 00 18 mov %i0, %o1
4000a940: 40 00 00 2c call 4000a9f0 <_Objects_Get>
4000a944: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
4000a948: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a94c: 80 a0 60 00 cmp %g1, 0
4000a950: 32 bf ff ee bne,a 4000a908 <_Objects_Get_name_as_string+0x14>
4000a954: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
4000a958: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
4000a95c: c0 2f bf f4 clrb [ %fp + -12 ]
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
4000a960: 85 30 60 08 srl %g1, 8, %g2
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000a964: 87 30 60 18 srl %g1, 0x18, %g3
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000a968: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
4000a96c: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000a970: c6 2f bf f0 stb %g3, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000a974: c8 2f bf f1 stb %g4, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
4000a978: c2 2f bf f3 stb %g1, [ %fp + -13 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
4000a97c: b2 86 7f ff addcc %i1, -1, %i1
4000a980: 02 80 00 19 be 4000a9e4 <_Objects_Get_name_as_string+0xf0><== NEVER TAKEN
4000a984: 84 10 00 1a mov %i2, %g2
4000a988: 80 a0 e0 00 cmp %g3, 0
4000a98c: 02 80 00 16 be 4000a9e4 <_Objects_Get_name_as_string+0xf0>
4000a990: 19 10 00 80 sethi %hi(0x40020000), %o4
4000a994: 82 10 20 00 clr %g1
4000a998: 10 80 00 06 b 4000a9b0 <_Objects_Get_name_as_string+0xbc>
4000a99c: 98 13 23 88 or %o4, 0x388, %o4
4000a9a0: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
4000a9a4: 80 a3 60 00 cmp %o5, 0
4000a9a8: 02 80 00 0f be 4000a9e4 <_Objects_Get_name_as_string+0xf0>
4000a9ac: c6 09 00 01 ldub [ %g4 + %g1 ], %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
4000a9b0: da 03 00 00 ld [ %o4 ], %o5
4000a9b4: 88 08 e0 ff and %g3, 0xff, %g4
4000a9b8: 88 03 40 04 add %o5, %g4, %g4
4000a9bc: da 49 20 01 ldsb [ %g4 + 1 ], %o5
4000a9c0: 80 8b 60 97 btst 0x97, %o5
4000a9c4: 12 80 00 03 bne 4000a9d0 <_Objects_Get_name_as_string+0xdc>
4000a9c8: 88 07 bf f0 add %fp, -16, %g4
4000a9cc: 86 10 20 2a mov 0x2a, %g3
4000a9d0: c6 28 80 00 stb %g3, [ %g2 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
4000a9d4: 82 00 60 01 inc %g1
4000a9d8: 80 a0 40 19 cmp %g1, %i1
4000a9dc: 0a bf ff f1 bcs 4000a9a0 <_Objects_Get_name_as_string+0xac>
4000a9e0: 84 00 a0 01 inc %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
4000a9e4: 40 00 03 6d call 4000b798 <_Thread_Enable_dispatch>
4000a9e8: c0 28 80 00 clrb [ %g2 ]
return name;
4000a9ec: 30 bf ff c7 b,a 4000a908 <_Objects_Get_name_as_string+0x14>
40019f68 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019f68: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
40019f6c: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019f70: 84 22 40 02 sub %o1, %g2, %g2
40019f74: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
40019f78: 80 a0 80 01 cmp %g2, %g1
40019f7c: 18 80 00 09 bgu 40019fa0 <_Objects_Get_no_protection+0x38>
40019f80: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
40019f84: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
40019f88: d0 00 40 02 ld [ %g1 + %g2 ], %o0
40019f8c: 80 a2 20 00 cmp %o0, 0
40019f90: 02 80 00 05 be 40019fa4 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40019f94: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40019f98: 81 c3 e0 08 retl
40019f9c: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40019fa0: 82 10 20 01 mov 1, %g1
return NULL;
40019fa4: 90 10 20 00 clr %o0
}
40019fa8: 81 c3 e0 08 retl
40019fac: c2 22 80 00 st %g1, [ %o2 ]
4000a3a8 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
4000a3a8: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
4000a3ac: 80 a6 20 00 cmp %i0, 0
4000a3b0: 12 80 00 06 bne 4000a3c8 <_Objects_Id_to_name+0x20>
4000a3b4: 83 36 20 18 srl %i0, 0x18, %g1
4000a3b8: 03 10 00 80 sethi %hi(0x40020000), %g1
4000a3bc: c2 00 60 48 ld [ %g1 + 0x48 ], %g1 ! 40020048 <_Per_CPU_Information+0xc>
4000a3c0: f0 00 60 08 ld [ %g1 + 8 ], %i0
4000a3c4: 83 36 20 18 srl %i0, 0x18, %g1
4000a3c8: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
4000a3cc: 84 00 7f ff add %g1, -1, %g2
4000a3d0: 80 a0 a0 02 cmp %g2, 2
4000a3d4: 18 80 00 17 bgu 4000a430 <_Objects_Id_to_name+0x88>
4000a3d8: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
4000a3dc: 83 28 60 02 sll %g1, 2, %g1
4000a3e0: 05 10 00 7f sethi %hi(0x4001fc00), %g2
4000a3e4: 84 10 a1 78 or %g2, 0x178, %g2 ! 4001fd78 <_Objects_Information_table>
4000a3e8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
4000a3ec: 80 a0 60 00 cmp %g1, 0
4000a3f0: 02 80 00 10 be 4000a430 <_Objects_Id_to_name+0x88>
4000a3f4: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
4000a3f8: 85 28 a0 02 sll %g2, 2, %g2
4000a3fc: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
4000a400: 80 a2 20 00 cmp %o0, 0
4000a404: 02 80 00 0b be 4000a430 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
4000a408: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
4000a40c: 7f ff ff ca call 4000a334 <_Objects_Get>
4000a410: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
4000a414: 80 a2 20 00 cmp %o0, 0
4000a418: 02 80 00 06 be 4000a430 <_Objects_Id_to_name+0x88>
4000a41c: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
4000a420: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
4000a424: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
4000a428: 40 00 03 7d call 4000b21c <_Thread_Enable_dispatch>
4000a42c: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
4000a430: 81 c7 e0 08 ret
4000a434: 91 e8 00 10 restore %g0, %l0, %o0
40008e04 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
40008e04: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
40008e08: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
40008e0c: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
40008e10: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
40008e14: 92 10 00 11 mov %l1, %o1
40008e18: 40 00 26 61 call 4001279c <.udiv>
40008e1c: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40008e20: 80 a2 20 00 cmp %o0, 0
40008e24: 02 80 00 34 be 40008ef4 <_Objects_Shrink_information+0xf0><== NEVER TAKEN
40008e28: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
40008e2c: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
40008e30: c2 01 00 00 ld [ %g4 ], %g1
40008e34: 80 a4 40 01 cmp %l1, %g1
40008e38: 02 80 00 0f be 40008e74 <_Objects_Shrink_information+0x70><== NEVER TAKEN
40008e3c: 82 10 20 00 clr %g1
40008e40: 10 80 00 07 b 40008e5c <_Objects_Shrink_information+0x58>
40008e44: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
40008e48: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
40008e4c: 80 a4 40 02 cmp %l1, %g2
40008e50: 02 80 00 0a be 40008e78 <_Objects_Shrink_information+0x74>
40008e54: a0 04 00 11 add %l0, %l1, %l0
40008e58: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40008e5c: 82 00 60 01 inc %g1
40008e60: 80 a2 00 01 cmp %o0, %g1
40008e64: 38 bf ff f9 bgu,a 40008e48 <_Objects_Shrink_information+0x44>
40008e68: c4 01 00 12 ld [ %g4 + %l2 ], %g2
40008e6c: 81 c7 e0 08 ret
40008e70: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
40008e74: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
40008e78: 10 80 00 06 b 40008e90 <_Objects_Shrink_information+0x8c>
40008e7c: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
40008e80: 80 a4 60 00 cmp %l1, 0
40008e84: 22 80 00 12 be,a 40008ecc <_Objects_Shrink_information+0xc8>
40008e88: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
40008e8c: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
40008e90: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40008e94: 80 a0 40 10 cmp %g1, %l0
40008e98: 0a bf ff fa bcs 40008e80 <_Objects_Shrink_information+0x7c>
40008e9c: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
40008ea0: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
40008ea4: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40008ea8: 80 a0 40 02 cmp %g1, %g2
40008eac: 1a bf ff f6 bcc 40008e84 <_Objects_Shrink_information+0x80>
40008eb0: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
40008eb4: 7f ff fb 56 call 40007c0c <_Chain_Extract>
40008eb8: 01 00 00 00 nop
}
}
while ( the_object );
40008ebc: 80 a4 60 00 cmp %l1, 0
40008ec0: 12 bf ff f4 bne 40008e90 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
40008ec4: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
40008ec8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
40008ecc: 40 00 07 8c call 4000acfc <_Workspace_Free>
40008ed0: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
40008ed4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
40008ed8: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
40008edc: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
40008ee0: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
40008ee4: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
40008ee8: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
40008eec: 82 20 80 01 sub %g2, %g1, %g1
40008ef0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
40008ef4: 81 c7 e0 08 ret
40008ef8: 81 e8 00 00 restore
400075a8 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
400075a8: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
400075ac: 03 10 00 56 sethi %hi(0x40015800), %g1
400075b0: 82 10 61 70 or %g1, 0x170, %g1 ! 40015970 <Configuration_RTEMS_API>
400075b4: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
400075b8: 80 a4 20 00 cmp %l0, 0
400075bc: 02 80 00 19 be 40007620 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
400075c0: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
400075c4: 80 a4 a0 00 cmp %l2, 0
400075c8: 02 80 00 16 be 40007620 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
400075cc: a2 10 20 00 clr %l1
400075d0: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
400075d4: d4 04 20 04 ld [ %l0 + 4 ], %o2
400075d8: d0 04 00 00 ld [ %l0 ], %o0
400075dc: d2 04 20 08 ld [ %l0 + 8 ], %o1
400075e0: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
400075e4: d8 04 20 0c ld [ %l0 + 0xc ], %o4
400075e8: 7f ff ff 6d call 4000739c <rtems_task_create>
400075ec: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
400075f0: 94 92 20 00 orcc %o0, 0, %o2
400075f4: 12 80 00 0d bne 40007628 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
400075f8: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
400075fc: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
40007600: 40 00 00 0e call 40007638 <rtems_task_start>
40007604: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
40007608: 94 92 20 00 orcc %o0, 0, %o2
4000760c: 12 80 00 07 bne 40007628 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40007610: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
40007614: 80 a4 80 11 cmp %l2, %l1
40007618: 18 bf ff ef bgu 400075d4 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
4000761c: a0 04 20 1c add %l0, 0x1c, %l0
40007620: 81 c7 e0 08 ret
40007624: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
40007628: 90 10 20 01 mov 1, %o0
4000762c: 40 00 03 f2 call 400085f4 <_Internal_error_Occurred>
40007630: 92 10 20 01 mov 1, %o1
4000c9c8 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000c9c8: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000c9cc: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000c9d0: 80 a4 20 00 cmp %l0, 0
4000c9d4: 02 80 00 1f be 4000ca50 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
4000c9d8: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000c9dc: 7f ff d5 1d call 40001e50 <sparc_disable_interrupts>
4000c9e0: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000c9e4: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
4000c9e8: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000c9ec: 7f ff d5 1d call 40001e60 <sparc_enable_interrupts>
4000c9f0: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000c9f4: 80 a4 60 00 cmp %l1, 0
4000c9f8: 32 80 00 04 bne,a 4000ca08 <_RTEMS_tasks_Post_switch_extension+0x40>
4000c9fc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000ca00: 81 c7 e0 08 ret
4000ca04: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ca08: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000ca0c: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ca10: a4 07 bf fc add %fp, -4, %l2
4000ca14: 27 00 00 3f sethi %hi(0xfc00), %l3
4000ca18: 94 10 00 12 mov %l2, %o2
4000ca1c: 92 14 e3 ff or %l3, 0x3ff, %o1
4000ca20: 40 00 07 c9 call 4000e944 <rtems_task_mode>
4000ca24: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
4000ca28: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000ca2c: 9f c0 40 00 call %g1
4000ca30: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
4000ca34: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ca38: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000ca3c: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000ca40: 92 14 e3 ff or %l3, 0x3ff, %o1
4000ca44: 94 10 00 12 mov %l2, %o2
4000ca48: 40 00 07 bf call 4000e944 <rtems_task_mode>
4000ca4c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
4000ca50: 81 c7 e0 08 ret
4000ca54: 81 e8 00 00 restore
4000c938 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
4000c938: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
4000c93c: 80 a0 60 00 cmp %g1, 0
4000c940: 22 80 00 0b be,a 4000c96c <_RTEMS_tasks_Switch_extension+0x34>
4000c944: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
tvp->tval = *tvp->ptr;
4000c948: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
4000c94c: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
4000c950: c8 00 80 00 ld [ %g2 ], %g4
4000c954: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
4000c958: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
4000c95c: 80 a0 60 00 cmp %g1, 0
4000c960: 12 bf ff fa bne 4000c948 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
4000c964: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
4000c968: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
while (tvp) {
4000c96c: 80 a0 60 00 cmp %g1, 0
4000c970: 02 80 00 0a be 4000c998 <_RTEMS_tasks_Switch_extension+0x60>
4000c974: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000c978: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
4000c97c: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
4000c980: c8 00 80 00 ld [ %g2 ], %g4
4000c984: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
4000c988: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
4000c98c: 80 a0 60 00 cmp %g1, 0
4000c990: 12 bf ff fa bne 4000c978 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
4000c994: c6 20 80 00 st %g3, [ %g2 ]
4000c998: 81 c3 e0 08 retl
400088c0 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
400088c0: 9d e3 bf 98 save %sp, -104, %sp
400088c4: 11 10 00 80 sethi %hi(0x40020000), %o0
400088c8: 92 10 00 18 mov %i0, %o1
400088cc: 90 12 23 84 or %o0, 0x384, %o0
400088d0: 40 00 08 39 call 4000a9b4 <_Objects_Get>
400088d4: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
400088d8: c2 07 bf fc ld [ %fp + -4 ], %g1
400088dc: 80 a0 60 00 cmp %g1, 0
400088e0: 12 80 00 16 bne 40008938 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
400088e4: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
400088e8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
400088ec: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
400088f0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
400088f4: 80 88 80 01 btst %g2, %g1
400088f8: 22 80 00 08 be,a 40008918 <_Rate_monotonic_Timeout+0x58>
400088fc: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40008900: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40008904: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008908: 80 a0 80 01 cmp %g2, %g1
4000890c: 02 80 00 19 be 40008970 <_Rate_monotonic_Timeout+0xb0>
40008910: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40008914: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40008918: 80 a0 60 01 cmp %g1, 1
4000891c: 02 80 00 09 be 40008940 <_Rate_monotonic_Timeout+0x80>
40008920: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40008924: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40008928: 03 10 00 81 sethi %hi(0x40020400), %g1
4000892c: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 400204f0 <_Thread_Dispatch_disable_level>
40008930: 84 00 bf ff add %g2, -1, %g2
40008934: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
40008938: 81 c7 e0 08 ret
4000893c: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40008940: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
40008944: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40008948: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
4000894c: 7f ff fe 4c call 4000827c <_Rate_monotonic_Initiate_statistics>
40008950: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008954: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008958: 11 10 00 81 sethi %hi(0x40020400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000895c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008960: 90 12 21 b0 or %o0, 0x1b0, %o0
40008964: 40 00 0f cd call 4000c898 <_Watchdog_Insert>
40008968: 92 04 20 10 add %l0, 0x10, %o1
4000896c: 30 bf ff ef b,a 40008928 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40008970: 40 00 0a cb call 4000b49c <_Thread_Clear_state>
40008974: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
40008978: 10 bf ff f5 b 4000894c <_Rate_monotonic_Timeout+0x8c>
4000897c: 90 10 00 10 mov %l0, %o0
40008fa0 <_Scheduler_priority_Block>:
#include <rtems/score/thread.h>
void _Scheduler_priority_Block(
Thread_Control *the_thread
)
{
40008fa0: 9d e3 bf a0 save %sp, -96, %sp
)
{
Scheduler_priority_Per_thread *sched_info;
Chain_Control *ready;
sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info;
40008fa4: c4 06 20 8c ld [ %i0 + 0x8c ], %g2
ready = sched_info->ready_chain;
40008fa8: c2 00 80 00 ld [ %g2 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
40008fac: c8 00 40 00 ld [ %g1 ], %g4
40008fb0: c6 00 60 08 ld [ %g1 + 8 ], %g3
40008fb4: 80 a1 00 03 cmp %g4, %g3
40008fb8: 22 80 00 3a be,a 400090a0 <_Scheduler_priority_Block+0x100>
40008fbc: c6 00 a0 04 ld [ %g2 + 4 ], %g3
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
40008fc0: c4 06 00 00 ld [ %i0 ], %g2
previous = the_node->previous;
40008fc4: c2 06 20 04 ld [ %i0 + 4 ], %g1
next->previous = previous;
40008fc8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40008fcc: c4 20 40 00 st %g2, [ %g1 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
40008fd0: 03 10 00 59 sethi %hi(0x40016400), %g1
40008fd4: 82 10 62 3c or %g1, 0x23c, %g1 ! 4001663c <_Per_CPU_Information>
_Scheduler_priority_Ready_queue_extract( the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
40008fd8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
40008fdc: 80 a6 00 02 cmp %i0, %g2
40008fe0: 02 80 00 09 be 40009004 <_Scheduler_priority_Block+0x64>
40008fe4: 05 10 00 59 sethi %hi(0x40016400), %g2
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
40008fe8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40008fec: 80 a6 00 02 cmp %i0, %g2
40008ff0: 12 80 00 03 bne 40008ffc <_Scheduler_priority_Block+0x5c>
40008ff4: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40008ff8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40008ffc: 81 c7 e0 08 ret
40009000: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40009004: c4 10 a2 60 lduh [ %g2 + 0x260 ], %g2
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40009008: 07 10 00 56 sethi %hi(0x40015800), %g3
4000900c: 85 28 a0 10 sll %g2, 0x10, %g2
40009010: 89 30 a0 10 srl %g2, 0x10, %g4
40009014: 80 a1 20 ff cmp %g4, 0xff
40009018: 18 80 00 37 bgu 400090f4 <_Scheduler_priority_Block+0x154>
4000901c: c6 00 e0 d0 ld [ %g3 + 0xd0 ], %g3
40009020: 1b 10 00 54 sethi %hi(0x40015000), %o5
40009024: 9a 13 60 60 or %o5, 0x60, %o5 ! 40015060 <__log2table>
40009028: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2
4000902c: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40009030: 85 28 a0 10 sll %g2, 0x10, %g2
40009034: 19 10 00 59 sethi %hi(0x40016400), %o4
40009038: 89 30 a0 0f srl %g2, 0xf, %g4
4000903c: 98 13 22 70 or %o4, 0x270, %o4
40009040: c8 13 00 04 lduh [ %o4 + %g4 ], %g4
40009044: 89 29 20 10 sll %g4, 0x10, %g4
40009048: 99 31 20 10 srl %g4, 0x10, %o4
4000904c: 80 a3 20 ff cmp %o4, 0xff
40009050: 38 80 00 27 bgu,a 400090ec <_Scheduler_priority_Block+0x14c>
40009054: 89 31 20 18 srl %g4, 0x18, %g4
40009058: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4
4000905c: 88 01 20 08 add %g4, 8, %g4
return (_Priority_Bits_index( major ) << 4) +
40009060: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
40009064: 89 29 20 10 sll %g4, 0x10, %g4
40009068: 89 31 20 10 srl %g4, 0x10, %g4
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000906c: 88 01 00 02 add %g4, %g2, %g4
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40009070: 9b 29 20 02 sll %g4, 2, %o5
40009074: 85 29 20 04 sll %g4, 4, %g2
40009078: 84 20 80 0d sub %g2, %o5, %g2
}
4000907c: da 00 c0 02 ld [ %g3 + %g2 ], %o5
40009080: 84 00 c0 02 add %g3, %g2, %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40009084: 84 00 a0 04 add %g2, 4, %g2
40009088: 80 a3 40 02 cmp %o5, %g2
4000908c: 02 80 00 03 be 40009098 <_Scheduler_priority_Block+0xf8> <== NEVER TAKEN
40009090: 88 10 20 00 clr %g4
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
40009094: 88 10 00 0d mov %o5, %g4
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40009098: 10 bf ff d4 b 40008fe8 <_Scheduler_priority_Block+0x48>
4000909c: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
400090a0: c8 10 a0 0e lduh [ %g2 + 0xe ], %g4
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
400090a4: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
400090a8: c2 20 60 08 st %g1, [ %g1 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
400090ac: 9a 00 60 04 add %g1, 4, %o5
head->next = tail;
400090b0: da 20 40 00 st %o5, [ %g1 ]
400090b4: c2 10 c0 00 lduh [ %g3 ], %g1
400090b8: 82 08 40 04 and %g1, %g4, %g1
400090bc: c2 30 c0 00 sth %g1, [ %g3 ]
if ( *the_priority_map->minor == 0 )
400090c0: 83 28 60 10 sll %g1, 0x10, %g1
400090c4: 80 a0 60 00 cmp %g1, 0
400090c8: 32 bf ff c3 bne,a 40008fd4 <_Scheduler_priority_Block+0x34>
400090cc: 03 10 00 59 sethi %hi(0x40016400), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
400090d0: 03 10 00 59 sethi %hi(0x40016400), %g1
400090d4: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2
400090d8: c6 10 62 60 lduh [ %g1 + 0x260 ], %g3
400090dc: 84 08 c0 02 and %g3, %g2, %g2
400090e0: c4 30 62 60 sth %g2, [ %g1 + 0x260 ]
400090e4: 10 bf ff bc b 40008fd4 <_Scheduler_priority_Block+0x34>
400090e8: 03 10 00 59 sethi %hi(0x40016400), %g1
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400090ec: 10 bf ff dd b 40009060 <_Scheduler_priority_Block+0xc0>
400090f0: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400090f4: 1b 10 00 54 sethi %hi(0x40015000), %o5
400090f8: 85 30 a0 18 srl %g2, 0x18, %g2
400090fc: 9a 13 60 60 or %o5, 0x60, %o5
40009100: 10 bf ff cc b 40009030 <_Scheduler_priority_Block+0x90>
40009104: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2
400092c8 <_Scheduler_priority_Schedule>:
#include <rtems/system.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulerpriority.h>
void _Scheduler_priority_Schedule(void)
{
400092c8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400092cc: 03 10 00 59 sethi %hi(0x40016400), %g1
400092d0: c2 10 62 60 lduh [ %g1 + 0x260 ], %g1 ! 40016660 <_Priority_Major_bit_map>
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
400092d4: 05 10 00 56 sethi %hi(0x40015800), %g2
400092d8: 83 28 60 10 sll %g1, 0x10, %g1
400092dc: 87 30 60 10 srl %g1, 0x10, %g3
400092e0: 80 a0 e0 ff cmp %g3, 0xff
400092e4: 18 80 00 26 bgu 4000937c <_Scheduler_priority_Schedule+0xb4>
400092e8: c4 00 a0 d0 ld [ %g2 + 0xd0 ], %g2
400092ec: 09 10 00 54 sethi %hi(0x40015000), %g4
400092f0: 88 11 20 60 or %g4, 0x60, %g4 ! 40015060 <__log2table>
400092f4: c2 09 00 03 ldub [ %g4 + %g3 ], %g1
400092f8: 82 00 60 08 add %g1, 8, %g1
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400092fc: 83 28 60 10 sll %g1, 0x10, %g1
40009300: 1b 10 00 59 sethi %hi(0x40016400), %o5
40009304: 87 30 60 0f srl %g1, 0xf, %g3
40009308: 9a 13 62 70 or %o5, 0x270, %o5
4000930c: c6 13 40 03 lduh [ %o5 + %g3 ], %g3
40009310: 87 28 e0 10 sll %g3, 0x10, %g3
40009314: 9b 30 e0 10 srl %g3, 0x10, %o5
40009318: 80 a3 60 ff cmp %o5, 0xff
4000931c: 38 80 00 16 bgu,a 40009374 <_Scheduler_priority_Schedule+0xac>
40009320: 87 30 e0 18 srl %g3, 0x18, %g3
40009324: c6 09 00 0d ldub [ %g4 + %o5 ], %g3
40009328: 86 00 e0 08 add %g3, 8, %g3
return (_Priority_Bits_index( major ) << 4) +
4000932c: 83 30 60 0c srl %g1, 0xc, %g1
_Priority_Bits_index( minor );
40009330: 87 28 e0 10 sll %g3, 0x10, %g3
40009334: 87 30 e0 10 srl %g3, 0x10, %g3
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40009338: 86 00 c0 01 add %g3, %g1, %g3
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
4000933c: 89 28 e0 02 sll %g3, 2, %g4
40009340: 83 28 e0 04 sll %g3, 4, %g1
40009344: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
}
40009348: c8 00 80 01 ld [ %g2 + %g1 ], %g4
4000934c: 82 00 80 01 add %g2, %g1, %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40009350: 82 00 60 04 add %g1, 4, %g1
40009354: 80 a1 00 01 cmp %g4, %g1
40009358: 02 80 00 03 be 40009364 <_Scheduler_priority_Schedule+0x9c><== NEVER TAKEN
4000935c: 86 10 20 00 clr %g3
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
40009360: 86 10 00 04 mov %g4, %g3
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40009364: 03 10 00 59 sethi %hi(0x40016400), %g1
40009368: c6 20 62 4c st %g3, [ %g1 + 0x24c ] ! 4001664c <_Per_CPU_Information+0x10>
4000936c: 81 c7 e0 08 ret
40009370: 81 e8 00 00 restore
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40009374: 10 bf ff ee b 4000932c <_Scheduler_priority_Schedule+0x64>
40009378: c6 09 00 03 ldub [ %g4 + %g3 ], %g3
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000937c: 09 10 00 54 sethi %hi(0x40015000), %g4
40009380: 83 30 60 18 srl %g1, 0x18, %g1
40009384: 88 11 20 60 or %g4, 0x60, %g4
40009388: 10 bf ff dd b 400092fc <_Scheduler_priority_Schedule+0x34>
4000938c: c2 09 00 01 ldub [ %g4 + %g1 ], %g1
400094a4 <_Scheduler_priority_Yield>:
* ready chain
* select heir
*/
void _Scheduler_priority_Yield(void)
{
400094a4: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_priority_Per_thread *sched_info;
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
400094a8: 25 10 00 59 sethi %hi(0x40016400), %l2
400094ac: a4 14 a2 3c or %l2, 0x23c, %l2 ! 4001663c <_Per_CPU_Information>
400094b0: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info;
ready = sched_info->ready_chain;
400094b4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
400094b8: 7f ff e2 66 call 40001e50 <sparc_disable_interrupts>
400094bc: e2 00 40 00 ld [ %g1 ], %l1
400094c0: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
400094c4: c4 04 40 00 ld [ %l1 ], %g2
400094c8: c2 04 60 08 ld [ %l1 + 8 ], %g1
400094cc: 80 a0 80 01 cmp %g2, %g1
400094d0: 02 80 00 16 be 40009528 <_Scheduler_priority_Yield+0x84>
400094d4: 86 04 60 04 add %l1, 4, %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400094d8: c2 04 20 04 ld [ %l0 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
400094dc: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
next->previous = previous;
400094e0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
400094e4: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
400094e8: c2 04 60 08 ld [ %l1 + 8 ], %g1
the_node->next = tail;
400094ec: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
400094f0: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last->next = the_node;
400094f4: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
400094f8: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
400094fc: 7f ff e2 59 call 40001e60 <sparc_enable_interrupts>
40009500: 01 00 00 00 nop
40009504: 7f ff e2 53 call 40001e50 <sparc_disable_interrupts>
40009508: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
4000950c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40009510: 80 a4 00 01 cmp %l0, %g1
40009514: 02 80 00 0b be 40009540 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN
40009518: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
4000951c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40009520: 7f ff e2 50 call 40001e60 <sparc_enable_interrupts>
40009524: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
40009528: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
4000952c: 80 a4 00 01 cmp %l0, %g1
40009530: 02 bf ff fc be 40009520 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN
40009534: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
40009538: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
4000953c: 30 bf ff f9 b,a 40009520 <_Scheduler_priority_Yield+0x7c><== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
40009540: c2 04 40 00 ld [ %l1 ], %g1
40009544: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
40009548: 82 10 20 01 mov 1, %g1
4000954c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
40009550: 30 bf ff f4 b,a 40009520 <_Scheduler_priority_Yield+0x7c>
4000975c <_Scheduler_simple_Ready_queue_Enqueue_first>:
{
Chain_Control *ready;
Chain_Node *the_node;
Thread_Control *current;
ready = (Chain_Control *)_Scheduler.information;
4000975c: 03 10 00 58 sethi %hi(0x40016000), %g1
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
40009760: c2 00 63 e0 ld [ %g1 + 0x3e0 ], %g1 ! 400163e0 <_Scheduler>
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
40009764: c6 02 20 14 ld [ %o0 + 0x14 ], %g3
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
40009768: c2 00 40 00 ld [ %g1 ], %g1
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
4000976c: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
40009770: 80 a0 c0 02 cmp %g3, %g2
40009774: 28 80 00 08 bleu,a 40009794 <_Scheduler_simple_Ready_queue_Enqueue_first+0x38>
40009778: c2 00 60 04 ld [ %g1 + 4 ], %g1
* Do NOT need to check for end of chain because there is always
* at least one task on the ready chain -- the IDLE task. It can
* never block, should never attempt to obtain a semaphore or mutex,
* and thus will always be there.
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
4000977c: c2 00 40 00 ld [ %g1 ], %g1
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
40009780: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
40009784: 80 a0 80 03 cmp %g2, %g3
40009788: 2a bf ff fe bcs,a 40009780 <_Scheduler_simple_Ready_queue_Enqueue_first+0x24><== NEVER TAKEN
4000978c: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
current = (Thread_Control *)current->Object.Node.previous;
40009790: c2 00 60 04 ld [ %g1 + 4 ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
40009794: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
40009798: c2 22 20 04 st %g1, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
4000979c: d0 20 40 00 st %o0, [ %g1 ]
the_node->next = before_node;
400097a0: c4 22 00 00 st %g2, [ %o0 ]
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
400097a4: 81 c3 e0 08 retl
400097a8: d0 20 a0 04 st %o0, [ %g2 + 4 ]
40008140 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
40008140: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40008144: 05 10 00 59 sethi %hi(0x40016400), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40008148: 03 10 00 56 sethi %hi(0x40015800), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
4000814c: c6 00 a1 20 ld [ %g2 + 0x120 ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40008150: c2 00 61 b4 ld [ %g1 + 0x1b4 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40008154: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40008158: 9b 28 60 07 sll %g1, 7, %o5
4000815c: 89 28 60 02 sll %g1, 2, %g4
40008160: 88 23 40 04 sub %o5, %g4, %g4
40008164: 82 01 00 01 add %g4, %g1, %g1
40008168: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
4000816c: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40008170: c6 20 a1 20 st %g3, [ %g2 + 0x120 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40008174: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40008178: c2 27 bf fc st %g1, [ %fp + -4 ]
4000817c: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40008180: 11 10 00 59 sethi %hi(0x40016400), %o0
40008184: 40 00 08 ff call 4000a580 <_Timespec_Add_to>
40008188: 90 12 20 8c or %o0, 0x8c, %o0 ! 4001648c <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
4000818c: 92 10 00 10 mov %l0, %o1
40008190: 11 10 00 59 sethi %hi(0x40016400), %o0
40008194: 40 00 08 fb call 4000a580 <_Timespec_Add_to>
40008198: 90 12 20 98 or %o0, 0x98, %o0 ! 40016498 <_TOD_Now>
while ( seconds ) {
4000819c: a0 92 20 00 orcc %o0, 0, %l0
400081a0: 02 80 00 08 be 400081c0 <_TOD_Tickle_ticks+0x80>
400081a4: 23 10 00 59 sethi %hi(0x40016400), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
400081a8: a2 14 60 c4 or %l1, 0xc4, %l1 ! 400164c4 <_Watchdog_Seconds_chain>
400081ac: 40 00 0a 85 call 4000abc0 <_Watchdog_Tickle>
400081b0: 90 10 00 11 mov %l1, %o0
400081b4: a0 84 3f ff addcc %l0, -1, %l0
400081b8: 12 bf ff fd bne 400081ac <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
400081bc: 01 00 00 00 nop
400081c0: 81 c7 e0 08 ret
400081c4: 81 e8 00 00 restore
40008294 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40008294: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40008298: 03 10 00 80 sethi %hi(0x40020000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
4000829c: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
400082a0: d2 00 62 84 ld [ %g1 + 0x284 ], %o1
if ((!the_tod) ||
400082a4: 80 a4 20 00 cmp %l0, 0
400082a8: 02 80 00 2c be 40008358 <_TOD_Validate+0xc4> <== NEVER TAKEN
400082ac: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
400082b0: 11 00 03 d0 sethi %hi(0xf4000), %o0
400082b4: 40 00 49 65 call 4001a848 <.udiv>
400082b8: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
400082bc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400082c0: 80 a2 00 01 cmp %o0, %g1
400082c4: 08 80 00 25 bleu 40008358 <_TOD_Validate+0xc4>
400082c8: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
400082cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
400082d0: 80 a0 60 3b cmp %g1, 0x3b
400082d4: 18 80 00 21 bgu 40008358 <_TOD_Validate+0xc4>
400082d8: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
400082dc: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
400082e0: 80 a0 60 3b cmp %g1, 0x3b
400082e4: 18 80 00 1d bgu 40008358 <_TOD_Validate+0xc4>
400082e8: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
400082ec: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400082f0: 80 a0 60 17 cmp %g1, 0x17
400082f4: 18 80 00 19 bgu 40008358 <_TOD_Validate+0xc4>
400082f8: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
400082fc: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40008300: 80 a0 60 00 cmp %g1, 0
40008304: 02 80 00 15 be 40008358 <_TOD_Validate+0xc4> <== NEVER TAKEN
40008308: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
4000830c: 18 80 00 13 bgu 40008358 <_TOD_Validate+0xc4>
40008310: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40008314: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
40008318: 80 a0 a7 c3 cmp %g2, 0x7c3
4000831c: 08 80 00 0f bleu 40008358 <_TOD_Validate+0xc4>
40008320: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40008324: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40008328: 80 a0 e0 00 cmp %g3, 0
4000832c: 02 80 00 0b be 40008358 <_TOD_Validate+0xc4> <== NEVER TAKEN
40008330: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
40008334: 32 80 00 0b bne,a 40008360 <_TOD_Validate+0xcc>
40008338: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
4000833c: 82 00 60 0d add %g1, 0xd, %g1
40008340: 05 10 00 7b sethi %hi(0x4001ec00), %g2
40008344: 83 28 60 02 sll %g1, 2, %g1
40008348: 84 10 a3 58 or %g2, 0x358, %g2
4000834c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40008350: 80 a0 40 03 cmp %g1, %g3
40008354: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40008358: 81 c7 e0 08 ret
4000835c: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40008360: 05 10 00 7b sethi %hi(0x4001ec00), %g2
40008364: 84 10 a3 58 or %g2, 0x358, %g2 ! 4001ef58 <_TOD_Days_per_month>
40008368: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
4000836c: 80 a0 40 03 cmp %g1, %g3
40008370: b0 60 3f ff subx %g0, -1, %i0
40008374: 81 c7 e0 08 ret
40008378: 81 e8 00 00 restore
400095b0 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
400095b0: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
400095b4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
400095b8: 40 00 03 7a call 4000a3a0 <_Thread_Set_transient>
400095bc: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
400095c0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
400095c4: 80 a0 40 19 cmp %g1, %i1
400095c8: 02 80 00 05 be 400095dc <_Thread_Change_priority+0x2c>
400095cc: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
400095d0: 90 10 00 18 mov %i0, %o0
400095d4: 40 00 03 58 call 4000a334 <_Thread_Set_priority>
400095d8: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
400095dc: 7f ff e2 1d call 40001e50 <sparc_disable_interrupts>
400095e0: 01 00 00 00 nop
400095e4: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
400095e8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
if ( state != STATES_TRANSIENT ) {
400095ec: 80 a4 a0 04 cmp %l2, 4
400095f0: 02 80 00 18 be 40009650 <_Thread_Change_priority+0xa0>
400095f4: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
400095f8: 02 80 00 0b be 40009624 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
400095fc: 82 0c bf fb and %l2, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
40009600: 7f ff e2 18 call 40001e60 <sparc_enable_interrupts> <== NOT EXECUTED
40009604: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
40009608: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
4000960c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40009610: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED
40009614: 32 80 00 0d bne,a 40009648 <_Thread_Change_priority+0x98><== NOT EXECUTED
40009618: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
4000961c: 81 c7 e0 08 ret
40009620: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40009624: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40009628: 7f ff e2 0e call 40001e60 <sparc_enable_interrupts>
4000962c: 90 10 00 18 mov %i0, %o0
40009630: 03 00 00 ef sethi %hi(0x3bc00), %g1
40009634: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40009638: 80 8c 80 01 btst %l2, %g1
4000963c: 02 bf ff f8 be 4000961c <_Thread_Change_priority+0x6c>
40009640: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40009644: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40009648: 40 00 03 0b call 4000a274 <_Thread_queue_Requeue>
4000964c: 93 e8 00 10 restore %g0, %l0, %o1
40009650: 23 10 00 56 sethi %hi(0x40015800), %l1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40009654: 12 80 00 08 bne 40009674 <_Thread_Change_priority+0xc4> <== NEVER TAKEN
40009658: a2 14 60 d0 or %l1, 0xd0, %l1 ! 400158d0 <_Scheduler>
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
4000965c: 80 8e a0 ff btst 0xff, %i2
40009660: 02 80 00 1a be 400096c8 <_Thread_Change_priority+0x118>
40009664: c0 24 20 10 clr [ %l0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
40009668: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
4000966c: 9f c0 40 00 call %g1
40009670: 90 10 00 10 mov %l0, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
40009674: 7f ff e1 fb call 40001e60 <sparc_enable_interrupts>
40009678: 90 10 00 18 mov %i0, %o0
4000967c: 7f ff e1 f5 call 40001e50 <sparc_disable_interrupts>
40009680: 01 00 00 00 nop
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
40009684: c2 04 60 08 ld [ %l1 + 8 ], %g1
40009688: 9f c0 40 00 call %g1
4000968c: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40009690: 03 10 00 59 sethi %hi(0x40016400), %g1
40009694: 82 10 62 3c or %g1, 0x23c, %g1 ! 4001663c <_Per_CPU_Information>
40009698: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
4000969c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
400096a0: 80 a0 80 03 cmp %g2, %g3
400096a4: 02 80 00 07 be 400096c0 <_Thread_Change_priority+0x110>
400096a8: 01 00 00 00 nop
400096ac: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
400096b0: 80 a0 a0 00 cmp %g2, 0
400096b4: 02 80 00 03 be 400096c0 <_Thread_Change_priority+0x110>
400096b8: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
400096bc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
400096c0: 7f ff e1 e8 call 40001e60 <sparc_enable_interrupts>
400096c4: 81 e8 00 00 restore
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
400096c8: c2 04 60 24 ld [ %l1 + 0x24 ], %g1
400096cc: 9f c0 40 00 call %g1
400096d0: 90 10 00 10 mov %l0, %o0
400096d4: 30 bf ff e8 b,a 40009674 <_Thread_Change_priority+0xc4>
400098c8 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
400098c8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
400098cc: 90 10 00 18 mov %i0, %o0
400098d0: 40 00 00 6c call 40009a80 <_Thread_Get>
400098d4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400098d8: c2 07 bf fc ld [ %fp + -4 ], %g1
400098dc: 80 a0 60 00 cmp %g1, 0
400098e0: 12 80 00 08 bne 40009900 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
400098e4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
400098e8: 7f ff ff 7c call 400096d8 <_Thread_Clear_state>
400098ec: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
400098f0: 03 10 00 59 sethi %hi(0x40016400), %g1
400098f4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 ! 40016410 <_Thread_Dispatch_disable_level>
400098f8: 84 00 bf ff add %g2, -1, %g2
400098fc: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40009900: 81 c7 e0 08 ret
40009904: 81 e8 00 00 restore
40009908 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
40009908: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
4000990c: 25 10 00 59 sethi %hi(0x40016400), %l2
40009910: a4 14 a2 3c or %l2, 0x23c, %l2 ! 4001663c <_Per_CPU_Information>
_ISR_Disable( level );
40009914: 7f ff e1 4f call 40001e50 <sparc_disable_interrupts>
40009918: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
while ( _Thread_Dispatch_necessary == true ) {
4000991c: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40009920: 80 a0 60 00 cmp %g1, 0
40009924: 02 80 00 42 be 40009a2c <_Thread_Dispatch+0x124>
40009928: 2d 10 00 59 sethi %hi(0x40016400), %l6
heir = _Thread_Heir;
4000992c: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
40009930: 82 10 20 01 mov 1, %g1
40009934: c2 25 a0 10 st %g1, [ %l6 + 0x10 ]
_Thread_Dispatch_necessary = false;
40009938: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
4000993c: 80 a4 40 10 cmp %l1, %l0
40009940: 02 80 00 3b be 40009a2c <_Thread_Dispatch+0x124>
40009944: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
40009948: 27 10 00 59 sethi %hi(0x40016400), %l3
4000994c: 3b 10 00 59 sethi %hi(0x40016400), %i5
40009950: a6 14 e0 bc or %l3, 0xbc, %l3
40009954: aa 07 bf f8 add %fp, -8, %l5
40009958: a8 07 bf f0 add %fp, -16, %l4
4000995c: ba 17 60 94 or %i5, 0x94, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40009960: 37 10 00 58 sethi %hi(0x40016000), %i3
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40009964: ae 10 00 13 mov %l3, %l7
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40009968: 10 80 00 2b b 40009a14 <_Thread_Dispatch+0x10c>
4000996c: b8 10 20 01 mov 1, %i4
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
40009970: 7f ff e1 3c call 40001e60 <sparc_enable_interrupts>
40009974: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40009978: 40 00 0d 2f call 4000ce34 <_TOD_Get_uptime>
4000997c: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
40009980: 90 10 00 17 mov %l7, %o0
40009984: 92 10 00 15 mov %l5, %o1
40009988: 40 00 03 17 call 4000a5e4 <_Timespec_Subtract>
4000998c: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40009990: 92 10 00 14 mov %l4, %o1
40009994: 40 00 02 fb call 4000a580 <_Timespec_Add_to>
40009998: 90 04 60 84 add %l1, 0x84, %o0
_Thread_Time_of_last_context_switch = uptime;
4000999c: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
400099a0: c2 07 40 00 ld [ %i5 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
400099a4: c4 24 c0 00 st %g2, [ %l3 ]
400099a8: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( _Thread_libc_reent ) {
executing->libc_reent = *_Thread_libc_reent;
*_Thread_libc_reent = heir->libc_reent;
}
_User_extensions_Thread_switch( executing, heir );
400099ac: 90 10 00 11 mov %l1, %o0
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
400099b0: c4 24 e0 04 st %g2, [ %l3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
400099b4: 80 a0 60 00 cmp %g1, 0
400099b8: 02 80 00 06 be 400099d0 <_Thread_Dispatch+0xc8> <== NEVER TAKEN
400099bc: 92 10 00 10 mov %l0, %o1
executing->libc_reent = *_Thread_libc_reent;
400099c0: c4 00 40 00 ld [ %g1 ], %g2
400099c4: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
400099c8: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
400099cc: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
400099d0: 40 00 03 c9 call 4000a8f4 <_User_extensions_Thread_switch>
400099d4: 01 00 00 00 nop
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
400099d8: 90 04 60 c0 add %l1, 0xc0, %o0
400099dc: 40 00 04 de call 4000ad54 <_CPU_Context_switch>
400099e0: 92 04 20 c0 add %l0, 0xc0, %o1
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
400099e4: 7f ff e1 1b call 40001e50 <sparc_disable_interrupts>
400099e8: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
400099ec: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
400099f0: 80 a0 60 00 cmp %g1, 0
400099f4: 02 80 00 0e be 40009a2c <_Thread_Dispatch+0x124>
400099f8: 01 00 00 00 nop
heir = _Thread_Heir;
400099fc: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
40009a00: f8 25 a0 10 st %i4, [ %l6 + 0x10 ]
_Thread_Dispatch_necessary = false;
40009a04: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40009a08: 80 a4 00 11 cmp %l0, %l1
40009a0c: 02 80 00 08 be 40009a2c <_Thread_Dispatch+0x124> <== NEVER TAKEN
40009a10: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40009a14: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
40009a18: 80 a0 60 01 cmp %g1, 1
40009a1c: 12 bf ff d5 bne 40009970 <_Thread_Dispatch+0x68>
40009a20: c2 06 e3 74 ld [ %i3 + 0x374 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40009a24: 10 bf ff d3 b 40009970 <_Thread_Dispatch+0x68>
40009a28: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
40009a2c: c0 25 a0 10 clr [ %l6 + 0x10 ]
_ISR_Enable( level );
40009a30: 7f ff e1 0c call 40001e60 <sparc_enable_interrupts>
40009a34: 01 00 00 00 nop
_API_extensions_Run_postswitch();
40009a38: 7f ff f8 1d call 40007aac <_API_extensions_Run_postswitch>
40009a3c: 01 00 00 00 nop
}
40009a40: 81 c7 e0 08 ret
40009a44: 81 e8 00 00 restore
4000ecd0 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000ecd0: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000ecd4: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ecd8: e0 00 62 48 ld [ %g1 + 0x248 ], %l0 ! 40016648 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000ecdc: 3f 10 00 3b sethi %hi(0x4000ec00), %i7
4000ece0: be 17 e0 d0 or %i7, 0xd0, %i7 ! 4000ecd0 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000ece4: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000ece8: 7f ff cc 5e call 40001e60 <sparc_enable_interrupts>
4000ecec: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000ecf0: 03 10 00 58 sethi %hi(0x40016000), %g1
doneConstructors = 1;
4000ecf4: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000ecf8: e2 08 60 9c ldub [ %g1 + 0x9c ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000ecfc: 90 10 00 10 mov %l0, %o0
4000ed00: 7f ff ee 7d call 4000a6f4 <_User_extensions_Thread_begin>
4000ed04: c4 28 60 9c stb %g2, [ %g1 + 0x9c ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000ed08: 7f ff eb 50 call 40009a48 <_Thread_Enable_dispatch>
4000ed0c: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000ed10: 80 a4 60 00 cmp %l1, 0
4000ed14: 02 80 00 0c be 4000ed44 <_Thread_Handler+0x74>
4000ed18: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000ed1c: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000ed20: 80 a0 60 00 cmp %g1, 0
4000ed24: 22 80 00 0f be,a 4000ed60 <_Thread_Handler+0x90> <== ALWAYS TAKEN
4000ed28: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000ed2c: 7f ff ee 86 call 4000a744 <_User_extensions_Thread_exitted>
4000ed30: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000ed34: 90 10 20 00 clr %o0
4000ed38: 92 10 20 01 mov 1, %o1
4000ed3c: 7f ff e6 2e call 400085f4 <_Internal_error_Occurred>
4000ed40: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
4000ed44: 40 00 1a cd call 40015878 <_init>
4000ed48: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000ed4c: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000ed50: 80 a0 60 00 cmp %g1, 0
4000ed54: 12 bf ff f6 bne 4000ed2c <_Thread_Handler+0x5c> <== NEVER TAKEN
4000ed58: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000ed5c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000ed60: 9f c0 40 00 call %g1
4000ed64: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000ed68: 10 bf ff f1 b 4000ed2c <_Thread_Handler+0x5c>
4000ed6c: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
40009b2c <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
40009b2c: 9d e3 bf a0 save %sp, -96, %sp
40009b30: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
40009b34: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
40009b38: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
40009b3c: c0 26 61 4c clr [ %i1 + 0x14c ]
40009b40: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
40009b44: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40009b48: 90 10 00 19 mov %i1, %o0
40009b4c: 40 00 02 25 call 4000a3e0 <_Thread_Stack_Allocate>
40009b50: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40009b54: 80 a2 00 1b cmp %o0, %i3
40009b58: 0a 80 00 43 bcs 40009c64 <_Thread_Initialize+0x138>
40009b5c: 80 a2 20 00 cmp %o0, 0
40009b60: 02 80 00 41 be 40009c64 <_Thread_Initialize+0x138> <== NEVER TAKEN
40009b64: 25 10 00 59 sethi %hi(0x40016400), %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40009b68: c4 06 60 bc ld [ %i1 + 0xbc ], %g2
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
40009b6c: c2 04 a0 a0 ld [ %l2 + 0xa0 ], %g1
40009b70: c4 26 60 b8 st %g2, [ %i1 + 0xb8 ]
the_stack->size = size;
40009b74: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40009b78: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
40009b7c: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40009b80: c0 26 60 68 clr [ %i1 + 0x68 ]
40009b84: 80 a0 60 00 cmp %g1, 0
40009b88: 12 80 00 39 bne 40009c6c <_Thread_Initialize+0x140>
40009b8c: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009b90: c0 26 61 54 clr [ %i1 + 0x154 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
40009b94: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40009b98: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
40009b9c: 03 10 00 56 sethi %hi(0x40015800), %g1
40009ba0: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
40009ba4: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
40009ba8: c2 00 60 e8 ld [ %g1 + 0xe8 ], %g1
40009bac: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40009bb0: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40009bb4: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40009bb8: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
40009bbc: 84 10 20 01 mov 1, %g2
the_thread->Wait.queue = NULL;
40009bc0: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
40009bc4: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
40009bc8: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
40009bcc: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
40009bd0: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
40009bd4: 9f c0 40 00 call %g1
40009bd8: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
40009bdc: a0 92 20 00 orcc %o0, 0, %l0
40009be0: 22 80 00 13 be,a 40009c2c <_Thread_Initialize+0x100>
40009be4: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
40009be8: 90 10 00 19 mov %i1, %o0
40009bec: 40 00 01 d2 call 4000a334 <_Thread_Set_priority>
40009bf0: 92 10 00 1d mov %i5, %o1
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
40009bf4: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40009bf8: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40009bfc: c0 26 60 84 clr [ %i1 + 0x84 ]
40009c00: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40009c04: 83 28 60 02 sll %g1, 2, %g1
40009c08: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40009c0c: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
40009c10: 90 10 00 19 mov %i1, %o0
40009c14: 40 00 02 f3 call 4000a7e0 <_User_extensions_Thread_create>
40009c18: b0 10 20 01 mov 1, %i0
if ( extension_status )
40009c1c: 80 8a 20 ff btst 0xff, %o0
40009c20: 12 80 00 24 bne 40009cb0 <_Thread_Initialize+0x184>
40009c24: 01 00 00 00 nop
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
40009c28: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
40009c2c: 40 00 04 34 call 4000acfc <_Workspace_Free>
40009c30: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
40009c34: 40 00 04 32 call 4000acfc <_Workspace_Free>
40009c38: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
40009c3c: 40 00 04 30 call 4000acfc <_Workspace_Free>
40009c40: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( extensions_area );
40009c44: 40 00 04 2e call 4000acfc <_Workspace_Free>
40009c48: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
#endif
_Workspace_Free( sched );
40009c4c: 40 00 04 2c call 4000acfc <_Workspace_Free>
40009c50: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40009c54: 40 00 01 fe call 4000a44c <_Thread_Stack_Free>
40009c58: 90 10 00 19 mov %i1, %o0
return false;
40009c5c: 81 c7 e0 08 ret
40009c60: 81 e8 00 00 restore
}
40009c64: 81 c7 e0 08 ret
40009c68: 91 e8 20 00 restore %g0, 0, %o0
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
40009c6c: 82 00 60 01 inc %g1
40009c70: 40 00 04 1a call 4000acd8 <_Workspace_Allocate>
40009c74: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40009c78: b6 92 20 00 orcc %o0, 0, %i3
40009c7c: 02 80 00 0f be 40009cb8 <_Thread_Initialize+0x18c>
40009c80: c6 04 a0 a0 ld [ %l2 + 0xa0 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009c84: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40009c88: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009c8c: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
40009c90: 85 28 a0 02 sll %g2, 2, %g2
40009c94: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40009c98: 82 00 60 01 inc %g1
40009c9c: 80 a0 40 03 cmp %g1, %g3
40009ca0: 08 bf ff fc bleu 40009c90 <_Thread_Initialize+0x164>
40009ca4: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40009ca8: 10 bf ff bd b 40009b9c <_Thread_Initialize+0x70>
40009cac: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
40009cb0: 81 c7 e0 08 ret
40009cb4: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
40009cb8: 10 bf ff dc b 40009c28 <_Thread_Initialize+0xfc>
40009cbc: a0 10 20 00 clr %l0
4000a274 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
4000a274: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
4000a278: 80 a6 20 00 cmp %i0, 0
4000a27c: 02 80 00 13 be 4000a2c8 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
4000a280: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
4000a284: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
4000a288: 80 a4 60 01 cmp %l1, 1
4000a28c: 02 80 00 04 be 4000a29c <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
4000a290: 01 00 00 00 nop
4000a294: 81 c7 e0 08 ret <== NOT EXECUTED
4000a298: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
4000a29c: 7f ff de ed call 40001e50 <sparc_disable_interrupts>
4000a2a0: 01 00 00 00 nop
4000a2a4: a0 10 00 08 mov %o0, %l0
4000a2a8: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
4000a2ac: 03 00 00 ef sethi %hi(0x3bc00), %g1
4000a2b0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
4000a2b4: 80 88 80 01 btst %g2, %g1
4000a2b8: 12 80 00 06 bne 4000a2d0 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
4000a2bc: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
4000a2c0: 7f ff de e8 call 40001e60 <sparc_enable_interrupts>
4000a2c4: 90 10 00 10 mov %l0, %o0
4000a2c8: 81 c7 e0 08 ret
4000a2cc: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
4000a2d0: 92 10 00 19 mov %i1, %o1
4000a2d4: 94 10 20 01 mov 1, %o2
4000a2d8: 40 00 0c 4d call 4000d40c <_Thread_queue_Extract_priority_helper>
4000a2dc: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
4000a2e0: 90 10 00 18 mov %i0, %o0
4000a2e4: 92 10 00 19 mov %i1, %o1
4000a2e8: 7f ff ff 31 call 40009fac <_Thread_queue_Enqueue_priority>
4000a2ec: 94 07 bf fc add %fp, -4, %o2
4000a2f0: 30 bf ff f4 b,a 4000a2c0 <_Thread_queue_Requeue+0x4c>
4000a2f4 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000a2f4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
4000a2f8: 90 10 00 18 mov %i0, %o0
4000a2fc: 7f ff fd e1 call 40009a80 <_Thread_Get>
4000a300: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000a304: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a308: 80 a0 60 00 cmp %g1, 0
4000a30c: 12 80 00 08 bne 4000a32c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
4000a310: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
4000a314: 40 00 0c 79 call 4000d4f8 <_Thread_queue_Process_timeout>
4000a318: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
4000a31c: 03 10 00 59 sethi %hi(0x40016400), %g1
4000a320: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 ! 40016410 <_Thread_Dispatch_disable_level>
4000a324: 84 00 bf ff add %g2, -1, %g2
4000a328: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
4000a32c: 81 c7 e0 08 ret
4000a330: 81 e8 00 00 restore
40017488 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40017488: 9d e3 bf 88 save %sp, -120, %sp
4001748c: 2d 10 00 fb sethi %hi(0x4003ec00), %l6
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40017490: ba 07 bf f4 add %fp, -12, %i5
40017494: a8 07 bf f8 add %fp, -8, %l4
40017498: a4 07 bf e8 add %fp, -24, %l2
4001749c: ae 07 bf ec add %fp, -20, %l7
400174a0: 2b 10 00 fb sethi %hi(0x4003ec00), %l5
400174a4: 39 10 00 fb sethi %hi(0x4003ec00), %i4
400174a8: e8 27 bf f4 st %l4, [ %fp + -12 ]
head->previous = NULL;
400174ac: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
400174b0: fa 27 bf fc st %i5, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
400174b4: ee 27 bf e8 st %l7, [ %fp + -24 ]
head->previous = NULL;
400174b8: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
400174bc: e4 27 bf f0 st %l2, [ %fp + -16 ]
400174c0: ac 15 a3 20 or %l6, 0x320, %l6
400174c4: a2 06 20 30 add %i0, 0x30, %l1
400174c8: aa 15 62 98 or %l5, 0x298, %l5
400174cc: a6 06 20 68 add %i0, 0x68, %l3
400174d0: b8 17 22 10 or %i4, 0x210, %i4
400174d4: b2 06 20 08 add %i0, 8, %i1
400174d8: b4 06 20 40 add %i0, 0x40, %i2
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400174dc: b6 10 20 01 mov 1, %i3
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
400174e0: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
400174e4: c2 05 80 00 ld [ %l6 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
400174e8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400174ec: 94 10 00 12 mov %l2, %o2
400174f0: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
400174f4: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400174f8: 40 00 12 85 call 4001bf0c <_Watchdog_Adjust_to_chain>
400174fc: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40017500: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40017504: e0 05 40 00 ld [ %l5 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40017508: 80 a4 00 0a cmp %l0, %o2
4001750c: 18 80 00 2e bgu 400175c4 <_Timer_server_Body+0x13c>
40017510: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
40017514: 80 a4 00 0a cmp %l0, %o2
40017518: 0a 80 00 2f bcs 400175d4 <_Timer_server_Body+0x14c>
4001751c: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
40017520: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40017524: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
40017528: 40 00 02 fc call 40018118 <_Chain_Get>
4001752c: 01 00 00 00 nop
if ( timer == NULL ) {
40017530: 92 92 20 00 orcc %o0, 0, %o1
40017534: 02 80 00 10 be 40017574 <_Timer_server_Body+0xec>
40017538: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
4001753c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
40017540: 80 a0 60 01 cmp %g1, 1
40017544: 02 80 00 28 be 400175e4 <_Timer_server_Body+0x15c>
40017548: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
4001754c: 12 bf ff f6 bne 40017524 <_Timer_server_Body+0x9c> <== NEVER TAKEN
40017550: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017554: 40 00 12 a1 call 4001bfd8 <_Watchdog_Insert>
40017558: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
4001755c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
40017560: 40 00 02 ee call 40018118 <_Chain_Get>
40017564: 01 00 00 00 nop
if ( timer == NULL ) {
40017568: 92 92 20 00 orcc %o0, 0, %o1
4001756c: 32 bf ff f5 bne,a 40017540 <_Timer_server_Body+0xb8> <== NEVER TAKEN
40017570: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
40017574: 7f ff de 50 call 4000eeb4 <sparc_disable_interrupts>
40017578: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
4001757c: c2 07 bf f4 ld [ %fp + -12 ], %g1
40017580: 80 a0 40 14 cmp %g1, %l4
40017584: 02 80 00 1c be 400175f4 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
40017588: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
4001758c: 7f ff de 4e call 4000eec4 <sparc_enable_interrupts> <== NOT EXECUTED
40017590: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017594: c2 05 80 00 ld [ %l6 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40017598: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
4001759c: 94 10 00 12 mov %l2, %o2 <== NOT EXECUTED
400175a0: 90 10 00 11 mov %l1, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
400175a4: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400175a8: 40 00 12 59 call 4001bf0c <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
400175ac: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
400175b0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400175b4: e0 05 40 00 ld [ %l5 ], %l0 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
400175b8: 80 a4 00 0a cmp %l0, %o2 <== NOT EXECUTED
400175bc: 08 bf ff d7 bleu 40017518 <_Timer_server_Body+0x90> <== NOT EXECUTED
400175c0: 92 24 00 0a sub %l0, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400175c4: 90 10 00 13 mov %l3, %o0
400175c8: 40 00 12 51 call 4001bf0c <_Watchdog_Adjust_to_chain>
400175cc: 94 10 00 12 mov %l2, %o2
400175d0: 30 bf ff d4 b,a 40017520 <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400175d4: 92 10 20 01 mov 1, %o1
400175d8: 40 00 12 1d call 4001be4c <_Watchdog_Adjust>
400175dc: 94 22 80 10 sub %o2, %l0, %o2
400175e0: 30 bf ff d0 b,a 40017520 <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
400175e4: 90 10 00 11 mov %l1, %o0
400175e8: 40 00 12 7c call 4001bfd8 <_Watchdog_Insert>
400175ec: 92 02 60 10 add %o1, 0x10, %o1
400175f0: 30 bf ff cd b,a 40017524 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
400175f4: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
400175f8: 7f ff de 33 call 4000eec4 <sparc_enable_interrupts>
400175fc: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40017600: c2 07 bf e8 ld [ %fp + -24 ], %g1
40017604: 80 a0 40 17 cmp %g1, %l7
40017608: 12 80 00 0c bne 40017638 <_Timer_server_Body+0x1b0>
4001760c: 01 00 00 00 nop
40017610: 30 80 00 13 b,a 4001765c <_Timer_server_Body+0x1d4>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
40017614: e4 20 60 04 st %l2, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
40017618: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
4001761c: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
40017620: 7f ff de 29 call 4000eec4 <sparc_enable_interrupts>
40017624: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40017628: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
4001762c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40017630: 9f c0 40 00 call %g1
40017634: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40017638: 7f ff de 1f call 4000eeb4 <sparc_disable_interrupts>
4001763c: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
40017640: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40017644: 80 a4 00 17 cmp %l0, %l7
40017648: 32 bf ff f3 bne,a 40017614 <_Timer_server_Body+0x18c>
4001764c: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
40017650: 7f ff de 1d call 4000eec4 <sparc_enable_interrupts>
40017654: 01 00 00 00 nop
40017658: 30 bf ff a2 b,a 400174e0 <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
4001765c: c0 2e 20 7c clrb [ %i0 + 0x7c ]
40017660: c2 07 00 00 ld [ %i4 ], %g1
40017664: 82 00 60 01 inc %g1
40017668: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
4001766c: d0 06 00 00 ld [ %i0 ], %o0
40017670: 40 00 10 44 call 4001b780 <_Thread_Set_state>
40017674: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
40017678: 7f ff ff 5a call 400173e0 <_Timer_server_Reset_interval_system_watchdog>
4001767c: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
40017680: 7f ff ff 6d call 40017434 <_Timer_server_Reset_tod_system_watchdog>
40017684: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
40017688: 40 00 0d e0 call 4001ae08 <_Thread_Enable_dispatch>
4001768c: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40017690: 90 10 00 19 mov %i1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40017694: f6 2e 20 7c stb %i3, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40017698: 40 00 12 bb call 4001c184 <_Watchdog_Remove>
4001769c: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400176a0: 40 00 12 b9 call 4001c184 <_Watchdog_Remove>
400176a4: 90 10 00 1a mov %i2, %o0
400176a8: 30 bf ff 8e b,a 400174e0 <_Timer_server_Body+0x58>
400176ac <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
400176ac: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
400176b0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
400176b4: 80 a0 60 00 cmp %g1, 0
400176b8: 02 80 00 05 be 400176cc <_Timer_server_Schedule_operation_method+0x20>
400176bc: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
400176c0: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
400176c4: 40 00 02 7f call 400180c0 <_Chain_Append>
400176c8: 81 e8 00 00 restore
400176cc: 03 10 00 fb sethi %hi(0x4003ec00), %g1
400176d0: c4 00 62 10 ld [ %g1 + 0x210 ], %g2 ! 4003ee10 <_Thread_Dispatch_disable_level>
400176d4: 84 00 a0 01 inc %g2
400176d8: c4 20 62 10 st %g2, [ %g1 + 0x210 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400176dc: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
400176e0: 80 a0 60 01 cmp %g1, 1
400176e4: 02 80 00 28 be 40017784 <_Timer_server_Schedule_operation_method+0xd8>
400176e8: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400176ec: 02 80 00 04 be 400176fc <_Timer_server_Schedule_operation_method+0x50>
400176f0: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
400176f4: 40 00 0d c5 call 4001ae08 <_Thread_Enable_dispatch>
400176f8: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400176fc: 7f ff dd ee call 4000eeb4 <sparc_disable_interrupts>
40017700: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
40017704: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
40017708: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4001770c: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40017710: 03 10 00 fb sethi %hi(0x4003ec00), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
40017714: 80 a0 80 04 cmp %g2, %g4
40017718: 02 80 00 0d be 4001774c <_Timer_server_Schedule_operation_method+0xa0>
4001771c: c2 00 62 98 ld [ %g1 + 0x298 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
40017720: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
40017724: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
40017728: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
4001772c: 08 80 00 07 bleu 40017748 <_Timer_server_Schedule_operation_method+0x9c>
40017730: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
40017734: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
40017738: 80 a3 40 03 cmp %o5, %g3
4001773c: 08 80 00 03 bleu 40017748 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
40017740: 88 10 20 00 clr %g4
delta_interval -= delta;
40017744: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
40017748: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
4001774c: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
40017750: 7f ff dd dd call 4000eec4 <sparc_enable_interrupts>
40017754: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017758: 90 06 20 68 add %i0, 0x68, %o0
4001775c: 40 00 12 1f call 4001bfd8 <_Watchdog_Insert>
40017760: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017764: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40017768: 80 a0 60 00 cmp %g1, 0
4001776c: 12 bf ff e2 bne 400176f4 <_Timer_server_Schedule_operation_method+0x48>
40017770: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
40017774: 7f ff ff 30 call 40017434 <_Timer_server_Reset_tod_system_watchdog>
40017778: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
4001777c: 40 00 0d a3 call 4001ae08 <_Thread_Enable_dispatch>
40017780: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40017784: 7f ff dd cc call 4000eeb4 <sparc_disable_interrupts>
40017788: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
4001778c: 05 10 00 fb sethi %hi(0x4003ec00), %g2
initialized = false;
}
#endif
return status;
}
40017790: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
40017794: c4 00 a3 20 ld [ %g2 + 0x320 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40017798: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
4001779c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
400177a0: 80 a0 40 03 cmp %g1, %g3
400177a4: 02 80 00 08 be 400177c4 <_Timer_server_Schedule_operation_method+0x118>
400177a8: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
400177ac: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
400177b0: 80 a1 00 0d cmp %g4, %o5
400177b4: 1a 80 00 03 bcc 400177c0 <_Timer_server_Schedule_operation_method+0x114>
400177b8: 86 10 20 00 clr %g3
delta_interval -= delta;
400177bc: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
400177c0: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
400177c4: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
400177c8: 7f ff dd bf call 4000eec4 <sparc_enable_interrupts>
400177cc: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
400177d0: 90 06 20 30 add %i0, 0x30, %o0
400177d4: 40 00 12 01 call 4001bfd8 <_Watchdog_Insert>
400177d8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400177dc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400177e0: 80 a0 60 00 cmp %g1, 0
400177e4: 12 bf ff c4 bne 400176f4 <_Timer_server_Schedule_operation_method+0x48>
400177e8: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
400177ec: 7f ff fe fd call 400173e0 <_Timer_server_Reset_interval_system_watchdog>
400177f0: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
400177f4: 40 00 0d 85 call 4001ae08 <_Thread_Enable_dispatch>
400177f8: 81 e8 00 00 restore
4000a580 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
4000a580: 9d e3 bf a0 save %sp, -96, %sp
4000a584: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a588: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
4000a58c: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
4000a590: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
4000a594: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a598: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
4000a59c: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a5a0: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
4000a5a4: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
4000a5a8: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_SIZE+0x3b5ac9ff>
4000a5ac: 80 a0 80 04 cmp %g2, %g4
4000a5b0: 08 80 00 0b bleu 4000a5dc <_Timespec_Add_to+0x5c>
4000a5b4: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
4000a5b8: 1b 31 19 4d sethi %hi(0xc4653400), %o5
4000a5bc: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <LEON_REG+0x44653600>
4000a5c0: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
4000a5c4: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
4000a5c8: 80 a0 80 04 cmp %g2, %g4
4000a5cc: 18 bf ff fd bgu 4000a5c0 <_Timespec_Add_to+0x40> <== NEVER TAKEN
4000a5d0: b0 06 20 01 inc %i0
4000a5d4: c4 20 60 04 st %g2, [ %g1 + 4 ]
4000a5d8: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
4000a5dc: 81 c7 e0 08 ret
4000a5e0: 81 e8 00 00 restore
4000a790 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
4000a790: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000a794: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a798: a2 14 61 f8 or %l1, 0x1f8, %l1 ! 400165f8 <_User_extensions_List>
4000a79c: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a7a0: 80 a4 00 11 cmp %l0, %l1
4000a7a4: 02 80 00 0d be 4000a7d8 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
4000a7a8: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
4000a7ac: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000a7b0: 80 a0 60 00 cmp %g1, 0
4000a7b4: 02 80 00 05 be 4000a7c8 <_User_extensions_Fatal+0x38>
4000a7b8: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
4000a7bc: 92 10 00 19 mov %i1, %o1
4000a7c0: 9f c0 40 00 call %g1
4000a7c4: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a7c8: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a7cc: 80 a4 00 11 cmp %l0, %l1
4000a7d0: 32 bf ff f8 bne,a 4000a7b0 <_User_extensions_Fatal+0x20> <== ALWAYS TAKEN
4000a7d4: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000a7d8: 81 c7 e0 08 ret <== NOT EXECUTED
4000a7dc: 81 e8 00 00 restore <== NOT EXECUTED
4000a63c <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
4000a63c: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
4000a640: 07 10 00 56 sethi %hi(0x40015800), %g3
4000a644: 86 10 e1 a8 or %g3, 0x1a8, %g3 ! 400159a8 <Configuration>
initial_extensions = Configuration.User_extension_table;
4000a648: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3
4000a64c: 1b 10 00 59 sethi %hi(0x40016400), %o5
4000a650: 09 10 00 59 sethi %hi(0x40016400), %g4
4000a654: 84 13 61 f8 or %o5, 0x1f8, %g2
4000a658: 82 11 20 14 or %g4, 0x14, %g1
4000a65c: 96 00 a0 04 add %g2, 4, %o3
4000a660: 98 00 60 04 add %g1, 4, %o4
4000a664: d6 23 61 f8 st %o3, [ %o5 + 0x1f8 ]
head->previous = NULL;
4000a668: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
4000a66c: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4000a670: d8 21 20 14 st %o4, [ %g4 + 0x14 ]
head->previous = NULL;
4000a674: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
4000a678: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
4000a67c: 80 a4 e0 00 cmp %l3, 0
4000a680: 02 80 00 1b be 4000a6ec <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000a684: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
4000a688: 83 2c a0 02 sll %l2, 2, %g1
4000a68c: a3 2c a0 04 sll %l2, 4, %l1
4000a690: a2 24 40 01 sub %l1, %g1, %l1
4000a694: a2 04 40 12 add %l1, %l2, %l1
4000a698: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
4000a69c: 40 00 01 9f call 4000ad18 <_Workspace_Allocate_or_fatal_error>
4000a6a0: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000a6a4: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
4000a6a8: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000a6ac: 40 00 14 83 call 4000f8b8 <memset>
4000a6b0: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000a6b4: 80 a4 a0 00 cmp %l2, 0
4000a6b8: 02 80 00 0d be 4000a6ec <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000a6bc: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
4000a6c0: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
4000a6c4: 94 10 20 20 mov 0x20, %o2
4000a6c8: 92 04 c0 09 add %l3, %o1, %o1
4000a6cc: 40 00 14 42 call 4000f7d4 <memcpy>
4000a6d0: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
4000a6d4: 40 00 0b ad call 4000d588 <_User_extensions_Add_set>
4000a6d8: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000a6dc: a2 04 60 01 inc %l1
4000a6e0: 80 a4 80 11 cmp %l2, %l1
4000a6e4: 18 bf ff f7 bgu 4000a6c0 <_User_extensions_Handler_initialization+0x84>
4000a6e8: a0 04 20 34 add %l0, 0x34, %l0
4000a6ec: 81 c7 e0 08 ret
4000a6f0: 81 e8 00 00 restore
4000a6f4 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
4000a6f4: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000a6f8: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a6fc: e0 04 61 f8 ld [ %l1 + 0x1f8 ], %l0 ! 400165f8 <_User_extensions_List>
4000a700: a2 14 61 f8 or %l1, 0x1f8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a704: a2 04 60 04 add %l1, 4, %l1
4000a708: 80 a4 00 11 cmp %l0, %l1
4000a70c: 02 80 00 0c be 4000a73c <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
4000a710: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
4000a714: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
4000a718: 80 a0 60 00 cmp %g1, 0
4000a71c: 02 80 00 04 be 4000a72c <_User_extensions_Thread_begin+0x38>
4000a720: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
4000a724: 9f c0 40 00 call %g1
4000a728: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a72c: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a730: 80 a4 00 11 cmp %l0, %l1
4000a734: 32 bf ff f9 bne,a 4000a718 <_User_extensions_Thread_begin+0x24>
4000a738: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
4000a73c: 81 c7 e0 08 ret
4000a740: 81 e8 00 00 restore
4000a7e0 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
4000a7e0: 9d e3 bf a0 save %sp, -96, %sp
return false;
}
}
return true;
}
4000a7e4: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a7e8: e0 04 61 f8 ld [ %l1 + 0x1f8 ], %l0 ! 400165f8 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
4000a7ec: a6 10 00 18 mov %i0, %l3
return false;
}
}
return true;
}
4000a7f0: a2 14 61 f8 or %l1, 0x1f8, %l1
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a7f4: a2 04 60 04 add %l1, 4, %l1
4000a7f8: 80 a4 00 11 cmp %l0, %l1
4000a7fc: 02 80 00 13 be 4000a848 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
4000a800: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
4000a804: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
4000a808: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
4000a80c: 80 a0 60 00 cmp %g1, 0
4000a810: 02 80 00 08 be 4000a830 <_User_extensions_Thread_create+0x50>
4000a814: 84 14 a2 3c or %l2, 0x23c, %g2
status = (*the_extension->Callouts.thread_create)(
4000a818: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a81c: 9f c0 40 00 call %g1
4000a820: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
4000a824: 80 8a 20 ff btst 0xff, %o0
4000a828: 22 80 00 08 be,a 4000a848 <_User_extensions_Thread_create+0x68>
4000a82c: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a830: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a834: 80 a4 00 11 cmp %l0, %l1
4000a838: 32 bf ff f5 bne,a 4000a80c <_User_extensions_Thread_create+0x2c>
4000a83c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
4000a840: 81 c7 e0 08 ret
4000a844: 91 e8 20 01 restore %g0, 1, %o0
}
4000a848: 81 c7 e0 08 ret
4000a84c: 81 e8 00 00 restore
4000a850 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
4000a850: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_delete)(
_Thread_Executing,
the_thread
);
}
}
4000a854: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a858: a2 14 61 f8 or %l1, 0x1f8, %l1 ! 400165f8 <_User_extensions_List>
4000a85c: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a860: 80 a4 00 11 cmp %l0, %l1
4000a864: 02 80 00 0d be 4000a898 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
4000a868: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
4000a86c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000a870: 80 a0 60 00 cmp %g1, 0
4000a874: 02 80 00 05 be 4000a888 <_User_extensions_Thread_delete+0x38>
4000a878: 84 14 a2 3c or %l2, 0x23c, %g2
(*the_extension->Callouts.thread_delete)(
4000a87c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a880: 9f c0 40 00 call %g1
4000a884: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a888: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a88c: 80 a4 00 11 cmp %l0, %l1
4000a890: 32 bf ff f8 bne,a 4000a870 <_User_extensions_Thread_delete+0x20>
4000a894: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000a898: 81 c7 e0 08 ret
4000a89c: 81 e8 00 00 restore
4000a744 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
4000a744: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000a748: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a74c: a2 14 61 f8 or %l1, 0x1f8, %l1 ! 400165f8 <_User_extensions_List>
4000a750: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a754: 80 a4 00 11 cmp %l0, %l1
4000a758: 02 80 00 0c be 4000a788 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
4000a75c: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
4000a760: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
4000a764: 80 a0 60 00 cmp %g1, 0
4000a768: 02 80 00 04 be 4000a778 <_User_extensions_Thread_exitted+0x34>
4000a76c: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
4000a770: 9f c0 40 00 call %g1
4000a774: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a778: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a77c: 80 a4 00 11 cmp %l0, %l1
4000a780: 32 bf ff f9 bne,a 4000a764 <_User_extensions_Thread_exitted+0x20>
4000a784: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
4000a788: 81 c7 e0 08 ret
4000a78c: 81 e8 00 00 restore
4000b5c8 <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
4000b5c8: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_restart)(
_Thread_Executing,
the_thread
);
}
}
4000b5cc: 23 10 00 7c sethi %hi(0x4001f000), %l1
4000b5d0: e0 04 62 b8 ld [ %l1 + 0x2b8 ], %l0 ! 4001f2b8 <_User_extensions_List>
4000b5d4: a2 14 62 b8 or %l1, 0x2b8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000b5d8: a2 04 60 04 add %l1, 4, %l1
4000b5dc: 80 a4 00 11 cmp %l0, %l1
4000b5e0: 02 80 00 0d be 4000b614 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
4000b5e4: 25 10 00 7c sethi %hi(0x4001f000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
4000b5e8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000b5ec: 80 a0 60 00 cmp %g1, 0
4000b5f0: 02 80 00 05 be 4000b604 <_User_extensions_Thread_restart+0x3c>
4000b5f4: 84 14 a2 fc or %l2, 0x2fc, %g2
(*the_extension->Callouts.thread_restart)(
4000b5f8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000b5fc: 9f c0 40 00 call %g1
4000b600: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000b604: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000b608: 80 a4 00 11 cmp %l0, %l1
4000b60c: 32 bf ff f8 bne,a 4000b5ec <_User_extensions_Thread_restart+0x24>
4000b610: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000b614: 81 c7 e0 08 ret
4000b618: 81 e8 00 00 restore
4000a8a0 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
4000a8a0: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_start)(
_Thread_Executing,
the_thread
);
}
}
4000a8a4: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a8a8: e0 04 61 f8 ld [ %l1 + 0x1f8 ], %l0 ! 400165f8 <_User_extensions_List>
4000a8ac: a2 14 61 f8 or %l1, 0x1f8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a8b0: a2 04 60 04 add %l1, 4, %l1
4000a8b4: 80 a4 00 11 cmp %l0, %l1
4000a8b8: 02 80 00 0d be 4000a8ec <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
4000a8bc: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
4000a8c0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000a8c4: 80 a0 60 00 cmp %g1, 0
4000a8c8: 02 80 00 05 be 4000a8dc <_User_extensions_Thread_start+0x3c>
4000a8cc: 84 14 a2 3c or %l2, 0x23c, %g2
(*the_extension->Callouts.thread_start)(
4000a8d0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a8d4: 9f c0 40 00 call %g1
4000a8d8: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a8dc: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a8e0: 80 a4 00 11 cmp %l0, %l1
4000a8e4: 32 bf ff f8 bne,a 4000a8c4 <_User_extensions_Thread_start+0x24>
4000a8e8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000a8ec: 81 c7 e0 08 ret
4000a8f0: 81 e8 00 00 restore
4000a8f4 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
4000a8f4: 9d e3 bf a0 save %sp, -96, %sp
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
}
}
4000a8f8: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a8fc: e0 04 60 14 ld [ %l1 + 0x14 ], %l0 ! 40016414 <_User_extensions_Switches_list>
4000a900: a2 14 60 14 or %l1, 0x14, %l1
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
4000a904: a2 04 60 04 add %l1, 4, %l1
4000a908: 80 a4 00 11 cmp %l0, %l1
4000a90c: 02 80 00 0a be 4000a934 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
4000a910: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
4000a914: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000a918: 90 10 00 18 mov %i0, %o0
4000a91c: 9f c0 40 00 call %g1
4000a920: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
4000a924: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
4000a928: 80 a4 00 11 cmp %l0, %l1
4000a92c: 32 bf ff fb bne,a 4000a918 <_User_extensions_Thread_switch+0x24>
4000a930: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000a934: 81 c7 e0 08 ret
4000a938: 81 e8 00 00 restore
4000c92c <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000c92c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000c930: 7f ff d9 27 call 40002dcc <sparc_disable_interrupts>
4000c934: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000c938: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000c93c: a4 06 20 04 add %i0, 4, %l2
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000c940: 80 a0 40 12 cmp %g1, %l2
4000c944: 02 80 00 1f be 4000c9c0 <_Watchdog_Adjust+0x94>
4000c948: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000c94c: 12 80 00 1f bne 4000c9c8 <_Watchdog_Adjust+0x9c>
4000c950: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000c954: 80 a6 a0 00 cmp %i2, 0
4000c958: 02 80 00 1a be 4000c9c0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000c95c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000c960: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000c964: 80 a6 80 11 cmp %i2, %l1
4000c968: 1a 80 00 0b bcc 4000c994 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
4000c96c: a6 10 20 01 mov 1, %l3
_Watchdog_First( header )->delta_interval -= units;
4000c970: 10 80 00 1d b 4000c9e4 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
4000c974: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000c978: b4 a6 80 11 subcc %i2, %l1, %i2
4000c97c: 02 80 00 11 be 4000c9c0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000c980: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000c984: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000c988: 80 a4 40 1a cmp %l1, %i2
4000c98c: 38 80 00 16 bgu,a 4000c9e4 <_Watchdog_Adjust+0xb8>
4000c990: a2 24 40 1a sub %l1, %i2, %l1
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000c994: e6 20 60 10 st %l3, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000c998: 7f ff d9 11 call 40002ddc <sparc_enable_interrupts>
4000c99c: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000c9a0: 40 00 00 b4 call 4000cc70 <_Watchdog_Tickle>
4000c9a4: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000c9a8: 7f ff d9 09 call 40002dcc <sparc_disable_interrupts>
4000c9ac: 01 00 00 00 nop
}
}
_ISR_Enable( level );
}
4000c9b0: c4 04 00 00 ld [ %l0 ], %g2
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
4000c9b4: 80 a4 80 02 cmp %l2, %g2
4000c9b8: 12 bf ff f0 bne 4000c978 <_Watchdog_Adjust+0x4c>
4000c9bc: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
4000c9c0: 7f ff d9 07 call 40002ddc <sparc_enable_interrupts>
4000c9c4: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
4000c9c8: 12 bf ff fe bne 4000c9c0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000c9cc: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000c9d0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000c9d4: b4 00 80 1a add %g2, %i2, %i2
4000c9d8: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000c9dc: 7f ff d9 00 call 40002ddc <sparc_enable_interrupts>
4000c9e0: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
4000c9e4: 10 bf ff f7 b 4000c9c0 <_Watchdog_Adjust+0x94>
4000c9e8: e2 20 60 10 st %l1, [ %g1 + 0x10 ]
4000aae8 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
4000aae8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
4000aaec: 7f ff dc d9 call 40001e50 <sparc_disable_interrupts>
4000aaf0: 01 00 00 00 nop
previous_state = the_watchdog->state;
4000aaf4: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
4000aaf8: 80 a4 20 01 cmp %l0, 1
4000aafc: 02 80 00 2a be 4000aba4 <_Watchdog_Remove+0xbc>
4000ab00: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ab04: 1a 80 00 09 bcc 4000ab28 <_Watchdog_Remove+0x40>
4000ab08: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000ab0c: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ab10: c2 00 61 20 ld [ %g1 + 0x120 ], %g1 ! 40016520 <_Watchdog_Ticks_since_boot>
4000ab14: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000ab18: 7f ff dc d2 call 40001e60 <sparc_enable_interrupts>
4000ab1c: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000ab20: 81 c7 e0 08 ret
4000ab24: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
4000ab28: 18 bf ff fa bgu 4000ab10 <_Watchdog_Remove+0x28> <== NEVER TAKEN
4000ab2c: 03 10 00 59 sethi %hi(0x40016400), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
4000ab30: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
4000ab34: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
4000ab38: c4 00 40 00 ld [ %g1 ], %g2
4000ab3c: 80 a0 a0 00 cmp %g2, 0
4000ab40: 02 80 00 07 be 4000ab5c <_Watchdog_Remove+0x74>
4000ab44: 05 10 00 59 sethi %hi(0x40016400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
4000ab48: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000ab4c: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
4000ab50: 84 00 c0 02 add %g3, %g2, %g2
4000ab54: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
4000ab58: 05 10 00 59 sethi %hi(0x40016400), %g2
4000ab5c: c4 00 a1 1c ld [ %g2 + 0x11c ], %g2 ! 4001651c <_Watchdog_Sync_count>
4000ab60: 80 a0 a0 00 cmp %g2, 0
4000ab64: 22 80 00 07 be,a 4000ab80 <_Watchdog_Remove+0x98>
4000ab68: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
4000ab6c: 05 10 00 59 sethi %hi(0x40016400), %g2
4000ab70: c6 00 a2 44 ld [ %g2 + 0x244 ], %g3 ! 40016644 <_Per_CPU_Information+0x8>
4000ab74: 05 10 00 59 sethi %hi(0x40016400), %g2
4000ab78: c6 20 a0 b4 st %g3, [ %g2 + 0xb4 ] ! 400164b4 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000ab7c: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
4000ab80: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
4000ab84: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000ab88: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ab8c: c2 00 61 20 ld [ %g1 + 0x120 ], %g1 ! 40016520 <_Watchdog_Ticks_since_boot>
4000ab90: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000ab94: 7f ff dc b3 call 40001e60 <sparc_enable_interrupts>
4000ab98: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000ab9c: 81 c7 e0 08 ret
4000aba0: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000aba4: c2 00 61 20 ld [ %g1 + 0x120 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
4000aba8: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000abac: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000abb0: 7f ff dc ac call 40001e60 <sparc_enable_interrupts>
4000abb4: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000abb8: 81 c7 e0 08 ret
4000abbc: 81 e8 00 00 restore
4000c134 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000c134: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000c138: 7f ff d9 f7 call 40002914 <sparc_disable_interrupts>
4000c13c: 01 00 00 00 nop
4000c140: a0 10 00 08 mov %o0, %l0
printk( "Watchdog Chain: %s %p\n", name, header );
4000c144: 11 10 00 79 sethi %hi(0x4001e400), %o0
4000c148: 94 10 00 19 mov %i1, %o2
4000c14c: 92 10 00 18 mov %i0, %o1
4000c150: 7f ff e4 b0 call 40005410 <printk>
4000c154: 90 12 23 e0 or %o0, 0x3e0, %o0
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000c158: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000c15c: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000c160: 80 a4 40 19 cmp %l1, %i1
4000c164: 02 80 00 0f be 4000c1a0 <_Watchdog_Report_chain+0x6c>
4000c168: 11 10 00 7a sethi %hi(0x4001e800), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000c16c: 92 10 00 11 mov %l1, %o1
4000c170: 40 00 00 0f call 4000c1ac <_Watchdog_Report>
4000c174: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000c178: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000c17c: 80 a4 40 19 cmp %l1, %i1
4000c180: 12 bf ff fc bne 4000c170 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000c184: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000c188: 11 10 00 79 sethi %hi(0x4001e400), %o0
4000c18c: 92 10 00 18 mov %i0, %o1
4000c190: 7f ff e4 a0 call 40005410 <printk>
4000c194: 90 12 23 f8 or %o0, 0x3f8, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
4000c198: 7f ff d9 e3 call 40002924 <sparc_enable_interrupts>
4000c19c: 91 e8 00 10 restore %g0, %l0, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
4000c1a0: 7f ff e4 9c call 40005410 <printk>
4000c1a4: 90 12 20 08 or %o0, 8, %o0
4000c1a8: 30 bf ff fc b,a 4000c198 <_Watchdog_Report_chain+0x64>
4000f560 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
4000f560: 9d e3 bf 98 save %sp, -104, %sp
4000f564: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
4000f568: 80 a4 20 00 cmp %l0, 0
4000f56c: 02 80 00 23 be 4000f5f8 <rtems_barrier_create+0x98>
4000f570: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
4000f574: 80 a6 e0 00 cmp %i3, 0
4000f578: 02 80 00 20 be 4000f5f8 <rtems_barrier_create+0x98>
4000f57c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
4000f580: 80 8e 60 10 btst 0x10, %i1
4000f584: 02 80 00 1f be 4000f600 <rtems_barrier_create+0xa0>
4000f588: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
4000f58c: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
4000f590: 02 80 00 1a be 4000f5f8 <rtems_barrier_create+0x98>
4000f594: b0 10 20 0a mov 0xa, %i0
4000f598: 03 10 00 8d sethi %hi(0x40023400), %g1
4000f59c: c4 00 61 60 ld [ %g1 + 0x160 ], %g2 ! 40023560 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
4000f5a0: f4 27 bf fc st %i2, [ %fp + -4 ]
4000f5a4: 84 00 a0 01 inc %g2
4000f5a8: c4 20 61 60 st %g2, [ %g1 + 0x160 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
4000f5ac: 25 10 00 8d sethi %hi(0x40023400), %l2
4000f5b0: 7f ff ec c1 call 4000a8b4 <_Objects_Allocate>
4000f5b4: 90 14 a3 e0 or %l2, 0x3e0, %o0 ! 400237e0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000f5b8: a2 92 20 00 orcc %o0, 0, %l1
4000f5bc: 02 80 00 1e be 4000f634 <rtems_barrier_create+0xd4> <== NEVER TAKEN
4000f5c0: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
4000f5c4: 92 07 bf f8 add %fp, -8, %o1
4000f5c8: 40 00 02 43 call 4000fed4 <_CORE_barrier_Initialize>
4000f5cc: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
4000f5d0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
4000f5d4: a4 14 a3 e0 or %l2, 0x3e0, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000f5d8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000f5dc: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000f5e0: 85 28 a0 02 sll %g2, 2, %g2
4000f5e4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000f5e8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
4000f5ec: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
4000f5f0: 7f ff f1 79 call 4000bbd4 <_Thread_Enable_dispatch>
4000f5f4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
4000f5f8: 81 c7 e0 08 ret
4000f5fc: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
4000f600: 82 10 20 01 mov 1, %g1
4000f604: c2 27 bf f8 st %g1, [ %fp + -8 ]
4000f608: 03 10 00 8d sethi %hi(0x40023400), %g1
4000f60c: c4 00 61 60 ld [ %g1 + 0x160 ], %g2 ! 40023560 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
4000f610: f4 27 bf fc st %i2, [ %fp + -4 ]
4000f614: 84 00 a0 01 inc %g2
4000f618: c4 20 61 60 st %g2, [ %g1 + 0x160 ]
4000f61c: 25 10 00 8d sethi %hi(0x40023400), %l2
4000f620: 7f ff ec a5 call 4000a8b4 <_Objects_Allocate>
4000f624: 90 14 a3 e0 or %l2, 0x3e0, %o0 ! 400237e0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000f628: a2 92 20 00 orcc %o0, 0, %l1
4000f62c: 12 bf ff e6 bne 4000f5c4 <rtems_barrier_create+0x64>
4000f630: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
4000f634: 7f ff f1 68 call 4000bbd4 <_Thread_Enable_dispatch>
4000f638: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
4000f63c: 81 c7 e0 08 ret
4000f640: 81 e8 00 00 restore
40007fa4 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40007fa4: 9d e3 bf 98 save %sp, -104, %sp
40007fa8: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40007fac: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40007fb0: 40 00 01 89 call 400085d4 <_Chain_Get>
40007fb4: 90 10 00 10 mov %l0, %o0
40007fb8: 92 10 20 00 clr %o1
40007fbc: a2 10 00 08 mov %o0, %l1
40007fc0: 94 10 00 1a mov %i2, %o2
40007fc4: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40007fc8: 80 a4 60 00 cmp %l1, 0
40007fcc: 12 80 00 0a bne 40007ff4 <rtems_chain_get_with_wait+0x50>
40007fd0: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
40007fd4: 7f ff fc e3 call 40007360 <rtems_event_receive>
40007fd8: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40007fdc: 80 a2 20 00 cmp %o0, 0
40007fe0: 02 bf ff f4 be 40007fb0 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
40007fe4: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
40007fe8: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40007fec: 81 c7 e0 08 ret
40007ff0: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40007ff4: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40007ff8: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40007ffc: 81 c7 e0 08 ret
40008000: 91 e8 00 08 restore %g0, %o0, %o0
40008dcc <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40008dcc: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
40008dd0: 03 10 00 6b sethi %hi(0x4001ac00), %g1
40008dd4: c4 00 61 64 ld [ %g1 + 0x164 ], %g2 ! 4001ad64 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40008dd8: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
40008ddc: 03 10 00 6b sethi %hi(0x4001ac00), %g1
if ( rtems_interrupt_is_in_progress() )
40008de0: 80 a0 a0 00 cmp %g2, 0
40008de4: 12 80 00 42 bne 40008eec <rtems_io_register_driver+0x120>
40008de8: c8 00 61 f4 ld [ %g1 + 0x1f4 ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
40008dec: 80 a6 a0 00 cmp %i2, 0
40008df0: 02 80 00 50 be 40008f30 <rtems_io_register_driver+0x164>
40008df4: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
40008df8: 80 a6 60 00 cmp %i1, 0
40008dfc: 02 80 00 4d be 40008f30 <rtems_io_register_driver+0x164>
40008e00: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008e04: c4 06 40 00 ld [ %i1 ], %g2
40008e08: 80 a0 a0 00 cmp %g2, 0
40008e0c: 22 80 00 46 be,a 40008f24 <rtems_io_register_driver+0x158>
40008e10: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
40008e14: 80 a1 00 18 cmp %g4, %i0
40008e18: 08 80 00 33 bleu 40008ee4 <rtems_io_register_driver+0x118>
40008e1c: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008e20: 05 10 00 6a sethi %hi(0x4001a800), %g2
40008e24: c8 00 a3 30 ld [ %g2 + 0x330 ], %g4 ! 4001ab30 <_Thread_Dispatch_disable_level>
40008e28: 88 01 20 01 inc %g4
40008e2c: c8 20 a3 30 st %g4, [ %g2 + 0x330 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
40008e30: 80 a6 20 00 cmp %i0, 0
40008e34: 12 80 00 30 bne 40008ef4 <rtems_io_register_driver+0x128>
40008e38: 1b 10 00 6b sethi %hi(0x4001ac00), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
40008e3c: c8 00 61 f4 ld [ %g1 + 0x1f4 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
40008e40: 80 a1 20 00 cmp %g4, 0
40008e44: 22 80 00 3d be,a 40008f38 <rtems_io_register_driver+0x16c><== NEVER TAKEN
40008e48: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
40008e4c: 10 80 00 05 b 40008e60 <rtems_io_register_driver+0x94>
40008e50: c2 03 61 f8 ld [ %o5 + 0x1f8 ], %g1
40008e54: 80 a1 00 18 cmp %g4, %i0
40008e58: 08 80 00 0a bleu 40008e80 <rtems_io_register_driver+0xb4>
40008e5c: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008e60: c4 00 40 00 ld [ %g1 ], %g2
40008e64: 80 a0 a0 00 cmp %g2, 0
40008e68: 32 bf ff fb bne,a 40008e54 <rtems_io_register_driver+0x88>
40008e6c: b0 06 20 01 inc %i0
40008e70: c4 00 60 04 ld [ %g1 + 4 ], %g2
40008e74: 80 a0 a0 00 cmp %g2, 0
40008e78: 32 bf ff f7 bne,a 40008e54 <rtems_io_register_driver+0x88>
40008e7c: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
40008e80: 80 a1 00 18 cmp %g4, %i0
40008e84: 02 80 00 2d be 40008f38 <rtems_io_register_driver+0x16c>
40008e88: f0 26 80 00 st %i0, [ %i2 ]
40008e8c: 83 2e 20 03 sll %i0, 3, %g1
40008e90: 85 2e 20 05 sll %i0, 5, %g2
40008e94: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008e98: c8 03 61 f8 ld [ %o5 + 0x1f8 ], %g4
40008e9c: da 00 c0 00 ld [ %g3 ], %o5
40008ea0: 82 01 00 02 add %g4, %g2, %g1
40008ea4: da 21 00 02 st %o5, [ %g4 + %g2 ]
40008ea8: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40008eac: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008eb0: c4 20 60 04 st %g2, [ %g1 + 4 ]
40008eb4: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40008eb8: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008ebc: c4 20 60 08 st %g2, [ %g1 + 8 ]
40008ec0: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
40008ec4: c4 20 60 0c st %g2, [ %g1 + 0xc ]
40008ec8: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
40008ecc: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40008ed0: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
40008ed4: 40 00 08 55 call 4000b028 <_Thread_Enable_dispatch>
40008ed8: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
40008edc: 40 00 21 57 call 40011438 <rtems_io_initialize>
40008ee0: 81 e8 00 00 restore
}
40008ee4: 81 c7 e0 08 ret
40008ee8: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
40008eec: 81 c7 e0 08 ret
40008ef0: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
40008ef4: c2 03 61 f8 ld [ %o5 + 0x1f8 ], %g1
40008ef8: 89 2e 20 05 sll %i0, 5, %g4
40008efc: 85 2e 20 03 sll %i0, 3, %g2
40008f00: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008f04: c8 00 40 02 ld [ %g1 + %g2 ], %g4
40008f08: 80 a1 20 00 cmp %g4, 0
40008f0c: 02 80 00 0f be 40008f48 <rtems_io_register_driver+0x17c>
40008f10: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
40008f14: 40 00 08 45 call 4000b028 <_Thread_Enable_dispatch>
40008f18: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
40008f1c: 81 c7 e0 08 ret
40008f20: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008f24: 80 a0 a0 00 cmp %g2, 0
40008f28: 32 bf ff bc bne,a 40008e18 <rtems_io_register_driver+0x4c>
40008f2c: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
40008f30: 81 c7 e0 08 ret
40008f34: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
40008f38: 40 00 08 3c call 4000b028 <_Thread_Enable_dispatch>
40008f3c: b0 10 20 05 mov 5, %i0
return sc;
40008f40: 81 c7 e0 08 ret
40008f44: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008f48: c2 00 60 04 ld [ %g1 + 4 ], %g1
40008f4c: 80 a0 60 00 cmp %g1, 0
40008f50: 12 bf ff f1 bne 40008f14 <rtems_io_register_driver+0x148>
40008f54: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
40008f58: 10 bf ff d0 b 40008e98 <rtems_io_register_driver+0xcc>
40008f5c: f0 26 80 00 st %i0, [ %i2 ]
4000a310 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
4000a310: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
4000a314: 80 a6 20 00 cmp %i0, 0
4000a318: 02 80 00 23 be 4000a3a4 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
4000a31c: 25 10 00 84 sethi %hi(0x40021000), %l2
4000a320: a4 14 a0 6c or %l2, 0x6c, %l2 ! 4002106c <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
4000a324: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
4000a328: c2 04 80 00 ld [ %l2 ], %g1
4000a32c: 80 a0 60 00 cmp %g1, 0
4000a330: 22 80 00 1a be,a 4000a398 <rtems_iterate_over_all_threads+0x88>
4000a334: a4 04 a0 04 add %l2, 4, %l2
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
4000a338: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
4000a33c: 80 a4 60 00 cmp %l1, 0
4000a340: 22 80 00 16 be,a 4000a398 <rtems_iterate_over_all_threads+0x88>
4000a344: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000a348: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
4000a34c: 84 90 60 00 orcc %g1, 0, %g2
4000a350: 22 80 00 12 be,a 4000a398 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
4000a354: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED
4000a358: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
4000a35c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000a360: 83 2c 20 02 sll %l0, 2, %g1
4000a364: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
4000a368: 90 90 60 00 orcc %g1, 0, %o0
4000a36c: 02 80 00 05 be 4000a380 <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
4000a370: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
4000a374: 9f c6 00 00 call %i0
4000a378: 01 00 00 00 nop
4000a37c: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000a380: 83 28 a0 10 sll %g2, 0x10, %g1
4000a384: 83 30 60 10 srl %g1, 0x10, %g1
4000a388: 80 a0 40 10 cmp %g1, %l0
4000a38c: 3a bf ff f5 bcc,a 4000a360 <rtems_iterate_over_all_threads+0x50>
4000a390: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000a394: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
4000a398: 80 a4 80 13 cmp %l2, %l3
4000a39c: 32 bf ff e4 bne,a 4000a32c <rtems_iterate_over_all_threads+0x1c>
4000a3a0: c2 04 80 00 ld [ %l2 ], %g1
4000a3a4: 81 c7 e0 08 ret
4000a3a8: 81 e8 00 00 restore
40008f7c <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
40008f7c: 9d e3 bf a0 save %sp, -96, %sp
40008f80: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
40008f84: 80 a6 a0 00 cmp %i2, 0
40008f88: 02 80 00 21 be 4000900c <rtems_object_get_class_information+0x90>
40008f8c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40008f90: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
40008f94: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40008f98: 40 00 07 75 call 4000ad6c <_Objects_Get_information>
40008f9c: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
40008fa0: 80 a2 20 00 cmp %o0, 0
40008fa4: 02 80 00 1a be 4000900c <rtems_object_get_class_information+0x90>
40008fa8: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40008fac: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
40008fb0: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40008fb4: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40008fb8: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40008fbc: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40008fc0: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40008fc4: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
40008fc8: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008fcc: 80 a1 20 00 cmp %g4, 0
40008fd0: 02 80 00 0d be 40009004 <rtems_object_get_class_information+0x88><== NEVER TAKEN
40008fd4: 84 10 20 00 clr %g2
40008fd8: da 02 20 1c ld [ %o0 + 0x1c ], %o5
40008fdc: 86 10 20 01 mov 1, %g3
40008fe0: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
40008fe4: 87 28 e0 02 sll %g3, 2, %g3
40008fe8: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008fec: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
40008ff0: 80 a0 00 03 cmp %g0, %g3
40008ff4: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008ff8: 80 a1 00 01 cmp %g4, %g1
40008ffc: 1a bf ff fa bcc 40008fe4 <rtems_object_get_class_information+0x68>
40009000: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
40009004: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
40009008: b0 10 20 00 clr %i0
}
4000900c: 81 c7 e0 08 ret
40009010: 81 e8 00 00 restore
40014d58 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40014d58: 9d e3 bf a0 save %sp, -96, %sp
40014d5c: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40014d60: 80 a4 20 00 cmp %l0, 0
40014d64: 02 80 00 34 be 40014e34 <rtems_partition_create+0xdc>
40014d68: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40014d6c: 80 a6 60 00 cmp %i1, 0
40014d70: 02 80 00 31 be 40014e34 <rtems_partition_create+0xdc>
40014d74: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40014d78: 80 a7 60 00 cmp %i5, 0
40014d7c: 02 80 00 2e be 40014e34 <rtems_partition_create+0xdc> <== NEVER TAKEN
40014d80: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40014d84: 02 80 00 2e be 40014e3c <rtems_partition_create+0xe4>
40014d88: 80 a6 a0 00 cmp %i2, 0
40014d8c: 02 80 00 2c be 40014e3c <rtems_partition_create+0xe4>
40014d90: 80 a6 80 1b cmp %i2, %i3
40014d94: 0a 80 00 28 bcs 40014e34 <rtems_partition_create+0xdc>
40014d98: b0 10 20 08 mov 8, %i0
40014d9c: 80 8e e0 07 btst 7, %i3
40014da0: 12 80 00 25 bne 40014e34 <rtems_partition_create+0xdc>
40014da4: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40014da8: 12 80 00 23 bne 40014e34 <rtems_partition_create+0xdc>
40014dac: b0 10 20 09 mov 9, %i0
40014db0: 03 10 00 fb sethi %hi(0x4003ec00), %g1
40014db4: c4 00 62 10 ld [ %g1 + 0x210 ], %g2 ! 4003ee10 <_Thread_Dispatch_disable_level>
40014db8: 84 00 a0 01 inc %g2
40014dbc: c4 20 62 10 st %g2, [ %g1 + 0x210 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40014dc0: 25 10 00 fb sethi %hi(0x4003ec00), %l2
40014dc4: 40 00 13 17 call 40019a20 <_Objects_Allocate>
40014dc8: 90 14 a0 24 or %l2, 0x24, %o0 ! 4003ec24 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40014dcc: a2 92 20 00 orcc %o0, 0, %l1
40014dd0: 02 80 00 1d be 40014e44 <rtems_partition_create+0xec>
40014dd4: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
40014dd8: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40014ddc: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40014de0: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40014de4: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
40014de8: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40014dec: 40 00 63 14 call 4002da3c <.udiv>
40014df0: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014df4: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40014df8: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014dfc: 96 10 00 1b mov %i3, %o3
40014e00: b8 04 60 24 add %l1, 0x24, %i4
40014e04: 40 00 0c d8 call 40018164 <_Chain_Initialize>
40014e08: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014e0c: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014e10: a4 14 a0 24 or %l2, 0x24, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014e14: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014e18: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014e1c: 85 28 a0 02 sll %g2, 2, %g2
40014e20: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40014e24: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40014e28: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40014e2c: 40 00 17 f7 call 4001ae08 <_Thread_Enable_dispatch>
40014e30: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40014e34: 81 c7 e0 08 ret
40014e38: 81 e8 00 00 restore
}
40014e3c: 81 c7 e0 08 ret
40014e40: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
40014e44: 40 00 17 f1 call 4001ae08 <_Thread_Enable_dispatch>
40014e48: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40014e4c: 81 c7 e0 08 ret
40014e50: 81 e8 00 00 restore
400083ec <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
400083ec: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
400083f0: 11 10 00 80 sethi %hi(0x40020000), %o0
400083f4: 92 10 00 18 mov %i0, %o1
400083f8: 90 12 23 84 or %o0, 0x384, %o0
400083fc: 40 00 09 6e call 4000a9b4 <_Objects_Get>
40008400: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40008404: c2 07 bf fc ld [ %fp + -4 ], %g1
40008408: 80 a0 60 00 cmp %g1, 0
4000840c: 02 80 00 04 be 4000841c <rtems_rate_monotonic_period+0x30>
40008410: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40008414: 81 c7 e0 08 ret
40008418: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
4000841c: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40008420: 23 10 00 81 sethi %hi(0x40020400), %l1
40008424: a2 14 63 1c or %l1, 0x31c, %l1 ! 4002071c <_Per_CPU_Information>
40008428: c2 04 60 0c ld [ %l1 + 0xc ], %g1
4000842c: 80 a0 80 01 cmp %g2, %g1
40008430: 02 80 00 06 be 40008448 <rtems_rate_monotonic_period+0x5c>
40008434: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40008438: 40 00 0c f5 call 4000b80c <_Thread_Enable_dispatch>
4000843c: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40008440: 81 c7 e0 08 ret
40008444: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40008448: 12 80 00 0f bne 40008484 <rtems_rate_monotonic_period+0x98>
4000844c: 01 00 00 00 nop
switch ( the_period->state ) {
40008450: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40008454: 80 a0 60 04 cmp %g1, 4
40008458: 08 80 00 06 bleu 40008470 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
4000845c: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40008460: 40 00 0c eb call 4000b80c <_Thread_Enable_dispatch>
40008464: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40008468: 81 c7 e0 08 ret
4000846c: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
40008470: 83 28 60 02 sll %g1, 2, %g1
40008474: 05 10 00 79 sethi %hi(0x4001e400), %g2
40008478: 84 10 a1 a4 or %g2, 0x1a4, %g2 ! 4001e5a4 <CSWTCH.2>
4000847c: 10 bf ff f9 b 40008460 <rtems_rate_monotonic_period+0x74>
40008480: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
40008484: 7f ff ea 1b call 40002cf0 <sparc_disable_interrupts>
40008488: 01 00 00 00 nop
4000848c: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40008490: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
40008494: 80 a4 a0 00 cmp %l2, 0
40008498: 02 80 00 14 be 400084e8 <rtems_rate_monotonic_period+0xfc>
4000849c: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
400084a0: 02 80 00 29 be 40008544 <rtems_rate_monotonic_period+0x158>
400084a4: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
400084a8: 12 bf ff e6 bne 40008440 <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
400084ac: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
400084b0: 7f ff ff 8f call 400082ec <_Rate_monotonic_Update_statistics>
400084b4: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
400084b8: 7f ff ea 12 call 40002d00 <sparc_enable_interrupts>
400084bc: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400084c0: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400084c4: 92 04 20 10 add %l0, 0x10, %o1
400084c8: 11 10 00 81 sethi %hi(0x40020400), %o0
the_period->next_length = length;
400084cc: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
400084d0: 90 12 21 b0 or %o0, 0x1b0, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
400084d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400084d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400084dc: 40 00 10 ef call 4000c898 <_Watchdog_Insert>
400084e0: b0 10 20 06 mov 6, %i0
400084e4: 30 bf ff df b,a 40008460 <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
400084e8: 7f ff ea 06 call 40002d00 <sparc_enable_interrupts>
400084ec: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
400084f0: 7f ff ff 63 call 4000827c <_Rate_monotonic_Initiate_statistics>
400084f4: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400084f8: 82 10 20 02 mov 2, %g1
400084fc: 92 04 20 10 add %l0, 0x10, %o1
40008500: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
40008504: 11 10 00 81 sethi %hi(0x40020400), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40008508: 03 10 00 22 sethi %hi(0x40008800), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000850c: 90 12 21 b0 or %o0, 0x1b0, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40008510: 82 10 60 c0 or %g1, 0xc0, %g1
the_watchdog->id = id;
40008514: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40008518: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
4000851c: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
40008520: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40008524: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008528: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000852c: 40 00 10 db call 4000c898 <_Watchdog_Insert>
40008530: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40008534: 40 00 0c b6 call 4000b80c <_Thread_Enable_dispatch>
40008538: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4000853c: 81 c7 e0 08 ret
40008540: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40008544: 7f ff ff 6a call 400082ec <_Rate_monotonic_Update_statistics>
40008548: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
4000854c: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40008550: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40008554: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40008558: 7f ff e9 ea call 40002d00 <sparc_enable_interrupts>
4000855c: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40008560: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008564: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40008568: 90 10 00 01 mov %g1, %o0
4000856c: 13 00 00 10 sethi %hi(0x4000), %o1
40008570: 40 00 0e ea call 4000c118 <_Thread_Set_state>
40008574: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40008578: 7f ff e9 de call 40002cf0 <sparc_disable_interrupts>
4000857c: 01 00 00 00 nop
local_state = the_period->state;
40008580: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40008584: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
40008588: 7f ff e9 de call 40002d00 <sparc_enable_interrupts>
4000858c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40008590: 80 a4 e0 03 cmp %l3, 3
40008594: 22 80 00 06 be,a 400085ac <rtems_rate_monotonic_period+0x1c0>
40008598: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
4000859c: 40 00 0c 9c call 4000b80c <_Thread_Enable_dispatch>
400085a0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
400085a4: 81 c7 e0 08 ret
400085a8: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400085ac: 40 00 0b bc call 4000b49c <_Thread_Clear_state>
400085b0: 13 00 00 10 sethi %hi(0x4000), %o1
400085b4: 30 bf ff fa b,a 4000859c <rtems_rate_monotonic_period+0x1b0>
400085b8 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
400085b8: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
400085bc: 80 a6 60 00 cmp %i1, 0
400085c0: 02 80 00 4c be 400086f0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
400085c4: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
400085c8: 13 10 00 79 sethi %hi(0x4001e400), %o1
400085cc: 9f c6 40 00 call %i1
400085d0: 92 12 61 b8 or %o1, 0x1b8, %o1 ! 4001e5b8 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
400085d4: 90 10 00 18 mov %i0, %o0
400085d8: 13 10 00 79 sethi %hi(0x4001e400), %o1
400085dc: 9f c6 40 00 call %i1
400085e0: 92 12 61 d8 or %o1, 0x1d8, %o1 ! 4001e5d8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
400085e4: 90 10 00 18 mov %i0, %o0
400085e8: 13 10 00 79 sethi %hi(0x4001e400), %o1
400085ec: 9f c6 40 00 call %i1
400085f0: 92 12 62 00 or %o1, 0x200, %o1 ! 4001e600 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
400085f4: 90 10 00 18 mov %i0, %o0
400085f8: 13 10 00 79 sethi %hi(0x4001e400), %o1
400085fc: 9f c6 40 00 call %i1
40008600: 92 12 62 28 or %o1, 0x228, %o1 ! 4001e628 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40008604: 90 10 00 18 mov %i0, %o0
40008608: 13 10 00 79 sethi %hi(0x4001e400), %o1
4000860c: 9f c6 40 00 call %i1
40008610: 92 12 62 78 or %o1, 0x278, %o1 ! 4001e678 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008614: 23 10 00 80 sethi %hi(0x40020000), %l1
40008618: a2 14 63 84 or %l1, 0x384, %l1 ! 40020384 <_Rate_monotonic_Information>
4000861c: e0 04 60 08 ld [ %l1 + 8 ], %l0
40008620: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008624: 80 a4 00 01 cmp %l0, %g1
40008628: 18 80 00 32 bgu 400086f0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
4000862c: 2f 10 00 79 sethi %hi(0x4001e400), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
40008630: 39 10 00 79 sethi %hi(0x4001e400), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40008634: 2b 10 00 76 sethi %hi(0x4001d800), %l5
40008638: a4 07 bf a0 add %fp, -96, %l2
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
4000863c: ba 07 bf d8 add %fp, -40, %i5
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40008640: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40008644: ae 15 e2 c8 or %l7, 0x2c8, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40008648: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
4000864c: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
40008650: b8 17 22 e0 or %i4, 0x2e0, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40008654: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40008658: 10 80 00 06 b 40008670 <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
4000865c: aa 15 60 a8 or %l5, 0xa8, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008660: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008664: 80 a0 40 10 cmp %g1, %l0
40008668: 0a 80 00 22 bcs 400086f0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
4000866c: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40008670: 90 10 00 10 mov %l0, %o0
40008674: 40 00 18 86 call 4000e88c <rtems_rate_monotonic_get_statistics>
40008678: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
4000867c: 80 a2 20 00 cmp %o0, 0
40008680: 32 bf ff f8 bne,a 40008660 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
40008684: c2 04 60 0c ld [ %l1 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40008688: 92 10 00 1d mov %i5, %o1
4000868c: 40 00 18 af call 4000e948 <rtems_rate_monotonic_get_status>
40008690: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40008694: d0 07 bf d8 ld [ %fp + -40 ], %o0
40008698: 94 10 00 13 mov %l3, %o2
4000869c: 40 00 00 b9 call 40008980 <rtems_object_get_name>
400086a0: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400086a4: d8 1f bf a0 ldd [ %fp + -96 ], %o4
400086a8: 92 10 00 17 mov %l7, %o1
400086ac: 94 10 00 10 mov %l0, %o2
400086b0: 90 10 00 18 mov %i0, %o0
400086b4: 9f c6 40 00 call %i1
400086b8: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400086bc: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400086c0: 94 10 00 14 mov %l4, %o2
400086c4: 90 10 00 16 mov %l6, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400086c8: 80 a0 60 00 cmp %g1, 0
400086cc: 12 80 00 0b bne 400086f8 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
400086d0: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
400086d4: 9f c6 40 00 call %i1
400086d8: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400086dc: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400086e0: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400086e4: 80 a0 40 10 cmp %g1, %l0
400086e8: 1a bf ff e3 bcc 40008674 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
400086ec: 90 10 00 10 mov %l0, %o0
400086f0: 81 c7 e0 08 ret
400086f4: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400086f8: 40 00 0f 2c call 4000c3a8 <_Timespec_Divide_by_integer>
400086fc: 92 10 00 01 mov %g1, %o1
(*print)( context,
40008700: d0 07 bf ac ld [ %fp + -84 ], %o0
40008704: 40 00 46 aa call 4001a1ac <.div>
40008708: 92 10 23 e8 mov 0x3e8, %o1
4000870c: 96 10 00 08 mov %o0, %o3
40008710: d0 07 bf b4 ld [ %fp + -76 ], %o0
40008714: d6 27 bf 9c st %o3, [ %fp + -100 ]
40008718: 40 00 46 a5 call 4001a1ac <.div>
4000871c: 92 10 23 e8 mov 0x3e8, %o1
40008720: c2 07 bf f0 ld [ %fp + -16 ], %g1
40008724: b6 10 00 08 mov %o0, %i3
40008728: d0 07 bf f4 ld [ %fp + -12 ], %o0
4000872c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008730: 40 00 46 9f call 4001a1ac <.div>
40008734: 92 10 23 e8 mov 0x3e8, %o1
40008738: d8 07 bf b0 ld [ %fp + -80 ], %o4
4000873c: d6 07 bf 9c ld [ %fp + -100 ], %o3
40008740: d4 07 bf a8 ld [ %fp + -88 ], %o2
40008744: 9a 10 00 1b mov %i3, %o5
40008748: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
4000874c: 92 10 00 1c mov %i4, %o1
40008750: 9f c6 40 00 call %i1
40008754: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40008758: d2 07 bf a0 ld [ %fp + -96 ], %o1
4000875c: 94 10 00 14 mov %l4, %o2
40008760: 40 00 0f 12 call 4000c3a8 <_Timespec_Divide_by_integer>
40008764: 90 10 00 1a mov %i2, %o0
(*print)( context,
40008768: d0 07 bf c4 ld [ %fp + -60 ], %o0
4000876c: 40 00 46 90 call 4001a1ac <.div>
40008770: 92 10 23 e8 mov 0x3e8, %o1
40008774: 96 10 00 08 mov %o0, %o3
40008778: d0 07 bf cc ld [ %fp + -52 ], %o0
4000877c: d6 27 bf 9c st %o3, [ %fp + -100 ]
40008780: 40 00 46 8b call 4001a1ac <.div>
40008784: 92 10 23 e8 mov 0x3e8, %o1
40008788: c2 07 bf f0 ld [ %fp + -16 ], %g1
4000878c: b6 10 00 08 mov %o0, %i3
40008790: d0 07 bf f4 ld [ %fp + -12 ], %o0
40008794: 92 10 23 e8 mov 0x3e8, %o1
40008798: 40 00 46 85 call 4001a1ac <.div>
4000879c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400087a0: d4 07 bf c0 ld [ %fp + -64 ], %o2
400087a4: d6 07 bf 9c ld [ %fp + -100 ], %o3
400087a8: d8 07 bf c8 ld [ %fp + -56 ], %o4
400087ac: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400087b0: 13 10 00 79 sethi %hi(0x4001e400), %o1
400087b4: 90 10 00 18 mov %i0, %o0
400087b8: 92 12 63 00 or %o1, 0x300, %o1
400087bc: 9f c6 40 00 call %i1
400087c0: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400087c4: 10 bf ff a7 b 40008660 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400087c8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400087e8 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
400087e8: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
400087ec: 03 10 00 81 sethi %hi(0x40020400), %g1
400087f0: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 400204f0 <_Thread_Dispatch_disable_level>
400087f4: 84 00 a0 01 inc %g2
400087f8: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400087fc: 23 10 00 80 sethi %hi(0x40020000), %l1
40008800: a2 14 63 84 or %l1, 0x384, %l1 ! 40020384 <_Rate_monotonic_Information>
40008804: e0 04 60 08 ld [ %l1 + 8 ], %l0
40008808: c2 04 60 0c ld [ %l1 + 0xc ], %g1
4000880c: 80 a4 00 01 cmp %l0, %g1
40008810: 18 80 00 09 bgu 40008834 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
40008814: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
40008818: 40 00 00 0a call 40008840 <rtems_rate_monotonic_reset_statistics>
4000881c: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008820: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008824: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008828: 80 a0 40 10 cmp %g1, %l0
4000882c: 1a bf ff fb bcc 40008818 <rtems_rate_monotonic_reset_all_statistics+0x30>
40008830: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
40008834: 40 00 0b f6 call 4000b80c <_Thread_Enable_dispatch>
40008838: 81 e8 00 00 restore
40016378 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
40016378: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
4001637c: 80 a6 60 00 cmp %i1, 0
40016380: 12 80 00 04 bne 40016390 <rtems_signal_send+0x18>
40016384: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016388: 81 c7 e0 08 ret
4001638c: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40016390: 90 10 00 18 mov %i0, %o0
40016394: 40 00 12 ab call 4001ae40 <_Thread_Get>
40016398: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4001639c: c2 07 bf fc ld [ %fp + -4 ], %g1
400163a0: 80 a0 60 00 cmp %g1, 0
400163a4: 02 80 00 05 be 400163b8 <rtems_signal_send+0x40>
400163a8: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
400163ac: 82 10 20 04 mov 4, %g1
}
400163b0: 81 c7 e0 08 ret
400163b4: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400163b8: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400163bc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400163c0: 80 a0 60 00 cmp %g1, 0
400163c4: 02 80 00 25 be 40016458 <rtems_signal_send+0xe0>
400163c8: 01 00 00 00 nop
if ( asr->is_enabled ) {
400163cc: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
400163d0: 80 a0 60 00 cmp %g1, 0
400163d4: 02 80 00 15 be 40016428 <rtems_signal_send+0xb0>
400163d8: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400163dc: 7f ff e2 b6 call 4000eeb4 <sparc_disable_interrupts>
400163e0: 01 00 00 00 nop
*signal_set |= signals;
400163e4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
400163e8: b2 10 40 19 or %g1, %i1, %i1
400163ec: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
400163f0: 7f ff e2 b5 call 4000eec4 <sparc_enable_interrupts>
400163f4: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
400163f8: 03 10 00 fc sethi %hi(0x4003f000), %g1
400163fc: 82 10 60 44 or %g1, 0x44, %g1 ! 4003f044 <_Per_CPU_Information>
40016400: c4 00 60 08 ld [ %g1 + 8 ], %g2
40016404: 80 a0 a0 00 cmp %g2, 0
40016408: 02 80 00 0f be 40016444 <rtems_signal_send+0xcc>
4001640c: 01 00 00 00 nop
40016410: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40016414: 80 a4 40 02 cmp %l1, %g2
40016418: 12 80 00 0b bne 40016444 <rtems_signal_send+0xcc> <== NEVER TAKEN
4001641c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40016420: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40016424: 30 80 00 08 b,a 40016444 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40016428: 7f ff e2 a3 call 4000eeb4 <sparc_disable_interrupts>
4001642c: 01 00 00 00 nop
*signal_set |= signals;
40016430: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40016434: b2 10 40 19 or %g1, %i1, %i1
40016438: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
4001643c: 7f ff e2 a2 call 4000eec4 <sparc_enable_interrupts>
40016440: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
40016444: 40 00 12 71 call 4001ae08 <_Thread_Enable_dispatch>
40016448: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4001644c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016450: 81 c7 e0 08 ret
40016454: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
40016458: 40 00 12 6c call 4001ae08 <_Thread_Enable_dispatch>
4001645c: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
40016460: 10 bf ff ca b 40016388 <rtems_signal_send+0x10>
40016464: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
4000e944 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000e944: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000e948: 80 a6 a0 00 cmp %i2, 0
4000e94c: 02 80 00 43 be 4000ea58 <rtems_task_mode+0x114>
4000e950: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000e954: 27 10 00 59 sethi %hi(0x40016400), %l3
4000e958: a6 14 e2 3c or %l3, 0x23c, %l3 ! 4001663c <_Per_CPU_Information>
4000e95c: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000e960: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000e964: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000e968: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000e96c: e2 04 21 4c ld [ %l0 + 0x14c ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000e970: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000e974: 80 a0 60 00 cmp %g1, 0
4000e978: 12 80 00 3a bne 4000ea60 <rtems_task_mode+0x11c>
4000e97c: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000e980: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
4000e984: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000e988: 7f ff f1 48 call 4000aea8 <_CPU_ISR_Get_level>
4000e98c: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000e990: a9 2d 20 0a sll %l4, 0xa, %l4
4000e994: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000e998: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000e99c: 80 8e 61 00 btst 0x100, %i1
4000e9a0: 02 80 00 06 be 4000e9b8 <rtems_task_mode+0x74>
4000e9a4: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000e9a8: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000e9ac: 80 a0 00 01 cmp %g0, %g1
4000e9b0: 82 60 3f ff subx %g0, -1, %g1
4000e9b4: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000e9b8: 80 8e 62 00 btst 0x200, %i1
4000e9bc: 02 80 00 0b be 4000e9e8 <rtems_task_mode+0xa4>
4000e9c0: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000e9c4: 80 8e 22 00 btst 0x200, %i0
4000e9c8: 22 80 00 07 be,a 4000e9e4 <rtems_task_mode+0xa0>
4000e9cc: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000e9d0: 03 10 00 58 sethi %hi(0x40016000), %g1
4000e9d4: c2 00 63 74 ld [ %g1 + 0x374 ], %g1 ! 40016374 <_Thread_Ticks_per_timeslice>
4000e9d8: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000e9dc: 82 10 20 01 mov 1, %g1
4000e9e0: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000e9e4: 80 8e 60 0f btst 0xf, %i1
4000e9e8: 12 80 00 3d bne 4000eadc <rtems_task_mode+0x198>
4000e9ec: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000e9f0: 80 8e 64 00 btst 0x400, %i1
4000e9f4: 02 80 00 14 be 4000ea44 <rtems_task_mode+0x100>
4000e9f8: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000e9fc: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000ea00: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000ea04: 80 a0 00 18 cmp %g0, %i0
4000ea08: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000ea0c: 80 a0 80 01 cmp %g2, %g1
4000ea10: 22 80 00 0e be,a 4000ea48 <rtems_task_mode+0x104>
4000ea14: 03 10 00 59 sethi %hi(0x40016400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000ea18: 7f ff cd 0e call 40001e50 <sparc_disable_interrupts>
4000ea1c: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
4000ea20: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
4000ea24: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
4000ea28: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000ea2c: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000ea30: 7f ff cd 0c call 40001e60 <sparc_enable_interrupts>
4000ea34: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000ea38: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000ea3c: 80 a0 00 01 cmp %g0, %g1
4000ea40: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000ea44: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ea48: c4 00 61 68 ld [ %g1 + 0x168 ], %g2 ! 40016568 <_System_state_Current>
4000ea4c: 80 a0 a0 03 cmp %g2, 3
4000ea50: 02 80 00 11 be 4000ea94 <rtems_task_mode+0x150>
4000ea54: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
4000ea58: 81 c7 e0 08 ret
4000ea5c: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ea60: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000ea64: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ea68: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000ea6c: 7f ff f1 0f call 4000aea8 <_CPU_ISR_Get_level>
4000ea70: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ea74: a9 2d 20 0a sll %l4, 0xa, %l4
4000ea78: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000ea7c: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000ea80: 80 8e 61 00 btst 0x100, %i1
4000ea84: 02 bf ff cd be 4000e9b8 <rtems_task_mode+0x74>
4000ea88: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000ea8c: 10 bf ff c8 b 4000e9ac <rtems_task_mode+0x68>
4000ea90: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
4000ea94: 80 88 e0 ff btst 0xff, %g3
4000ea98: 12 80 00 0a bne 4000eac0 <rtems_task_mode+0x17c>
4000ea9c: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
4000eaa0: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
4000eaa4: 80 a0 80 03 cmp %g2, %g3
4000eaa8: 02 bf ff ec be 4000ea58 <rtems_task_mode+0x114>
4000eaac: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000eab0: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000eab4: 80 a0 a0 00 cmp %g2, 0
4000eab8: 02 bf ff e8 be 4000ea58 <rtems_task_mode+0x114> <== NEVER TAKEN
4000eabc: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000eac0: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
4000eac4: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000eac8: 7f ff eb 90 call 40009908 <_Thread_Dispatch>
4000eacc: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000ead0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000ead4: 81 c7 e0 08 ret
4000ead8: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000eadc: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000eae0: 7f ff cc e0 call 40001e60 <sparc_enable_interrupts>
4000eae4: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000eae8: 10 bf ff c3 b 4000e9f4 <rtems_task_mode+0xb0>
4000eaec: 80 8e 64 00 btst 0x400, %i1
4000c07c <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000c07c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000c080: 80 a6 60 00 cmp %i1, 0
4000c084: 02 80 00 07 be 4000c0a0 <rtems_task_set_priority+0x24>
4000c088: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000c08c: 03 10 00 69 sethi %hi(0x4001a400), %g1
4000c090: c2 08 60 94 ldub [ %g1 + 0x94 ], %g1 ! 4001a494 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
4000c094: 80 a6 40 01 cmp %i1, %g1
4000c098: 18 80 00 1c bgu 4000c108 <rtems_task_set_priority+0x8c>
4000c09c: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000c0a0: 80 a6 a0 00 cmp %i2, 0
4000c0a4: 02 80 00 19 be 4000c108 <rtems_task_set_priority+0x8c>
4000c0a8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000c0ac: 40 00 09 a4 call 4000e73c <_Thread_Get>
4000c0b0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000c0b4: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c0b8: 80 a0 60 00 cmp %g1, 0
4000c0bc: 12 80 00 13 bne 4000c108 <rtems_task_set_priority+0x8c>
4000c0c0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000c0c4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000c0c8: 80 a6 60 00 cmp %i1, 0
4000c0cc: 02 80 00 0d be 4000c100 <rtems_task_set_priority+0x84>
4000c0d0: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000c0d4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000c0d8: 80 a0 60 00 cmp %g1, 0
4000c0dc: 02 80 00 06 be 4000c0f4 <rtems_task_set_priority+0x78>
4000c0e0: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000c0e4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000c0e8: 80 a6 40 01 cmp %i1, %g1
4000c0ec: 1a 80 00 05 bcc 4000c100 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000c0f0: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000c0f4: 92 10 00 19 mov %i1, %o1
4000c0f8: 40 00 08 5d call 4000e26c <_Thread_Change_priority>
4000c0fc: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000c100: 40 00 09 81 call 4000e704 <_Thread_Enable_dispatch>
4000c104: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000c108: 81 c7 e0 08 ret
4000c10c: 81 e8 00 00 restore
40008430 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
40008430: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
40008434: 80 a6 60 00 cmp %i1, 0
40008438: 02 80 00 1e be 400084b0 <rtems_task_variable_delete+0x80>
4000843c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
40008440: 90 10 00 18 mov %i0, %o0
40008444: 40 00 09 2c call 4000a8f4 <_Thread_Get>
40008448: 92 07 bf fc add %fp, -4, %o1
switch (location) {
4000844c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008450: 80 a0 60 00 cmp %g1, 0
40008454: 12 80 00 19 bne 400084b8 <rtems_task_variable_delete+0x88>
40008458: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
4000845c: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
40008460: 80 a0 60 00 cmp %g1, 0
40008464: 02 80 00 10 be 400084a4 <rtems_task_variable_delete+0x74>
40008468: 01 00 00 00 nop
if (tvp->ptr == ptr) {
4000846c: c4 00 60 04 ld [ %g1 + 4 ], %g2
40008470: 80 a0 80 19 cmp %g2, %i1
40008474: 32 80 00 09 bne,a 40008498 <rtems_task_variable_delete+0x68>
40008478: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
4000847c: 10 80 00 19 b 400084e0 <rtems_task_variable_delete+0xb0>
40008480: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
40008484: 80 a0 80 19 cmp %g2, %i1
40008488: 22 80 00 0e be,a 400084c0 <rtems_task_variable_delete+0x90>
4000848c: c4 02 40 00 ld [ %o1 ], %g2
40008490: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
40008494: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
40008498: 80 a2 60 00 cmp %o1, 0
4000849c: 32 bf ff fa bne,a 40008484 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
400084a0: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
400084a4: 40 00 09 06 call 4000a8bc <_Thread_Enable_dispatch>
400084a8: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
400084ac: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400084b0: 81 c7 e0 08 ret
400084b4: 91 e8 00 01 restore %g0, %g1, %o0
400084b8: 81 c7 e0 08 ret
400084bc: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
400084c0: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
400084c4: 40 00 00 2e call 4000857c <_RTEMS_Tasks_Invoke_task_variable_dtor>
400084c8: 01 00 00 00 nop
_Thread_Enable_dispatch();
400084cc: 40 00 08 fc call 4000a8bc <_Thread_Enable_dispatch>
400084d0: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400084d4: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400084d8: 81 c7 e0 08 ret
400084dc: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
400084e0: 92 10 00 01 mov %g1, %o1
400084e4: 10 bf ff f8 b 400084c4 <rtems_task_variable_delete+0x94>
400084e8: c4 22 21 58 st %g2, [ %o0 + 0x158 ]
400084ec <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
400084ec: 9d e3 bf 98 save %sp, -104, %sp
400084f0: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
400084f4: 80 a6 60 00 cmp %i1, 0
400084f8: 02 80 00 1b be 40008564 <rtems_task_variable_get+0x78>
400084fc: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
40008500: 80 a6 a0 00 cmp %i2, 0
40008504: 02 80 00 1c be 40008574 <rtems_task_variable_get+0x88>
40008508: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
4000850c: 40 00 08 fa call 4000a8f4 <_Thread_Get>
40008510: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40008514: c2 07 bf fc ld [ %fp + -4 ], %g1
40008518: 80 a0 60 00 cmp %g1, 0
4000851c: 12 80 00 12 bne 40008564 <rtems_task_variable_get+0x78>
40008520: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
40008524: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
40008528: 80 a0 60 00 cmp %g1, 0
4000852c: 32 80 00 07 bne,a 40008548 <rtems_task_variable_get+0x5c>
40008530: c4 00 60 04 ld [ %g1 + 4 ], %g2
40008534: 30 80 00 0e b,a 4000856c <rtems_task_variable_get+0x80>
40008538: 80 a0 60 00 cmp %g1, 0
4000853c: 02 80 00 0c be 4000856c <rtems_task_variable_get+0x80> <== NEVER TAKEN
40008540: 01 00 00 00 nop
if (tvp->ptr == ptr) {
40008544: c4 00 60 04 ld [ %g1 + 4 ], %g2
40008548: 80 a0 80 19 cmp %g2, %i1
4000854c: 32 bf ff fb bne,a 40008538 <rtems_task_variable_get+0x4c>
40008550: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
40008554: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
40008558: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
4000855c: 40 00 08 d8 call 4000a8bc <_Thread_Enable_dispatch>
40008560: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
40008564: 81 c7 e0 08 ret
40008568: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
4000856c: 40 00 08 d4 call 4000a8bc <_Thread_Enable_dispatch>
40008570: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
40008574: 81 c7 e0 08 ret
40008578: 81 e8 00 00 restore
40016dd4 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40016dd4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40016dd8: 11 10 00 fc sethi %hi(0x4003f000), %o0
40016ddc: 92 10 00 18 mov %i0, %o1
40016de0: 90 12 20 d4 or %o0, 0xd4, %o0
40016de4: 40 00 0c 73 call 40019fb0 <_Objects_Get>
40016de8: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016dec: c2 07 bf fc ld [ %fp + -4 ], %g1
40016df0: 80 a0 60 00 cmp %g1, 0
40016df4: 22 80 00 04 be,a 40016e04 <rtems_timer_cancel+0x30>
40016df8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016dfc: 81 c7 e0 08 ret
40016e00: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40016e04: 80 a0 60 04 cmp %g1, 4
40016e08: 02 80 00 04 be 40016e18 <rtems_timer_cancel+0x44> <== NEVER TAKEN
40016e0c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40016e10: 40 00 14 dd call 4001c184 <_Watchdog_Remove>
40016e14: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40016e18: 40 00 0f fc call 4001ae08 <_Thread_Enable_dispatch>
40016e1c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40016e20: 81 c7 e0 08 ret
40016e24: 81 e8 00 00 restore
400172ec <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
400172ec: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
400172f0: 03 10 00 fc sethi %hi(0x4003f000), %g1
400172f4: e0 00 61 14 ld [ %g1 + 0x114 ], %l0 ! 4003f114 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
400172f8: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
400172fc: 80 a4 20 00 cmp %l0, 0
40017300: 02 80 00 10 be 40017340 <rtems_timer_server_fire_when+0x54>
40017304: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
40017308: 03 10 00 fb sethi %hi(0x4003ec00), %g1
4001730c: c2 08 62 20 ldub [ %g1 + 0x220 ], %g1 ! 4003ee20 <_TOD_Is_set>
40017310: 80 a0 60 00 cmp %g1, 0
40017314: 02 80 00 0b be 40017340 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
40017318: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
4001731c: 80 a6 a0 00 cmp %i2, 0
40017320: 02 80 00 08 be 40017340 <rtems_timer_server_fire_when+0x54>
40017324: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
40017328: 90 10 00 19 mov %i1, %o0
4001732c: 7f ff f3 b3 call 400141f8 <_TOD_Validate>
40017330: b0 10 20 14 mov 0x14, %i0
40017334: 80 8a 20 ff btst 0xff, %o0
40017338: 12 80 00 04 bne 40017348 <rtems_timer_server_fire_when+0x5c>
4001733c: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40017340: 81 c7 e0 08 ret
40017344: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
40017348: 7f ff f3 76 call 40014120 <_TOD_To_seconds>
4001734c: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
40017350: 25 10 00 fb sethi %hi(0x4003ec00), %l2
40017354: c2 04 a2 98 ld [ %l2 + 0x298 ], %g1 ! 4003ee98 <_TOD_Now>
40017358: 80 a2 00 01 cmp %o0, %g1
4001735c: 08 bf ff f9 bleu 40017340 <rtems_timer_server_fire_when+0x54>
40017360: b2 10 00 08 mov %o0, %i1
40017364: 92 10 00 11 mov %l1, %o1
40017368: 11 10 00 fc sethi %hi(0x4003f000), %o0
4001736c: 94 07 bf fc add %fp, -4, %o2
40017370: 40 00 0b 10 call 40019fb0 <_Objects_Get>
40017374: 90 12 20 d4 or %o0, 0xd4, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40017378: c2 07 bf fc ld [ %fp + -4 ], %g1
4001737c: 80 a0 60 00 cmp %g1, 0
40017380: 12 80 00 16 bne 400173d8 <rtems_timer_server_fire_when+0xec>
40017384: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40017388: 40 00 13 7f call 4001c184 <_Watchdog_Remove>
4001738c: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017390: c4 04 a2 98 ld [ %l2 + 0x298 ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
40017394: c2 04 20 04 ld [ %l0 + 4 ], %g1
40017398: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001739c: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
400173a0: 90 10 00 10 mov %l0, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
400173a4: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
400173a8: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
400173ac: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
400173b0: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
400173b4: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400173b8: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400173bc: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
400173c0: 9f c0 40 00 call %g1
400173c4: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
400173c8: 40 00 0e 90 call 4001ae08 <_Thread_Enable_dispatch>
400173cc: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400173d0: 81 c7 e0 08 ret
400173d4: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400173d8: 81 c7 e0 08 ret
400173dc: 91 e8 20 04 restore %g0, 4, %o0