RTEMS 4.11Annotated Report
Fri Jul 16 15:47:03 2010
40007a50 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
40007a50: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
40007a54: 23 10 00 59 sethi %hi(0x40016400), %l1
40007a58: e0 04 61 b4 ld [ %l1 + 0x1b4 ], %l0 ! 400165b4 <_API_extensions_List>
40007a5c: a2 14 61 b4 or %l1, 0x1b4, %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40007a60: a2 04 60 04 add %l1, 4, %l1
40007a64: 80 a4 00 11 cmp %l0, %l1
40007a68: 02 80 00 09 be 40007a8c <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
40007a6c: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
40007a70: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007a74: 9f c0 40 00 call %g1
40007a78: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40007a7c: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
40007a80: 80 a4 00 11 cmp %l0, %l1
40007a84: 32 bf ff fc bne,a 40007a74 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
40007a88: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
40007a8c: 81 c7 e0 08 ret
40007a90: 81 e8 00 00 restore
40007a94 <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
40007a94: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
40007a98: 23 10 00 59 sethi %hi(0x40016400), %l1
40007a9c: e0 04 61 b4 ld [ %l1 + 0x1b4 ], %l0 ! 400165b4 <_API_extensions_List>
40007aa0: a2 14 61 b4 or %l1, 0x1b4, %l1
40007aa4: a2 04 60 04 add %l1, 4, %l1
40007aa8: 80 a4 00 11 cmp %l0, %l1
40007aac: 02 80 00 0a be 40007ad4 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
40007ab0: 25 10 00 59 sethi %hi(0x40016400), %l2
40007ab4: a4 14 a1 ec or %l2, 0x1ec, %l2 ! 400165ec <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
40007ab8: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007abc: 9f c0 40 00 call %g1
40007ac0: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
40007ac4: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
40007ac8: 80 a4 00 11 cmp %l0, %l1
40007acc: 32 bf ff fc bne,a 40007abc <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
40007ad0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
40007ad4: 81 c7 e0 08 ret
40007ad8: 81 e8 00 00 restore
400181e4 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
400181e4: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
400181e8: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
400181ec: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
400181f0: 80 a0 40 1a cmp %g1, %i2
400181f4: 0a 80 00 17 bcs 40018250 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN
400181f8: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
400181fc: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40018200: 80 a0 60 00 cmp %g1, 0
40018204: 02 80 00 0a be 4001822c <_CORE_message_queue_Broadcast+0x48>
40018208: a4 10 20 00 clr %l2
*count = 0;
4001820c: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40018210: 81 c7 e0 08 ret
40018214: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40018218: d0 04 60 2c ld [ %l1 + 0x2c ], %o0
4001821c: 40 00 23 3b call 40020f08 <memcpy>
40018220: a4 04 a0 01 inc %l2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40018224: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
40018228: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
4001822c: 40 00 0a ba call 4001ad14 <_Thread_queue_Dequeue>
40018230: 90 10 00 10 mov %l0, %o0
40018234: 92 10 00 19 mov %i1, %o1
40018238: a2 10 00 08 mov %o0, %l1
4001823c: 80 a2 20 00 cmp %o0, 0
40018240: 12 bf ff f6 bne 40018218 <_CORE_message_queue_Broadcast+0x34>
40018244: 94 10 00 1a mov %i2, %o2
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
40018248: e4 27 40 00 st %l2, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
4001824c: b0 10 20 00 clr %i0
}
40018250: 81 c7 e0 08 ret
40018254: 81 e8 00 00 restore
400119c0 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400119c0: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
400119c4: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
400119c8: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
400119cc: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
400119d0: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
400119d4: 80 8e e0 03 btst 3, %i3
400119d8: 02 80 00 07 be 400119f4 <_CORE_message_queue_Initialize+0x34>
400119dc: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
400119e0: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
400119e4: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
400119e8: 80 a6 c0 12 cmp %i3, %l2
400119ec: 18 80 00 22 bgu 40011a74 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
400119f0: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
400119f4: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
400119f8: 92 10 00 1a mov %i2, %o1
400119fc: 90 10 00 11 mov %l1, %o0
40011a00: 40 00 3f 46 call 40021718 <.umul>
40011a04: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
40011a08: 80 a2 00 12 cmp %o0, %l2
40011a0c: 0a 80 00 1a bcs 40011a74 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
40011a10: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
40011a14: 40 00 0c 46 call 40014b2c <_Workspace_Allocate>
40011a18: 01 00 00 00 nop
if (the_message_queue->message_buffers == 0)
40011a1c: 80 a2 20 00 cmp %o0, 0
40011a20: 02 80 00 15 be 40011a74 <_CORE_message_queue_Initialize+0xb4>
40011a24: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
40011a28: 92 10 00 08 mov %o0, %o1
40011a2c: 94 10 00 1a mov %i2, %o2
40011a30: 96 10 00 11 mov %l1, %o3
40011a34: 40 00 14 f7 call 40016e10 <_Chain_Initialize>
40011a38: 90 04 20 60 add %l0, 0x60, %o0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40011a3c: c4 06 40 00 ld [ %i1 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40011a40: 82 04 20 54 add %l0, 0x54, %g1
40011a44: 84 18 a0 01 xor %g2, 1, %g2
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40011a48: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
40011a4c: 80 a0 00 02 cmp %g0, %g2
the_message_queue->message_buffers,
(size_t) maximum_pending_messages,
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
40011a50: 82 04 20 50 add %l0, 0x50, %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
40011a54: b0 10 20 01 mov 1, %i0
the_chain->permanent_null = NULL;
40011a58: c0 24 20 54 clr [ %l0 + 0x54 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
40011a5c: 90 10 00 10 mov %l0, %o0
the_chain->last = _Chain_Head(the_chain);
40011a60: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
40011a64: 92 60 3f ff subx %g0, -1, %o1
40011a68: 94 10 20 80 mov 0x80, %o2
40011a6c: 40 00 08 e1 call 40013df0 <_Thread_queue_Initialize>
40011a70: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
40011a74: 81 c7 e0 08 ret
40011a78: 81 e8 00 00 restore
40007de0 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40007de0: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40007de4: 21 10 00 58 sethi %hi(0x40016000), %l0
40007de8: c2 04 23 88 ld [ %l0 + 0x388 ], %g1 ! 40016388 <_Thread_Dispatch_disable_level>
40007dec: 80 a0 60 00 cmp %g1, 0
40007df0: 02 80 00 05 be 40007e04 <_CORE_mutex_Seize+0x24>
40007df4: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
40007df8: 80 8e a0 ff btst 0xff, %i2
40007dfc: 12 80 00 1a bne 40007e64 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
40007e00: 03 10 00 59 sethi %hi(0x40016400), %g1
40007e04: 90 10 00 18 mov %i0, %o0
40007e08: 40 00 14 16 call 4000ce60 <_CORE_mutex_Seize_interrupt_trylock>
40007e0c: 92 07 a0 54 add %fp, 0x54, %o1
40007e10: 80 a2 20 00 cmp %o0, 0
40007e14: 02 80 00 12 be 40007e5c <_CORE_mutex_Seize+0x7c>
40007e18: 80 8e a0 ff btst 0xff, %i2
40007e1c: 02 80 00 1a be 40007e84 <_CORE_mutex_Seize+0xa4>
40007e20: 01 00 00 00 nop
40007e24: c4 04 23 88 ld [ %l0 + 0x388 ], %g2
40007e28: 03 10 00 59 sethi %hi(0x40016400), %g1
40007e2c: c2 00 61 f8 ld [ %g1 + 0x1f8 ], %g1 ! 400165f8 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40007e30: 86 10 20 01 mov 1, %g3
40007e34: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
40007e38: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40007e3c: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40007e40: 82 00 a0 01 add %g2, 1, %g1
40007e44: c2 24 23 88 st %g1, [ %l0 + 0x388 ]
40007e48: 7f ff e7 f5 call 40001e1c <sparc_enable_interrupts>
40007e4c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007e50: 90 10 00 18 mov %i0, %o0
40007e54: 7f ff ff c0 call 40007d54 <_CORE_mutex_Seize_interrupt_blocking>
40007e58: 92 10 00 1b mov %i3, %o1
40007e5c: 81 c7 e0 08 ret
40007e60: 81 e8 00 00 restore
40007e64: c2 00 61 0c ld [ %g1 + 0x10c ], %g1
40007e68: 80 a0 60 01 cmp %g1, 1
40007e6c: 28 bf ff e7 bleu,a 40007e08 <_CORE_mutex_Seize+0x28>
40007e70: 90 10 00 18 mov %i0, %o0
40007e74: 90 10 20 00 clr %o0
40007e78: 92 10 20 00 clr %o1
40007e7c: 40 00 01 da call 400085e4 <_Internal_error_Occurred>
40007e80: 94 10 20 12 mov 0x12, %o2
40007e84: 7f ff e7 e6 call 40001e1c <sparc_enable_interrupts>
40007e88: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40007e8c: 03 10 00 59 sethi %hi(0x40016400), %g1
40007e90: c2 00 61 f8 ld [ %g1 + 0x1f8 ], %g1 ! 400165f8 <_Per_CPU_Information+0xc>
40007e94: 84 10 20 01 mov 1, %g2
40007e98: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
40007e9c: 81 c7 e0 08 ret
40007ea0: 81 e8 00 00 restore
4000ce60 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000ce60: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000ce64: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ce68: c2 00 61 f8 ld [ %g1 + 0x1f8 ], %g1 ! 400165f8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000ce6c: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000ce70: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000ce74: 80 a0 a0 00 cmp %g2, 0
4000ce78: 02 80 00 13 be 4000cec4 <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000ce7c: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000ce80: c8 00 60 08 ld [ %g1 + 8 ], %g4
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000ce84: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
the_mutex->nest_count = 1;
4000ce88: 86 10 20 01 mov 1, %g3
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000ce8c: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
4000ce90: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
the_mutex->holder_id = executing->Object.id;
4000ce94: c8 26 20 60 st %g4, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000ce98: 80 a0 a0 02 cmp %g2, 2
4000ce9c: 02 80 00 10 be 4000cedc <_CORE_mutex_Seize_interrupt_trylock+0x7c>
4000cea0: c6 26 20 54 st %g3, [ %i0 + 0x54 ]
4000cea4: 80 a0 a0 03 cmp %g2, 3
4000cea8: 22 80 00 21 be,a 4000cf2c <_CORE_mutex_Seize_interrupt_trylock+0xcc>
4000ceac: da 00 60 1c ld [ %g1 + 0x1c ], %o5
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000ceb0: d0 06 40 00 ld [ %i1 ], %o0
4000ceb4: 7f ff d3 da call 40001e1c <sparc_enable_interrupts>
4000ceb8: b0 10 20 00 clr %i0
4000cebc: 81 c7 e0 08 ret
4000cec0: 81 e8 00 00 restore
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000cec4: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000cec8: 80 a0 40 02 cmp %g1, %g2
4000cecc: 02 80 00 0c be 4000cefc <_CORE_mutex_Seize_interrupt_trylock+0x9c>
4000ced0: b0 10 20 01 mov 1, %i0
4000ced4: 81 c7 e0 08 ret
4000ced8: 81 e8 00 00 restore
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000cedc: c4 00 60 1c ld [ %g1 + 0x1c ], %g2
4000cee0: 84 00 a0 01 inc %g2
4000cee4: c4 20 60 1c st %g2, [ %g1 + 0x1c ]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
4000cee8: d0 06 40 00 ld [ %i1 ], %o0
4000ceec: 7f ff d3 cc call 40001e1c <sparc_enable_interrupts>
4000cef0: b0 10 20 00 clr %i0
4000cef4: 81 c7 e0 08 ret
4000cef8: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000cefc: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
4000cf00: 80 a0 a0 00 cmp %g2, 0
4000cf04: 12 80 00 2b bne 4000cfb0 <_CORE_mutex_Seize_interrupt_trylock+0x150>
4000cf08: 80 a0 a0 01 cmp %g2, 1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000cf0c: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000cf10: 82 00 60 01 inc %g1
4000cf14: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000cf18: d0 06 40 00 ld [ %i1 ], %o0
4000cf1c: 7f ff d3 c0 call 40001e1c <sparc_enable_interrupts>
4000cf20: b0 10 20 00 clr %i0
4000cf24: 81 c7 e0 08 ret
4000cf28: 81 e8 00 00 restore
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000cf2c: c8 06 20 4c ld [ %i0 + 0x4c ], %g4
current = executing->current_priority;
4000cf30: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000cf34: 98 03 60 01 add %o5, 1, %o4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
4000cf38: 80 a1 00 02 cmp %g4, %g2
4000cf3c: 02 80 00 25 be 4000cfd0 <_CORE_mutex_Seize_interrupt_trylock+0x170>
4000cf40: d8 20 60 1c st %o4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
4000cf44: 80 a1 00 02 cmp %g4, %g2
4000cf48: 1a 80 00 11 bcc 4000cf8c <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000cf4c: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000cf50: 03 10 00 58 sethi %hi(0x40016000), %g1
4000cf54: c4 00 63 88 ld [ %g1 + 0x388 ], %g2 ! 40016388 <_Thread_Dispatch_disable_level>
4000cf58: 84 00 a0 01 inc %g2
4000cf5c: c4 20 63 88 st %g2, [ %g1 + 0x388 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000cf60: 7f ff d3 af call 40001e1c <sparc_enable_interrupts>
4000cf64: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000cf68: d0 06 20 5c ld [ %i0 + 0x5c ], %o0
4000cf6c: d2 06 20 4c ld [ %i0 + 0x4c ], %o1
4000cf70: 94 10 20 00 clr %o2
4000cf74: 7f ff f0 1c call 40008fe4 <_Thread_Change_priority>
4000cf78: b0 10 20 00 clr %i0
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000cf7c: 7f ff f1 91 call 400095c0 <_Thread_Enable_dispatch>
4000cf80: 01 00 00 00 nop
4000cf84: 81 c7 e0 08 ret
4000cf88: 81 e8 00 00 restore
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000cf8c: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000cf90: c6 26 20 50 st %g3, [ %i0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
4000cf94: c0 26 20 54 clr [ %i0 + 0x54 ]
executing->resource_count--; /* undo locking above */
4000cf98: da 20 60 1c st %o5, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000cf9c: d0 06 40 00 ld [ %i1 ], %o0
4000cfa0: 7f ff d3 9f call 40001e1c <sparc_enable_interrupts>
4000cfa4: b0 10 20 00 clr %i0
4000cfa8: 81 c7 e0 08 ret
4000cfac: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000cfb0: 12 bf ff c3 bne 4000cebc <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN
4000cfb4: 84 10 20 02 mov 2, %g2
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000cfb8: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED
_ISR_Enable( *level_p );
4000cfbc: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000cfc0: 7f ff d3 97 call 40001e1c <sparc_enable_interrupts> <== NOT EXECUTED
4000cfc4: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000cfc8: 81 c7 e0 08 ret <== NOT EXECUTED
4000cfcc: 81 e8 00 00 restore <== NOT EXECUTED
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
4000cfd0: d0 06 40 00 ld [ %i1 ], %o0
4000cfd4: 7f ff d3 92 call 40001e1c <sparc_enable_interrupts>
4000cfd8: b0 10 20 00 clr %i0
4000cfdc: 81 c7 e0 08 ret
4000cfe0: 81 e8 00 00 restore
40008020 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40008020: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40008024: 90 10 00 18 mov %i0, %o0
40008028: 40 00 06 43 call 40009934 <_Thread_queue_Dequeue>
4000802c: a0 10 00 18 mov %i0, %l0
40008030: 80 a2 20 00 cmp %o0, 0
40008034: 12 80 00 0e bne 4000806c <_CORE_semaphore_Surrender+0x4c>
40008038: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
4000803c: 7f ff e7 74 call 40001e0c <sparc_disable_interrupts>
40008040: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40008044: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40008048: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
4000804c: 80 a0 40 02 cmp %g1, %g2
40008050: 1a 80 00 05 bcc 40008064 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
40008054: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40008058: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
4000805c: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40008060: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40008064: 7f ff e7 6e call 40001e1c <sparc_enable_interrupts>
40008068: 01 00 00 00 nop
}
return status;
}
4000806c: 81 c7 e0 08 ret
40008070: 81 e8 00 00 restore
4000cdfc <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
4000cdfc: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *current;
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
4000ce00: c0 26 20 04 clr [ %i0 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Head(
Chain_Control *the_chain
)
{
return (Chain_Node *) the_chain;
4000ce04: 90 10 00 18 mov %i0, %o0
next = starting_address;
4000ce08: 84 10 00 1a mov %i2, %g2
while ( count-- ) {
4000ce0c: 80 a6 a0 00 cmp %i2, 0
4000ce10: 12 80 00 06 bne 4000ce28 <_Chain_Initialize+0x2c> <== ALWAYS TAKEN
4000ce14: 82 10 00 19 mov %i1, %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000ce18: 10 80 00 0e b 4000ce50 <_Chain_Initialize+0x54> <== NOT EXECUTED
4000ce1c: 82 06 20 04 add %i0, 4, %g1 <== NOT EXECUTED
4000ce20: 90 10 00 01 mov %g1, %o0
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
4000ce24: 82 10 00 03 mov %g3, %g1
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
current->next = next;
4000ce28: c2 22 00 00 st %g1, [ %o0 ]
next->previous = current;
4000ce2c: d0 20 60 04 st %o0, [ %g1 + 4 ]
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
4000ce30: 84 80 bf ff addcc %g2, -1, %g2
4000ce34: 12 bf ff fb bne 4000ce20 <_Chain_Initialize+0x24>
4000ce38: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
4000ce3c: 90 06 bf ff add %i2, -1, %o0
4000ce40: 40 00 16 ad call 400128f4 <.umul>
4000ce44: 92 10 00 1b mov %i3, %o1
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
4000ce48: 90 06 40 08 add %i1, %o0, %o0
4000ce4c: 82 06 20 04 add %i0, 4, %g1
next->previous = current;
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = _Chain_Tail( the_chain );
4000ce50: c2 22 00 00 st %g1, [ %o0 ]
the_chain->last = current;
4000ce54: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
4000ce58: 81 c7 e0 08 ret
4000ce5c: 81 e8 00 00 restore
40006b78 <_Event_Seize>:
rtems_event_set event_in,
rtems_option option_set,
rtems_interval ticks,
rtems_event_set *event_out
)
{
40006b78: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set pending_events;
ISR_Level level;
RTEMS_API_Control *api;
Thread_blocking_operation_States sync_state;
executing = _Thread_Executing;
40006b7c: 03 10 00 59 sethi %hi(0x40016400), %g1
40006b80: e0 00 61 f8 ld [ %g1 + 0x1f8 ], %l0 ! 400165f8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = RTEMS_SUCCESSFUL;
40006b84: c0 24 20 34 clr [ %l0 + 0x34 ]
api = executing->API_Extensions[ THREAD_API_RTEMS ];
_ISR_Disable( level );
40006b88: 7f ff ec a1 call 40001e0c <sparc_disable_interrupts>
40006b8c: e4 04 21 5c ld [ %l0 + 0x15c ], %l2
pending_events = api->pending_events;
40006b90: c2 04 80 00 ld [ %l2 ], %g1
seized_events = _Event_sets_Get( pending_events, event_in );
if ( !_Event_sets_Is_empty( seized_events ) &&
40006b94: a2 8e 00 01 andcc %i0, %g1, %l1
40006b98: 02 80 00 09 be 40006bbc <_Event_Seize+0x44>
40006b9c: 80 8e 60 01 btst 1, %i1
40006ba0: 80 a6 00 11 cmp %i0, %l1
40006ba4: 02 80 00 26 be 40006c3c <_Event_Seize+0xc4>
40006ba8: 82 28 40 11 andn %g1, %l1, %g1
(seized_events == event_in || _Options_Is_any( option_set )) ) {
40006bac: 80 8e 60 02 btst 2, %i1
40006bb0: 32 80 00 24 bne,a 40006c40 <_Event_Seize+0xc8> <== ALWAYS TAKEN
40006bb4: c2 24 80 00 st %g1, [ %l2 ]
_ISR_Enable( level );
*event_out = seized_events;
return;
}
if ( _Options_Is_no_wait( option_set ) ) {
40006bb8: 80 8e 60 01 btst 1, %i1 <== NOT EXECUTED
40006bbc: 12 80 00 19 bne 40006c20 <_Event_Seize+0xa8>
40006bc0: 01 00 00 00 nop
* set properly when we are marked as in the event critical section.
*
* NOTE: Since interrupts are disabled, this isn't that much of an
* issue but better safe than sorry.
*/
executing->Wait.option = (uint32_t) option_set;
40006bc4: f2 24 20 30 st %i1, [ %l0 + 0x30 ]
executing->Wait.count = (uint32_t) event_in;
40006bc8: f0 24 20 24 st %i0, [ %l0 + 0x24 ]
executing->Wait.return_argument = event_out;
40006bcc: f6 24 20 28 st %i3, [ %l0 + 0x28 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006bd0: 33 10 00 59 sethi %hi(0x40016400), %i1
40006bd4: 82 10 20 01 mov 1, %g1
40006bd8: c2 26 62 08 st %g1, [ %i1 + 0x208 ]
_ISR_Enable( level );
40006bdc: 7f ff ec 90 call 40001e1c <sparc_enable_interrupts>
40006be0: 01 00 00 00 nop
if ( ticks ) {
40006be4: 80 a6 a0 00 cmp %i2, 0
40006be8: 32 80 00 1b bne,a 40006c54 <_Event_Seize+0xdc>
40006bec: c2 04 20 08 ld [ %l0 + 8 ], %g1
NULL
);
_Watchdog_Insert_ticks( &executing->Timer, ticks );
}
_Thread_Set_state( executing, STATES_WAITING_FOR_EVENT );
40006bf0: 90 10 00 10 mov %l0, %o0
40006bf4: 40 00 0c e7 call 40009f90 <_Thread_Set_state>
40006bf8: 92 10 21 00 mov 0x100, %o1
_ISR_Disable( level );
40006bfc: 7f ff ec 84 call 40001e0c <sparc_disable_interrupts>
40006c00: 01 00 00 00 nop
sync_state = _Event_Sync_state;
40006c04: f0 06 62 08 ld [ %i1 + 0x208 ], %i0
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
40006c08: c0 26 62 08 clr [ %i1 + 0x208 ]
if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
40006c0c: 80 a6 20 01 cmp %i0, 1
40006c10: 02 80 00 1e be 40006c88 <_Event_Seize+0x110>
40006c14: b2 10 00 10 mov %l0, %i1
* An interrupt completed the thread's blocking request.
* The blocking thread was satisfied by an ISR or timed out.
*
* WARNING! Returning with interrupts disabled!
*/
_Thread_blocking_operation_Cancel( sync_state, executing, level );
40006c18: 40 00 08 dc call 40008f88 <_Thread_blocking_operation_Cancel>
40006c1c: 95 e8 00 08 restore %g0, %o0, %o2
*event_out = seized_events;
return;
}
if ( _Options_Is_no_wait( option_set ) ) {
_ISR_Enable( level );
40006c20: 7f ff ec 7f call 40001e1c <sparc_enable_interrupts>
40006c24: 01 00 00 00 nop
executing->Wait.return_code = RTEMS_UNSATISFIED;
40006c28: 82 10 20 0d mov 0xd, %g1 ! d <PROM_START+0xd>
40006c2c: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
*event_out = seized_events;
40006c30: e2 26 c0 00 st %l1, [ %i3 ]
40006c34: 81 c7 e0 08 ret
40006c38: 81 e8 00 00 restore
pending_events = api->pending_events;
seized_events = _Event_sets_Get( pending_events, event_in );
if ( !_Event_sets_Is_empty( seized_events ) &&
(seized_events == event_in || _Options_Is_any( option_set )) ) {
api->pending_events =
40006c3c: c2 24 80 00 st %g1, [ %l2 ]
_Event_sets_Clear( pending_events, seized_events );
_ISR_Enable( level );
40006c40: 7f ff ec 77 call 40001e1c <sparc_enable_interrupts>
40006c44: 01 00 00 00 nop
*event_out = seized_events;
40006c48: e2 26 c0 00 st %l1, [ %i3 ]
return;
40006c4c: 81 c7 e0 08 ret
40006c50: 81 e8 00 00 restore
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40006c54: 05 10 00 1b sethi %hi(0x40006c00), %g2
40006c58: 84 10 a2 38 or %g2, 0x238, %g2 ! 40006e38 <_Event_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40006c5c: c0 24 20 50 clr [ %l0 + 0x50 ]
the_watchdog->routine = routine;
40006c60: c4 24 20 64 st %g2, [ %l0 + 0x64 ]
the_watchdog->id = id;
40006c64: c2 24 20 68 st %g1, [ %l0 + 0x68 ]
the_watchdog->user_data = user_data;
40006c68: c0 24 20 6c clr [ %l0 + 0x6c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40006c6c: f4 24 20 54 st %i2, [ %l0 + 0x54 ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40006c70: 11 10 00 59 sethi %hi(0x40016400), %o0
40006c74: 92 04 20 48 add %l0, 0x48, %o1
40006c78: 40 00 0e c8 call 4000a798 <_Watchdog_Insert>
40006c7c: 90 12 20 4c or %o0, 0x4c, %o0
NULL
);
_Watchdog_Insert_ticks( &executing->Timer, ticks );
}
_Thread_Set_state( executing, STATES_WAITING_FOR_EVENT );
40006c80: 10 bf ff dd b 40006bf4 <_Event_Seize+0x7c>
40006c84: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
sync_state = _Event_Sync_state;
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
_ISR_Enable( level );
40006c88: 7f ff ec 65 call 40001e1c <sparc_enable_interrupts>
40006c8c: 91 e8 00 08 restore %g0, %o0, %o0
40006cf0 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40006cf0: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40006cf4: e0 06 21 5c ld [ %i0 + 0x15c ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
40006cf8: 7f ff ec 45 call 40001e0c <sparc_disable_interrupts>
40006cfc: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
40006d00: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
40006d04: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40006d08: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40006d0c: 86 88 40 02 andcc %g1, %g2, %g3
40006d10: 02 80 00 3e be 40006e08 <_Event_Surrender+0x118>
40006d14: 09 10 00 59 sethi %hi(0x40016400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40006d18: 88 11 21 ec or %g4, 0x1ec, %g4 ! 400165ec <_Per_CPU_Information>
40006d1c: da 01 20 08 ld [ %g4 + 8 ], %o5
40006d20: 80 a3 60 00 cmp %o5, 0
40006d24: 32 80 00 1d bne,a 40006d98 <_Event_Surrender+0xa8>
40006d28: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
40006d2c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40006d30: 80 89 21 00 btst 0x100, %g4
40006d34: 02 80 00 33 be 40006e00 <_Event_Surrender+0x110>
40006d38: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40006d3c: 02 80 00 04 be 40006d4c <_Event_Surrender+0x5c>
40006d40: 80 8c a0 02 btst 2, %l2
40006d44: 02 80 00 2f be 40006e00 <_Event_Surrender+0x110> <== NEVER TAKEN
40006d48: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006d4c: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40006d50: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40006d54: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40006d58: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006d5c: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
40006d60: 7f ff ec 2f call 40001e1c <sparc_enable_interrupts>
40006d64: 90 10 00 11 mov %l1, %o0
40006d68: 7f ff ec 29 call 40001e0c <sparc_disable_interrupts>
40006d6c: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40006d70: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
40006d74: 80 a0 60 02 cmp %g1, 2
40006d78: 02 80 00 26 be 40006e10 <_Event_Surrender+0x120>
40006d7c: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40006d80: 90 10 00 11 mov %l1, %o0
40006d84: 7f ff ec 26 call 40001e1c <sparc_enable_interrupts>
40006d88: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006d8c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40006d90: 40 00 09 18 call 400091f0 <_Thread_Clear_state>
40006d94: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40006d98: 80 a6 00 04 cmp %i0, %g4
40006d9c: 32 bf ff e5 bne,a 40006d30 <_Event_Surrender+0x40>
40006da0: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006da4: 09 10 00 59 sethi %hi(0x40016400), %g4
40006da8: da 01 22 08 ld [ %g4 + 0x208 ], %o5 ! 40016608 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40006dac: 80 a3 60 02 cmp %o5, 2
40006db0: 02 80 00 07 be 40006dcc <_Event_Surrender+0xdc> <== NEVER TAKEN
40006db4: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40006db8: da 01 22 08 ld [ %g4 + 0x208 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40006dbc: 80 a3 60 01 cmp %o5, 1
40006dc0: 32 bf ff dc bne,a 40006d30 <_Event_Surrender+0x40>
40006dc4: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40006dc8: 80 a0 40 03 cmp %g1, %g3
40006dcc: 02 80 00 04 be 40006ddc <_Event_Surrender+0xec>
40006dd0: 80 8c a0 02 btst 2, %l2
40006dd4: 02 80 00 09 be 40006df8 <_Event_Surrender+0x108> <== NEVER TAKEN
40006dd8: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006ddc: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
40006de0: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
40006de4: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
40006de8: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40006dec: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40006df0: 82 10 20 03 mov 3, %g1
40006df4: c2 21 22 08 st %g1, [ %g4 + 0x208 ]
}
_ISR_Enable( level );
40006df8: 7f ff ec 09 call 40001e1c <sparc_enable_interrupts>
40006dfc: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40006e00: 7f ff ec 07 call 40001e1c <sparc_enable_interrupts>
40006e04: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
40006e08: 7f ff ec 05 call 40001e1c <sparc_enable_interrupts>
40006e0c: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40006e10: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
40006e14: 7f ff ec 02 call 40001e1c <sparc_enable_interrupts>
40006e18: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40006e1c: 40 00 0e c9 call 4000a940 <_Watchdog_Remove>
40006e20: 90 06 20 48 add %i0, 0x48, %o0
40006e24: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40006e28: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40006e2c: 40 00 08 f1 call 400091f0 <_Thread_Clear_state>
40006e30: 81 e8 00 00 restore
40006e38 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
40006e38: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40006e3c: 90 10 00 18 mov %i0, %o0
40006e40: 40 00 09 ee call 400095f8 <_Thread_Get>
40006e44: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40006e48: c2 07 bf fc ld [ %fp + -4 ], %g1
40006e4c: 80 a0 60 00 cmp %g1, 0
40006e50: 12 80 00 15 bne 40006ea4 <_Event_Timeout+0x6c> <== NEVER TAKEN
40006e54: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
40006e58: 7f ff eb ed call 40001e0c <sparc_disable_interrupts>
40006e5c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40006e60: 03 10 00 59 sethi %hi(0x40016400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40006e64: c2 00 61 f8 ld [ %g1 + 0x1f8 ], %g1 ! 400165f8 <_Per_CPU_Information+0xc>
40006e68: 80 a4 00 01 cmp %l0, %g1
40006e6c: 02 80 00 10 be 40006eac <_Event_Timeout+0x74>
40006e70: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006e74: 82 10 20 06 mov 6, %g1
40006e78: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40006e7c: 7f ff eb e8 call 40001e1c <sparc_enable_interrupts>
40006e80: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40006e84: 90 10 00 10 mov %l0, %o0
40006e88: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40006e8c: 40 00 08 d9 call 400091f0 <_Thread_Clear_state>
40006e90: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40006e94: 03 10 00 58 sethi %hi(0x40016000), %g1
40006e98: c4 00 63 88 ld [ %g1 + 0x388 ], %g2 ! 40016388 <_Thread_Dispatch_disable_level>
40006e9c: 84 00 bf ff add %g2, -1, %g2
40006ea0: c4 20 63 88 st %g2, [ %g1 + 0x388 ]
40006ea4: 81 c7 e0 08 ret
40006ea8: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40006eac: 03 10 00 59 sethi %hi(0x40016400), %g1
40006eb0: c4 00 62 08 ld [ %g1 + 0x208 ], %g2 ! 40016608 <_Event_Sync_state>
40006eb4: 80 a0 a0 01 cmp %g2, 1
40006eb8: 32 bf ff f0 bne,a 40006e78 <_Event_Timeout+0x40>
40006ebc: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
40006ec0: 84 10 20 02 mov 2, %g2
40006ec4: c4 20 62 08 st %g2, [ %g1 + 0x208 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40006ec8: 10 bf ff ec b 40006e78 <_Event_Timeout+0x40>
40006ecc: 82 10 20 06 mov 6, %g1
4000d060 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
4000d060: 9d e3 bf 98 save %sp, -104, %sp
4000d064: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *block = _Heap_Free_list_first( heap );
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
4000d068: a4 06 60 04 add %i1, 4, %l2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d06c: e8 06 20 08 ld [ %i0 + 8 ], %l4
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *block = _Heap_Free_list_first( heap );
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_BLOCK_SIZE_OFFSET;
uintptr_t const page_size = heap->page_size;
4000d070: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
if ( block_size_floor < alloc_size ) {
4000d074: 80 a6 40 12 cmp %i1, %l2
4000d078: 18 80 00 62 bgu 4000d200 <_Heap_Allocate_aligned_with_boundary+0x1a0>
4000d07c: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
4000d080: 80 a6 e0 00 cmp %i3, 0
4000d084: 12 80 00 70 bne 4000d244 <_Heap_Allocate_aligned_with_boundary+0x1e4>
4000d088: 80 a6 40 1b cmp %i1, %i3
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
4000d08c: 80 a4 00 14 cmp %l0, %l4
4000d090: 02 80 00 5c be 4000d200 <_Heap_Allocate_aligned_with_boundary+0x1a0>
4000d094: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000d098: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
4000d09c: b8 10 20 04 mov 4, %i4
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
4000d0a0: a2 10 20 00 clr %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000d0a4: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
4000d0a8: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
4000d0ac: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000d0b0: 80 a4 80 13 cmp %l2, %l3
4000d0b4: 1a 80 00 4a bcc 4000d1dc <_Heap_Allocate_aligned_with_boundary+0x17c>
4000d0b8: a2 04 60 01 inc %l1
if ( alignment == 0 ) {
4000d0bc: 80 a6 a0 00 cmp %i2, 0
4000d0c0: 02 80 00 44 be 4000d1d0 <_Heap_Allocate_aligned_with_boundary+0x170>
4000d0c4: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000d0c8: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d0cc: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d0d0: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
4000d0d4: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
4000d0d8: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d0dc: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
uintptr_t alloc_begin = alloc_end - alloc_size;
4000d0e0: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
4000d0e4: a6 00 40 13 add %g1, %l3, %l3
4000d0e8: 40 00 16 e9 call 40012c8c <.urem>
4000d0ec: 90 10 00 18 mov %i0, %o0
4000d0f0: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
4000d0f4: 80 a4 c0 18 cmp %l3, %i0
4000d0f8: 1a 80 00 06 bcc 4000d110 <_Heap_Allocate_aligned_with_boundary+0xb0>
4000d0fc: ac 05 20 08 add %l4, 8, %l6
4000d100: 90 10 00 13 mov %l3, %o0
4000d104: 40 00 16 e2 call 40012c8c <.urem>
4000d108: 92 10 00 1a mov %i2, %o1
4000d10c: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
4000d110: 80 a6 e0 00 cmp %i3, 0
4000d114: 02 80 00 24 be 4000d1a4 <_Heap_Allocate_aligned_with_boundary+0x144>
4000d118: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
4000d11c: a6 06 00 19 add %i0, %i1, %l3
4000d120: 92 10 00 1b mov %i3, %o1
4000d124: 40 00 16 da call 40012c8c <.urem>
4000d128: 90 10 00 13 mov %l3, %o0
4000d12c: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000d130: 80 a6 00 08 cmp %i0, %o0
4000d134: 1a 80 00 1b bcc 4000d1a0 <_Heap_Allocate_aligned_with_boundary+0x140>
4000d138: 80 a2 00 13 cmp %o0, %l3
4000d13c: 1a 80 00 1a bcc 4000d1a4 <_Heap_Allocate_aligned_with_boundary+0x144>
4000d140: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
4000d144: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
4000d148: 80 a5 40 08 cmp %l5, %o0
4000d14c: 28 80 00 09 bleu,a 4000d170 <_Heap_Allocate_aligned_with_boundary+0x110>
4000d150: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
4000d154: 10 80 00 23 b 4000d1e0 <_Heap_Allocate_aligned_with_boundary+0x180>
4000d158: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000d15c: 1a 80 00 11 bcc 4000d1a0 <_Heap_Allocate_aligned_with_boundary+0x140>
4000d160: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
4000d164: 38 80 00 1f bgu,a 4000d1e0 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000d168: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
4000d16c: b0 22 00 19 sub %o0, %i1, %i0
4000d170: 92 10 00 1a mov %i2, %o1
4000d174: 40 00 16 c6 call 40012c8c <.urem>
4000d178: 90 10 00 18 mov %i0, %o0
4000d17c: 92 10 00 1b mov %i3, %o1
4000d180: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
4000d184: a6 06 00 19 add %i0, %i1, %l3
4000d188: 40 00 16 c1 call 40012c8c <.urem>
4000d18c: 90 10 00 13 mov %l3, %o0
4000d190: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
4000d194: 80 a2 00 13 cmp %o0, %l3
4000d198: 0a bf ff f1 bcs 4000d15c <_Heap_Allocate_aligned_with_boundary+0xfc>
4000d19c: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
4000d1a0: 80 a5 80 18 cmp %l6, %i0
4000d1a4: 38 80 00 0f bgu,a 4000d1e0 <_Heap_Allocate_aligned_with_boundary+0x180>
4000d1a8: e8 05 20 08 ld [ %l4 + 8 ], %l4
4000d1ac: 82 10 3f f8 mov -8, %g1
4000d1b0: 90 10 00 18 mov %i0, %o0
4000d1b4: a6 20 40 14 sub %g1, %l4, %l3
4000d1b8: 92 10 00 1d mov %i5, %o1
4000d1bc: 40 00 16 b4 call 40012c8c <.urem>
4000d1c0: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000d1c4: 90 a4 c0 08 subcc %l3, %o0, %o0
4000d1c8: 12 80 00 10 bne 4000d208 <_Heap_Allocate_aligned_with_boundary+0x1a8>
4000d1cc: 80 a2 00 17 cmp %o0, %l7
boundary
);
}
}
if ( alloc_begin != 0 ) {
4000d1d0: 80 a6 20 00 cmp %i0, 0
4000d1d4: 32 80 00 13 bne,a 4000d220 <_Heap_Allocate_aligned_with_boundary+0x1c0><== ALWAYS TAKEN
4000d1d8: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
break;
}
block = block->next;
4000d1dc: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
4000d1e0: 80 a4 00 14 cmp %l0, %l4
4000d1e4: 32 bf ff b3 bne,a 4000d0b0 <_Heap_Allocate_aligned_with_boundary+0x50>
4000d1e8: e6 05 20 04 ld [ %l4 + 4 ], %l3
4000d1ec: b0 10 20 00 clr %i0
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000d1f0: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
4000d1f4: 80 a0 40 11 cmp %g1, %l1
4000d1f8: 2a 80 00 02 bcs,a 4000d200 <_Heap_Allocate_aligned_with_boundary+0x1a0>
4000d1fc: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
4000d200: 81 c7 e0 08 ret
4000d204: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
4000d208: 2a bf ff f6 bcs,a 4000d1e0 <_Heap_Allocate_aligned_with_boundary+0x180>
4000d20c: e8 05 20 08 ld [ %l4 + 8 ], %l4
boundary
);
}
}
if ( alloc_begin != 0 ) {
4000d210: 80 a6 20 00 cmp %i0, 0
4000d214: 22 bf ff f3 be,a 4000d1e0 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
4000d218: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
4000d21c: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000d220: 90 10 00 10 mov %l0, %o0
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
4000d224: 82 00 40 11 add %g1, %l1, %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000d228: 92 10 00 14 mov %l4, %o1
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
4000d22c: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
4000d230: 94 10 00 18 mov %i0, %o2
4000d234: 7f ff ec a0 call 400084b4 <_Heap_Block_allocate>
4000d238: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
4000d23c: 10 bf ff ee b 4000d1f4 <_Heap_Allocate_aligned_with_boundary+0x194>
4000d240: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
4000d244: 18 bf ff ef bgu 4000d200 <_Heap_Allocate_aligned_with_boundary+0x1a0>
4000d248: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
4000d24c: 22 bf ff 90 be,a 4000d08c <_Heap_Allocate_aligned_with_boundary+0x2c>
4000d250: b4 10 00 1d mov %i5, %i2
alignment = page_size;
}
}
while ( block != free_list_tail ) {
4000d254: 10 bf ff 8f b 4000d090 <_Heap_Allocate_aligned_with_boundary+0x30>
4000d258: 80 a4 00 14 cmp %l0, %l4
4000d554 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000d554: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000d558: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000d55c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000d560: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000d564: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000d568: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000d56c: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000d570: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
4000d574: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000d578: 80 a6 40 11 cmp %i1, %l1
4000d57c: 18 80 00 86 bgu 4000d794 <_Heap_Extend+0x240>
4000d580: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000d584: 90 10 00 19 mov %i1, %o0
4000d588: 92 10 00 1a mov %i2, %o1
4000d58c: 94 10 00 13 mov %l3, %o2
4000d590: 98 07 bf fc add %fp, -4, %o4
4000d594: 7f ff eb d9 call 400084f8 <_Heap_Get_first_and_last_block>
4000d598: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000d59c: 80 8a 20 ff btst 0xff, %o0
4000d5a0: 02 80 00 7d be 4000d794 <_Heap_Extend+0x240>
4000d5a4: ba 10 20 00 clr %i5
4000d5a8: b0 10 00 12 mov %l2, %i0
4000d5ac: b8 10 20 00 clr %i4
4000d5b0: ac 10 20 00 clr %l6
4000d5b4: 10 80 00 14 b 4000d604 <_Heap_Extend+0xb0>
4000d5b8: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000d5bc: 2a 80 00 02 bcs,a 4000d5c4 <_Heap_Extend+0x70>
4000d5c0: b8 10 00 18 mov %i0, %i4
4000d5c4: 90 10 00 15 mov %l5, %o0
4000d5c8: 40 00 17 00 call 400131c8 <.urem>
4000d5cc: 92 10 00 13 mov %l3, %o1
4000d5d0: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000d5d4: 80 a5 40 19 cmp %l5, %i1
4000d5d8: 02 80 00 1c be 4000d648 <_Heap_Extend+0xf4>
4000d5dc: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000d5e0: 80 a6 40 15 cmp %i1, %l5
4000d5e4: 38 80 00 02 bgu,a 4000d5ec <_Heap_Extend+0x98>
4000d5e8: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d5ec: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000d5f0: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d5f4: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000d5f8: 80 a4 80 18 cmp %l2, %i0
4000d5fc: 22 80 00 1b be,a 4000d668 <_Heap_Extend+0x114>
4000d600: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000d604: 80 a6 00 12 cmp %i0, %l2
4000d608: 02 80 00 65 be 4000d79c <_Heap_Extend+0x248>
4000d60c: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000d610: 80 a0 40 11 cmp %g1, %l1
4000d614: 0a 80 00 6f bcs 4000d7d0 <_Heap_Extend+0x27c>
4000d618: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000d61c: 80 a0 40 11 cmp %g1, %l1
4000d620: 12 bf ff e7 bne 4000d5bc <_Heap_Extend+0x68>
4000d624: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d628: 90 10 00 15 mov %l5, %o0
4000d62c: 40 00 16 e7 call 400131c8 <.urem>
4000d630: 92 10 00 13 mov %l3, %o1
4000d634: 82 05 7f f8 add %l5, -8, %g1
4000d638: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000d63c: 80 a5 40 19 cmp %l5, %i1
4000d640: 12 bf ff e8 bne 4000d5e0 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
4000d644: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
4000d648: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d64c: f0 00 60 04 ld [ %g1 + 4 ], %i0
4000d650: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d654: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000d658: 80 a4 80 18 cmp %l2, %i0
4000d65c: 12 bf ff ea bne 4000d604 <_Heap_Extend+0xb0> <== NEVER TAKEN
4000d660: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
4000d664: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000d668: 80 a6 40 01 cmp %i1, %g1
4000d66c: 3a 80 00 54 bcc,a 4000d7bc <_Heap_Extend+0x268>
4000d670: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000d674: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000d678: c2 07 bf fc ld [ %fp + -4 ], %g1
4000d67c: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_first_block_size | HEAP_PREV_BLOCK_USED;
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000d680: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000d684: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
4000d688: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000d68c: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000d690: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
extend_last_block->prev_size = extend_first_block_size;
4000d694: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000d698: 80 a1 00 01 cmp %g4, %g1
4000d69c: 08 80 00 42 bleu 4000d7a4 <_Heap_Extend+0x250>
4000d6a0: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
4000d6a4: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000d6a8: 80 a5 e0 00 cmp %l7, 0
4000d6ac: 02 80 00 62 be 4000d834 <_Heap_Extend+0x2e0>
4000d6b0: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000d6b4: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000d6b8: 92 10 00 12 mov %l2, %o1
4000d6bc: 40 00 16 c3 call 400131c8 <.urem>
4000d6c0: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000d6c4: 80 a2 20 00 cmp %o0, 0
4000d6c8: 02 80 00 04 be 4000d6d8 <_Heap_Extend+0x184> <== ALWAYS TAKEN
4000d6cc: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
4000d6d0: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000d6d4: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000d6d8: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000d6dc: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000d6e0: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000d6e4: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
4000d6e8: 90 10 00 10 mov %l0, %o0
4000d6ec: 92 10 00 01 mov %g1, %o1
4000d6f0: 7f ff ff 8e call 4000d528 <_Heap_Free_block>
4000d6f4: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000d6f8: 80 a5 a0 00 cmp %l6, 0
4000d6fc: 02 80 00 3a be 4000d7e4 <_Heap_Extend+0x290>
4000d700: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d704: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000d708: a2 24 40 16 sub %l1, %l6, %l1
4000d70c: 40 00 16 af call 400131c8 <.urem>
4000d710: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000d714: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000d718: a2 24 40 08 sub %l1, %o0, %l1
4000d71c: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
4000d720: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000d724: 84 04 40 16 add %l1, %l6, %g2
4000d728: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d72c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000d730: 90 10 00 10 mov %l0, %o0
4000d734: 82 08 60 01 and %g1, 1, %g1
4000d738: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
4000d73c: a2 14 40 01 or %l1, %g1, %l1
4000d740: 7f ff ff 7a call 4000d528 <_Heap_Free_block>
4000d744: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000d748: 80 a5 a0 00 cmp %l6, 0
4000d74c: 02 80 00 33 be 4000d818 <_Heap_Extend+0x2c4>
4000d750: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d754: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000d758: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d75c: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000d760: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000d764: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000d768: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d76c: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
4000d770: 88 13 40 04 or %o5, %g4, %g4
4000d774: c8 20 60 04 st %g4, [ %g1 + 4 ]
4000d778: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000d77c: 82 00 80 14 add %g2, %l4, %g1
4000d780: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
4000d784: 80 a6 e0 00 cmp %i3, 0
4000d788: 02 80 00 03 be 4000d794 <_Heap_Extend+0x240> <== NEVER TAKEN
4000d78c: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
4000d790: e8 26 c0 00 st %l4, [ %i3 ]
4000d794: 81 c7 e0 08 ret
4000d798: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
4000d79c: 10 bf ff 9d b 4000d610 <_Heap_Extend+0xbc>
4000d7a0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000d7a4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000d7a8: 80 a0 40 02 cmp %g1, %g2
4000d7ac: 2a bf ff bf bcs,a 4000d6a8 <_Heap_Extend+0x154>
4000d7b0: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000d7b4: 10 bf ff be b 4000d6ac <_Heap_Extend+0x158>
4000d7b8: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
4000d7bc: 80 a4 40 01 cmp %l1, %g1
4000d7c0: 38 bf ff ae bgu,a 4000d678 <_Heap_Extend+0x124>
4000d7c4: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000d7c8: 10 bf ff ad b 4000d67c <_Heap_Extend+0x128>
4000d7cc: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000d7d0: 80 a6 40 15 cmp %i1, %l5
4000d7d4: 1a bf ff 93 bcc 4000d620 <_Heap_Extend+0xcc>
4000d7d8: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d7dc: 81 c7 e0 08 ret
4000d7e0: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000d7e4: 80 a7 60 00 cmp %i5, 0
4000d7e8: 02 bf ff d8 be 4000d748 <_Heap_Extend+0x1f4>
4000d7ec: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d7f0: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
4000d7f4: c2 07 bf f8 ld [ %fp + -8 ], %g1
4000d7f8: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000d7fc: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
4000d800: 84 10 80 03 or %g2, %g3, %g2
4000d804: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000d808: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000d80c: 84 10 a0 01 or %g2, 1, %g2
4000d810: 10 bf ff ce b 4000d748 <_Heap_Extend+0x1f4>
4000d814: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000d818: 32 bf ff d0 bne,a 4000d758 <_Heap_Extend+0x204>
4000d81c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000d820: d2 07 bf fc ld [ %fp + -4 ], %o1
4000d824: 7f ff ff 41 call 4000d528 <_Heap_Free_block>
4000d828: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
4000d82c: 10 bf ff cb b 4000d758 <_Heap_Extend+0x204>
4000d830: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000d834: 80 a7 20 00 cmp %i4, 0
4000d838: 02 bf ff b1 be 4000d6fc <_Heap_Extend+0x1a8>
4000d83c: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000d840: b8 27 00 02 sub %i4, %g2, %i4
4000d844: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000d848: 10 bf ff ad b 4000d6fc <_Heap_Extend+0x1a8>
4000d84c: f8 20 a0 04 st %i4, [ %g2 + 4 ]
4000d25c <_Heap_Free>:
#include <rtems/system.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/heap.h>
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000d25c: 9d e3 bf a0 save %sp, -96, %sp
4000d260: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000d264: 40 00 16 8a call 40012c8c <.urem>
4000d268: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000d26c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
4000d270: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000d274: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000d278: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d27c: 80 a2 00 01 cmp %o0, %g1
4000d280: 0a 80 00 4d bcs 4000d3b4 <_Heap_Free+0x158>
4000d284: b0 10 20 00 clr %i0
4000d288: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000d28c: 80 a2 00 03 cmp %o0, %g3
4000d290: 18 80 00 49 bgu 4000d3b4 <_Heap_Free+0x158>
4000d294: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d298: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000d29c: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d2a0: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d2a4: 80 a0 40 02 cmp %g1, %g2
4000d2a8: 18 80 00 43 bgu 4000d3b4 <_Heap_Free+0x158> <== NEVER TAKEN
4000d2ac: 80 a0 c0 02 cmp %g3, %g2
4000d2b0: 0a 80 00 41 bcs 4000d3b4 <_Heap_Free+0x158> <== NEVER TAKEN
4000d2b4: 01 00 00 00 nop
4000d2b8: d8 00 a0 04 ld [ %g2 + 4 ], %o4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000d2bc: 80 8b 20 01 btst 1, %o4
4000d2c0: 02 80 00 3d be 4000d3b4 <_Heap_Free+0x158> <== NEVER TAKEN
4000d2c4: 96 0b 3f fe and %o4, -2, %o3
return false;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000d2c8: 80 a0 c0 02 cmp %g3, %g2
4000d2cc: 02 80 00 06 be 4000d2e4 <_Heap_Free+0x88>
4000d2d0: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d2d4: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d2d8: d8 03 20 04 ld [ %o4 + 4 ], %o4
4000d2dc: 98 0b 20 01 and %o4, 1, %o4
#include <rtems/system.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/heap.h>
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
4000d2e0: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
4000d2e4: 80 8b 60 01 btst 1, %o5
4000d2e8: 12 80 00 1d bne 4000d35c <_Heap_Free+0x100>
4000d2ec: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
4000d2f0: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000d2f4: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000d2f8: 80 a0 40 0d cmp %g1, %o5
4000d2fc: 18 80 00 2e bgu 4000d3b4 <_Heap_Free+0x158> <== NEVER TAKEN
4000d300: b0 10 20 00 clr %i0
4000d304: 80 a0 c0 0d cmp %g3, %o5
4000d308: 0a 80 00 2b bcs 4000d3b4 <_Heap_Free+0x158> <== NEVER TAKEN
4000d30c: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000d310: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000d314: 80 88 60 01 btst 1, %g1
4000d318: 02 80 00 27 be 4000d3b4 <_Heap_Free+0x158> <== NEVER TAKEN
4000d31c: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000d320: 22 80 00 39 be,a 4000d404 <_Heap_Free+0x1a8>
4000d324: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d328: c2 00 a0 08 ld [ %g2 + 8 ], %g1
4000d32c: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000d330: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
4000d334: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
4000d338: c4 20 60 0c st %g2, [ %g1 + 0xc ]
4000d33c: 82 00 ff ff add %g3, -1, %g1
4000d340: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
4000d344: 96 01 00 0b add %g4, %o3, %o3
4000d348: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d34c: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000d350: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d354: 10 80 00 0e b 4000d38c <_Heap_Free+0x130>
4000d358: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000d35c: 22 80 00 18 be,a 4000d3bc <_Heap_Free+0x160>
4000d360: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000d364: c6 00 a0 08 ld [ %g2 + 8 ], %g3
4000d368: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
4000d36c: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
4000d370: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
4000d374: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
4000d378: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d37c: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
4000d380: d0 20 60 08 st %o0, [ %g1 + 8 ]
4000d384: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000d388: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d38c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
4000d390: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
4000d394: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d398: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
4000d39c: 82 00 60 01 inc %g1
stats->free_size += block_size;
4000d3a0: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000d3a4: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
4000d3a8: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000d3ac: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
4000d3b0: b0 10 20 01 mov 1, %i0
}
4000d3b4: 81 c7 e0 08 ret
4000d3b8: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000d3bc: 82 11 20 01 or %g4, 1, %g1
4000d3c0: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d3c4: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d3c8: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000d3cc: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000d3d0: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000d3d4: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
4000d3d8: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d3dc: 86 0b 7f fe and %o5, -2, %g3
4000d3e0: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d3e4: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000d3e8: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000d3ec: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000d3f0: 80 a0 40 02 cmp %g1, %g2
4000d3f4: 08 bf ff e6 bleu 4000d38c <_Heap_Free+0x130>
4000d3f8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000d3fc: 10 bf ff e4 b 4000d38c <_Heap_Free+0x130>
4000d400: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000d404: 82 12 a0 01 or %o2, 1, %g1
4000d408: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d40c: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
4000d410: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000d414: 82 08 7f fe and %g1, -2, %g1
4000d418: 10 bf ff dd b 4000d38c <_Heap_Free+0x130>
4000d41c: c2 20 a0 04 st %g1, [ %g2 + 4 ]
40013068 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
40013068: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
4001306c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
40013070: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
40013074: c0 26 40 00 clr [ %i1 ]
40013078: c0 26 60 04 clr [ %i1 + 4 ]
4001307c: c0 26 60 08 clr [ %i1 + 8 ]
40013080: c0 26 60 0c clr [ %i1 + 0xc ]
40013084: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
40013088: 80 a0 40 02 cmp %g1, %g2
4001308c: 02 80 00 17 be 400130e8 <_Heap_Get_information+0x80> <== NEVER TAKEN
40013090: c0 26 60 14 clr [ %i1 + 0x14 ]
40013094: da 00 60 04 ld [ %g1 + 4 ], %o5
40013098: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4001309c: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
400130a0: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
400130a4: 80 8b 60 01 btst 1, %o5
400130a8: 02 80 00 03 be 400130b4 <_Heap_Get_information+0x4c>
400130ac: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
400130b0: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
400130b4: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
400130b8: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
400130bc: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
400130c0: 94 02 a0 01 inc %o2
info->total += the_size;
400130c4: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
400130c8: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
400130cc: 80 a3 00 04 cmp %o4, %g4
400130d0: 1a 80 00 03 bcc 400130dc <_Heap_Get_information+0x74>
400130d4: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
400130d8: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
400130dc: 80 a0 80 01 cmp %g2, %g1
400130e0: 12 bf ff ef bne 4001309c <_Heap_Get_information+0x34>
400130e4: 88 0b 7f fe and %o5, -2, %g4
400130e8: 81 c7 e0 08 ret
400130ec: 81 e8 00 00 restore
40014690 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
40014690: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40014694: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
40014698: 7f ff f9 7d call 40012c8c <.urem>
4001469c: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400146a0: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
400146a4: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400146a8: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
400146ac: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400146b0: 80 a0 80 01 cmp %g2, %g1
400146b4: 0a 80 00 15 bcs 40014708 <_Heap_Size_of_alloc_area+0x78>
400146b8: b0 10 20 00 clr %i0
400146bc: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
400146c0: 80 a0 80 03 cmp %g2, %g3
400146c4: 18 80 00 11 bgu 40014708 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400146c8: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400146cc: c8 00 a0 04 ld [ %g2 + 4 ], %g4
400146d0: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400146d4: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400146d8: 80 a0 40 02 cmp %g1, %g2
400146dc: 18 80 00 0b bgu 40014708 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400146e0: 80 a0 c0 02 cmp %g3, %g2
400146e4: 0a 80 00 09 bcs 40014708 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400146e8: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400146ec: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
400146f0: 80 88 60 01 btst 1, %g1
400146f4: 02 80 00 05 be 40014708 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
400146f8: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
return true;
400146fc: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
40014700: 84 00 a0 04 add %g2, 4, %g2
40014704: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
40014708: 81 c7 e0 08 ret
4001470c: 81 e8 00 00 restore
40009468 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40009468: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
4000946c: 23 10 00 24 sethi %hi(0x40009000), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40009470: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40009474: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
40009478: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
4000947c: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
40009480: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40009484: 80 8e a0 ff btst 0xff, %i2
40009488: 02 80 00 04 be 40009498 <_Heap_Walk+0x30>
4000948c: a2 14 63 fc or %l1, 0x3fc, %l1
40009490: 23 10 00 25 sethi %hi(0x40009400), %l1
40009494: a2 14 60 04 or %l1, 4, %l1 ! 40009404 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40009498: 03 10 00 63 sethi %hi(0x40018c00), %g1
4000949c: c2 00 60 dc ld [ %g1 + 0xdc ], %g1 ! 40018cdc <_System_state_Current>
400094a0: 80 a0 60 03 cmp %g1, 3
400094a4: 12 80 00 33 bne 40009570 <_Heap_Walk+0x108>
400094a8: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
400094ac: da 04 20 18 ld [ %l0 + 0x18 ], %o5
400094b0: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
400094b4: c4 04 20 08 ld [ %l0 + 8 ], %g2
400094b8: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400094bc: 90 10 00 19 mov %i1, %o0
400094c0: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
400094c4: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
400094c8: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
400094cc: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
400094d0: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
400094d4: 92 10 20 00 clr %o1
400094d8: 96 10 00 14 mov %l4, %o3
400094dc: 15 10 00 59 sethi %hi(0x40016400), %o2
400094e0: 98 10 00 13 mov %l3, %o4
400094e4: 9f c4 40 00 call %l1
400094e8: 94 12 a0 80 or %o2, 0x80, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
400094ec: 80 a5 20 00 cmp %l4, 0
400094f0: 02 80 00 2a be 40009598 <_Heap_Walk+0x130>
400094f4: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
400094f8: 12 80 00 30 bne 400095b8 <_Heap_Walk+0x150>
400094fc: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009500: 7f ff e1 6c call 40001ab0 <.urem>
40009504: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40009508: 80 a2 20 00 cmp %o0, 0
4000950c: 12 80 00 34 bne 400095dc <_Heap_Walk+0x174>
40009510: 90 04 a0 08 add %l2, 8, %o0
40009514: 7f ff e1 67 call 40001ab0 <.urem>
40009518: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
4000951c: 80 a2 20 00 cmp %o0, 0
40009520: 32 80 00 38 bne,a 40009600 <_Heap_Walk+0x198>
40009524: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40009528: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
4000952c: 80 8f 20 01 btst 1, %i4
40009530: 22 80 00 4d be,a 40009664 <_Heap_Walk+0x1fc>
40009534: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40009538: c2 05 60 04 ld [ %l5 + 4 ], %g1
4000953c: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40009540: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009544: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40009548: 80 88 a0 01 btst 1, %g2
4000954c: 02 80 00 0b be 40009578 <_Heap_Walk+0x110>
40009550: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
40009554: 02 80 00 33 be 40009620 <_Heap_Walk+0x1b8> <== ALWAYS TAKEN
40009558: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
4000955c: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
40009560: 15 10 00 59 sethi %hi(0x40016400), %o2 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009564: b0 10 20 00 clr %i0 <== NOT EXECUTED
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40009568: 9f c4 40 00 call %l1 <== NOT EXECUTED
4000956c: 94 12 a1 f8 or %o2, 0x1f8, %o2 <== NOT EXECUTED
40009570: 81 c7 e0 08 ret
40009574: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
40009578: 90 10 00 19 mov %i1, %o0
4000957c: 92 10 20 01 mov 1, %o1
40009580: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009584: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
40009588: 9f c4 40 00 call %l1
4000958c: 94 12 a1 e0 or %o2, 0x1e0, %o2
40009590: 81 c7 e0 08 ret
40009594: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
40009598: 90 10 00 19 mov %i1, %o0
4000959c: 92 10 20 01 mov 1, %o1
400095a0: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400095a4: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
400095a8: 9f c4 40 00 call %l1
400095ac: 94 12 a1 18 or %o2, 0x118, %o2
400095b0: 81 c7 e0 08 ret
400095b4: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400095b8: 90 10 00 19 mov %i1, %o0
400095bc: 92 10 20 01 mov 1, %o1
400095c0: 96 10 00 14 mov %l4, %o3
400095c4: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400095c8: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
400095cc: 9f c4 40 00 call %l1
400095d0: 94 12 a1 30 or %o2, 0x130, %o2
400095d4: 81 c7 e0 08 ret
400095d8: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
400095dc: 90 10 00 19 mov %i1, %o0
400095e0: 92 10 20 01 mov 1, %o1
400095e4: 96 10 00 13 mov %l3, %o3
400095e8: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
400095ec: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
400095f0: 9f c4 40 00 call %l1
400095f4: 94 12 a1 50 or %o2, 0x150, %o2
400095f8: 81 c7 e0 08 ret
400095fc: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40009600: 92 10 20 01 mov 1, %o1
40009604: 96 10 00 12 mov %l2, %o3
40009608: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000960c: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40009610: 9f c4 40 00 call %l1
40009614: 94 12 a1 78 or %o2, 0x178, %o2
40009618: 81 c7 e0 08 ret
4000961c: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
40009620: ec 04 20 08 ld [ %l0 + 8 ], %l6
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40009624: 80 a4 00 16 cmp %l0, %l6
40009628: 02 80 01 18 be 40009a88 <_Heap_Walk+0x620>
4000962c: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
40009630: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40009634: 80 a0 40 16 cmp %g1, %l6
40009638: 28 80 00 12 bleu,a 40009680 <_Heap_Walk+0x218> <== ALWAYS TAKEN
4000963c: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
40009640: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40009644: 92 10 20 01 mov 1, %o1
40009648: 96 10 00 16 mov %l6, %o3
4000964c: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009650: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
40009654: 9f c4 40 00 call %l1
40009658: 94 12 a2 28 or %o2, 0x228, %o2
4000965c: 81 c7 e0 08 ret
40009660: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
40009664: 92 10 20 01 mov 1, %o1
40009668: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000966c: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
40009670: 9f c4 40 00 call %l1
40009674: 94 12 a1 b0 or %o2, 0x1b0, %o2
40009678: 81 c7 e0 08 ret
4000967c: 81 e8 00 00 restore
40009680: 80 a7 40 16 cmp %i5, %l6
40009684: 0a bf ff f0 bcs 40009644 <_Heap_Walk+0x1dc> <== NEVER TAKEN
40009688: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
4000968c: c2 27 bf fc st %g1, [ %fp + -4 ]
40009690: 90 05 a0 08 add %l6, 8, %o0
40009694: 7f ff e1 07 call 40001ab0 <.urem>
40009698: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
4000969c: 80 a2 20 00 cmp %o0, 0
400096a0: 12 80 00 2e bne 40009758 <_Heap_Walk+0x2f0> <== NEVER TAKEN
400096a4: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400096a8: c4 05 a0 04 ld [ %l6 + 4 ], %g2
400096ac: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
400096b0: 84 05 80 02 add %l6, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400096b4: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400096b8: 80 88 a0 01 btst 1, %g2
400096bc: 12 80 00 30 bne 4000977c <_Heap_Walk+0x314> <== NEVER TAKEN
400096c0: 84 10 00 10 mov %l0, %g2
400096c4: ae 10 00 16 mov %l6, %l7
400096c8: 10 80 00 17 b 40009724 <_Heap_Walk+0x2bc>
400096cc: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
400096d0: 80 a4 00 16 cmp %l0, %l6
400096d4: 02 80 00 33 be 400097a0 <_Heap_Walk+0x338>
400096d8: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400096dc: 18 bf ff da bgu 40009644 <_Heap_Walk+0x1dc>
400096e0: 90 10 00 19 mov %i1, %o0
400096e4: 80 a5 80 1d cmp %l6, %i5
400096e8: 18 bf ff d8 bgu 40009648 <_Heap_Walk+0x1e0> <== NEVER TAKEN
400096ec: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400096f0: 90 05 a0 08 add %l6, 8, %o0
400096f4: 7f ff e0 ef call 40001ab0 <.urem>
400096f8: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
400096fc: 80 a2 20 00 cmp %o0, 0
40009700: 12 80 00 16 bne 40009758 <_Heap_Walk+0x2f0>
40009704: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40009708: c2 05 a0 04 ld [ %l6 + 4 ], %g1
4000970c: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40009710: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009714: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40009718: 80 88 60 01 btst 1, %g1
4000971c: 12 80 00 18 bne 4000977c <_Heap_Walk+0x314>
40009720: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
40009724: d8 05 a0 0c ld [ %l6 + 0xc ], %o4
40009728: 80 a3 00 02 cmp %o4, %g2
4000972c: 22 bf ff e9 be,a 400096d0 <_Heap_Walk+0x268>
40009730: ec 05 a0 08 ld [ %l6 + 8 ], %l6
(*printer)(
40009734: 90 10 00 19 mov %i1, %o0
40009738: 92 10 20 01 mov 1, %o1
4000973c: 96 10 00 16 mov %l6, %o3
40009740: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009744: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
40009748: 9f c4 40 00 call %l1
4000974c: 94 12 a2 98 or %o2, 0x298, %o2
40009750: 81 c7 e0 08 ret
40009754: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40009758: 90 10 00 19 mov %i1, %o0
4000975c: 92 10 20 01 mov 1, %o1
40009760: 96 10 00 16 mov %l6, %o3
40009764: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
40009768: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
4000976c: 9f c4 40 00 call %l1
40009770: 94 12 a2 48 or %o2, 0x248, %o2
40009774: 81 c7 e0 08 ret
40009778: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
4000977c: 90 10 00 19 mov %i1, %o0
40009780: 92 10 20 01 mov 1, %o1
40009784: 96 10 00 16 mov %l6, %o3
40009788: 15 10 00 59 sethi %hi(0x40016400), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
4000978c: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
40009790: 9f c4 40 00 call %l1
40009794: 94 12 a2 78 or %o2, 0x278, %o2
40009798: 81 c7 e0 08 ret
4000979c: 81 e8 00 00 restore
400097a0: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400097a4: 35 10 00 5a sethi %hi(0x40016800), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400097a8: 31 10 00 5a sethi %hi(0x40016800), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
400097ac: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400097b0: b4 16 a0 58 or %i2, 0x58, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400097b4: b0 16 20 40 or %i0, 0x40, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400097b8: 37 10 00 5a sethi %hi(0x40016800), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400097bc: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400097c0: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400097c4: 80 a0 40 16 cmp %g1, %l6
400097c8: 28 80 00 0c bleu,a 400097f8 <_Heap_Walk+0x390> <== ALWAYS TAKEN
400097cc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
400097d0: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
400097d4: 92 10 20 01 mov 1, %o1
400097d8: 96 10 00 17 mov %l7, %o3
400097dc: 15 10 00 59 sethi %hi(0x40016400), %o2
400097e0: 98 10 00 16 mov %l6, %o4
400097e4: 94 12 a2 d0 or %o2, 0x2d0, %o2
400097e8: 9f c4 40 00 call %l1
400097ec: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
400097f0: 81 c7 e0 08 ret
400097f4: 81 e8 00 00 restore
400097f8: 80 a0 40 16 cmp %g1, %l6
400097fc: 0a bf ff f6 bcs 400097d4 <_Heap_Walk+0x36c>
40009800: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40009804: 82 1d c0 15 xor %l7, %l5, %g1
40009808: 80 a0 00 01 cmp %g0, %g1
4000980c: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40009810: 90 10 00 1d mov %i5, %o0
40009814: c2 27 bf fc st %g1, [ %fp + -4 ]
40009818: 7f ff e0 a6 call 40001ab0 <.urem>
4000981c: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40009820: 80 a2 20 00 cmp %o0, 0
40009824: 02 80 00 05 be 40009838 <_Heap_Walk+0x3d0>
40009828: c2 07 bf fc ld [ %fp + -4 ], %g1
4000982c: 80 88 60 ff btst 0xff, %g1
40009830: 12 80 00 79 bne 40009a14 <_Heap_Walk+0x5ac>
40009834: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
40009838: 80 a4 c0 1d cmp %l3, %i5
4000983c: 08 80 00 05 bleu 40009850 <_Heap_Walk+0x3e8>
40009840: 80 a5 c0 16 cmp %l7, %l6
40009844: 80 88 60 ff btst 0xff, %g1
40009848: 12 80 00 7c bne 40009a38 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
4000984c: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40009850: 2a 80 00 06 bcs,a 40009868 <_Heap_Walk+0x400>
40009854: c2 05 a0 04 ld [ %l6 + 4 ], %g1
40009858: 80 88 60 ff btst 0xff, %g1
4000985c: 12 80 00 82 bne 40009a64 <_Heap_Walk+0x5fc>
40009860: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40009864: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40009868: 80 88 60 01 btst 1, %g1
4000986c: 02 80 00 19 be 400098d0 <_Heap_Walk+0x468>
40009870: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
40009874: 80 a7 20 00 cmp %i4, 0
40009878: 22 80 00 0e be,a 400098b0 <_Heap_Walk+0x448>
4000987c: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
40009880: 90 10 00 19 mov %i1, %o0
40009884: 92 10 20 00 clr %o1
40009888: 94 10 00 18 mov %i0, %o2
4000988c: 96 10 00 17 mov %l7, %o3
40009890: 9f c4 40 00 call %l1
40009894: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40009898: 80 a4 80 16 cmp %l2, %l6
4000989c: 02 80 00 43 be 400099a8 <_Heap_Walk+0x540>
400098a0: ae 10 00 16 mov %l6, %l7
400098a4: f8 05 a0 04 ld [ %l6 + 4 ], %i4
400098a8: 10 bf ff c5 b 400097bc <_Heap_Walk+0x354>
400098ac: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400098b0: 96 10 00 17 mov %l7, %o3
400098b4: 90 10 00 19 mov %i1, %o0
400098b8: 92 10 20 00 clr %o1
400098bc: 94 10 00 1a mov %i2, %o2
400098c0: 9f c4 40 00 call %l1
400098c4: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400098c8: 10 bf ff f5 b 4000989c <_Heap_Walk+0x434>
400098cc: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
400098d0: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400098d4: c2 04 20 08 ld [ %l0 + 8 ], %g1
400098d8: 05 10 00 59 sethi %hi(0x40016400), %g2
block = next_block;
} while ( block != first_block );
return true;
}
400098dc: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400098e0: 80 a0 40 0d cmp %g1, %o5
400098e4: 02 80 00 05 be 400098f8 <_Heap_Walk+0x490>
400098e8: 86 10 a0 40 or %g2, 0x40, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
400098ec: 80 a4 00 0d cmp %l0, %o5
400098f0: 02 80 00 3e be 400099e8 <_Heap_Walk+0x580>
400098f4: 86 16 e0 08 or %i3, 8, %g3
block->next,
block->next == last_free_block ?
400098f8: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400098fc: 19 10 00 59 sethi %hi(0x40016400), %o4
40009900: 80 a1 00 01 cmp %g4, %g1
40009904: 02 80 00 05 be 40009918 <_Heap_Walk+0x4b0>
40009908: 84 13 20 60 or %o4, 0x60, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
4000990c: 80 a4 00 01 cmp %l0, %g1
40009910: 02 80 00 33 be 400099dc <_Heap_Walk+0x574>
40009914: 84 16 e0 08 or %i3, 8, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40009918: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
4000991c: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
40009920: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
40009924: 90 10 00 19 mov %i1, %o0
40009928: 92 10 20 00 clr %o1
4000992c: 15 10 00 59 sethi %hi(0x40016400), %o2
40009930: 96 10 00 17 mov %l7, %o3
40009934: 94 12 a3 98 or %o2, 0x398, %o2
40009938: 9f c4 40 00 call %l1
4000993c: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
40009940: da 05 80 00 ld [ %l6 ], %o5
40009944: 80 a7 40 0d cmp %i5, %o5
40009948: 12 80 00 1a bne 400099b0 <_Heap_Walk+0x548>
4000994c: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
40009950: 02 80 00 29 be 400099f4 <_Heap_Walk+0x58c>
40009954: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
40009958: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
4000995c: 80 a4 00 01 cmp %l0, %g1
40009960: 02 80 00 0b be 4000998c <_Heap_Walk+0x524> <== NEVER TAKEN
40009964: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
40009968: 80 a5 c0 01 cmp %l7, %g1
4000996c: 02 bf ff cc be 4000989c <_Heap_Walk+0x434>
40009970: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
40009974: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40009978: 80 a4 00 01 cmp %l0, %g1
4000997c: 12 bf ff fc bne 4000996c <_Heap_Walk+0x504>
40009980: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40009984: 90 10 00 19 mov %i1, %o0
40009988: 92 10 20 01 mov 1, %o1
4000998c: 96 10 00 17 mov %l7, %o3
40009990: 15 10 00 5a sethi %hi(0x40016800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
40009994: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40009998: 9f c4 40 00 call %l1
4000999c: 94 12 a0 80 or %o2, 0x80, %o2
400099a0: 81 c7 e0 08 ret
400099a4: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
400099a8: 81 c7 e0 08 ret
400099ac: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
400099b0: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
400099b4: 90 10 00 19 mov %i1, %o0
400099b8: 92 10 20 01 mov 1, %o1
400099bc: 96 10 00 17 mov %l7, %o3
400099c0: 15 10 00 59 sethi %hi(0x40016400), %o2
400099c4: 98 10 00 1d mov %i5, %o4
400099c8: 94 12 a3 d0 or %o2, 0x3d0, %o2
400099cc: 9f c4 40 00 call %l1
400099d0: b0 10 20 00 clr %i0
400099d4: 81 c7 e0 08 ret
400099d8: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400099dc: 09 10 00 59 sethi %hi(0x40016400), %g4
400099e0: 10 bf ff ce b 40009918 <_Heap_Walk+0x4b0>
400099e4: 84 11 20 70 or %g4, 0x70, %g2 ! 40016470 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
400099e8: 19 10 00 59 sethi %hi(0x40016400), %o4
400099ec: 10 bf ff c3 b 400098f8 <_Heap_Walk+0x490>
400099f0: 86 13 20 50 or %o4, 0x50, %g3 ! 40016450 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
400099f4: 92 10 20 01 mov 1, %o1
400099f8: 96 10 00 17 mov %l7, %o3
400099fc: 15 10 00 5a sethi %hi(0x40016800), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
40009a00: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
40009a04: 9f c4 40 00 call %l1
40009a08: 94 12 a0 10 or %o2, 0x10, %o2
40009a0c: 81 c7 e0 08 ret
40009a10: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
40009a14: 92 10 20 01 mov 1, %o1
40009a18: 96 10 00 17 mov %l7, %o3
40009a1c: 15 10 00 59 sethi %hi(0x40016400), %o2
40009a20: 98 10 00 1d mov %i5, %o4
40009a24: 94 12 a3 00 or %o2, 0x300, %o2
40009a28: 9f c4 40 00 call %l1
40009a2c: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
40009a30: 81 c7 e0 08 ret
40009a34: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
40009a38: 90 10 00 19 mov %i1, %o0
40009a3c: 92 10 20 01 mov 1, %o1
40009a40: 96 10 00 17 mov %l7, %o3
40009a44: 15 10 00 59 sethi %hi(0x40016400), %o2
40009a48: 98 10 00 1d mov %i5, %o4
40009a4c: 94 12 a3 30 or %o2, 0x330, %o2
40009a50: 9a 10 00 13 mov %l3, %o5
40009a54: 9f c4 40 00 call %l1
40009a58: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
40009a5c: 81 c7 e0 08 ret
40009a60: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
40009a64: 92 10 20 01 mov 1, %o1
40009a68: 96 10 00 17 mov %l7, %o3
40009a6c: 15 10 00 59 sethi %hi(0x40016400), %o2
40009a70: 98 10 00 16 mov %l6, %o4
40009a74: 94 12 a3 60 or %o2, 0x360, %o2
40009a78: 9f c4 40 00 call %l1
40009a7c: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
40009a80: 81 c7 e0 08 ret
40009a84: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40009a88: 10 bf ff 47 b 400097a4 <_Heap_Walk+0x33c>
40009a8c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
40007964 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
40007964: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40007968: 23 10 00 59 sethi %hi(0x40016400), %l1
4000796c: c2 04 62 4c ld [ %l1 + 0x24c ], %g1 ! 4001664c <_IO_Number_of_drivers>
40007970: 80 a0 60 00 cmp %g1, 0
40007974: 02 80 00 0c be 400079a4 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
40007978: a0 10 20 00 clr %l0
4000797c: a2 14 62 4c or %l1, 0x24c, %l1
(void) rtems_io_initialize( major, 0, NULL );
40007980: 90 10 00 10 mov %l0, %o0
40007984: 92 10 20 00 clr %o1
40007988: 40 00 15 06 call 4000cda0 <rtems_io_initialize>
4000798c: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
40007990: c2 04 40 00 ld [ %l1 ], %g1
40007994: a0 04 20 01 inc %l0
40007998: 80 a0 40 10 cmp %g1, %l0
4000799c: 18 bf ff fa bgu 40007984 <_IO_Initialize_all_drivers+0x20>
400079a0: 90 10 00 10 mov %l0, %o0
400079a4: 81 c7 e0 08 ret
400079a8: 81 e8 00 00 restore
40007898 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
40007898: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
4000789c: 03 10 00 56 sethi %hi(0x40015800), %g1
400078a0: 82 10 61 58 or %g1, 0x158, %g1 ! 40015958 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
400078a4: e2 00 60 30 ld [ %g1 + 0x30 ], %l1
number_of_drivers = Configuration.maximum_drivers;
400078a8: e8 00 60 2c ld [ %g1 + 0x2c ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
400078ac: 80 a4 40 14 cmp %l1, %l4
400078b0: 0a 80 00 08 bcs 400078d0 <_IO_Manager_initialization+0x38>
400078b4: e0 00 60 34 ld [ %g1 + 0x34 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
400078b8: 03 10 00 59 sethi %hi(0x40016400), %g1
400078bc: e0 20 62 50 st %l0, [ %g1 + 0x250 ] ! 40016650 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
400078c0: 03 10 00 59 sethi %hi(0x40016400), %g1
400078c4: e2 20 62 4c st %l1, [ %g1 + 0x24c ] ! 4001664c <_IO_Number_of_drivers>
return;
400078c8: 81 c7 e0 08 ret
400078cc: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
400078d0: 83 2d 20 03 sll %l4, 3, %g1
400078d4: a7 2d 20 05 sll %l4, 5, %l3
400078d8: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
400078dc: 40 00 0c a5 call 4000ab70 <_Workspace_Allocate_or_fatal_error>
400078e0: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
400078e4: 03 10 00 59 sethi %hi(0x40016400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
400078e8: 25 10 00 59 sethi %hi(0x40016400), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
400078ec: e8 20 62 4c st %l4, [ %g1 + 0x24c ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
400078f0: d0 24 a2 50 st %o0, [ %l2 + 0x250 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
400078f4: 92 10 20 00 clr %o1
400078f8: 40 00 20 b9 call 4000fbdc <memset>
400078fc: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007900: 80 a4 60 00 cmp %l1, 0
40007904: 02 bf ff f1 be 400078c8 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
40007908: da 04 a2 50 ld [ %l2 + 0x250 ], %o5
4000790c: 82 10 20 00 clr %g1
40007910: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
40007914: c4 04 00 01 ld [ %l0 + %g1 ], %g2
40007918: 86 04 00 01 add %l0, %g1, %g3
4000791c: c4 23 40 01 st %g2, [ %o5 + %g1 ]
40007920: d8 00 e0 04 ld [ %g3 + 4 ], %o4
40007924: 84 03 40 01 add %o5, %g1, %g2
40007928: d8 20 a0 04 st %o4, [ %g2 + 4 ]
4000792c: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007930: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
40007934: d8 20 a0 08 st %o4, [ %g2 + 8 ]
40007938: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
4000793c: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
40007940: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
40007944: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007948: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
4000794c: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
40007950: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
40007954: 18 bf ff f0 bgu 40007914 <_IO_Manager_initialization+0x7c>
40007958: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
4000795c: 81 c7 e0 08 ret
40007960: 81 e8 00 00 restore
400085e4 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
400085e4: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
400085e8: 09 10 00 59 sethi %hi(0x40016400), %g4
400085ec: 84 11 20 1c or %g4, 0x1c, %g2 ! 4001641c <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
400085f0: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
_User_extensions_Fatal( the_source, is_internal, the_error );
400085f4: 90 10 00 18 mov %i0, %o0
bool is_internal,
Internal_errors_t the_error
)
{
_Internal_errors_What_happened.the_source = the_source;
400085f8: f0 21 20 1c st %i0, [ %g4 + 0x1c ]
_Internal_errors_What_happened.is_internal = is_internal;
_Internal_errors_What_happened.the_error = the_error;
400085fc: f4 20 a0 08 st %i2, [ %g2 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40008600: 92 0e 60 ff and %i1, 0xff, %o1
40008604: 40 00 07 fa call 4000a5ec <_User_extensions_Fatal>
40008608: f2 28 a0 04 stb %i1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
4000860c: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40008610: 03 10 00 59 sethi %hi(0x40016400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40008614: 7f ff e5 fe call 40001e0c <sparc_disable_interrupts> <== NOT EXECUTED
40008618: c4 20 61 0c st %g2, [ %g1 + 0x10c ] ! 4001650c <_System_state_Current><== NOT EXECUTED
4000861c: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40008620: 30 80 00 00 b,a 40008620 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40008698 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40008698: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
4000869c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
400086a0: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
400086a4: 80 a0 60 00 cmp %g1, 0
400086a8: 02 80 00 19 be 4000870c <_Objects_Allocate+0x74> <== NEVER TAKEN
400086ac: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
400086b0: a2 04 20 20 add %l0, 0x20, %l1
400086b4: 7f ff fd 5a call 40007c1c <_Chain_Get>
400086b8: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
400086bc: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
400086c0: 80 a0 60 00 cmp %g1, 0
400086c4: 02 80 00 12 be 4000870c <_Objects_Allocate+0x74>
400086c8: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
400086cc: 80 a2 20 00 cmp %o0, 0
400086d0: 02 80 00 11 be 40008714 <_Objects_Allocate+0x7c>
400086d4: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
400086d8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
400086dc: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
400086e0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
400086e4: 40 00 28 be call 400129dc <.udiv>
400086e8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
400086ec: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
400086f0: 91 2a 20 02 sll %o0, 2, %o0
400086f4: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
400086f8: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
400086fc: 86 00 ff ff add %g3, -1, %g3
40008700: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
40008704: 82 00 bf ff add %g2, -1, %g1
40008708: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
4000870c: 81 c7 e0 08 ret
40008710: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
40008714: 40 00 00 11 call 40008758 <_Objects_Extend_information>
40008718: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
4000871c: 7f ff fd 40 call 40007c1c <_Chain_Get>
40008720: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40008724: b0 92 20 00 orcc %o0, 0, %i0
40008728: 32 bf ff ed bne,a 400086dc <_Objects_Allocate+0x44>
4000872c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
40008730: 81 c7 e0 08 ret
40008734: 81 e8 00 00 restore
40008758 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
40008758: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
4000875c: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
40008760: 80 a5 20 00 cmp %l4, 0
40008764: 02 80 00 a9 be 40008a08 <_Objects_Extend_information+0x2b0>
40008768: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
4000876c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40008770: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
40008774: ab 2d 60 10 sll %l5, 0x10, %l5
40008778: 92 10 00 13 mov %l3, %o1
4000877c: 40 00 28 98 call 400129dc <.udiv>
40008780: 91 35 60 10 srl %l5, 0x10, %o0
40008784: bb 2a 20 10 sll %o0, 0x10, %i5
40008788: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
4000878c: 80 a7 60 00 cmp %i5, 0
40008790: 02 80 00 a6 be 40008a28 <_Objects_Extend_information+0x2d0><== NEVER TAKEN
40008794: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
40008798: c2 05 00 00 ld [ %l4 ], %g1
4000879c: 80 a0 60 00 cmp %g1, 0
400087a0: 02 80 00 a6 be 40008a38 <_Objects_Extend_information+0x2e0><== NEVER TAKEN
400087a4: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
400087a8: 10 80 00 06 b 400087c0 <_Objects_Extend_information+0x68>
400087ac: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
400087b0: c2 05 00 01 ld [ %l4 + %g1 ], %g1
400087b4: 80 a0 60 00 cmp %g1, 0
400087b8: 22 80 00 08 be,a 400087d8 <_Objects_Extend_information+0x80>
400087bc: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400087c0: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
400087c4: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
400087c8: 80 a7 40 10 cmp %i5, %l0
400087cc: 18 bf ff f9 bgu 400087b0 <_Objects_Extend_information+0x58>
400087d0: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
400087d4: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400087d8: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
400087dc: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
400087e0: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
400087e4: 82 10 63 ff or %g1, 0x3ff, %g1
400087e8: 80 a5 40 01 cmp %l5, %g1
400087ec: 18 80 00 98 bgu 40008a4c <_Objects_Extend_information+0x2f4>
400087f0: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
400087f4: 40 00 28 40 call 400128f4 <.umul>
400087f8: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
400087fc: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
40008800: 80 a0 60 00 cmp %g1, 0
40008804: 02 80 00 6d be 400089b8 <_Objects_Extend_information+0x260>
40008808: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
4000880c: 40 00 08 c9 call 4000ab30 <_Workspace_Allocate>
40008810: 01 00 00 00 nop
if ( !new_object_block )
40008814: a6 92 20 00 orcc %o0, 0, %l3
40008818: 02 80 00 8d be 40008a4c <_Objects_Extend_information+0x2f4>
4000881c: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
40008820: 80 8d 20 ff btst 0xff, %l4
40008824: 22 80 00 42 be,a 4000892c <_Objects_Extend_information+0x1d4>
40008828: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
4000882c: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
40008830: 91 2d 20 01 sll %l4, 1, %o0
40008834: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
40008838: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
4000883c: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
40008840: 40 00 08 bc call 4000ab30 <_Workspace_Allocate>
40008844: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
40008848: ac 92 20 00 orcc %o0, 0, %l6
4000884c: 02 80 00 7e be 40008a44 <_Objects_Extend_information+0x2ec>
40008850: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
40008854: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
40008858: 80 a4 80 01 cmp %l2, %g1
4000885c: ae 05 80 14 add %l6, %l4, %l7
40008860: 0a 80 00 5a bcs 400089c8 <_Objects_Extend_information+0x270>
40008864: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40008868: 80 a4 a0 00 cmp %l2, 0
4000886c: 02 80 00 07 be 40008888 <_Objects_Extend_information+0x130><== NEVER TAKEN
40008870: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
40008874: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
40008878: 82 00 60 01 inc %g1
4000887c: 80 a4 80 01 cmp %l2, %g1
40008880: 18 bf ff fd bgu 40008874 <_Objects_Extend_information+0x11c><== NEVER TAKEN
40008884: c0 20 80 14 clr [ %g2 + %l4 ]
40008888: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
4000888c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
40008890: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40008894: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
40008898: 80 a4 40 03 cmp %l1, %g3
4000889c: 1a 80 00 0a bcc 400088c4 <_Objects_Extend_information+0x16c><== NEVER TAKEN
400088a0: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
400088a4: 83 2c 60 02 sll %l1, 2, %g1
400088a8: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400088ac: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
400088b0: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
400088b4: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
400088b8: 80 a0 80 03 cmp %g2, %g3
400088bc: 0a bf ff fd bcs 400088b0 <_Objects_Extend_information+0x158>
400088c0: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
400088c4: 7f ff e5 52 call 40001e0c <sparc_disable_interrupts>
400088c8: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400088cc: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
400088d0: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
400088d4: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
400088d8: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
400088dc: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400088e0: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
400088e4: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
400088e8: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
400088ec: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
400088f0: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400088f4: 03 00 00 40 sethi %hi(0x10000), %g1
400088f8: ab 35 60 10 srl %l5, 0x10, %l5
400088fc: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008900: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008904: 82 10 40 15 or %g1, %l5, %g1
40008908: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
4000890c: 7f ff e5 44 call 40001e1c <sparc_enable_interrupts>
40008910: 01 00 00 00 nop
if ( old_tables )
40008914: 80 a4 a0 00 cmp %l2, 0
40008918: 22 80 00 05 be,a 4000892c <_Objects_Extend_information+0x1d4>
4000891c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
_Workspace_Free( old_tables );
40008920: 40 00 08 8d call 4000ab54 <_Workspace_Free>
40008924: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40008928: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
4000892c: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
40008930: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
40008934: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40008938: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
4000893c: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
40008940: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
40008944: 90 10 00 12 mov %l2, %o0
40008948: 40 00 11 2d call 4000cdfc <_Chain_Initialize>
4000894c: a6 06 20 20 add %i0, 0x20, %l3
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40008950: 10 80 00 0d b 40008984 <_Objects_Extend_information+0x22c>
40008954: 29 00 00 40 sethi %hi(0x10000), %l4
the_object->id = _Objects_Build_id(
40008958: c6 16 20 04 lduh [ %i0 + 4 ], %g3
4000895c: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008960: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008964: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008968: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
4000896c: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
40008970: 90 10 00 13 mov %l3, %o0
40008974: 92 10 00 01 mov %g1, %o1
index++;
40008978: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
4000897c: 7f ff fc 92 call 40007bc4 <_Chain_Append>
40008980: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
40008984: 7f ff fc a6 call 40007c1c <_Chain_Get>
40008988: 90 10 00 12 mov %l2, %o0
4000898c: 82 92 20 00 orcc %o0, 0, %g1
40008990: 32 bf ff f2 bne,a 40008958 <_Objects_Extend_information+0x200>
40008994: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
40008998: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
4000899c: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400089a0: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
400089a4: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
400089a8: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
400089ac: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
400089b0: 81 c7 e0 08 ret
400089b4: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
400089b8: 40 00 08 6e call 4000ab70 <_Workspace_Allocate_or_fatal_error>
400089bc: 01 00 00 00 nop
400089c0: 10 bf ff 98 b 40008820 <_Objects_Extend_information+0xc8>
400089c4: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400089c8: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
400089cc: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
400089d0: 40 00 1c 44 call 4000fae0 <memcpy>
400089d4: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
400089d8: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
400089dc: 94 10 00 1d mov %i5, %o2
400089e0: 40 00 1c 40 call 4000fae0 <memcpy>
400089e4: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
400089e8: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
400089ec: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
400089f0: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
400089f4: 90 10 00 14 mov %l4, %o0
400089f8: 40 00 1c 3a call 4000fae0 <memcpy>
400089fc: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
40008a00: 10 bf ff a4 b 40008890 <_Objects_Extend_information+0x138>
40008a04: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
40008a08: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
40008a0c: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008a10: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40008a14: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008a18: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
40008a1c: ba 10 20 00 clr %i5
40008a20: 10 bf ff 6e b 400087d8 <_Objects_Extend_information+0x80>
40008a24: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
40008a28: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
40008a2c: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008a30: 10 bf ff 6a b 400087d8 <_Objects_Extend_information+0x80> <== NOT EXECUTED
40008a34: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
40008a38: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
40008a3c: 10 bf ff 67 b 400087d8 <_Objects_Extend_information+0x80> <== NOT EXECUTED
40008a40: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
40008a44: 40 00 08 44 call 4000ab54 <_Workspace_Free>
40008a48: 90 10 00 13 mov %l3, %o0
return;
40008a4c: 81 c7 e0 08 ret
40008a50: 81 e8 00 00 restore
40008b00 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint32_t the_class
)
{
40008b00: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40008b04: 80 a6 60 00 cmp %i1, 0
40008b08: 12 80 00 04 bne 40008b18 <_Objects_Get_information+0x18>
40008b0c: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
40008b10: 81 c7 e0 08 ret
40008b14: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40008b18: 40 00 12 42 call 4000d420 <_Objects_API_maximum_class>
40008b1c: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
40008b20: 80 a2 20 00 cmp %o0, 0
40008b24: 02 bf ff fb be 40008b10 <_Objects_Get_information+0x10>
40008b28: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40008b2c: 18 bf ff f9 bgu 40008b10 <_Objects_Get_information+0x10>
40008b30: 03 10 00 58 sethi %hi(0x40016000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40008b34: b1 2e 20 02 sll %i0, 2, %i0
40008b38: 82 10 62 ec or %g1, 0x2ec, %g1
40008b3c: c2 00 40 18 ld [ %g1 + %i0 ], %g1
40008b40: 80 a0 60 00 cmp %g1, 0
40008b44: 02 bf ff f3 be 40008b10 <_Objects_Get_information+0x10> <== NEVER TAKEN
40008b48: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40008b4c: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
40008b50: 80 a4 20 00 cmp %l0, 0
40008b54: 02 bf ff ef be 40008b10 <_Objects_Get_information+0x10> <== NEVER TAKEN
40008b58: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40008b5c: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
40008b60: 80 a0 00 01 cmp %g0, %g1
40008b64: 82 60 20 00 subx %g0, 0, %g1
40008b68: 10 bf ff ea b 40008b10 <_Objects_Get_information+0x10>
40008b6c: a0 0c 00 01 and %l0, %g1, %l0
4000a8b0 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
4000a8b0: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
4000a8b4: 80 a6 60 00 cmp %i1, 0
4000a8b8: 12 80 00 05 bne 4000a8cc <_Objects_Get_name_as_string+0x1c>
4000a8bc: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
4000a8c0: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
4000a8c4: 81 c7 e0 08 ret
4000a8c8: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
4000a8cc: 02 bf ff fe be 4000a8c4 <_Objects_Get_name_as_string+0x14>
4000a8d0: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
4000a8d4: 12 80 00 04 bne 4000a8e4 <_Objects_Get_name_as_string+0x34>
4000a8d8: 03 10 00 a2 sethi %hi(0x40028800), %g1
4000a8dc: c2 00 62 a8 ld [ %g1 + 0x2a8 ], %g1 ! 40028aa8 <_Per_CPU_Information+0xc>
4000a8e0: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
4000a8e4: 7f ff ff b3 call 4000a7b0 <_Objects_Get_information_id>
4000a8e8: 90 10 00 18 mov %i0, %o0
if ( !information )
4000a8ec: 80 a2 20 00 cmp %o0, 0
4000a8f0: 22 bf ff f5 be,a 4000a8c4 <_Objects_Get_name_as_string+0x14>
4000a8f4: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
4000a8f8: 92 10 00 18 mov %i0, %o1
4000a8fc: 40 00 00 2d call 4000a9b0 <_Objects_Get>
4000a900: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
4000a904: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a908: 80 a0 60 00 cmp %g1, 0
4000a90c: 32 bf ff ee bne,a 4000a8c4 <_Objects_Get_name_as_string+0x14>
4000a910: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
4000a914: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
4000a918: c0 2f bf f4 clrb [ %fp + -12 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000a91c: 89 30 60 18 srl %g1, 0x18, %g4
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000a920: 87 30 60 10 srl %g1, 0x10, %g3
lname[ 2 ] = (u32_name >> 8) & 0xff;
4000a924: 85 30 60 08 srl %g1, 8, %g2
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
4000a928: c6 2f bf f1 stb %g3, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
4000a92c: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000a930: c8 2f bf f0 stb %g4, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
4000a934: c2 2f bf f3 stb %g1, [ %fp + -13 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
4000a938: 84 10 00 04 mov %g4, %g2
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
4000a93c: b2 86 7f ff addcc %i1, -1, %i1
4000a940: 02 80 00 19 be 4000a9a4 <_Objects_Get_name_as_string+0xf4><== NEVER TAKEN
4000a944: 86 10 00 1a mov %i2, %g3
4000a948: 80 a1 20 00 cmp %g4, 0
4000a94c: 02 80 00 16 be 4000a9a4 <_Objects_Get_name_as_string+0xf4>
4000a950: 19 10 00 80 sethi %hi(0x40020000), %o4
4000a954: 82 10 20 00 clr %g1
4000a958: 10 80 00 06 b 4000a970 <_Objects_Get_name_as_string+0xc0>
4000a95c: 98 13 20 d0 or %o4, 0xd0, %o4
4000a960: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
4000a964: 80 a3 60 00 cmp %o5, 0
4000a968: 02 80 00 0f be 4000a9a4 <_Objects_Get_name_as_string+0xf4>
4000a96c: c4 09 00 01 ldub [ %g4 + %g1 ], %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
4000a970: da 03 00 00 ld [ %o4 ], %o5
4000a974: 88 08 a0 ff and %g2, 0xff, %g4
4000a978: 88 03 40 04 add %o5, %g4, %g4
4000a97c: da 49 20 01 ldsb [ %g4 + 1 ], %o5
4000a980: 80 8b 60 97 btst 0x97, %o5
4000a984: 12 80 00 03 bne 4000a990 <_Objects_Get_name_as_string+0xe0>
4000a988: 88 07 bf f0 add %fp, -16, %g4
4000a98c: 84 10 20 2a mov 0x2a, %g2
4000a990: c4 28 c0 00 stb %g2, [ %g3 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
4000a994: 82 00 60 01 inc %g1
4000a998: 80 a0 40 19 cmp %g1, %i1
4000a99c: 0a bf ff f1 bcs 4000a960 <_Objects_Get_name_as_string+0xb0>
4000a9a0: 86 00 e0 01 inc %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
4000a9a4: 40 00 02 4e call 4000b2dc <_Thread_Enable_dispatch>
4000a9a8: c0 28 c0 00 clrb [ %g3 ]
return name;
4000a9ac: 30 bf ff c6 b,a 4000a8c4 <_Objects_Get_name_as_string+0x14>
40019f7c <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019f7c: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
40019f80: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40019f84: 84 22 40 02 sub %o1, %g2, %g2
40019f88: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
40019f8c: 80 a0 80 01 cmp %g2, %g1
40019f90: 18 80 00 09 bgu 40019fb4 <_Objects_Get_no_protection+0x38>
40019f94: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
40019f98: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
40019f9c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
40019fa0: 80 a2 20 00 cmp %o0, 0
40019fa4: 02 80 00 05 be 40019fb8 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40019fa8: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40019fac: 81 c3 e0 08 retl
40019fb0: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40019fb4: 82 10 20 01 mov 1, %g1
return NULL;
40019fb8: 90 10 20 00 clr %o0
}
40019fbc: 81 c3 e0 08 retl
40019fc0: c2 22 80 00 st %g1, [ %o2 ]
4000a390 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
4000a390: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
4000a394: 80 a6 20 00 cmp %i0, 0
4000a398: 12 80 00 06 bne 4000a3b0 <_Objects_Id_to_name+0x20>
4000a39c: 83 36 20 18 srl %i0, 0x18, %g1
4000a3a0: 03 10 00 7f sethi %hi(0x4001fc00), %g1
4000a3a4: c2 00 60 d8 ld [ %g1 + 0xd8 ], %g1 ! 4001fcd8 <_Per_CPU_Information+0xc>
4000a3a8: f0 00 60 08 ld [ %g1 + 8 ], %i0
4000a3ac: 83 36 20 18 srl %i0, 0x18, %g1
4000a3b0: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
4000a3b4: 84 00 7f ff add %g1, -1, %g2
4000a3b8: 80 a0 a0 02 cmp %g2, 2
4000a3bc: 18 80 00 17 bgu 4000a418 <_Objects_Id_to_name+0x88>
4000a3c0: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
4000a3c4: 83 28 60 02 sll %g1, 2, %g1
4000a3c8: 05 10 00 7e sethi %hi(0x4001f800), %g2
4000a3cc: 84 10 a1 cc or %g2, 0x1cc, %g2 ! 4001f9cc <_Objects_Information_table>
4000a3d0: c2 00 80 01 ld [ %g2 + %g1 ], %g1
4000a3d4: 80 a0 60 00 cmp %g1, 0
4000a3d8: 02 80 00 10 be 4000a418 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
4000a3dc: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
4000a3e0: 85 28 a0 02 sll %g2, 2, %g2
4000a3e4: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
4000a3e8: 80 a2 20 00 cmp %o0, 0
4000a3ec: 02 80 00 0b be 4000a418 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
4000a3f0: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
4000a3f4: 7f ff ff ca call 4000a31c <_Objects_Get>
4000a3f8: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
4000a3fc: 80 a2 20 00 cmp %o0, 0
4000a400: 02 80 00 06 be 4000a418 <_Objects_Id_to_name+0x88>
4000a404: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
4000a408: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
4000a40c: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
4000a410: 40 00 02 5e call 4000ad88 <_Thread_Enable_dispatch>
4000a414: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
4000a418: 81 c7 e0 08 ret
4000a41c: 91 e8 00 10 restore %g0, %l0, %o0
40008c58 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40008c58: 9d e3 bf a0 save %sp, -96, %sp
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40008c5c: 05 10 00 58 sethi %hi(0x40016000), %g2
40008c60: 83 2e 60 02 sll %i1, 2, %g1
40008c64: 84 10 a2 ec or %g2, 0x2ec, %g2
40008c68: c2 00 80 01 ld [ %g2 + %g1 ], %g1
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
40008c6c: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
40008c70: f4 36 20 04 sth %i2, [ %i0 + 4 ]
information->size = size;
40008c74: 85 2f 20 10 sll %i4, 0x10, %g2
information->local_table = 0;
40008c78: c0 26 20 1c clr [ %i0 + 0x1c ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40008c7c: 85 30 a0 10 srl %g2, 0x10, %g2
information->local_table = 0;
information->inactive_per_block = 0;
40008c80: c0 26 20 30 clr [ %i0 + 0x30 ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40008c84: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->local_table = 0;
information->inactive_per_block = 0;
information->object_blocks = 0;
40008c88: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
40008c8c: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
40008c90: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40008c94: c6 07 a0 5c ld [ %fp + 0x5c ], %g3
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40008c98: 85 2e a0 02 sll %i2, 2, %g2
40008c9c: f0 20 40 02 st %i0, [ %g1 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
40008ca0: 83 36 e0 1f srl %i3, 0x1f, %g1
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
40008ca4: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ]
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40008ca8: 80 a0 60 00 cmp %g1, 0
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
40008cac: 03 20 00 00 sethi %hi(0x80000000), %g1
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40008cb0: 02 80 00 05 be 40008cc4 <_Objects_Initialize_information+0x6c>
40008cb4: b6 2e c0 01 andn %i3, %g1, %i3
40008cb8: 80 a6 e0 00 cmp %i3, 0
40008cbc: 02 80 00 27 be 40008d58 <_Objects_Initialize_information+0x100>
40008cc0: 90 10 20 00 clr %o0
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008cc4: 05 00 00 40 sethi %hi(0x10000), %g2
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
40008cc8: 80 a0 00 1b cmp %g0, %i3
40008ccc: b3 2e 60 18 sll %i1, 0x18, %i1
40008cd0: 82 40 20 00 addx %g0, 0, %g1
40008cd4: b2 16 40 02 or %i1, %g2, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
40008cd8: b5 2e a0 1b sll %i2, 0x1b, %i2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40008cdc: 05 10 00 58 sethi %hi(0x40016000), %g2
40008ce0: b4 16 40 1a or %i1, %i2, %i2
40008ce4: 84 10 a0 04 or %g2, 4, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
40008ce8: b4 16 80 01 or %i2, %g1, %i2
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
40008cec: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
40008cf0: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
40008cf4: 80 88 e0 03 btst 3, %g3
40008cf8: 12 80 00 0c bne 40008d28 <_Objects_Initialize_information+0xd0><== NEVER TAKEN
40008cfc: f4 26 20 08 st %i2, [ %i0 + 8 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40008d00: 84 06 20 24 add %i0, 0x24, %g2
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
_Chain_Initialize_empty( &information->Inactive );
40008d04: 82 06 20 20 add %i0, 0x20, %g1
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40008d08: c6 36 20 38 sth %g3, [ %i0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40008d0c: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
the_chain->permanent_null = NULL;
40008d10: c0 26 20 24 clr [ %i0 + 0x24 ]
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40008d14: 80 a6 e0 00 cmp %i3, 0
40008d18: 12 80 00 0e bne 40008d50 <_Objects_Initialize_information+0xf8>
40008d1c: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
40008d20: 81 c7 e0 08 ret
40008d24: 81 e8 00 00 restore
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
40008d28: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40008d2c: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED
40008d30: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
_Chain_Initialize_empty( &information->Inactive );
40008d34: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40008d38: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
40008d3c: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED
the_chain->permanent_null = NULL;
40008d40: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40008d44: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40008d48: 02 bf ff f6 be 40008d20 <_Objects_Initialize_information+0xc8><== NOT EXECUTED
40008d4c: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40008d50: 7f ff fe 82 call 40008758 <_Objects_Extend_information>
40008d54: 81 e8 00 00 restore
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
_Internal_error_Occurred(
40008d58: 92 10 20 01 mov 1, %o1
40008d5c: 7f ff fe 22 call 400085e4 <_Internal_error_Occurred>
40008d60: 94 10 20 13 mov 0x13, %o2
40008e20 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
40008e20: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
40008e24: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
40008e28: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
40008e2c: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
40008e30: 92 10 00 11 mov %l1, %o1
40008e34: 40 00 26 ea call 400129dc <.udiv>
40008e38: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40008e3c: 80 a2 20 00 cmp %o0, 0
40008e40: 02 80 00 34 be 40008f10 <_Objects_Shrink_information+0xf0><== NEVER TAKEN
40008e44: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
40008e48: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
40008e4c: c2 01 00 00 ld [ %g4 ], %g1
40008e50: 80 a4 40 01 cmp %l1, %g1
40008e54: 02 80 00 0f be 40008e90 <_Objects_Shrink_information+0x70><== NEVER TAKEN
40008e58: 82 10 20 00 clr %g1
40008e5c: 10 80 00 07 b 40008e78 <_Objects_Shrink_information+0x58>
40008e60: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
40008e64: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
40008e68: 80 a4 40 02 cmp %l1, %g2
40008e6c: 02 80 00 0a be 40008e94 <_Objects_Shrink_information+0x74>
40008e70: a0 04 00 11 add %l0, %l1, %l0
40008e74: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
40008e78: 82 00 60 01 inc %g1
40008e7c: 80 a2 00 01 cmp %o0, %g1
40008e80: 38 bf ff f9 bgu,a 40008e64 <_Objects_Shrink_information+0x44>
40008e84: c4 01 00 12 ld [ %g4 + %l2 ], %g2
40008e88: 81 c7 e0 08 ret
40008e8c: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
40008e90: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
40008e94: 10 80 00 06 b 40008eac <_Objects_Shrink_information+0x8c>
40008e98: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
40008e9c: 80 a4 60 00 cmp %l1, 0
40008ea0: 22 80 00 12 be,a 40008ee8 <_Objects_Shrink_information+0xc8>
40008ea4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
40008ea8: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
do {
index = _Objects_Get_index( the_object->id );
40008eac: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40008eb0: 80 a0 40 10 cmp %g1, %l0
40008eb4: 0a bf ff fa bcs 40008e9c <_Objects_Shrink_information+0x7c>
40008eb8: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
40008ebc: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
40008ec0: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
40008ec4: 80 a0 40 02 cmp %g1, %g2
40008ec8: 1a bf ff f6 bcc 40008ea0 <_Objects_Shrink_information+0x80>
40008ecc: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
40008ed0: 7f ff fb 49 call 40007bf4 <_Chain_Extract>
40008ed4: 01 00 00 00 nop
}
}
while ( the_object );
40008ed8: 80 a4 60 00 cmp %l1, 0
40008edc: 12 bf ff f4 bne 40008eac <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
40008ee0: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
40008ee4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
40008ee8: 40 00 07 1b call 4000ab54 <_Workspace_Free>
40008eec: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
40008ef0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
40008ef4: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
40008ef8: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
40008efc: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
40008f00: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
40008f04: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
40008f08: 82 20 80 01 sub %g2, %g1, %g1
40008f0c: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
40008f10: 81 c7 e0 08 ret
40008f14: 81 e8 00 00 restore
400075a0 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
400075a0: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
400075a4: 03 10 00 56 sethi %hi(0x40015800), %g1
400075a8: 82 10 61 20 or %g1, 0x120, %g1 ! 40015920 <Configuration_RTEMS_API>
400075ac: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
400075b0: 80 a4 20 00 cmp %l0, 0
400075b4: 02 80 00 19 be 40007618 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
400075b8: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
400075bc: 80 a4 a0 00 cmp %l2, 0
400075c0: 02 80 00 16 be 40007618 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
400075c4: a2 10 20 00 clr %l1
400075c8: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
400075cc: d4 04 20 04 ld [ %l0 + 4 ], %o2
400075d0: d0 04 00 00 ld [ %l0 ], %o0
400075d4: d2 04 20 08 ld [ %l0 + 8 ], %o1
400075d8: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
400075dc: d8 04 20 0c ld [ %l0 + 0xc ], %o4
400075e0: 7f ff ff 6d call 40007394 <rtems_task_create>
400075e4: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
400075e8: 94 92 20 00 orcc %o0, 0, %o2
400075ec: 12 80 00 0d bne 40007620 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
400075f0: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
400075f4: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
400075f8: 40 00 00 0e call 40007630 <rtems_task_start>
400075fc: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
40007600: 94 92 20 00 orcc %o0, 0, %o2
40007604: 12 80 00 07 bne 40007620 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
40007608: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
4000760c: 80 a4 80 11 cmp %l2, %l1
40007610: 18 bf ff ef bgu 400075cc <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
40007614: a0 04 20 1c add %l0, 0x1c, %l0
40007618: 81 c7 e0 08 ret
4000761c: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
40007620: 90 10 20 01 mov 1, %o0
40007624: 40 00 03 f0 call 400085e4 <_Internal_error_Occurred>
40007628: 92 10 20 01 mov 1, %o1
4000cb5c <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000cb5c: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000cb60: e0 06 21 5c ld [ %i0 + 0x15c ], %l0
if ( !api )
4000cb64: 80 a4 20 00 cmp %l0, 0
4000cb68: 02 80 00 1f be 4000cbe4 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
4000cb6c: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000cb70: 7f ff d4 a7 call 40001e0c <sparc_disable_interrupts>
4000cb74: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000cb78: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
4000cb7c: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000cb80: 7f ff d4 a7 call 40001e1c <sparc_enable_interrupts>
4000cb84: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000cb88: 80 a4 60 00 cmp %l1, 0
4000cb8c: 32 80 00 04 bne,a 4000cb9c <_RTEMS_tasks_Post_switch_extension+0x40>
4000cb90: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000cb94: 81 c7 e0 08 ret
4000cb98: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cb9c: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000cba0: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cba4: a4 07 bf fc add %fp, -4, %l2
4000cba8: 27 00 00 3f sethi %hi(0xfc00), %l3
4000cbac: 94 10 00 12 mov %l2, %o2
4000cbb0: 92 14 e3 ff or %l3, 0x3ff, %o1
4000cbb4: 40 00 08 22 call 4000ec3c <rtems_task_mode>
4000cbb8: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
4000cbbc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000cbc0: 9f c0 40 00 call %g1
4000cbc4: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
4000cbc8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cbcc: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000cbd0: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000cbd4: 92 14 e3 ff or %l3, 0x3ff, %o1
4000cbd8: 94 10 00 12 mov %l2, %o2
4000cbdc: 40 00 08 18 call 4000ec3c <rtems_task_mode>
4000cbe0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
4000cbe4: 81 c7 e0 08 ret
4000cbe8: 81 e8 00 00 restore
4000cacc <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
4000cacc: c2 02 21 68 ld [ %o0 + 0x168 ], %g1
while (tvp) {
4000cad0: 80 a0 60 00 cmp %g1, 0
4000cad4: 22 80 00 0b be,a 4000cb00 <_RTEMS_tasks_Switch_extension+0x34>
4000cad8: c2 02 61 68 ld [ %o1 + 0x168 ], %g1
tvp->tval = *tvp->ptr;
4000cadc: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
4000cae0: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
4000cae4: c8 00 80 00 ld [ %g2 ], %g4
4000cae8: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
4000caec: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
4000caf0: 80 a0 60 00 cmp %g1, 0
4000caf4: 12 bf ff fa bne 4000cadc <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
4000caf8: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
4000cafc: c2 02 61 68 ld [ %o1 + 0x168 ], %g1
while (tvp) {
4000cb00: 80 a0 60 00 cmp %g1, 0
4000cb04: 02 80 00 0a be 4000cb2c <_RTEMS_tasks_Switch_extension+0x60>
4000cb08: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
4000cb0c: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
4000cb10: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
4000cb14: c8 00 80 00 ld [ %g2 ], %g4
4000cb18: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
4000cb1c: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
4000cb20: 80 a0 60 00 cmp %g1, 0
4000cb24: 12 bf ff fa bne 4000cb0c <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
4000cb28: c6 20 80 00 st %g3, [ %g2 ]
4000cb2c: 81 c3 e0 08 retl
400088cc <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
400088cc: 9d e3 bf 98 save %sp, -104, %sp
400088d0: 11 10 00 7f sethi %hi(0x4001fc00), %o0
400088d4: 92 10 00 18 mov %i0, %o1
400088d8: 90 12 23 e4 or %o0, 0x3e4, %o0
400088dc: 40 00 08 40 call 4000a9dc <_Objects_Get>
400088e0: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
400088e4: c2 07 bf fc ld [ %fp + -4 ], %g1
400088e8: 80 a0 60 00 cmp %g1, 0
400088ec: 12 80 00 16 bne 40008944 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
400088f0: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
400088f4: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
400088f8: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
400088fc: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
40008900: 80 88 80 01 btst %g2, %g1
40008904: 22 80 00 08 be,a 40008924 <_Rate_monotonic_Timeout+0x58>
40008908: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000890c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
40008910: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008914: 80 a0 80 01 cmp %g2, %g1
40008918: 02 80 00 19 be 4000897c <_Rate_monotonic_Timeout+0xb0>
4000891c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
40008920: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40008924: 80 a0 60 01 cmp %g1, 1
40008928: 02 80 00 09 be 4000894c <_Rate_monotonic_Timeout+0x80>
4000892c: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40008930: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40008934: 03 10 00 80 sethi %hi(0x40020000), %g1
40008938: c4 00 61 58 ld [ %g1 + 0x158 ], %g2 ! 40020158 <_Thread_Dispatch_disable_level>
4000893c: 84 00 bf ff add %g2, -1, %g2
40008940: c4 20 61 58 st %g2, [ %g1 + 0x158 ]
40008944: 81 c7 e0 08 ret
40008948: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
4000894c: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
40008950: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40008954: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40008958: 7f ff fe 4a call 40008280 <_Rate_monotonic_Initiate_statistics>
4000895c: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008960: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40008964: 11 10 00 80 sethi %hi(0x40020000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40008968: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000896c: 90 12 22 1c or %o0, 0x21c, %o0
40008970: 40 00 0f d0 call 4000c8b0 <_Watchdog_Insert>
40008974: 92 04 20 10 add %l0, 0x10, %o1
40008978: 30 bf ff ef b,a 40008934 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
4000897c: 40 00 09 9b call 4000afe8 <_Thread_Clear_state>
40008980: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
40008984: 10 bf ff f5 b 40008958 <_Rate_monotonic_Timeout+0x8c>
40008988: 90 10 00 10 mov %l0, %o0
4000812c <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
4000812c: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40008130: 07 10 00 59 sethi %hi(0x40016400), %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40008134: 03 10 00 56 sethi %hi(0x40015800), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40008138: da 00 e0 c4 ld [ %g3 + 0xc4 ], %o5
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
4000813c: c4 00 61 64 ld [ %g1 + 0x164 ], %g2
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
40008140: 9a 03 60 01 inc %o5
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40008144: 83 28 a0 02 sll %g2, 2, %g1
40008148: 89 28 a0 07 sll %g2, 7, %g4
4000814c: 82 21 00 01 sub %g4, %g1, %g1
40008150: 82 00 40 02 add %g1, %g2, %g1
40008154: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40008158: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
4000815c: da 20 e0 c4 st %o5, [ %g3 + 0xc4 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
40008160: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
40008164: c2 27 bf fc st %g1, [ %fp + -4 ]
40008168: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
4000816c: 11 10 00 59 sethi %hi(0x40016400), %o0
40008170: 40 00 08 9b call 4000a3dc <_Timespec_Add_to>
40008174: 90 12 20 04 or %o0, 4, %o0 ! 40016404 <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
40008178: 92 10 00 10 mov %l0, %o1
4000817c: 11 10 00 59 sethi %hi(0x40016400), %o0
40008180: 40 00 08 97 call 4000a3dc <_Timespec_Add_to>
40008184: 90 12 20 10 or %o0, 0x10, %o0 ! 40016410 <_TOD_Now>
while ( seconds ) {
40008188: a0 92 20 00 orcc %o0, 0, %l0
4000818c: 02 80 00 08 be 400081ac <_TOD_Tickle_ticks+0x80>
40008190: 23 10 00 59 sethi %hi(0x40016400), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
40008194: a2 14 60 40 or %l1, 0x40, %l1 ! 40016440 <_Watchdog_Seconds_chain>
40008198: 40 00 0a 20 call 4000aa18 <_Watchdog_Tickle>
4000819c: 90 10 00 11 mov %l1, %o0
400081a0: a0 84 3f ff addcc %l0, -1, %l0
400081a4: 12 bf ff fd bne 40008198 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
400081a8: 01 00 00 00 nop
400081ac: 81 c7 e0 08 ret
400081b0: 81 e8 00 00 restore
40008234 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40008234: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40008238: 03 10 00 7f sethi %hi(0x4001fc00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
4000823c: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40008240: d2 00 63 d4 ld [ %g1 + 0x3d4 ], %o1
if ((!the_tod) ||
40008244: 80 a4 20 00 cmp %l0, 0
40008248: 02 80 00 2c be 400082f8 <_TOD_Validate+0xc4> <== NEVER TAKEN
4000824c: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40008250: 11 00 03 d0 sethi %hi(0xf4000), %o0
40008254: 40 00 49 74 call 4001a824 <.udiv>
40008258: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
4000825c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40008260: 80 a2 00 01 cmp %o0, %g1
40008264: 08 80 00 25 bleu 400082f8 <_TOD_Validate+0xc4>
40008268: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
4000826c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40008270: 80 a0 60 3b cmp %g1, 0x3b
40008274: 18 80 00 21 bgu 400082f8 <_TOD_Validate+0xc4>
40008278: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
4000827c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40008280: 80 a0 60 3b cmp %g1, 0x3b
40008284: 18 80 00 1d bgu 400082f8 <_TOD_Validate+0xc4>
40008288: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
4000828c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40008290: 80 a0 60 17 cmp %g1, 0x17
40008294: 18 80 00 19 bgu 400082f8 <_TOD_Validate+0xc4>
40008298: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
4000829c: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
400082a0: 80 a0 60 00 cmp %g1, 0
400082a4: 02 80 00 15 be 400082f8 <_TOD_Validate+0xc4> <== NEVER TAKEN
400082a8: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
400082ac: 18 80 00 13 bgu 400082f8 <_TOD_Validate+0xc4>
400082b0: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400082b4: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
400082b8: 80 a0 a7 c3 cmp %g2, 0x7c3
400082bc: 08 80 00 0f bleu 400082f8 <_TOD_Validate+0xc4>
400082c0: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
400082c4: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
400082c8: 80 a0 e0 00 cmp %g3, 0
400082cc: 02 80 00 0b be 400082f8 <_TOD_Validate+0xc4> <== NEVER TAKEN
400082d0: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
400082d4: 32 80 00 0b bne,a 40008300 <_TOD_Validate+0xcc>
400082d8: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
400082dc: 82 00 60 0d add %g1, 0xd, %g1
400082e0: 05 10 00 7b sethi %hi(0x4001ec00), %g2
400082e4: 83 28 60 02 sll %g1, 2, %g1
400082e8: 84 10 a0 a8 or %g2, 0xa8, %g2
400082ec: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
400082f0: 80 a0 40 03 cmp %g1, %g3
400082f4: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
400082f8: 81 c7 e0 08 ret
400082fc: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40008300: 05 10 00 7b sethi %hi(0x4001ec00), %g2
40008304: 84 10 a0 a8 or %g2, 0xa8, %g2 ! 4001eca8 <_TOD_Days_per_month>
40008308: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
4000830c: 80 a0 40 03 cmp %g1, %g3
40008310: b0 60 3f ff subx %g0, -1, %i0
40008314: 81 c7 e0 08 ret
40008318: 81 e8 00 00 restore
40008fe4 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40008fe4: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
40008fe8: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40008fec: 40 00 04 49 call 4000a110 <_Thread_Set_transient>
40008ff0: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40008ff4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40008ff8: 80 a0 40 19 cmp %g1, %i1
40008ffc: 02 80 00 05 be 40009010 <_Thread_Change_priority+0x2c>
40009000: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40009004: 90 10 00 18 mov %i0, %o0
40009008: 40 00 03 c6 call 40009f20 <_Thread_Set_priority>
4000900c: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40009010: 7f ff e3 7f call 40001e0c <sparc_disable_interrupts>
40009014: 01 00 00 00 nop
40009018: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
4000901c: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
40009020: 80 a6 60 04 cmp %i1, 4
40009024: 02 80 00 18 be 40009084 <_Thread_Change_priority+0xa0>
40009028: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
4000902c: 02 80 00 0b be 40009058 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
40009030: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
40009034: 7f ff e3 7a call 40001e1c <sparc_enable_interrupts> <== NOT EXECUTED
40009038: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
4000903c: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
40009040: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40009044: 80 8e 40 01 btst %i1, %g1 <== NOT EXECUTED
40009048: 32 80 00 0d bne,a 4000907c <_Thread_Change_priority+0x98><== NOT EXECUTED
4000904c: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
40009050: 81 c7 e0 08 ret
40009054: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40009058: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
4000905c: 7f ff e3 70 call 40001e1c <sparc_enable_interrupts>
40009060: 90 10 00 18 mov %i0, %o0
40009064: 03 00 00 ef sethi %hi(0x3bc00), %g1
40009068: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
4000906c: 80 8e 40 01 btst %i1, %g1
40009070: 02 bf ff f8 be 40009050 <_Thread_Change_priority+0x6c>
40009074: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40009078: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
4000907c: 40 00 03 79 call 40009e60 <_Thread_queue_Requeue>
40009080: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40009084: 12 80 00 14 bne 400090d4 <_Thread_Change_priority+0xf0> <== NEVER TAKEN
40009088: 33 10 00 59 sethi %hi(0x40016400), %i1
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000908c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
40009090: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
40009094: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40009098: c0 24 20 10 clr [ %l0 + 0x10 ]
4000909c: 84 10 c0 02 or %g3, %g2, %g2
400090a0: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
400090a4: c4 16 60 28 lduh [ %i1 + 0x28 ], %g2
400090a8: c2 14 20 94 lduh [ %l0 + 0x94 ], %g1
_Priority_Add_to_bit_map( &the_thread->Priority_map );
if ( prepend_it )
400090ac: 80 8e a0 ff btst 0xff, %i2
400090b0: 82 10 80 01 or %g2, %g1, %g1
400090b4: c2 36 60 28 sth %g1, [ %i1 + 0x28 ]
400090b8: 02 80 00 47 be 400091d4 <_Thread_Change_priority+0x1f0>
400090bc: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
400090c0: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
400090c4: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
400090c8: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
400090cc: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
400090d0: e0 20 a0 04 st %l0, [ %g2 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node );
else
_Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );
}
_ISR_Flash( level );
400090d4: 7f ff e3 52 call 40001e1c <sparc_enable_interrupts>
400090d8: 90 10 00 18 mov %i0, %o0
400090dc: 7f ff e3 4c call 40001e0c <sparc_disable_interrupts>
400090e0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void )
{
Priority_Bit_map_control minor;
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400090e4: c2 16 60 28 lduh [ %i1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
_Thread_Ready_chain[ _Priority_Get_highest() ].first;
400090e8: 05 10 00 58 sethi %hi(0x40016000), %g2
400090ec: 83 28 60 10 sll %g1, 0x10, %g1
400090f0: da 00 a2 e4 ld [ %g2 + 0x2e4 ], %o5
400090f4: 85 30 60 10 srl %g1, 0x10, %g2
400090f8: 80 a0 a0 ff cmp %g2, 0xff
400090fc: 08 80 00 26 bleu 40009194 <_Thread_Change_priority+0x1b0>
40009100: 07 10 00 54 sethi %hi(0x40015000), %g3
40009104: 83 30 60 18 srl %g1, 0x18, %g1
40009108: 86 10 e0 08 or %g3, 8, %g3
4000910c: c4 08 c0 01 ldub [ %g3 + %g1 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40009110: 09 10 00 59 sethi %hi(0x40016400), %g4
40009114: 85 28 a0 10 sll %g2, 0x10, %g2
40009118: 88 11 20 a0 or %g4, 0xa0, %g4
4000911c: 83 30 a0 0f srl %g2, 0xf, %g1
40009120: c2 11 00 01 lduh [ %g4 + %g1 ], %g1
40009124: 83 28 60 10 sll %g1, 0x10, %g1
40009128: 89 30 60 10 srl %g1, 0x10, %g4
4000912c: 80 a1 20 ff cmp %g4, 0xff
40009130: 18 80 00 27 bgu 400091cc <_Thread_Change_priority+0x1e8>
40009134: 83 30 60 18 srl %g1, 0x18, %g1
40009138: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1
4000913c: 82 00 60 08 add %g1, 8, %g1
return (_Priority_Bits_index( major ) << 4) +
40009140: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
40009144: 83 28 60 10 sll %g1, 0x10, %g1
40009148: 83 30 60 10 srl %g1, 0x10, %g1
4000914c: 82 00 40 02 add %g1, %g2, %g1
40009150: 85 28 60 02 sll %g1, 2, %g2
40009154: 83 28 60 04 sll %g1, 4, %g1
40009158: 82 20 40 02 sub %g1, %g2, %g1
* ready thread.
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
4000915c: c4 03 40 01 ld [ %o5 + %g1 ], %g2
40009160: 03 10 00 59 sethi %hi(0x40016400), %g1
40009164: 82 10 61 ec or %g1, 0x1ec, %g1 ! 400165ec <_Per_CPU_Information>
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40009168: c6 00 60 0c ld [ %g1 + 0xc ], %g3
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Thread_Calculate_heir();
if ( !_Thread_Is_executing_also_the_heir() &&
4000916c: 80 a0 80 03 cmp %g2, %g3
40009170: 02 80 00 07 be 4000918c <_Thread_Change_priority+0x1a8>
40009174: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40009178: c4 08 e0 74 ldub [ %g3 + 0x74 ], %g2
4000917c: 80 a0 a0 00 cmp %g2, 0
40009180: 02 80 00 03 be 4000918c <_Thread_Change_priority+0x1a8>
40009184: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Context_Switch_necessary = true;
40009188: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
4000918c: 7f ff e3 24 call 40001e1c <sparc_enable_interrupts>
40009190: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void )
{
Priority_Bit_map_control minor;
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40009194: 86 10 e0 08 or %g3, 8, %g3
40009198: c4 08 c0 02 ldub [ %g3 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000919c: 09 10 00 59 sethi %hi(0x40016400), %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void )
{
Priority_Bit_map_control minor;
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
400091a0: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
400091a4: 88 11 20 a0 or %g4, 0xa0, %g4
400091a8: 85 28 a0 10 sll %g2, 0x10, %g2
400091ac: 83 30 a0 0f srl %g2, 0xf, %g1
400091b0: c2 11 00 01 lduh [ %g4 + %g1 ], %g1
400091b4: 83 28 60 10 sll %g1, 0x10, %g1
400091b8: 89 30 60 10 srl %g1, 0x10, %g4
400091bc: 80 a1 20 ff cmp %g4, 0xff
400091c0: 28 bf ff df bleu,a 4000913c <_Thread_Change_priority+0x158>
400091c4: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1
400091c8: 83 30 60 18 srl %g1, 0x18, %g1
400091cc: 10 bf ff dd b 40009140 <_Thread_Change_priority+0x15c>
400091d0: c2 08 c0 01 ldub [ %g3 + %g1 ], %g1
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
400091d4: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
400091d8: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
400091dc: c6 24 00 00 st %g3, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
400091e0: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
400091e4: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
400091e8: 10 bf ff bb b 400090d4 <_Thread_Change_priority+0xf0>
400091ec: c4 24 20 04 st %g2, [ %l0 + 4 ]
400091f0 <_Thread_Clear_state>:
void _Thread_Clear_state(
Thread_Control *the_thread,
States_Control state
)
{
400091f0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
400091f4: 7f ff e3 06 call 40001e0c <sparc_disable_interrupts>
400091f8: a0 10 00 18 mov %i0, %l0
400091fc: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
40009200: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & state ) {
40009204: 80 8e 40 01 btst %i1, %g1
40009208: 02 80 00 06 be 40009220 <_Thread_Clear_state+0x30>
4000920c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE States_Control _States_Clear (
States_Control states_to_clear,
States_Control current_state
)
{
return (current_state & ~states_to_clear);
40009210: b2 28 40 19 andn %g1, %i1, %i1
current_state =
the_thread->current_state = _States_Clear( state, current_state );
if ( _States_Is_ready( current_state ) ) {
40009214: 80 a6 60 00 cmp %i1, 0
40009218: 02 80 00 04 be 40009228 <_Thread_Clear_state+0x38>
4000921c: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
}
}
}
_ISR_Enable( level );
40009220: 7f ff e2 ff call 40001e1c <sparc_enable_interrupts>
40009224: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40009228: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000922c: c6 14 20 96 lduh [ %l0 + 0x96 ], %g3
40009230: c8 10 40 00 lduh [ %g1 ], %g4
_Priority_Major_bit_map |= the_priority_map->ready_major;
40009234: 05 10 00 59 sethi %hi(0x40016400), %g2
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40009238: 86 11 00 03 or %g4, %g3, %g3
4000923c: c6 30 40 00 sth %g3, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40009240: c8 10 a0 28 lduh [ %g2 + 0x28 ], %g4
40009244: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
if ( _States_Is_ready( current_state ) ) {
_Priority_Add_to_bit_map( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
40009248: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
4000924c: 86 11 00 03 or %g4, %g3, %g3
40009250: c6 30 a0 28 sth %g3, [ %g2 + 0x28 ]
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
40009254: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40009258: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
4000925c: c6 24 00 00 st %g3, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
40009260: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
40009264: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
40009268: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
4000926c: 7f ff e2 ec call 40001e1c <sparc_enable_interrupts>
40009270: 01 00 00 00 nop
40009274: 7f ff e2 e6 call 40001e0c <sparc_disable_interrupts>
40009278: 01 00 00 00 nop
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
4000927c: 03 10 00 59 sethi %hi(0x40016400), %g1
40009280: 82 10 61 ec or %g1, 0x1ec, %g1 ! 400165ec <_Per_CPU_Information>
40009284: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009288: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
4000928c: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
40009290: 80 a0 80 03 cmp %g2, %g3
40009294: 1a bf ff e3 bcc 40009220 <_Thread_Clear_state+0x30>
40009298: 01 00 00 00 nop
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
4000929c: c6 00 60 0c ld [ %g1 + 0xc ], %g3
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
_Thread_Heir = the_thread;
400092a0: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
400092a4: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3
400092a8: 80 a0 e0 00 cmp %g3, 0
400092ac: 32 80 00 05 bne,a 400092c0 <_Thread_Clear_state+0xd0>
400092b0: 84 10 20 01 mov 1, %g2
400092b4: 80 a0 a0 00 cmp %g2, 0
400092b8: 12 bf ff da bne 40009220 <_Thread_Clear_state+0x30> <== ALWAYS TAKEN
400092bc: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
400092c0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
400092c4: 7f ff e2 d6 call 40001e1c <sparc_enable_interrupts>
400092c8: 81 e8 00 00 restore
40009440 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40009440: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40009444: 90 10 00 18 mov %i0, %o0
40009448: 40 00 00 6c call 400095f8 <_Thread_Get>
4000944c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40009450: c2 07 bf fc ld [ %fp + -4 ], %g1
40009454: 80 a0 60 00 cmp %g1, 0
40009458: 12 80 00 08 bne 40009478 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
4000945c: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40009460: 7f ff ff 64 call 400091f0 <_Thread_Clear_state>
40009464: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40009468: 03 10 00 58 sethi %hi(0x40016000), %g1
4000946c: c4 00 63 88 ld [ %g1 + 0x388 ], %g2 ! 40016388 <_Thread_Dispatch_disable_level>
40009470: 84 00 bf ff add %g2, -1, %g2
40009474: c4 20 63 88 st %g2, [ %g1 + 0x388 ]
40009478: 81 c7 e0 08 ret
4000947c: 81 e8 00 00 restore
40009480 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
40009480: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
40009484: 25 10 00 59 sethi %hi(0x40016400), %l2
40009488: a4 14 a1 ec or %l2, 0x1ec, %l2 ! 400165ec <_Per_CPU_Information>
_ISR_Disable( level );
4000948c: 7f ff e2 60 call 40001e0c <sparc_disable_interrupts>
40009490: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
while ( _Context_Switch_necessary == true ) {
40009494: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40009498: 80 a0 60 00 cmp %g1, 0
4000949c: 02 80 00 42 be 400095a4 <_Thread_Dispatch+0x124>
400094a0: 2d 10 00 58 sethi %hi(0x40016000), %l6
heir = _Thread_Heir;
400094a4: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
400094a8: 82 10 20 01 mov 1, %g1
400094ac: c2 25 a3 88 st %g1, [ %l6 + 0x388 ]
_Context_Switch_necessary = false;
400094b0: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400094b4: 80 a4 40 10 cmp %l1, %l0
400094b8: 02 80 00 3b be 400095a4 <_Thread_Dispatch+0x124>
400094bc: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
400094c0: 27 10 00 59 sethi %hi(0x40016400), %l3
400094c4: 3b 10 00 59 sethi %hi(0x40016400), %i5
400094c8: a6 14 e0 38 or %l3, 0x38, %l3
400094cc: aa 07 bf f8 add %fp, -8, %l5
400094d0: a8 07 bf f0 add %fp, -16, %l4
400094d4: ba 17 60 0c or %i5, 0xc, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400094d8: 37 10 00 58 sethi %hi(0x40016000), %i3
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
400094dc: ae 10 00 13 mov %l3, %l7
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Context_Switch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
400094e0: 10 80 00 2b b 4000958c <_Thread_Dispatch+0x10c>
400094e4: b8 10 20 01 mov 1, %i4
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
400094e8: 7f ff e2 4d call 40001e1c <sparc_enable_interrupts>
400094ec: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
400094f0: 40 00 0e bd call 4000cfe4 <_TOD_Get_uptime>
400094f4: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
400094f8: 90 10 00 17 mov %l7, %o0
400094fc: 92 10 00 15 mov %l5, %o1
40009500: 40 00 03 d0 call 4000a440 <_Timespec_Subtract>
40009504: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40009508: 92 10 00 14 mov %l4, %o1
4000950c: 40 00 03 b4 call 4000a3dc <_Timespec_Add_to>
40009510: 90 04 60 84 add %l1, 0x84, %o0
_Thread_Time_of_last_context_switch = uptime;
40009514: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40009518: c2 07 40 00 ld [ %i5 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
4000951c: c4 24 c0 00 st %g2, [ %l3 ]
40009520: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( _Thread_libc_reent ) {
executing->libc_reent = *_Thread_libc_reent;
*_Thread_libc_reent = heir->libc_reent;
}
_User_extensions_Thread_switch( executing, heir );
40009524: 90 10 00 11 mov %l1, %o0
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
40009528: c4 24 e0 04 st %g2, [ %l3 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
4000952c: 80 a0 60 00 cmp %g1, 0
40009530: 02 80 00 06 be 40009548 <_Thread_Dispatch+0xc8> <== NEVER TAKEN
40009534: 92 10 00 10 mov %l0, %o1
executing->libc_reent = *_Thread_libc_reent;
40009538: c4 00 40 00 ld [ %g1 ], %g2
4000953c: c4 24 61 58 st %g2, [ %l1 + 0x158 ]
*_Thread_libc_reent = heir->libc_reent;
40009540: c4 04 21 58 ld [ %l0 + 0x158 ], %g2
40009544: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40009548: 40 00 04 82 call 4000a750 <_User_extensions_Thread_switch>
4000954c: 01 00 00 00 nop
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
40009550: 90 04 60 d0 add %l1, 0xd0, %o0
40009554: 40 00 05 96 call 4000abac <_CPU_Context_switch>
40009558: 92 04 20 d0 add %l0, 0xd0, %o1
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
4000955c: 7f ff e2 2c call 40001e0c <sparc_disable_interrupts>
40009560: e2 04 a0 0c ld [ %l2 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Context_Switch_necessary == true ) {
40009564: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
40009568: 80 a0 60 00 cmp %g1, 0
4000956c: 02 80 00 0e be 400095a4 <_Thread_Dispatch+0x124>
40009570: 01 00 00 00 nop
heir = _Thread_Heir;
40009574: e0 04 a0 10 ld [ %l2 + 0x10 ], %l0
_Thread_Dispatch_disable_level = 1;
40009578: f8 25 a3 88 st %i4, [ %l6 + 0x388 ]
_Context_Switch_necessary = false;
4000957c: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40009580: 80 a4 00 11 cmp %l0, %l1
40009584: 02 80 00 08 be 400095a4 <_Thread_Dispatch+0x124> <== NEVER TAKEN
40009588: e0 24 a0 0c st %l0, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
4000958c: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
40009590: 80 a0 60 01 cmp %g1, 1
40009594: 12 bf ff d5 bne 400094e8 <_Thread_Dispatch+0x68>
40009598: c2 06 e2 e8 ld [ %i3 + 0x2e8 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000959c: 10 bf ff d3 b 400094e8 <_Thread_Dispatch+0x68>
400095a0: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400095a4: c0 25 a3 88 clr [ %l6 + 0x388 ]
_ISR_Enable( level );
400095a8: 7f ff e2 1d call 40001e1c <sparc_enable_interrupts>
400095ac: 01 00 00 00 nop
_API_extensions_Run_postswitch();
400095b0: 7f ff f9 39 call 40007a94 <_API_extensions_Run_postswitch>
400095b4: 01 00 00 00 nop
}
400095b8: 81 c7 e0 08 ret
400095bc: 81 e8 00 00 restore
400095f8 <_Thread_Get>:
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
400095f8: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
400095fc: 80 a2 20 00 cmp %o0, 0
40009600: 02 80 00 1d be 40009674 <_Thread_Get+0x7c>
40009604: 94 10 00 09 mov %o1, %o2
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
40009608: 85 32 20 18 srl %o0, 0x18, %g2
4000960c: 84 08 a0 07 and %g2, 7, %g2
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40009610: 86 00 bf ff add %g2, -1, %g3
40009614: 80 a0 e0 02 cmp %g3, 2
40009618: 38 80 00 14 bgu,a 40009668 <_Thread_Get+0x70>
4000961c: 82 10 20 01 mov 1, %g1
*/
RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class(
Objects_Id id
)
{
return (uint32_t)
40009620: 89 32 20 1b srl %o0, 0x1b, %g4
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
40009624: 80 a1 20 01 cmp %g4, 1
40009628: 32 80 00 10 bne,a 40009668 <_Thread_Get+0x70>
4000962c: 82 10 20 01 mov 1, %g1
*location = OBJECTS_ERROR;
goto done;
}
api_information = _Objects_Information_table[ the_api ];
40009630: 85 28 a0 02 sll %g2, 2, %g2
40009634: 07 10 00 58 sethi %hi(0x40016000), %g3
40009638: 86 10 e2 ec or %g3, 0x2ec, %g3 ! 400162ec <_Objects_Information_table>
4000963c: c4 00 c0 02 ld [ %g3 + %g2 ], %g2
if ( !api_information ) {
40009640: 80 a0 a0 00 cmp %g2, 0
40009644: 22 80 00 16 be,a 4000969c <_Thread_Get+0xa4> <== NEVER TAKEN
40009648: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED
*location = OBJECTS_ERROR;
goto done;
}
information = api_information[ the_class ];
4000964c: d0 00 a0 04 ld [ %g2 + 4 ], %o0
if ( !information ) {
40009650: 80 a2 20 00 cmp %o0, 0
40009654: 02 80 00 10 be 40009694 <_Thread_Get+0x9c>
40009658: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
4000965c: 82 13 c0 00 mov %o7, %g1
40009660: 7f ff fd 61 call 40008be4 <_Objects_Get>
40009664: 9e 10 40 00 mov %g1, %o7
{
uint32_t the_api;
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
40009668: 90 10 20 00 clr %o0
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
goto done;
4000966c: 81 c3 e0 08 retl
40009670: c2 22 80 00 st %g1, [ %o2 ]
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40009674: 03 10 00 58 sethi %hi(0x40016000), %g1
40009678: c4 00 63 88 ld [ %g1 + 0x388 ], %g2 ! 40016388 <_Thread_Dispatch_disable_level>
4000967c: 84 00 a0 01 inc %g2
40009680: c4 20 63 88 st %g2, [ %g1 + 0x388 ]
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
40009684: 03 10 00 59 sethi %hi(0x40016400), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
40009688: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
4000968c: 81 c3 e0 08 retl
40009690: d0 00 61 f8 ld [ %g1 + 0x1f8 ], %o0
}
information = api_information[ the_class ];
if ( !information ) {
*location = OBJECTS_ERROR;
goto done;
40009694: 81 c3 e0 08 retl
40009698: c8 22 80 00 st %g4, [ %o2 ]
}
api_information = _Objects_Information_table[ the_api ];
if ( !api_information ) {
*location = OBJECTS_ERROR;
goto done;
4000969c: 81 c3 e0 08 retl <== NOT EXECUTED
400096a0: 90 10 20 00 clr %o0 <== NOT EXECUTED
4000efdc <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000efdc: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000efe0: 03 10 00 59 sethi %hi(0x40016400), %g1
4000efe4: e0 00 61 f8 ld [ %g1 + 0x1f8 ], %l0 ! 400165f8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000efe8: 3f 10 00 3b sethi %hi(0x4000ec00), %i7
4000efec: be 17 e3 dc or %i7, 0x3dc, %i7 ! 4000efdc <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000eff0: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
4000eff4: 7f ff cb 8a call 40001e1c <sparc_enable_interrupts>
4000eff8: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000effc: 03 10 00 58 sethi %hi(0x40016000), %g1
doneConstructors = 1;
4000f000: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000f004: e2 08 60 0c ldub [ %g1 + 0xc ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000f008: 90 10 00 10 mov %l0, %o0
4000f00c: 7f ff ed 51 call 4000a550 <_User_extensions_Thread_begin>
4000f010: c4 28 60 0c stb %g2, [ %g1 + 0xc ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000f014: 7f ff e9 6b call 400095c0 <_Thread_Enable_dispatch>
4000f018: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000f01c: 80 a4 60 00 cmp %l1, 0
4000f020: 02 80 00 0c be 4000f050 <_Thread_Handler+0x74>
4000f024: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000f028: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
4000f02c: 80 a0 60 00 cmp %g1, 0
4000f030: 22 80 00 0f be,a 4000f06c <_Thread_Handler+0x90> <== ALWAYS TAKEN
4000f034: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000f038: 7f ff ed 5a call 4000a5a0 <_User_extensions_Thread_exitted>
4000f03c: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000f040: 90 10 20 00 clr %o0
4000f044: 92 10 20 01 mov 1, %o1
4000f048: 7f ff e5 67 call 400085e4 <_Internal_error_Occurred>
4000f04c: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
4000f050: 40 00 1a 02 call 40015858 <_init>
4000f054: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000f058: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
4000f05c: 80 a0 60 00 cmp %g1, 0
4000f060: 12 bf ff f6 bne 4000f038 <_Thread_Handler+0x5c> <== NEVER TAKEN
4000f064: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000f068: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
4000f06c: 9f c0 40 00 call %g1
4000f070: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000f074: 10 bf ff f1 b 4000f038 <_Thread_Handler+0x5c>
4000f078: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
400096a4 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
400096a4: 9d e3 bf a0 save %sp, -96, %sp
400096a8: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
400096ac: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
400096b0: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
400096b4: c0 26 61 5c clr [ %i1 + 0x15c ]
400096b8: c0 26 61 60 clr [ %i1 + 0x160 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
400096bc: c0 26 61 58 clr [ %i1 + 0x158 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
400096c0: 90 10 00 19 mov %i1, %o0
400096c4: 40 00 02 b7 call 4000a1a0 <_Thread_Stack_Allocate>
400096c8: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
400096cc: 80 a2 00 1b cmp %o0, %i3
400096d0: 0a 80 00 49 bcs 400097f4 <_Thread_Initialize+0x150>
400096d4: 80 a2 20 00 cmp %o0, 0
400096d8: 02 80 00 47 be 400097f4 <_Thread_Initialize+0x150> <== NEVER TAKEN
400096dc: 25 10 00 59 sethi %hi(0x40016400), %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
400096e0: c4 06 60 c8 ld [ %i1 + 0xc8 ], %g2
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
400096e4: c2 04 a0 18 ld [ %l2 + 0x18 ], %g1
400096e8: c4 26 60 c4 st %g2, [ %i1 + 0xc4 ]
the_stack->size = size;
400096ec: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400096f0: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
400096f4: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
400096f8: c0 26 60 68 clr [ %i1 + 0x68 ]
400096fc: 80 a0 60 00 cmp %g1, 0
40009700: 12 80 00 40 bne 40009800 <_Thread_Initialize+0x15c>
40009704: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009708: c0 26 61 64 clr [ %i1 + 0x164 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
4000970c: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40009710: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40009714: 90 10 00 19 mov %i1, %o0
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
40009718: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
4000971c: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40009720: 92 10 00 1d mov %i5, %o1
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
40009724: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40009728: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
4000972c: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40009730: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
40009734: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
40009738: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
4000973c: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40009740: e0 2e 60 ac stb %l0, [ %i1 + 0xac ]
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
40009744: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
40009748: 40 00 01 f6 call 40009f20 <_Thread_Set_priority>
4000974c: c0 26 60 1c clr [ %i1 + 0x1c ]
_Thread_Stack_Free( the_thread );
return false;
}
40009750: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40009754: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
40009758: c0 26 60 84 clr [ %i1 + 0x84 ]
4000975c: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40009760: 83 28 60 02 sll %g1, 2, %g1
40009764: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40009768: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
4000976c: 90 10 00 19 mov %i1, %o0
40009770: 40 00 03 b3 call 4000a63c <_User_extensions_Thread_create>
40009774: b0 10 20 01 mov 1, %i0
if ( extension_status )
40009778: 80 8a 20 ff btst 0xff, %o0
4000977c: 12 80 00 1f bne 400097f8 <_Thread_Initialize+0x154>
40009780: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
40009784: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
40009788: 80 a2 20 00 cmp %o0, 0
4000978c: 22 80 00 05 be,a 400097a0 <_Thread_Initialize+0xfc>
40009790: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->libc_reent );
40009794: 40 00 04 f0 call 4000ab54 <_Workspace_Free>
40009798: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
4000979c: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
400097a0: 80 a2 20 00 cmp %o0, 0
400097a4: 22 80 00 05 be,a 400097b8 <_Thread_Initialize+0x114>
400097a8: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
400097ac: 40 00 04 ea call 4000ab54 <_Workspace_Free>
400097b0: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
400097b4: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
400097b8: 80 a2 20 00 cmp %o0, 0
400097bc: 02 80 00 05 be 400097d0 <_Thread_Initialize+0x12c> <== ALWAYS TAKEN
400097c0: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
400097c4: 40 00 04 e4 call 4000ab54 <_Workspace_Free> <== NOT EXECUTED
400097c8: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
400097cc: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
400097d0: 02 80 00 05 be 400097e4 <_Thread_Initialize+0x140>
400097d4: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( extensions_area );
400097d8: 40 00 04 df call 4000ab54 <_Workspace_Free>
400097dc: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
_Thread_Stack_Free( the_thread );
400097e0: 90 10 00 19 mov %i1, %o0
400097e4: 40 00 02 8a call 4000a20c <_Thread_Stack_Free>
400097e8: b0 10 20 00 clr %i0
return false;
400097ec: 81 c7 e0 08 ret
400097f0: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
400097f4: b0 10 20 00 clr %i0
_Thread_Stack_Free( the_thread );
return false;
}
400097f8: 81 c7 e0 08 ret
400097fc: 81 e8 00 00 restore
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
40009800: 82 00 60 01 inc %g1
40009804: 40 00 04 cb call 4000ab30 <_Workspace_Allocate>
40009808: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
4000980c: b6 92 20 00 orcc %o0, 0, %i3
40009810: 02 bf ff dd be 40009784 <_Thread_Initialize+0xe0>
40009814: c6 04 a0 18 ld [ %l2 + 0x18 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009818: f6 26 61 64 st %i3, [ %i1 + 0x164 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
4000981c: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
40009820: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
40009824: 85 28 a0 02 sll %g2, 2, %g2
40009828: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
4000982c: 82 00 60 01 inc %g1
40009830: 80 a0 40 03 cmp %g1, %g3
40009834: 08 bf ff fc bleu 40009824 <_Thread_Initialize+0x180>
40009838: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
4000983c: 10 bf ff b6 b 40009714 <_Thread_Initialize+0x70>
40009840: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
4000db18 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000db18: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000db1c: 7f ff d1 01 call 40001f20 <sparc_disable_interrupts>
4000db20: a0 10 00 18 mov %i0, %l0
4000db24: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
4000db28: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000db2c: 80 88 60 02 btst 2, %g1
4000db30: 02 80 00 05 be 4000db44 <_Thread_Resume+0x2c> <== NEVER TAKEN
4000db34: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000db38: 80 a0 60 00 cmp %g1, 0
4000db3c: 02 80 00 04 be 4000db4c <_Thread_Resume+0x34>
4000db40: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_Context_Switch_necessary = true;
}
}
}
_ISR_Enable( level );
4000db44: 7f ff d0 fb call 40001f30 <sparc_enable_interrupts>
4000db48: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000db4c: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000db50: c6 14 20 96 lduh [ %l0 + 0x96 ], %g3
4000db54: c8 10 40 00 lduh [ %g1 ], %g4
_Priority_Major_bit_map |= the_priority_map->ready_major;
4000db58: 05 10 00 6a sethi %hi(0x4001a800), %g2
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
4000db5c: 86 11 00 03 or %g4, %g3, %g3
4000db60: c6 30 40 00 sth %g3, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
4000db64: c8 10 a1 58 lduh [ %g2 + 0x158 ], %g4
4000db68: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3
if ( _States_Is_ready( current_state ) ) {
_Priority_Add_to_bit_map( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
4000db6c: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
4000db70: 86 11 00 03 or %g4, %g3, %g3
4000db74: c6 30 a1 58 sth %g3, [ %g2 + 0x158 ]
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
4000db78: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000db7c: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
4000db80: c6 24 00 00 st %g3, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
4000db84: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
4000db88: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
4000db8c: c4 24 20 04 st %g2, [ %l0 + 4 ]
_ISR_Flash( level );
4000db90: 7f ff d0 e8 call 40001f30 <sparc_enable_interrupts>
4000db94: 01 00 00 00 nop
4000db98: 7f ff d0 e2 call 40001f20 <sparc_disable_interrupts>
4000db9c: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
4000dba0: 03 10 00 6a sethi %hi(0x4001a800), %g1
4000dba4: 82 10 63 1c or %g1, 0x31c, %g1 ! 4001ab1c <_Per_CPU_Information>
4000dba8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000dbac: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
4000dbb0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
4000dbb4: 80 a0 80 03 cmp %g2, %g3
4000dbb8: 1a bf ff e3 bcc 4000db44 <_Thread_Resume+0x2c>
4000dbbc: 01 00 00 00 nop
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
4000dbc0: c6 00 60 0c ld [ %g1 + 0xc ], %g3
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
_ISR_Flash( level );
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
_Thread_Heir = the_thread;
4000dbc4: e0 20 60 10 st %l0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
4000dbc8: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3
4000dbcc: 80 a0 e0 00 cmp %g3, 0
4000dbd0: 32 80 00 05 bne,a 4000dbe4 <_Thread_Resume+0xcc>
4000dbd4: 84 10 20 01 mov 1, %g2
4000dbd8: 80 a0 a0 00 cmp %g2, 0
4000dbdc: 12 bf ff da bne 4000db44 <_Thread_Resume+0x2c> <== ALWAYS TAKEN
4000dbe0: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
4000dbe4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
4000dbe8: 7f ff d0 d2 call 40001f30 <sparc_enable_interrupts>
4000dbec: 81 e8 00 00 restore
4000a338 <_Thread_Yield_processor>:
* ready chain
* select heir
*/
void _Thread_Yield_processor( void )
{
4000a338: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
4000a33c: 25 10 00 59 sethi %hi(0x40016400), %l2
4000a340: a4 14 a1 ec or %l2, 0x1ec, %l2 ! 400165ec <_Per_CPU_Information>
4000a344: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->ready;
_ISR_Disable( level );
4000a348: 7f ff de b1 call 40001e0c <sparc_disable_interrupts>
4000a34c: e2 04 20 8c ld [ %l0 + 0x8c ], %l1
4000a350: b0 10 00 08 mov %o0, %i0
}
else if ( !_Thread_Is_heir( executing ) )
_Context_Switch_necessary = true;
_ISR_Enable( level );
}
4000a354: c2 04 60 08 ld [ %l1 + 8 ], %g1
Chain_Control *ready;
executing = _Thread_Executing;
ready = executing->ready;
_ISR_Disable( level );
if ( !_Chain_Has_only_one_node( ready ) ) {
4000a358: c4 04 40 00 ld [ %l1 ], %g2
4000a35c: 80 a0 80 01 cmp %g2, %g1
4000a360: 02 80 00 14 be 4000a3b0 <_Thread_Yield_processor+0x78>
4000a364: 88 04 60 04 add %l1, 4, %g4
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000a368: c4 1c 00 00 ldd [ %l0 ], %g2
next->previous = previous;
previous->next = next;
4000a36c: c4 20 c0 00 st %g2, [ %g3 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
4000a370: c6 20 a0 04 st %g3, [ %g2 + 4 ]
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
4000a374: c8 24 00 00 st %g4, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
4000a378: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last_node->next = the_node;
4000a37c: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
4000a380: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
4000a384: 7f ff de a6 call 40001e1c <sparc_enable_interrupts>
4000a388: 01 00 00 00 nop
4000a38c: 7f ff de a0 call 40001e0c <sparc_disable_interrupts>
4000a390: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
4000a394: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
4000a398: 80 a4 00 01 cmp %l0, %g1
4000a39c: 02 80 00 0b be 4000a3c8 <_Thread_Yield_processor+0x90> <== ALWAYS TAKEN
4000a3a0: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) ready->first;
_Context_Switch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Context_Switch_necessary = true;
4000a3a4: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
4000a3a8: 7f ff de 9d call 40001e1c <sparc_enable_interrupts>
4000a3ac: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) ready->first;
_Context_Switch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
4000a3b0: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
4000a3b4: 80 a4 00 01 cmp %l0, %g1
4000a3b8: 02 bf ff fc be 4000a3a8 <_Thread_Yield_processor+0x70> <== ALWAYS TAKEN
4000a3bc: 82 10 20 01 mov 1, %g1
_Context_Switch_necessary = true;
4000a3c0: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
4000a3c4: 30 bf ff f9 b,a 4000a3a8 <_Thread_Yield_processor+0x70> <== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) ready->first;
4000a3c8: c2 04 40 00 ld [ %l1 ], %g1
4000a3cc: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Context_Switch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Context_Switch_necessary = true;
4000a3d0: 82 10 20 01 mov 1, %g1
4000a3d4: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
4000a3d8: 30 bf ff f4 b,a 4000a3a8 <_Thread_Yield_processor+0x70>
4000d5a8 <_Thread_queue_Extract_priority_helper>:
void _Thread_queue_Extract_priority_helper(
Thread_queue_Control *the_thread_queue __attribute__((unused)),
Thread_Control *the_thread,
bool requeuing
)
{
4000d5a8: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *new_first_node;
Chain_Node *new_second_node;
Chain_Node *last_node;
the_node = (Chain_Node *) the_thread;
_ISR_Disable( level );
4000d5ac: 7f ff d2 18 call 40001e0c <sparc_disable_interrupts>
4000d5b0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
4000d5b4: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
4000d5b8: 03 00 00 ef sethi %hi(0x3bc00), %g1
4000d5bc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
4000d5c0: 80 88 80 01 btst %g2, %g1
4000d5c4: 02 80 00 22 be 4000d64c <_Thread_queue_Extract_priority_helper+0xa4>
4000d5c8: 84 06 60 3c add %i1, 0x3c, %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000d5cc: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
/*
* The thread was actually waiting on a thread queue so let's remove it.
*/
next_node = the_node->next;
4000d5d0: c6 06 40 00 ld [ %i1 ], %g3
previous_node = the_node->previous;
if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
4000d5d4: 80 a0 40 02 cmp %g1, %g2
4000d5d8: 02 80 00 2a be 4000d680 <_Thread_queue_Extract_priority_helper+0xd8>
4000d5dc: c8 06 60 04 ld [ %i1 + 4 ], %g4
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
4000d5e0: c4 06 60 40 ld [ %i1 + 0x40 ], %g2
new_second_node = new_first_node->next;
4000d5e4: da 00 40 00 ld [ %g1 ], %o5
previous_node->next = new_first_node;
next_node->previous = new_first_node;
4000d5e8: c2 20 e0 04 st %g1, [ %g3 + 4 ]
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
new_second_node = new_first_node->next;
previous_node->next = new_first_node;
4000d5ec: c2 21 00 00 st %g1, [ %g4 ]
next_node->previous = new_first_node;
new_first_node->next = next_node;
4000d5f0: c6 20 40 00 st %g3, [ %g1 ]
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
4000d5f4: 80 a0 80 01 cmp %g2, %g1
4000d5f8: 02 80 00 08 be 4000d618 <_Thread_queue_Extract_priority_helper+0x70>
4000d5fc: c8 20 60 04 st %g4, [ %g1 + 4 ]
/* > two threads on 2-n */
new_second_node->previous =
_Chain_Head( &new_first_thread->Wait.Block2n );
4000d600: 86 00 60 38 add %g1, 0x38, %g3
new_first_node->next = next_node;
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
/* > two threads on 2-n */
new_second_node->previous =
4000d604: c6 23 60 04 st %g3, [ %o5 + 4 ]
_Chain_Head( &new_first_thread->Wait.Block2n );
new_first_thread->Wait.Block2n.first = new_second_node;
4000d608: da 20 60 38 st %o5, [ %g1 + 0x38 ]
new_first_thread->Wait.Block2n.last = last_node;
4000d60c: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000d610: 82 00 60 3c add %g1, 0x3c, %g1
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
4000d614: c2 20 80 00 st %g1, [ %g2 ]
/*
* If we are not supposed to touch timers or the thread's state, return.
*/
if ( requeuing ) {
4000d618: 80 8e a0 ff btst 0xff, %i2
4000d61c: 12 80 00 17 bne 4000d678 <_Thread_queue_Extract_priority_helper+0xd0>
4000d620: 01 00 00 00 nop
_ISR_Enable( level );
return;
}
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
4000d624: c2 06 60 50 ld [ %i1 + 0x50 ], %g1
4000d628: 80 a0 60 02 cmp %g1, 2
4000d62c: 02 80 00 0a be 4000d654 <_Thread_queue_Extract_priority_helper+0xac><== NEVER TAKEN
4000d630: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
4000d634: 7f ff d1 fa call 40001e1c <sparc_enable_interrupts>
4000d638: b0 10 00 19 mov %i1, %i0
4000d63c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
4000d640: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
4000d644: 7f ff ee eb call 400091f0 <_Thread_Clear_state>
4000d648: 81 e8 00 00 restore
Chain_Node *last_node;
the_node = (Chain_Node *) the_thread;
_ISR_Disable( level );
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_ISR_Enable( level );
4000d64c: 7f ff d1 f4 call 40001e1c <sparc_enable_interrupts>
4000d650: 91 e8 00 08 restore %g0, %o0, %o0
4000d654: c2 26 60 50 st %g1, [ %i1 + 0x50 ] <== NOT EXECUTED
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
4000d658: 7f ff d1 f1 call 40001e1c <sparc_enable_interrupts> <== NOT EXECUTED
4000d65c: b0 10 00 19 mov %i1, %i0 <== NOT EXECUTED
(void) _Watchdog_Remove( &the_thread->Timer );
4000d660: 7f ff f4 b8 call 4000a940 <_Watchdog_Remove> <== NOT EXECUTED
4000d664: 90 06 60 48 add %i1, 0x48, %o0 <== NOT EXECUTED
4000d668: 33 04 00 ff sethi %hi(0x1003fc00), %i1 <== NOT EXECUTED
4000d66c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8><== NOT EXECUTED
4000d670: 7f ff ee e0 call 400091f0 <_Thread_Clear_state> <== NOT EXECUTED
4000d674: 81 e8 00 00 restore <== NOT EXECUTED
/*
* If we are not supposed to touch timers or the thread's state, return.
*/
if ( requeuing ) {
_ISR_Enable( level );
4000d678: 7f ff d1 e9 call 40001e1c <sparc_enable_interrupts>
4000d67c: 91 e8 00 08 restore %g0, %o0, %o0
new_first_thread->Wait.Block2n.last = last_node;
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
}
} else {
previous_node->next = next_node;
4000d680: c6 21 00 00 st %g3, [ %g4 ]
next_node->previous = previous_node;
4000d684: 10 bf ff e5 b 4000d618 <_Thread_queue_Extract_priority_helper+0x70>
4000d688: c8 20 e0 04 st %g4, [ %g3 + 4 ]
40009e60 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
40009e60: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40009e64: 80 a6 20 00 cmp %i0, 0
40009e68: 02 80 00 13 be 40009eb4 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
40009e6c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40009e70: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
40009e74: 80 a4 60 01 cmp %l1, 1
40009e78: 02 80 00 04 be 40009e88 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
40009e7c: 01 00 00 00 nop
40009e80: 81 c7 e0 08 ret <== NOT EXECUTED
40009e84: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40009e88: 7f ff df e1 call 40001e0c <sparc_disable_interrupts>
40009e8c: 01 00 00 00 nop
40009e90: a0 10 00 08 mov %o0, %l0
40009e94: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
40009e98: 03 00 00 ef sethi %hi(0x3bc00), %g1
40009e9c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40009ea0: 80 88 80 01 btst %g2, %g1
40009ea4: 12 80 00 06 bne 40009ebc <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
40009ea8: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
40009eac: 7f ff df dc call 40001e1c <sparc_enable_interrupts>
40009eb0: 90 10 00 10 mov %l0, %o0
40009eb4: 81 c7 e0 08 ret
40009eb8: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
40009ebc: 92 10 00 19 mov %i1, %o1
40009ec0: 94 10 20 01 mov 1, %o2
40009ec4: 40 00 0d b9 call 4000d5a8 <_Thread_queue_Extract_priority_helper>
40009ec8: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40009ecc: 90 10 00 18 mov %i0, %o0
40009ed0: 92 10 00 19 mov %i1, %o1
40009ed4: 7f ff ff 2b call 40009b80 <_Thread_queue_Enqueue_priority>
40009ed8: 94 07 bf fc add %fp, -4, %o2
40009edc: 30 bf ff f4 b,a 40009eac <_Thread_queue_Requeue+0x4c>
40009ee0 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40009ee0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40009ee4: 90 10 00 18 mov %i0, %o0
40009ee8: 7f ff fd c4 call 400095f8 <_Thread_Get>
40009eec: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40009ef0: c2 07 bf fc ld [ %fp + -4 ], %g1
40009ef4: 80 a0 60 00 cmp %g1, 0
40009ef8: 12 80 00 08 bne 40009f18 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40009efc: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
40009f00: 40 00 0d e3 call 4000d68c <_Thread_queue_Process_timeout>
40009f04: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40009f08: 03 10 00 58 sethi %hi(0x40016000), %g1
40009f0c: c4 00 63 88 ld [ %g1 + 0x388 ], %g2 ! 40016388 <_Thread_Dispatch_disable_level>
40009f10: 84 00 bf ff add %g2, -1, %g2
40009f14: c4 20 63 88 st %g2, [ %g1 + 0x388 ]
40009f18: 81 c7 e0 08 ret
40009f1c: 81 e8 00 00 restore
400174b4 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
400174b4: 9d e3 bf 88 save %sp, -120, %sp
400174b8: 2d 10 00 f9 sethi %hi(0x4003e400), %l6
400174bc: ba 07 bf f4 add %fp, -12, %i5
400174c0: a8 07 bf f8 add %fp, -8, %l4
400174c4: a4 07 bf e8 add %fp, -24, %l2
400174c8: ae 07 bf ec add %fp, -20, %l7
400174cc: 2b 10 00 f9 sethi %hi(0x4003e400), %l5
400174d0: 39 10 00 f9 sethi %hi(0x4003e400), %i4
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
400174d4: e8 27 bf f4 st %l4, [ %fp + -12 ]
the_chain->permanent_null = NULL;
400174d8: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
400174dc: fa 27 bf fc st %i5, [ %fp + -4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
400174e0: ee 27 bf e8 st %l7, [ %fp + -24 ]
the_chain->permanent_null = NULL;
400174e4: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
400174e8: e4 27 bf f0 st %l2, [ %fp + -16 ]
400174ec: ac 15 a2 b4 or %l6, 0x2b4, %l6
400174f0: a2 06 20 30 add %i0, 0x30, %l1
400174f4: aa 15 62 00 or %l5, 0x200, %l5
400174f8: a6 06 20 68 add %i0, 0x68, %l3
400174fc: b8 17 21 78 or %i4, 0x178, %i4
40017500: b2 06 20 08 add %i0, 8, %i1
40017504: b4 06 20 40 add %i0, 0x40, %i2
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
40017508: b6 10 20 01 mov 1, %i3
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
4001750c: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40017510: c2 05 80 00 ld [ %l6 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40017514: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017518: 94 10 00 12 mov %l2, %o2
4001751c: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40017520: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40017524: 40 00 12 b1 call 4001bfe8 <_Watchdog_Adjust_to_chain>
40017528: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
4001752c: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40017530: e0 05 40 00 ld [ %l5 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40017534: 80 a4 00 0a cmp %l0, %o2
40017538: 18 80 00 2e bgu 400175f0 <_Timer_server_Body+0x13c>
4001753c: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
40017540: 80 a4 00 0a cmp %l0, %o2
40017544: 0a 80 00 2f bcs 40017600 <_Timer_server_Body+0x14c>
40017548: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
4001754c: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40017550: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
40017554: 40 00 02 f8 call 40018134 <_Chain_Get>
40017558: 01 00 00 00 nop
if ( timer == NULL ) {
4001755c: 92 92 20 00 orcc %o0, 0, %o1
40017560: 02 80 00 10 be 400175a0 <_Timer_server_Body+0xec>
40017564: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017568: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
4001756c: 80 a0 60 01 cmp %g1, 1
40017570: 02 80 00 28 be 40017610 <_Timer_server_Body+0x15c>
40017574: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40017578: 12 bf ff f6 bne 40017550 <_Timer_server_Body+0x9c> <== NEVER TAKEN
4001757c: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017580: 40 00 12 cd call 4001c0b4 <_Watchdog_Insert>
40017584: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40017588: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
4001758c: 40 00 02 ea call 40018134 <_Chain_Get>
40017590: 01 00 00 00 nop
if ( timer == NULL ) {
40017594: 92 92 20 00 orcc %o0, 0, %o1
40017598: 32 bf ff f5 bne,a 4001756c <_Timer_server_Body+0xb8> <== NEVER TAKEN
4001759c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
400175a0: 7f ff de 3e call 4000ee98 <sparc_disable_interrupts>
400175a4: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
400175a8: c2 07 bf f4 ld [ %fp + -12 ], %g1
400175ac: 80 a5 00 01 cmp %l4, %g1
400175b0: 02 80 00 1c be 40017620 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
400175b4: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
400175b8: 7f ff de 3c call 4000eea8 <sparc_enable_interrupts> <== NOT EXECUTED
400175bc: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
400175c0: c2 05 80 00 ld [ %l6 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
400175c4: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400175c8: 94 10 00 12 mov %l2, %o2 <== NOT EXECUTED
400175cc: 90 10 00 11 mov %l1, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
400175d0: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400175d4: 40 00 12 85 call 4001bfe8 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
400175d8: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
400175dc: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400175e0: e0 05 40 00 ld [ %l5 ], %l0 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
400175e4: 80 a4 00 0a cmp %l0, %o2 <== NOT EXECUTED
400175e8: 08 bf ff d7 bleu 40017544 <_Timer_server_Body+0x90> <== NOT EXECUTED
400175ec: 92 24 00 0a sub %l0, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400175f0: 90 10 00 13 mov %l3, %o0
400175f4: 40 00 12 7d call 4001bfe8 <_Watchdog_Adjust_to_chain>
400175f8: 94 10 00 12 mov %l2, %o2
400175fc: 30 bf ff d4 b,a 4001754c <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40017600: 92 10 20 01 mov 1, %o1
40017604: 40 00 12 49 call 4001bf28 <_Watchdog_Adjust>
40017608: 94 22 80 10 sub %o2, %l0, %o2
4001760c: 30 bf ff d0 b,a 4001754c <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40017610: 90 10 00 11 mov %l1, %o0
40017614: 40 00 12 a8 call 4001c0b4 <_Watchdog_Insert>
40017618: 92 02 60 10 add %o1, 0x10, %o1
4001761c: 30 bf ff cd b,a 40017550 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
40017620: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
40017624: 7f ff de 21 call 4000eea8 <sparc_enable_interrupts>
40017628: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
4001762c: c2 07 bf e8 ld [ %fp + -24 ], %g1
40017630: 80 a5 c0 01 cmp %l7, %g1
40017634: 12 80 00 0c bne 40017664 <_Timer_server_Body+0x1b0>
40017638: 01 00 00 00 nop
4001763c: 30 80 00 13 b,a 40017688 <_Timer_server_Body+0x1d4>
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
new_first->previous = _Chain_Head(the_chain);
40017640: e4 20 60 04 st %l2, [ %g1 + 4 ]
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
40017644: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
40017648: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
4001764c: 7f ff de 17 call 4000eea8 <sparc_enable_interrupts>
40017650: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40017654: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
40017658: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4001765c: 9f c0 40 00 call %g1
40017660: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40017664: 7f ff de 0d call 4000ee98 <sparc_disable_interrupts>
40017668: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4001766c: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40017670: 80 a5 c0 10 cmp %l7, %l0
40017674: 32 bf ff f3 bne,a 40017640 <_Timer_server_Body+0x18c>
40017678: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
4001767c: 7f ff de 0b call 4000eea8 <sparc_enable_interrupts>
40017680: 01 00 00 00 nop
40017684: 30 bf ff a2 b,a 4001750c <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
40017688: c0 2e 20 7c clrb [ %i0 + 0x7c ]
4001768c: c2 07 00 00 ld [ %i4 ], %g1
40017690: 82 00 60 01 inc %g1
40017694: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
40017698: d0 06 00 00 ld [ %i0 ], %o0
4001769c: 40 00 0f 87 call 4001b4b8 <_Thread_Set_state>
400176a0: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400176a4: 7f ff ff 5a call 4001740c <_Timer_server_Reset_interval_system_watchdog>
400176a8: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400176ac: 7f ff ff 6d call 40017460 <_Timer_server_Reset_tod_system_watchdog>
400176b0: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400176b4: 40 00 0c bb call 4001a9a0 <_Thread_Enable_dispatch>
400176b8: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400176bc: 90 10 00 19 mov %i1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400176c0: f6 2e 20 7c stb %i3, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400176c4: 40 00 12 e6 call 4001c25c <_Watchdog_Remove>
400176c8: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400176cc: 40 00 12 e4 call 4001c25c <_Watchdog_Remove>
400176d0: 90 10 00 1a mov %i2, %o0
400176d4: 30 bf ff 8e b,a 4001750c <_Timer_server_Body+0x58>
400176d8 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
400176d8: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
400176dc: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
400176e0: 80 a0 60 00 cmp %g1, 0
400176e4: 02 80 00 05 be 400176f8 <_Timer_server_Schedule_operation_method+0x20>
400176e8: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
400176ec: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
400176f0: 40 00 02 7b call 400180dc <_Chain_Append>
400176f4: 81 e8 00 00 restore
400176f8: 03 10 00 f9 sethi %hi(0x4003e400), %g1
400176fc: c4 00 61 78 ld [ %g1 + 0x178 ], %g2 ! 4003e578 <_Thread_Dispatch_disable_level>
40017700: 84 00 a0 01 inc %g2
40017704: c4 20 61 78 st %g2, [ %g1 + 0x178 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
40017708: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
4001770c: 80 a0 60 01 cmp %g1, 1
40017710: 02 80 00 28 be 400177b0 <_Timer_server_Schedule_operation_method+0xd8>
40017714: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40017718: 02 80 00 04 be 40017728 <_Timer_server_Schedule_operation_method+0x50>
4001771c: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
40017720: 40 00 0c a0 call 4001a9a0 <_Thread_Enable_dispatch>
40017724: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
40017728: 7f ff dd dc call 4000ee98 <sparc_disable_interrupts>
4001772c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
40017730: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
40017734: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
40017738: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001773c: 03 10 00 f9 sethi %hi(0x4003e400), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
40017740: 80 a0 80 04 cmp %g2, %g4
40017744: 02 80 00 0d be 40017778 <_Timer_server_Schedule_operation_method+0xa0>
40017748: c2 00 62 00 ld [ %g1 + 0x200 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
4001774c: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
40017750: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
40017754: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
40017758: 08 80 00 07 bleu 40017774 <_Timer_server_Schedule_operation_method+0x9c>
4001775c: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
40017760: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
40017764: 80 a3 40 03 cmp %o5, %g3
40017768: 08 80 00 03 bleu 40017774 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
4001776c: 88 10 20 00 clr %g4
delta_interval -= delta;
40017770: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
40017774: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
40017778: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
4001777c: 7f ff dd cb call 4000eea8 <sparc_enable_interrupts>
40017780: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40017784: 90 06 20 68 add %i0, 0x68, %o0
40017788: 40 00 12 4b call 4001c0b4 <_Watchdog_Insert>
4001778c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017790: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40017794: 80 a0 60 00 cmp %g1, 0
40017798: 12 bf ff e2 bne 40017720 <_Timer_server_Schedule_operation_method+0x48>
4001779c: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
400177a0: 7f ff ff 30 call 40017460 <_Timer_server_Reset_tod_system_watchdog>
400177a4: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
400177a8: 40 00 0c 7e call 4001a9a0 <_Thread_Enable_dispatch>
400177ac: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400177b0: 7f ff dd ba call 4000ee98 <sparc_disable_interrupts>
400177b4: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
400177b8: 05 10 00 f9 sethi %hi(0x4003e400), %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
400177bc: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
400177c0: c4 00 a2 b4 ld [ %g2 + 0x2b4 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
400177c4: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
400177c8: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
400177cc: 80 a0 40 03 cmp %g1, %g3
400177d0: 02 80 00 08 be 400177f0 <_Timer_server_Schedule_operation_method+0x118>
400177d4: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
400177d8: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
400177dc: 80 a1 00 0d cmp %g4, %o5
400177e0: 1a 80 00 03 bcc 400177ec <_Timer_server_Schedule_operation_method+0x114>
400177e4: 86 10 20 00 clr %g3
delta_interval -= delta;
400177e8: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
400177ec: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
400177f0: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
400177f4: 7f ff dd ad call 4000eea8 <sparc_enable_interrupts>
400177f8: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
400177fc: 90 06 20 30 add %i0, 0x30, %o0
40017800: 40 00 12 2d call 4001c0b4 <_Watchdog_Insert>
40017804: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40017808: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
4001780c: 80 a0 60 00 cmp %g1, 0
40017810: 12 bf ff c4 bne 40017720 <_Timer_server_Schedule_operation_method+0x48>
40017814: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40017818: 7f ff fe fd call 4001740c <_Timer_server_Reset_interval_system_watchdog>
4001781c: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
40017820: 40 00 0c 60 call 4001a9a0 <_Thread_Enable_dispatch>
40017824: 81 e8 00 00 restore
4000a3dc <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
4000a3dc: 9d e3 bf a0 save %sp, -96, %sp
4000a3e0: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a3e4: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
4000a3e8: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
4000a3ec: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
4000a3f0: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a3f4: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
4000a3f8: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
4000a3fc: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
4000a400: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
4000a404: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_SIZE+0x3b5ac9ff>
4000a408: 80 a0 80 04 cmp %g2, %g4
4000a40c: 08 80 00 0b bleu 4000a438 <_Timespec_Add_to+0x5c>
4000a410: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
4000a414: 1b 31 19 4d sethi %hi(0xc4653400), %o5
4000a418: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <LEON_REG+0x44653600>
4000a41c: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
4000a420: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
4000a424: 80 a0 80 04 cmp %g2, %g4
4000a428: 18 bf ff fd bgu 4000a41c <_Timespec_Add_to+0x40> <== NEVER TAKEN
4000a42c: b0 06 20 01 inc %i0
4000a430: c4 20 60 04 st %g2, [ %g1 + 4 ]
4000a434: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
4000a438: 81 c7 e0 08 ret
4000a43c: 81 e8 00 00 restore
4000c4c8 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000c4c8: c6 02 00 00 ld [ %o0 ], %g3
4000c4cc: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000c4d0: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000c4d4: 80 a0 c0 02 cmp %g3, %g2
4000c4d8: 14 80 00 0a bg 4000c500 <_Timespec_Greater_than+0x38>
4000c4dc: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000c4e0: 80 a0 c0 02 cmp %g3, %g2
4000c4e4: 06 80 00 07 bl 4000c500 <_Timespec_Greater_than+0x38> <== NEVER TAKEN
4000c4e8: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000c4ec: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000c4f0: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000c4f4: 80 a0 80 01 cmp %g2, %g1
4000c4f8: 04 80 00 04 ble 4000c508 <_Timespec_Greater_than+0x40>
4000c4fc: 90 10 20 01 mov 1, %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000c500: 81 c3 e0 08 retl
4000c504: 01 00 00 00 nop
4000c508: 81 c3 e0 08 retl
4000c50c: 90 10 20 00 clr %o0 ! 0 <PROM_START>
4000a5ec <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
4000a5ec: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000a5f0: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a5f4: a2 14 61 a8 or %l1, 0x1a8, %l1 ! 400165a8 <_User_extensions_List>
4000a5f8: e0 04 60 08 ld [ %l1 + 8 ], %l0
4000a5fc: 80 a4 00 11 cmp %l0, %l1
4000a600: 02 80 00 0d be 4000a634 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
4000a604: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
4000a608: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000a60c: 80 a0 60 00 cmp %g1, 0
4000a610: 02 80 00 05 be 4000a624 <_User_extensions_Fatal+0x38>
4000a614: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
4000a618: 92 10 00 19 mov %i1, %o1
4000a61c: 9f c0 40 00 call %g1
4000a620: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a624: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000a628: 80 a4 00 11 cmp %l0, %l1
4000a62c: 32 bf ff f8 bne,a 4000a60c <_User_extensions_Fatal+0x20> <== ALWAYS TAKEN
4000a630: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000a634: 81 c7 e0 08 ret <== NOT EXECUTED
4000a638: 81 e8 00 00 restore <== NOT EXECUTED
4000a498 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
4000a498: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
4000a49c: 07 10 00 56 sethi %hi(0x40015800), %g3
4000a4a0: 86 10 e1 58 or %g3, 0x158, %g3 ! 40015958 <Configuration>
initial_extensions = Configuration.User_extension_table;
4000a4a4: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
4000a4a8: 1b 10 00 59 sethi %hi(0x40016400), %o5
4000a4ac: 09 10 00 58 sethi %hi(0x40016000), %g4
4000a4b0: 84 13 61 a8 or %o5, 0x1a8, %g2
4000a4b4: 82 11 23 8c or %g4, 0x38c, %g1
4000a4b8: 96 00 a0 04 add %g2, 4, %o3
4000a4bc: 98 00 60 04 add %g1, 4, %o4
4000a4c0: d6 23 61 a8 st %o3, [ %o5 + 0x1a8 ]
the_chain->permanent_null = NULL;
4000a4c4: c0 20 a0 04 clr [ %g2 + 4 ]
the_chain->last = _Chain_Head(the_chain);
4000a4c8: c4 20 a0 08 st %g2, [ %g2 + 8 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
4000a4cc: d8 21 23 8c st %o4, [ %g4 + 0x38c ]
the_chain->permanent_null = NULL;
4000a4d0: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
4000a4d4: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
4000a4d8: 80 a4 e0 00 cmp %l3, 0
4000a4dc: 02 80 00 1b be 4000a548 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000a4e0: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
4000a4e4: 83 2c a0 02 sll %l2, 2, %g1
4000a4e8: a3 2c a0 04 sll %l2, 4, %l1
4000a4ec: a2 24 40 01 sub %l1, %g1, %l1
4000a4f0: a2 04 40 12 add %l1, %l2, %l1
4000a4f4: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
4000a4f8: 40 00 01 9e call 4000ab70 <_Workspace_Allocate_or_fatal_error>
4000a4fc: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000a500: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
4000a504: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
4000a508: 40 00 15 b5 call 4000fbdc <memset>
4000a50c: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000a510: 80 a4 a0 00 cmp %l2, 0
4000a514: 02 80 00 0d be 4000a548 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
4000a518: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
4000a51c: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
4000a520: 94 10 20 20 mov 0x20, %o2
4000a524: 92 04 c0 09 add %l3, %o1, %o1
4000a528: 40 00 15 6e call 4000fae0 <memcpy>
4000a52c: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
4000a530: 40 00 0c bc call 4000d820 <_User_extensions_Add_set>
4000a534: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
4000a538: a2 04 60 01 inc %l1
4000a53c: 80 a4 80 11 cmp %l2, %l1
4000a540: 18 bf ff f7 bgu 4000a51c <_User_extensions_Handler_initialization+0x84>
4000a544: a0 04 20 34 add %l0, 0x34, %l0
4000a548: 81 c7 e0 08 ret
4000a54c: 81 e8 00 00 restore
4000a550 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
4000a550: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000a554: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a558: e0 04 61 a8 ld [ %l1 + 0x1a8 ], %l0 ! 400165a8 <_User_extensions_List>
4000a55c: a2 14 61 a8 or %l1, 0x1a8, %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000a560: a2 04 60 04 add %l1, 4, %l1
4000a564: 80 a4 00 11 cmp %l0, %l1
4000a568: 02 80 00 0c be 4000a598 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
4000a56c: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
4000a570: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
4000a574: 80 a0 60 00 cmp %g1, 0
4000a578: 02 80 00 04 be 4000a588 <_User_extensions_Thread_begin+0x38>
4000a57c: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
4000a580: 9f c0 40 00 call %g1
4000a584: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a588: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000a58c: 80 a4 00 11 cmp %l0, %l1
4000a590: 32 bf ff f9 bne,a 4000a574 <_User_extensions_Thread_begin+0x24>
4000a594: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
4000a598: 81 c7 e0 08 ret
4000a59c: 81 e8 00 00 restore
4000a63c <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
4000a63c: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
4000a640: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a644: e0 04 61 a8 ld [ %l1 + 0x1a8 ], %l0 ! 400165a8 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
4000a648: a6 10 00 18 mov %i0, %l3
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
4000a64c: a2 14 61 a8 or %l1, 0x1a8, %l1
4000a650: a2 04 60 04 add %l1, 4, %l1
4000a654: 80 a4 00 11 cmp %l0, %l1
4000a658: 02 80 00 13 be 4000a6a4 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
4000a65c: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
4000a660: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
4000a664: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
4000a668: 80 a0 60 00 cmp %g1, 0
4000a66c: 02 80 00 08 be 4000a68c <_User_extensions_Thread_create+0x50>
4000a670: 84 14 a1 ec or %l2, 0x1ec, %g2
status = (*the_extension->Callouts.thread_create)(
4000a674: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a678: 9f c0 40 00 call %g1
4000a67c: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
4000a680: 80 8a 20 ff btst 0xff, %o0
4000a684: 22 80 00 08 be,a 4000a6a4 <_User_extensions_Thread_create+0x68>
4000a688: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a68c: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
4000a690: 80 a4 00 11 cmp %l0, %l1
4000a694: 32 bf ff f5 bne,a 4000a668 <_User_extensions_Thread_create+0x2c>
4000a698: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
4000a69c: 81 c7 e0 08 ret
4000a6a0: 91 e8 20 01 restore %g0, 1, %o0
}
4000a6a4: 81 c7 e0 08 ret
4000a6a8: 81 e8 00 00 restore
4000a6ac <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
4000a6ac: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000a6b0: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a6b4: a2 14 61 a8 or %l1, 0x1a8, %l1 ! 400165a8 <_User_extensions_List>
4000a6b8: e0 04 60 08 ld [ %l1 + 8 ], %l0
4000a6bc: 80 a4 00 11 cmp %l0, %l1
4000a6c0: 02 80 00 0d be 4000a6f4 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
4000a6c4: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
4000a6c8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000a6cc: 80 a0 60 00 cmp %g1, 0
4000a6d0: 02 80 00 05 be 4000a6e4 <_User_extensions_Thread_delete+0x38>
4000a6d4: 84 14 a1 ec or %l2, 0x1ec, %g2
(*the_extension->Callouts.thread_delete)(
4000a6d8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a6dc: 9f c0 40 00 call %g1
4000a6e0: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a6e4: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000a6e8: 80 a4 00 11 cmp %l0, %l1
4000a6ec: 32 bf ff f8 bne,a 4000a6cc <_User_extensions_Thread_delete+0x20>
4000a6f0: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
4000a6f4: 81 c7 e0 08 ret
4000a6f8: 81 e8 00 00 restore
4000a5a0 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
4000a5a0: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000a5a4: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a5a8: a2 14 61 a8 or %l1, 0x1a8, %l1 ! 400165a8 <_User_extensions_List>
4000a5ac: e0 04 60 08 ld [ %l1 + 8 ], %l0
4000a5b0: 80 a4 00 11 cmp %l0, %l1
4000a5b4: 02 80 00 0c be 4000a5e4 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
4000a5b8: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
4000a5bc: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
4000a5c0: 80 a0 60 00 cmp %g1, 0
4000a5c4: 02 80 00 04 be 4000a5d4 <_User_extensions_Thread_exitted+0x34>
4000a5c8: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
4000a5cc: 9f c0 40 00 call %g1
4000a5d0: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
4000a5d4: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
4000a5d8: 80 a4 00 11 cmp %l0, %l1
4000a5dc: 32 bf ff f9 bne,a 4000a5c0 <_User_extensions_Thread_exitted+0x20>
4000a5e0: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
4000a5e4: 81 c7 e0 08 ret
4000a5e8: 81 e8 00 00 restore
4000b418 <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
4000b418: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000b41c: 23 10 00 7b sethi %hi(0x4001ec00), %l1
4000b420: e0 04 61 c8 ld [ %l1 + 0x1c8 ], %l0 ! 4001edc8 <_User_extensions_List>
4000b424: a2 14 61 c8 or %l1, 0x1c8, %l1
4000b428: a2 04 60 04 add %l1, 4, %l1
4000b42c: 80 a4 00 11 cmp %l0, %l1
4000b430: 02 80 00 0d be 4000b464 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
4000b434: 25 10 00 7b sethi %hi(0x4001ec00), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
4000b438: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000b43c: 80 a0 60 00 cmp %g1, 0
4000b440: 02 80 00 05 be 4000b454 <_User_extensions_Thread_restart+0x3c>
4000b444: 84 14 a2 0c or %l2, 0x20c, %g2
(*the_extension->Callouts.thread_restart)(
4000b448: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000b44c: 9f c0 40 00 call %g1
4000b450: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000b454: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000b458: 80 a4 00 11 cmp %l0, %l1
4000b45c: 32 bf ff f8 bne,a 4000b43c <_User_extensions_Thread_restart+0x24>
4000b460: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
4000b464: 81 c7 e0 08 ret
4000b468: 81 e8 00 00 restore
4000a6fc <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
4000a6fc: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000a700: 23 10 00 59 sethi %hi(0x40016400), %l1
4000a704: e0 04 61 a8 ld [ %l1 + 0x1a8 ], %l0 ! 400165a8 <_User_extensions_List>
4000a708: a2 14 61 a8 or %l1, 0x1a8, %l1
4000a70c: a2 04 60 04 add %l1, 4, %l1
4000a710: 80 a4 00 11 cmp %l0, %l1
4000a714: 02 80 00 0d be 4000a748 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
4000a718: 25 10 00 59 sethi %hi(0x40016400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
4000a71c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000a720: 80 a0 60 00 cmp %g1, 0
4000a724: 02 80 00 05 be 4000a738 <_User_extensions_Thread_start+0x3c>
4000a728: 84 14 a1 ec or %l2, 0x1ec, %g2
(*the_extension->Callouts.thread_start)(
4000a72c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
4000a730: 9f c0 40 00 call %g1
4000a734: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
4000a738: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
4000a73c: 80 a4 00 11 cmp %l0, %l1
4000a740: 32 bf ff f8 bne,a 4000a720 <_User_extensions_Thread_start+0x24>
4000a744: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000a748: 81 c7 e0 08 ret
4000a74c: 81 e8 00 00 restore
4000a750 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
4000a750: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
4000a754: 23 10 00 58 sethi %hi(0x40016000), %l1
4000a758: e0 04 63 8c ld [ %l1 + 0x38c ], %l0 ! 4001638c <_User_extensions_Switches_list>
4000a75c: a2 14 63 8c or %l1, 0x38c, %l1
4000a760: a2 04 60 04 add %l1, 4, %l1
4000a764: 80 a4 00 11 cmp %l0, %l1
4000a768: 02 80 00 0a be 4000a790 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
4000a76c: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
4000a770: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000a774: 90 10 00 18 mov %i0, %o0
4000a778: 9f c0 40 00 call %g1
4000a77c: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
4000a780: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
4000a784: 80 a4 00 11 cmp %l0, %l1
4000a788: 32 bf ff fb bne,a 4000a774 <_User_extensions_Thread_switch+0x24>
4000a78c: c2 04 20 08 ld [ %l0 + 8 ], %g1
4000a790: 81 c7 e0 08 ret
4000a794: 81 e8 00 00 restore
4000c9c8 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000c9c8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000c9cc: 7f ff d8 ef call 40002d88 <sparc_disable_interrupts>
4000c9d0: a0 10 00 18 mov %i0, %l0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000c9d4: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000c9d8: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000c9dc: 80 a0 40 11 cmp %g1, %l1
4000c9e0: 02 80 00 1f be 4000ca5c <_Watchdog_Adjust+0x94>
4000c9e4: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000c9e8: 12 80 00 1f bne 4000ca64 <_Watchdog_Adjust+0x9c>
4000c9ec: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000c9f0: 80 a6 a0 00 cmp %i2, 0
4000c9f4: 02 80 00 1a be 4000ca5c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000c9f8: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000c9fc: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000ca00: 80 a6 80 19 cmp %i2, %i1
4000ca04: 1a 80 00 0b bcc 4000ca30 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
4000ca08: a4 10 20 01 mov 1, %l2
_Watchdog_First( header )->delta_interval -= units;
4000ca0c: 10 80 00 1d b 4000ca80 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
4000ca10: b4 26 40 1a sub %i1, %i2, %i2 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000ca14: b4 a6 80 19 subcc %i2, %i1, %i2
4000ca18: 02 80 00 11 be 4000ca5c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000ca1c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
4000ca20: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000ca24: 80 a6 40 1a cmp %i1, %i2
4000ca28: 38 80 00 16 bgu,a 4000ca80 <_Watchdog_Adjust+0xb8>
4000ca2c: b4 26 40 1a sub %i1, %i2, %i2
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
4000ca30: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_ISR_Enable( level );
4000ca34: 7f ff d8 d9 call 40002d98 <sparc_enable_interrupts>
4000ca38: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000ca3c: 40 00 00 b3 call 4000cd08 <_Watchdog_Tickle>
4000ca40: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000ca44: 7f ff d8 d1 call 40002d88 <sparc_disable_interrupts>
4000ca48: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000ca4c: c4 04 00 00 ld [ %l0 ], %g2
if ( _Chain_Is_empty( header ) )
4000ca50: 80 a4 40 02 cmp %l1, %g2
4000ca54: 12 bf ff f0 bne 4000ca14 <_Watchdog_Adjust+0x4c>
4000ca58: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
4000ca5c: 7f ff d8 cf call 40002d98 <sparc_enable_interrupts>
4000ca60: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
4000ca64: 12 bf ff fe bne 4000ca5c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000ca68: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000ca6c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000ca70: b4 00 80 1a add %g2, %i2, %i2
4000ca74: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
4000ca78: 7f ff d8 c8 call 40002d98 <sparc_enable_interrupts>
4000ca7c: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
4000ca80: 10 bf ff f7 b 4000ca5c <_Watchdog_Adjust+0x94>
4000ca84: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
4000a940 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
4000a940: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
4000a944: 7f ff dd 32 call 40001e0c <sparc_disable_interrupts>
4000a948: 01 00 00 00 nop
previous_state = the_watchdog->state;
4000a94c: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
4000a950: 80 a4 20 01 cmp %l0, 1
4000a954: 02 80 00 2a be 4000a9fc <_Watchdog_Remove+0xbc>
4000a958: 03 10 00 59 sethi %hi(0x40016400), %g1
4000a95c: 1a 80 00 09 bcc 4000a980 <_Watchdog_Remove+0x40>
4000a960: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000a964: 03 10 00 59 sethi %hi(0x40016400), %g1
4000a968: c2 00 60 c4 ld [ %g1 + 0xc4 ], %g1 ! 400164c4 <_Watchdog_Ticks_since_boot>
4000a96c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000a970: 7f ff dd 2b call 40001e1c <sparc_enable_interrupts>
4000a974: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000a978: 81 c7 e0 08 ret
4000a97c: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
4000a980: 18 bf ff fa bgu 4000a968 <_Watchdog_Remove+0x28> <== NEVER TAKEN
4000a984: 03 10 00 59 sethi %hi(0x40016400), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
4000a988: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
4000a98c: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
4000a990: c4 00 40 00 ld [ %g1 ], %g2
4000a994: 80 a0 a0 00 cmp %g2, 0
4000a998: 02 80 00 07 be 4000a9b4 <_Watchdog_Remove+0x74>
4000a99c: 05 10 00 59 sethi %hi(0x40016400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
4000a9a0: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
4000a9a4: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
4000a9a8: 84 00 c0 02 add %g3, %g2, %g2
4000a9ac: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
4000a9b0: 05 10 00 59 sethi %hi(0x40016400), %g2
4000a9b4: c4 00 a0 c0 ld [ %g2 + 0xc0 ], %g2 ! 400164c0 <_Watchdog_Sync_count>
4000a9b8: 80 a0 a0 00 cmp %g2, 0
4000a9bc: 22 80 00 07 be,a 4000a9d8 <_Watchdog_Remove+0x98>
4000a9c0: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
4000a9c4: 05 10 00 59 sethi %hi(0x40016400), %g2
4000a9c8: c6 00 a1 f4 ld [ %g2 + 0x1f4 ], %g3 ! 400165f4 <_Per_CPU_Information+0x8>
4000a9cc: 05 10 00 59 sethi %hi(0x40016400), %g2
4000a9d0: c6 20 a0 30 st %g3, [ %g2 + 0x30 ] ! 40016430 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000a9d4: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
4000a9d8: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
4000a9dc: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000a9e0: 03 10 00 59 sethi %hi(0x40016400), %g1
4000a9e4: c2 00 60 c4 ld [ %g1 + 0xc4 ], %g1 ! 400164c4 <_Watchdog_Ticks_since_boot>
4000a9e8: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000a9ec: 7f ff dd 0c call 40001e1c <sparc_enable_interrupts>
4000a9f0: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000a9f4: 81 c7 e0 08 ret
4000a9f8: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000a9fc: c2 00 60 c4 ld [ %g1 + 0xc4 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
4000aa00: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
4000aa04: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
4000aa08: 7f ff dd 05 call 40001e1c <sparc_enable_interrupts>
4000aa0c: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
4000aa10: 81 c7 e0 08 ret
4000aa14: 81 e8 00 00 restore
4000c1dc <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000c1dc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000c1e0: 7f ff d9 bb call 400028cc <sparc_disable_interrupts>
4000c1e4: a0 10 00 18 mov %i0, %l0
4000c1e8: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000c1ec: 11 10 00 79 sethi %hi(0x4001e400), %o0
4000c1f0: 94 10 00 19 mov %i1, %o2
4000c1f4: 92 10 00 10 mov %l0, %o1
4000c1f8: 7f ff e4 84 call 40005408 <printk>
4000c1fc: 90 12 21 70 or %o0, 0x170, %o0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
4000c200: e2 06 40 00 ld [ %i1 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
4000c204: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
4000c208: 80 a4 40 19 cmp %l1, %i1
4000c20c: 02 80 00 0f be 4000c248 <_Watchdog_Report_chain+0x6c>
4000c210: 11 10 00 79 sethi %hi(0x4001e400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000c214: 92 10 00 11 mov %l1, %o1
4000c218: 40 00 00 11 call 4000c25c <_Watchdog_Report>
4000c21c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
node != _Chain_Tail(header) ;
node = node->next )
4000c220: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
4000c224: 80 a4 40 19 cmp %l1, %i1
4000c228: 12 bf ff fc bne 4000c218 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000c22c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000c230: 92 10 00 10 mov %l0, %o1
4000c234: 11 10 00 79 sethi %hi(0x4001e400), %o0
4000c238: 7f ff e4 74 call 40005408 <printk>
4000c23c: 90 12 21 88 or %o0, 0x188, %o0 ! 4001e588 <_Status_Object_name_errors_to_status+0x30>
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
4000c240: 7f ff d9 a7 call 400028dc <sparc_enable_interrupts>
4000c244: 81 e8 00 00 restore
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
4000c248: 7f ff e4 70 call 40005408 <printk>
4000c24c: 90 12 21 98 or %o0, 0x198, %o0
}
_ISR_Enable( level );
4000c250: 7f ff d9 a3 call 400028dc <sparc_enable_interrupts>
4000c254: 81 e8 00 00 restore
4000f28c <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
4000f28c: 9d e3 bf 98 save %sp, -104, %sp
4000f290: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
4000f294: 80 a4 20 00 cmp %l0, 0
4000f298: 02 80 00 23 be 4000f324 <rtems_barrier_create+0x98>
4000f29c: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
4000f2a0: 80 a6 e0 00 cmp %i3, 0
4000f2a4: 02 80 00 20 be 4000f324 <rtems_barrier_create+0x98>
4000f2a8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
4000f2ac: 80 8e 60 10 btst 0x10, %i1
4000f2b0: 02 80 00 1f be 4000f32c <rtems_barrier_create+0xa0>
4000f2b4: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
4000f2b8: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
4000f2bc: 02 80 00 1a be 4000f324 <rtems_barrier_create+0x98>
4000f2c0: b0 10 20 0a mov 0xa, %i0
4000f2c4: 03 10 00 7d sethi %hi(0x4001f400), %g1
4000f2c8: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 4001f628 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
4000f2cc: f4 27 bf fc st %i2, [ %fp + -4 ]
4000f2d0: 84 00 a0 01 inc %g2
4000f2d4: c4 20 62 28 st %g2, [ %g1 + 0x228 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
4000f2d8: 25 10 00 7e sethi %hi(0x4001f800), %l2
4000f2dc: 7f ff eb 47 call 40009ff8 <_Objects_Allocate>
4000f2e0: 90 14 a0 a8 or %l2, 0xa8, %o0 ! 4001f8a8 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000f2e4: a2 92 20 00 orcc %o0, 0, %l1
4000f2e8: 02 80 00 1e be 4000f360 <rtems_barrier_create+0xd4> <== NEVER TAKEN
4000f2ec: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
4000f2f0: 92 07 bf f8 add %fp, -8, %o1
4000f2f4: 40 00 02 42 call 4000fbfc <_CORE_barrier_Initialize>
4000f2f8: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
4000f2fc: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
4000f300: a4 14 a0 a8 or %l2, 0xa8, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000f304: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
4000f308: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
4000f30c: 85 28 a0 02 sll %g2, 2, %g2
4000f310: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
4000f314: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
4000f318: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
4000f31c: 7f ff ee d5 call 4000ae70 <_Thread_Enable_dispatch>
4000f320: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
4000f324: 81 c7 e0 08 ret
4000f328: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
4000f32c: 82 10 20 01 mov 1, %g1
4000f330: c2 27 bf f8 st %g1, [ %fp + -8 ]
4000f334: 03 10 00 7d sethi %hi(0x4001f400), %g1
4000f338: c4 00 62 28 ld [ %g1 + 0x228 ], %g2 ! 4001f628 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
4000f33c: f4 27 bf fc st %i2, [ %fp + -4 ]
4000f340: 84 00 a0 01 inc %g2
4000f344: c4 20 62 28 st %g2, [ %g1 + 0x228 ]
4000f348: 25 10 00 7e sethi %hi(0x4001f800), %l2
4000f34c: 7f ff eb 2b call 40009ff8 <_Objects_Allocate>
4000f350: 90 14 a0 a8 or %l2, 0xa8, %o0 ! 4001f8a8 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
4000f354: a2 92 20 00 orcc %o0, 0, %l1
4000f358: 12 bf ff e6 bne 4000f2f0 <rtems_barrier_create+0x64>
4000f35c: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
4000f360: 7f ff ee c4 call 4000ae70 <_Thread_Enable_dispatch>
4000f364: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
4000f368: 81 c7 e0 08 ret
4000f36c: 81 e8 00 00 restore
40008dac <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40008dac: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
40008db0: 03 10 00 6b sethi %hi(0x4001ac00), %g1
40008db4: c4 00 61 14 ld [ %g1 + 0x114 ], %g2 ! 4001ad14 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
40008db8: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
40008dbc: 03 10 00 6b sethi %hi(0x4001ac00), %g1
if ( rtems_interrupt_is_in_progress() )
40008dc0: 80 a0 a0 00 cmp %g2, 0
40008dc4: 12 80 00 42 bne 40008ecc <rtems_io_register_driver+0x120>
40008dc8: c8 00 61 6c ld [ %g1 + 0x16c ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
40008dcc: 80 a6 a0 00 cmp %i2, 0
40008dd0: 02 80 00 50 be 40008f10 <rtems_io_register_driver+0x164>
40008dd4: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
40008dd8: 80 a6 60 00 cmp %i1, 0
40008ddc: 02 80 00 4d be 40008f10 <rtems_io_register_driver+0x164>
40008de0: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008de4: c4 06 40 00 ld [ %i1 ], %g2
40008de8: 80 a0 a0 00 cmp %g2, 0
40008dec: 22 80 00 46 be,a 40008f04 <rtems_io_register_driver+0x158>
40008df0: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
40008df4: 80 a1 00 18 cmp %g4, %i0
40008df8: 08 80 00 33 bleu 40008ec4 <rtems_io_register_driver+0x118>
40008dfc: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
40008e00: 05 10 00 6a sethi %hi(0x4001a800), %g2
40008e04: c8 00 a2 a8 ld [ %g2 + 0x2a8 ], %g4 ! 4001aaa8 <_Thread_Dispatch_disable_level>
40008e08: 88 01 20 01 inc %g4
40008e0c: c8 20 a2 a8 st %g4, [ %g2 + 0x2a8 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
40008e10: 80 a6 20 00 cmp %i0, 0
40008e14: 12 80 00 30 bne 40008ed4 <rtems_io_register_driver+0x128>
40008e18: 1b 10 00 6b sethi %hi(0x4001ac00), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
40008e1c: c8 00 61 6c ld [ %g1 + 0x16c ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
40008e20: 80 a1 20 00 cmp %g4, 0
40008e24: 22 80 00 3d be,a 40008f18 <rtems_io_register_driver+0x16c><== NEVER TAKEN
40008e28: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
40008e2c: 10 80 00 05 b 40008e40 <rtems_io_register_driver+0x94>
40008e30: c2 03 61 70 ld [ %o5 + 0x170 ], %g1
40008e34: 80 a1 00 18 cmp %g4, %i0
40008e38: 08 80 00 0a bleu 40008e60 <rtems_io_register_driver+0xb4>
40008e3c: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008e40: c4 00 40 00 ld [ %g1 ], %g2
40008e44: 80 a0 a0 00 cmp %g2, 0
40008e48: 32 bf ff fb bne,a 40008e34 <rtems_io_register_driver+0x88>
40008e4c: b0 06 20 01 inc %i0
40008e50: c4 00 60 04 ld [ %g1 + 4 ], %g2
40008e54: 80 a0 a0 00 cmp %g2, 0
40008e58: 32 bf ff f7 bne,a 40008e34 <rtems_io_register_driver+0x88>
40008e5c: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
40008e60: 80 a1 00 18 cmp %g4, %i0
40008e64: 02 80 00 2d be 40008f18 <rtems_io_register_driver+0x16c>
40008e68: f0 26 80 00 st %i0, [ %i2 ]
40008e6c: 83 2e 20 03 sll %i0, 3, %g1
40008e70: 85 2e 20 05 sll %i0, 5, %g2
40008e74: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008e78: c8 03 61 70 ld [ %o5 + 0x170 ], %g4
40008e7c: da 00 c0 00 ld [ %g3 ], %o5
40008e80: 82 01 00 02 add %g4, %g2, %g1
40008e84: da 21 00 02 st %o5, [ %g4 + %g2 ]
40008e88: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40008e8c: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008e90: c4 20 60 04 st %g2, [ %g1 + 4 ]
40008e94: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
40008e98: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
40008e9c: c4 20 60 08 st %g2, [ %g1 + 8 ]
40008ea0: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
40008ea4: c4 20 60 0c st %g2, [ %g1 + 0xc ]
40008ea8: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
40008eac: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
40008eb0: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
40008eb4: 40 00 07 39 call 4000ab98 <_Thread_Enable_dispatch>
40008eb8: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
40008ebc: 40 00 21 c7 call 400115d8 <rtems_io_initialize>
40008ec0: 81 e8 00 00 restore
}
40008ec4: 81 c7 e0 08 ret
40008ec8: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
40008ecc: 81 c7 e0 08 ret
40008ed0: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
40008ed4: c2 03 61 70 ld [ %o5 + 0x170 ], %g1
40008ed8: 89 2e 20 05 sll %i0, 5, %g4
40008edc: 85 2e 20 03 sll %i0, 3, %g2
40008ee0: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008ee4: c8 00 40 02 ld [ %g1 + %g2 ], %g4
40008ee8: 80 a1 20 00 cmp %g4, 0
40008eec: 02 80 00 0f be 40008f28 <rtems_io_register_driver+0x17c>
40008ef0: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
40008ef4: 40 00 07 29 call 4000ab98 <_Thread_Enable_dispatch>
40008ef8: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
40008efc: 81 c7 e0 08 ret
40008f00: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008f04: 80 a0 a0 00 cmp %g2, 0
40008f08: 32 bf ff bc bne,a 40008df8 <rtems_io_register_driver+0x4c>
40008f0c: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
40008f10: 81 c7 e0 08 ret
40008f14: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
40008f18: 40 00 07 20 call 4000ab98 <_Thread_Enable_dispatch>
40008f1c: b0 10 20 05 mov 5, %i0
return sc;
40008f20: 81 c7 e0 08 ret
40008f24: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
40008f28: c2 00 60 04 ld [ %g1 + 4 ], %g1
40008f2c: 80 a0 60 00 cmp %g1, 0
40008f30: 12 bf ff f1 bne 40008ef4 <rtems_io_register_driver+0x148>
40008f34: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
40008f38: 10 bf ff d0 b 40008e78 <rtems_io_register_driver+0xcc>
40008f3c: f0 26 80 00 st %i0, [ %i2 ]
4000a2c8 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
4000a2c8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
4000a2cc: 80 a6 20 00 cmp %i0, 0
4000a2d0: 02 80 00 23 be 4000a35c <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
4000a2d4: 25 10 00 a1 sethi %hi(0x40028400), %l2
4000a2d8: a4 14 a3 60 or %l2, 0x360, %l2 ! 40028760 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
4000a2dc: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
if ( !_Objects_Information_table[ api_index ] )
4000a2e0: c2 04 80 00 ld [ %l2 ], %g1
4000a2e4: 80 a0 60 00 cmp %g1, 0
4000a2e8: 22 80 00 1a be,a 4000a350 <rtems_iterate_over_all_threads+0x88>
4000a2ec: a4 04 a0 04 add %l2, 4, %l2
continue;
information = _Objects_Information_table[ api_index ][ 1 ];
4000a2f0: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
4000a2f4: 80 a4 60 00 cmp %l1, 0
4000a2f8: 22 80 00 16 be,a 4000a350 <rtems_iterate_over_all_threads+0x88>
4000a2fc: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000a300: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
4000a304: 84 90 60 00 orcc %g1, 0, %g2
4000a308: 22 80 00 12 be,a 4000a350 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
4000a30c: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED
4000a310: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
4000a314: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000a318: 83 2c 20 02 sll %l0, 2, %g1
4000a31c: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
4000a320: 90 90 60 00 orcc %g1, 0, %o0
4000a324: 02 80 00 05 be 4000a338 <rtems_iterate_over_all_threads+0x70><== NEVER TAKEN
4000a328: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
4000a32c: 9f c6 00 00 call %i0
4000a330: 01 00 00 00 nop
4000a334: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
4000a338: 83 28 a0 10 sll %g2, 0x10, %g1
4000a33c: 83 30 60 10 srl %g1, 0x10, %g1
4000a340: 80 a0 40 10 cmp %g1, %l0
4000a344: 3a bf ff f5 bcc,a 4000a318 <rtems_iterate_over_all_threads+0x50>
4000a348: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
4000a34c: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
4000a350: 80 a4 80 13 cmp %l2, %l3
4000a354: 32 bf ff e4 bne,a 4000a2e4 <rtems_iterate_over_all_threads+0x1c>
4000a358: c2 04 80 00 ld [ %l2 ], %g1
4000a35c: 81 c7 e0 08 ret
4000a360: 81 e8 00 00 restore
40008d8c <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
40008d8c: 9d e3 bf a0 save %sp, -96, %sp
40008d90: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
40008d94: 80 a6 a0 00 cmp %i2, 0
40008d98: 02 80 00 20 be 40008e18 <rtems_object_get_class_information+0x8c>
40008d9c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
40008da0: 92 10 00 19 mov %i1, %o1
40008da4: 40 00 07 74 call 4000ab74 <_Objects_Get_information>
40008da8: b0 10 20 0a mov 0xa, %i0
if ( !obj_info )
40008dac: 80 a2 20 00 cmp %o0, 0
40008db0: 02 80 00 1a be 40008e18 <rtems_object_get_class_information+0x8c>
40008db4: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40008db8: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
40008dbc: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40008dc0: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40008dc4: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
40008dc8: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
40008dcc: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
40008dd0: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
40008dd4: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008dd8: 80 a1 20 00 cmp %g4, 0
40008ddc: 02 80 00 0d be 40008e10 <rtems_object_get_class_information+0x84><== NEVER TAKEN
40008de0: 84 10 20 00 clr %g2
40008de4: da 02 20 1c ld [ %o0 + 0x1c ], %o5
40008de8: 86 10 20 01 mov 1, %g3
40008dec: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
40008df0: 87 28 e0 02 sll %g3, 2, %g3
40008df4: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008df8: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
40008dfc: 80 a0 00 03 cmp %g0, %g3
40008e00: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
40008e04: 80 a1 00 01 cmp %g4, %g1
40008e08: 1a bf ff fa bcc 40008df0 <rtems_object_get_class_information+0x64>
40008e0c: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
40008e10: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
40008e14: b0 10 20 00 clr %i0
}
40008e18: 81 c7 e0 08 ret
40008e1c: 81 e8 00 00 restore
40014d74 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40014d74: 9d e3 bf a0 save %sp, -96, %sp
40014d78: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40014d7c: 80 a4 20 00 cmp %l0, 0
40014d80: 02 80 00 34 be 40014e50 <rtems_partition_create+0xdc>
40014d84: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40014d88: 80 a6 60 00 cmp %i1, 0
40014d8c: 02 80 00 31 be 40014e50 <rtems_partition_create+0xdc>
40014d90: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40014d94: 80 a7 60 00 cmp %i5, 0
40014d98: 02 80 00 2e be 40014e50 <rtems_partition_create+0xdc> <== NEVER TAKEN
40014d9c: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40014da0: 02 80 00 2e be 40014e58 <rtems_partition_create+0xe4>
40014da4: 80 a6 a0 00 cmp %i2, 0
40014da8: 02 80 00 2c be 40014e58 <rtems_partition_create+0xe4>
40014dac: 80 a6 80 1b cmp %i2, %i3
40014db0: 0a 80 00 28 bcs 40014e50 <rtems_partition_create+0xdc>
40014db4: b0 10 20 08 mov 8, %i0
40014db8: 80 8e e0 07 btst 7, %i3
40014dbc: 12 80 00 25 bne 40014e50 <rtems_partition_create+0xdc>
40014dc0: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40014dc4: 12 80 00 23 bne 40014e50 <rtems_partition_create+0xdc>
40014dc8: b0 10 20 09 mov 9, %i0
40014dcc: 03 10 00 f9 sethi %hi(0x4003e400), %g1
40014dd0: c4 00 61 78 ld [ %g1 + 0x178 ], %g2 ! 4003e578 <_Thread_Dispatch_disable_level>
40014dd4: 84 00 a0 01 inc %g2
40014dd8: c4 20 61 78 st %g2, [ %g1 + 0x178 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40014ddc: 25 10 00 f8 sethi %hi(0x4003e000), %l2
40014de0: 40 00 13 14 call 40019a30 <_Objects_Allocate>
40014de4: 90 14 a3 84 or %l2, 0x384, %o0 ! 4003e384 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40014de8: a2 92 20 00 orcc %o0, 0, %l1
40014dec: 02 80 00 1d be 40014e60 <rtems_partition_create+0xec>
40014df0: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
40014df4: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40014df8: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40014dfc: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40014e00: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40014e04: 90 10 00 1a mov %i2, %o0
40014e08: 40 00 61 a4 call 4002d498 <.udiv>
40014e0c: c0 24 60 20 clr [ %l1 + 0x20 ]
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014e10: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40014e14: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40014e18: 96 10 00 1b mov %i3, %o3
40014e1c: b8 04 60 24 add %l1, 0x24, %i4
40014e20: 40 00 0c d8 call 40018180 <_Chain_Initialize>
40014e24: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014e28: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40014e2c: a4 14 a3 84 or %l2, 0x384, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014e30: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40014e34: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40014e38: 85 28 a0 02 sll %g2, 2, %g2
40014e3c: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40014e40: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40014e44: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40014e48: 40 00 16 d6 call 4001a9a0 <_Thread_Enable_dispatch>
40014e4c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40014e50: 81 c7 e0 08 ret
40014e54: 81 e8 00 00 restore
}
40014e58: 81 c7 e0 08 ret
40014e5c: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
40014e60: 40 00 16 d0 call 4001a9a0 <_Thread_Enable_dispatch>
40014e64: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40014e68: 81 c7 e0 08 ret
40014e6c: 81 e8 00 00 restore
400083f0 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
400083f0: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
400083f4: 11 10 00 7f sethi %hi(0x4001fc00), %o0
400083f8: 92 10 00 18 mov %i0, %o1
400083fc: 90 12 23 e4 or %o0, 0x3e4, %o0
40008400: 40 00 09 77 call 4000a9dc <_Objects_Get>
40008404: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40008408: c2 07 bf fc ld [ %fp + -4 ], %g1
4000840c: 80 a0 60 00 cmp %g1, 0
40008410: 02 80 00 04 be 40008420 <rtems_rate_monotonic_period+0x30>
40008414: a0 10 00 08 mov %o0, %l0
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40008418: 81 c7 e0 08 ret
4000841c: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40008420: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40008424: 23 10 00 80 sethi %hi(0x40020000), %l1
40008428: a2 14 63 bc or %l1, 0x3bc, %l1 ! 400203bc <_Per_CPU_Information>
4000842c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008430: 80 a0 80 01 cmp %g2, %g1
40008434: 02 80 00 06 be 4000844c <rtems_rate_monotonic_period+0x5c>
40008438: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
4000843c: 40 00 0b df call 4000b3b8 <_Thread_Enable_dispatch>
40008440: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40008444: 81 c7 e0 08 ret
40008448: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
4000844c: 12 80 00 0f bne 40008488 <rtems_rate_monotonic_period+0x98>
40008450: 01 00 00 00 nop
switch ( the_period->state ) {
40008454: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40008458: 80 a0 60 04 cmp %g1, 4
4000845c: 08 80 00 06 bleu 40008474 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
40008460: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40008464: 40 00 0b d5 call 4000b3b8 <_Thread_Enable_dispatch>
40008468: 01 00 00 00 nop
return RTEMS_TIMEOUT;
4000846c: 81 c7 e0 08 ret
40008470: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
40008474: 83 28 60 02 sll %g1, 2, %g1
40008478: 05 10 00 78 sethi %hi(0x4001e000), %g2
4000847c: 84 10 a2 44 or %g2, 0x244, %g2 ! 4001e244 <CSWTCH.2>
40008480: 10 bf ff f9 b 40008464 <rtems_rate_monotonic_period+0x74>
40008484: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
40008488: 7f ff ea 0d call 40002cbc <sparc_disable_interrupts>
4000848c: 01 00 00 00 nop
40008490: a6 10 00 08 mov %o0, %l3
switch ( the_period->state ) {
40008494: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
40008498: 80 a4 a0 02 cmp %l2, 2
4000849c: 02 80 00 1d be 40008510 <rtems_rate_monotonic_period+0x120>
400084a0: 80 a4 a0 04 cmp %l2, 4
400084a4: 02 80 00 37 be 40008580 <rtems_rate_monotonic_period+0x190>
400084a8: 80 a4 a0 00 cmp %l2, 0
400084ac: 12 80 00 33 bne 40008578 <rtems_rate_monotonic_period+0x188><== NEVER TAKEN
400084b0: 01 00 00 00 nop
case RATE_MONOTONIC_INACTIVE: {
_ISR_Enable( level );
400084b4: 7f ff ea 06 call 40002ccc <sparc_enable_interrupts>
400084b8: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
400084bc: 7f ff ff 71 call 40008280 <_Rate_monotonic_Initiate_statistics>
400084c0: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
400084c4: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400084c8: 92 04 20 10 add %l0, 0x10, %o1
400084cc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
400084d0: 11 10 00 80 sethi %hi(0x40020000), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
400084d4: 03 10 00 22 sethi %hi(0x40008800), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400084d8: 90 12 22 1c or %o0, 0x21c, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
400084dc: 82 10 60 cc or %g1, 0xcc, %g1
the_watchdog->id = id;
400084e0: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
400084e4: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400084e8: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
400084ec: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
400084f0: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400084f4: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400084f8: 40 00 10 ee call 4000c8b0 <_Watchdog_Insert>
400084fc: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40008500: 40 00 0b ae call 4000b3b8 <_Thread_Enable_dispatch>
40008504: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40008508: 81 c7 e0 08 ret
4000850c: 81 e8 00 00 restore
case RATE_MONOTONIC_ACTIVE:
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40008510: 7f ff ff 78 call 400082f0 <_Rate_monotonic_Update_statistics>
40008514: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40008518: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
4000851c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40008520: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40008524: 7f ff e9 ea call 40002ccc <sparc_enable_interrupts>
40008528: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
4000852c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008530: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40008534: 90 10 00 01 mov %g1, %o0
40008538: 13 00 00 10 sethi %hi(0x4000), %o1
4000853c: 40 00 0e 13 call 4000bd88 <_Thread_Set_state>
40008540: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40008544: 7f ff e9 de call 40002cbc <sparc_disable_interrupts>
40008548: 01 00 00 00 nop
local_state = the_period->state;
4000854c: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40008550: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
40008554: 7f ff e9 de call 40002ccc <sparc_enable_interrupts>
40008558: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
4000855c: 80 a4 e0 03 cmp %l3, 3
40008560: 22 80 00 16 be,a 400085b8 <rtems_rate_monotonic_period+0x1c8>
40008564: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
40008568: 40 00 0b 94 call 4000b3b8 <_Thread_Enable_dispatch>
4000856c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40008570: 81 c7 e0 08 ret
40008574: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40008578: 81 c7 e0 08 ret <== NOT EXECUTED
4000857c: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
case RATE_MONOTONIC_EXPIRED:
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40008580: 7f ff ff 5c call 400082f0 <_Rate_monotonic_Update_statistics>
40008584: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
40008588: 7f ff e9 d1 call 40002ccc <sparc_enable_interrupts>
4000858c: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40008590: 82 10 20 02 mov 2, %g1
40008594: 92 04 20 10 add %l0, 0x10, %o1
40008598: 11 10 00 80 sethi %hi(0x40020000), %o0
the_period->next_length = length;
4000859c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
400085a0: 90 12 22 1c or %o0, 0x21c, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
400085a4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400085a8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400085ac: 40 00 10 c1 call 4000c8b0 <_Watchdog_Insert>
400085b0: b0 10 20 06 mov 6, %i0
400085b4: 30 bf ff ac b,a 40008464 <rtems_rate_monotonic_period+0x74>
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
400085b8: 40 00 0a 8c call 4000afe8 <_Thread_Clear_state>
400085bc: 13 00 00 10 sethi %hi(0x4000), %o1
400085c0: 30 bf ff ea b,a 40008568 <rtems_rate_monotonic_period+0x178>
400085c4 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
400085c4: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
400085c8: 80 a6 60 00 cmp %i1, 0
400085cc: 02 80 00 4c be 400086fc <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
400085d0: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
400085d4: 13 10 00 78 sethi %hi(0x4001e000), %o1
400085d8: 9f c6 40 00 call %i1
400085dc: 92 12 62 58 or %o1, 0x258, %o1 ! 4001e258 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
400085e0: 90 10 00 18 mov %i0, %o0
400085e4: 13 10 00 78 sethi %hi(0x4001e000), %o1
400085e8: 9f c6 40 00 call %i1
400085ec: 92 12 62 78 or %o1, 0x278, %o1 ! 4001e278 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
400085f0: 90 10 00 18 mov %i0, %o0
400085f4: 13 10 00 78 sethi %hi(0x4001e000), %o1
400085f8: 9f c6 40 00 call %i1
400085fc: 92 12 62 a0 or %o1, 0x2a0, %o1 ! 4001e2a0 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40008600: 90 10 00 18 mov %i0, %o0
40008604: 13 10 00 78 sethi %hi(0x4001e000), %o1
40008608: 9f c6 40 00 call %i1
4000860c: 92 12 62 c8 or %o1, 0x2c8, %o1 ! 4001e2c8 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40008610: 90 10 00 18 mov %i0, %o0
40008614: 13 10 00 78 sethi %hi(0x4001e000), %o1
40008618: 9f c6 40 00 call %i1
4000861c: 92 12 63 18 or %o1, 0x318, %o1 ! 4001e318 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008620: 23 10 00 7f sethi %hi(0x4001fc00), %l1
40008624: a2 14 63 e4 or %l1, 0x3e4, %l1 ! 4001ffe4 <_Rate_monotonic_Information>
40008628: e0 04 60 08 ld [ %l1 + 8 ], %l0
4000862c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008630: 80 a4 00 01 cmp %l0, %g1
40008634: 18 80 00 32 bgu 400086fc <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
40008638: 2f 10 00 78 sethi %hi(0x4001e000), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
4000863c: 39 10 00 78 sethi %hi(0x4001e000), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40008640: 2b 10 00 75 sethi %hi(0x4001d400), %l5
40008644: a4 07 bf a0 add %fp, -96, %l2
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
if ( status != RTEMS_SUCCESSFUL )
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
40008648: ba 07 bf d8 add %fp, -40, %i5
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
4000864c: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40008650: ae 15 e3 68 or %l7, 0x368, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
40008654: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40008658: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
4000865c: b8 17 23 80 or %i4, 0x380, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40008660: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
40008664: 10 80 00 06 b 4000867c <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
40008668: aa 15 61 48 or %l5, 0x148, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
4000866c: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008670: 80 a0 40 10 cmp %g1, %l0
40008674: 0a 80 00 22 bcs 400086fc <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
40008678: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
4000867c: 90 10 00 10 mov %l0, %o0
40008680: 40 00 19 57 call 4000ebdc <rtems_rate_monotonic_get_statistics>
40008684: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
40008688: 80 a2 20 00 cmp %o0, 0
4000868c: 32 bf ff f8 bne,a 4000866c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
40008690: c2 04 60 0c ld [ %l1 + 0xc ], %g1
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
40008694: 92 10 00 1d mov %i5, %o1
40008698: 40 00 19 80 call 4000ec98 <rtems_rate_monotonic_get_status>
4000869c: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
400086a0: d0 07 bf d8 ld [ %fp + -40 ], %o0
400086a4: 94 10 00 13 mov %l3, %o2
400086a8: 40 00 00 b9 call 4000898c <rtems_object_get_name>
400086ac: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400086b0: d8 1f bf a0 ldd [ %fp + -96 ], %o4
400086b4: 92 10 00 17 mov %l7, %o1
400086b8: 94 10 00 10 mov %l0, %o2
400086bc: 90 10 00 18 mov %i0, %o0
400086c0: 9f c6 40 00 call %i1
400086c4: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400086c8: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400086cc: 90 10 00 16 mov %l6, %o0
400086d0: 94 10 00 14 mov %l4, %o2
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
400086d4: 80 a0 60 00 cmp %g1, 0
400086d8: 12 80 00 0b bne 40008704 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
400086dc: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
400086e0: 9f c6 40 00 call %i1
400086e4: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400086e8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
400086ec: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400086f0: 80 a0 40 10 cmp %g1, %l0
400086f4: 1a bf ff e3 bcc 40008680 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
400086f8: 90 10 00 10 mov %l0, %o0
400086fc: 81 c7 e0 08 ret
40008700: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40008704: 40 00 0f 2e call 4000c3bc <_Timespec_Divide_by_integer>
40008708: 92 10 00 01 mov %g1, %o1
(*print)( context,
4000870c: d0 07 bf ac ld [ %fp + -84 ], %o0
40008710: 40 00 46 72 call 4001a0d8 <.div>
40008714: 92 10 23 e8 mov 0x3e8, %o1
40008718: 96 10 00 08 mov %o0, %o3
4000871c: d0 07 bf b4 ld [ %fp + -76 ], %o0
40008720: d6 27 bf 9c st %o3, [ %fp + -100 ]
40008724: 40 00 46 6d call 4001a0d8 <.div>
40008728: 92 10 23 e8 mov 0x3e8, %o1
4000872c: c2 07 bf f0 ld [ %fp + -16 ], %g1
40008730: b6 10 00 08 mov %o0, %i3
40008734: d0 07 bf f4 ld [ %fp + -12 ], %o0
40008738: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
4000873c: 40 00 46 67 call 4001a0d8 <.div>
40008740: 92 10 23 e8 mov 0x3e8, %o1
40008744: d8 07 bf b0 ld [ %fp + -80 ], %o4
40008748: d6 07 bf 9c ld [ %fp + -100 ], %o3
4000874c: d4 07 bf a8 ld [ %fp + -88 ], %o2
40008750: 9a 10 00 1b mov %i3, %o5
40008754: 92 10 00 1c mov %i4, %o1
40008758: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
4000875c: 9f c6 40 00 call %i1
40008760: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40008764: d2 07 bf a0 ld [ %fp + -96 ], %o1
40008768: 94 10 00 14 mov %l4, %o2
4000876c: 40 00 0f 14 call 4000c3bc <_Timespec_Divide_by_integer>
40008770: 90 10 00 1a mov %i2, %o0
(*print)( context,
40008774: d0 07 bf c4 ld [ %fp + -60 ], %o0
40008778: 40 00 46 58 call 4001a0d8 <.div>
4000877c: 92 10 23 e8 mov 0x3e8, %o1
40008780: 96 10 00 08 mov %o0, %o3
40008784: d0 07 bf cc ld [ %fp + -52 ], %o0
40008788: d6 27 bf 9c st %o3, [ %fp + -100 ]
4000878c: 40 00 46 53 call 4001a0d8 <.div>
40008790: 92 10 23 e8 mov 0x3e8, %o1
40008794: c2 07 bf f0 ld [ %fp + -16 ], %g1
40008798: b6 10 00 08 mov %o0, %i3
4000879c: d0 07 bf f4 ld [ %fp + -12 ], %o0
400087a0: 92 10 23 e8 mov 0x3e8, %o1
400087a4: 40 00 46 4d call 4001a0d8 <.div>
400087a8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400087ac: d4 07 bf c0 ld [ %fp + -64 ], %o2
400087b0: d6 07 bf 9c ld [ %fp + -100 ], %o3
400087b4: d8 07 bf c8 ld [ %fp + -56 ], %o4
400087b8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400087bc: 13 10 00 78 sethi %hi(0x4001e000), %o1
400087c0: 90 10 00 18 mov %i0, %o0
400087c4: 92 12 63 a0 or %o1, 0x3a0, %o1
400087c8: 9f c6 40 00 call %i1
400087cc: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400087d0: 10 bf ff a7 b 4000866c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
400087d4: c2 04 60 0c ld [ %l1 + 0xc ], %g1
400087f4 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
400087f4: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
400087f8: 03 10 00 80 sethi %hi(0x40020000), %g1
400087fc: c4 00 61 58 ld [ %g1 + 0x158 ], %g2 ! 40020158 <_Thread_Dispatch_disable_level>
40008800: 84 00 a0 01 inc %g2
40008804: c4 20 61 58 st %g2, [ %g1 + 0x158 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008808: 23 10 00 7f sethi %hi(0x4001fc00), %l1
4000880c: a2 14 63 e4 or %l1, 0x3e4, %l1 ! 4001ffe4 <_Rate_monotonic_Information>
40008810: e0 04 60 08 ld [ %l1 + 8 ], %l0
40008814: c2 04 60 0c ld [ %l1 + 0xc ], %g1
40008818: 80 a4 00 01 cmp %l0, %g1
4000881c: 18 80 00 09 bgu 40008840 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
40008820: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_reset_statistics( id );
40008824: 40 00 00 0a call 4000884c <rtems_rate_monotonic_reset_statistics>
40008828: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000882c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40008830: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40008834: 80 a0 40 10 cmp %g1, %l0
40008838: 1a bf ff fb bcc 40008824 <rtems_rate_monotonic_reset_all_statistics+0x30>
4000883c: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
40008840: 40 00 0a de call 4000b3b8 <_Thread_Enable_dispatch>
40008844: 81 e8 00 00 restore
4001639c <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
4001639c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
400163a0: 80 a6 60 00 cmp %i1, 0
400163a4: 12 80 00 04 bne 400163b4 <rtems_signal_send+0x18>
400163a8: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
400163ac: 81 c7 e0 08 ret
400163b0: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
400163b4: 90 10 00 18 mov %i0, %o0
400163b8: 40 00 11 88 call 4001a9d8 <_Thread_Get>
400163bc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400163c0: c2 07 bf fc ld [ %fp + -4 ], %g1
400163c4: 80 a0 60 00 cmp %g1, 0
400163c8: 02 80 00 05 be 400163dc <rtems_signal_send+0x40>
400163cc: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
400163d0: 82 10 20 04 mov 4, %g1
}
400163d4: 81 c7 e0 08 ret
400163d8: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400163dc: e0 02 21 5c ld [ %o0 + 0x15c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400163e0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400163e4: 80 a0 60 00 cmp %g1, 0
400163e8: 02 80 00 25 be 4001647c <rtems_signal_send+0xe0>
400163ec: 01 00 00 00 nop
if ( asr->is_enabled ) {
400163f0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
400163f4: 80 a0 60 00 cmp %g1, 0
400163f8: 02 80 00 15 be 4001644c <rtems_signal_send+0xb0>
400163fc: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40016400: 7f ff e2 a6 call 4000ee98 <sparc_disable_interrupts>
40016404: 01 00 00 00 nop
*signal_set |= signals;
40016408: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
4001640c: b2 10 40 19 or %g1, %i1, %i1
40016410: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
40016414: 7f ff e2 a5 call 4000eea8 <sparc_enable_interrupts>
40016418: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
4001641c: 03 10 00 f9 sethi %hi(0x4003e400), %g1
40016420: 82 10 63 e4 or %g1, 0x3e4, %g1 ! 4003e7e4 <_Per_CPU_Information>
40016424: c4 00 60 08 ld [ %g1 + 8 ], %g2
40016428: 80 a0 a0 00 cmp %g2, 0
4001642c: 02 80 00 0f be 40016468 <rtems_signal_send+0xcc>
40016430: 01 00 00 00 nop
40016434: c4 00 60 0c ld [ %g1 + 0xc ], %g2
40016438: 80 a4 40 02 cmp %l1, %g2
4001643c: 12 80 00 0b bne 40016468 <rtems_signal_send+0xcc> <== NEVER TAKEN
40016440: 84 10 20 01 mov 1, %g2
_Context_Switch_necessary = true;
40016444: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40016448: 30 80 00 08 b,a 40016468 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
4001644c: 7f ff e2 93 call 4000ee98 <sparc_disable_interrupts>
40016450: 01 00 00 00 nop
*signal_set |= signals;
40016454: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40016458: b2 10 40 19 or %g1, %i1, %i1
4001645c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
40016460: 7f ff e2 92 call 4000eea8 <sparc_enable_interrupts>
40016464: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
40016468: 40 00 11 4e call 4001a9a0 <_Thread_Enable_dispatch>
4001646c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40016470: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016474: 81 c7 e0 08 ret
40016478: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
4001647c: 40 00 11 49 call 4001a9a0 <_Thread_Enable_dispatch>
40016480: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
40016484: 10 bf ff ca b 400163ac <rtems_signal_send+0x10>
40016488: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
4000ec3c <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000ec3c: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000ec40: 80 a6 a0 00 cmp %i2, 0
4000ec44: 02 80 00 43 be 4000ed50 <rtems_task_mode+0x114>
4000ec48: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000ec4c: 27 10 00 59 sethi %hi(0x40016400), %l3
4000ec50: a6 14 e1 ec or %l3, 0x1ec, %l3 ! 400165ec <_Per_CPU_Information>
4000ec54: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ec58: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000ec5c: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ec60: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000ec64: e2 04 21 5c ld [ %l0 + 0x15c ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ec68: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000ec6c: 80 a0 60 00 cmp %g1, 0
4000ec70: 12 80 00 3a bne 4000ed58 <rtems_task_mode+0x11c>
4000ec74: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ec78: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
4000ec7c: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000ec80: 7f ff f0 cf call 4000afbc <_CPU_ISR_Get_level>
4000ec84: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ec88: a9 2d 20 0a sll %l4, 0xa, %l4
4000ec8c: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000ec90: a4 15 00 12 or %l4, %l2, %l2
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000ec94: 80 8e 61 00 btst 0x100, %i1
4000ec98: 02 80 00 06 be 4000ecb0 <rtems_task_mode+0x74>
4000ec9c: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000eca0: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000eca4: 80 a0 00 01 cmp %g0, %g1
4000eca8: 82 60 3f ff subx %g0, -1, %g1
4000ecac: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000ecb0: 80 8e 62 00 btst 0x200, %i1
4000ecb4: 02 80 00 0b be 4000ece0 <rtems_task_mode+0xa4>
4000ecb8: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000ecbc: 80 8e 22 00 btst 0x200, %i0
4000ecc0: 22 80 00 07 be,a 4000ecdc <rtems_task_mode+0xa0>
4000ecc4: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000ecc8: 03 10 00 58 sethi %hi(0x40016000), %g1
4000eccc: c2 00 62 e8 ld [ %g1 + 0x2e8 ], %g1 ! 400162e8 <_Thread_Ticks_per_timeslice>
4000ecd0: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000ecd4: 82 10 20 01 mov 1, %g1
4000ecd8: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000ecdc: 80 8e 60 0f btst 0xf, %i1
4000ece0: 12 80 00 42 bne 4000ede8 <rtems_task_mode+0x1ac>
4000ece4: 01 00 00 00 nop
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000ece8: 80 8e 64 00 btst 0x400, %i1
4000ecec: 02 80 00 14 be 4000ed3c <rtems_task_mode+0x100>
4000ecf0: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000ecf4: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000ecf8: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000ecfc: 80 a0 00 18 cmp %g0, %i0
4000ed00: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000ed04: 80 a0 80 01 cmp %g2, %g1
4000ed08: 22 80 00 0e be,a 4000ed40 <rtems_task_mode+0x104>
4000ed0c: 03 10 00 59 sethi %hi(0x40016400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000ed10: 7f ff cc 3f call 40001e0c <sparc_disable_interrupts>
4000ed14: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
4000ed18: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
4000ed1c: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
4000ed20: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000ed24: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000ed28: 7f ff cc 3d call 40001e1c <sparc_enable_interrupts>
4000ed2c: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000ed30: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000ed34: 80 a0 00 01 cmp %g0, %g1
4000ed38: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) )
4000ed3c: 03 10 00 59 sethi %hi(0x40016400), %g1
4000ed40: c4 00 61 0c ld [ %g1 + 0x10c ], %g2 ! 4001650c <_System_state_Current>
4000ed44: 80 a0 a0 03 cmp %g2, 3
4000ed48: 02 80 00 11 be 4000ed8c <rtems_task_mode+0x150> <== ALWAYS TAKEN
4000ed4c: 82 10 20 00 clr %g1
if ( _Thread_Evaluate_mode() || needs_asr_dispatching )
_Thread_Dispatch();
return RTEMS_SUCCESSFUL;
}
4000ed50: 81 c7 e0 08 ret
4000ed54: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ed58: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000ed5c: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ed60: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000ed64: 7f ff f0 96 call 4000afbc <_CPU_ISR_Get_level>
4000ed68: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ed6c: a9 2d 20 0a sll %l4, 0xa, %l4
4000ed70: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
4000ed74: a4 15 00 12 or %l4, %l2, %l2
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000ed78: 80 8e 61 00 btst 0x100, %i1
4000ed7c: 02 bf ff cd be 4000ecb0 <rtems_task_mode+0x74>
4000ed80: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000ed84: 10 bf ff c8 b 4000eca4 <rtems_task_mode+0x68>
4000ed88: 82 0e 21 00 and %i0, 0x100, %g1
*/
RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void )
{
Thread_Control *executing;
executing = _Thread_Executing;
4000ed8c: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
if ( !_States_Is_ready( executing->current_state ) ||
4000ed90: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000ed94: 80 a0 a0 00 cmp %g2, 0
4000ed98: 32 80 00 0e bne,a 4000edd0 <rtems_task_mode+0x194> <== NEVER TAKEN
4000ed9c: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED
4000eda0: c4 04 e0 10 ld [ %l3 + 0x10 ], %g2
4000eda4: 80 a0 40 02 cmp %g1, %g2
4000eda8: 02 80 00 07 be 4000edc4 <rtems_task_mode+0x188>
4000edac: 80 88 e0 ff btst 0xff, %g3
( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) {
4000edb0: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
4000edb4: 80 a0 60 00 cmp %g1, 0
4000edb8: 12 80 00 06 bne 4000edd0 <rtems_task_mode+0x194> <== ALWAYS TAKEN
4000edbc: 82 10 20 01 mov 1, %g1
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) )
if ( _Thread_Evaluate_mode() || needs_asr_dispatching )
4000edc0: 80 88 e0 ff btst 0xff, %g3 <== NOT EXECUTED
4000edc4: 12 80 00 04 bne 4000edd4 <rtems_task_mode+0x198>
4000edc8: 82 10 20 00 clr %g1
4000edcc: 30 bf ff e1 b,a 4000ed50 <rtems_task_mode+0x114>
_Context_Switch_necessary = true;
4000edd0: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
_Thread_Dispatch();
4000edd4: 7f ff e9 ab call 40009480 <_Thread_Dispatch>
4000edd8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
4000eddc: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000ede0: 81 c7 e0 08 ret
4000ede4: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000ede8: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000edec: 7f ff cc 0c call 40001e1c <sparc_enable_interrupts>
4000edf0: 91 2a 20 08 sll %o0, 8, %o0
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000edf4: 10 bf ff be b 4000ecec <rtems_task_mode+0xb0>
4000edf8: 80 8e 64 00 btst 0x400, %i1
4000c080 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000c080: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000c084: 80 a6 60 00 cmp %i1, 0
4000c088: 02 80 00 07 be 4000c0a4 <rtems_task_set_priority+0x24>
4000c08c: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000c090: 03 10 00 69 sethi %hi(0x4001a400), %g1
4000c094: c2 08 62 94 ldub [ %g1 + 0x294 ], %g1 ! 4001a694 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
4000c098: 80 a6 40 01 cmp %i1, %g1
4000c09c: 18 80 00 1c bgu 4000c10c <rtems_task_set_priority+0x8c>
4000c0a0: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000c0a4: 80 a6 a0 00 cmp %i2, 0
4000c0a8: 02 80 00 19 be 4000c10c <rtems_task_set_priority+0x8c>
4000c0ac: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000c0b0: 40 00 08 84 call 4000e2c0 <_Thread_Get>
4000c0b4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000c0b8: c2 07 bf fc ld [ %fp + -4 ], %g1
4000c0bc: 80 a0 60 00 cmp %g1, 0
4000c0c0: 12 80 00 13 bne 4000c10c <rtems_task_set_priority+0x8c>
4000c0c4: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000c0c8: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000c0cc: 80 a6 60 00 cmp %i1, 0
4000c0d0: 02 80 00 0d be 4000c104 <rtems_task_set_priority+0x84>
4000c0d4: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000c0d8: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000c0dc: 80 a0 60 00 cmp %g1, 0
4000c0e0: 02 80 00 06 be 4000c0f8 <rtems_task_set_priority+0x78>
4000c0e4: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000c0e8: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000c0ec: 80 a6 40 01 cmp %i1, %g1
4000c0f0: 1a 80 00 05 bcc 4000c104 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000c0f4: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000c0f8: 92 10 00 19 mov %i1, %o1
4000c0fc: 40 00 06 ec call 4000dcac <_Thread_Change_priority>
4000c100: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000c104: 40 00 08 61 call 4000e288 <_Thread_Enable_dispatch>
4000c108: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000c10c: 81 c7 e0 08 ret
4000c110: 81 e8 00 00 restore
400081ac <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
400081ac: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
400081b0: 80 a6 60 00 cmp %i1, 0
400081b4: 02 80 00 1e be 4000822c <rtems_task_variable_delete+0x80>
400081b8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
400081bc: 90 10 00 18 mov %i0, %o0
400081c0: 40 00 08 0c call 4000a1f0 <_Thread_Get>
400081c4: 92 07 bf fc add %fp, -4, %o1
switch (location) {
400081c8: c2 07 bf fc ld [ %fp + -4 ], %g1
400081cc: 80 a0 60 00 cmp %g1, 0
400081d0: 12 80 00 19 bne 40008234 <rtems_task_variable_delete+0x88>
400081d4: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
400081d8: c2 02 21 68 ld [ %o0 + 0x168 ], %g1
while (tvp) {
400081dc: 80 a0 60 00 cmp %g1, 0
400081e0: 02 80 00 10 be 40008220 <rtems_task_variable_delete+0x74>
400081e4: 01 00 00 00 nop
if (tvp->ptr == ptr) {
400081e8: c4 00 60 04 ld [ %g1 + 4 ], %g2
400081ec: 80 a0 80 19 cmp %g2, %i1
400081f0: 32 80 00 09 bne,a 40008214 <rtems_task_variable_delete+0x68>
400081f4: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
400081f8: 10 80 00 19 b 4000825c <rtems_task_variable_delete+0xb0>
400081fc: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
40008200: 80 a0 80 19 cmp %g2, %i1
40008204: 22 80 00 0e be,a 4000823c <rtems_task_variable_delete+0x90>
40008208: c4 02 40 00 ld [ %o1 ], %g2
4000820c: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
40008210: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
40008214: 80 a2 60 00 cmp %o1, 0
40008218: 32 bf ff fa bne,a 40008200 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
4000821c: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
40008220: 40 00 07 e6 call 4000a1b8 <_Thread_Enable_dispatch>
40008224: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
40008228: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4000822c: 81 c7 e0 08 ret
40008230: 91 e8 00 01 restore %g0, %g1, %o0
40008234: 81 c7 e0 08 ret
40008238: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
4000823c: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
40008240: 40 00 00 2e call 400082f8 <_RTEMS_Tasks_Invoke_task_variable_dtor>
40008244: 01 00 00 00 nop
_Thread_Enable_dispatch();
40008248: 40 00 07 dc call 4000a1b8 <_Thread_Enable_dispatch>
4000824c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40008250: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40008254: 81 c7 e0 08 ret
40008258: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
4000825c: 92 10 00 01 mov %g1, %o1
40008260: 10 bf ff f8 b 40008240 <rtems_task_variable_delete+0x94>
40008264: c4 22 21 68 st %g2, [ %o0 + 0x168 ]
40008268 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
40008268: 9d e3 bf 98 save %sp, -104, %sp
4000826c: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
40008270: 80 a6 60 00 cmp %i1, 0
40008274: 02 80 00 1b be 400082e0 <rtems_task_variable_get+0x78>
40008278: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
4000827c: 80 a6 a0 00 cmp %i2, 0
40008280: 02 80 00 1c be 400082f0 <rtems_task_variable_get+0x88>
40008284: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
40008288: 40 00 07 da call 4000a1f0 <_Thread_Get>
4000828c: 92 07 bf fc add %fp, -4, %o1
switch (location) {
40008290: c2 07 bf fc ld [ %fp + -4 ], %g1
40008294: 80 a0 60 00 cmp %g1, 0
40008298: 12 80 00 12 bne 400082e0 <rtems_task_variable_get+0x78>
4000829c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
400082a0: c2 02 21 68 ld [ %o0 + 0x168 ], %g1
while (tvp) {
400082a4: 80 a0 60 00 cmp %g1, 0
400082a8: 32 80 00 07 bne,a 400082c4 <rtems_task_variable_get+0x5c>
400082ac: c4 00 60 04 ld [ %g1 + 4 ], %g2
400082b0: 30 80 00 0e b,a 400082e8 <rtems_task_variable_get+0x80>
400082b4: 80 a0 60 00 cmp %g1, 0
400082b8: 02 80 00 0c be 400082e8 <rtems_task_variable_get+0x80> <== NEVER TAKEN
400082bc: 01 00 00 00 nop
if (tvp->ptr == ptr) {
400082c0: c4 00 60 04 ld [ %g1 + 4 ], %g2
400082c4: 80 a0 80 19 cmp %g2, %i1
400082c8: 32 bf ff fb bne,a 400082b4 <rtems_task_variable_get+0x4c>
400082cc: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
400082d0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
400082d4: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
400082d8: 40 00 07 b8 call 4000a1b8 <_Thread_Enable_dispatch>
400082dc: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
400082e0: 81 c7 e0 08 ret
400082e4: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
400082e8: 40 00 07 b4 call 4000a1b8 <_Thread_Enable_dispatch>
400082ec: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
400082f0: 81 c7 e0 08 ret
400082f4: 81 e8 00 00 restore
40016e04 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40016e04: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40016e08: 11 10 00 fa sethi %hi(0x4003e800), %o0
40016e0c: 92 10 00 18 mov %i0, %o1
40016e10: 90 12 20 44 or %o0, 0x44, %o0
40016e14: 40 00 0c 6c call 40019fc4 <_Objects_Get>
40016e18: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016e1c: c2 07 bf fc ld [ %fp + -4 ], %g1
40016e20: 80 a0 60 00 cmp %g1, 0
40016e24: 22 80 00 04 be,a 40016e34 <rtems_timer_cancel+0x30>
40016e28: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016e2c: 81 c7 e0 08 ret
40016e30: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40016e34: 80 a0 60 04 cmp %g1, 4
40016e38: 02 80 00 04 be 40016e48 <rtems_timer_cancel+0x44> <== NEVER TAKEN
40016e3c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40016e40: 40 00 15 07 call 4001c25c <_Watchdog_Remove>
40016e44: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40016e48: 40 00 0e d6 call 4001a9a0 <_Thread_Enable_dispatch>
40016e4c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40016e50: 81 c7 e0 08 ret
40016e54: 81 e8 00 00 restore
4001731c <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
4001731c: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40017320: 03 10 00 fa sethi %hi(0x4003e800), %g1
40017324: e0 00 60 84 ld [ %g1 + 0x84 ], %l0 ! 4003e884 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40017328: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
4001732c: 80 a4 20 00 cmp %l0, 0
40017330: 02 80 00 10 be 40017370 <rtems_timer_server_fire_when+0x54>
40017334: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
40017338: 03 10 00 f9 sethi %hi(0x4003e400), %g1
4001733c: c2 08 61 88 ldub [ %g1 + 0x188 ], %g1 ! 4003e588 <_TOD_Is_set>
40017340: 80 a0 60 00 cmp %g1, 0
40017344: 02 80 00 0b be 40017370 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
40017348: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
4001734c: 80 a6 a0 00 cmp %i2, 0
40017350: 02 80 00 08 be 40017370 <rtems_timer_server_fire_when+0x54>
40017354: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
40017358: 90 10 00 19 mov %i1, %o0
4001735c: 7f ff f3 ad call 40014210 <_TOD_Validate>
40017360: b0 10 20 14 mov 0x14, %i0
40017364: 80 8a 20 ff btst 0xff, %o0
40017368: 12 80 00 04 bne 40017378 <rtems_timer_server_fire_when+0x5c>
4001736c: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40017370: 81 c7 e0 08 ret
40017374: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
40017378: 7f ff f3 70 call 40014138 <_TOD_To_seconds>
4001737c: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
40017380: 25 10 00 f9 sethi %hi(0x4003e400), %l2
40017384: c2 04 a2 00 ld [ %l2 + 0x200 ], %g1 ! 4003e600 <_TOD_Now>
40017388: 80 a2 00 01 cmp %o0, %g1
4001738c: 08 bf ff f9 bleu 40017370 <rtems_timer_server_fire_when+0x54>
40017390: b2 10 00 08 mov %o0, %i1
40017394: 92 10 00 11 mov %l1, %o1
40017398: 11 10 00 fa sethi %hi(0x4003e800), %o0
4001739c: 94 07 bf fc add %fp, -4, %o2
400173a0: 40 00 0b 09 call 40019fc4 <_Objects_Get>
400173a4: 90 12 20 44 or %o0, 0x44, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
400173a8: c2 07 bf fc ld [ %fp + -4 ], %g1
400173ac: a6 10 00 08 mov %o0, %l3
400173b0: 80 a0 60 00 cmp %g1, 0
400173b4: 12 bf ff ef bne 40017370 <rtems_timer_server_fire_when+0x54>
400173b8: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
400173bc: 40 00 13 a8 call 4001c25c <_Watchdog_Remove>
400173c0: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
400173c4: c2 04 20 04 ld [ %l0 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400173c8: c4 04 a2 00 ld [ %l2 + 0x200 ], %g2
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
400173cc: 86 10 20 03 mov 3, %g3
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
400173d0: 90 10 00 10 mov %l0, %o0
400173d4: 92 10 00 13 mov %l3, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400173d8: b2 26 40 02 sub %i1, %g2, %i1
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
400173dc: c6 24 e0 38 st %g3, [ %l3 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
400173e0: f4 24 e0 2c st %i2, [ %l3 + 0x2c ]
the_watchdog->id = id;
400173e4: e2 24 e0 30 st %l1, [ %l3 + 0x30 ]
the_watchdog->user_data = user_data;
400173e8: f6 24 e0 34 st %i3, [ %l3 + 0x34 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400173ec: c0 24 e0 18 clr [ %l3 + 0x18 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400173f0: f2 24 e0 1c st %i1, [ %l3 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
400173f4: 9f c0 40 00 call %g1
400173f8: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
400173fc: 40 00 0d 69 call 4001a9a0 <_Thread_Enable_dispatch>
40017400: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40017404: 81 c7 e0 08 ret
40017408: 81 e8 00 00 restore