RTEMS 4.11Annotated Report
Fri Jan 28 07:12:20 2011
400079e0 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
400079e0: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
400079e4: 23 10 00 59 sethi %hi(0x40016400), %l1
400079e8: e0 04 62 14 ld [ %l1 + 0x214 ], %l0 ! 40016614 <_API_extensions_List>
400079ec: a2 14 62 14 or %l1, 0x214, %l1
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
400079f0: a2 04 60 04 add %l1, 4, %l1
400079f4: 80 a4 00 11 cmp %l0, %l1
400079f8: 02 80 00 09 be 40007a1c <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
400079fc: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
40007a00: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007a04: 9f c0 40 00 call %g1
40007a08: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40007a0c: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40007a10: 80 a4 00 11 cmp %l0, %l1
40007a14: 32 bf ff fc bne,a 40007a04 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
40007a18: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
40007a1c: 81 c7 e0 08 ret
40007a20: 81 e8 00 00 restore
40007a24 <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
40007a24: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
40007a28: 23 10 00 59 sethi %hi(0x40016400), %l1
40007a2c: e0 04 62 14 ld [ %l1 + 0x214 ], %l0 ! 40016614 <_API_extensions_List>
40007a30: a2 14 62 14 or %l1, 0x214, %l1
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40007a34: a2 04 60 04 add %l1, 4, %l1
40007a38: 80 a4 00 11 cmp %l0, %l1
40007a3c: 02 80 00 0a be 40007a64 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
40007a40: 25 10 00 59 sethi %hi(0x40016400), %l2
40007a44: a4 14 a2 4c or %l2, 0x24c, %l2 ! 4001664c <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
40007a48: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007a4c: 9f c0 40 00 call %g1
40007a50: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40007a54: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
40007a58: 80 a4 00 11 cmp %l0, %l1
40007a5c: 32 bf ff fc bne,a 40007a4c <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
40007a60: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
40007a64: 81 c7 e0 08 ret
40007a68: 81 e8 00 00 restore
40018090 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40018090: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40018094: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40018098: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
4001809c: 80 a0 40 1a cmp %g1, %i2
400180a0: 0a 80 00 17 bcs 400180fc <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN
400180a4: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
400180a8: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
400180ac: 80 a0 60 00 cmp %g1, 0
400180b0: 02 80 00 0a be 400180d8 <_CORE_message_queue_Broadcast+0x48>
400180b4: a4 10 20 00 clr %l2
*count = 0;
400180b8: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
400180bc: 81 c7 e0 08 ret
400180c0: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
400180c4: d0 04 60 2c ld [ %l1 + 0x2c ], %o0
400180c8: 40 00 22 de call 40020c40 <memcpy>
400180cc: a4 04 a0 01 inc %l2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
400180d0: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
400180d4: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
400180d8: 40 00 0b 6b call 4001ae84 <_Thread_queue_Dequeue>
400180dc: 90 10 00 10 mov %l0, %o0
400180e0: 92 10 00 19 mov %i1, %o1
400180e4: a2 10 00 08 mov %o0, %l1
400180e8: 80 a2 20 00 cmp %o0, 0
400180ec: 12 bf ff f6 bne 400180c4 <_CORE_message_queue_Broadcast+0x34>
400180f0: 94 10 00 1a mov %i2, %o2
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
400180f4: e4 27 40 00 st %l2, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
400180f8: b0 10 20 00 clr %i0
}
400180fc: 81 c7 e0 08 ret
40018100: 81 e8 00 00 restore
40011950 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
40011950: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
40011954: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
40011958: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
4001195c: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
40011960: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
40011964: 80 8e e0 03 btst 3, %i3
40011968: 02 80 00 07 be 40011984 <_CORE_message_queue_Initialize+0x34>
4001196c: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
40011970: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
40011974: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
40011978: 80 a6 c0 12 cmp %i3, %l2
4001197c: 18 80 00 22 bgu 40011a04 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40011980: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
40011984: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
40011988: 92 10 00 1a mov %i2, %o1
4001198c: 90 10 00 11 mov %l1, %o0
40011990: 40 00 40 b5 call 40021c64 <.umul>
40011994: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40011998: 80 a2 00 12 cmp %o0, %l2
4001199c: 0a 80 00 1a bcs 40011a04 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
400119a0: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
400119a4: 40 00 0c 70 call 40014b64 <_Workspace_Allocate>
400119a8: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
400119ac: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
400119b0: 80 a2 20 00 cmp %o0, 0
400119b4: 02 80 00 14 be 40011a04 <_CORE_message_queue_Initialize+0xb4>
400119b8: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
400119bc: 90 04 20 60 add %l0, 0x60, %o0
400119c0: 94 10 00 1a mov %i2, %o2
400119c4: 40 00 15 01 call 40016dc8 <_Chain_Initialize>
400119c8: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
400119cc: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
400119d0: c0 24 20 54 clr [ %l0 + 0x54 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
400119d4: 84 04 20 54 add %l0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
400119d8: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
400119dc: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
400119e0: c2 06 40 00 ld [ %i1 ], %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
400119e4: b0 10 20 01 mov 1, %i0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
400119e8: 82 18 60 01 xor %g1, 1, %g1
400119ec: 80 a0 00 01 cmp %g0, %g1
400119f0: 90 10 00 10 mov %l0, %o0
400119f4: 94 10 20 80 mov 0x80, %o2
400119f8: 92 60 3f ff subx %g0, -1, %o1
400119fc: 40 00 09 8c call 4001402c <_Thread_queue_Initialize>
40011a00: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
40011a04: 81 c7 e0 08 ret
40011a08: 81 e8 00 00 restore
40007d70 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40007d70: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40007d74: 21 10 00 59 sethi %hi(0x40016400), %l0
40007d78: c2 04 20 00 ld [ %l0 ], %g1
40007d7c: 80 a0 60 00 cmp %g1, 0
40007d80: 02 80 00 05 be 40007d94 <_CORE_mutex_Seize+0x24>
40007d84: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40007d88: 80 8e a0 ff btst 0xff, %i2
40007d8c: 12 80 00 1a bne 40007df4 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
40007d90: 03 10 00 59 sethi %hi(0x40016400), %g1
40007d94: 90 10 00 18 mov %i0, %o0
40007d98: 40 00 14 21 call 4000ce1c <_CORE_mutex_Seize_interrupt_trylock>
40007d9c: 92 07 a0 54 add %fp, 0x54, %o1
40007da0: 80 a2 20 00 cmp %o0, 0
40007da4: 02 80 00 12 be 40007dec <_CORE_mutex_Seize+0x7c>
40007da8: 80 8e a0 ff btst 0xff, %i2
40007dac: 02 80 00 1a be 40007e14 <_CORE_mutex_Seize+0xa4>
40007db0: 01 00 00 00 nop
40007db4: c4 04 20 00 ld [ %l0 ], %g2
40007db8: 03 10 00 59 sethi %hi(0x40016400), %g1
40007dbc: c2 00 62 58 ld [ %g1 + 0x258 ], %g1 ! 40016658 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40007dc0: 86 10 20 01 mov 1, %g3
40007dc4: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
40007dc8: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40007dcc: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40007dd0: 82 00 a0 01 add %g2, 1, %g1
40007dd4: c2 24 20 00 st %g1, [ %l0 ]
40007dd8: 7f ff e8 11 call 40001e1c <sparc_enable_interrupts>
40007ddc: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007de0: 90 10 00 18 mov %i0, %o0
40007de4: 7f ff ff c0 call 40007ce4 <_CORE_mutex_Seize_interrupt_blocking>
40007de8: 92 10 00 1b mov %i3, %o1
40007dec: 81 c7 e0 08 ret
40007df0: 81 e8 00 00 restore
40007df4: c2 00 61 78 ld [ %g1 + 0x178 ], %g1
40007df8: 80 a0 60 01 cmp %g1, 1
40007dfc: 28 bf ff e7 bleu,a 40007d98 <_CORE_mutex_Seize+0x28>
40007e00: 90 10 00 18 mov %i0, %o0
40007e04: 90 10 20 00 clr %o0
40007e08: 92 10 20 00 clr %o1
40007e0c: 40 00 01 d8 call 4000856c <_Internal_error_Occurred>
40007e10: 94 10 20 12 mov 0x12, %o2
40007e14: 7f ff e8 02 call 40001e1c <sparc_enable_interrupts>
40007e18: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007e1c: 03 10 00 59 sethi %hi(0x40016400), %g1
40007e20: c2 00 62 58 ld [ %g1 + 0x258 ], %g1 ! 40016658 <_Per_CPU_Information+0xc>
40007e24: 84 10 20 01 mov 1, %g2
40007e28: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40007e2c: 81 c7 e0 08 ret
40007e30: 81 e8 00 00 restore
4000ce1c <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000ce1c: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000ce20: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ce24: c2 00 62 58 ld [ %g1 + 0x258 ], %g1 ! 40016658 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000ce28: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000ce2c: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000ce30: 80 a0 a0 00 cmp %g2, 0
4000ce34: 02 80 00 13 be 4000ce80 <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000ce38: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000ce3c: c8 00 60 08 ld [ %g1 + 8 ], %g4
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000ce40: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
the_mutex->nest_count = 1;
4000ce44: 86 10 20 01 mov 1, %g3
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000ce48: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
4000ce4c: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
the_mutex->holder_id = executing->Object.id;
4000ce50: c8 26 20 60 st %g4, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000ce54: 80 a0 a0 02 cmp %g2, 2
4000ce58: 02 80 00 10 be 4000ce98 <_CORE_mutex_Seize_interrupt_trylock+0x7c>
4000ce5c: c6 26 20 54 st %g3, [ %i0 + 0x54 ]
4000ce60: 80 a0 a0 03 cmp %g2, 3
4000ce64: 22 80 00 21 be,a 4000cee8 <_CORE_mutex_Seize_interrupt_trylock+0xcc>
4000ce68: da 00 60 1c ld [ %g1 + 0x1c ], %o5
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000ce6c: d0 06 40 00 ld [ %i1 ], %o0
4000ce70: 7f ff d3 eb call 40001e1c <sparc_enable_interrupts>
4000ce74: b0 10 20 00 clr %i0
4000ce78: 81 c7 e0 08 ret
4000ce7c: 81 e8 00 00 restore
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000ce80: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000ce84: 80 a0 40 02 cmp %g1, %g2
4000ce88: 02 80 00 0c be 4000ceb8 <_CORE_mutex_Seize_interrupt_trylock+0x9c>
4000ce8c: b0 10 20 01 mov 1, %i0
4000ce90: 81 c7 e0 08 ret
4000ce94: 81 e8 00 00 restore
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000ce98: c4 00 60 1c ld [ %g1 + 0x1c ], %g2
4000ce9c: 84 00 a0 01 inc %g2
4000cea0: c4 20 60 1c st %g2, [ %g1 + 0x1c ]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000cea4: d0 06 40 00 ld [ %i1 ], %o0
4000cea8: 7f ff d3 dd call 40001e1c <sparc_enable_interrupts>
4000ceac: b0 10 20 00 clr %i0
4000ceb0: 81 c7 e0 08 ret
4000ceb4: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000ceb8: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
4000cebc: 80 a0 a0 00 cmp %g2, 0
4000cec0: 12 80 00 2b bne 4000cf6c <_CORE_mutex_Seize_interrupt_trylock+0x150>
4000cec4: 80 a0 a0 01 cmp %g2, 1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000cec8: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000cecc: 82 00 60 01 inc %g1
4000ced0: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000ced4: d0 06 40 00 ld [ %i1 ], %o0
4000ced8: 7f ff d3 d1 call 40001e1c <sparc_enable_interrupts>
4000cedc: b0 10 20 00 clr %i0
4000cee0: 81 c7 e0 08 ret
4000cee4: 81 e8 00 00 restore
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000cee8: c8 06 20 4c ld [ %i0 + 0x4c ], %g4
current = executing->current_priority;
4000ceec: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000cef0: 98 03 60 01 add %o5, 1, %o4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
4000cef4: 80 a1 00 02 cmp %g4, %g2
4000cef8: 02 80 00 25 be 4000cf8c <_CORE_mutex_Seize_interrupt_trylock+0x170>
4000cefc: d8 20 60 1c st %o4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
4000cf00: 80 a1 00 02 cmp %g4, %g2
4000cf04: 1a 80 00 11 bcc 4000cf48 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000cf08: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000cf0c: 03 10 00 59 sethi %hi(0x40016400), %g1
4000cf10: c4 00 60 00 ld [ %g1 ], %g2
4000cf14: 84 00 a0 01 inc %g2
4000cf18: c4 20 60 00 st %g2, [ %g1 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000cf1c: 7f ff d3 c0 call 40001e1c <sparc_enable_interrupts>
4000cf20: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000cf24: d0 06 20 5c ld [ %i0 + 0x5c ], %o0
4000cf28: d2 06 20 4c ld [ %i0 + 0x4c ], %o1
4000cf2c: 94 10 20 00 clr %o2
4000cf30: 7f ff f1 00 call 40009330 <_Thread_Change_priority>
4000cf34: b0 10 20 00 clr %i0
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000cf38: 7f ff f2 3c call 40009828 <_Thread_Enable_dispatch>
4000cf3c: 01 00 00 00 nop
4000cf40: 81 c7 e0 08 ret
4000cf44: 81 e8 00 00 restore
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000cf48: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000cf4c: c6 26 20 50 st %g3, [ %i0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
4000cf50: c0 26 20 54 clr [ %i0 + 0x54 ]
executing->resource_count--; /* undo locking above */
4000cf54: da 20 60 1c st %o5, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000cf58: d0 06 40 00 ld [ %i1 ], %o0
4000cf5c: 7f ff d3 b0 call 40001e1c <sparc_enable_interrupts>
4000cf60: b0 10 20 00 clr %i0
4000cf64: 81 c7 e0 08 ret
4000cf68: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000cf6c: 12 bf ff c3 bne 4000ce78 <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN
4000cf70: 84 10 20 02 mov 2, %g2
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000cf74: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED
_ISR_Enable( *level_p );
4000cf78: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000cf7c: 7f ff d3 a8 call 40001e1c <sparc_enable_interrupts> <== NOT EXECUTED
4000cf80: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000cf84: 81 c7 e0 08 ret <== NOT EXECUTED
4000cf88: 81 e8 00 00 restore <== NOT EXECUTED
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
4000cf8c: d0 06 40 00 ld [ %i1 ], %o0
4000cf90: 7f ff d3 a3 call 40001e1c <sparc_enable_interrupts>
4000cf94: b0 10 20 00 clr %i0
4000cf98: 81 c7 e0 08 ret
4000cf9c: 81 e8 00 00 restore
40007fb0 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40007fb0: 9d e3 bf a0 save %sp, -96, %sp
40007fb4: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40007fb8: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40007fbc: 40 00 06 f2 call 40009b84 <_Thread_queue_Dequeue>
40007fc0: 90 10 00 10 mov %l0, %o0
40007fc4: 80 a2 20 00 cmp %o0, 0
40007fc8: 02 80 00 04 be 40007fd8 <_CORE_semaphore_Surrender+0x28>
40007fcc: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
40007fd0: 81 c7 e0 08 ret
40007fd4: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40007fd8: 7f ff e7 8d call 40001e0c <sparc_disable_interrupts>
40007fdc: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40007fe0: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40007fe4: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40007fe8: 80 a0 40 02 cmp %g1, %g2
40007fec: 1a 80 00 05 bcc 40008000 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
40007ff0: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40007ff4: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40007ff8: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40007ffc: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40008000: 7f ff e7 87 call 40001e1c <sparc_enable_interrupts>
40008004: 01 00 00 00 nop
}
return status;
}
40008008: 81 c7 e0 08 ret
4000800c: 81 e8 00 00 restore
4000cdb4 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
4000cdb4: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
4000cdb8: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000cdbc: a0 06 20 04 add %i0, 4, %l0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000cdc0: 80 a6 a0 00 cmp %i2, 0
4000cdc4: 02 80 00 12 be 4000ce0c <_Chain_Initialize+0x58> <== NEVER TAKEN
4000cdc8: 90 10 00 18 mov %i0, %o0
4000cdcc: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
4000cdd0: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
4000cdd4: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
4000cdd8: 10 80 00 05 b 4000cdec <_Chain_Initialize+0x38>
4000cddc: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000cde0: 84 10 00 01 mov %g1, %g2
4000cde4: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
4000cde8: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
4000cdec: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
4000cdf0: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000cdf4: 80 a6 a0 00 cmp %i2, 0
4000cdf8: 12 bf ff fa bne 4000cde0 <_Chain_Initialize+0x2c>
4000cdfc: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
4000ce00: 40 00 16 e0 call 40012980 <.umul>
4000ce04: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
4000ce08: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
4000ce0c: e0 22 00 00 st %l0, [ %o0 ]
tail->previous = current;
4000ce10: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
4000ce14: 81 c7 e0 08 ret
4000ce18: 81 e8 00 00 restore
40006c6c <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40006c6c: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40006c70: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
40006c74: 7f ff ec 66 call 40001e0c <sparc_disable_interrupts>
40006c78: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
40006c7c: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
40006c80: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40006c84: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40006c88: 86 88 40 02 andcc %g1, %g2, %g3
40006c8c: 02 80 00 3e be 40006d84 <_Event_Surrender+0x118>
40006c90: 09 10 00 59 sethi %hi(0x40016400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40006c94: 88 11 22 4c or %g4, 0x24c, %g4 ! 4001664c <_Per_CPU_Information>
40006c98: da 01 20 08 ld [ %g4 + 8 ], %o5
40006c9c: 80 a3 60 00 cmp %o5, 0
40006ca0: 32 80 00 1d bne,a 40006d14 <_Event_Surrender+0xa8>
40006ca4: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
40006ca8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40006cac: 80 89 21 00 btst 0x100, %g4
40006cb0: 02 80 00 33 be 40006d7c <_Event_Surrender+0x110>
40006cb4: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40006cb8: 02 80 00 04 be 40006cc8 <_Event_Surrender+0x5c>
40006cbc: 80 8c a0 02 btst 2, %l2
40006cc0: 02 80 00 2f be 40006d7c <_Event_Surrender+0x110> <== NEVER TAKEN
40006cc4: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006cc8: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40006ccc: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40006cd0: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40006cd4: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006cd8: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
40006cdc: 7f ff ec 50 call 40001e1c <sparc_enable_interrupts>
40006ce0: 90 10 00 11 mov %l1, %o0
40006ce4: 7f ff ec 4a call 40001e0c <sparc_disable_interrupts>
40006ce8: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40006cec: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40006cf0: 80 a0 60 02 cmp %g1, 2
40006cf4: 02 80 00 26 be 40006d8c <_Event_Surrender+0x120>
40006cf8: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40006cfc: 90 10 00 11 mov %l1, %o0
40006d00: 7f ff ec 47 call 40001e1c <sparc_enable_interrupts>
40006d04: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006d08: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40006d0c: 40 00 09 f0 call 400094cc <_Thread_Clear_state>
40006d10: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40006d14: 80 a6 00 04 cmp %i0, %g4
40006d18: 32 bf ff e5 bne,a 40006cac <_Event_Surrender+0x40>
40006d1c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006d20: 09 10 00 59 sethi %hi(0x40016400), %g4
40006d24: da 01 22 a0 ld [ %g4 + 0x2a0 ], %o5 ! 400166a0 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40006d28: 80 a3 60 02 cmp %o5, 2
40006d2c: 02 80 00 07 be 40006d48 <_Event_Surrender+0xdc> <== NEVER TAKEN
40006d30: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40006d34: da 01 22 a0 ld [ %g4 + 0x2a0 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006d38: 80 a3 60 01 cmp %o5, 1
40006d3c: 32 bf ff dc bne,a 40006cac <_Event_Surrender+0x40>
40006d40: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40006d44: 80 a0 40 03 cmp %g1, %g3
40006d48: 02 80 00 04 be 40006d58 <_Event_Surrender+0xec>
40006d4c: 80 8c a0 02 btst 2, %l2
40006d50: 02 80 00 09 be 40006d74 <_Event_Surrender+0x108> <== NEVER TAKEN
40006d54: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006d58: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
40006d5c: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40006d60: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40006d64: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006d68: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40006d6c: 82 10 20 03 mov 3, %g1
40006d70: c2 21 22 a0 st %g1, [ %g4 + 0x2a0 ]
}
_ISR_Enable( level );
40006d74: 7f ff ec 2a call 40001e1c <sparc_enable_interrupts>
40006d78: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40006d7c: 7f ff ec 28 call 40001e1c <sparc_enable_interrupts>
40006d80: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
40006d84: 7f ff ec 26 call 40001e1c <sparc_enable_interrupts>
40006d88: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40006d8c: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40006d90: 7f ff ec 23 call 40001e1c <sparc_enable_interrupts>
40006d94: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40006d98: 40 00 0e f8 call 4000a978 <_Watchdog_Remove>
40006d9c: 90 06 20 48 add %i0, 0x48, %o0
40006da0: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40006da4: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40006da8: 40 00 09 c9 call 400094cc <_Thread_Clear_state>
40006dac: 81 e8 00 00 restore
40006db4 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40006db4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40006db8: 90 10 00 18 mov %i0, %o0
40006dbc: 40 00 0a a9 call 40009860 <_Thread_Get>
40006dc0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40006dc4: c2 07 bf fc ld [ %fp + -4 ], %g1
40006dc8: 80 a0 60 00 cmp %g1, 0
40006dcc: 12 80 00 15 bne 40006e20 <_Event_Timeout+0x6c> <== NEVER TAKEN
40006dd0: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40006dd4: 7f ff ec 0e call 40001e0c <sparc_disable_interrupts>
40006dd8: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40006ddc: 03 10 00 59 sethi %hi(0x40016400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40006de0: c2 00 62 58 ld [ %g1 + 0x258 ], %g1 ! 40016658 <_Per_CPU_Information+0xc>
40006de4: 80 a4 00 01 cmp %l0, %g1
40006de8: 02 80 00 10 be 40006e28 <_Event_Timeout+0x74>
40006dec: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006df0: 82 10 20 06 mov 6, %g1
40006df4: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40006df8: 7f ff ec 09 call 40001e1c <sparc_enable_interrupts>
40006dfc: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006e00: 90 10 00 10 mov %l0, %o0
40006e04: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40006e08: 40 00 09 b1 call 400094cc <_Thread_Clear_state>
40006e0c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40006e10: 03 10 00 59 sethi %hi(0x40016400), %g1
40006e14: c4 00 60 00 ld [ %g1 ], %g2
40006e18: 84 00 bf ff add %g2, -1, %g2
40006e1c: c4 20 60 00 st %g2, [ %g1 ]
40006e20: 81 c7 e0 08 ret
40006e24: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40006e28: 03 10 00 59 sethi %hi(0x40016400), %g1
40006e2c: c4 00 62 a0 ld [ %g1 + 0x2a0 ], %g2 ! 400166a0 <_Event_Sync_state>
40006e30: 80 a0 a0 01 cmp %g2, 1
40006e34: 32 bf ff f0 bne,a 40006df4 <_Event_Timeout+0x40>
40006e38: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40006e3c: 84 10 20 02 mov 2, %g2
40006e40: c4 20 62 a0 st %g2, [ %g1 + 0x2a0 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006e44: 10 bf ff ec b 40006df4 <_Event_Timeout+0x40>
40006e48: 82 10 20 06 mov 6, %g1
4000d00c <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
4000d00c: 9d e3 bf 98 save %sp, -104, %sp
4000d010: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000d014: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
4000d018: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
4000d01c: 80 a6 40 12 cmp %i1, %l2
4000d020: 18 80 00 6e bgu 4000d1d8 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000d024: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
4000d028: 80 a6 e0 00 cmp %i3, 0
4000d02c: 12 80 00 75 bne 4000d200 <_Heap_Allocate_aligned_with_boundary+0x1f4>
4000d030: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d034: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000d038: 80 a4 00 14 cmp %l0, %l4
4000d03c: 02 80 00 67 be 4000d1d8 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000d040: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000d044: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000d048: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000d04c: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000d050: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
4000d054: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
4000d058: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000d05c: 80 a4 80 13 cmp %l2, %l3
4000d060: 3a 80 00 4b bcc,a 4000d18c <_Heap_Allocate_aligned_with_boundary+0x180>
4000d064: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
4000d068: 80 a6 a0 00 cmp %i2, 0
4000d06c: 02 80 00 44 be 4000d17c <_Heap_Allocate_aligned_with_boundary+0x170>
4000d070: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000d074: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d078: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d07c: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000d080: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
4000d084: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d088: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
4000d08c: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000d090: a6 00 40 13 add %g1, %l3, %l3
4000d094: 40 00 17 21 call 40012d18 <.urem>
4000d098: 90 10 00 18 mov %i0, %o0
4000d09c: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
4000d0a0: 80 a4 c0 18 cmp %l3, %i0
4000d0a4: 1a 80 00 06 bcc 4000d0bc <_Heap_Allocate_aligned_with_boundary+0xb0>
4000d0a8: ac 05 20 08 add %l4, 8, %l6
4000d0ac: 90 10 00 13 mov %l3, %o0
4000d0b0: 40 00 17 1a call 40012d18 <.urem>
4000d0b4: 92 10 00 1a mov %i2, %o1
4000d0b8: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
4000d0bc: 80 a6 e0 00 cmp %i3, 0
4000d0c0: 02 80 00 24 be 4000d150 <_Heap_Allocate_aligned_with_boundary+0x144>
4000d0c4: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
4000d0c8: a6 06 00 19 add %i0, %i1, %l3
4000d0cc: 92 10 00 1b mov %i3, %o1
4000d0d0: 40 00 17 12 call 40012d18 <.urem>
4000d0d4: 90 10 00 13 mov %l3, %o0
4000d0d8: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000d0dc: 80 a2 00 13 cmp %o0, %l3
4000d0e0: 1a 80 00 1b bcc 4000d14c <_Heap_Allocate_aligned_with_boundary+0x140>
4000d0e4: 80 a6 00 08 cmp %i0, %o0
4000d0e8: 1a 80 00 1a bcc 4000d150 <_Heap_Allocate_aligned_with_boundary+0x144>
4000d0ec: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000d0f0: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
4000d0f4: 80 a5 40 08 cmp %l5, %o0
4000d0f8: 28 80 00 09 bleu,a 4000d11c <_Heap_Allocate_aligned_with_boundary+0x110>
4000d0fc: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000d100: 10 80 00 23 b 4000d18c <_Heap_Allocate_aligned_with_boundary+0x180>
4000d104: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000d108: 1a 80 00 11 bcc 4000d14c <_Heap_Allocate_aligned_with_boundary+0x140>
4000d10c: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
4000d110: 38 80 00 1f bgu,a 4000d18c <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000d114: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
4000d118: b0 22 00 19 sub %o0, %i1, %i0
4000d11c: 92 10 00 1a mov %i2, %o1
4000d120: 40 00 16 fe call 40012d18 <.urem>
4000d124: 90 10 00 18 mov %i0, %o0
4000d128: 92 10 00 1b mov %i3, %o1
4000d12c: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
4000d130: a6 06 00 19 add %i0, %i1, %l3
4000d134: 40 00 16 f9 call 40012d18 <.urem>
4000d138: 90 10 00 13 mov %l3, %o0
4000d13c: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000d140: 80 a2 00 13 cmp %o0, %l3
4000d144: 0a bf ff f1 bcs 4000d108 <_Heap_Allocate_aligned_with_boundary+0xfc>
4000d148: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
4000d14c: 80 a5 80 18 cmp %l6, %i0
4000d150: 38 80 00 0f bgu,a 4000d18c <_Heap_Allocate_aligned_with_boundary+0x180>
4000d154: e8 05 20 08 ld [ %l4 + 8 ], %l4
4000d158: 82 10 3f f8 mov -8, %g1
4000d15c: 90 10 00 18 mov %i0, %o0
4000d160: a6 20 40 14 sub %g1, %l4, %l3
4000d164: 92 10 00 1d mov %i5, %o1
4000d168: 40 00 16 ec call 40012d18 <.urem>
4000d16c: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000d170: 90 a4 c0 08 subcc %l3, %o0, %o0
4000d174: 12 80 00 1b bne 4000d1e0 <_Heap_Allocate_aligned_with_boundary+0x1d4>
4000d178: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
4000d17c: 80 a6 20 00 cmp %i0, 0
4000d180: 32 80 00 08 bne,a 4000d1a0 <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
4000d184: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
4000d188: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000d18c: 80 a4 00 14 cmp %l0, %l4
4000d190: 02 80 00 1a be 4000d1f8 <_Heap_Allocate_aligned_with_boundary+0x1ec>
4000d194: 82 04 60 01 add %l1, 1, %g1
4000d198: 10 bf ff b0 b 4000d058 <_Heap_Allocate_aligned_with_boundary+0x4c>
4000d19c: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
4000d1a0: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000d1a4: 84 00 a0 01 inc %g2
stats->searches += search_count;
4000d1a8: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
4000d1ac: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
4000d1b0: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000d1b4: 90 10 00 10 mov %l0, %o0
4000d1b8: 92 10 00 14 mov %l4, %o1
4000d1bc: 94 10 00 18 mov %i0, %o2
4000d1c0: 7f ff ec 9f call 4000843c <_Heap_Block_allocate>
4000d1c4: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000d1c8: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
4000d1cc: 80 a0 40 11 cmp %g1, %l1
4000d1d0: 2a 80 00 02 bcs,a 4000d1d8 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000d1d4: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d1d8: 81 c7 e0 08 ret
4000d1dc: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000d1e0: 1a bf ff e8 bcc 4000d180 <_Heap_Allocate_aligned_with_boundary+0x174>
4000d1e4: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000d1e8: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
4000d1ec: 80 a4 00 14 cmp %l0, %l4
4000d1f0: 12 bf ff ea bne 4000d198 <_Heap_Allocate_aligned_with_boundary+0x18c>
4000d1f4: 82 04 60 01 add %l1, 1, %g1
4000d1f8: 10 bf ff f4 b 4000d1c8 <_Heap_Allocate_aligned_with_boundary+0x1bc>
4000d1fc: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
4000d200: 18 bf ff f6 bgu 4000d1d8 <_Heap_Allocate_aligned_with_boundary+0x1cc>
4000d204: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
4000d208: 22 bf ff 8b be,a 4000d034 <_Heap_Allocate_aligned_with_boundary+0x28>
4000d20c: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d210: 10 bf ff 8a b 4000d038 <_Heap_Allocate_aligned_with_boundary+0x2c>
4000d214: e8 04 20 08 ld [ %l0 + 8 ], %l4
4000d520 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000d520: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000d524: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000d528: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000d52c: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000d530: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000d534: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000d538: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000d53c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
4000d540: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000d544: 80 a6 40 11 cmp %i1, %l1
4000d548: 18 80 00 86 bgu 4000d760 <_Heap_Extend+0x240>
4000d54c: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000d550: 90 10 00 19 mov %i1, %o0
4000d554: 92 10 00 1a mov %i2, %o1
4000d558: 94 10 00 13 mov %l3, %o2
4000d55c: 98 07 bf fc add %fp, -4, %o4
4000d560: 7f ff ec 18 call 400085c0 <_Heap_Get_first_and_last_block>
4000d564: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000d568: 80 8a 20 ff btst 0xff, %o0
4000d56c: 02 80 00 7d be 4000d760 <_Heap_Extend+0x240>
4000d570: ba 10 20 00 clr %i5
4000d574: b0 10 00 12 mov %l2, %i0
4000d578: b8 10 20 00 clr %i4
4000d57c: ac 10 20 00 clr %l6
4000d580: 10 80 00 14 b 4000d5d0 <_Heap_Extend+0xb0>
4000d584: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000d588: 2a 80 00 02 bcs,a 4000d590 <_Heap_Extend+0x70>
4000d58c: b8 10 00 18 mov %i0, %i4
4000d590: 90 10 00 15 mov %l5, %o0
4000d594: 40 00 17 34 call 40013264 <.urem>
4000d598: 92 10 00 13 mov %l3, %o1
4000d59c: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000d5a0: 80 a5 40 19 cmp %l5, %i1
4000d5a4: 02 80 00 1c be 4000d614 <_Heap_Extend+0xf4>
4000d5a8: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000d5ac: 80 a6 40 15 cmp %i1, %l5
4000d5b0: 38 80 00 02 bgu,a 4000d5b8 <_Heap_Extend+0x98>
4000d5b4: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d5b8: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000d5bc: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d5c0: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000d5c4: 80 a4 80 18 cmp %l2, %i0
4000d5c8: 22 80 00 1b be,a 4000d634 <_Heap_Extend+0x114>
4000d5cc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000d5d0: 80 a6 00 12 cmp %i0, %l2
4000d5d4: 02 80 00 65 be 4000d768 <_Heap_Extend+0x248>
4000d5d8: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000d5dc: 80 a0 40 11 cmp %g1, %l1
4000d5e0: 0a 80 00 6f bcs 4000d79c <_Heap_Extend+0x27c>
4000d5e4: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000d5e8: 80 a0 40 11 cmp %g1, %l1
4000d5ec: 12 bf ff e7 bne 4000d588 <_Heap_Extend+0x68>
4000d5f0: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d5f4: 90 10 00 15 mov %l5, %o0
4000d5f8: 40 00 17 1b call 40013264 <.urem>
4000d5fc: 92 10 00 13 mov %l3, %o1
4000d600: 82 05 7f f8 add %l5, -8, %g1
4000d604: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000d608: 80 a5 40 19 cmp %l5, %i1
4000d60c: 12 bf ff e8 bne 4000d5ac <_Heap_Extend+0x8c> <== ALWAYS TAKEN
4000d610: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
4000d614: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d618: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000d61c: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d620: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000d624: 80 a4 80 18 cmp %l2, %i0
4000d628: 12 bf ff ea bne 4000d5d0 <_Heap_Extend+0xb0> <== NEVER TAKEN
4000d62c: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
4000d630: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000d634: 80 a6 40 01 cmp %i1, %g1
4000d638: 3a 80 00 54 bcc,a 4000d788 <_Heap_Extend+0x268>
4000d63c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000d640: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000d644: c2 07 bf fc ld [ %fp + -4 ], %g1
4000d648: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000d64c: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000d650: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
4000d654: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000d658: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000d65c: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000d660: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000d664: 80 a1 00 01 cmp %g4, %g1
4000d668: 08 80 00 42 bleu 4000d770 <_Heap_Extend+0x250>
4000d66c: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
4000d670: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000d674: 80 a5 e0 00 cmp %l7, 0
4000d678: 02 80 00 62 be 4000d800 <_Heap_Extend+0x2e0>
4000d67c: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000d680: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000d684: 92 10 00 12 mov %l2, %o1
4000d688: 40 00 16 f7 call 40013264 <.urem>
4000d68c: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000d690: 80 a2 20 00 cmp %o0, 0
4000d694: 02 80 00 04 be 4000d6a4 <_Heap_Extend+0x184> <== ALWAYS TAKEN
4000d698: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
4000d69c: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000d6a0: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000d6a4: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000d6a8: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000d6ac: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000d6b0: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
4000d6b4: 90 10 00 10 mov %l0, %o0
4000d6b8: 92 10 00 01 mov %g1, %o1
4000d6bc: 7f ff ff 8e call 4000d4f4 <_Heap_Free_block>
4000d6c0: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000d6c4: 80 a5 a0 00 cmp %l6, 0
4000d6c8: 02 80 00 3a be 4000d7b0 <_Heap_Extend+0x290>
4000d6cc: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d6d0: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000d6d4: a2 24 40 16 sub %l1, %l6, %l1
4000d6d8: 40 00 16 e3 call 40013264 <.urem>
4000d6dc: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000d6e0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000d6e4: a2 24 40 08 sub %l1, %o0, %l1
4000d6e8: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
4000d6ec: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000d6f0: 84 04 40 16 add %l1, %l6, %g2
4000d6f4: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d6f8: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000d6fc: 90 10 00 10 mov %l0, %o0
4000d700: 82 08 60 01 and %g1, 1, %g1
4000d704: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
4000d708: a2 14 40 01 or %l1, %g1, %l1
4000d70c: 7f ff ff 7a call 4000d4f4 <_Heap_Free_block>
4000d710: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000d714: 80 a5 a0 00 cmp %l6, 0
4000d718: 02 80 00 33 be 4000d7e4 <_Heap_Extend+0x2c4>
4000d71c: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d720: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000d724: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d728: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000d72c: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000d730: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000d734: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d738: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
4000d73c: 88 13 40 04 or %o5, %g4, %g4
4000d740: c8 20 60 04 st %g4, [ %g1 + 4 ]
4000d744: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000d748: 82 00 80 14 add %g2, %l4, %g1
4000d74c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
4000d750: 80 a6 e0 00 cmp %i3, 0
4000d754: 02 80 00 03 be 4000d760 <_Heap_Extend+0x240> <== NEVER TAKEN
4000d758: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
4000d75c: e8 26 c0 00 st %l4, [ %i3 ]
4000d760: 81 c7 e0 08 ret
4000d764: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000d768: 10 bf ff 9d b 4000d5dc <_Heap_Extend+0xbc>
4000d76c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000d770: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000d774: 80 a0 40 02 cmp %g1, %g2
4000d778: 2a bf ff bf bcs,a 4000d674 <_Heap_Extend+0x154>
4000d77c: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000d780: 10 bf ff be b 4000d678 <_Heap_Extend+0x158>
4000d784: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000d788: 80 a4 40 01 cmp %l1, %g1
4000d78c: 38 bf ff ae bgu,a 4000d644 <_Heap_Extend+0x124>
4000d790: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000d794: 10 bf ff ad b 4000d648 <_Heap_Extend+0x128>
4000d798: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000d79c: 80 a6 40 15 cmp %i1, %l5
4000d7a0: 1a bf ff 93 bcc 4000d5ec <_Heap_Extend+0xcc>
4000d7a4: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d7a8: 81 c7 e0 08 ret
4000d7ac: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000d7b0: 80 a7 60 00 cmp %i5, 0
4000d7b4: 02 bf ff d8 be 4000d714 <_Heap_Extend+0x1f4>
4000d7b8: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d7bc: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
4000d7c0: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000d7c4: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000d7c8: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
4000d7cc: 84 10 80 03 or %g2, %g3, %g2
4000d7d0: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000d7d4: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000d7d8: 84 10 a0 01 or %g2, 1, %g2
4000d7dc: 10 bf ff ce b 4000d714 <_Heap_Extend+0x1f4>
4000d7e0: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000d7e4: 32 bf ff d0 bne,a 4000d724 <_Heap_Extend+0x204>
4000d7e8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000d7ec: d2 07 bf fc ld [ %fp + -4 ], %o1
4000d7f0: 7f ff ff 41 call 4000d4f4 <_Heap_Free_block>
4000d7f4: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d7f8: 10 bf ff cb b 4000d724 <_Heap_Extend+0x204>
4000d7fc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000d800: 80 a7 20 00 cmp %i4, 0
4000d804: 02 bf ff b1 be 4000d6c8 <_Heap_Extend+0x1a8>
4000d808: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000d80c: b8 27 00 02 sub %i4, %g2, %i4
4000d810: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000d814: 10 bf ff ad b 4000d6c8 <_Heap_Extend+0x1a8>
4000d818: f8 20 a0 04 st %i4, [ %g2 + 4 ]
4000d218 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000d218: 9d e3 bf a0 save %sp, -96, %sp
4000d21c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000d220: 40 00 16 be call 40012d18 <.urem>
4000d224: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000d228: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
4000d22c: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d230: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000d234: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d238: 80 a2 00 01 cmp %o0, %g1
4000d23c: 0a 80 00 4d bcs 4000d370 <_Heap_Free+0x158>
4000d240: b0 10 20 00 clr %i0
4000d244: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000d248: 80 a2 00 03 cmp %o0, %g3
4000d24c: 18 80 00 49 bgu 4000d370 <_Heap_Free+0x158>
4000d250: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d254: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d258: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d25c: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d260: 80 a0 40 02 cmp %g1, %g2
4000d264: 18 80 00 43 bgu 4000d370 <_Heap_Free+0x158> <== NEVER TAKEN
4000d268: 80 a0 c0 02 cmp %g3, %g2
4000d26c: 0a 80 00 41 bcs 4000d370 <_Heap_Free+0x158> <== NEVER TAKEN
4000d270: 01 00 00 00 nop
4000d274: d8 00 a0 04 ld [ %g2 + 4 ], %o4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000d278: 80 8b 20 01 btst 1, %o4
4000d27c: 02 80 00 3d be 4000d370 <_Heap_Free+0x158> <== NEVER TAKEN
4000d280: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000d284: 80 a0 c0 02 cmp %g3, %g2
4000d288: 02 80 00 06 be 4000d2a0 <_Heap_Free+0x88>
4000d28c: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d290: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d294: d8 03 20 04 ld [ %o4 + 4 ], %o4
4000d298: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
4000d29c: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
4000d2a0: 80 8b 60 01 btst 1, %o5
4000d2a4: 12 80 00 1d bne 4000d318 <_Heap_Free+0x100>
4000d2a8: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
4000d2ac: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d2b0: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d2b4: 80 a0 40 0d cmp %g1, %o5
4000d2b8: 18 80 00 2e bgu 4000d370 <_Heap_Free+0x158> <== NEVER TAKEN
4000d2bc: b0 10 20 00 clr %i0
4000d2c0: 80 a0 c0 0d cmp %g3, %o5
4000d2c4: 0a 80 00 2b bcs 4000d370 <_Heap_Free+0x158> <== NEVER TAKEN
4000d2c8: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d2cc: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000d2d0: 80 88 60 01 btst 1, %g1
4000d2d4: 02 80 00 27 be 4000d370 <_Heap_Free+0x158> <== NEVER TAKEN
4000d2d8: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000d2dc: 22 80 00 39 be,a 4000d3c0 <_Heap_Free+0x1a8>
4000d2e0: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d2e4: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000d2e8: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000d2ec: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
4000d2f0: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
4000d2f4: c4 20 60 0c st %g2, [ %g1 + 0xc ]
4000d2f8: 82 00 ff ff add %g3, -1, %g1
4000d2fc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
4000d300: 96 01 00 0b add %g4, %o3, %o3
4000d304: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d308: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000d30c: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d310: 10 80 00 0e b 4000d348 <_Heap_Free+0x130>
4000d314: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000d318: 22 80 00 18 be,a 4000d378 <_Heap_Free+0x160>
4000d31c: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d320: c6 00 a0 08 ld [ %g2 + 8 ], %g3
4000d324: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
4000d328: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
4000d32c: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
4000d330: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
4000d334: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d338: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
4000d33c: d0 20 60 08 st %o0, [ %g1 + 8 ]
4000d340: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000d344: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d348: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
4000d34c: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
4000d350: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d354: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
4000d358: 82 00 60 01 inc %g1
stats->free_size += block_size;
4000d35c: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d360: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
4000d364: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000d368: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
4000d36c: b0 10 20 01 mov 1, %i0
}
4000d370: 81 c7 e0 08 ret
4000d374: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000d378: 82 11 20 01 or %g4, 1, %g1
4000d37c: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d380: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d384: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000d388: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000d38c: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000d390: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000d394: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d398: 86 0b 7f fe and %o5, -2, %g3
4000d39c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d3a0: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d3a4: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000d3a8: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d3ac: 80 a0 40 02 cmp %g1, %g2
4000d3b0: 08 bf ff e6 bleu 4000d348 <_Heap_Free+0x130>
4000d3b4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000d3b8: 10 bf ff e4 b 4000d348 <_Heap_Free+0x130>
4000d3bc: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d3c0: 82 12 a0 01 or %o2, 1, %g1
4000d3c4: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d3c8: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
4000d3cc: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d3d0: 82 08 7f fe and %g1, -2, %g1
4000d3d4: 10 bf ff dd b 4000d348 <_Heap_Free+0x130>
4000d3d8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
4000df3c <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
4000df3c: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
4000df40: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
4000df44: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
4000df48: c0 26 40 00 clr [ %i1 ]
4000df4c: c0 26 60 04 clr [ %i1 + 4 ]
4000df50: c0 26 60 08 clr [ %i1 + 8 ]
4000df54: c0 26 60 0c clr [ %i1 + 0xc ]
4000df58: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
4000df5c: 80 a0 40 02 cmp %g1, %g2
4000df60: 02 80 00 17 be 4000dfbc <_Heap_Get_information+0x80> <== NEVER TAKEN
4000df64: c0 26 60 14 clr [ %i1 + 0x14 ]
4000df68: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000df6c: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000df70: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
4000df74: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
4000df78: 80 8b 60 01 btst 1, %o5
4000df7c: 02 80 00 03 be 4000df88 <_Heap_Get_information+0x4c>
4000df80: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
4000df84: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
4000df88: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
4000df8c: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
4000df90: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000df94: 94 02 a0 01 inc %o2
info->total += the_size;
4000df98: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
4000df9c: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
4000dfa0: 80 a3 00 04 cmp %o4, %g4
4000dfa4: 1a 80 00 03 bcc 4000dfb0 <_Heap_Get_information+0x74>
4000dfa8: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
4000dfac: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
4000dfb0: 80 a0 80 01 cmp %g2, %g1
4000dfb4: 12 bf ff ef bne 4000df70 <_Heap_Get_information+0x34>
4000dfb8: 88 0b 7f fe and %o5, -2, %g4
4000dfbc: 81 c7 e0 08 ret
4000dfc0: 81 e8 00 00 restore
400146f8 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
400146f8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400146fc: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
40014700: 7f ff f9 86 call 40012d18 <.urem>
40014704: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
40014708: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
4001470c: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40014710: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
40014714: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40014718: 80 a0 80 01 cmp %g2, %g1
4001471c: 0a 80 00 15 bcs 40014770 <_Heap_Size_of_alloc_area+0x78>
40014720: b0 10 20 00 clr %i0
40014724: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
40014728: 80 a0 80 03 cmp %g2, %g3
4001472c: 18 80 00 11 bgu 40014770 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014730: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40014734: c8 00 a0 04 ld [ %g2 + 4 ], %g4
40014738: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4001473c: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40014740: 80 a0 40 02 cmp %g1, %g2
40014744: 18 80 00 0b bgu 40014770 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014748: 80 a0 c0 02 cmp %g3, %g2
4001474c: 0a 80 00 09 bcs 40014770 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014750: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40014754: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
40014758: 80 88 60 01 btst 1, %g1
4001475c: 02 80 00 05 be 40014770 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
40014760: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
40014764: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
40014768: 84 00 a0 04 add %g2, 4, %g2
4001476c: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
40014770: 81 c7 e0 08 ret
40014774: 81 e8 00 00 restore
40009400 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40009400: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40009404: 23 10 00 24 sethi %hi(0x40009000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40009408: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
4000940c: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
40009410: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
40009414: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
40009418: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
4000941c: 80 8e a0 ff btst 0xff, %i2
40009420: 02 80 00 04 be 40009430 <_Heap_Walk+0x30>
40009424: a2 14 63 94 or %l1, 0x394, %l1
40009428: 23 10 00 24 sethi %hi(0x40009000), %l1
4000942c: a2 14 63 9c or %l1, 0x39c, %l1 ! 4000939c <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40009430: 03 10 00 63 sethi %hi(0x40018c00), %g1
40009434: c2 00 61 48 ld [ %g1 + 0x148 ], %g1 ! 40018d48 <_System_state_Current>
40009438: 80 a0 60 03 cmp %g1, 3
4000943c: 12 80 00 33 bne 40009508 <_Heap_Walk+0x108>
40009440: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
40009444: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40009448: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
4000944c: c4 04 20 08 ld [ %l0 + 8 ], %g2
40009450: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40009454: 90 10 00 19 mov %i1, %o0
40009458: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
4000945c: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
40009460: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
40009464: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
40009468: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
4000946c: 92 10 20 00 clr %o1
40009470: 96 10 00 14 mov %l4, %o3
40009474: 15 10 00 59 sethi %hi(0x40016400), %o2
40009478: 98 10 00 13 mov %l3, %o4
4000947c: 9f c4 40 00 call %l1
40009480: 94 12 a0 f8 or %o2, 0xf8, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40009484: 80 a5 20 00 cmp %l4, 0
40009488: 02 80 00 2a be 40009530 <_Heap_Walk+0x130>
4000948c: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40009490: 12 80 00 30 bne 40009550 <_Heap_Walk+0x150>
40009494: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009498: 7f ff e1 86 call 40001ab0 <.urem>
4000949c: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
400094a0: 80 a2 20 00 cmp %o0, 0
400094a4: 12 80 00 34 bne 40009574 <_Heap_Walk+0x174>
400094a8: 90 04 a0 08 add %l2, 8, %o0
400094ac: 7f ff e1 81 call 40001ab0 <.urem>
400094b0: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
400094b4: 80 a2 20 00 cmp %o0, 0
400094b8: 32 80 00 38 bne,a 40009598 <_Heap_Walk+0x198>
400094bc: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
400094c0: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
400094c4: 80 8f 20 01 btst 1, %i4
400094c8: 22 80 00 4d be,a 400095fc <_Heap_Walk+0x1fc>
400094cc: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400094d0: c2 05 60 04 ld [ %l5 + 4 ], %g1
400094d4: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400094d8: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400094dc: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
400094e0: 80 88 a0 01 btst 1, %g2
400094e4: 02 80 00 0b be 40009510 <_Heap_Walk+0x110>
400094e8: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
400094ec: 02 80 00 33 be 400095b8 <_Heap_Walk+0x1b8> <== ALWAYS TAKEN
400094f0: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
400094f4: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
400094f8: 15 10 00 59 sethi %hi(0x40016400), %o2 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400094fc: b0 10 20 00 clr %i0 <== NOT EXECUTED
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40009500: 9f c4 40 00 call %l1 <== NOT EXECUTED
40009504: 94 12 a2 70 or %o2, 0x270, %o2 <== NOT EXECUTED
40009508: 81 c7 e0 08 ret
4000950c: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
40009510: 90 10 00 19 mov %i1, %o0
40009514: 92 10 20 01 mov 1, %o1
40009518: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000951c: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
40009520: 9f c4 40 00 call %l1
40009524: 94 12 a2 58 or %o2, 0x258, %o2
40009528: 81 c7 e0 08 ret
4000952c: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
40009530: 90 10 00 19 mov %i1, %o0
40009534: 92 10 20 01 mov 1, %o1
40009538: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000953c: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
40009540: 9f c4 40 00 call %l1
40009544: 94 12 a1 90 or %o2, 0x190, %o2
40009548: 81 c7 e0 08 ret
4000954c: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
40009550: 90 10 00 19 mov %i1, %o0
40009554: 92 10 20 01 mov 1, %o1
40009558: 96 10 00 14 mov %l4, %o3
4000955c: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009560: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
40009564: 9f c4 40 00 call %l1
40009568: 94 12 a1 a8 or %o2, 0x1a8, %o2
4000956c: 81 c7 e0 08 ret
40009570: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40009574: 90 10 00 19 mov %i1, %o0
40009578: 92 10 20 01 mov 1, %o1
4000957c: 96 10 00 13 mov %l3, %o3
40009580: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009584: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
40009588: 9f c4 40 00 call %l1
4000958c: 94 12 a1 c8 or %o2, 0x1c8, %o2
40009590: 81 c7 e0 08 ret
40009594: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40009598: 92 10 20 01 mov 1, %o1
4000959c: 96 10 00 12 mov %l2, %o3
400095a0: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400095a4: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
400095a8: 9f c4 40 00 call %l1
400095ac: 94 12 a1 f0 or %o2, 0x1f0, %o2
400095b0: 81 c7 e0 08 ret
400095b4: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
400095b8: ee 04 20 08 ld [ %l0 + 8 ], %l7
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400095bc: 80 a4 00 17 cmp %l0, %l7
400095c0: 02 80 01 18 be 40009a20 <_Heap_Walk+0x620>
400095c4: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
400095c8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400095cc: 80 a0 40 17 cmp %g1, %l7
400095d0: 08 80 00 12 bleu 40009618 <_Heap_Walk+0x218> <== ALWAYS TAKEN
400095d4: ac 10 00 17 mov %l7, %l6
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
400095d8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
400095dc: 92 10 20 01 mov 1, %o1
400095e0: 96 10 00 16 mov %l6, %o3
400095e4: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400095e8: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
400095ec: 9f c4 40 00 call %l1
400095f0: 94 12 a2 a0 or %o2, 0x2a0, %o2
400095f4: 81 c7 e0 08 ret
400095f8: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
400095fc: 92 10 20 01 mov 1, %o1
40009600: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009604: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
40009608: 9f c4 40 00 call %l1
4000960c: 94 12 a2 28 or %o2, 0x228, %o2
40009610: 81 c7 e0 08 ret
40009614: 81 e8 00 00 restore
40009618: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
4000961c: 80 a7 40 17 cmp %i5, %l7
40009620: 0a bf ff ef bcs 400095dc <_Heap_Walk+0x1dc> <== NEVER TAKEN
40009624: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009628: c2 27 bf fc st %g1, [ %fp + -4 ]
4000962c: 90 05 e0 08 add %l7, 8, %o0
40009630: 7f ff e1 20 call 40001ab0 <.urem>
40009634: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
40009638: 80 a2 20 00 cmp %o0, 0
4000963c: 12 80 00 2d bne 400096f0 <_Heap_Walk+0x2f0> <== NEVER TAKEN
40009640: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40009644: c4 05 e0 04 ld [ %l7 + 4 ], %g2
40009648: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
4000964c: 84 05 c0 02 add %l7, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009650: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40009654: 80 88 a0 01 btst 1, %g2
40009658: 12 80 00 2f bne 40009714 <_Heap_Walk+0x314> <== NEVER TAKEN
4000965c: 84 10 00 10 mov %l0, %g2
40009660: 10 80 00 17 b 400096bc <_Heap_Walk+0x2bc>
40009664: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40009668: 80 a4 00 16 cmp %l0, %l6
4000966c: 02 80 00 33 be 40009738 <_Heap_Walk+0x338>
40009670: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40009674: 18 bf ff da bgu 400095dc <_Heap_Walk+0x1dc>
40009678: 90 10 00 19 mov %i1, %o0
4000967c: 80 a5 80 1d cmp %l6, %i5
40009680: 18 bf ff d8 bgu 400095e0 <_Heap_Walk+0x1e0> <== NEVER TAKEN
40009684: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009688: 90 05 a0 08 add %l6, 8, %o0
4000968c: 7f ff e1 09 call 40001ab0 <.urem>
40009690: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
40009694: 80 a2 20 00 cmp %o0, 0
40009698: 12 80 00 16 bne 400096f0 <_Heap_Walk+0x2f0>
4000969c: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400096a0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
400096a4: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
400096a8: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400096ac: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400096b0: 80 88 60 01 btst 1, %g1
400096b4: 12 80 00 18 bne 40009714 <_Heap_Walk+0x314>
400096b8: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
400096bc: d8 05 e0 0c ld [ %l7 + 0xc ], %o4
400096c0: 80 a3 00 02 cmp %o4, %g2
400096c4: 22 bf ff e9 be,a 40009668 <_Heap_Walk+0x268>
400096c8: ec 05 e0 08 ld [ %l7 + 8 ], %l6
(*printer)(
400096cc: 90 10 00 19 mov %i1, %o0
400096d0: 92 10 20 01 mov 1, %o1
400096d4: 96 10 00 17 mov %l7, %o3
400096d8: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400096dc: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
400096e0: 9f c4 40 00 call %l1
400096e4: 94 12 a3 10 or %o2, 0x310, %o2
400096e8: 81 c7 e0 08 ret
400096ec: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
400096f0: 90 10 00 19 mov %i1, %o0
400096f4: 92 10 20 01 mov 1, %o1
400096f8: 96 10 00 16 mov %l6, %o3
400096fc: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009700: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40009704: 9f c4 40 00 call %l1
40009708: 94 12 a2 c0 or %o2, 0x2c0, %o2
4000970c: 81 c7 e0 08 ret
40009710: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
40009714: 90 10 00 19 mov %i1, %o0
40009718: 92 10 20 01 mov 1, %o1
4000971c: 96 10 00 16 mov %l6, %o3
40009720: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009724: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
40009728: 9f c4 40 00 call %l1
4000972c: 94 12 a2 f0 or %o2, 0x2f0, %o2
40009730: 81 c7 e0 08 ret
40009734: 81 e8 00 00 restore
40009738: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
4000973c: 35 10 00 5a sethi %hi(0x40016800), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40009740: 31 10 00 5a sethi %hi(0x40016800), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40009744: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009748: b4 16 a0 d0 or %i2, 0xd0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
4000974c: b0 16 20 b8 or %i0, 0xb8, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40009750: 37 10 00 5a sethi %hi(0x40016800), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40009754: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40009758: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000975c: 80 a0 40 16 cmp %g1, %l6
40009760: 28 80 00 0c bleu,a 40009790 <_Heap_Walk+0x390> <== ALWAYS TAKEN
40009764: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
40009768: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
4000976c: 92 10 20 01 mov 1, %o1
40009770: 96 10 00 17 mov %l7, %o3
40009774: 15 10 00 59 sethi %hi(0x40016400), %o2
40009778: 98 10 00 16 mov %l6, %o4
4000977c: 94 12 a3 48 or %o2, 0x348, %o2
40009780: 9f c4 40 00 call %l1
40009784: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
40009788: 81 c7 e0 08 ret
4000978c: 81 e8 00 00 restore
40009790: 80 a0 40 16 cmp %g1, %l6
40009794: 0a bf ff f6 bcs 4000976c <_Heap_Walk+0x36c>
40009798: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
4000979c: 82 1d c0 15 xor %l7, %l5, %g1
400097a0: 80 a0 00 01 cmp %g0, %g1
400097a4: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400097a8: 90 10 00 1d mov %i5, %o0
400097ac: c2 27 bf fc st %g1, [ %fp + -4 ]
400097b0: 7f ff e0 c0 call 40001ab0 <.urem>
400097b4: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
400097b8: 80 a2 20 00 cmp %o0, 0
400097bc: 02 80 00 05 be 400097d0 <_Heap_Walk+0x3d0>
400097c0: c2 07 bf fc ld [ %fp + -4 ], %g1
400097c4: 80 88 60 ff btst 0xff, %g1
400097c8: 12 80 00 79 bne 400099ac <_Heap_Walk+0x5ac>
400097cc: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
400097d0: 80 a4 c0 1d cmp %l3, %i5
400097d4: 08 80 00 05 bleu 400097e8 <_Heap_Walk+0x3e8>
400097d8: 80 a5 c0 16 cmp %l7, %l6
400097dc: 80 88 60 ff btst 0xff, %g1
400097e0: 12 80 00 7c bne 400099d0 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
400097e4: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
400097e8: 2a 80 00 06 bcs,a 40009800 <_Heap_Walk+0x400>
400097ec: c2 05 a0 04 ld [ %l6 + 4 ], %g1
400097f0: 80 88 60 ff btst 0xff, %g1
400097f4: 12 80 00 82 bne 400099fc <_Heap_Walk+0x5fc>
400097f8: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400097fc: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40009800: 80 88 60 01 btst 1, %g1
40009804: 02 80 00 19 be 40009868 <_Heap_Walk+0x468>
40009808: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
4000980c: 80 a7 20 00 cmp %i4, 0
40009810: 22 80 00 0e be,a 40009848 <_Heap_Walk+0x448>
40009814: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
40009818: 90 10 00 19 mov %i1, %o0
4000981c: 92 10 20 00 clr %o1
40009820: 94 10 00 18 mov %i0, %o2
40009824: 96 10 00 17 mov %l7, %o3
40009828: 9f c4 40 00 call %l1
4000982c: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009830: 80 a4 80 16 cmp %l2, %l6
40009834: 02 80 00 43 be 40009940 <_Heap_Walk+0x540>
40009838: ae 10 00 16 mov %l6, %l7
4000983c: f8 05 a0 04 ld [ %l6 + 4 ], %i4
40009840: 10 bf ff c5 b 40009754 <_Heap_Walk+0x354>
40009844: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40009848: 96 10 00 17 mov %l7, %o3
4000984c: 90 10 00 19 mov %i1, %o0
40009850: 92 10 20 00 clr %o1
40009854: 94 10 00 1a mov %i2, %o2
40009858: 9f c4 40 00 call %l1
4000985c: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009860: 10 bf ff f5 b 40009834 <_Heap_Walk+0x434>
40009864: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
40009868: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
4000986c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40009870: 05 10 00 59 sethi %hi(0x40016400), %g2
block = next_block;
} while ( block != first_block );
return true;
}
40009874: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009878: 80 a0 40 0d cmp %g1, %o5
4000987c: 02 80 00 05 be 40009890 <_Heap_Walk+0x490>
40009880: 86 10 a0 b8 or %g2, 0xb8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40009884: 80 a4 00 0d cmp %l0, %o5
40009888: 02 80 00 3e be 40009980 <_Heap_Walk+0x580>
4000988c: 86 16 e0 80 or %i3, 0x80, %g3
block->next,
block->next == last_free_block ?
40009890: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009894: 19 10 00 59 sethi %hi(0x40016400), %o4
40009898: 80 a1 00 01 cmp %g4, %g1
4000989c: 02 80 00 05 be 400098b0 <_Heap_Walk+0x4b0>
400098a0: 84 13 20 d8 or %o4, 0xd8, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400098a4: 80 a4 00 01 cmp %l0, %g1
400098a8: 02 80 00 33 be 40009974 <_Heap_Walk+0x574>
400098ac: 84 16 e0 80 or %i3, 0x80, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400098b0: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
400098b4: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
400098b8: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
400098bc: 90 10 00 19 mov %i1, %o0
400098c0: 92 10 20 00 clr %o1
400098c4: 15 10 00 5a sethi %hi(0x40016800), %o2
400098c8: 96 10 00 17 mov %l7, %o3
400098cc: 94 12 a0 10 or %o2, 0x10, %o2
400098d0: 9f c4 40 00 call %l1
400098d4: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
400098d8: da 05 80 00 ld [ %l6 ], %o5
400098dc: 80 a7 40 0d cmp %i5, %o5
400098e0: 12 80 00 1a bne 40009948 <_Heap_Walk+0x548>
400098e4: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
400098e8: 02 80 00 29 be 4000998c <_Heap_Walk+0x58c>
400098ec: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
400098f0: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
400098f4: 80 a4 00 01 cmp %l0, %g1
400098f8: 02 80 00 0b be 40009924 <_Heap_Walk+0x524> <== NEVER TAKEN
400098fc: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
40009900: 80 a5 c0 01 cmp %l7, %g1
40009904: 02 bf ff cc be 40009834 <_Heap_Walk+0x434>
40009908: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
4000990c: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40009910: 80 a4 00 01 cmp %l0, %g1
40009914: 12 bf ff fc bne 40009904 <_Heap_Walk+0x504>
40009918: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
4000991c: 90 10 00 19 mov %i1, %o0
40009920: 92 10 20 01 mov 1, %o1
40009924: 96 10 00 17 mov %l7, %o3
40009928: 15 10 00 5a sethi %hi(0x40016800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
4000992c: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40009930: 9f c4 40 00 call %l1
40009934: 94 12 a0 f8 or %o2, 0xf8, %o2
40009938: 81 c7 e0 08 ret
4000993c: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40009940: 81 c7 e0 08 ret
40009944: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
40009948: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
4000994c: 90 10 00 19 mov %i1, %o0
40009950: 92 10 20 01 mov 1, %o1
40009954: 96 10 00 17 mov %l7, %o3
40009958: 15 10 00 5a sethi %hi(0x40016800), %o2
4000995c: 98 10 00 1d mov %i5, %o4
40009960: 94 12 a0 48 or %o2, 0x48, %o2
40009964: 9f c4 40 00 call %l1
40009968: b0 10 20 00 clr %i0
4000996c: 81 c7 e0 08 ret
40009970: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40009974: 09 10 00 59 sethi %hi(0x40016400), %g4
40009978: 10 bf ff ce b 400098b0 <_Heap_Walk+0x4b0>
4000997c: 84 11 20 e8 or %g4, 0xe8, %g2 ! 400164e8 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
40009980: 19 10 00 59 sethi %hi(0x40016400), %o4
40009984: 10 bf ff c3 b 40009890 <_Heap_Walk+0x490>
40009988: 86 13 20 c8 or %o4, 0xc8, %g3 ! 400164c8 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
4000998c: 92 10 20 01 mov 1, %o1
40009990: 96 10 00 17 mov %l7, %o3
40009994: 15 10 00 5a sethi %hi(0x40016800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
40009998: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
4000999c: 9f c4 40 00 call %l1
400099a0: 94 12 a0 88 or %o2, 0x88, %o2
400099a4: 81 c7 e0 08 ret
400099a8: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
400099ac: 92 10 20 01 mov 1, %o1
400099b0: 96 10 00 17 mov %l7, %o3
400099b4: 15 10 00 59 sethi %hi(0x40016400), %o2
400099b8: 98 10 00 1d mov %i5, %o4
400099bc: 94 12 a3 78 or %o2, 0x378, %o2
400099c0: 9f c4 40 00 call %l1
400099c4: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
400099c8: 81 c7 e0 08 ret
400099cc: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
400099d0: 90 10 00 19 mov %i1, %o0
400099d4: 92 10 20 01 mov 1, %o1
400099d8: 96 10 00 17 mov %l7, %o3
400099dc: 15 10 00 59 sethi %hi(0x40016400), %o2
400099e0: 98 10 00 1d mov %i5, %o4
400099e4: 94 12 a3 a8 or %o2, 0x3a8, %o2
400099e8: 9a 10 00 13 mov %l3, %o5
400099ec: 9f c4 40 00 call %l1
400099f0: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
400099f4: 81 c7 e0 08 ret
400099f8: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
400099fc: 92 10 20 01 mov 1, %o1
40009a00: 96 10 00 17 mov %l7, %o3
40009a04: 15 10 00 59 sethi %hi(0x40016400), %o2
40009a08: 98 10 00 16 mov %l6, %o4
40009a0c: 94 12 a3 d8 or %o2, 0x3d8, %o2
40009a10: 9f c4 40 00 call %l1
40009a14: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
40009a18: 81 c7 e0 08 ret
40009a1c: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40009a20: 10 bf ff 47 b 4000973c <_Heap_Walk+0x33c>
40009a24: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
400078f4 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
400078f4: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
400078f8: 23 10 00 59 sethi %hi(0x40016400), %l1
400078fc: c2 04 62 e4 ld [ %l1 + 0x2e4 ], %g1 ! 400166e4 <_IO_Number_of_drivers>
40007900: 80 a0 60 00 cmp %g1, 0
40007904: 02 80 00 0c be 40007934 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
40007908: a0 10 20 00 clr %l0
4000790c: a2 14 62 e4 or %l1, 0x2e4, %l1
(void) rtems_io_initialize( major, 0, NULL );
40007910: 90 10 00 10 mov %l0, %o0
40007914: 92 10 20 00 clr %o1
40007918: 40 00 15 10 call 4000cd58 <rtems_io_initialize>
4000791c: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40007920: c2 04 40 00 ld [ %l1 ], %g1
40007924: a0 04 20 01 inc %l0
40007928: 80 a0 40 10 cmp %g1, %l0
4000792c: 18 bf ff fa bgu 40007914 <_IO_Initialize_all_drivers+0x20>
40007930: 90 10 00 10 mov %l0, %o0
40007934: 81 c7 e0 08 ret
40007938: 81 e8 00 00 restore
40007828 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
40007828: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
4000782c: 03 10 00 56 sethi %hi(0x40015800), %g1
40007830: 82 10 61 98 or %g1, 0x198, %g1 ! 40015998 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
40007834: e2 00 60 34 ld [ %g1 + 0x34 ], %l1
number_of_drivers = Configuration.maximum_drivers;
40007838: e8 00 60 30 ld [ %g1 + 0x30 ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
4000783c: 80 a4 40 14 cmp %l1, %l4
40007840: 0a 80 00 08 bcs 40007860 <_IO_Manager_initialization+0x38>
40007844: e0 00 60 38 ld [ %g1 + 0x38 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
40007848: 03 10 00 59 sethi %hi(0x40016400), %g1
4000784c: e0 20 62 e8 st %l0, [ %g1 + 0x2e8 ] ! 400166e8 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
40007850: 03 10 00 59 sethi %hi(0x40016400), %g1
40007854: e2 20 62 e4 st %l1, [ %g1 + 0x2e4 ] ! 400166e4 <_IO_Number_of_drivers>
return;
40007858: 81 c7 e0 08 ret
4000785c: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
40007860: 83 2d 20 03 sll %l4, 3, %g1
40007864: a7 2d 20 05 sll %l4, 5, %l3
40007868: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
4000786c: 40 00 0c cf call 4000aba8 <_Workspace_Allocate_or_fatal_error>
40007870: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
40007874: 03 10 00 59 sethi %hi(0x40016400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40007878: 25 10 00 59 sethi %hi(0x40016400), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
4000787c: e8 20 62 e4 st %l4, [ %g1 + 0x2e4 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
40007880: d0 24 a2 e8 st %o0, [ %l2 + 0x2e8 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
40007884: 92 10 20 00 clr %o1
40007888: 40 00 20 bf call 4000fb84 <memset>
4000788c: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007890: 80 a4 60 00 cmp %l1, 0
40007894: 02 bf ff f1 be 40007858 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
40007898: da 04 a2 e8 ld [ %l2 + 0x2e8 ], %o5
4000789c: 82 10 20 00 clr %g1
400078a0: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
400078a4: c4 04 00 01 ld [ %l0 + %g1 ], %g2
400078a8: 86 04 00 01 add %l0, %g1, %g3
400078ac: c4 23 40 01 st %g2, [ %o5 + %g1 ]
400078b0: d8 00 e0 04 ld [ %g3 + 4 ], %o4
400078b4: 84 03 40 01 add %o5, %g1, %g2
400078b8: d8 20 a0 04 st %o4, [ %g2 + 4 ]
400078bc: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400078c0: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
400078c4: d8 20 a0 08 st %o4, [ %g2 + 8 ]
400078c8: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400078cc: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
400078d0: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
400078d4: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400078d8: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
400078dc: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
400078e0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
400078e4: 18 bf ff f0 bgu 400078a4 <_IO_Manager_initialization+0x7c>
400078e8: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
400078ec: 81 c7 e0 08 ret
400078f0: 81 e8 00 00 restore
4000856c <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
4000856c: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40008570: 1b 10 00 59 sethi %hi(0x40016400), %o5
40008574: 86 13 60 b4 or %o5, 0xb4, %g3 ! 400164b4 <_Internal_errors_What_happened>
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
40008578: 90 10 00 18 mov %i0, %o0
4000857c: 92 0e 60 ff and %i1, 0xff, %o1
40008580: 94 10 00 1a mov %i2, %o2
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
40008584: f0 23 60 b4 st %i0, [ %o5 + 0xb4 ]
_Internal_errors_What_happened.is_internal = is_internal;
40008588: f2 28 e0 04 stb %i1, [ %g3 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
4000858c: 40 00 08 25 call 4000a620 <_User_extensions_Fatal>
40008590: f4 20 e0 08 st %i2, [ %g3 + 8 ]
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40008594: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40008598: 03 10 00 59 sethi %hi(0x40016400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
4000859c: 7f ff e6 1c call 40001e0c <sparc_disable_interrupts> <== NOT EXECUTED
400085a0: c4 20 61 78 st %g2, [ %g1 + 0x178 ] ! 40016578 <_System_state_Current><== NOT EXECUTED
400085a4: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
400085a8: 30 80 00 00 b,a 400085a8 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40008620 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40008620: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40008624: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40008628: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
4000862c: 80 a0 60 00 cmp %g1, 0
40008630: 02 80 00 19 be 40008694 <_Objects_Allocate+0x74> <== NEVER TAKEN
40008634: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40008638: a2 04 20 20 add %l0, 0x20, %l1
4000863c: 7f ff fd 5c call 40007bac <_Chain_Get>
40008640: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40008644: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
40008648: 80 a0 60 00 cmp %g1, 0
4000864c: 02 80 00 12 be 40008694 <_Objects_Allocate+0x74>
40008650: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40008654: 80 a2 20 00 cmp %o0, 0
40008658: 02 80 00 11 be 4000869c <_Objects_Allocate+0x7c>
4000865c: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40008660: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40008664: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40008668: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
4000866c: 40 00 28 ff call 40012a68 <.udiv>
40008670: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40008674: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40008678: 91 2a 20 02 sll %o0, 2, %o0
4000867c: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
40008680: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
40008684: 86 00 ff ff add %g3, -1, %g3
40008688: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
4000868c: 82 00 bf ff add %g2, -1, %g1
40008690: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40008694: 81 c7 e0 08 ret
40008698: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
4000869c: 40 00 00 11 call 400086e0 <_Objects_Extend_information>
400086a0: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400086a4: 7f ff fd 42 call 40007bac <_Chain_Get>
400086a8: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
400086ac: b0 92 20 00 orcc %o0, 0, %i0
400086b0: 32 bf ff ed bne,a 40008664 <_Objects_Allocate+0x44>
400086b4: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
400086b8: 81 c7 e0 08 ret
400086bc: 81 e8 00 00 restore
400086e0 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
400086e0: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
400086e4: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
400086e8: 80 a5 20 00 cmp %l4, 0
400086ec: 02 80 00 a9 be 40008990 <_Objects_Extend_information+0x2b0>
400086f0: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
400086f4: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
400086f8: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
400086fc: ab 2d 60 10 sll %l5, 0x10, %l5
40008700: 92 10 00 13 mov %l3, %o1
40008704: 40 00 28 d9 call 40012a68 <.udiv>
40008708: 91 35 60 10 srl %l5, 0x10, %o0
4000870c: bb 2a 20 10 sll %o0, 0x10, %i5
40008710: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
40008714: 80 a7 60 00 cmp %i5, 0
40008718: 02 80 00 a6 be 400089b0 <_Objects_Extend_information+0x2d0><== NEVER TAKEN
4000871c: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
40008720: c2 05 00 00 ld [ %l4 ], %g1
40008724: 80 a0 60 00 cmp %g1, 0
40008728: 02 80 00 a6 be 400089c0 <_Objects_Extend_information+0x2e0><== NEVER TAKEN
4000872c: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008730: 10 80 00 06 b 40008748 <_Objects_Extend_information+0x68>
40008734: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
40008738: c2 05 00 01 ld [ %l4 + %g1 ], %g1
4000873c: 80 a0 60 00 cmp %g1, 0
40008740: 22 80 00 08 be,a 40008760 <_Objects_Extend_information+0x80>
40008744: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
40008748: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
4000874c: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
40008750: 80 a7 40 10 cmp %i5, %l0
40008754: 18 bf ff f9 bgu 40008738 <_Objects_Extend_information+0x58>
40008758: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
4000875c: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
40008760: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
40008764: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
40008768: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
4000876c: 82 10 63 ff or %g1, 0x3ff, %g1
40008770: 80 a5 40 01 cmp %l5, %g1
40008774: 18 80 00 98 bgu 400089d4 <_Objects_Extend_information+0x2f4>
40008778: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
4000877c: 40 00 28 81 call 40012980 <.umul>
40008780: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
40008784: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
40008788: 80 a0 60 00 cmp %g1, 0
4000878c: 02 80 00 6d be 40008940 <_Objects_Extend_information+0x260>
40008790: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
40008794: 40 00 08 f5 call 4000ab68 <_Workspace_Allocate>
40008798: 01 00 00 00 nop
if ( !new_object_block )
4000879c: a6 92 20 00 orcc %o0, 0, %l3
400087a0: 02 80 00 8d be 400089d4 <_Objects_Extend_information+0x2f4>
400087a4: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
400087a8: 80 8d 20 ff btst 0xff, %l4
400087ac: 22 80 00 42 be,a 400088b4 <_Objects_Extend_information+0x1d4>
400087b0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
400087b4: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
400087b8: 91 2d 20 01 sll %l4, 1, %o0
400087bc: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
400087c0: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
400087c4: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
400087c8: 40 00 08 e8 call 4000ab68 <_Workspace_Allocate>
400087cc: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
400087d0: ac 92 20 00 orcc %o0, 0, %l6
400087d4: 02 80 00 7e be 400089cc <_Objects_Extend_information+0x2ec>
400087d8: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
400087dc: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
400087e0: 80 a4 80 01 cmp %l2, %g1
400087e4: ae 05 80 14 add %l6, %l4, %l7
400087e8: 0a 80 00 5a bcs 40008950 <_Objects_Extend_information+0x270>
400087ec: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
400087f0: 80 a4 a0 00 cmp %l2, 0
400087f4: 02 80 00 07 be 40008810 <_Objects_Extend_information+0x130><== NEVER TAKEN
400087f8: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
400087fc: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40008800: 82 00 60 01 inc %g1
40008804: 80 a4 80 01 cmp %l2, %g1
40008808: 18 bf ff fd bgu 400087fc <_Objects_Extend_information+0x11c><== NEVER TAKEN
4000880c: c0 20 80 14 clr [ %g2 + %l4 ]
40008810: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40008814: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
40008818: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
4000881c: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
40008820: 80 a4 40 03 cmp %l1, %g3
40008824: 1a 80 00 0a bcc 4000884c <_Objects_Extend_information+0x16c><== NEVER TAKEN
40008828: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
4000882c: 83 2c 60 02 sll %l1, 2, %g1
40008830: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
40008834: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
40008838: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
4000883c: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
40008840: 80 a0 80 03 cmp %g2, %g3
40008844: 0a bf ff fd bcs 40008838 <_Objects_Extend_information+0x158>
40008848: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
4000884c: 7f ff e5 70 call 40001e0c <sparc_disable_interrupts>
40008850: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008854: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40008858: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
4000885c: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
40008860: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
40008864: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008868: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
4000886c: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
40008870: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
40008874: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
40008878: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000887c: 03 00 00 40 sethi %hi(0x10000), %g1
40008880: ab 35 60 10 srl %l5, 0x10, %l5
40008884: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008888: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000888c: 82 10 40 15 or %g1, %l5, %g1
40008890: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
40008894: 7f ff e5 62 call 40001e1c <sparc_enable_interrupts>
40008898: 01 00 00 00 nop
if ( old_tables )
4000889c: 80 a4 a0 00 cmp %l2, 0
400088a0: 22 80 00 05 be,a 400088b4 <_Objects_Extend_information+0x1d4>
400088a4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
_Workspace_Free( old_tables );
400088a8: 40 00 08 b9 call 4000ab8c <_Workspace_Free>
400088ac: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
400088b0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
400088b4: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
400088b8: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
400088bc: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
400088c0: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
400088c4: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
400088c8: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
400088cc: 90 10 00 12 mov %l2, %o0
400088d0: 40 00 11 39 call 4000cdb4 <_Chain_Initialize>
400088d4: 29 00 00 40 sethi %hi(0x10000), %l4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
400088d8: 10 80 00 0d b 4000890c <_Objects_Extend_information+0x22c>
400088dc: a6 06 20 20 add %i0, 0x20, %l3
the_object->id = _Objects_Build_id(
400088e0: c6 16 20 04 lduh [ %i0 + 4 ], %g3
400088e4: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400088e8: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400088ec: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400088f0: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400088f4: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
400088f8: 90 10 00 13 mov %l3, %o0
400088fc: 92 10 00 01 mov %g1, %o1
index++;
40008900: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40008904: 7f ff fc 94 call 40007b54 <_Chain_Append>
40008908: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
4000890c: 7f ff fc a8 call 40007bac <_Chain_Get>
40008910: 90 10 00 12 mov %l2, %o0
40008914: 82 92 20 00 orcc %o0, 0, %g1
40008918: 32 bf ff f2 bne,a 400088e0 <_Objects_Extend_information+0x200>
4000891c: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
40008920: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
40008924: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
40008928: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
4000892c: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
40008930: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
40008934: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
40008938: 81 c7 e0 08 ret
4000893c: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
40008940: 40 00 08 9a call 4000aba8 <_Workspace_Allocate_or_fatal_error>
40008944: 01 00 00 00 nop
40008948: 10 bf ff 98 b 400087a8 <_Objects_Extend_information+0xc8>
4000894c: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
40008950: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
40008954: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
40008958: 40 00 1c 52 call 4000faa0 <memcpy>
4000895c: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
40008960: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
40008964: 94 10 00 1d mov %i5, %o2
40008968: 40 00 1c 4e call 4000faa0 <memcpy>
4000896c: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40008970: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
40008974: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
40008978: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
4000897c: 90 10 00 14 mov %l4, %o0
40008980: 40 00 1c 48 call 4000faa0 <memcpy>
40008984: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40008988: 10 bf ff a4 b 40008818 <_Objects_Extend_information+0x138>
4000898c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40008990: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40008994: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008998: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
4000899c: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400089a0: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
400089a4: ba 10 20 00 clr %i5
400089a8: 10 bf ff 6e b 40008760 <_Objects_Extend_information+0x80>
400089ac: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
400089b0: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400089b4: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400089b8: 10 bf ff 6a b 40008760 <_Objects_Extend_information+0x80> <== NOT EXECUTED
400089bc: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
400089c0: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400089c4: 10 bf ff 67 b 40008760 <_Objects_Extend_information+0x80> <== NOT EXECUTED
400089c8: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
400089cc: 40 00 08 70 call 4000ab8c <_Workspace_Free>
400089d0: 90 10 00 13 mov %l3, %o0
return;
400089d4: 81 c7 e0 08 ret
400089d8: 81 e8 00 00 restore
40008a88 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
40008a88: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40008a8c: b3 2e 60 10 sll %i1, 0x10, %i1
40008a90: b3 36 60 10 srl %i1, 0x10, %i1
40008a94: 80 a6 60 00 cmp %i1, 0
40008a98: 12 80 00 04 bne 40008aa8 <_Objects_Get_information+0x20>
40008a9c: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
40008aa0: 81 c7 e0 08 ret
40008aa4: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40008aa8: 40 00 12 4d call 4000d3dc <_Objects_API_maximum_class>
40008aac: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40008ab0: 80 a2 20 00 cmp %o0, 0
40008ab4: 02 bf ff fb be 40008aa0 <_Objects_Get_information+0x18>
40008ab8: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40008abc: 0a bf ff f9 bcs 40008aa0 <_Objects_Get_information+0x18>
40008ac0: 03 10 00 58 sethi %hi(0x40016000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40008ac4: b1 2e 20 02 sll %i0, 2, %i0
40008ac8: 82 10 63 68 or %g1, 0x368, %g1
40008acc: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40008ad0: 80 a0 60 00 cmp %g1, 0
40008ad4: 02 bf ff f3 be 40008aa0 <_Objects_Get_information+0x18> <== NEVER TAKEN
40008ad8: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40008adc: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40008ae0: 80 a4 20 00 cmp %l0, 0
40008ae4: 02 bf ff ef be 40008aa0 <_Objects_Get_information+0x18> <== NEVER TAKEN
40008ae8: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40008aec: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40008af0: 80 a0 00 01 cmp %g0, %g1
40008af4: 82 60 20 00 subx %g0, 0, %g1
40008af8: 10 bf ff ea b 40008aa0 <_Objects_Get_information+0x18>
40008afc: a0 0c 00 01 and %l0, %g1, %l0
4000a838 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
4000a838: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
4000a83c: 80 a6 60 00 cmp %i1, 0
4000a840: 12 80 00 05 bne 4000a854 <_Objects_Get_name_as_string+0x1c>
4000a844: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
4000a848: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
4000a84c: 81 c7 e0 08 ret
4000a850: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
4000a854: 02 bf ff fe be 4000a84c <_Objects_Get_name_as_string+0x14>
4000a858: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
4000a85c: 12 80 00 04 bne 4000a86c <_Objects_Get_name_as_string+0x34>
4000a860: 03 10 00 a3 sethi %hi(0x40028c00), %g1
4000a864: c2 00 61 b8 ld [ %g1 + 0x1b8 ], %g1 ! 40028db8 <_Per_CPU_Information+0xc>
4000a868: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
4000a86c: 7f ff ff b1 call 4000a730 <_Objects_Get_information_id>
4000a870: 90 10 00 18 mov %i0, %o0
if ( !information )
4000a874: 80 a2 20 00 cmp %o0, 0
4000a878: 22 bf ff f5 be,a 4000a84c <_Objects_Get_name_as_string+0x14>
4000a87c: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
4000a880: 92 10 00 18 mov %i0, %o1
4000a884: 40 00 00 2c call 4000a934 <_Objects_Get>
4000a888: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
4000a88c: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a890: 80 a0 60 00 cmp %g1, 0
4000a894: 32 bf ff ee bne,a 4000a84c <_Objects_Get_name_as_string+0x14>
4000a898: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
4000a89c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
4000a8a0: c0 2f bf f4 clrb [ %fp + -12 ]
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
4000a8a4: 85 30 60 08 srl %g1, 8, %g2
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000a8a8: 87 30 60 18 srl %g1, 0x18, %g3
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000a8ac: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
4000a8b0: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000a8b4: c6 2f bf f0 stb %g3, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000a8b8: c8 2f bf f1 stb %g4, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
4000a8bc: c2 2f bf f3 stb %g1, [ %fp + -13 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
4000a8c0: b2 86 7f ff addcc %i1, -1, %i1
4000a8c4: 02 80 00 19 be 4000a928 <_Objects_Get_name_as_string+0xf0><== NEVER TAKEN
4000a8c8: 84 10 00 1a mov %i2, %g2
4000a8cc: 80 a0 e0 00 cmp %g3, 0
4000a8d0: 02 80 00 16 be 4000a928 <_Objects_Get_name_as_string+0xf0>
4000a8d4: 19 10 00 80 sethi %hi(0x40020000), %o4
4000a8d8: 82 10 20 00 clr %g1
4000a8dc: 10 80 00 06 b 4000a8f4 <_Objects_Get_name_as_string+0xbc>
4000a8e0: 98 13 23 c8 or %o4, 0x3c8, %o4
4000a8e4: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
4000a8e8: 80 a3 60 00 cmp %o5, 0
4000a8ec: 02 80 00 0f be 4000a928 <_Objects_Get_name_as_string+0xf0>
4000a8f0: c6 09 00 01 ldub [ %g4 + %g1 ], %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
4000a8f4: da 03 00 00 ld [ %o4 ], %o5
4000a8f8: 88 08 e0 ff and %g3, 0xff, %g4
4000a8fc: 88 03 40 04 add %o5, %g4, %g4
4000a900: da 49 20 01 ldsb [ %g4 + 1 ], %o5
4000a904: 80 8b 60 97 btst 0x97, %o5
4000a908: 12 80 00 03 bne 4000a914 <_Objects_Get_name_as_string+0xdc>
4000a90c: 88 07 bf f0 add %fp, -16, %g4
4000a910: 86 10 20 2a mov 0x2a, %g3
4000a914: c6 28 80 00 stb %g3, [ %g2 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
4000a918: 82 00 60 01 inc %g1
4000a91c: 80 a0 40 19 cmp %g1, %i1
4000a920: 0a bf ff f1 bcs 4000a8e4 <_Objects_Get_name_as_string+0xac>
4000a924: 84 00 a0 01 inc %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
4000a928: 40 00 03 04 call 4000b538 <_Thread_Enable_dispatch>
4000a92c: c0 28 80 00 clrb [ %g2 ]
return name;
4000a930: 30 bf ff c7 b,a 4000a84c <_Objects_Get_name_as_string+0x14>
40019e2c <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019e2c: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
40019e30: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019e34: 84 22 40 02 sub %o1, %g2, %g2
40019e38: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
40019e3c: 80 a0 80 01 cmp %g2, %g1
40019e40: 18 80 00 09 bgu 40019e64 <_Objects_Get_no_protection+0x38>
40019e44: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
40019e48: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
40019e4c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
40019e50: 80 a2 20 00 cmp %o0, 0
40019e54: 02 80 00 05 be 40019e68 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40019e58: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40019e5c: 81 c3 e0 08 retl
40019e60: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40019e64: 82 10 20 01 mov 1, %g1
return NULL;
40019e68: 90 10 20 00 clr %o0
}
40019e6c: 81 c3 e0 08 retl
40019e70: c2 22 80 00 st %g1, [ %o2 ]
4000a32c <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
4000a32c: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
4000a330: 80 a6 20 00 cmp %i0, 0
4000a334: 12 80 00 06 bne 4000a34c <_Objects_Id_to_name+0x20>
4000a338: 83 36 20 18 srl %i0, 0x18, %g1
4000a33c: 03 10 00 80 sethi %hi(0x40020000), %g1
4000a340: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 400200a8 <_Per_CPU_Information+0xc>
4000a344: f0 00 60 08 ld [ %g1 + 8 ], %i0
4000a348: 83 36 20 18 srl %i0, 0x18, %g1
4000a34c: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
4000a350: 84 00 7f ff add %g1, -1, %g2
4000a354: 80 a0 a0 02 cmp %g2, 2
4000a358: 18 80 00 17 bgu 4000a3b4 <_Objects_Id_to_name+0x88>
4000a35c: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
4000a360: 83 28 60 02 sll %g1, 2, %g1
4000a364: 05 10 00 7f sethi %hi(0x4001fc00), %g2
4000a368: 84 10 a1 b8 or %g2, 0x1b8, %g2 ! 4001fdb8 <_Objects_Information_table>
4000a36c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
4000a370: 80 a0 60 00 cmp %g1, 0
4000a374: 02 80 00 10 be 4000a3b4 <_Objects_Id_to_name+0x88>
4000a378: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
4000a37c: 85 28 a0 02 sll %g2, 2, %g2
4000a380: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
4000a384: 80 a2 20 00 cmp %o0, 0
4000a388: 02 80 00 0b be 4000a3b4 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
4000a38c: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
4000a390: 7f ff ff ca call 4000a2b8 <_Objects_Get>
4000a394: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
4000a398: 80 a2 20 00 cmp %o0, 0
4000a39c: 02 80 00 06 be 4000a3b4 <_Objects_Id_to_name+0x88>
4000a3a0: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
4000a3a4: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
4000a3a8: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
4000a3ac: 40 00 03 14 call 4000affc <_Thread_Enable_dispatch>
4000a3b0: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
4000a3b4: 81 c7 e0 08 ret
4000a3b8: 91 e8 00 10 restore %g0, %l0, %o0
40008be8 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40008be8: 9d e3 bf a0 save %sp, -96, %sp
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40008bec: 05 10 00 58 sethi %hi(0x40016000), %g2
40008bf0: 83 2e 60 02 sll %i1, 2, %g1
40008bf4: 84 10 a3 68 or %g2, 0x368, %g2
40008bf8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
40008bfc: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
40008c00: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
40008c04: 85 2f 20 10 sll %i4, 0x10, %g2
information->local_table = 0;
40008c08: c0 26 20 1c clr [ %i0 + 0x1c ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40008c0c: 85 30 a0 10 srl %g2, 0x10, %g2
information->local_table = 0;
information->inactive_per_block = 0;
40008c10: c0 26 20 30 clr [ %i0 + 0x30 ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40008c14: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->local_table = 0;
information->inactive_per_block = 0;
information->object_blocks = 0;
40008c18: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
40008c1c: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
40008c20: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40008c24: c6 07 a0 5c ld [ %fp + 0x5c ], %g3
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40008c28: b5 2e a0 10 sll %i2, 0x10, %i2
40008c2c: b5 36 a0 10 srl %i2, 0x10, %i2
40008c30: 85 2e a0 02 sll %i2, 2, %g2
40008c34: f0 20 40 02 st %i0, [ %g1 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
40008c38: 83 36 e0 1f srl %i3, 0x1f, %g1
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
40008c3c: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ]
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40008c40: 80 a0 60 00 cmp %g1, 0
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
40008c44: 03 20 00 00 sethi %hi(0x80000000), %g1
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40008c48: 02 80 00 05 be 40008c5c <_Objects_Initialize_information+0x74>
40008c4c: b6 2e c0 01 andn %i3, %g1, %i3
40008c50: 80 a6 e0 00 cmp %i3, 0
40008c54: 02 80 00 27 be 40008cf0 <_Objects_Initialize_information+0x108>
40008c58: 90 10 20 00 clr %o0
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008c5c: 05 00 00 40 sethi %hi(0x10000), %g2
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40008c60: 80 a0 00 1b cmp %g0, %i3
40008c64: b3 2e 60 18 sll %i1, 0x18, %i1
40008c68: 82 40 20 00 addx %g0, 0, %g1
40008c6c: b2 16 40 02 or %i1, %g2, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008c70: b5 2e a0 1b sll %i2, 0x1b, %i2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40008c74: 05 10 00 58 sethi %hi(0x40016000), %g2
40008c78: b4 16 40 1a or %i1, %i2, %i2
40008c7c: 84 10 a0 84 or %g2, 0x84, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008c80: b4 16 80 01 or %i2, %g1, %i2
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
40008c84: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40008c88: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
40008c8c: 80 88 e0 03 btst 3, %g3
40008c90: 12 80 00 0c bne 40008cc0 <_Objects_Initialize_information+0xd8><== NEVER TAKEN
40008c94: f4 26 20 08 st %i2, [ %i0 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40008c98: 84 06 20 24 add %i0, 0x24, %g2
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40008c9c: 82 06 20 20 add %i0, 0x20, %g1
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40008ca0: c6 36 20 38 sth %g3, [ %i0 + 0x38 ]
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008ca4: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
head->previous = NULL;
40008ca8: c0 26 20 24 clr [ %i0 + 0x24 ]
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40008cac: 80 a6 e0 00 cmp %i3, 0
40008cb0: 12 80 00 0e bne 40008ce8 <_Objects_Initialize_information+0x100>
40008cb4: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
40008cb8: 81 c7 e0 08 ret
40008cbc: 81 e8 00 00 restore
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
40008cc0: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40008cc4: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED
40008cc8: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40008ccc: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40008cd0: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008cd4: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED
head->previous = NULL;
40008cd8: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40008cdc: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40008ce0: 02 bf ff f6 be 40008cb8 <_Objects_Initialize_information+0xd0><== NOT EXECUTED
40008ce4: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40008ce8: 7f ff fe 7e call 400086e0 <_Objects_Extend_information>
40008cec: 81 e8 00 00 restore
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
_Internal_error_Occurred(
40008cf0: 92 10 20 01 mov 1, %o1
40008cf4: 7f ff fe 1e call 4000856c <_Internal_error_Occurred>
40008cf8: 94 10 20 13 mov 0x13, %o2
40008db8 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
40008db8: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
40008dbc: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
40008dc0: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
40008dc4: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
40008dc8: 92 10 00 11 mov %l1, %o1
40008dcc: 40 00 27 27 call 40012a68 <.udiv>
40008dd0: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40008dd4: 80 a2 20 00 cmp %o0, 0
40008dd8: 02 80 00 34 be 40008ea8 <_Objects_Shrink_information+0xf0><== NEVER TAKEN
40008ddc: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
40008de0: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
40008de4: c2 01 00 00 ld [ %g4 ], %g1
40008de8: 80 a4 40 01 cmp %l1, %g1
40008dec: 02 80 00 0f be 40008e28 <_Objects_Shrink_information+0x70><== NEVER TAKEN
40008df0: 82 10 20 00 clr %g1
40008df4: 10 80 00 07 b 40008e10 <_Objects_Shrink_information+0x58>
40008df8: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
40008dfc: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
40008e00: 80 a4 40 02 cmp %l1, %g2
40008e04: 02 80 00 0a be 40008e2c <_Objects_Shrink_information+0x74>
40008e08: a0 04 00 11 add %l0, %l1, %l0
40008e0c: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40008e10: 82 00 60 01 inc %g1
40008e14: 80 a2 00 01 cmp %o0, %g1
40008e18: 38 bf ff f9 bgu,a 40008dfc <_Objects_Shrink_information+0x44>
40008e1c: c4 01 00 12 ld [ %g4 + %l2 ], %g2
40008e20: 81 c7 e0 08 ret
40008e24: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
40008e28: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
40008e2c: 10 80 00 06 b 40008e44 <_Objects_Shrink_information+0x8c>
40008e30: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
40008e34: 80 a4 60 00 cmp %l1, 0
40008e38: 22 80 00 12 be,a 40008e80 <_Objects_Shrink_information+0xc8>
40008e3c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
40008e40: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
40008e44: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40008e48: 80 a0 40 10 cmp %g1, %l0
40008e4c: 0a bf ff fa bcs 40008e34 <_Objects_Shrink_information+0x7c>
40008e50: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
40008e54: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
40008e58: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40008e5c: 80 a0 40 02 cmp %g1, %g2
40008e60: 1a bf ff f6 bcc 40008e38 <_Objects_Shrink_information+0x80>
40008e64: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
40008e68: 7f ff fb 47 call 40007b84 <_Chain_Extract>
40008e6c: 01 00 00 00 nop
}
}
while ( the_object );
40008e70: 80 a4 60 00 cmp %l1, 0
40008e74: 12 bf ff f4 bne 40008e44 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
40008e78: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
40008e7c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
40008e80: 40 00 07 43 call 4000ab8c <_Workspace_Free>
40008e84: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
40008e88: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
40008e8c: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
40008e90: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
40008e94: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
40008e98: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
40008e9c: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
40008ea0: 82 20 80 01 sub %g2, %g1, %g1
40008ea4: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
40008ea8: 81 c7 e0 08 ret
40008eac: 81 e8 00 00 restore
4000751c <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
4000751c: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
40007520: 03 10 00 56 sethi %hi(0x40015800), %g1
40007524: 82 10 61 60 or %g1, 0x160, %g1 ! 40015960 <Configuration_RTEMS_API>
40007528: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
4000752c: 80 a4 20 00 cmp %l0, 0
40007530: 02 80 00 19 be 40007594 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
40007534: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
40007538: 80 a4 a0 00 cmp %l2, 0
4000753c: 02 80 00 16 be 40007594 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
40007540: a2 10 20 00 clr %l1
40007544: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
40007548: d4 04 20 04 ld [ %l0 + 4 ], %o2
4000754c: d0 04 00 00 ld [ %l0 ], %o0
40007550: d2 04 20 08 ld [ %l0 + 8 ], %o1
40007554: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
40007558: d8 04 20 0c ld [ %l0 + 0xc ], %o4
4000755c: 7f ff ff 6d call 40007310 <rtems_task_create>
40007560: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
40007564: 94 92 20 00 orcc %o0, 0, %o2
40007568: 12 80 00 0d bne 4000759c <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
4000756c: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
40007570: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
40007574: 40 00 00 0e call 400075ac <rtems_task_start>
40007578: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
4000757c: 94 92 20 00 orcc %o0, 0, %o2
40007580: 12 80 00 07 bne 4000759c <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40007584: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
40007588: 80 a4 80 11 cmp %l2, %l1
4000758c: 18 bf ff ef bgu 40007548 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
40007590: a0 04 20 1c add %l0, 0x1c, %l0
40007594: 81 c7 e0 08 ret
40007598: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
4000759c: 90 10 20 01 mov 1, %o0
400075a0: 40 00 03 f3 call 4000856c <_Internal_error_Occurred>
400075a4: 92 10 20 01 mov 1, %o1
4000cb14 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000cb14: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000cb18: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000cb1c: 80 a4 20 00 cmp %l0, 0
4000cb20: 02 80 00 1f be 4000cb9c <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
4000cb24: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000cb28: 7f ff d4 b9 call 40001e0c <sparc_disable_interrupts>
4000cb2c: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000cb30: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
4000cb34: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000cb38: 7f ff d4 b9 call 40001e1c <sparc_enable_interrupts>
4000cb3c: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000cb40: 80 a4 60 00 cmp %l1, 0
4000cb44: 32 80 00 04 bne,a 4000cb54 <_RTEMS_tasks_Post_switch_extension+0x40>
4000cb48: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000cb4c: 81 c7 e0 08 ret
4000cb50: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cb54: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000cb58: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cb5c: a4 07 bf fc add %fp, -4, %l2
4000cb60: 27 00 00 3f sethi %hi(0xfc00), %l3
4000cb64: 94 10 00 12 mov %l2, %o2
4000cb68: 92 14 e3 ff or %l3, 0x3ff, %o1
4000cb6c: 40 00 08 29 call 4000ec10 <rtems_task_mode>
4000cb70: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
4000cb74: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000cb78: 9f c0 40 00 call %g1
4000cb7c: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
4000cb80: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cb84: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000cb88: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cb8c: 92 14 e3 ff or %l3, 0x3ff, %o1
4000cb90: 94 10 00 12 mov %l2, %o2
4000cb94: 40 00 08 1f call 4000ec10 <rtems_task_mode>
4000cb98: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
4000cb9c: 81 c7 e0 08 ret
4000cba0: 81 e8 00 00 restore
4000ca84 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
4000ca84: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
4000ca88: 80 a0 60 00 cmp %g1, 0
4000ca8c: 22 80 00 0b be,a 4000cab8 <_RTEMS_tasks_Switch_extension+0x34>
4000ca90: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
tvp->tval = *tvp->ptr;
4000ca94: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
4000ca98: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
4000ca9c: c8 00 80 00 ld [ %g2 ], %g4
4000caa0: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
4000caa4: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
4000caa8: 80 a0 60 00 cmp %g1, 0
4000caac: 12 bf ff fa bne 4000ca94 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
4000cab0: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
4000cab4: c2 02 61 58 ld [ %o1 + 0x158 ], %g1
while (tvp) {
4000cab8: 80 a0 60 00 cmp %g1, 0
4000cabc: 02 80 00 0a be 4000cae4 <_RTEMS_tasks_Switch_extension+0x60>
4000cac0: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000cac4: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
4000cac8: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
4000cacc: c8 00 80 00 ld [ %g2 ], %g4
4000cad0: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
4000cad4: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
4000cad8: 80 a0 60 00 cmp %g1, 0
4000cadc: 12 bf ff fa bne 4000cac4 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
4000cae0: c6 20 80 00 st %g3, [ %g2 ]
4000cae4: 81 c3 e0 08 retl
40008834 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
40008834: 9d e3 bf 98 save %sp, -104, %sp
40008838: 11 10 00 80 sethi %hi(0x40020000), %o0
4000883c: 92 10 00 18 mov %i0, %o1
40008840: 90 12 23 a4 or %o0, 0x3a4, %o0
40008844: 40 00 08 3d call 4000a938 <_Objects_Get>
40008848: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
4000884c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008850: 80 a0 60 00 cmp %g1, 0
40008854: 12 80 00 16 bne 400088ac <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
40008858: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
4000885c: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40008860: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
40008864: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40008868: 80 88 80 01 btst %g2, %g1
4000886c: 22 80 00 08 be,a 4000888c <_Rate_monotonic_Timeout+0x58>
40008870: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40008874: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40008878: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000887c: 80 a0 80 01 cmp %g2, %g1
40008880: 02 80 00 19 be 400088e4 <_Rate_monotonic_Timeout+0xb0>
40008884: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40008888: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000888c: 80 a0 60 01 cmp %g1, 1
40008890: 02 80 00 09 be 400088b4 <_Rate_monotonic_Timeout+0x80>
40008894: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40008898: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
4000889c: 03 10 00 81 sethi %hi(0x40020400), %g1
400088a0: c4 00 61 10 ld [ %g1 + 0x110 ], %g2 ! 40020510 <_Thread_Dispatch_disable_level>
400088a4: 84 00 bf ff add %g2, -1, %g2
400088a8: c4 20 61 10 st %g2, [ %g1 + 0x110 ]
400088ac: 81 c7 e0 08 ret
400088b0: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
400088b4: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
400088b8: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
400088bc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
400088c0: 7f ff fe 4c call 400081f0 <_Rate_monotonic_Initiate_statistics>
400088c4: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400088c8: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400088cc: 11 10 00 81 sethi %hi(0x40020400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400088d0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400088d4: 90 12 21 f0 or %o0, 0x1f0, %o0
400088d8: 40 00 0f a9 call 4000c77c <_Watchdog_Insert>
400088dc: 92 04 20 10 add %l0, 0x10, %o1
400088e0: 30 bf ff ef b,a 4000889c <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400088e4: 40 00 0a 6b call 4000b290 <_Thread_Clear_state>
400088e8: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
400088ec: 10 bf ff f5 b 400088c0 <_Rate_monotonic_Timeout+0x8c>
400088f0: 90 10 00 10 mov %l0, %o0
4000d404 <_Scheduler_priority_Block>:
void _Scheduler_priority_Block(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
4000d404: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract(
Thread_Control *the_thread
)
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
4000d408: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
4000d40c: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
4000d410: c6 00 40 00 ld [ %g1 ], %g3
4000d414: c4 00 60 08 ld [ %g1 + 8 ], %g2
4000d418: 80 a0 c0 02 cmp %g3, %g2
4000d41c: 22 80 00 39 be,a 4000d500 <_Scheduler_priority_Block+0xfc>
4000d420: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
4000d424: c4 06 40 00 ld [ %i1 ], %g2
previous = the_node->previous;
4000d428: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
4000d42c: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000d430: c4 20 40 00 st %g2, [ %g1 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
4000d434: 03 10 00 59 sethi %hi(0x40016400), %g1
4000d438: 82 10 62 4c or %g1, 0x24c, %g1 ! 4001664c <_Per_CPU_Information>
{
_Scheduler_priority_Ready_queue_extract(the_thread);
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
4000d43c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000d440: 80 a6 40 02 cmp %i1, %g2
4000d444: 02 80 00 09 be 4000d468 <_Scheduler_priority_Block+0x64>
4000d448: 05 10 00 59 sethi %hi(0x40016400), %g2
_Scheduler_priority_Schedule_body(the_scheduler);
if ( _Thread_Is_executing( the_thread ) )
4000d44c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4000d450: 80 a6 40 02 cmp %i1, %g2
4000d454: 12 80 00 03 bne 4000d460 <_Scheduler_priority_Block+0x5c>
4000d458: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000d45c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
4000d460: 81 c7 e0 08 ret
4000d464: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000d468: c4 10 a2 70 lduh [ %g2 + 0x270 ], %g2
4000d46c: 85 28 a0 10 sll %g2, 0x10, %g2
4000d470: 89 30 a0 10 srl %g2, 0x10, %g4
4000d474: 80 a1 20 ff cmp %g4, 0xff
4000d478: 18 80 00 38 bgu 4000d558 <_Scheduler_priority_Block+0x154>
4000d47c: c6 06 00 00 ld [ %i0 ], %g3
4000d480: 1b 10 00 54 sethi %hi(0x40015000), %o5
4000d484: 9a 13 60 80 or %o5, 0x80, %o5 ! 40015080 <__log2table>
4000d488: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2
4000d48c: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000d490: 85 28 a0 10 sll %g2, 0x10, %g2
4000d494: 19 10 00 59 sethi %hi(0x40016400), %o4
4000d498: 89 30 a0 0f srl %g2, 0xf, %g4
4000d49c: 98 13 22 80 or %o4, 0x280, %o4
4000d4a0: c8 13 00 04 lduh [ %o4 + %g4 ], %g4
4000d4a4: 89 29 20 10 sll %g4, 0x10, %g4
4000d4a8: 99 31 20 10 srl %g4, 0x10, %o4
4000d4ac: 80 a3 20 ff cmp %o4, 0xff
4000d4b0: 38 80 00 28 bgu,a 4000d550 <_Scheduler_priority_Block+0x14c>
4000d4b4: 89 31 20 18 srl %g4, 0x18, %g4
4000d4b8: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4
4000d4bc: 88 01 20 08 add %g4, 8, %g4
return (_Priority_Bits_index( major ) << 4) +
4000d4c0: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
4000d4c4: 89 29 20 10 sll %g4, 0x10, %g4
4000d4c8: 89 31 20 10 srl %g4, 0x10, %g4
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000d4cc: 88 01 00 02 add %g4, %g2, %g4
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
4000d4d0: 9b 29 20 02 sll %g4, 2, %o5
4000d4d4: 85 29 20 04 sll %g4, 4, %g2
4000d4d8: 84 20 80 0d sub %g2, %o5, %g2
_Scheduler_priority_Block_body(the_scheduler, the_thread);
}
4000d4dc: da 00 c0 02 ld [ %g3 + %g2 ], %o5
4000d4e0: 84 00 c0 02 add %g3, %g2, %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000d4e4: 84 00 a0 04 add %g2, 4, %g2
4000d4e8: 80 a3 40 02 cmp %o5, %g2
4000d4ec: 02 80 00 03 be 4000d4f8 <_Scheduler_priority_Block+0xf4> <== NEVER TAKEN
4000d4f0: 88 10 20 00 clr %g4
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
4000d4f4: 88 10 00 0d mov %o5, %g4
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000d4f8: 10 bf ff d5 b 4000d44c <_Scheduler_priority_Block+0x48>
4000d4fc: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
tail->previous = head;
4000d500: c2 20 60 08 st %g1, [ %g1 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000d504: 84 00 60 04 add %g1, 4, %g2
head->next = tail;
4000d508: c4 20 40 00 st %g2, [ %g1 ]
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
if ( _Chain_Has_only_one_node( ready ) ) {
_Chain_Initialize_empty( ready );
_Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
4000d50c: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
4000d510: c6 00 60 04 ld [ %g1 + 4 ], %g3
4000d514: c4 10 60 0e lduh [ %g1 + 0xe ], %g2
4000d518: c8 10 c0 00 lduh [ %g3 ], %g4
4000d51c: 84 09 00 02 and %g4, %g2, %g2
4000d520: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
4000d524: 85 28 a0 10 sll %g2, 0x10, %g2
4000d528: 80 a0 a0 00 cmp %g2, 0
4000d52c: 32 bf ff c3 bne,a 4000d438 <_Scheduler_priority_Block+0x34>
4000d530: 03 10 00 59 sethi %hi(0x40016400), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
4000d534: 05 10 00 59 sethi %hi(0x40016400), %g2
4000d538: c2 10 60 0c lduh [ %g1 + 0xc ], %g1
4000d53c: c6 10 a2 70 lduh [ %g2 + 0x270 ], %g3
4000d540: 82 08 c0 01 and %g3, %g1, %g1
4000d544: c2 30 a2 70 sth %g1, [ %g2 + 0x270 ]
4000d548: 10 bf ff bc b 4000d438 <_Scheduler_priority_Block+0x34>
4000d54c: 03 10 00 59 sethi %hi(0x40016400), %g1
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000d550: 10 bf ff dc b 4000d4c0 <_Scheduler_priority_Block+0xbc>
4000d554: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000d558: 1b 10 00 54 sethi %hi(0x40015000), %o5
4000d55c: 85 30 a0 18 srl %g2, 0x18, %g2
4000d560: 9a 13 60 80 or %o5, 0x80, %o5
4000d564: 10 bf ff cb b 4000d490 <_Scheduler_priority_Block+0x8c>
4000d568: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2
40009024 <_Scheduler_priority_Schedule>:
*/
void _Scheduler_priority_Schedule(
Scheduler_Control *the_scheduler
)
{
40009024: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40009028: 03 10 00 59 sethi %hi(0x40016400), %g1
4000902c: c2 10 62 70 lduh [ %g1 + 0x270 ], %g1 ! 40016670 <_Priority_Major_bit_map>
40009030: 83 28 60 10 sll %g1, 0x10, %g1
40009034: 87 30 60 10 srl %g1, 0x10, %g3
40009038: 80 a0 e0 ff cmp %g3, 0xff
4000903c: 18 80 00 26 bgu 400090d4 <_Scheduler_priority_Schedule+0xb0>
40009040: c4 06 00 00 ld [ %i0 ], %g2
40009044: 09 10 00 54 sethi %hi(0x40015000), %g4
40009048: 88 11 20 80 or %g4, 0x80, %g4 ! 40015080 <__log2table>
4000904c: c2 09 00 03 ldub [ %g4 + %g3 ], %g1
40009050: 82 00 60 08 add %g1, 8, %g1
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40009054: 83 28 60 10 sll %g1, 0x10, %g1
40009058: 1b 10 00 59 sethi %hi(0x40016400), %o5
4000905c: 87 30 60 0f srl %g1, 0xf, %g3
40009060: 9a 13 62 80 or %o5, 0x280, %o5
40009064: c6 13 40 03 lduh [ %o5 + %g3 ], %g3
40009068: 87 28 e0 10 sll %g3, 0x10, %g3
4000906c: 9b 30 e0 10 srl %g3, 0x10, %o5
40009070: 80 a3 60 ff cmp %o5, 0xff
40009074: 38 80 00 16 bgu,a 400090cc <_Scheduler_priority_Schedule+0xa8>
40009078: 87 30 e0 18 srl %g3, 0x18, %g3
4000907c: c6 09 00 0d ldub [ %g4 + %o5 ], %g3
40009080: 86 00 e0 08 add %g3, 8, %g3
return (_Priority_Bits_index( major ) << 4) +
40009084: 83 30 60 0c srl %g1, 0xc, %g1
_Priority_Bits_index( minor );
40009088: 87 28 e0 10 sll %g3, 0x10, %g3
4000908c: 87 30 e0 10 srl %g3, 0x10, %g3
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40009090: 86 00 c0 01 add %g3, %g1, %g3
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40009094: 89 28 e0 02 sll %g3, 2, %g4
40009098: 83 28 e0 04 sll %g3, 4, %g1
4000909c: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body( the_scheduler );
}
400090a0: c8 00 80 01 ld [ %g2 + %g1 ], %g4
400090a4: 82 00 80 01 add %g2, %g1, %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
400090a8: 82 00 60 04 add %g1, 4, %g1
400090ac: 80 a1 00 01 cmp %g4, %g1
400090b0: 02 80 00 03 be 400090bc <_Scheduler_priority_Schedule+0x98><== NEVER TAKEN
400090b4: 86 10 20 00 clr %g3
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
400090b8: 86 10 00 04 mov %g4, %g3
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
400090bc: 03 10 00 59 sethi %hi(0x40016400), %g1
400090c0: c6 20 62 5c st %g3, [ %g1 + 0x25c ] ! 4001665c <_Per_CPU_Information+0x10>
400090c4: 81 c7 e0 08 ret
400090c8: 81 e8 00 00 restore
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400090cc: 10 bf ff ee b 40009084 <_Scheduler_priority_Schedule+0x60>
400090d0: c6 09 00 03 ldub [ %g4 + %g3 ], %g3
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400090d4: 09 10 00 54 sethi %hi(0x40015000), %g4
400090d8: 83 30 60 18 srl %g1, 0x18, %g1
400090dc: 88 11 20 80 or %g4, 0x80, %g4
400090e0: 10 bf ff dd b 40009054 <_Scheduler_priority_Schedule+0x30>
400090e4: c2 09 00 01 ldub [ %g4 + %g1 ], %g1
40009224 <_Scheduler_priority_Yield>:
*/
void _Scheduler_priority_Yield(
Scheduler_Control *the_scheduler __attribute__((unused))
)
{
40009224: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
40009228: 25 10 00 59 sethi %hi(0x40016400), %l2
4000922c: a4 14 a2 4c or %l2, 0x24c, %l2 ! 4001664c <_Per_CPU_Information>
40009230: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
40009234: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
40009238: 7f ff e2 f5 call 40001e0c <sparc_disable_interrupts>
4000923c: e2 00 40 00 ld [ %g1 ], %l1
40009240: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
40009244: c4 04 40 00 ld [ %l1 ], %g2
40009248: c2 04 60 08 ld [ %l1 + 8 ], %g1
4000924c: 80 a0 80 01 cmp %g2, %g1
40009250: 02 80 00 16 be 400092a8 <_Scheduler_priority_Yield+0x84>
40009254: 86 04 60 04 add %l1, 4, %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40009258: c2 04 20 04 ld [ %l0 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
4000925c: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
next->previous = previous;
40009260: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40009264: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40009268: c2 04 60 08 ld [ %l1 + 8 ], %g1
the_node->next = tail;
4000926c: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
40009270: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last->next = the_node;
40009274: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40009278: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
4000927c: 7f ff e2 e8 call 40001e1c <sparc_enable_interrupts>
40009280: 01 00 00 00 nop
40009284: 7f ff e2 e2 call 40001e0c <sparc_disable_interrupts>
40009288: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
4000928c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40009290: 80 a4 00 01 cmp %l0, %g1
40009294: 02 80 00 0b be 400092c0 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN
40009298: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
4000929c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
400092a0: 7f ff e2 df call 40001e1c <sparc_enable_interrupts>
400092a4: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
400092a8: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
400092ac: 80 a4 00 01 cmp %l0, %g1
400092b0: 02 bf ff fc be 400092a0 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN
400092b4: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
400092b8: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
400092bc: 30 bf ff f9 b,a 400092a0 <_Scheduler_priority_Yield+0x7c><== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
400092c0: c2 04 40 00 ld [ %l1 ], %g1
400092c4: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
400092c8: 82 10 20 01 mov 1, %g1
400092cc: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
400092d0: 30 bf ff f4 b,a 400092a0 <_Scheduler_priority_Yield+0x7c>
400080b8 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
400080b8: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400080bc: 05 10 00 59 sethi %hi(0x40016400), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
400080c0: 03 10 00 56 sethi %hi(0x40015800), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400080c4: c6 00 a1 30 ld [ %g2 + 0x130 ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
400080c8: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400080cc: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
400080d0: 9b 28 60 07 sll %g1, 7, %o5
400080d4: 89 28 60 02 sll %g1, 2, %g4
400080d8: 88 23 40 04 sub %o5, %g4, %g4
400080dc: 82 01 00 01 add %g4, %g1, %g1
400080e0: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
400080e4: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
400080e8: c6 20 a1 30 st %g3, [ %g2 + 0x130 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
400080ec: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
400080f0: c2 27 bf fc st %g1, [ %fp + -4 ]
400080f4: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
400080f8: 11 10 00 59 sethi %hi(0x40016400), %o0
400080fc: 40 00 08 c5 call 4000a410 <_Timespec_Add_to>
40008100: 90 12 20 7c or %o0, 0x7c, %o0 ! 4001647c <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
40008104: 92 10 00 10 mov %l0, %o1
40008108: 11 10 00 59 sethi %hi(0x40016400), %o0
4000810c: 40 00 08 c1 call 4000a410 <_Timespec_Add_to>
40008110: 90 12 20 a8 or %o0, 0xa8, %o0 ! 400164a8 <_TOD_Now>
while ( seconds ) {
40008114: a0 92 20 00 orcc %o0, 0, %l0
40008118: 02 80 00 08 be 40008138 <_TOD_Tickle_ticks+0x80>
4000811c: 23 10 00 59 sethi %hi(0x40016400), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
40008120: a2 14 60 d4 or %l1, 0xd4, %l1 ! 400164d4 <_Watchdog_Seconds_chain>
40008124: 40 00 0a 4b call 4000aa50 <_Watchdog_Tickle>
40008128: 90 10 00 11 mov %l1, %o0
4000812c: a0 84 3f ff addcc %l0, -1, %l0
40008130: 12 bf ff fd bne 40008124 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
40008134: 01 00 00 00 nop
40008138: 81 c7 e0 08 ret
4000813c: 81 e8 00 00 restore
400081c8 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
400081c8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
400081cc: 03 10 00 80 sethi %hi(0x40020000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
400081d0: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
400081d4: d2 00 62 c4 ld [ %g1 + 0x2c4 ], %o1
if ((!the_tod) ||
400081d8: 80 a4 20 00 cmp %l0, 0
400081dc: 02 80 00 2c be 4000828c <_TOD_Validate+0xc4> <== NEVER TAKEN
400081e0: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
400081e4: 11 00 03 d0 sethi %hi(0xf4000), %o0
400081e8: 40 00 4a 65 call 4001ab7c <.udiv>
400081ec: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
400081f0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400081f4: 80 a2 00 01 cmp %o0, %g1
400081f8: 08 80 00 25 bleu 4000828c <_TOD_Validate+0xc4>
400081fc: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40008200: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40008204: 80 a0 60 3b cmp %g1, 0x3b
40008208: 18 80 00 21 bgu 4000828c <_TOD_Validate+0xc4>
4000820c: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40008210: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40008214: 80 a0 60 3b cmp %g1, 0x3b
40008218: 18 80 00 1d bgu 4000828c <_TOD_Validate+0xc4>
4000821c: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40008220: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40008224: 80 a0 60 17 cmp %g1, 0x17
40008228: 18 80 00 19 bgu 4000828c <_TOD_Validate+0xc4>
4000822c: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
40008230: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40008234: 80 a0 60 00 cmp %g1, 0
40008238: 02 80 00 15 be 4000828c <_TOD_Validate+0xc4> <== NEVER TAKEN
4000823c: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
40008240: 18 80 00 13 bgu 4000828c <_TOD_Validate+0xc4>
40008244: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40008248: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
4000824c: 80 a0 a7 c3 cmp %g2, 0x7c3
40008250: 08 80 00 0f bleu 4000828c <_TOD_Validate+0xc4>
40008254: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40008258: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
4000825c: 80 a0 e0 00 cmp %g3, 0
40008260: 02 80 00 0b be 4000828c <_TOD_Validate+0xc4> <== NEVER TAKEN
40008264: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
40008268: 32 80 00 0b bne,a 40008294 <_TOD_Validate+0xcc>
4000826c: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40008270: 82 00 60 0d add %g1, 0xd, %g1
40008274: 05 10 00 7b sethi %hi(0x4001ec00), %g2
40008278: 83 28 60 02 sll %g1, 2, %g1
4000827c: 84 10 a3 d0 or %g2, 0x3d0, %g2
40008280: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40008284: 80 a0 40 03 cmp %g1, %g3
40008288: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
4000828c: 81 c7 e0 08 ret
40008290: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40008294: 05 10 00 7b sethi %hi(0x4001ec00), %g2
40008298: 84 10 a3 d0 or %g2, 0x3d0, %g2 ! 4001efd0 <_TOD_Days_per_month>
4000829c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
400082a0: 80 a0 40 03 cmp %g1, %g3
400082a4: b0 60 3f ff subx %g0, -1, %i0
400082a8: 81 c7 e0 08 ret
400082ac: 81 e8 00 00 restore
40009330 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40009330: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
40009334: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40009338: 40 00 03 a6 call 4000a1d0 <_Thread_Set_transient>
4000933c: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40009340: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40009344: 80 a0 40 19 cmp %g1, %i1
40009348: 02 80 00 05 be 4000935c <_Thread_Change_priority+0x2c>
4000934c: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40009350: 90 10 00 18 mov %i0, %o0
40009354: 40 00 03 82 call 4000a15c <_Thread_Set_priority>
40009358: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
4000935c: 7f ff e2 ac call 40001e0c <sparc_disable_interrupts>
40009360: 01 00 00 00 nop
40009364: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40009368: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
if ( state != STATES_TRANSIENT ) {
4000936c: 80 a4 a0 04 cmp %l2, 4
40009370: 02 80 00 18 be 400093d0 <_Thread_Change_priority+0xa0>
40009374: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40009378: 02 80 00 0b be 400093a4 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
4000937c: 82 0c bf fb and %l2, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
40009380: 7f ff e2 a7 call 40001e1c <sparc_enable_interrupts> <== NOT EXECUTED
40009384: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
40009388: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
4000938c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40009390: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED
40009394: 32 80 00 0d bne,a 400093c8 <_Thread_Change_priority+0x98><== NOT EXECUTED
40009398: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
4000939c: 81 c7 e0 08 ret
400093a0: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
400093a4: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
400093a8: 7f ff e2 9d call 40001e1c <sparc_enable_interrupts>
400093ac: 90 10 00 18 mov %i0, %o0
400093b0: 03 00 00 ef sethi %hi(0x3bc00), %g1
400093b4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
400093b8: 80 8c 80 01 btst %l2, %g1
400093bc: 02 bf ff f8 be 4000939c <_Thread_Change_priority+0x6c>
400093c0: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
400093c4: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
400093c8: 40 00 03 35 call 4000a09c <_Thread_queue_Requeue>
400093cc: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
400093d0: 12 80 00 15 bne 40009424 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
400093d4: 80 8e a0 ff btst 0xff, %i2
* FIXME: hard-coded for priority scheduling. Might be ok since this
* function is specific to priority scheduling?
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
400093d8: 02 80 00 2a be 40009480 <_Thread_Change_priority+0x150>
400093dc: c0 24 20 10 clr [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue_first(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
400093e0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
400093e4: 07 10 00 59 sethi %hi(0x40016400), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
400093e8: c8 00 60 04 ld [ %g1 + 4 ], %g4
400093ec: da 10 60 0a lduh [ %g1 + 0xa ], %o5
400093f0: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
400093f4: c4 00 40 00 ld [ %g1 ], %g2
400093f8: 9a 13 00 0d or %o4, %o5, %o5
400093fc: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40009400: c8 10 60 08 lduh [ %g1 + 8 ], %g4
40009404: da 10 e2 70 lduh [ %g3 + 0x270 ], %o5
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
40009408: c2 00 80 00 ld [ %g2 ], %g1
4000940c: 88 13 40 04 or %o5, %g4, %g4
40009410: c8 30 e2 70 sth %g4, [ %g3 + 0x270 ]
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
40009414: c4 24 20 04 st %g2, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
40009418: e0 20 80 00 st %l0, [ %g2 ]
the_node->next = before_node;
4000941c: c2 24 00 00 st %g1, [ %l0 ]
before_node->previous = the_node;
40009420: e0 20 60 04 st %l0, [ %g1 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread );
else
_Scheduler_priority_Ready_queue_enqueue( the_thread );
}
_ISR_Flash( level );
40009424: 7f ff e2 7e call 40001e1c <sparc_enable_interrupts>
40009428: 90 10 00 18 mov %i0, %o0
4000942c: 7f ff e2 78 call 40001e0c <sparc_disable_interrupts>
40009430: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
Scheduler_Control *the_scheduler
)
{
the_scheduler->Operations.schedule( the_scheduler );
40009434: 11 10 00 59 sethi %hi(0x40016400), %o0
40009438: 90 12 20 84 or %o0, 0x84, %o0 ! 40016484 <_Scheduler>
4000943c: c2 02 20 04 ld [ %o0 + 4 ], %g1
40009440: 9f c0 40 00 call %g1
40009444: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40009448: 03 10 00 59 sethi %hi(0x40016400), %g1
4000944c: 82 10 62 4c or %g1, 0x24c, %g1 ! 4001664c <_Per_CPU_Information>
40009450: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule(&_Scheduler);
if ( !_Thread_Is_executing_also_the_heir() &&
40009454: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009458: 80 a0 80 03 cmp %g2, %g3
4000945c: 02 80 00 07 be 40009478 <_Thread_Change_priority+0x148>
40009460: 01 00 00 00 nop
40009464: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
40009468: 80 a0 a0 00 cmp %g2, 0
4000946c: 02 80 00 03 be 40009478 <_Thread_Change_priority+0x148>
40009470: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40009474: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40009478: 7f ff e2 69 call 40001e1c <sparc_enable_interrupts>
4000947c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
40009480: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
40009484: 07 10 00 59 sethi %hi(0x40016400), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40009488: c8 00 60 04 ld [ %g1 + 4 ], %g4
4000948c: da 10 60 0a lduh [ %g1 + 0xa ], %o5
40009490: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
40009494: c4 00 40 00 ld [ %g1 ], %g2
40009498: 9a 13 00 0d or %o4, %o5, %o5
4000949c: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
400094a0: c8 10 60 08 lduh [ %g1 + 8 ], %g4
400094a4: da 10 e2 70 lduh [ %g3 + 0x270 ], %o5
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
400094a8: c2 00 a0 08 ld [ %g2 + 8 ], %g1
400094ac: 88 13 40 04 or %o5, %g4, %g4
400094b0: c8 30 e2 70 sth %g4, [ %g3 + 0x270 ]
the_node->next = tail;
tail->previous = the_node;
400094b4: e0 20 a0 08 st %l0, [ %g2 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
400094b8: 86 00 a0 04 add %g2, 4, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
400094bc: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
400094c0: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
400094c4: 10 bf ff d8 b 40009424 <_Thread_Change_priority+0xf4>
400094c8: c2 24 20 04 st %g1, [ %l0 + 4 ]
400096a8 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
400096a8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
400096ac: 90 10 00 18 mov %i0, %o0
400096b0: 40 00 00 6c call 40009860 <_Thread_Get>
400096b4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400096b8: c2 07 bf fc ld [ %fp + -4 ], %g1
400096bc: 80 a0 60 00 cmp %g1, 0
400096c0: 12 80 00 08 bne 400096e0 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
400096c4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
400096c8: 7f ff ff 81 call 400094cc <_Thread_Clear_state>
400096cc: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
400096d0: 03 10 00 59 sethi %hi(0x40016400), %g1
400096d4: c4 00 60 00 ld [ %g1 ], %g2
400096d8: 84 00 bf ff add %g2, -1, %g2
400096dc: c4 20 60 00 st %g2, [ %g1 ]
400096e0: 81 c7 e0 08 ret
400096e4: 81 e8 00 00 restore
400096e8 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
400096e8: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
400096ec: 25 10 00 59 sethi %hi(0x40016400), %l2
400096f0: a4 14 a2 4c or %l2, 0x24c, %l2 ! 4001664c <_Per_CPU_Information>
_ISR_Disable( level );
400096f4: 7f ff e1 c6 call 40001e0c <sparc_disable_interrupts>
400096f8: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
while ( _Thread_Dispatch_necessary == true ) {
400096fc: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40009700: 80 a0 60 00 cmp %g1, 0
40009704: 02 80 00 42 be 4000980c <_Thread_Dispatch+0x124>
40009708: 2d 10 00 59 sethi %hi(0x40016400), %l6
heir = _Thread_Heir;
4000970c: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
40009710: 82 10 20 01 mov 1, %g1
40009714: c2 25 a0 00 st %g1, [ %l6 ]
_Thread_Dispatch_necessary = false;
40009718: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
4000971c: 80 a4 40 10 cmp %l1, %l0
40009720: 02 80 00 3b be 4000980c <_Thread_Dispatch+0x124>
40009724: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
40009728: 27 10 00 59 sethi %hi(0x40016400), %l3
4000972c: 3b 10 00 59 sethi %hi(0x40016400), %i5
40009730: a6 14 e0 cc or %l3, 0xcc, %l3
40009734: aa 07 bf f8 add %fp, -8, %l5
40009738: a8 07 bf f0 add %fp, -16, %l4
4000973c: ba 17 60 a4 or %i5, 0xa4, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40009740: 37 10 00 58 sethi %hi(0x40016000), %i3
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40009744: ae 10 00 13 mov %l3, %l7
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40009748: 10 80 00 2b b 400097f4 <_Thread_Dispatch+0x10c>
4000974c: b8 10 20 01 mov 1, %i4
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
40009750: 7f ff e1 b3 call 40001e1c <sparc_enable_interrupts>
40009754: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40009758: 40 00 0e 12 call 4000cfa0 <_TOD_Get_uptime>
4000975c: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
40009760: 90 10 00 17 mov %l7, %o0
40009764: 92 10 00 15 mov %l5, %o1
40009768: 40 00 03 43 call 4000a474 <_Timespec_Subtract>
4000976c: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40009770: 92 10 00 14 mov %l4, %o1
40009774: 40 00 03 27 call 4000a410 <_Timespec_Add_to>
40009778: 90 04 60 84 add %l1, 0x84, %o0
_Thread_Time_of_last_context_switch = uptime;
4000977c: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40009780: c2 07 40 00 ld [ %i5 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40009784: c4 24 c0 00 st %g2, [ %l3 ]
40009788: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( _Thread_libc_reent ) {
executing->libc_reent = *_Thread_libc_reent;
*_Thread_libc_reent = heir->libc_reent;
}
_User_extensions_Thread_switch( executing, heir );
4000978c: 90 10 00 11 mov %l1, %o0
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40009790: c4 24 e0 04 st %g2, [ %l3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40009794: 80 a0 60 00 cmp %g1, 0
40009798: 02 80 00 06 be 400097b0 <_Thread_Dispatch+0xc8> <== NEVER TAKEN
4000979c: 92 10 00 10 mov %l0, %o1
executing->libc_reent = *_Thread_libc_reent;
400097a0: c4 00 40 00 ld [ %g1 ], %g2
400097a4: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
400097a8: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
400097ac: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
400097b0: 40 00 03 f5 call 4000a784 <_User_extensions_Thread_switch>
400097b4: 01 00 00 00 nop
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
400097b8: 90 04 60 c0 add %l1, 0xc0, %o0
400097bc: 40 00 05 0a call 4000abe4 <_CPU_Context_switch>
400097c0: 92 04 20 c0 add %l0, 0xc0, %o1
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
400097c4: 7f ff e1 92 call 40001e0c <sparc_disable_interrupts>
400097c8: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
400097cc: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
400097d0: 80 a0 60 00 cmp %g1, 0
400097d4: 02 80 00 0e be 4000980c <_Thread_Dispatch+0x124>
400097d8: 01 00 00 00 nop
heir = _Thread_Heir;
400097dc: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
400097e0: f8 25 a0 00 st %i4, [ %l6 ]
_Thread_Dispatch_necessary = false;
400097e4: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400097e8: 80 a4 00 11 cmp %l0, %l1
400097ec: 02 80 00 08 be 4000980c <_Thread_Dispatch+0x124> <== NEVER TAKEN
400097f0: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
400097f4: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
400097f8: 80 a0 60 01 cmp %g1, 1
400097fc: 12 bf ff d5 bne 40009750 <_Thread_Dispatch+0x68>
40009800: c2 06 e3 64 ld [ %i3 + 0x364 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40009804: 10 bf ff d3 b 40009750 <_Thread_Dispatch+0x68>
40009808: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
4000980c: c0 25 a0 00 clr [ %l6 ]
_ISR_Enable( level );
40009810: 7f ff e1 83 call 40001e1c <sparc_enable_interrupts>
40009814: 01 00 00 00 nop
_API_extensions_Run_postswitch();
40009818: 7f ff f8 83 call 40007a24 <_API_extensions_Run_postswitch>
4000981c: 01 00 00 00 nop
}
40009820: 81 c7 e0 08 ret
40009824: 81 e8 00 00 restore
40009860 <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
40009860: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40009864: 80 a2 20 00 cmp %o0, 0
40009868: 02 80 00 1d be 400098dc <_Thread_Get+0x7c>
4000986c: 94 10 00 09 mov %o1, %o2
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40009870: 85 32 20 18 srl %o0, 0x18, %g2
40009874: 84 08 a0 07 and %g2, 7, %g2
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40009878: 86 00 bf ff add %g2, -1, %g3
4000987c: 80 a0 e0 02 cmp %g3, 2
40009880: 38 80 00 14 bgu,a 400098d0 <_Thread_Get+0x70>
40009884: 82 10 20 01 mov 1, %g1
*/
RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class(
Objects_Id id
)
{
return (uint32_t)
40009888: 89 32 20 1b srl %o0, 0x1b, %g4
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
4000988c: 80 a1 20 01 cmp %g4, 1
40009890: 32 80 00 10 bne,a 400098d0 <_Thread_Get+0x70>
40009894: 82 10 20 01 mov 1, %g1
*location = OBJECTS_ERROR;
goto done;
}
api_information = _Objects_Information_table[ the_api ];
40009898: 85 28 a0 02 sll %g2, 2, %g2
4000989c: 07 10 00 58 sethi %hi(0x40016000), %g3
400098a0: 86 10 e3 68 or %g3, 0x368, %g3 ! 40016368 <_Objects_Information_table>
400098a4: c4 00 c0 02 ld [ %g3 + %g2 ], %g2
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
400098a8: 80 a0 a0 00 cmp %g2, 0
400098ac: 22 80 00 16 be,a 40009904 <_Thread_Get+0xa4> <== NEVER TAKEN
400098b0: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED
*location = OBJECTS_ERROR;
goto done;
}
#endif
information = api_information[ the_class ];
400098b4: d0 00 a0 04 ld [ %g2 + 4 ], %o0
if ( !information ) {
400098b8: 80 a2 20 00 cmp %o0, 0
400098bc: 02 80 00 10 be 400098fc <_Thread_Get+0x9c>
400098c0: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
400098c4: 82 13 c0 00 mov %o7, %g1
400098c8: 7f ff fc ab call 40008b74 <_Objects_Get>
400098cc: 9e 10 40 00 mov %g1, %o7
{
uint32_t the_api;
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
400098d0: 90 10 20 00 clr %o0
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
goto done;
400098d4: 81 c3 e0 08 retl
400098d8: c2 22 80 00 st %g1, [ %o2 ]
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
400098dc: 03 10 00 59 sethi %hi(0x40016400), %g1
400098e0: c4 00 60 00 ld [ %g1 ], %g2
400098e4: 84 00 a0 01 inc %g2
400098e8: c4 20 60 00 st %g2, [ %g1 ]
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
400098ec: 03 10 00 59 sethi %hi(0x40016400), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
400098f0: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
400098f4: 81 c3 e0 08 retl
400098f8: d0 00 62 58 ld [ %g1 + 0x258 ], %o0
#endif
information = api_information[ the_class ];
if ( !information ) {
*location = OBJECTS_ERROR;
goto done;
400098fc: 81 c3 e0 08 retl
40009900: c8 22 80 00 st %g4, [ %o2 ]
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
*location = OBJECTS_ERROR;
goto done;
40009904: 81 c3 e0 08 retl <== NOT EXECUTED
40009908: 90 10 20 00 clr %o0 <== NOT EXECUTED
4000ef9c <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000ef9c: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000efa0: 03 10 00 59 sethi %hi(0x40016400), %g1
4000efa4: e0 00 62 58 ld [ %g1 + 0x258 ], %l0 ! 40016658 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000efa8: 3f 10 00 3b sethi %hi(0x4000ec00), %i7
4000efac: be 17 e3 9c or %i7, 0x39c, %i7 ! 4000ef9c <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000efb0: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000efb4: 7f ff cb 9a call 40001e1c <sparc_enable_interrupts>
4000efb8: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000efbc: 03 10 00 58 sethi %hi(0x40016000), %g1
doneConstructors = 1;
4000efc0: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000efc4: e2 08 60 8c ldub [ %g1 + 0x8c ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000efc8: 90 10 00 10 mov %l0, %o0
4000efcc: 7f ff ed 6e call 4000a584 <_User_extensions_Thread_begin>
4000efd0: c4 28 60 8c stb %g2, [ %g1 + 0x8c ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000efd4: 7f ff ea 15 call 40009828 <_Thread_Enable_dispatch>
4000efd8: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000efdc: 80 a4 60 00 cmp %l1, 0
4000efe0: 02 80 00 0c be 4000f010 <_Thread_Handler+0x74>
4000efe4: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000efe8: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000efec: 80 a0 60 00 cmp %g1, 0
4000eff0: 22 80 00 0f be,a 4000f02c <_Thread_Handler+0x90> <== ALWAYS TAKEN
4000eff4: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000eff8: 7f ff ed 77 call 4000a5d4 <_User_extensions_Thread_exitted>
4000effc: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000f000: 90 10 20 00 clr %o0
4000f004: 92 10 20 01 mov 1, %o1
4000f008: 7f ff e5 59 call 4000856c <_Internal_error_Occurred>
4000f00c: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
4000f010: 40 00 1a 22 call 40015898 <_init>
4000f014: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000f018: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000f01c: 80 a0 60 00 cmp %g1, 0
4000f020: 12 bf ff f6 bne 4000eff8 <_Thread_Handler+0x5c> <== NEVER TAKEN
4000f024: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000f028: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000f02c: 9f c0 40 00 call %g1
4000f030: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000f034: 10 bf ff f1 b 4000eff8 <_Thread_Handler+0x5c>
4000f038: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
4000990c <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
4000990c: 9d e3 bf a0 save %sp, -96, %sp
40009910: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
40009914: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
40009918: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
4000991c: c0 26 61 4c clr [ %i1 + 0x14c ]
40009920: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
40009924: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
40009928: 90 10 00 19 mov %i1, %o0
4000992c: 40 00 02 50 call 4000a26c <_Thread_Stack_Allocate>
40009930: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
40009934: 80 a2 00 1b cmp %o0, %i3
40009938: 0a 80 00 55 bcs 40009a8c <_Thread_Initialize+0x180>
4000993c: 80 a2 20 00 cmp %o0, 0
40009940: 02 80 00 53 be 40009a8c <_Thread_Initialize+0x180> <== NEVER TAKEN
40009944: 25 10 00 59 sethi %hi(0x40016400), %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
40009948: c4 06 60 bc ld [ %i1 + 0xbc ], %g2
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
4000994c: c2 04 a0 b0 ld [ %l2 + 0xb0 ], %g1
40009950: c4 26 60 b8 st %g2, [ %i1 + 0xb8 ]
the_stack->size = size;
40009954: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40009958: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
4000995c: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40009960: c0 26 60 68 clr [ %i1 + 0x68 ]
40009964: 80 a0 60 00 cmp %g1, 0
40009968: 12 80 00 4b bne 40009a94 <_Thread_Initialize+0x188>
4000996c: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009970: c0 26 61 54 clr [ %i1 + 0x154 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
40009974: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40009978: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
4000997c: 11 10 00 59 sethi %hi(0x40016400), %o0
40009980: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
40009984: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
40009988: 90 12 20 84 or %o0, 0x84, %o0
4000998c: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40009990: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
40009994: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
40009998: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
4000999c: 84 10 20 01 mov 1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
400099a0: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
400099a4: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
400099a8: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
400099ac: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
400099b0: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
400099b4: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
400099b8: 9f c0 40 00 call %g1
400099bc: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
400099c0: a0 92 20 00 orcc %o0, 0, %l0
400099c4: 02 80 00 11 be 40009a08 <_Thread_Initialize+0xfc>
400099c8: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
400099cc: 40 00 01 e4 call 4000a15c <_Thread_Set_priority>
400099d0: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread );
return false;
}
400099d4: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
400099d8: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
400099dc: c0 26 60 84 clr [ %i1 + 0x84 ]
400099e0: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
400099e4: 83 28 60 02 sll %g1, 2, %g1
400099e8: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
400099ec: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
400099f0: 90 10 00 19 mov %i1, %o0
400099f4: 40 00 03 1f call 4000a670 <_User_extensions_Thread_create>
400099f8: b0 10 20 01 mov 1, %i0
if ( extension_status )
400099fc: 80 8a 20 ff btst 0xff, %o0
40009a00: 12 80 00 36 bne 40009ad8 <_Thread_Initialize+0x1cc>
40009a04: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
40009a08: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
40009a0c: 80 a2 20 00 cmp %o0, 0
40009a10: 22 80 00 05 be,a 40009a24 <_Thread_Initialize+0x118>
40009a14: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
_Workspace_Free( the_thread->libc_reent );
40009a18: 40 00 04 5d call 4000ab8c <_Workspace_Free>
40009a1c: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
40009a20: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
40009a24: 80 a2 20 00 cmp %o0, 0
40009a28: 22 80 00 05 be,a 40009a3c <_Thread_Initialize+0x130>
40009a2c: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
40009a30: 40 00 04 57 call 4000ab8c <_Workspace_Free>
40009a34: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
40009a38: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
40009a3c: 80 a2 20 00 cmp %o0, 0
40009a40: 02 80 00 05 be 40009a54 <_Thread_Initialize+0x148> <== ALWAYS TAKEN
40009a44: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
40009a48: 40 00 04 51 call 4000ab8c <_Workspace_Free> <== NOT EXECUTED
40009a4c: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
40009a50: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40009a54: 02 80 00 05 be 40009a68 <_Thread_Initialize+0x15c>
40009a58: 80 a4 20 00 cmp %l0, 0
(void) _Workspace_Free( extensions_area );
40009a5c: 40 00 04 4c call 4000ab8c <_Workspace_Free>
40009a60: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
if ( sched )
40009a64: 80 a4 20 00 cmp %l0, 0
40009a68: 02 80 00 05 be 40009a7c <_Thread_Initialize+0x170>
40009a6c: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
40009a70: 40 00 04 47 call 4000ab8c <_Workspace_Free>
40009a74: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40009a78: 90 10 00 19 mov %i1, %o0
40009a7c: 40 00 02 17 call 4000a2d8 <_Thread_Stack_Free>
40009a80: b0 10 20 00 clr %i0
return false;
40009a84: 81 c7 e0 08 ret
40009a88: 81 e8 00 00 restore
}
40009a8c: 81 c7 e0 08 ret
40009a90: 91 e8 20 00 restore %g0, 0, %o0
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
40009a94: 82 00 60 01 inc %g1
40009a98: 40 00 04 34 call 4000ab68 <_Workspace_Allocate>
40009a9c: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40009aa0: b6 92 20 00 orcc %o0, 0, %i3
40009aa4: 02 80 00 0f be 40009ae0 <_Thread_Initialize+0x1d4>
40009aa8: c6 04 a0 b0 ld [ %l2 + 0xb0 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009aac: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40009ab0: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009ab4: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
40009ab8: 85 28 a0 02 sll %g2, 2, %g2
40009abc: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40009ac0: 82 00 60 01 inc %g1
40009ac4: 80 a0 40 03 cmp %g1, %g3
40009ac8: 08 bf ff fc bleu 40009ab8 <_Thread_Initialize+0x1ac>
40009acc: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40009ad0: 10 bf ff ab b 4000997c <_Thread_Initialize+0x70>
40009ad4: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
40009ad8: 81 c7 e0 08 ret
40009adc: 81 e8 00 00 restore
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
40009ae0: 10 bf ff ca b 40009a08 <_Thread_Initialize+0xfc>
40009ae4: a0 10 20 00 clr %l0
4000dd48 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000dd48: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000dd4c: 7f ff d0 75 call 40001f20 <sparc_disable_interrupts>
4000dd50: 01 00 00 00 nop
4000dd54: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
4000dd58: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000dd5c: 80 88 60 02 btst 2, %g1
4000dd60: 02 80 00 05 be 4000dd74 <_Thread_Resume+0x2c> <== NEVER TAKEN
4000dd64: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000dd68: 80 a0 60 00 cmp %g1, 0
4000dd6c: 02 80 00 04 be 4000dd7c <_Thread_Resume+0x34>
4000dd70: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
_Scheduler_Unblock( &_Scheduler, the_thread );
}
}
_ISR_Enable( level );
4000dd74: 7f ff d0 6f call 40001f30 <sparc_enable_interrupts>
4000dd78: 91 e8 00 10 restore %g0, %l0, %o0
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
the_scheduler->Operations.unblock( the_scheduler, the_thread );
4000dd7c: 11 10 00 6a sethi %hi(0x4001a800), %o0
4000dd80: 90 12 20 04 or %o0, 4, %o0 ! 4001a804 <_Scheduler>
4000dd84: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
4000dd88: 9f c0 40 00 call %g1
4000dd8c: 92 10 00 18 mov %i0, %o1
4000dd90: 7f ff d0 68 call 40001f30 <sparc_enable_interrupts>
4000dd94: 91 e8 00 10 restore %g0, %l0, %o0
4000a09c <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
4000a09c: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
4000a0a0: 80 a6 20 00 cmp %i0, 0
4000a0a4: 02 80 00 13 be 4000a0f0 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
4000a0a8: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
4000a0ac: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
4000a0b0: 80 a4 60 01 cmp %l1, 1
4000a0b4: 02 80 00 04 be 4000a0c4 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
4000a0b8: 01 00 00 00 nop
4000a0bc: 81 c7 e0 08 ret <== NOT EXECUTED
4000a0c0: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
4000a0c4: 7f ff df 52 call 40001e0c <sparc_disable_interrupts>
4000a0c8: 01 00 00 00 nop
4000a0cc: a0 10 00 08 mov %o0, %l0
4000a0d0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
4000a0d4: 03 00 00 ef sethi %hi(0x3bc00), %g1
4000a0d8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
4000a0dc: 80 88 80 01 btst %g2, %g1
4000a0e0: 12 80 00 06 bne 4000a0f8 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
4000a0e4: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
4000a0e8: 7f ff df 4d call 40001e1c <sparc_enable_interrupts>
4000a0ec: 90 10 00 10 mov %l0, %o0
4000a0f0: 81 c7 e0 08 ret
4000a0f4: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
4000a0f8: 92 10 00 19 mov %i1, %o1
4000a0fc: 94 10 20 01 mov 1, %o2
4000a100: 40 00 0d 75 call 4000d6d4 <_Thread_queue_Extract_priority_helper>
4000a104: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
4000a108: 90 10 00 18 mov %i0, %o0
4000a10c: 92 10 00 19 mov %i1, %o1
4000a110: 7f ff ff 31 call 40009dd4 <_Thread_queue_Enqueue_priority>
4000a114: 94 07 bf fc add %fp, -4, %o2
4000a118: 30 bf ff f4 b,a 4000a0e8 <_Thread_queue_Requeue+0x4c>
4000a11c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000a11c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
4000a120: 90 10 00 18 mov %i0, %o0
4000a124: 7f ff fd cf call 40009860 <_Thread_Get>
4000a128: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000a12c: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a130: 80 a0 60 00 cmp %g1, 0
4000a134: 12 80 00 08 bne 4000a154 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
4000a138: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
4000a13c: 40 00 0d a1 call 4000d7c0 <_Thread_queue_Process_timeout>
4000a140: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
4000a144: 03 10 00 59 sethi %hi(0x40016400), %g1
4000a148: c4 00 60 00 ld [ %g1 ], %g2
4000a14c: 84 00 bf ff add %g2, -1, %g2
4000a150: c4 20 60 00 st %g2, [ %g1 ]
4000a154: 81 c7 e0 08 ret
4000a158: 81 e8 00 00 restore
40017374 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40017374: 9d e3 bf 88 save %sp, -120, %sp
40017378: 2f 10 00 fb sethi %hi(0x4003ec00), %l7
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4001737c: ba 07 bf f4 add %fp, -12, %i5
40017380: aa 07 bf f8 add %fp, -8, %l5
40017384: a4 07 bf e8 add %fp, -24, %l2
40017388: a8 07 bf ec add %fp, -20, %l4
4001738c: 2d 10 00 fb sethi %hi(0x4003ec00), %l6
40017390: 39 10 00 fb sethi %hi(0x4003ec00), %i4
40017394: ea 27 bf f4 st %l5, [ %fp + -12 ]
head->previous = NULL;
40017398: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
4001739c: fa 27 bf fc st %i5, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
400173a0: e8 27 bf e8 st %l4, [ %fp + -24 ]
head->previous = NULL;
400173a4: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
400173a8: e4 27 bf f0 st %l2, [ %fp + -16 ]
400173ac: ae 15 e2 b0 or %l7, 0x2b0, %l7
400173b0: a2 06 20 30 add %i0, 0x30, %l1
400173b4: ac 15 a2 28 or %l6, 0x228, %l6
400173b8: a6 06 20 68 add %i0, 0x68, %l3
400173bc: b8 17 21 80 or %i4, 0x180, %i4
400173c0: b4 06 20 08 add %i0, 8, %i2
400173c4: b6 06 20 40 add %i0, 0x40, %i3
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
400173c8: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
400173cc: c2 05 c0 00 ld [ %l7 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
400173d0: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173d4: 94 10 00 12 mov %l2, %o2
400173d8: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
400173dc: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400173e0: 40 00 12 69 call 4001bd84 <_Watchdog_Adjust_to_chain>
400173e4: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
400173e8: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400173ec: e0 05 80 00 ld [ %l6 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
400173f0: 80 a4 00 0a cmp %l0, %o2
400173f4: 18 80 00 43 bgu 40017500 <_Timer_server_Body+0x18c>
400173f8: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
400173fc: 0a 80 00 39 bcs 400174e0 <_Timer_server_Body+0x16c>
40017400: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
40017404: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40017408: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
4001740c: 40 00 02 f4 call 40017fdc <_Chain_Get>
40017410: 01 00 00 00 nop
if ( timer == NULL ) {
40017414: 92 92 20 00 orcc %o0, 0, %o1
40017418: 02 80 00 10 be 40017458 <_Timer_server_Body+0xe4>
4001741c: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017420: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
40017424: 80 a0 60 01 cmp %g1, 1
40017428: 02 80 00 32 be 400174f0 <_Timer_server_Body+0x17c>
4001742c: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40017430: 12 bf ff f6 bne 40017408 <_Timer_server_Body+0x94> <== NEVER TAKEN
40017434: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017438: 40 00 12 86 call 4001be50 <_Watchdog_Insert>
4001743c: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40017440: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
40017444: 40 00 02 e6 call 40017fdc <_Chain_Get>
40017448: 01 00 00 00 nop
if ( timer == NULL ) {
4001744c: 92 92 20 00 orcc %o0, 0, %o1
40017450: 32 bf ff f5 bne,a 40017424 <_Timer_server_Body+0xb0> <== NEVER TAKEN
40017454: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
40017458: 7f ff de 63 call 4000ede4 <sparc_disable_interrupts>
4001745c: 01 00 00 00 nop
tmp = ts->insert_chain;
40017460: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
40017464: c2 07 bf f4 ld [ %fp + -12 ], %g1
40017468: 80 a0 40 15 cmp %g1, %l5
4001746c: 02 80 00 29 be 40017510 <_Timer_server_Body+0x19c> <== ALWAYS TAKEN
40017470: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
do_loop = false;
}
_ISR_Enable( level );
40017474: 7f ff de 60 call 4000edf4 <sparc_enable_interrupts>
40017478: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
4001747c: 80 8c 20 ff btst 0xff, %l0
40017480: 12 bf ff d3 bne 400173cc <_Timer_server_Body+0x58> <== NEVER TAKEN
40017484: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40017488: 80 a0 40 14 cmp %g1, %l4
4001748c: 12 80 00 0c bne 400174bc <_Timer_server_Body+0x148>
40017490: 01 00 00 00 nop
40017494: 30 80 00 22 b,a 4001751c <_Timer_server_Body+0x1a8>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
40017498: e4 20 60 04 st %l2, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
4001749c: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
400174a0: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
400174a4: 7f ff de 54 call 4000edf4 <sparc_enable_interrupts>
400174a8: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
400174ac: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
400174b0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
400174b4: 9f c0 40 00 call %g1
400174b8: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
400174bc: 7f ff de 4a call 4000ede4 <sparc_disable_interrupts>
400174c0: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
400174c4: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
400174c8: 80 a4 00 14 cmp %l0, %l4
400174cc: 32 bf ff f3 bne,a 40017498 <_Timer_server_Body+0x124>
400174d0: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
400174d4: 7f ff de 48 call 4000edf4 <sparc_enable_interrupts>
400174d8: 01 00 00 00 nop
400174dc: 30 bf ff bb b,a 400173c8 <_Timer_server_Body+0x54>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400174e0: 92 10 20 01 mov 1, %o1 ! 1 <PROM_START+0x1>
400174e4: 40 00 11 f8 call 4001bcc4 <_Watchdog_Adjust>
400174e8: 94 22 80 10 sub %o2, %l0, %o2
400174ec: 30 bf ff c6 b,a 40017404 <_Timer_server_Body+0x90>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
400174f0: 90 10 00 11 mov %l1, %o0
400174f4: 40 00 12 57 call 4001be50 <_Watchdog_Insert>
400174f8: 92 02 60 10 add %o1, 0x10, %o1
400174fc: 30 bf ff c3 b,a 40017408 <_Timer_server_Body+0x94>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017500: 90 10 00 13 mov %l3, %o0
40017504: 40 00 12 20 call 4001bd84 <_Watchdog_Adjust_to_chain>
40017508: 94 10 00 12 mov %l2, %o2
4001750c: 30 bf ff be b,a 40017404 <_Timer_server_Body+0x90>
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
tmp = ts->insert_chain;
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
40017510: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
40017514: 10 bf ff d8 b 40017474 <_Timer_server_Body+0x100>
40017518: a0 10 20 00 clr %l0
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
4001751c: c0 2e 20 7c clrb [ %i0 + 0x7c ]
40017520: c2 07 00 00 ld [ %i4 ], %g1
40017524: 82 00 60 01 inc %g1
40017528: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
4001752c: d0 06 00 00 ld [ %i0 ], %o0
40017530: 40 00 10 04 call 4001b540 <_Thread_Set_state>
40017534: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
40017538: 7f ff ff 65 call 400172cc <_Timer_server_Reset_interval_system_watchdog>
4001753c: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
40017540: 7f ff ff 78 call 40017320 <_Timer_server_Reset_tod_system_watchdog>
40017544: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
40017548: 40 00 0d 78 call 4001ab28 <_Thread_Enable_dispatch>
4001754c: 01 00 00 00 nop
ts->active = true;
40017550: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40017554: 90 10 00 1a mov %i2, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40017558: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
4001755c: 40 00 12 a8 call 4001bffc <_Watchdog_Remove>
40017560: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40017564: 40 00 12 a6 call 4001bffc <_Watchdog_Remove>
40017568: 90 10 00 1b mov %i3, %o0
4001756c: 30 bf ff 97 b,a 400173c8 <_Timer_server_Body+0x54>
40017570 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40017570: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40017574: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
40017578: 80 a0 60 00 cmp %g1, 0
4001757c: 02 80 00 05 be 40017590 <_Timer_server_Schedule_operation_method+0x20>
40017580: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40017584: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
40017588: 40 00 02 7f call 40017f84 <_Chain_Append>
4001758c: 81 e8 00 00 restore
40017590: 03 10 00 fb sethi %hi(0x4003ec00), %g1
40017594: c4 00 61 80 ld [ %g1 + 0x180 ], %g2 ! 4003ed80 <_Thread_Dispatch_disable_level>
40017598: 84 00 a0 01 inc %g2
4001759c: c4 20 61 80 st %g2, [ %g1 + 0x180 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400175a0: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
400175a4: 80 a0 60 01 cmp %g1, 1
400175a8: 02 80 00 28 be 40017648 <_Timer_server_Schedule_operation_method+0xd8>
400175ac: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400175b0: 02 80 00 04 be 400175c0 <_Timer_server_Schedule_operation_method+0x50>
400175b4: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
400175b8: 40 00 0d 5c call 4001ab28 <_Thread_Enable_dispatch>
400175bc: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400175c0: 7f ff de 09 call 4000ede4 <sparc_disable_interrupts>
400175c4: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
400175c8: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
400175cc: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
400175d0: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400175d4: 03 10 00 fb sethi %hi(0x4003ec00), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
400175d8: 80 a0 80 04 cmp %g2, %g4
400175dc: 02 80 00 0d be 40017610 <_Timer_server_Schedule_operation_method+0xa0>
400175e0: c2 00 62 28 ld [ %g1 + 0x228 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
400175e4: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
400175e8: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
400175ec: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
400175f0: 08 80 00 07 bleu 4001760c <_Timer_server_Schedule_operation_method+0x9c>
400175f4: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
400175f8: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
400175fc: 80 a3 40 03 cmp %o5, %g3
40017600: 08 80 00 03 bleu 4001760c <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
40017604: 88 10 20 00 clr %g4
delta_interval -= delta;
40017608: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
4001760c: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
40017610: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
40017614: 7f ff dd f8 call 4000edf4 <sparc_enable_interrupts>
40017618: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
4001761c: 90 06 20 68 add %i0, 0x68, %o0
40017620: 40 00 12 0c call 4001be50 <_Watchdog_Insert>
40017624: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017628: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
4001762c: 80 a0 60 00 cmp %g1, 0
40017630: 12 bf ff e2 bne 400175b8 <_Timer_server_Schedule_operation_method+0x48>
40017634: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
40017638: 7f ff ff 3a call 40017320 <_Timer_server_Reset_tod_system_watchdog>
4001763c: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
40017640: 40 00 0d 3a call 4001ab28 <_Thread_Enable_dispatch>
40017644: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40017648: 7f ff dd e7 call 4000ede4 <sparc_disable_interrupts>
4001764c: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40017650: 05 10 00 fb sethi %hi(0x4003ec00), %g2
initialized = false;
}
#endif
return status;
}
40017654: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
40017658: c4 00 a2 b0 ld [ %g2 + 0x2b0 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
4001765c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
40017660: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
40017664: 80 a0 40 03 cmp %g1, %g3
40017668: 02 80 00 08 be 40017688 <_Timer_server_Schedule_operation_method+0x118>
4001766c: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40017670: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40017674: 80 a1 00 0d cmp %g4, %o5
40017678: 1a 80 00 03 bcc 40017684 <_Timer_server_Schedule_operation_method+0x114>
4001767c: 86 10 20 00 clr %g3
delta_interval -= delta;
40017680: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40017684: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
40017688: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
4001768c: 7f ff dd da call 4000edf4 <sparc_enable_interrupts>
40017690: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40017694: 90 06 20 30 add %i0, 0x30, %o0
40017698: 40 00 11 ee call 4001be50 <_Watchdog_Insert>
4001769c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400176a0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400176a4: 80 a0 60 00 cmp %g1, 0
400176a8: 12 bf ff c4 bne 400175b8 <_Timer_server_Schedule_operation_method+0x48>
400176ac: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
400176b0: 7f ff ff 07 call 400172cc <_Timer_server_Reset_interval_system_watchdog>
400176b4: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
400176b8: 40 00 0d 1c call 4001ab28 <_Thread_Enable_dispatch>
400176bc: 81 e8 00 00 restore
4000a410 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
4000a410: 9d e3 bf a0 save %sp, -96, %sp
4000a414: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a418: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
4000a41c: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
4000a420: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
4000a424: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a428: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
4000a42c: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a430: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
4000a434: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
4000a438: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_SIZE+0x3b5ac9ff>
4000a43c: 80 a0 80 04 cmp %g2, %g4
4000a440: 08 80 00 0b bleu 4000a46c <_Timespec_Add_to+0x5c>
4000a444: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
4000a448: 1b 31 19 4d sethi %hi(0xc4653400), %o5
4000a44c: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <LEON_REG+0x44653600>
4000a450: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
4000a454: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
4000a458: 80 a0 80 04 cmp %g2, %g4
4000a45c: 18 bf ff fd bgu 4000a450 <_Timespec_Add_to+0x40> <== NEVER TAKEN
4000a460: b0 06 20 01 inc %i0
4000a464: c4 20 60 04 st %g2, [ %g1 + 4 ]
4000a468: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
4000a46c: 81 c7 e0 08 ret
4000a470: 81 e8 00 00 restore
4000c394 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000c394: c6 02 00 00 ld [ %o0 ], %g3
4000c398: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000c39c: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000c3a0: 80 a0 c0 02 cmp %g3, %g2
4000c3a4: 14 80 00 0a bg 4000c3cc <_Timespec_Greater_than+0x38>
4000c3a8: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000c3ac: 80 a0 c0 02 cmp %g3, %g2
4000c3b0: 06 80 00 07 bl 4000c3cc <_Timespec_Greater_than+0x38> <== NEVER TAKEN
4000c3b4: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000c3b8: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c3bc: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000c3c0: 80 a0 80 01 cmp %g2, %g1
4000c3c4: 04 80 00 04 ble 4000c3d4 <_Timespec_Greater_than+0x40>
4000c3c8: 90 10 20 01 mov 1, %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000c3cc: 81 c3 e0 08 retl
4000c3d0: 01 00 00 00 nop
4000c3d4: 81 c3 e0 08 retl
4000c3d8: 90 10 20 00 clr %o0 ! 0 <PROM_START>
4000a620 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
4000a620: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000a624: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a628: a2 14 62 08 or %l1, 0x208, %l1 ! 40016608 <_User_extensions_List>
4000a62c: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a630: 80 a4 00 11 cmp %l0, %l1
4000a634: 02 80 00 0d be 4000a668 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
4000a638: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
4000a63c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000a640: 80 a0 60 00 cmp %g1, 0
4000a644: 02 80 00 05 be 4000a658 <_User_extensions_Fatal+0x38>
4000a648: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
4000a64c: 92 10 00 19 mov %i1, %o1
4000a650: 9f c0 40 00 call %g1
4000a654: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a658: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a65c: 80 a4 00 11 cmp %l0, %l1
4000a660: 32 bf ff f8 bne,a 4000a640 <_User_extensions_Fatal+0x20> <== ALWAYS TAKEN
4000a664: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000a668: 81 c7 e0 08 ret <== NOT EXECUTED
4000a66c: 81 e8 00 00 restore <== NOT EXECUTED
4000a4cc <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
4000a4cc: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
4000a4d0: 07 10 00 56 sethi %hi(0x40015800), %g3
4000a4d4: 86 10 e1 98 or %g3, 0x198, %g3 ! 40015998 <Configuration>
initial_extensions = Configuration.User_extension_table;
4000a4d8: e6 00 e0 40 ld [ %g3 + 0x40 ], %l3
4000a4dc: 1b 10 00 59 sethi %hi(0x40016400), %o5
4000a4e0: 09 10 00 59 sethi %hi(0x40016400), %g4
4000a4e4: 84 13 62 08 or %o5, 0x208, %g2
4000a4e8: 82 11 20 04 or %g4, 4, %g1
4000a4ec: 96 00 a0 04 add %g2, 4, %o3
4000a4f0: 98 00 60 04 add %g1, 4, %o4
4000a4f4: d6 23 62 08 st %o3, [ %o5 + 0x208 ]
head->previous = NULL;
4000a4f8: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
4000a4fc: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4000a500: d8 21 20 04 st %o4, [ %g4 + 4 ]
head->previous = NULL;
4000a504: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
4000a508: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
4000a50c: 80 a4 e0 00 cmp %l3, 0
4000a510: 02 80 00 1b be 4000a57c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000a514: e4 00 e0 3c ld [ %g3 + 0x3c ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
4000a518: 83 2c a0 02 sll %l2, 2, %g1
4000a51c: a3 2c a0 04 sll %l2, 4, %l1
4000a520: a2 24 40 01 sub %l1, %g1, %l1
4000a524: a2 04 40 12 add %l1, %l2, %l1
4000a528: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
4000a52c: 40 00 01 9f call 4000aba8 <_Workspace_Allocate_or_fatal_error>
4000a530: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000a534: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
4000a538: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000a53c: 40 00 15 92 call 4000fb84 <memset>
4000a540: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000a544: 80 a4 a0 00 cmp %l2, 0
4000a548: 02 80 00 0d be 4000a57c <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000a54c: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
4000a550: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
4000a554: 94 10 20 20 mov 0x20, %o2
4000a558: 92 04 c0 09 add %l3, %o1, %o1
4000a55c: 40 00 15 51 call 4000faa0 <memcpy>
4000a560: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
4000a564: 40 00 0c bc call 4000d854 <_User_extensions_Add_set>
4000a568: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000a56c: a2 04 60 01 inc %l1
4000a570: 80 a4 80 11 cmp %l2, %l1
4000a574: 18 bf ff f7 bgu 4000a550 <_User_extensions_Handler_initialization+0x84>
4000a578: a0 04 20 34 add %l0, 0x34, %l0
4000a57c: 81 c7 e0 08 ret
4000a580: 81 e8 00 00 restore
4000a584 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
4000a584: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000a588: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a58c: e0 04 62 08 ld [ %l1 + 0x208 ], %l0 ! 40016608 <_User_extensions_List>
4000a590: a2 14 62 08 or %l1, 0x208, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a594: a2 04 60 04 add %l1, 4, %l1
4000a598: 80 a4 00 11 cmp %l0, %l1
4000a59c: 02 80 00 0c be 4000a5cc <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
4000a5a0: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
4000a5a4: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
4000a5a8: 80 a0 60 00 cmp %g1, 0
4000a5ac: 02 80 00 04 be 4000a5bc <_User_extensions_Thread_begin+0x38>
4000a5b0: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
4000a5b4: 9f c0 40 00 call %g1
4000a5b8: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a5bc: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a5c0: 80 a4 00 11 cmp %l0, %l1
4000a5c4: 32 bf ff f9 bne,a 4000a5a8 <_User_extensions_Thread_begin+0x24>
4000a5c8: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
4000a5cc: 81 c7 e0 08 ret
4000a5d0: 81 e8 00 00 restore
4000a670 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
4000a670: 9d e3 bf a0 save %sp, -96, %sp
return false;
}
}
return true;
}
4000a674: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a678: e0 04 62 08 ld [ %l1 + 0x208 ], %l0 ! 40016608 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
4000a67c: a6 10 00 18 mov %i0, %l3
return false;
}
}
return true;
}
4000a680: a2 14 62 08 or %l1, 0x208, %l1
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a684: a2 04 60 04 add %l1, 4, %l1
4000a688: 80 a4 00 11 cmp %l0, %l1
4000a68c: 02 80 00 13 be 4000a6d8 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
4000a690: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
4000a694: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
4000a698: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
4000a69c: 80 a0 60 00 cmp %g1, 0
4000a6a0: 02 80 00 08 be 4000a6c0 <_User_extensions_Thread_create+0x50>
4000a6a4: 84 14 a2 4c or %l2, 0x24c, %g2
status = (*the_extension->Callouts.thread_create)(
4000a6a8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a6ac: 9f c0 40 00 call %g1
4000a6b0: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
4000a6b4: 80 8a 20 ff btst 0xff, %o0
4000a6b8: 22 80 00 08 be,a 4000a6d8 <_User_extensions_Thread_create+0x68>
4000a6bc: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a6c0: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a6c4: 80 a4 00 11 cmp %l0, %l1
4000a6c8: 32 bf ff f5 bne,a 4000a69c <_User_extensions_Thread_create+0x2c>
4000a6cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
4000a6d0: 81 c7 e0 08 ret
4000a6d4: 91 e8 20 01 restore %g0, 1, %o0
}
4000a6d8: 81 c7 e0 08 ret
4000a6dc: 81 e8 00 00 restore
4000a6e0 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
4000a6e0: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_delete)(
_Thread_Executing,
the_thread
);
}
}
4000a6e4: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a6e8: a2 14 62 08 or %l1, 0x208, %l1 ! 40016608 <_User_extensions_List>
4000a6ec: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a6f0: 80 a4 00 11 cmp %l0, %l1
4000a6f4: 02 80 00 0d be 4000a728 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
4000a6f8: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
4000a6fc: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000a700: 80 a0 60 00 cmp %g1, 0
4000a704: 02 80 00 05 be 4000a718 <_User_extensions_Thread_delete+0x38>
4000a708: 84 14 a2 4c or %l2, 0x24c, %g2
(*the_extension->Callouts.thread_delete)(
4000a70c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a710: 9f c0 40 00 call %g1
4000a714: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a718: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a71c: 80 a4 00 11 cmp %l0, %l1
4000a720: 32 bf ff f8 bne,a 4000a700 <_User_extensions_Thread_delete+0x20>
4000a724: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000a728: 81 c7 e0 08 ret
4000a72c: 81 e8 00 00 restore
4000a5d4 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
4000a5d4: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
4000a5d8: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a5dc: a2 14 62 08 or %l1, 0x208, %l1 ! 40016608 <_User_extensions_List>
4000a5e0: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a5e4: 80 a4 00 11 cmp %l0, %l1
4000a5e8: 02 80 00 0c be 4000a618 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
4000a5ec: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
4000a5f0: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
4000a5f4: 80 a0 60 00 cmp %g1, 0
4000a5f8: 02 80 00 04 be 4000a608 <_User_extensions_Thread_exitted+0x34>
4000a5fc: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
4000a600: 9f c0 40 00 call %g1
4000a604: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a608: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
4000a60c: 80 a4 00 11 cmp %l0, %l1
4000a610: 32 bf ff f9 bne,a 4000a5f4 <_User_extensions_Thread_exitted+0x20>
4000a614: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
4000a618: 81 c7 e0 08 ret
4000a61c: 81 e8 00 00 restore
4000b458 <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
4000b458: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_restart)(
_Thread_Executing,
the_thread
);
}
}
4000b45c: 23 10 00 7c sethi %hi(0x4001f000), %l1
4000b460: e0 04 62 c8 ld [ %l1 + 0x2c8 ], %l0 ! 4001f2c8 <_User_extensions_List>
4000b464: a2 14 62 c8 or %l1, 0x2c8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000b468: a2 04 60 04 add %l1, 4, %l1
4000b46c: 80 a4 00 11 cmp %l0, %l1
4000b470: 02 80 00 0d be 4000b4a4 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
4000b474: 25 10 00 7c sethi %hi(0x4001f000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
4000b478: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000b47c: 80 a0 60 00 cmp %g1, 0
4000b480: 02 80 00 05 be 4000b494 <_User_extensions_Thread_restart+0x3c>
4000b484: 84 14 a3 0c or %l2, 0x30c, %g2
(*the_extension->Callouts.thread_restart)(
4000b488: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000b48c: 9f c0 40 00 call %g1
4000b490: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000b494: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000b498: 80 a4 00 11 cmp %l0, %l1
4000b49c: 32 bf ff f8 bne,a 4000b47c <_User_extensions_Thread_restart+0x24>
4000b4a0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000b4a4: 81 c7 e0 08 ret
4000b4a8: 81 e8 00 00 restore
4000a730 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
4000a730: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_start)(
_Thread_Executing,
the_thread
);
}
}
4000a734: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a738: e0 04 62 08 ld [ %l1 + 0x208 ], %l0 ! 40016608 <_User_extensions_List>
4000a73c: a2 14 62 08 or %l1, 0x208, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a740: a2 04 60 04 add %l1, 4, %l1
4000a744: 80 a4 00 11 cmp %l0, %l1
4000a748: 02 80 00 0d be 4000a77c <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
4000a74c: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
4000a750: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000a754: 80 a0 60 00 cmp %g1, 0
4000a758: 02 80 00 05 be 4000a76c <_User_extensions_Thread_start+0x3c>
4000a75c: 84 14 a2 4c or %l2, 0x24c, %g2
(*the_extension->Callouts.thread_start)(
4000a760: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a764: 9f c0 40 00 call %g1
4000a768: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a76c: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
4000a770: 80 a4 00 11 cmp %l0, %l1
4000a774: 32 bf ff f8 bne,a 4000a754 <_User_extensions_Thread_start+0x24>
4000a778: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000a77c: 81 c7 e0 08 ret
4000a780: 81 e8 00 00 restore
4000a784 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
4000a784: 9d e3 bf a0 save %sp, -96, %sp
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
}
}
4000a788: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a78c: e0 04 60 04 ld [ %l1 + 4 ], %l0 ! 40016404 <_User_extensions_Switches_list>
4000a790: a2 14 60 04 or %l1, 4, %l1
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
4000a794: a2 04 60 04 add %l1, 4, %l1
4000a798: 80 a4 00 11 cmp %l0, %l1
4000a79c: 02 80 00 0a be 4000a7c4 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
4000a7a0: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
4000a7a4: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000a7a8: 90 10 00 18 mov %i0, %o0
4000a7ac: 9f c0 40 00 call %g1
4000a7b0: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
4000a7b4: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
4000a7b8: 80 a4 00 11 cmp %l0, %l1
4000a7bc: 32 bf ff fb bne,a 4000a7a8 <_User_extensions_Thread_switch+0x24>
4000a7c0: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000a7c4: 81 c7 e0 08 ret
4000a7c8: 81 e8 00 00 restore
4000c824 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000c824: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000c828: 7f ff d9 58 call 40002d88 <sparc_disable_interrupts>
4000c82c: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000c830: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000c834: a4 06 20 04 add %i0, 4, %l2
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000c838: 80 a0 40 12 cmp %g1, %l2
4000c83c: 02 80 00 1f be 4000c8b8 <_Watchdog_Adjust+0x94>
4000c840: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000c844: 12 80 00 1f bne 4000c8c0 <_Watchdog_Adjust+0x9c>
4000c848: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000c84c: 80 a6 a0 00 cmp %i2, 0
4000c850: 02 80 00 1a be 4000c8b8 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000c854: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000c858: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000c85c: 80 a6 80 11 cmp %i2, %l1
4000c860: 1a 80 00 0b bcc 4000c88c <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
4000c864: a6 10 20 01 mov 1, %l3
_Watchdog_First( header )->delta_interval -= units;
4000c868: 10 80 00 1d b 4000c8dc <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
4000c86c: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000c870: b4 a6 80 11 subcc %i2, %l1, %i2
4000c874: 02 80 00 11 be 4000c8b8 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000c878: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000c87c: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
4000c880: 80 a4 40 1a cmp %l1, %i2
4000c884: 38 80 00 16 bgu,a 4000c8dc <_Watchdog_Adjust+0xb8>
4000c888: a2 24 40 1a sub %l1, %i2, %l1
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000c88c: e6 20 60 10 st %l3, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000c890: 7f ff d9 42 call 40002d98 <sparc_enable_interrupts>
4000c894: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000c898: 40 00 00 b4 call 4000cb68 <_Watchdog_Tickle>
4000c89c: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000c8a0: 7f ff d9 3a call 40002d88 <sparc_disable_interrupts>
4000c8a4: 01 00 00 00 nop
}
}
_ISR_Enable( level );
}
4000c8a8: c4 04 00 00 ld [ %l0 ], %g2
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
4000c8ac: 80 a4 80 02 cmp %l2, %g2
4000c8b0: 12 bf ff f0 bne 4000c870 <_Watchdog_Adjust+0x4c>
4000c8b4: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
4000c8b8: 7f ff d9 38 call 40002d98 <sparc_enable_interrupts>
4000c8bc: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
4000c8c0: 12 bf ff fe bne 4000c8b8 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000c8c4: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000c8c8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000c8cc: b4 00 80 1a add %g2, %i2, %i2
4000c8d0: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000c8d4: 7f ff d9 31 call 40002d98 <sparc_enable_interrupts>
4000c8d8: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
4000c8dc: 10 bf ff f7 b 4000c8b8 <_Watchdog_Adjust+0x94>
4000c8e0: e2 20 60 10 st %l1, [ %g1 + 0x10 ]
4000a978 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
4000a978: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
4000a97c: 7f ff dd 24 call 40001e0c <sparc_disable_interrupts>
4000a980: 01 00 00 00 nop
previous_state = the_watchdog->state;
4000a984: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
4000a988: 80 a4 20 01 cmp %l0, 1
4000a98c: 02 80 00 2a be 4000aa34 <_Watchdog_Remove+0xbc>
4000a990: 03 10 00 59 sethi %hi(0x40016400), %g1
4000a994: 1a 80 00 09 bcc 4000a9b8 <_Watchdog_Remove+0x40>
4000a998: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000a99c: 03 10 00 59 sethi %hi(0x40016400), %g1
4000a9a0: c2 00 61 30 ld [ %g1 + 0x130 ], %g1 ! 40016530 <_Watchdog_Ticks_since_boot>
4000a9a4: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000a9a8: 7f ff dd 1d call 40001e1c <sparc_enable_interrupts>
4000a9ac: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000a9b0: 81 c7 e0 08 ret
4000a9b4: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
4000a9b8: 18 bf ff fa bgu 4000a9a0 <_Watchdog_Remove+0x28> <== NEVER TAKEN
4000a9bc: 03 10 00 59 sethi %hi(0x40016400), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
4000a9c0: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
4000a9c4: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
4000a9c8: c4 00 40 00 ld [ %g1 ], %g2
4000a9cc: 80 a0 a0 00 cmp %g2, 0
4000a9d0: 02 80 00 07 be 4000a9ec <_Watchdog_Remove+0x74>
4000a9d4: 05 10 00 59 sethi %hi(0x40016400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
4000a9d8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000a9dc: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
4000a9e0: 84 00 c0 02 add %g3, %g2, %g2
4000a9e4: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
4000a9e8: 05 10 00 59 sethi %hi(0x40016400), %g2
4000a9ec: c4 00 a1 2c ld [ %g2 + 0x12c ], %g2 ! 4001652c <_Watchdog_Sync_count>
4000a9f0: 80 a0 a0 00 cmp %g2, 0
4000a9f4: 22 80 00 07 be,a 4000aa10 <_Watchdog_Remove+0x98>
4000a9f8: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
4000a9fc: 05 10 00 59 sethi %hi(0x40016400), %g2
4000aa00: c6 00 a2 54 ld [ %g2 + 0x254 ], %g3 ! 40016654 <_Per_CPU_Information+0x8>
4000aa04: 05 10 00 59 sethi %hi(0x40016400), %g2
4000aa08: c6 20 a0 c4 st %g3, [ %g2 + 0xc4 ] ! 400164c4 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000aa0c: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
4000aa10: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
4000aa14: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000aa18: 03 10 00 59 sethi %hi(0x40016400), %g1
4000aa1c: c2 00 61 30 ld [ %g1 + 0x130 ], %g1 ! 40016530 <_Watchdog_Ticks_since_boot>
4000aa20: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000aa24: 7f ff dc fe call 40001e1c <sparc_enable_interrupts>
4000aa28: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000aa2c: 81 c7 e0 08 ret
4000aa30: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000aa34: c2 00 61 30 ld [ %g1 + 0x130 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
4000aa38: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000aa3c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000aa40: 7f ff dc f7 call 40001e1c <sparc_enable_interrupts>
4000aa44: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000aa48: 81 c7 e0 08 ret
4000aa4c: 81 e8 00 00 restore
4000c06c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000c06c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000c070: 7f ff da 18 call 400028d0 <sparc_disable_interrupts>
4000c074: 01 00 00 00 nop
4000c078: a0 10 00 08 mov %o0, %l0
printk( "Watchdog Chain: %s %p\n", name, header );
4000c07c: 11 10 00 7a sethi %hi(0x4001e800), %o0
4000c080: 94 10 00 19 mov %i1, %o2
4000c084: 92 10 00 18 mov %i0, %o1
4000c088: 7f ff e4 bf call 40005384 <printk>
4000c08c: 90 12 20 98 or %o0, 0x98, %o0
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000c090: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000c094: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000c098: 80 a4 40 19 cmp %l1, %i1
4000c09c: 02 80 00 0f be 4000c0d8 <_Watchdog_Report_chain+0x6c>
4000c0a0: 11 10 00 7a sethi %hi(0x4001e800), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000c0a4: 92 10 00 11 mov %l1, %o1
4000c0a8: 40 00 00 0f call 4000c0e4 <_Watchdog_Report>
4000c0ac: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000c0b0: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000c0b4: 80 a4 40 19 cmp %l1, %i1
4000c0b8: 12 bf ff fc bne 4000c0a8 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000c0bc: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000c0c0: 11 10 00 7a sethi %hi(0x4001e800), %o0
4000c0c4: 92 10 00 18 mov %i0, %o1
4000c0c8: 7f ff e4 af call 40005384 <printk>
4000c0cc: 90 12 20 b0 or %o0, 0xb0, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
4000c0d0: 7f ff da 04 call 400028e0 <sparc_enable_interrupts>
4000c0d4: 91 e8 00 10 restore %g0, %l0, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
4000c0d8: 7f ff e4 ab call 40005384 <printk>
4000c0dc: 90 12 20 c0 or %o0, 0xc0, %o0
4000c0e0: 30 bf ff fc b,a 4000c0d0 <_Watchdog_Report_chain+0x64>
4000f770 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
4000f770: 9d e3 bf 98 save %sp, -104, %sp
4000f774: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
4000f778: 80 a4 20 00 cmp %l0, 0
4000f77c: 02 80 00 23 be 4000f808 <rtems_barrier_create+0x98>
4000f780: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
4000f784: 80 a6 e0 00 cmp %i3, 0
4000f788: 02 80 00 20 be 4000f808 <rtems_barrier_create+0x98>
4000f78c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
4000f790: 80 8e 60 10 btst 0x10, %i1
4000f794: 02 80 00 1f be 4000f810 <rtems_barrier_create+0xa0>
4000f798: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
4000f79c: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
4000f7a0: 02 80 00 1a be 4000f808 <rtems_barrier_create+0x98>
4000f7a4: b0 10 20 0a mov 0xa, %i0
4000f7a8: 03 10 00 8d sethi %hi(0x40023400), %g1
4000f7ac: c4 00 62 00 ld [ %g1 + 0x200 ], %g2 ! 40023600 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
4000f7b0: f4 27 bf fc st %i2, [ %fp + -4 ]
4000f7b4: 84 00 a0 01 inc %g2
4000f7b8: c4 20 62 00 st %g2, [ %g1 + 0x200 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
4000f7bc: 25 10 00 8e sethi %hi(0x40023800), %l2
4000f7c0: 7f ff ec 4c call 4000a8f0 <_Objects_Allocate>
4000f7c4: 90 14 a0 a0 or %l2, 0xa0, %o0 ! 400238a0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000f7c8: a2 92 20 00 orcc %o0, 0, %l1
4000f7cc: 02 80 00 1e be 4000f844 <rtems_barrier_create+0xd4> <== NEVER TAKEN
4000f7d0: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
4000f7d4: 92 07 bf f8 add %fp, -8, %o1
4000f7d8: 40 00 02 43 call 400100e4 <_CORE_barrier_Initialize>
4000f7dc: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
4000f7e0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
4000f7e4: a4 14 a0 a0 or %l2, 0xa0, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000f7e8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000f7ec: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000f7f0: 85 28 a0 02 sll %g2, 2, %g2
4000f7f4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000f7f8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
4000f7fc: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
4000f800: 7f ff f0 9e call 4000ba78 <_Thread_Enable_dispatch>
4000f804: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
4000f808: 81 c7 e0 08 ret
4000f80c: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
4000f810: 82 10 20 01 mov 1, %g1
4000f814: c2 27 bf f8 st %g1, [ %fp + -8 ]
4000f818: 03 10 00 8d sethi %hi(0x40023400), %g1
4000f81c: c4 00 62 00 ld [ %g1 + 0x200 ], %g2 ! 40023600 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
4000f820: f4 27 bf fc st %i2, [ %fp + -4 ]
4000f824: 84 00 a0 01 inc %g2
4000f828: c4 20 62 00 st %g2, [ %g1 + 0x200 ]
4000f82c: 25 10 00 8e sethi %hi(0x40023800), %l2
4000f830: 7f ff ec 30 call 4000a8f0 <_Objects_Allocate>
4000f834: 90 14 a0 a0 or %l2, 0xa0, %o0 ! 400238a0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000f838: a2 92 20 00 orcc %o0, 0, %l1
4000f83c: 12 bf ff e6 bne 4000f7d4 <rtems_barrier_create+0x64>
4000f840: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
4000f844: 7f ff f0 8d call 4000ba78 <_Thread_Enable_dispatch>
4000f848: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
4000f84c: 81 c7 e0 08 ret
4000f850: 81 e8 00 00 restore
40007dc0 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40007dc0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
40007dc4: 90 10 00 18 mov %i0, %o0
40007dc8: 40 00 01 65 call 4000835c <_Chain_Append_with_empty_check>
40007dcc: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
40007dd0: 80 8a 20 ff btst 0xff, %o0
40007dd4: 12 80 00 04 bne 40007de4 <rtems_chain_append_with_notification+0x24><== ALWAYS TAKEN
40007dd8: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40007ddc: 81 c7 e0 08 ret
40007de0: 81 e8 00 00 restore
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
sc = rtems_event_send( task, events );
40007de4: b0 10 00 1a mov %i2, %i0
40007de8: 7f ff fd 61 call 4000736c <rtems_event_send>
40007dec: 93 e8 00 1b restore %g0, %i3, %o1
40007e28 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40007e28: 9d e3 bf 98 save %sp, -104, %sp
40007e2c: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40007e30: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40007e34: 40 00 01 89 call 40008458 <_Chain_Get>
40007e38: 90 10 00 10 mov %l0, %o0
40007e3c: 92 10 20 00 clr %o1
40007e40: a2 10 00 08 mov %o0, %l1
40007e44: 94 10 00 1a mov %i2, %o2
40007e48: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40007e4c: 80 a4 60 00 cmp %l1, 0
40007e50: 12 80 00 0a bne 40007e78 <rtems_chain_get_with_wait+0x50>
40007e54: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
40007e58: 7f ff fc e2 call 400071e0 <rtems_event_receive>
40007e5c: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40007e60: 80 a2 20 00 cmp %o0, 0
40007e64: 02 bf ff f4 be 40007e34 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
40007e68: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
40007e6c: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40007e70: 81 c7 e0 08 ret
40007e74: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40007e78: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40007e7c: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40007e80: 81 c7 e0 08 ret
40007e84: 91 e8 00 08 restore %g0, %o0, %o0
40007e88 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40007e88: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
40007e8c: 90 10 00 18 mov %i0, %o0
40007e90: 40 00 01 90 call 400084d0 <_Chain_Prepend_with_empty_check>
40007e94: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
40007e98: 80 8a 20 ff btst 0xff, %o0
40007e9c: 12 80 00 04 bne 40007eac <rtems_chain_prepend_with_notification+0x24><== ALWAYS TAKEN
40007ea0: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
40007ea4: 81 c7 e0 08 ret
40007ea8: 81 e8 00 00 restore
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
sc = rtems_event_send( task, events );
40007eac: b0 10 00 1a mov %i2, %i0
40007eb0: 7f ff fd 2f call 4000736c <rtems_event_send>
40007eb4: 93 e8 00 1b restore %g0, %i3, %o1
40008d44 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40008d44: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
40008d48: 03 10 00 6b sethi %hi(0x4001ac00), %g1
40008d4c: c4 00 61 74 ld [ %g1 + 0x174 ], %g2 ! 4001ad74 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40008d50: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
40008d54: 03 10 00 6b sethi %hi(0x4001ac00), %g1
if ( rtems_interrupt_is_in_progress() )
40008d58: 80 a0 a0 00 cmp %g2, 0
40008d5c: 12 80 00 42 bne 40008e64 <rtems_io_register_driver+0x120>
40008d60: c8 00 62 04 ld [ %g1 + 0x204 ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
40008d64: 80 a6 a0 00 cmp %i2, 0
40008d68: 02 80 00 50 be 40008ea8 <rtems_io_register_driver+0x164>
40008d6c: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
40008d70: 80 a6 60 00 cmp %i1, 0
40008d74: 02 80 00 4d be 40008ea8 <rtems_io_register_driver+0x164>
40008d78: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008d7c: c4 06 40 00 ld [ %i1 ], %g2
40008d80: 80 a0 a0 00 cmp %g2, 0
40008d84: 22 80 00 46 be,a 40008e9c <rtems_io_register_driver+0x158>
40008d88: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
40008d8c: 80 a1 00 18 cmp %g4, %i0
40008d90: 08 80 00 33 bleu 40008e5c <rtems_io_register_driver+0x118>
40008d94: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008d98: 05 10 00 6a sethi %hi(0x4001a800), %g2
40008d9c: c8 00 a3 20 ld [ %g2 + 0x320 ], %g4 ! 4001ab20 <_Thread_Dispatch_disable_level>
40008da0: 88 01 20 01 inc %g4
40008da4: c8 20 a3 20 st %g4, [ %g2 + 0x320 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
40008da8: 80 a6 20 00 cmp %i0, 0
40008dac: 12 80 00 30 bne 40008e6c <rtems_io_register_driver+0x128>
40008db0: 1b 10 00 6b sethi %hi(0x4001ac00), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
40008db4: c8 00 62 04 ld [ %g1 + 0x204 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
40008db8: 80 a1 20 00 cmp %g4, 0
40008dbc: 22 80 00 3d be,a 40008eb0 <rtems_io_register_driver+0x16c><== NEVER TAKEN
40008dc0: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
40008dc4: 10 80 00 05 b 40008dd8 <rtems_io_register_driver+0x94>
40008dc8: c2 03 62 08 ld [ %o5 + 0x208 ], %g1
40008dcc: 80 a1 00 18 cmp %g4, %i0
40008dd0: 08 80 00 0a bleu 40008df8 <rtems_io_register_driver+0xb4>
40008dd4: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008dd8: c4 00 40 00 ld [ %g1 ], %g2
40008ddc: 80 a0 a0 00 cmp %g2, 0
40008de0: 32 bf ff fb bne,a 40008dcc <rtems_io_register_driver+0x88>
40008de4: b0 06 20 01 inc %i0
40008de8: c4 00 60 04 ld [ %g1 + 4 ], %g2
40008dec: 80 a0 a0 00 cmp %g2, 0
40008df0: 32 bf ff f7 bne,a 40008dcc <rtems_io_register_driver+0x88>
40008df4: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
40008df8: 80 a1 00 18 cmp %g4, %i0
40008dfc: 02 80 00 2d be 40008eb0 <rtems_io_register_driver+0x16c>
40008e00: f0 26 80 00 st %i0, [ %i2 ]
40008e04: 83 2e 20 03 sll %i0, 3, %g1
40008e08: 85 2e 20 05 sll %i0, 5, %g2
40008e0c: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008e10: c8 03 62 08 ld [ %o5 + 0x208 ], %g4
40008e14: da 00 c0 00 ld [ %g3 ], %o5
40008e18: 82 01 00 02 add %g4, %g2, %g1
40008e1c: da 21 00 02 st %o5, [ %g4 + %g2 ]
40008e20: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40008e24: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008e28: c4 20 60 04 st %g2, [ %g1 + 4 ]
40008e2c: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40008e30: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008e34: c4 20 60 08 st %g2, [ %g1 + 8 ]
40008e38: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
40008e3c: c4 20 60 0c st %g2, [ %g1 + 0xc ]
40008e40: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
40008e44: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40008e48: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
40008e4c: 40 00 07 ef call 4000ae08 <_Thread_Enable_dispatch>
40008e50: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
40008e54: 40 00 21 cc call 40011584 <rtems_io_initialize>
40008e58: 81 e8 00 00 restore
}
40008e5c: 81 c7 e0 08 ret
40008e60: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
40008e64: 81 c7 e0 08 ret
40008e68: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
40008e6c: c2 03 62 08 ld [ %o5 + 0x208 ], %g1
40008e70: 89 2e 20 05 sll %i0, 5, %g4
40008e74: 85 2e 20 03 sll %i0, 3, %g2
40008e78: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008e7c: c8 00 40 02 ld [ %g1 + %g2 ], %g4
40008e80: 80 a1 20 00 cmp %g4, 0
40008e84: 02 80 00 0f be 40008ec0 <rtems_io_register_driver+0x17c>
40008e88: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
40008e8c: 40 00 07 df call 4000ae08 <_Thread_Enable_dispatch>
40008e90: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
40008e94: 81 c7 e0 08 ret
40008e98: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008e9c: 80 a0 a0 00 cmp %g2, 0
40008ea0: 32 bf ff bc bne,a 40008d90 <rtems_io_register_driver+0x4c>
40008ea4: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
40008ea8: 81 c7 e0 08 ret
40008eac: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
40008eb0: 40 00 07 d6 call 4000ae08 <_Thread_Enable_dispatch>
40008eb4: b0 10 20 05 mov 5, %i0
return sc;
40008eb8: 81 c7 e0 08 ret
40008ebc: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008ec0: c2 00 60 04 ld [ %g1 + 4 ], %g1
40008ec4: 80 a0 60 00 cmp %g1, 0
40008ec8: 12 bf ff f1 bne 40008e8c <rtems_io_register_driver+0x148>
40008ecc: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
40008ed0: 10 bf ff d0 b 40008e10 <rtems_io_register_driver+0xcc>
40008ed4: f0 26 80 00 st %i0, [ %i2 ]
4000a248 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
4000a248: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
4000a24c: 80 a6 20 00 cmp %i0, 0
4000a250: 02 80 00 23 be 4000a2dc <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
4000a254: 25 10 00 a2 sethi %hi(0x40028800), %l2
4000a258: a4 14 a2 8c or %l2, 0x28c, %l2 ! 40028a8c <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
4000a25c: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
4000a260: c2 04 80 00 ld [ %l2 ], %g1
4000a264: 80 a0 60 00 cmp %g1, 0
4000a268: 22 80 00 1a be,a 4000a2d0 <rtems_iterate_over_all_threads+0x88>
4000a26c: a4 04 a0 04 add %l2, 4, %l2
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
4000a270: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
4000a274: 80 a4 60 00 cmp %l1, 0
4000a278: 22 80 00 16 be,a 4000a2d0 <rtems_iterate_over_all_threads+0x88>
4000a27c: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000a280: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
4000a284: 84 90 60 00 orcc %g1, 0, %g2
4000a288: 22 80 00 12 be,a 4000a2d0 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
4000a28c: a4 04 a0 04 add %l2, 4, %l2
4000a290: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
4000a294: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000a298: 83 2c 20 02 sll %l0, 2, %g1
4000a29c: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
4000a2a0: 90 90 60 00 orcc %g1, 0, %o0
4000a2a4: 02 80 00 05 be 4000a2b8 <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
4000a2a8: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
4000a2ac: 9f c6 00 00 call %i0
4000a2b0: 01 00 00 00 nop
4000a2b4: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000a2b8: 83 28 a0 10 sll %g2, 0x10, %g1
4000a2bc: 83 30 60 10 srl %g1, 0x10, %g1
4000a2c0: 80 a0 40 10 cmp %g1, %l0
4000a2c4: 3a bf ff f5 bcc,a 4000a298 <rtems_iterate_over_all_threads+0x50>
4000a2c8: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000a2cc: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
4000a2d0: 80 a4 80 13 cmp %l2, %l3
4000a2d4: 32 bf ff e4 bne,a 4000a264 <rtems_iterate_over_all_threads+0x1c>
4000a2d8: c2 04 80 00 ld [ %l2 ], %g1
4000a2dc: 81 c7 e0 08 ret
4000a2e0: 81 e8 00 00 restore
40008db4 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
40008db4: 9d e3 bf a0 save %sp, -96, %sp
40008db8: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
40008dbc: 80 a6 a0 00 cmp %i2, 0
40008dc0: 02 80 00 21 be 40008e44 <rtems_object_get_class_information+0x90>
40008dc4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40008dc8: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
40008dcc: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40008dd0: 40 00 07 79 call 4000abb4 <_Objects_Get_information>
40008dd4: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
40008dd8: 80 a2 20 00 cmp %o0, 0
40008ddc: 02 80 00 1a be 40008e44 <rtems_object_get_class_information+0x90>
40008de0: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40008de4: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
40008de8: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40008dec: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40008df0: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40008df4: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40008df8: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40008dfc: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
40008e00: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008e04: 80 a1 20 00 cmp %g4, 0
40008e08: 02 80 00 0d be 40008e3c <rtems_object_get_class_information+0x88><== NEVER TAKEN
40008e0c: 84 10 20 00 clr %g2
40008e10: da 02 20 1c ld [ %o0 + 0x1c ], %o5
40008e14: 86 10 20 01 mov 1, %g3
40008e18: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
40008e1c: 87 28 e0 02 sll %g3, 2, %g3
40008e20: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008e24: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
40008e28: 80 a0 00 03 cmp %g0, %g3
40008e2c: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008e30: 80 a1 00 01 cmp %g4, %g1
40008e34: 1a bf ff fa bcc 40008e1c <rtems_object_get_class_information+0x68>
40008e38: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
40008e3c: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
40008e40: b0 10 20 00 clr %i0
}
40008e44: 81 c7 e0 08 ret
40008e48: 81 e8 00 00 restore
40014c40 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40014c40: 9d e3 bf a0 save %sp, -96, %sp
40014c44: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40014c48: 80 a4 20 00 cmp %l0, 0
40014c4c: 02 80 00 34 be 40014d1c <rtems_partition_create+0xdc>
40014c50: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40014c54: 80 a6 60 00 cmp %i1, 0
40014c58: 02 80 00 31 be 40014d1c <rtems_partition_create+0xdc>
40014c5c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40014c60: 80 a7 60 00 cmp %i5, 0
40014c64: 02 80 00 2e be 40014d1c <rtems_partition_create+0xdc> <== NEVER TAKEN
40014c68: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40014c6c: 02 80 00 2e be 40014d24 <rtems_partition_create+0xe4>
40014c70: 80 a6 a0 00 cmp %i2, 0
40014c74: 02 80 00 2c be 40014d24 <rtems_partition_create+0xe4>
40014c78: 80 a6 80 1b cmp %i2, %i3
40014c7c: 0a 80 00 28 bcs 40014d1c <rtems_partition_create+0xdc>
40014c80: b0 10 20 08 mov 8, %i0
40014c84: 80 8e e0 07 btst 7, %i3
40014c88: 12 80 00 25 bne 40014d1c <rtems_partition_create+0xdc>
40014c8c: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40014c90: 12 80 00 23 bne 40014d1c <rtems_partition_create+0xdc>
40014c94: b0 10 20 09 mov 9, %i0
40014c98: 03 10 00 fb sethi %hi(0x4003ec00), %g1
40014c9c: c4 00 61 80 ld [ %g1 + 0x180 ], %g2 ! 4003ed80 <_Thread_Dispatch_disable_level>
40014ca0: 84 00 a0 01 inc %g2
40014ca4: c4 20 61 80 st %g2, [ %g1 + 0x180 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40014ca8: 25 10 00 fa sethi %hi(0x4003e800), %l2
40014cac: 40 00 13 0b call 400198d8 <_Objects_Allocate>
40014cb0: 90 14 a3 94 or %l2, 0x394, %o0 ! 4003eb94 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40014cb4: a2 92 20 00 orcc %o0, 0, %l1
40014cb8: 02 80 00 1d be 40014d2c <rtems_partition_create+0xec>
40014cbc: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
40014cc0: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40014cc4: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40014cc8: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40014ccc: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
40014cd0: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40014cd4: 40 00 64 0a call 4002dcfc <.udiv>
40014cd8: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014cdc: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40014ce0: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014ce4: 96 10 00 1b mov %i3, %o3
40014ce8: b8 04 60 24 add %l1, 0x24, %i4
40014cec: 40 00 0c cf call 40018028 <_Chain_Initialize>
40014cf0: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014cf4: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014cf8: a4 14 a3 94 or %l2, 0x394, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014cfc: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014d00: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014d04: 85 28 a0 02 sll %g2, 2, %g2
40014d08: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40014d0c: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40014d10: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40014d14: 40 00 17 85 call 4001ab28 <_Thread_Enable_dispatch>
40014d18: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40014d1c: 81 c7 e0 08 ret
40014d20: 81 e8 00 00 restore
}
40014d24: 81 c7 e0 08 ret
40014d28: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
40014d2c: 40 00 17 7f call 4001ab28 <_Thread_Enable_dispatch>
40014d30: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40014d34: 81 c7 e0 08 ret
40014d38: 81 e8 00 00 restore
40008360 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40008360: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
40008364: 11 10 00 80 sethi %hi(0x40020000), %o0
40008368: 92 10 00 18 mov %i0, %o1
4000836c: 90 12 23 a4 or %o0, 0x3a4, %o0
40008370: 40 00 09 72 call 4000a938 <_Objects_Get>
40008374: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40008378: c2 07 bf fc ld [ %fp + -4 ], %g1
4000837c: 80 a0 60 00 cmp %g1, 0
40008380: 02 80 00 04 be 40008390 <rtems_rate_monotonic_period+0x30>
40008384: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40008388: 81 c7 e0 08 ret
4000838c: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40008390: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40008394: 23 10 00 81 sethi %hi(0x40020400), %l1
40008398: a2 14 63 5c or %l1, 0x35c, %l1 ! 4002075c <_Per_CPU_Information>
4000839c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400083a0: 80 a0 80 01 cmp %g2, %g1
400083a4: 02 80 00 06 be 400083bc <rtems_rate_monotonic_period+0x5c>
400083a8: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
400083ac: 40 00 0c 90 call 4000b5ec <_Thread_Enable_dispatch>
400083b0: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
400083b4: 81 c7 e0 08 ret
400083b8: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
400083bc: 12 80 00 0f bne 400083f8 <rtems_rate_monotonic_period+0x98>
400083c0: 01 00 00 00 nop
switch ( the_period->state ) {
400083c4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
400083c8: 80 a0 60 04 cmp %g1, 4
400083cc: 08 80 00 06 bleu 400083e4 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
400083d0: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
400083d4: 40 00 0c 86 call 4000b5ec <_Thread_Enable_dispatch>
400083d8: 01 00 00 00 nop
return RTEMS_TIMEOUT;
400083dc: 81 c7 e0 08 ret
400083e0: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
400083e4: 83 28 60 02 sll %g1, 2, %g1
400083e8: 05 10 00 79 sethi %hi(0x4001e400), %g2
400083ec: 84 10 a1 fc or %g2, 0x1fc, %g2 ! 4001e5fc <CSWTCH.2>
400083f0: 10 bf ff f9 b 400083d4 <rtems_rate_monotonic_period+0x74>
400083f4: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
400083f8: 7f ff ea 2d call 40002cac <sparc_disable_interrupts>
400083fc: 01 00 00 00 nop
40008400: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40008404: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
40008408: 80 a4 a0 00 cmp %l2, 0
4000840c: 02 80 00 14 be 4000845c <rtems_rate_monotonic_period+0xfc>
40008410: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40008414: 02 80 00 29 be 400084b8 <rtems_rate_monotonic_period+0x158>
40008418: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
4000841c: 12 bf ff e6 bne 400083b4 <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
40008420: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40008424: 7f ff ff 8f call 40008260 <_Rate_monotonic_Update_statistics>
40008428: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
4000842c: 7f ff ea 24 call 40002cbc <sparc_enable_interrupts>
40008430: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40008434: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008438: 92 04 20 10 add %l0, 0x10, %o1
4000843c: 11 10 00 81 sethi %hi(0x40020400), %o0
the_period->next_length = length;
40008440: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
40008444: 90 12 21 f0 or %o0, 0x1f0, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
40008448: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000844c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008450: 40 00 10 cb call 4000c77c <_Watchdog_Insert>
40008454: b0 10 20 06 mov 6, %i0
40008458: 30 bf ff df b,a 400083d4 <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
4000845c: 7f ff ea 18 call 40002cbc <sparc_enable_interrupts>
40008460: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
40008464: 7f ff ff 63 call 400081f0 <_Rate_monotonic_Initiate_statistics>
40008468: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
4000846c: 82 10 20 02 mov 2, %g1
40008470: 92 04 20 10 add %l0, 0x10, %o1
40008474: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
40008478: 11 10 00 81 sethi %hi(0x40020400), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
4000847c: 03 10 00 22 sethi %hi(0x40008800), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008480: 90 12 21 f0 or %o0, 0x1f0, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40008484: 82 10 60 34 or %g1, 0x34, %g1
the_watchdog->id = id;
40008488: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
4000848c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40008490: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
40008494: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40008498: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000849c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400084a0: 40 00 10 b7 call 4000c77c <_Watchdog_Insert>
400084a4: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
400084a8: 40 00 0c 51 call 4000b5ec <_Thread_Enable_dispatch>
400084ac: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400084b0: 81 c7 e0 08 ret
400084b4: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
400084b8: 7f ff ff 6a call 40008260 <_Rate_monotonic_Update_statistics>
400084bc: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
400084c0: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
400084c4: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
400084c8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
400084cc: 7f ff e9 fc call 40002cbc <sparc_enable_interrupts>
400084d0: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
400084d4: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400084d8: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400084dc: 90 10 00 01 mov %g1, %o0
400084e0: 13 00 00 10 sethi %hi(0x4000), %o1
400084e4: 40 00 0e 98 call 4000bf44 <_Thread_Set_state>
400084e8: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
400084ec: 7f ff e9 f0 call 40002cac <sparc_disable_interrupts>
400084f0: 01 00 00 00 nop
local_state = the_period->state;
400084f4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
400084f8: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
400084fc: 7f ff e9 f0 call 40002cbc <sparc_enable_interrupts>
40008500: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40008504: 80 a4 e0 03 cmp %l3, 3
40008508: 22 80 00 06 be,a 40008520 <rtems_rate_monotonic_period+0x1c0>
4000850c: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
40008510: 40 00 0c 37 call 4000b5ec <_Thread_Enable_dispatch>
40008514: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40008518: 81 c7 e0 08 ret
4000851c: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40008520: 40 00 0b 5c call 4000b290 <_Thread_Clear_state>
40008524: 13 00 00 10 sethi %hi(0x4000), %o1
40008528: 30 bf ff fa b,a 40008510 <rtems_rate_monotonic_period+0x1b0>
4000852c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
4000852c: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
40008530: 80 a6 60 00 cmp %i1, 0
40008534: 02 80 00 4c be 40008664 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
40008538: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
4000853c: 13 10 00 79 sethi %hi(0x4001e400), %o1
40008540: 9f c6 40 00 call %i1
40008544: 92 12 62 10 or %o1, 0x210, %o1 ! 4001e610 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
40008548: 90 10 00 18 mov %i0, %o0
4000854c: 13 10 00 79 sethi %hi(0x4001e400), %o1
40008550: 9f c6 40 00 call %i1
40008554: 92 12 62 30 or %o1, 0x230, %o1 ! 4001e630 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40008558: 90 10 00 18 mov %i0, %o0
4000855c: 13 10 00 79 sethi %hi(0x4001e400), %o1
40008560: 9f c6 40 00 call %i1
40008564: 92 12 62 58 or %o1, 0x258, %o1 ! 4001e658 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40008568: 90 10 00 18 mov %i0, %o0
4000856c: 13 10 00 79 sethi %hi(0x4001e400), %o1
40008570: 9f c6 40 00 call %i1
40008574: 92 12 62 80 or %o1, 0x280, %o1 ! 4001e680 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40008578: 90 10 00 18 mov %i0, %o0
4000857c: 13 10 00 79 sethi %hi(0x4001e400), %o1
40008580: 9f c6 40 00 call %i1
40008584: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 4001e6d0 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008588: 23 10 00 80 sethi %hi(0x40020000), %l1
4000858c: a2 14 63 a4 or %l1, 0x3a4, %l1 ! 400203a4 <_Rate_monotonic_Information>
40008590: e0 04 60 08 ld [ %l1 + 8 ], %l0
40008594: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008598: 80 a4 00 01 cmp %l0, %g1
4000859c: 18 80 00 32 bgu 40008664 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
400085a0: 2f 10 00 79 sethi %hi(0x4001e400), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
400085a4: 39 10 00 79 sethi %hi(0x4001e400), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
400085a8: 2b 10 00 76 sethi %hi(0x4001d800), %l5
400085ac: a4 07 bf a0 add %fp, -96, %l2
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
400085b0: ba 07 bf d8 add %fp, -40, %i5
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
400085b4: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400085b8: ae 15 e3 20 or %l7, 0x320, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
400085bc: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400085c0: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
400085c4: b8 17 23 38 or %i4, 0x338, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
400085c8: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
400085cc: 10 80 00 06 b 400085e4 <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
400085d0: aa 15 60 f8 or %l5, 0xf8, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400085d4: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400085d8: 80 a0 40 10 cmp %g1, %l0
400085dc: 0a 80 00 22 bcs 40008664 <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
400085e0: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
400085e4: 90 10 00 10 mov %l0, %o0
400085e8: 40 00 19 11 call 4000ea2c <rtems_rate_monotonic_get_statistics>
400085ec: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
400085f0: 80 a2 20 00 cmp %o0, 0
400085f4: 32 bf ff f8 bne,a 400085d4 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400085f8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
400085fc: 92 10 00 1d mov %i5, %o1
40008600: 40 00 19 3a call 4000eae8 <rtems_rate_monotonic_get_status>
40008604: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40008608: d0 07 bf d8 ld [ %fp + -40 ], %o0
4000860c: 94 10 00 13 mov %l3, %o2
40008610: 40 00 00 b9 call 400088f4 <rtems_object_get_name>
40008614: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40008618: d8 1f bf a0 ldd [ %fp + -96 ], %o4
4000861c: 92 10 00 17 mov %l7, %o1
40008620: 94 10 00 10 mov %l0, %o2
40008624: 90 10 00 18 mov %i0, %o0
40008628: 9f c6 40 00 call %i1
4000862c: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40008630: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40008634: 94 10 00 14 mov %l4, %o2
40008638: 90 10 00 16 mov %l6, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
4000863c: 80 a0 60 00 cmp %g1, 0
40008640: 12 80 00 0b bne 4000866c <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
40008644: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
40008648: 9f c6 40 00 call %i1
4000864c: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008650: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008654: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008658: 80 a0 40 10 cmp %g1, %l0
4000865c: 1a bf ff e3 bcc 400085e8 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
40008660: 90 10 00 10 mov %l0, %o0
40008664: 81 c7 e0 08 ret
40008668: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
4000866c: 40 00 0f 08 call 4000c28c <_Timespec_Divide_by_integer>
40008670: 92 10 00 01 mov %g1, %o1
(*print)( context,
40008674: d0 07 bf ac ld [ %fp + -84 ], %o0
40008678: 40 00 47 95 call 4001a4cc <.div>
4000867c: 92 10 23 e8 mov 0x3e8, %o1
40008680: 96 10 00 08 mov %o0, %o3
40008684: d0 07 bf b4 ld [ %fp + -76 ], %o0
40008688: d6 27 bf 9c st %o3, [ %fp + -100 ]
4000868c: 40 00 47 90 call 4001a4cc <.div>
40008690: 92 10 23 e8 mov 0x3e8, %o1
40008694: c2 07 bf f0 ld [ %fp + -16 ], %g1
40008698: b6 10 00 08 mov %o0, %i3
4000869c: d0 07 bf f4 ld [ %fp + -12 ], %o0
400086a0: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400086a4: 40 00 47 8a call 4001a4cc <.div>
400086a8: 92 10 23 e8 mov 0x3e8, %o1
400086ac: d8 07 bf b0 ld [ %fp + -80 ], %o4
400086b0: d6 07 bf 9c ld [ %fp + -100 ], %o3
400086b4: d4 07 bf a8 ld [ %fp + -88 ], %o2
400086b8: 9a 10 00 1b mov %i3, %o5
400086bc: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400086c0: 92 10 00 1c mov %i4, %o1
400086c4: 9f c6 40 00 call %i1
400086c8: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
400086cc: d2 07 bf a0 ld [ %fp + -96 ], %o1
400086d0: 94 10 00 14 mov %l4, %o2
400086d4: 40 00 0e ee call 4000c28c <_Timespec_Divide_by_integer>
400086d8: 90 10 00 1a mov %i2, %o0
(*print)( context,
400086dc: d0 07 bf c4 ld [ %fp + -60 ], %o0
400086e0: 40 00 47 7b call 4001a4cc <.div>
400086e4: 92 10 23 e8 mov 0x3e8, %o1
400086e8: 96 10 00 08 mov %o0, %o3
400086ec: d0 07 bf cc ld [ %fp + -52 ], %o0
400086f0: d6 27 bf 9c st %o3, [ %fp + -100 ]
400086f4: 40 00 47 76 call 4001a4cc <.div>
400086f8: 92 10 23 e8 mov 0x3e8, %o1
400086fc: c2 07 bf f0 ld [ %fp + -16 ], %g1
40008700: b6 10 00 08 mov %o0, %i3
40008704: d0 07 bf f4 ld [ %fp + -12 ], %o0
40008708: 92 10 23 e8 mov 0x3e8, %o1
4000870c: 40 00 47 70 call 4001a4cc <.div>
40008710: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40008714: d4 07 bf c0 ld [ %fp + -64 ], %o2
40008718: d6 07 bf 9c ld [ %fp + -100 ], %o3
4000871c: d8 07 bf c8 ld [ %fp + -56 ], %o4
40008720: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40008724: 13 10 00 79 sethi %hi(0x4001e400), %o1
40008728: 90 10 00 18 mov %i0, %o0
4000872c: 92 12 63 58 or %o1, 0x358, %o1
40008730: 9f c6 40 00 call %i1
40008734: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008738: 10 bf ff a7 b 400085d4 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
4000873c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
4000875c <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
4000875c: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008760: 03 10 00 81 sethi %hi(0x40020400), %g1
40008764: c4 00 61 10 ld [ %g1 + 0x110 ], %g2 ! 40020510 <_Thread_Dispatch_disable_level>
40008768: 84 00 a0 01 inc %g2
4000876c: c4 20 61 10 st %g2, [ %g1 + 0x110 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008770: 23 10 00 80 sethi %hi(0x40020000), %l1
40008774: a2 14 63 a4 or %l1, 0x3a4, %l1 ! 400203a4 <_Rate_monotonic_Information>
40008778: e0 04 60 08 ld [ %l1 + 8 ], %l0
4000877c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008780: 80 a4 00 01 cmp %l0, %g1
40008784: 18 80 00 09 bgu 400087a8 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
40008788: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
4000878c: 40 00 00 0a call 400087b4 <rtems_rate_monotonic_reset_statistics>
40008790: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008794: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008798: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000879c: 80 a0 40 10 cmp %g1, %l0
400087a0: 1a bf ff fb bcc 4000878c <rtems_rate_monotonic_reset_all_statistics+0x30>
400087a4: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
400087a8: 40 00 0b 91 call 4000b5ec <_Thread_Enable_dispatch>
400087ac: 81 e8 00 00 restore
40016260 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
40016260: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
40016264: 80 a6 60 00 cmp %i1, 0
40016268: 12 80 00 04 bne 40016278 <rtems_signal_send+0x18>
4001626c: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016270: 81 c7 e0 08 ret
40016274: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40016278: 90 10 00 18 mov %i0, %o0
4001627c: 40 00 12 39 call 4001ab60 <_Thread_Get>
40016280: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40016284: c2 07 bf fc ld [ %fp + -4 ], %g1
40016288: 80 a0 60 00 cmp %g1, 0
4001628c: 02 80 00 05 be 400162a0 <rtems_signal_send+0x40>
40016290: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40016294: 82 10 20 04 mov 4, %g1
}
40016298: 81 c7 e0 08 ret
4001629c: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400162a0: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400162a4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400162a8: 80 a0 60 00 cmp %g1, 0
400162ac: 02 80 00 25 be 40016340 <rtems_signal_send+0xe0>
400162b0: 01 00 00 00 nop
if ( asr->is_enabled ) {
400162b4: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
400162b8: 80 a0 60 00 cmp %g1, 0
400162bc: 02 80 00 15 be 40016310 <rtems_signal_send+0xb0>
400162c0: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400162c4: 7f ff e2 c8 call 4000ede4 <sparc_disable_interrupts>
400162c8: 01 00 00 00 nop
*signal_set |= signals;
400162cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
400162d0: b2 10 40 19 or %g1, %i1, %i1
400162d4: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
400162d8: 7f ff e2 c7 call 4000edf4 <sparc_enable_interrupts>
400162dc: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
400162e0: 03 10 00 fb sethi %hi(0x4003ec00), %g1
400162e4: 82 10 63 d4 or %g1, 0x3d4, %g1 ! 4003efd4 <_Per_CPU_Information>
400162e8: c4 00 60 08 ld [ %g1 + 8 ], %g2
400162ec: 80 a0 a0 00 cmp %g2, 0
400162f0: 02 80 00 0f be 4001632c <rtems_signal_send+0xcc>
400162f4: 01 00 00 00 nop
400162f8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
400162fc: 80 a4 40 02 cmp %l1, %g2
40016300: 12 80 00 0b bne 4001632c <rtems_signal_send+0xcc> <== NEVER TAKEN
40016304: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40016308: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
4001630c: 30 80 00 08 b,a 4001632c <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40016310: 7f ff e2 b5 call 4000ede4 <sparc_disable_interrupts>
40016314: 01 00 00 00 nop
*signal_set |= signals;
40016318: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4001631c: b2 10 40 19 or %g1, %i1, %i1
40016320: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
40016324: 7f ff e2 b4 call 4000edf4 <sparc_enable_interrupts>
40016328: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
4001632c: 40 00 11 ff call 4001ab28 <_Thread_Enable_dispatch>
40016330: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40016334: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016338: 81 c7 e0 08 ret
4001633c: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
40016340: 40 00 11 fa call 4001ab28 <_Thread_Enable_dispatch>
40016344: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
40016348: 10 bf ff ca b 40016270 <rtems_signal_send+0x10>
4001634c: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
4000ec10 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000ec10: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000ec14: 80 a6 a0 00 cmp %i2, 0
4000ec18: 02 80 00 43 be 4000ed24 <rtems_task_mode+0x114>
4000ec1c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000ec20: 27 10 00 59 sethi %hi(0x40016400), %l3
4000ec24: a6 14 e2 4c or %l3, 0x24c, %l3 ! 4001664c <_Per_CPU_Information>
4000ec28: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ec2c: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000ec30: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ec34: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000ec38: e2 04 21 4c ld [ %l0 + 0x14c ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ec3c: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000ec40: 80 a0 60 00 cmp %g1, 0
4000ec44: 12 80 00 3a bne 4000ed2c <rtems_task_mode+0x11c>
4000ec48: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ec4c: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
4000ec50: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000ec54: 7f ff f0 e8 call 4000aff4 <_CPU_ISR_Get_level>
4000ec58: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ec5c: a9 2d 20 0a sll %l4, 0xa, %l4
4000ec60: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000ec64: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000ec68: 80 8e 61 00 btst 0x100, %i1
4000ec6c: 02 80 00 06 be 4000ec84 <rtems_task_mode+0x74>
4000ec70: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000ec74: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000ec78: 80 a0 00 01 cmp %g0, %g1
4000ec7c: 82 60 3f ff subx %g0, -1, %g1
4000ec80: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000ec84: 80 8e 62 00 btst 0x200, %i1
4000ec88: 02 80 00 0b be 4000ecb4 <rtems_task_mode+0xa4>
4000ec8c: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000ec90: 80 8e 22 00 btst 0x200, %i0
4000ec94: 22 80 00 07 be,a 4000ecb0 <rtems_task_mode+0xa0>
4000ec98: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000ec9c: 03 10 00 58 sethi %hi(0x40016000), %g1
4000eca0: c2 00 63 64 ld [ %g1 + 0x364 ], %g1 ! 40016364 <_Thread_Ticks_per_timeslice>
4000eca4: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000eca8: 82 10 20 01 mov 1, %g1
4000ecac: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000ecb0: 80 8e 60 0f btst 0xf, %i1
4000ecb4: 12 80 00 3d bne 4000eda8 <rtems_task_mode+0x198>
4000ecb8: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000ecbc: 80 8e 64 00 btst 0x400, %i1
4000ecc0: 02 80 00 14 be 4000ed10 <rtems_task_mode+0x100>
4000ecc4: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000ecc8: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000eccc: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000ecd0: 80 a0 00 18 cmp %g0, %i0
4000ecd4: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000ecd8: 80 a0 80 01 cmp %g2, %g1
4000ecdc: 22 80 00 0e be,a 4000ed14 <rtems_task_mode+0x104>
4000ece0: 03 10 00 59 sethi %hi(0x40016400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000ece4: 7f ff cc 4a call 40001e0c <sparc_disable_interrupts>
4000ece8: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
4000ecec: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
4000ecf0: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
4000ecf4: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000ecf8: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000ecfc: 7f ff cc 48 call 40001e1c <sparc_enable_interrupts>
4000ed00: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000ed04: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000ed08: 80 a0 00 01 cmp %g0, %g1
4000ed0c: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000ed10: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ed14: c4 00 61 78 ld [ %g1 + 0x178 ], %g2 ! 40016578 <_System_state_Current>
4000ed18: 80 a0 a0 03 cmp %g2, 3
4000ed1c: 02 80 00 11 be 4000ed60 <rtems_task_mode+0x150> <== ALWAYS TAKEN
4000ed20: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
4000ed24: 81 c7 e0 08 ret
4000ed28: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ed2c: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000ed30: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ed34: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000ed38: 7f ff f0 af call 4000aff4 <_CPU_ISR_Get_level>
4000ed3c: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ed40: a9 2d 20 0a sll %l4, 0xa, %l4
4000ed44: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000ed48: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000ed4c: 80 8e 61 00 btst 0x100, %i1
4000ed50: 02 bf ff cd be 4000ec84 <rtems_task_mode+0x74>
4000ed54: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000ed58: 10 bf ff c8 b 4000ec78 <rtems_task_mode+0x68>
4000ed5c: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
4000ed60: 80 88 e0 ff btst 0xff, %g3
4000ed64: 12 80 00 0a bne 4000ed8c <rtems_task_mode+0x17c>
4000ed68: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
4000ed6c: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
4000ed70: 80 a0 80 03 cmp %g2, %g3
4000ed74: 02 bf ff ec be 4000ed24 <rtems_task_mode+0x114>
4000ed78: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000ed7c: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000ed80: 80 a0 a0 00 cmp %g2, 0
4000ed84: 02 bf ff e8 be 4000ed24 <rtems_task_mode+0x114> <== NEVER TAKEN
4000ed88: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000ed8c: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
4000ed90: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000ed94: 7f ff ea 55 call 400096e8 <_Thread_Dispatch>
4000ed98: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000ed9c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000eda0: 81 c7 e0 08 ret
4000eda4: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000eda8: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000edac: 7f ff cc 1c call 40001e1c <sparc_enable_interrupts>
4000edb0: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000edb4: 10 bf ff c3 b 4000ecc0 <rtems_task_mode+0xb0>
4000edb8: 80 8e 64 00 btst 0x400, %i1
4000bff0 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000bff0: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000bff4: 80 a6 60 00 cmp %i1, 0
4000bff8: 02 80 00 07 be 4000c014 <rtems_task_set_priority+0x24>
4000bffc: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000c000: 03 10 00 69 sethi %hi(0x4001a400), %g1
4000c004: c2 08 61 24 ldub [ %g1 + 0x124 ], %g1 ! 4001a524 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
4000c008: 80 a6 40 01 cmp %i1, %g1
4000c00c: 18 80 00 1c bgu 4000c07c <rtems_task_set_priority+0x8c>
4000c010: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000c014: 80 a6 a0 00 cmp %i2, 0
4000c018: 02 80 00 19 be 4000c07c <rtems_task_set_priority+0x8c>
4000c01c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000c020: 40 00 09 3f call 4000e51c <_Thread_Get>
4000c024: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000c028: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c02c: 80 a0 60 00 cmp %g1, 0
4000c030: 12 80 00 13 bne 4000c07c <rtems_task_set_priority+0x8c>
4000c034: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000c038: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000c03c: 80 a6 60 00 cmp %i1, 0
4000c040: 02 80 00 0d be 4000c074 <rtems_task_set_priority+0x84>
4000c044: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000c048: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000c04c: 80 a0 60 00 cmp %g1, 0
4000c050: 02 80 00 06 be 4000c068 <rtems_task_set_priority+0x78>
4000c054: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000c058: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000c05c: 80 a6 40 01 cmp %i1, %g1
4000c060: 1a 80 00 05 bcc 4000c074 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000c064: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000c068: 92 10 00 19 mov %i1, %o1
4000c06c: 40 00 07 e0 call 4000dfec <_Thread_Change_priority>
4000c070: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000c074: 40 00 09 1c call 4000e4e4 <_Thread_Enable_dispatch>
4000c078: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000c07c: 81 c7 e0 08 ret
4000c080: 81 e8 00 00 restore
400083a4 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
400083a4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
400083a8: 80 a6 60 00 cmp %i1, 0
400083ac: 02 80 00 1e be 40008424 <rtems_task_variable_delete+0x80>
400083b0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
400083b4: 90 10 00 18 mov %i0, %o0
400083b8: 40 00 08 c7 call 4000a6d4 <_Thread_Get>
400083bc: 92 07 bf fc add %fp, -4, %o1
switch (location) {
400083c0: c2 07 bf fc ld [ %fp + -4 ], %g1
400083c4: 80 a0 60 00 cmp %g1, 0
400083c8: 12 80 00 19 bne 4000842c <rtems_task_variable_delete+0x88>
400083cc: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
400083d0: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
400083d4: 80 a0 60 00 cmp %g1, 0
400083d8: 02 80 00 10 be 40008418 <rtems_task_variable_delete+0x74>
400083dc: 01 00 00 00 nop
if (tvp->ptr == ptr) {
400083e0: c4 00 60 04 ld [ %g1 + 4 ], %g2
400083e4: 80 a0 80 19 cmp %g2, %i1
400083e8: 32 80 00 09 bne,a 4000840c <rtems_task_variable_delete+0x68>
400083ec: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
400083f0: 10 80 00 19 b 40008454 <rtems_task_variable_delete+0xb0>
400083f4: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
400083f8: 80 a0 80 19 cmp %g2, %i1
400083fc: 22 80 00 0e be,a 40008434 <rtems_task_variable_delete+0x90>
40008400: c4 02 40 00 ld [ %o1 ], %g2
40008404: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
40008408: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
4000840c: 80 a2 60 00 cmp %o1, 0
40008410: 32 bf ff fa bne,a 400083f8 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
40008414: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
40008418: 40 00 08 a1 call 4000a69c <_Thread_Enable_dispatch>
4000841c: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
40008420: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40008424: 81 c7 e0 08 ret
40008428: 91 e8 00 01 restore %g0, %g1, %o0
4000842c: 81 c7 e0 08 ret
40008430: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
40008434: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
40008438: 40 00 00 2e call 400084f0 <_RTEMS_Tasks_Invoke_task_variable_dtor>
4000843c: 01 00 00 00 nop
_Thread_Enable_dispatch();
40008440: 40 00 08 97 call 4000a69c <_Thread_Enable_dispatch>
40008444: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40008448: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4000844c: 81 c7 e0 08 ret
40008450: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
40008454: 92 10 00 01 mov %g1, %o1
40008458: 10 bf ff f8 b 40008438 <rtems_task_variable_delete+0x94>
4000845c: c4 22 21 58 st %g2, [ %o0 + 0x158 ]
40008460 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
40008460: 9d e3 bf 98 save %sp, -104, %sp
40008464: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
40008468: 80 a6 60 00 cmp %i1, 0
4000846c: 02 80 00 1b be 400084d8 <rtems_task_variable_get+0x78>
40008470: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
40008474: 80 a6 a0 00 cmp %i2, 0
40008478: 02 80 00 1c be 400084e8 <rtems_task_variable_get+0x88>
4000847c: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
40008480: 40 00 08 95 call 4000a6d4 <_Thread_Get>
40008484: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40008488: c2 07 bf fc ld [ %fp + -4 ], %g1
4000848c: 80 a0 60 00 cmp %g1, 0
40008490: 12 80 00 12 bne 400084d8 <rtems_task_variable_get+0x78>
40008494: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
40008498: c2 02 21 58 ld [ %o0 + 0x158 ], %g1
while (tvp) {
4000849c: 80 a0 60 00 cmp %g1, 0
400084a0: 32 80 00 07 bne,a 400084bc <rtems_task_variable_get+0x5c>
400084a4: c4 00 60 04 ld [ %g1 + 4 ], %g2
400084a8: 30 80 00 0e b,a 400084e0 <rtems_task_variable_get+0x80>
400084ac: 80 a0 60 00 cmp %g1, 0
400084b0: 02 80 00 0c be 400084e0 <rtems_task_variable_get+0x80> <== NEVER TAKEN
400084b4: 01 00 00 00 nop
if (tvp->ptr == ptr) {
400084b8: c4 00 60 04 ld [ %g1 + 4 ], %g2
400084bc: 80 a0 80 19 cmp %g2, %i1
400084c0: 32 bf ff fb bne,a 400084ac <rtems_task_variable_get+0x4c>
400084c4: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
400084c8: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
400084cc: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
400084d0: 40 00 08 73 call 4000a69c <_Thread_Enable_dispatch>
400084d4: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
400084d8: 81 c7 e0 08 ret
400084dc: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
400084e0: 40 00 08 6f call 4000a69c <_Thread_Enable_dispatch>
400084e4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
400084e8: 81 c7 e0 08 ret
400084ec: 81 e8 00 00 restore
40016cc0 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40016cc0: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40016cc4: 11 10 00 fc sethi %hi(0x4003f000), %o0
40016cc8: 92 10 00 18 mov %i0, %o1
40016ccc: 90 12 20 64 or %o0, 0x64, %o0
40016cd0: 40 00 0c 69 call 40019e74 <_Objects_Get>
40016cd4: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016cd8: c2 07 bf fc ld [ %fp + -4 ], %g1
40016cdc: 80 a0 60 00 cmp %g1, 0
40016ce0: 22 80 00 04 be,a 40016cf0 <rtems_timer_cancel+0x30>
40016ce4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016ce8: 81 c7 e0 08 ret
40016cec: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40016cf0: 80 a0 60 04 cmp %g1, 4
40016cf4: 02 80 00 04 be 40016d04 <rtems_timer_cancel+0x44> <== NEVER TAKEN
40016cf8: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40016cfc: 40 00 14 c0 call 4001bffc <_Watchdog_Remove>
40016d00: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40016d04: 40 00 0f 89 call 4001ab28 <_Thread_Enable_dispatch>
40016d08: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40016d0c: 81 c7 e0 08 ret
40016d10: 81 e8 00 00 restore
400171d8 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
400171d8: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
400171dc: 03 10 00 fc sethi %hi(0x4003f000), %g1
400171e0: e0 00 60 a4 ld [ %g1 + 0xa4 ], %l0 ! 4003f0a4 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
400171e4: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
400171e8: 80 a4 20 00 cmp %l0, 0
400171ec: 02 80 00 10 be 4001722c <rtems_timer_server_fire_when+0x54>
400171f0: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
400171f4: 03 10 00 fb sethi %hi(0x4003ec00), %g1
400171f8: c2 08 61 90 ldub [ %g1 + 0x190 ], %g1 ! 4003ed90 <_TOD_Is_set>
400171fc: 80 a0 60 00 cmp %g1, 0
40017200: 02 80 00 0b be 4001722c <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
40017204: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
40017208: 80 a6 a0 00 cmp %i2, 0
4001720c: 02 80 00 08 be 4001722c <rtems_timer_server_fire_when+0x54>
40017210: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
40017214: 90 10 00 19 mov %i1, %o0
40017218: 7f ff f3 b2 call 400140e0 <_TOD_Validate>
4001721c: b0 10 20 14 mov 0x14, %i0
40017220: 80 8a 20 ff btst 0xff, %o0
40017224: 12 80 00 04 bne 40017234 <rtems_timer_server_fire_when+0x5c>
40017228: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4001722c: 81 c7 e0 08 ret
40017230: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
40017234: 7f ff f3 75 call 40014008 <_TOD_To_seconds>
40017238: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
4001723c: 25 10 00 fb sethi %hi(0x4003ec00), %l2
40017240: c2 04 a2 28 ld [ %l2 + 0x228 ], %g1 ! 4003ee28 <_TOD_Now>
40017244: 80 a2 00 01 cmp %o0, %g1
40017248: 08 bf ff f9 bleu 4001722c <rtems_timer_server_fire_when+0x54>
4001724c: b2 10 00 08 mov %o0, %i1
40017250: 92 10 00 11 mov %l1, %o1
40017254: 11 10 00 fc sethi %hi(0x4003f000), %o0
40017258: 94 07 bf fc add %fp, -4, %o2
4001725c: 40 00 0b 06 call 40019e74 <_Objects_Get>
40017260: 90 12 20 64 or %o0, 0x64, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40017264: c2 07 bf fc ld [ %fp + -4 ], %g1
40017268: 80 a0 60 00 cmp %g1, 0
4001726c: 12 80 00 16 bne 400172c4 <rtems_timer_server_fire_when+0xec>
40017270: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
40017274: 40 00 13 62 call 4001bffc <_Watchdog_Remove>
40017278: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001727c: c4 04 a2 28 ld [ %l2 + 0x228 ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
40017280: c2 04 20 04 ld [ %l0 + 4 ], %g1
40017284: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40017288: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
4001728c: 90 10 00 10 mov %l0, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40017290: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40017294: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
40017298: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
4001729c: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
400172a0: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400172a4: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400172a8: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
400172ac: 9f c0 40 00 call %g1
400172b0: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
400172b4: 40 00 0e 1d call 4001ab28 <_Thread_Enable_dispatch>
400172b8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
400172bc: 81 c7 e0 08 ret
400172c0: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400172c4: 81 c7 e0 08 ret
400172c8: 91 e8 20 04 restore %g0, 4, %o0