RTEMS 4.11Annotated Report
Fri Mar 11 16:31:25 2011
4000f95c <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
4000f95c: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
4000f960: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
4000f964: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
4000f968: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
4000f96c: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
4000f970: 80 8e e0 03 btst 3, %i3
4000f974: 02 80 00 07 be 4000f990 <_CORE_message_queue_Initialize+0x34>
4000f978: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
4000f97c: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
4000f980: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
4000f984: 80 a4 80 1b cmp %l2, %i3
4000f988: 0a 80 00 22 bcs 4000fa10 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4000f98c: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
4000f990: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
4000f994: 92 10 00 1a mov %i2, %o1
4000f998: 90 10 00 11 mov %l1, %o0
4000f99c: 40 00 3e 9b call 4001f408 <.umul>
4000f9a0: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
4000f9a4: 80 a2 00 12 cmp %o0, %l2
4000f9a8: 0a 80 00 1a bcs 4000fa10 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4000f9ac: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
4000f9b0: 40 00 0b e3 call 4001293c <_Workspace_Allocate>
4000f9b4: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
4000f9b8: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
4000f9bc: 80 a2 20 00 cmp %o0, 0
4000f9c0: 02 80 00 14 be 4000fa10 <_CORE_message_queue_Initialize+0xb4>
4000f9c4: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
4000f9c8: 90 04 20 60 add %l0, 0x60, %o0
4000f9cc: 94 10 00 1a mov %i2, %o2
4000f9d0: 40 00 13 e4 call 40014960 <_Chain_Initialize>
4000f9d4: 96 10 00 11 mov %l1, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000f9d8: 82 04 20 54 add %l0, 0x54, %g1
head->next = tail;
4000f9dc: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
4000f9e0: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
4000f9e4: c0 24 20 54 clr [ %l0 + 0x54 ]
tail->previous = head;
4000f9e8: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
4000f9ec: c2 06 40 00 ld [ %i1 ], %g1
4000f9f0: 90 10 00 10 mov %l0, %o0
4000f9f4: 82 18 60 01 xor %g1, 1, %g1
4000f9f8: 80 a0 00 01 cmp %g0, %g1
4000f9fc: 94 10 20 80 mov 0x80, %o2
4000fa00: 92 60 3f ff subx %g0, -1, %o1
4000fa04: 96 10 20 06 mov 6, %o3
4000fa08: 40 00 09 59 call 40011f6c <_Thread_queue_Initialize>
4000fa0c: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
4000fa10: 81 c7 e0 08 ret
4000fa14: 81 e8 00 00 restore
4000fa18 <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
4000fa18: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
4000fa1c: 27 10 00 94 sethi %hi(0x40025000), %l3
4000fa20: a6 14 e0 cc or %l3, 0xcc, %l3 ! 400250cc <_Per_CPU_Information>
4000fa24: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
4000fa28: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
4000fa2c: 7f ff de 29 call 400072d0 <sparc_disable_interrupts>
4000fa30: c0 24 a0 34 clr [ %l2 + 0x34 ]
4000fa34: 82 10 00 08 mov %o0, %g1
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
4000fa38: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000fa3c: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
4000fa40: 80 a4 40 02 cmp %l1, %g2
4000fa44: 02 80 00 15 be 4000fa98 <_CORE_message_queue_Seize+0x80>
4000fa48: 86 06 20 50 add %i0, 0x50, %g3
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
4000fa4c: c4 04 40 00 ld [ %l1 ], %g2
head->next = new_first;
4000fa50: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
4000fa54: 80 a4 60 00 cmp %l1, 0
4000fa58: 02 80 00 10 be 4000fa98 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
4000fa5c: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
4000fa60: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
4000fa64: 82 00 7f ff add %g1, -1, %g1
4000fa68: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
4000fa6c: 7f ff de 1d call 400072e0 <sparc_enable_interrupts>
4000fa70: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
4000fa74: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
4000fa78: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
4000fa7c: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
4000fa80: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
4000fa84: 90 10 00 1a mov %i2, %o0
4000fa88: 40 00 1d f2 call 40017250 <memcpy>
4000fa8c: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
4000fa90: 7f ff ff 83 call 4000f89c <_Chain_Append>
4000fa94: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
4000fa98: 80 8f 20 ff btst 0xff, %i4
4000fa9c: 32 80 00 08 bne,a 4000fabc <_CORE_message_queue_Seize+0xa4>
4000faa0: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
4000faa4: 7f ff de 0f call 400072e0 <sparc_enable_interrupts>
4000faa8: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
4000faac: 82 10 20 04 mov 4, %g1
4000fab0: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
4000fab4: 81 c7 e0 08 ret
4000fab8: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
4000fabc: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
4000fac0: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
4000fac4: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
4000fac8: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
4000facc: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
4000fad0: 90 10 00 01 mov %g1, %o0
4000fad4: 7f ff de 03 call 400072e0 <sparc_enable_interrupts>
4000fad8: 35 10 00 48 sethi %hi(0x40012000), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
4000fadc: b2 10 00 1d mov %i5, %i1
4000fae0: 40 00 08 79 call 40011cc4 <_Thread_queue_Enqueue_with_handler>
4000fae4: 95 ee a0 4c restore %i2, 0x4c, %o2
400067d0 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
400067d0: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
400067d4: 03 10 00 51 sethi %hi(0x40014400), %g1
400067d8: c2 00 60 80 ld [ %g1 + 0x80 ], %g1 ! 40014480 <_Thread_Dispatch_disable_level>
400067dc: 80 a0 60 00 cmp %g1, 0
400067e0: 02 80 00 0d be 40006814 <_CORE_mutex_Seize+0x44>
400067e4: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
400067e8: 80 8e a0 ff btst 0xff, %i2
400067ec: 02 80 00 0b be 40006818 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
400067f0: 90 10 00 18 mov %i0, %o0
400067f4: 03 10 00 51 sethi %hi(0x40014400), %g1
400067f8: c2 00 61 d8 ld [ %g1 + 0x1d8 ], %g1 ! 400145d8 <_System_state_Current>
400067fc: 80 a0 60 01 cmp %g1, 1
40006800: 08 80 00 05 bleu 40006814 <_CORE_mutex_Seize+0x44>
40006804: 90 10 20 00 clr %o0
40006808: 92 10 20 00 clr %o1
4000680c: 40 00 01 da call 40006f74 <_Internal_error_Occurred>
40006810: 94 10 20 12 mov 0x12, %o2
40006814: 90 10 00 18 mov %i0, %o0
40006818: 40 00 13 00 call 4000b418 <_CORE_mutex_Seize_interrupt_trylock>
4000681c: 92 07 a0 54 add %fp, 0x54, %o1
40006820: 80 a2 20 00 cmp %o0, 0
40006824: 02 80 00 0a be 4000684c <_CORE_mutex_Seize+0x7c>
40006828: 80 8e a0 ff btst 0xff, %i2
4000682c: 35 10 00 51 sethi %hi(0x40014400), %i2
40006830: 12 80 00 09 bne 40006854 <_CORE_mutex_Seize+0x84>
40006834: b4 16 a2 ac or %i2, 0x2ac, %i2 ! 400146ac <_Per_CPU_Information>
40006838: 7f ff ed 24 call 40001cc8 <sparc_enable_interrupts>
4000683c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006840: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
40006844: 84 10 20 01 mov 1, %g2
40006848: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
4000684c: 81 c7 e0 08 ret
40006850: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
40006854: 82 10 20 01 mov 1, %g1
40006858: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
4000685c: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
40006860: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40006864: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
40006868: 03 10 00 51 sethi %hi(0x40014400), %g1
4000686c: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 40014480 <_Thread_Dispatch_disable_level>
40006870: 84 00 a0 01 inc %g2
40006874: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
40006878: 7f ff ed 14 call 40001cc8 <sparc_enable_interrupts>
4000687c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006880: 90 10 00 18 mov %i0, %o0
40006884: 7f ff ff ba call 4000676c <_CORE_mutex_Seize_interrupt_blocking>
40006888: 92 10 00 1b mov %i3, %o1
4000688c: 81 c7 e0 08 ret
40006890: 81 e8 00 00 restore
40006a10 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
40006a10: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
40006a14: 90 10 00 18 mov %i0, %o0
40006a18: 40 00 06 ee call 400085d0 <_Thread_queue_Dequeue>
40006a1c: a0 10 00 18 mov %i0, %l0
40006a20: 80 a2 20 00 cmp %o0, 0
40006a24: 12 80 00 0e bne 40006a5c <_CORE_semaphore_Surrender+0x4c>
40006a28: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
40006a2c: 7f ff ec a3 call 40001cb8 <sparc_disable_interrupts>
40006a30: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
40006a34: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40006a38: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
40006a3c: 80 a0 40 02 cmp %g1, %g2
40006a40: 1a 80 00 05 bcc 40006a54 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
40006a44: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
40006a48: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
40006a4c: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
40006a50: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
40006a54: 7f ff ec 9d call 40001cc8 <sparc_enable_interrupts>
40006a58: 01 00 00 00 nop
}
return status;
}
40006a5c: 81 c7 e0 08 ret
40006a60: 81 e8 00 00 restore
400057cc <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
400057cc: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400057d0: e2 06 21 4c ld [ %i0 + 0x14c ], %l1
option_set = (rtems_option) the_thread->Wait.option;
400057d4: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
400057d8: 7f ff f1 38 call 40001cb8 <sparc_disable_interrupts>
400057dc: a0 10 00 18 mov %i0, %l0
400057e0: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
400057e4: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
400057e8: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
400057ec: 82 88 c0 02 andcc %g3, %g2, %g1
400057f0: 12 80 00 03 bne 400057fc <_Event_Surrender+0x30>
400057f4: 09 10 00 51 sethi %hi(0x40014400), %g4
_ISR_Enable( level );
400057f8: 30 80 00 42 b,a 40005900 <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
400057fc: 88 11 22 ac or %g4, 0x2ac, %g4 ! 400146ac <_Per_CPU_Information>
40005800: da 01 20 08 ld [ %g4 + 8 ], %o5
40005804: 80 a3 60 00 cmp %o5, 0
40005808: 22 80 00 1d be,a 4000587c <_Event_Surrender+0xb0>
4000580c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
40005810: c8 01 20 0c ld [ %g4 + 0xc ], %g4
40005814: 80 a4 00 04 cmp %l0, %g4
40005818: 32 80 00 19 bne,a 4000587c <_Event_Surrender+0xb0>
4000581c: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005820: 09 10 00 51 sethi %hi(0x40014400), %g4
40005824: da 01 23 00 ld [ %g4 + 0x300 ], %o5 ! 40014700 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
40005828: 80 a3 60 02 cmp %o5, 2
4000582c: 02 80 00 07 be 40005848 <_Event_Surrender+0x7c> <== NEVER TAKEN
40005830: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
40005834: c8 01 23 00 ld [ %g4 + 0x300 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
40005838: 80 a1 20 01 cmp %g4, 1
4000583c: 32 80 00 10 bne,a 4000587c <_Event_Surrender+0xb0>
40005840: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
40005844: 80 a0 40 03 cmp %g1, %g3
40005848: 02 80 00 04 be 40005858 <_Event_Surrender+0x8c>
4000584c: 80 8c a0 02 btst 2, %l2
40005850: 02 80 00 0a be 40005878 <_Event_Surrender+0xac> <== NEVER TAKEN
40005854: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
40005858: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
4000585c: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005860: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
40005864: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005868: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
4000586c: 84 10 20 03 mov 3, %g2
40005870: 03 10 00 51 sethi %hi(0x40014400), %g1
40005874: c4 20 63 00 st %g2, [ %g1 + 0x300 ] ! 40014700 <_Event_Sync_state>
}
_ISR_Enable( level );
40005878: 30 80 00 22 b,a 40005900 <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
4000587c: 80 89 21 00 btst 0x100, %g4
40005880: 02 80 00 20 be 40005900 <_Event_Surrender+0x134>
40005884: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40005888: 02 80 00 04 be 40005898 <_Event_Surrender+0xcc>
4000588c: 80 8c a0 02 btst 2, %l2
40005890: 02 80 00 1c be 40005900 <_Event_Surrender+0x134> <== NEVER TAKEN
40005894: 01 00 00 00 nop
40005898: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
4000589c: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400058a0: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
400058a4: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400058a8: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
400058ac: 7f ff f1 07 call 40001cc8 <sparc_enable_interrupts>
400058b0: 90 10 00 18 mov %i0, %o0
400058b4: 7f ff f1 01 call 40001cb8 <sparc_disable_interrupts>
400058b8: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
400058bc: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
400058c0: 80 a0 60 02 cmp %g1, 2
400058c4: 02 80 00 06 be 400058dc <_Event_Surrender+0x110>
400058c8: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
400058cc: 7f ff f0 ff call 40001cc8 <sparc_enable_interrupts>
400058d0: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400058d4: 10 80 00 08 b 400058f4 <_Event_Surrender+0x128>
400058d8: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
400058dc: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
400058e0: 7f ff f0 fa call 40001cc8 <sparc_enable_interrupts>
400058e4: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
400058e8: 40 00 0e 50 call 40009228 <_Watchdog_Remove>
400058ec: 90 04 20 48 add %l0, 0x48, %o0
400058f0: 33 04 00 ff sethi %hi(0x1003fc00), %i1
400058f4: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
400058f8: 40 00 09 ad call 40007fac <_Thread_Clear_state>
400058fc: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
40005900: 7f ff f0 f2 call 40001cc8 <sparc_enable_interrupts>
40005904: 81 e8 00 00 restore
4000590c <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
4000590c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
40005910: 90 10 00 18 mov %i0, %o0
40005914: 40 00 0a 7a call 400082fc <_Thread_Get>
40005918: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000591c: c2 07 bf fc ld [ %fp + -4 ], %g1
40005920: 80 a0 60 00 cmp %g1, 0
40005924: 12 80 00 1c bne 40005994 <_Event_Timeout+0x88> <== NEVER TAKEN
40005928: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
4000592c: 7f ff f0 e3 call 40001cb8 <sparc_disable_interrupts>
40005930: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40005934: 03 10 00 51 sethi %hi(0x40014400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
40005938: c2 00 62 b8 ld [ %g1 + 0x2b8 ], %g1 ! 400146b8 <_Per_CPU_Information+0xc>
4000593c: 80 a4 00 01 cmp %l0, %g1
40005940: 12 80 00 09 bne 40005964 <_Event_Timeout+0x58>
40005944: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
40005948: 03 10 00 51 sethi %hi(0x40014400), %g1
4000594c: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 40014700 <_Event_Sync_state>
40005950: 80 a0 a0 01 cmp %g2, 1
40005954: 32 80 00 05 bne,a 40005968 <_Event_Timeout+0x5c>
40005958: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
4000595c: 84 10 20 02 mov 2, %g2
40005960: c4 20 63 00 st %g2, [ %g1 + 0x300 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005964: 82 10 20 06 mov 6, %g1
40005968: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
4000596c: 7f ff f0 d7 call 40001cc8 <sparc_enable_interrupts>
40005970: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005974: 90 10 00 10 mov %l0, %o0
40005978: 13 04 00 ff sethi %hi(0x1003fc00), %o1
4000597c: 40 00 09 8c call 40007fac <_Thread_Clear_state>
40005980: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40005984: 03 10 00 51 sethi %hi(0x40014400), %g1
40005988: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 40014480 <_Thread_Dispatch_disable_level>
4000598c: 84 00 bf ff add %g2, -1, %g2
40005990: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
40005994: 81 c7 e0 08 ret
40005998: 81 e8 00 00 restore
4000ba74 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000ba74: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000ba78: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000ba7c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000ba80: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000ba84: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000ba88: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000ba8c: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000ba90: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
4000ba94: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000ba98: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000ba9c: 80 a4 40 19 cmp %l1, %i1
4000baa0: 0a 80 00 9f bcs 4000bd1c <_Heap_Extend+0x2a8>
4000baa4: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000baa8: 90 10 00 19 mov %i1, %o0
4000baac: 94 10 00 13 mov %l3, %o2
4000bab0: 98 07 bf fc add %fp, -4, %o4
4000bab4: 7f ff ed 4c call 40006fe4 <_Heap_Get_first_and_last_block>
4000bab8: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000babc: 80 8a 20 ff btst 0xff, %o0
4000bac0: 02 80 00 97 be 4000bd1c <_Heap_Extend+0x2a8>
4000bac4: aa 10 00 12 mov %l2, %l5
4000bac8: ba 10 20 00 clr %i5
4000bacc: b8 10 20 00 clr %i4
4000bad0: b0 10 20 00 clr %i0
4000bad4: ae 10 20 00 clr %l7
4000bad8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000badc: 80 a0 40 11 cmp %g1, %l1
4000bae0: 1a 80 00 05 bcc 4000baf4 <_Heap_Extend+0x80>
4000bae4: ec 05 40 00 ld [ %l5 ], %l6
4000bae8: 80 a6 40 16 cmp %i1, %l6
4000baec: 2a 80 00 8c bcs,a 4000bd1c <_Heap_Extend+0x2a8>
4000baf0: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000baf4: 80 a4 40 01 cmp %l1, %g1
4000baf8: 02 80 00 06 be 4000bb10 <_Heap_Extend+0x9c>
4000bafc: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000bb00: 2a 80 00 05 bcs,a 4000bb14 <_Heap_Extend+0xa0>
4000bb04: b8 10 00 15 mov %l5, %i4
4000bb08: 10 80 00 04 b 4000bb18 <_Heap_Extend+0xa4>
4000bb0c: 90 10 00 16 mov %l6, %o0
4000bb10: ae 10 00 15 mov %l5, %l7
4000bb14: 90 10 00 16 mov %l6, %o0
4000bb18: 40 00 16 3a call 40011400 <.urem>
4000bb1c: 92 10 00 13 mov %l3, %o1
4000bb20: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000bb24: 80 a5 80 19 cmp %l6, %i1
4000bb28: 12 80 00 05 bne 4000bb3c <_Heap_Extend+0xc8>
4000bb2c: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
4000bb30: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
4000bb34: 10 80 00 04 b 4000bb44 <_Heap_Extend+0xd0>
4000bb38: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000bb3c: 2a 80 00 02 bcs,a 4000bb44 <_Heap_Extend+0xd0>
4000bb40: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000bb44: ea 02 20 04 ld [ %o0 + 4 ], %l5
4000bb48: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000bb4c: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000bb50: 80 a5 40 12 cmp %l5, %l2
4000bb54: 12 bf ff e2 bne 4000badc <_Heap_Extend+0x68>
4000bb58: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
4000bb5c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000bb60: 80 a6 40 01 cmp %i1, %g1
4000bb64: 3a 80 00 04 bcc,a 4000bb74 <_Heap_Extend+0x100>
4000bb68: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000bb6c: 10 80 00 05 b 4000bb80 <_Heap_Extend+0x10c>
4000bb70: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
4000bb74: 80 a0 40 11 cmp %g1, %l1
4000bb78: 2a 80 00 02 bcs,a 4000bb80 <_Heap_Extend+0x10c>
4000bb7c: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000bb80: c4 07 bf fc ld [ %fp + -4 ], %g2
4000bb84: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
4000bb88: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000bb8c: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000bb90: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000bb94: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000bb98: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000bb9c: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
4000bba0: 80 a0 c0 02 cmp %g3, %g2
4000bba4: 08 80 00 04 bleu 4000bbb4 <_Heap_Extend+0x140>
4000bba8: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
4000bbac: 10 80 00 06 b 4000bbc4 <_Heap_Extend+0x150>
4000bbb0: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000bbb4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
4000bbb8: 80 a0 80 01 cmp %g2, %g1
4000bbbc: 2a 80 00 02 bcs,a 4000bbc4 <_Heap_Extend+0x150>
4000bbc0: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000bbc4: 80 a5 e0 00 cmp %l7, 0
4000bbc8: 02 80 00 14 be 4000bc18 <_Heap_Extend+0x1a4>
4000bbcc: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000bbd0: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000bbd4: 92 10 00 12 mov %l2, %o1
4000bbd8: 40 00 16 0a call 40011400 <.urem>
4000bbdc: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000bbe0: 80 a2 20 00 cmp %o0, 0
4000bbe4: 02 80 00 04 be 4000bbf4 <_Heap_Extend+0x180>
4000bbe8: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
4000bbec: b2 06 40 12 add %i1, %l2, %i1
4000bbf0: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000bbf4: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000bbf8: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000bbfc: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000bc00: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000bc04: 90 10 00 10 mov %l0, %o0
4000bc08: 7f ff ff 90 call 4000ba48 <_Heap_Free_block>
4000bc0c: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000bc10: 10 80 00 09 b 4000bc34 <_Heap_Extend+0x1c0>
4000bc14: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000bc18: 80 a7 20 00 cmp %i4, 0
4000bc1c: 02 80 00 05 be 4000bc30 <_Heap_Extend+0x1bc>
4000bc20: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000bc24: b8 27 00 01 sub %i4, %g1, %i4
4000bc28: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000bc2c: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000bc30: 80 a6 20 00 cmp %i0, 0
4000bc34: 02 80 00 15 be 4000bc88 <_Heap_Extend+0x214>
4000bc38: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000bc3c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000bc40: a2 24 40 18 sub %l1, %i0, %l1
4000bc44: 40 00 15 ef call 40011400 <.urem>
4000bc48: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000bc4c: c4 06 20 04 ld [ %i0 + 4 ], %g2
4000bc50: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000bc54: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
4000bc58: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
4000bc5c: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000bc60: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bc64: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000bc68: 90 10 00 10 mov %l0, %o0
4000bc6c: 82 08 60 01 and %g1, 1, %g1
4000bc70: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
4000bc74: a2 14 40 01 or %l1, %g1, %l1
4000bc78: 7f ff ff 74 call 4000ba48 <_Heap_Free_block>
4000bc7c: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000bc80: 10 80 00 0f b 4000bcbc <_Heap_Extend+0x248>
4000bc84: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000bc88: 80 a7 60 00 cmp %i5, 0
4000bc8c: 02 80 00 0b be 4000bcb8 <_Heap_Extend+0x244>
4000bc90: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bc94: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
4000bc98: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000bc9c: 86 20 c0 1d sub %g3, %i5, %g3
4000bca0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000bca4: 84 10 c0 02 or %g3, %g2, %g2
4000bca8: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000bcac: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000bcb0: 84 10 a0 01 or %g2, 1, %g2
4000bcb4: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000bcb8: 80 a6 20 00 cmp %i0, 0
4000bcbc: 32 80 00 09 bne,a 4000bce0 <_Heap_Extend+0x26c>
4000bcc0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000bcc4: 80 a5 e0 00 cmp %l7, 0
4000bcc8: 32 80 00 06 bne,a 4000bce0 <_Heap_Extend+0x26c>
4000bccc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000bcd0: d2 07 bf fc ld [ %fp + -4 ], %o1
4000bcd4: 7f ff ff 5d call 4000ba48 <_Heap_Free_block>
4000bcd8: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000bcdc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000bce0: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bce4: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000bce8: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bcec: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000bcf0: 84 10 c0 02 or %g3, %g2, %g2
4000bcf4: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000bcf8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
4000bcfc: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000bd00: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000bd04: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
4000bd08: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000bd0c: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
4000bd10: 02 80 00 03 be 4000bd1c <_Heap_Extend+0x2a8> <== NEVER TAKEN
4000bd14: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
4000bd18: e8 26 c0 00 st %l4, [ %i3 ]
4000bd1c: 81 c7 e0 08 ret
4000bd20: 81 e8 00 00 restore
4000b774 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000b774: 9d e3 bf a0 save %sp, -96, %sp
4000b778: a0 10 00 18 mov %i0, %l0
4000b77c: 90 10 00 19 mov %i1, %o0
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
4000b780: 80 a6 60 00 cmp %i1, 0
4000b784: 02 80 00 78 be 4000b964 <_Heap_Free+0x1f0>
4000b788: b0 10 20 01 mov 1, %i0
4000b78c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
4000b790: 40 00 15 de call 40010f08 <.urem>
4000b794: a2 06 7f f8 add %i1, -8, %l1
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000b798: d8 04 20 20 ld [ %l0 + 0x20 ], %o4
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000b79c: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b7a0: 80 a2 00 0c cmp %o0, %o4
4000b7a4: 0a 80 00 05 bcs 4000b7b8 <_Heap_Free+0x44>
4000b7a8: 82 10 20 00 clr %g1
4000b7ac: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000b7b0: 80 a0 40 08 cmp %g1, %o0
4000b7b4: 82 60 3f ff subx %g0, -1, %g1
}
alloc_begin = (uintptr_t) alloc_begin_ptr;
block = _Heap_Block_of_alloc_area( alloc_begin, heap->page_size );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000b7b8: 80 a0 60 00 cmp %g1, 0
4000b7bc: 02 80 00 6a be 4000b964 <_Heap_Free+0x1f0>
4000b7c0: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000b7c4: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000b7c8: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000b7cc: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b7d0: 80 a0 40 0c cmp %g1, %o4
4000b7d4: 0a 80 00 05 bcs 4000b7e8 <_Heap_Free+0x74> <== NEVER TAKEN
4000b7d8: 86 10 20 00 clr %g3
4000b7dc: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000b7e0: 80 a0 c0 01 cmp %g3, %g1
4000b7e4: 86 60 3f ff subx %g0, -1, %g3
_Heap_Protection_block_check( heap, block );
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000b7e8: 80 a0 e0 00 cmp %g3, 0
4000b7ec: 02 80 00 5e be 4000b964 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000b7f0: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000b7f4: c8 00 60 04 ld [ %g1 + 4 ], %g4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
4000b7f8: 80 89 20 01 btst 1, %g4
4000b7fc: 02 80 00 5a be 4000b964 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000b800: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
4000b804: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000b808: 80 a0 40 09 cmp %g1, %o1
4000b80c: 02 80 00 07 be 4000b828 <_Heap_Free+0xb4>
4000b810: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000b814: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000b818: c6 00 e0 04 ld [ %g3 + 4 ], %g3
4000b81c: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000b820: 80 a0 00 03 cmp %g0, %g3
4000b824: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
4000b828: 80 8b 60 01 btst 1, %o5
4000b82c: 12 80 00 26 bne 4000b8c4 <_Heap_Free+0x150>
4000b830: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
4000b834: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000b838: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b83c: 80 a0 c0 0c cmp %g3, %o4
4000b840: 0a 80 00 04 bcs 4000b850 <_Heap_Free+0xdc> <== NEVER TAKEN
4000b844: 94 10 20 00 clr %o2
4000b848: 80 a2 40 03 cmp %o1, %g3
4000b84c: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000b850: 80 a2 a0 00 cmp %o2, 0
4000b854: 02 80 00 44 be 4000b964 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000b858: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000b85c: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000b860: 80 8b 20 01 btst 1, %o4
4000b864: 02 80 00 40 be 4000b964 <_Heap_Free+0x1f0> <== NEVER TAKEN
4000b868: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000b86c: 22 80 00 0f be,a 4000b8a8 <_Heap_Free+0x134>
4000b870: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
4000b874: 88 00 80 04 add %g2, %g4, %g4
4000b878: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
4000b87c: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
4000b880: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000b884: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
4000b888: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000b88c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000b890: 82 00 7f ff add %g1, -1, %g1
4000b894: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000b898: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b89c: 82 13 60 01 or %o5, 1, %g1
4000b8a0: 10 80 00 27 b 4000b93c <_Heap_Free+0x1c8>
4000b8a4: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b8a8: 88 13 60 01 or %o5, 1, %g4
4000b8ac: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b8b0: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
4000b8b4: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b8b8: 86 08 ff fe and %g3, -2, %g3
4000b8bc: 10 80 00 20 b 4000b93c <_Heap_Free+0x1c8>
4000b8c0: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000b8c4: 22 80 00 0d be,a 4000b8f8 <_Heap_Free+0x184>
4000b8c8: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
4000b8cc: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
4000b8d0: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
4000b8d4: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000b8d8: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
4000b8dc: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
4000b8e0: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
4000b8e4: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b8e8: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000b8ec: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b8f0: 10 80 00 13 b 4000b93c <_Heap_Free+0x1c8>
4000b8f4: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000b8f8: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000b8fc: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000b900: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000b904: 86 10 a0 01 or %g2, 1, %g3
4000b908: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b90c: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
4000b910: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b914: 86 08 ff fe and %g3, -2, %g3
4000b918: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000b91c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000b920: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000b924: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000b928: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000b92c: 80 a0 c0 01 cmp %g3, %g1
4000b930: 1a 80 00 03 bcc 4000b93c <_Heap_Free+0x1c8>
4000b934: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000b938: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
4000b93c: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
4000b940: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000b944: 82 00 7f ff add %g1, -1, %g1
4000b948: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
4000b94c: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
4000b950: 82 00 60 01 inc %g1
4000b954: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000b958: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000b95c: 84 00 40 02 add %g1, %g2, %g2
4000b960: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
4000b964: 81 c7 e0 08 ret
4000b968: 81 e8 00 00 restore
4001284c <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
4001284c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40012850: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
40012854: 7f ff f9 ad call 40010f08 <.urem>
40012858: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4001285c: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
40012860: a2 06 7f f8 add %i1, -8, %l1
40012864: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
40012868: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4001286c: 80 a2 00 02 cmp %o0, %g2
40012870: 0a 80 00 05 bcs 40012884 <_Heap_Size_of_alloc_area+0x38>
40012874: 82 10 20 00 clr %g1
40012878: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
4001287c: 80 a0 40 08 cmp %g1, %o0
40012880: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
40012884: 80 a0 60 00 cmp %g1, 0
40012888: 02 80 00 15 be 400128dc <_Heap_Size_of_alloc_area+0x90>
4001288c: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40012890: e2 02 20 04 ld [ %o0 + 4 ], %l1
40012894: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40012898: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4001289c: 80 a4 40 02 cmp %l1, %g2
400128a0: 0a 80 00 05 bcs 400128b4 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
400128a4: 82 10 20 00 clr %g1
400128a8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
400128ac: 80 a0 40 11 cmp %g1, %l1
400128b0: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
400128b4: 80 a0 60 00 cmp %g1, 0
400128b8: 02 80 00 09 be 400128dc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
400128bc: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400128c0: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
400128c4: 80 88 60 01 btst 1, %g1
400128c8: 02 80 00 05 be 400128dc <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
400128cc: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
400128d0: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
400128d4: a2 04 60 04 add %l1, 4, %l1
400128d8: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
400128dc: 81 c7 e0 08 ret
400128e0: 81 e8 00 00 restore
40007e2c <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40007e2c: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40007e30: 23 10 00 1f sethi %hi(0x40007c00), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40007e34: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40007e38: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
40007e3c: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
40007e40: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
40007e44: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40007e48: 80 8e a0 ff btst 0xff, %i2
40007e4c: 02 80 00 04 be 40007e5c <_Heap_Walk+0x30>
40007e50: a2 14 61 d8 or %l1, 0x1d8, %l1
40007e54: 23 10 00 1f sethi %hi(0x40007c00), %l1
40007e58: a2 14 61 e0 or %l1, 0x1e0, %l1 ! 40007de0 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40007e5c: 03 10 00 5b sethi %hi(0x40016c00), %g1
40007e60: c2 00 60 d8 ld [ %g1 + 0xd8 ], %g1 ! 40016cd8 <_System_state_Current>
40007e64: 80 a0 60 03 cmp %g1, 3
40007e68: 12 80 01 2d bne 4000831c <_Heap_Walk+0x4f0>
40007e6c: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
40007e70: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40007e74: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40007e78: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007e7c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007e80: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
40007e84: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
40007e88: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007e8c: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
40007e90: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
40007e94: 90 10 00 19 mov %i1, %o0
40007e98: 92 10 20 00 clr %o1
40007e9c: 15 10 00 51 sethi %hi(0x40014400), %o2
40007ea0: 96 10 00 12 mov %l2, %o3
40007ea4: 94 12 a1 c8 or %o2, 0x1c8, %o2
40007ea8: 9f c4 40 00 call %l1
40007eac: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40007eb0: 80 a4 a0 00 cmp %l2, 0
40007eb4: 12 80 00 07 bne 40007ed0 <_Heap_Walk+0xa4>
40007eb8: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
40007ebc: 15 10 00 51 sethi %hi(0x40014400), %o2
40007ec0: 90 10 00 19 mov %i1, %o0
40007ec4: 92 10 20 01 mov 1, %o1
40007ec8: 10 80 00 38 b 40007fa8 <_Heap_Walk+0x17c>
40007ecc: 94 12 a2 60 or %o2, 0x260, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40007ed0: 22 80 00 08 be,a 40007ef0 <_Heap_Walk+0xc4>
40007ed4: 90 10 00 14 mov %l4, %o0
(*printer)(
40007ed8: 15 10 00 51 sethi %hi(0x40014400), %o2
40007edc: 90 10 00 19 mov %i1, %o0
40007ee0: 92 10 20 01 mov 1, %o1
40007ee4: 94 12 a2 78 or %o2, 0x278, %o2
40007ee8: 10 80 01 0b b 40008314 <_Heap_Walk+0x4e8>
40007eec: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40007ef0: 7f ff e7 02 call 40001af8 <.urem>
40007ef4: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40007ef8: 80 a2 20 00 cmp %o0, 0
40007efc: 22 80 00 08 be,a 40007f1c <_Heap_Walk+0xf0>
40007f00: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
40007f04: 15 10 00 51 sethi %hi(0x40014400), %o2
40007f08: 90 10 00 19 mov %i1, %o0
40007f0c: 92 10 20 01 mov 1, %o1
40007f10: 94 12 a2 98 or %o2, 0x298, %o2
40007f14: 10 80 01 00 b 40008314 <_Heap_Walk+0x4e8>
40007f18: 96 10 00 14 mov %l4, %o3
40007f1c: 7f ff e6 f7 call 40001af8 <.urem>
40007f20: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
40007f24: 80 a2 20 00 cmp %o0, 0
40007f28: 22 80 00 08 be,a 40007f48 <_Heap_Walk+0x11c>
40007f2c: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40007f30: 15 10 00 51 sethi %hi(0x40014400), %o2
40007f34: 90 10 00 19 mov %i1, %o0
40007f38: 92 10 20 01 mov 1, %o1
40007f3c: 94 12 a2 c0 or %o2, 0x2c0, %o2
40007f40: 10 80 00 f5 b 40008314 <_Heap_Walk+0x4e8>
40007f44: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40007f48: 80 88 60 01 btst 1, %g1
40007f4c: 32 80 00 07 bne,a 40007f68 <_Heap_Walk+0x13c>
40007f50: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
40007f54: 15 10 00 51 sethi %hi(0x40014400), %o2
40007f58: 90 10 00 19 mov %i1, %o0
40007f5c: 92 10 20 01 mov 1, %o1
40007f60: 10 80 00 12 b 40007fa8 <_Heap_Walk+0x17c>
40007f64: 94 12 a2 f8 or %o2, 0x2f8, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40007f68: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40007f6c: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40007f70: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40007f74: 80 88 60 01 btst 1, %g1
40007f78: 12 80 00 07 bne 40007f94 <_Heap_Walk+0x168>
40007f7c: 80 a5 80 13 cmp %l6, %l3
(*printer)(
40007f80: 15 10 00 51 sethi %hi(0x40014400), %o2
40007f84: 90 10 00 19 mov %i1, %o0
40007f88: 92 10 20 01 mov 1, %o1
40007f8c: 10 80 00 07 b 40007fa8 <_Heap_Walk+0x17c>
40007f90: 94 12 a3 28 or %o2, 0x328, %o2
);
return false;
}
if (
40007f94: 02 80 00 08 be 40007fb4 <_Heap_Walk+0x188>
40007f98: 15 10 00 51 sethi %hi(0x40014400), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40007f9c: 90 10 00 19 mov %i1, %o0
40007fa0: 92 10 20 01 mov 1, %o1
40007fa4: 94 12 a3 40 or %o2, 0x340, %o2
40007fa8: 9f c4 40 00 call %l1
40007fac: b0 10 20 00 clr %i0
40007fb0: 30 80 00 db b,a 4000831c <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
40007fb4: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
40007fb8: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
40007fbc: ae 10 00 10 mov %l0, %l7
40007fc0: 10 80 00 32 b 40008088 <_Heap_Walk+0x25c>
40007fc4: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40007fc8: 80 a0 80 1c cmp %g2, %i4
40007fcc: 18 80 00 05 bgu 40007fe0 <_Heap_Walk+0x1b4>
40007fd0: 82 10 20 00 clr %g1
40007fd4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
40007fd8: 80 a0 40 1c cmp %g1, %i4
40007fdc: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
40007fe0: 80 a0 60 00 cmp %g1, 0
40007fe4: 32 80 00 08 bne,a 40008004 <_Heap_Walk+0x1d8>
40007fe8: 90 07 20 08 add %i4, 8, %o0
(*printer)(
40007fec: 15 10 00 51 sethi %hi(0x40014400), %o2
40007ff0: 96 10 00 1c mov %i4, %o3
40007ff4: 90 10 00 19 mov %i1, %o0
40007ff8: 92 10 20 01 mov 1, %o1
40007ffc: 10 80 00 c6 b 40008314 <_Heap_Walk+0x4e8>
40008000: 94 12 a3 70 or %o2, 0x370, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008004: 7f ff e6 bd call 40001af8 <.urem>
40008008: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
4000800c: 80 a2 20 00 cmp %o0, 0
40008010: 22 80 00 08 be,a 40008030 <_Heap_Walk+0x204>
40008014: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40008018: 15 10 00 51 sethi %hi(0x40014400), %o2
4000801c: 96 10 00 1c mov %i4, %o3
40008020: 90 10 00 19 mov %i1, %o0
40008024: 92 10 20 01 mov 1, %o1
40008028: 10 80 00 bb b 40008314 <_Heap_Walk+0x4e8>
4000802c: 94 12 a3 90 or %o2, 0x390, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008030: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40008034: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008038: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
4000803c: 80 88 60 01 btst 1, %g1
40008040: 22 80 00 08 be,a 40008060 <_Heap_Walk+0x234>
40008044: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
40008048: 15 10 00 51 sethi %hi(0x40014400), %o2
4000804c: 96 10 00 1c mov %i4, %o3
40008050: 90 10 00 19 mov %i1, %o0
40008054: 92 10 20 01 mov 1, %o1
40008058: 10 80 00 af b 40008314 <_Heap_Walk+0x4e8>
4000805c: 94 12 a3 c0 or %o2, 0x3c0, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
40008060: 80 a3 00 17 cmp %o4, %l7
40008064: 22 80 00 08 be,a 40008084 <_Heap_Walk+0x258>
40008068: ae 10 00 1c mov %i4, %l7
(*printer)(
4000806c: 15 10 00 51 sethi %hi(0x40014400), %o2
40008070: 96 10 00 1c mov %i4, %o3
40008074: 90 10 00 19 mov %i1, %o0
40008078: 92 10 20 01 mov 1, %o1
4000807c: 10 80 00 49 b 400081a0 <_Heap_Walk+0x374>
40008080: 94 12 a3 e0 or %o2, 0x3e0, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
40008084: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40008088: 80 a7 00 10 cmp %i4, %l0
4000808c: 32 bf ff cf bne,a 40007fc8 <_Heap_Walk+0x19c>
40008090: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
40008094: 35 10 00 52 sethi %hi(0x40014800), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008098: 31 10 00 52 sethi %hi(0x40014800), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
4000809c: b4 16 a1 a0 or %i2, 0x1a0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
400080a0: b0 16 21 88 or %i0, 0x188, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
400080a4: 37 10 00 52 sethi %hi(0x40014800), %i3
block = next_block;
} while ( block != first_block );
return true;
}
400080a8: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400080ac: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400080b0: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400080b4: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400080b8: 80 a0 c0 1d cmp %g3, %i5
400080bc: 18 80 00 05 bgu 400080d0 <_Heap_Walk+0x2a4> <== NEVER TAKEN
400080c0: 84 10 20 00 clr %g2
400080c4: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
400080c8: 80 a0 80 1d cmp %g2, %i5
400080cc: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
400080d0: 80 a0 a0 00 cmp %g2, 0
400080d4: 12 80 00 07 bne 400080f0 <_Heap_Walk+0x2c4>
400080d8: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
400080dc: 15 10 00 52 sethi %hi(0x40014800), %o2
400080e0: 90 10 00 19 mov %i1, %o0
400080e4: 92 10 20 01 mov 1, %o1
400080e8: 10 80 00 2c b 40008198 <_Heap_Walk+0x36c>
400080ec: 94 12 a0 18 or %o2, 0x18, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
400080f0: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
400080f4: c2 27 bf fc st %g1, [ %fp + -4 ]
400080f8: b8 40 20 00 addx %g0, 0, %i4
400080fc: 90 10 00 17 mov %l7, %o0
40008100: 7f ff e6 7e call 40001af8 <.urem>
40008104: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
40008108: 80 a2 20 00 cmp %o0, 0
4000810c: 02 80 00 0c be 4000813c <_Heap_Walk+0x310>
40008110: c2 07 bf fc ld [ %fp + -4 ], %g1
40008114: 80 8f 20 ff btst 0xff, %i4
40008118: 02 80 00 0a be 40008140 <_Heap_Walk+0x314>
4000811c: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
40008120: 15 10 00 52 sethi %hi(0x40014800), %o2
40008124: 90 10 00 19 mov %i1, %o0
40008128: 92 10 20 01 mov 1, %o1
4000812c: 94 12 a0 48 or %o2, 0x48, %o2
40008130: 96 10 00 16 mov %l6, %o3
40008134: 10 80 00 1b b 400081a0 <_Heap_Walk+0x374>
40008138: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
4000813c: 80 a5 c0 14 cmp %l7, %l4
40008140: 1a 80 00 0d bcc 40008174 <_Heap_Walk+0x348>
40008144: 80 a7 40 16 cmp %i5, %l6
40008148: 80 8f 20 ff btst 0xff, %i4
4000814c: 02 80 00 0a be 40008174 <_Heap_Walk+0x348> <== NEVER TAKEN
40008150: 80 a7 40 16 cmp %i5, %l6
(*printer)(
40008154: 15 10 00 52 sethi %hi(0x40014800), %o2
40008158: 90 10 00 19 mov %i1, %o0
4000815c: 92 10 20 01 mov 1, %o1
40008160: 94 12 a0 78 or %o2, 0x78, %o2
40008164: 96 10 00 16 mov %l6, %o3
40008168: 98 10 00 17 mov %l7, %o4
4000816c: 10 80 00 3f b 40008268 <_Heap_Walk+0x43c>
40008170: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
40008174: 38 80 00 0e bgu,a 400081ac <_Heap_Walk+0x380>
40008178: b8 08 60 01 and %g1, 1, %i4
4000817c: 80 8f 20 ff btst 0xff, %i4
40008180: 02 80 00 0b be 400081ac <_Heap_Walk+0x380>
40008184: b8 08 60 01 and %g1, 1, %i4
(*printer)(
40008188: 15 10 00 52 sethi %hi(0x40014800), %o2
4000818c: 90 10 00 19 mov %i1, %o0
40008190: 92 10 20 01 mov 1, %o1
40008194: 94 12 a0 a8 or %o2, 0xa8, %o2
40008198: 96 10 00 16 mov %l6, %o3
4000819c: 98 10 00 1d mov %i5, %o4
400081a0: 9f c4 40 00 call %l1
400081a4: b0 10 20 00 clr %i0
400081a8: 30 80 00 5d b,a 4000831c <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
400081ac: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
400081b0: 80 88 60 01 btst 1, %g1
400081b4: 12 80 00 3f bne 400082b0 <_Heap_Walk+0x484>
400081b8: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
400081bc: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400081c0: c2 04 20 08 ld [ %l0 + 8 ], %g1
400081c4: 05 10 00 51 sethi %hi(0x40014400), %g2
block = next_block;
} while ( block != first_block );
return true;
}
400081c8: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400081cc: 80 a3 40 01 cmp %o5, %g1
400081d0: 02 80 00 07 be 400081ec <_Heap_Walk+0x3c0>
400081d4: 86 10 a1 88 or %g2, 0x188, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
400081d8: 80 a3 40 10 cmp %o5, %l0
400081dc: 12 80 00 04 bne 400081ec <_Heap_Walk+0x3c0>
400081e0: 86 16 e1 50 or %i3, 0x150, %g3
400081e4: 19 10 00 51 sethi %hi(0x40014400), %o4
400081e8: 86 13 21 98 or %o4, 0x198, %g3 ! 40014598 <_Status_Object_name_errors_to_status+0x48>
block->next,
block->next == last_free_block ?
400081ec: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
400081f0: 19 10 00 51 sethi %hi(0x40014400), %o4
400081f4: 80 a0 80 04 cmp %g2, %g4
400081f8: 02 80 00 07 be 40008214 <_Heap_Walk+0x3e8>
400081fc: 82 13 21 a8 or %o4, 0x1a8, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008200: 80 a0 80 10 cmp %g2, %l0
40008204: 12 80 00 04 bne 40008214 <_Heap_Walk+0x3e8>
40008208: 82 16 e1 50 or %i3, 0x150, %g1
4000820c: 09 10 00 51 sethi %hi(0x40014400), %g4
40008210: 82 11 21 b8 or %g4, 0x1b8, %g1 ! 400145b8 <_Status_Object_name_errors_to_status+0x68>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008214: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
40008218: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
4000821c: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
40008220: 90 10 00 19 mov %i1, %o0
40008224: 92 10 20 00 clr %o1
40008228: 15 10 00 52 sethi %hi(0x40014800), %o2
4000822c: 96 10 00 16 mov %l6, %o3
40008230: 94 12 a0 e0 or %o2, 0xe0, %o2
40008234: 9f c4 40 00 call %l1
40008238: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
4000823c: da 07 40 00 ld [ %i5 ], %o5
40008240: 80 a5 c0 0d cmp %l7, %o5
40008244: 02 80 00 0c be 40008274 <_Heap_Walk+0x448>
40008248: 80 a7 20 00 cmp %i4, 0
(*printer)(
4000824c: 15 10 00 52 sethi %hi(0x40014800), %o2
40008250: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
40008254: 90 10 00 19 mov %i1, %o0
40008258: 92 10 20 01 mov 1, %o1
4000825c: 94 12 a1 18 or %o2, 0x118, %o2
40008260: 96 10 00 16 mov %l6, %o3
40008264: 98 10 00 17 mov %l7, %o4
40008268: 9f c4 40 00 call %l1
4000826c: b0 10 20 00 clr %i0
40008270: 30 80 00 2b b,a 4000831c <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
40008274: 32 80 00 0a bne,a 4000829c <_Heap_Walk+0x470>
40008278: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
4000827c: 15 10 00 52 sethi %hi(0x40014800), %o2
40008280: 90 10 00 19 mov %i1, %o0
40008284: 92 10 20 01 mov 1, %o1
40008288: 10 80 00 22 b 40008310 <_Heap_Walk+0x4e4>
4000828c: 94 12 a1 58 or %o2, 0x158, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
40008290: 02 80 00 19 be 400082f4 <_Heap_Walk+0x4c8>
40008294: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
40008298: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
4000829c: 80 a0 40 10 cmp %g1, %l0
400082a0: 12 bf ff fc bne 40008290 <_Heap_Walk+0x464>
400082a4: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
400082a8: 10 80 00 17 b 40008304 <_Heap_Walk+0x4d8>
400082ac: 15 10 00 52 sethi %hi(0x40014800), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
400082b0: 22 80 00 0a be,a 400082d8 <_Heap_Walk+0x4ac>
400082b4: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
400082b8: 90 10 00 19 mov %i1, %o0
400082bc: 92 10 20 00 clr %o1
400082c0: 94 10 00 18 mov %i0, %o2
400082c4: 96 10 00 16 mov %l6, %o3
400082c8: 9f c4 40 00 call %l1
400082cc: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400082d0: 10 80 00 09 b 400082f4 <_Heap_Walk+0x4c8>
400082d4: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
400082d8: 90 10 00 19 mov %i1, %o0
400082dc: 92 10 20 00 clr %o1
400082e0: 94 10 00 1a mov %i2, %o2
400082e4: 96 10 00 16 mov %l6, %o3
400082e8: 9f c4 40 00 call %l1
400082ec: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
400082f0: 80 a7 40 13 cmp %i5, %l3
400082f4: 12 bf ff 6d bne 400080a8 <_Heap_Walk+0x27c>
400082f8: ac 10 00 1d mov %i5, %l6
return true;
}
400082fc: 81 c7 e0 08 ret
40008300: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40008304: 90 10 00 19 mov %i1, %o0
40008308: 92 10 20 01 mov 1, %o1
4000830c: 94 12 a1 c8 or %o2, 0x1c8, %o2
40008310: 96 10 00 16 mov %l6, %o3
40008314: 9f c4 40 00 call %l1
40008318: b0 10 20 00 clr %i0
4000831c: 81 c7 e0 08 ret
40008320: 81 e8 00 00 restore
40006f74 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40006f74: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40006f78: 05 10 00 51 sethi %hi(0x40014400), %g2
40006f7c: 82 10 a1 14 or %g2, 0x114, %g1 ! 40014514 <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40006f80: 90 10 00 18 mov %i0, %o0
40006f84: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
40006f88: f0 20 a1 14 st %i0, [ %g2 + 0x114 ]
_Internal_errors_What_happened.is_internal = is_internal;
40006f8c: f2 28 60 04 stb %i1, [ %g1 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
40006f90: f4 20 60 08 st %i2, [ %g1 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40006f94: 40 00 07 eb call 40008f40 <_User_extensions_Fatal>
40006f98: 92 0e 60 ff and %i1, 0xff, %o1
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40006f9c: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40006fa0: 03 10 00 51 sethi %hi(0x40014400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40006fa4: 7f ff eb 45 call 40001cb8 <sparc_disable_interrupts> <== NOT EXECUTED
40006fa8: c4 20 61 d8 st %g2, [ %g1 + 0x1d8 ] ! 400145d8 <_System_state_Current><== NOT EXECUTED
40006fac: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40006fb0: 30 80 00 00 b,a 40006fb0 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40007024 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40007024: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007028: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
4000702c: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40007030: 80 a0 60 00 cmp %g1, 0
40007034: 02 80 00 20 be 400070b4 <_Objects_Allocate+0x90> <== NEVER TAKEN
40007038: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
4000703c: a2 04 20 20 add %l0, 0x20, %l1
40007040: 7f ff fd 8b call 4000666c <_Chain_Get>
40007044: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40007048: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
4000704c: 80 a0 60 00 cmp %g1, 0
40007050: 02 80 00 19 be 400070b4 <_Objects_Allocate+0x90>
40007054: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40007058: 80 a2 20 00 cmp %o0, 0
4000705c: 32 80 00 0a bne,a 40007084 <_Objects_Allocate+0x60>
40007060: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
40007064: 40 00 00 1e call 400070dc <_Objects_Extend_information>
40007068: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
4000706c: 7f ff fd 80 call 4000666c <_Chain_Get>
40007070: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40007074: b0 92 20 00 orcc %o0, 0, %i0
40007078: 02 80 00 0f be 400070b4 <_Objects_Allocate+0x90>
4000707c: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007080: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40007084: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
40007088: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
4000708c: 40 00 26 f3 call 40010c58 <.udiv>
40007090: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007094: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
40007098: 91 2a 20 02 sll %o0, 2, %o0
4000709c: c4 00 40 08 ld [ %g1 + %o0 ], %g2
400070a0: 84 00 bf ff add %g2, -1, %g2
400070a4: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
400070a8: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
400070ac: 82 00 7f ff add %g1, -1, %g1
400070b0: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
400070b4: 81 c7 e0 08 ret
400070b8: 81 e8 00 00 restore
4000742c <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
4000742c: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
40007430: b3 2e 60 10 sll %i1, 0x10, %i1
40007434: b3 36 60 10 srl %i1, 0x10, %i1
40007438: 80 a6 60 00 cmp %i1, 0
4000743c: 02 80 00 17 be 40007498 <_Objects_Get_information+0x6c>
40007440: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
40007444: 40 00 11 4a call 4000b96c <_Objects_API_maximum_class>
40007448: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
4000744c: 80 a2 20 00 cmp %o0, 0
40007450: 02 80 00 12 be 40007498 <_Objects_Get_information+0x6c>
40007454: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40007458: 18 80 00 10 bgu 40007498 <_Objects_Get_information+0x6c>
4000745c: 03 10 00 50 sethi %hi(0x40014000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40007460: b1 2e 20 02 sll %i0, 2, %i0
40007464: 82 10 63 e8 or %g1, 0x3e8, %g1
40007468: c2 00 40 18 ld [ %g1 + %i0 ], %g1
4000746c: 80 a0 60 00 cmp %g1, 0
40007470: 02 80 00 0a be 40007498 <_Objects_Get_information+0x6c> <== NEVER TAKEN
40007474: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40007478: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
4000747c: 80 a4 20 00 cmp %l0, 0
40007480: 02 80 00 06 be 40007498 <_Objects_Get_information+0x6c> <== NEVER TAKEN
40007484: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40007488: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
4000748c: 80 a0 00 01 cmp %g0, %g1
40007490: 82 60 20 00 subx %g0, 0, %g1
40007494: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
40007498: 81 c7 e0 08 ret
4000749c: 91 e8 00 10 restore %g0, %l0, %o0
40018d5c <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018d5c: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
40018d60: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018d64: 82 22 40 01 sub %o1, %g1, %g1
40018d68: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
40018d6c: 80 a0 80 01 cmp %g2, %g1
40018d70: 0a 80 00 09 bcs 40018d94 <_Objects_Get_no_protection+0x38>
40018d74: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
40018d78: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
40018d7c: d0 00 80 01 ld [ %g2 + %g1 ], %o0
40018d80: 80 a2 20 00 cmp %o0, 0
40018d84: 02 80 00 05 be 40018d98 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40018d88: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40018d8c: 81 c3 e0 08 retl
40018d90: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40018d94: 82 10 20 01 mov 1, %g1
return NULL;
40018d98: 90 10 20 00 clr %o0
}
40018d9c: 81 c3 e0 08 retl
40018da0: c2 22 80 00 st %g1, [ %o2 ]
40008d08 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
40008d08: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40008d0c: 92 96 20 00 orcc %i0, 0, %o1
40008d10: 12 80 00 06 bne 40008d28 <_Objects_Id_to_name+0x20>
40008d14: 83 32 60 18 srl %o1, 0x18, %g1
40008d18: 03 10 00 78 sethi %hi(0x4001e000), %g1
40008d1c: c2 00 61 28 ld [ %g1 + 0x128 ], %g1 ! 4001e128 <_Per_CPU_Information+0xc>
40008d20: d2 00 60 08 ld [ %g1 + 8 ], %o1
40008d24: 83 32 60 18 srl %o1, 0x18, %g1
40008d28: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008d2c: 84 00 7f ff add %g1, -1, %g2
40008d30: 80 a0 a0 02 cmp %g2, 2
40008d34: 18 80 00 12 bgu 40008d7c <_Objects_Id_to_name+0x74>
40008d38: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40008d3c: 10 80 00 12 b 40008d84 <_Objects_Id_to_name+0x7c>
40008d40: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40008d44: 85 28 a0 02 sll %g2, 2, %g2
40008d48: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40008d4c: 80 a2 20 00 cmp %o0, 0
40008d50: 02 80 00 0b be 40008d7c <_Objects_Id_to_name+0x74> <== NEVER TAKEN
40008d54: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
40008d58: 7f ff ff cf call 40008c94 <_Objects_Get>
40008d5c: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40008d60: 80 a2 20 00 cmp %o0, 0
40008d64: 02 80 00 06 be 40008d7c <_Objects_Id_to_name+0x74>
40008d68: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40008d6c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40008d70: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40008d74: 40 00 03 5b call 40009ae0 <_Thread_Enable_dispatch>
40008d78: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40008d7c: 81 c7 e0 08 ret
40008d80: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40008d84: 05 10 00 77 sethi %hi(0x4001dc00), %g2
40008d88: 84 10 a2 58 or %g2, 0x258, %g2 ! 4001de58 <_Objects_Information_table>
40008d8c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
40008d90: 80 a0 60 00 cmp %g1, 0
40008d94: 12 bf ff ec bne 40008d44 <_Objects_Id_to_name+0x3c>
40008d98: 85 32 60 1b srl %o1, 0x1b, %g2
40008d9c: 30 bf ff f8 b,a 40008d7c <_Objects_Id_to_name+0x74>
4000b148 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000b148: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000b14c: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000b150: 80 a4 20 00 cmp %l0, 0
4000b154: 02 80 00 1d be 4000b1c8 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
4000b158: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000b15c: 7f ff da d7 call 40001cb8 <sparc_disable_interrupts>
4000b160: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000b164: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
4000b168: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000b16c: 7f ff da d7 call 40001cc8 <sparc_enable_interrupts>
4000b170: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000b174: 80 a4 e0 00 cmp %l3, 0
4000b178: 02 80 00 14 be 4000b1c8 <_RTEMS_tasks_Post_switch_extension+0x80>
4000b17c: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
4000b180: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b184: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000b188: 82 00 60 01 inc %g1
4000b18c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b190: 94 10 00 11 mov %l1, %o2
4000b194: 25 00 00 3f sethi %hi(0xfc00), %l2
4000b198: 40 00 07 39 call 4000ce7c <rtems_task_mode>
4000b19c: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
4000b1a0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000b1a4: 9f c0 40 00 call %g1
4000b1a8: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
4000b1ac: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b1b0: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000b1b4: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b1b8: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000b1bc: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b1c0: 40 00 07 2f call 4000ce7c <rtems_task_mode>
4000b1c4: 94 10 00 11 mov %l1, %o2
4000b1c8: 81 c7 e0 08 ret
4000b1cc: 81 e8 00 00 restore
4000737c <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
4000737c: 9d e3 bf 98 save %sp, -104, %sp
40007380: 11 10 00 78 sethi %hi(0x4001e000), %o0
40007384: 92 10 00 18 mov %i0, %o1
40007388: 90 12 23 cc or %o0, 0x3cc, %o0
4000738c: 40 00 07 c2 call 40009294 <_Objects_Get>
40007390: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007394: c2 07 bf fc ld [ %fp + -4 ], %g1
40007398: 80 a0 60 00 cmp %g1, 0
4000739c: 12 80 00 24 bne 4000742c <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
400073a0: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
400073a4: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
400073a8: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
400073ac: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
400073b0: 80 88 80 01 btst %g2, %g1
400073b4: 22 80 00 0b be,a 400073e0 <_Rate_monotonic_Timeout+0x64>
400073b8: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
400073bc: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
400073c0: c2 04 20 08 ld [ %l0 + 8 ], %g1
400073c4: 80 a0 80 01 cmp %g2, %g1
400073c8: 32 80 00 06 bne,a 400073e0 <_Rate_monotonic_Timeout+0x64>
400073cc: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
400073d0: 13 04 00 ff sethi %hi(0x1003fc00), %o1
400073d4: 40 00 0a 56 call 40009d2c <_Thread_Clear_state>
400073d8: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
400073dc: 30 80 00 06 b,a 400073f4 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
400073e0: 80 a0 60 01 cmp %g1, 1
400073e4: 12 80 00 0d bne 40007418 <_Rate_monotonic_Timeout+0x9c>
400073e8: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
400073ec: 82 10 20 03 mov 3, %g1
400073f0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
400073f4: 7f ff fe 66 call 40006d8c <_Rate_monotonic_Initiate_statistics>
400073f8: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400073fc: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007400: 11 10 00 79 sethi %hi(0x4001e400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007404: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007408: 90 12 21 f0 or %o0, 0x1f0, %o0
4000740c: 40 00 0f 02 call 4000b014 <_Watchdog_Insert>
40007410: 92 04 20 10 add %l0, 0x10, %o1
40007414: 30 80 00 02 b,a 4000741c <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
40007418: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
4000741c: 03 10 00 79 sethi %hi(0x4001e400), %g1
40007420: c4 00 61 30 ld [ %g1 + 0x130 ], %g2 ! 4001e530 <_Thread_Dispatch_disable_level>
40007424: 84 00 bf ff add %g2, -1, %g2
40007428: c4 20 61 30 st %g2, [ %g1 + 0x130 ]
4000742c: 81 c7 e0 08 ret
40007430: 81 e8 00 00 restore
40006dfc <_Rate_monotonic_Update_statistics>:
}
void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
40006dfc: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
40006e00: c2 06 20 54 ld [ %i0 + 0x54 ], %g1
40006e04: 82 00 60 01 inc %g1
40006e08: c2 26 20 54 st %g1, [ %i0 + 0x54 ]
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
40006e0c: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
40006e10: 80 a0 60 04 cmp %g1, 4
40006e14: 12 80 00 05 bne 40006e28 <_Rate_monotonic_Update_statistics+0x2c>
40006e18: a0 07 bf f8 add %fp, -8, %l0
stats->missed_count++;
40006e1c: c2 06 20 58 ld [ %i0 + 0x58 ], %g1
40006e20: 82 00 60 01 inc %g1
40006e24: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
/*
* Grab status for time statistics.
*/
valid_status =
40006e28: 90 10 00 18 mov %i0, %o0
40006e2c: 92 07 bf f0 add %fp, -16, %o1
40006e30: 7f ff ff ad call 40006ce4 <_Rate_monotonic_Get_status>
40006e34: 94 10 00 10 mov %l0, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
40006e38: 80 8a 20 ff btst 0xff, %o0
40006e3c: 02 80 00 2c be 40006eec <_Rate_monotonic_Update_statistics+0xf0><== NEVER TAKEN
40006e40: 92 10 00 10 mov %l0, %o1
/*
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
40006e44: 40 00 0f 38 call 4000ab24 <_Timespec_Add_to>
40006e48: 90 06 20 6c add %i0, 0x6c, %o0
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
40006e4c: 90 10 00 10 mov %l0, %o0
40006e50: 40 00 0f a1 call 4000acd4 <_Timespec_Less_than>
40006e54: 92 06 20 5c add %i0, 0x5c, %o1
40006e58: 80 8a 20 ff btst 0xff, %o0
40006e5c: 02 80 00 06 be 40006e74 <_Rate_monotonic_Update_statistics+0x78>
40006e60: 90 07 bf f8 add %fp, -8, %o0
stats->min_cpu_time = executed;
40006e64: c2 07 bf f8 ld [ %fp + -8 ], %g1
40006e68: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
40006e6c: c2 07 bf fc ld [ %fp + -4 ], %g1
40006e70: c2 26 20 60 st %g1, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
40006e74: 40 00 0f 87 call 4000ac90 <_Timespec_Greater_than>
40006e78: 92 06 20 64 add %i0, 0x64, %o1
40006e7c: 80 8a 20 ff btst 0xff, %o0
40006e80: 02 80 00 06 be 40006e98 <_Rate_monotonic_Update_statistics+0x9c>
40006e84: a0 07 bf f0 add %fp, -16, %l0
stats->max_cpu_time = executed;
40006e88: c2 07 bf f8 ld [ %fp + -8 ], %g1
40006e8c: c2 26 20 64 st %g1, [ %i0 + 0x64 ]
40006e90: c2 07 bf fc ld [ %fp + -4 ], %g1
40006e94: c2 26 20 68 st %g1, [ %i0 + 0x68 ]
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
40006e98: 90 06 20 84 add %i0, 0x84, %o0
40006e9c: 40 00 0f 22 call 4000ab24 <_Timespec_Add_to>
40006ea0: 92 10 00 10 mov %l0, %o1
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
40006ea4: 90 10 00 10 mov %l0, %o0
40006ea8: 40 00 0f 8b call 4000acd4 <_Timespec_Less_than>
40006eac: 92 06 20 74 add %i0, 0x74, %o1
40006eb0: 80 8a 20 ff btst 0xff, %o0
40006eb4: 02 80 00 06 be 40006ecc <_Rate_monotonic_Update_statistics+0xd0>
40006eb8: 90 07 bf f0 add %fp, -16, %o0
stats->min_wall_time = since_last_period;
40006ebc: c2 07 bf f0 ld [ %fp + -16 ], %g1
40006ec0: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
40006ec4: c2 07 bf f4 ld [ %fp + -12 ], %g1
40006ec8: c2 26 20 78 st %g1, [ %i0 + 0x78 ]
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
40006ecc: 40 00 0f 71 call 4000ac90 <_Timespec_Greater_than>
40006ed0: 92 06 20 7c add %i0, 0x7c, %o1
40006ed4: 80 8a 20 ff btst 0xff, %o0
40006ed8: 02 80 00 05 be 40006eec <_Rate_monotonic_Update_statistics+0xf0>
40006edc: c2 07 bf f0 ld [ %fp + -16 ], %g1
stats->max_wall_time = since_last_period;
40006ee0: c2 26 20 7c st %g1, [ %i0 + 0x7c ]
40006ee4: c2 07 bf f4 ld [ %fp + -12 ], %g1
40006ee8: c2 26 20 80 st %g1, [ %i0 + 0x80 ]
40006eec: 81 c7 e0 08 ret
40006ef0: 81 e8 00 00 restore
4000788c <_Scheduler_priority_Block>:
#include <rtems/score/thread.h>
void _Scheduler_priority_Block(
Thread_Control *the_thread
)
{
4000788c: 9d e3 bf a0 save %sp, -96, %sp
)
{
Scheduler_priority_Per_thread *sched_info;
Chain_Control *ready;
sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info;
40007890: c4 06 20 8c ld [ %i0 + 0x8c ], %g2
ready = sched_info->ready_chain;
40007894: c2 00 80 00 ld [ %g2 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
40007898: c8 00 40 00 ld [ %g1 ], %g4
4000789c: c6 00 60 08 ld [ %g1 + 8 ], %g3
400078a0: 80 a1 00 03 cmp %g4, %g3
400078a4: 32 80 00 16 bne,a 400078fc <_Scheduler_priority_Block+0x70>
400078a8: c4 06 00 00 ld [ %i0 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
400078ac: 86 00 60 04 add %g1, 4, %g3
head->next = tail;
400078b0: c6 20 40 00 st %g3, [ %g1 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
400078b4: c6 00 a0 04 ld [ %g2 + 4 ], %g3
head->previous = NULL;
400078b8: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
400078bc: c2 20 60 08 st %g1, [ %g1 + 8 ]
400078c0: c2 10 a0 0e lduh [ %g2 + 0xe ], %g1
400078c4: c8 10 c0 00 lduh [ %g3 ], %g4
400078c8: 82 09 00 01 and %g4, %g1, %g1
400078cc: c2 30 c0 00 sth %g1, [ %g3 ]
if ( *the_priority_map->minor == 0 )
400078d0: 83 28 60 10 sll %g1, 0x10, %g1
400078d4: 80 a0 60 00 cmp %g1, 0
400078d8: 32 80 00 0d bne,a 4000790c <_Scheduler_priority_Block+0x80>
400078dc: 03 10 00 51 sethi %hi(0x40014400), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
400078e0: 03 10 00 51 sethi %hi(0x40014400), %g1
400078e4: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2
400078e8: c6 10 62 d0 lduh [ %g1 + 0x2d0 ], %g3
400078ec: 84 08 80 03 and %g2, %g3, %g2
400078f0: c4 30 62 d0 sth %g2, [ %g1 + 0x2d0 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
400078f4: 10 80 00 06 b 4000790c <_Scheduler_priority_Block+0x80>
400078f8: 03 10 00 51 sethi %hi(0x40014400), %g1
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400078fc: c2 06 20 04 ld [ %i0 + 4 ], %g1
next->previous = previous;
40007900: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40007904: c4 20 40 00 st %g2, [ %g1 ]
40007908: 03 10 00 51 sethi %hi(0x40014400), %g1
_Scheduler_priority_Ready_queue_extract( the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
4000790c: c2 00 62 bc ld [ %g1 + 0x2bc ], %g1 ! 400146bc <_Per_CPU_Information+0x10>
40007910: 80 a6 00 01 cmp %i0, %g1
40007914: 32 80 00 33 bne,a 400079e0 <_Scheduler_priority_Block+0x154>
40007918: 03 10 00 51 sethi %hi(0x40014400), %g1
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
(Chain_Control *) _Scheduler.information
4000791c: 03 10 00 4e sethi %hi(0x40013800), %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40007920: c6 00 62 90 ld [ %g1 + 0x290 ], %g3 ! 40013a90 <_Scheduler>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40007924: 03 10 00 51 sethi %hi(0x40014400), %g1
40007928: c4 10 62 d0 lduh [ %g1 + 0x2d0 ], %g2 ! 400146d0 <_Priority_Major_bit_map>
4000792c: 03 10 00 4c sethi %hi(0x40013000), %g1
40007930: 85 28 a0 10 sll %g2, 0x10, %g2
40007934: 89 30 a0 10 srl %g2, 0x10, %g4
40007938: 80 a1 20 ff cmp %g4, 0xff
4000793c: 18 80 00 05 bgu 40007950 <_Scheduler_priority_Block+0xc4>
40007940: 82 10 62 20 or %g1, 0x220, %g1
40007944: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
40007948: 10 80 00 04 b 40007958 <_Scheduler_priority_Block+0xcc>
4000794c: 84 00 a0 08 add %g2, 8, %g2
40007950: 85 30 a0 18 srl %g2, 0x18, %g2
40007954: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40007958: 83 28 a0 10 sll %g2, 0x10, %g1
4000795c: 09 10 00 51 sethi %hi(0x40014400), %g4
40007960: 83 30 60 0f srl %g1, 0xf, %g1
40007964: 88 11 22 e0 or %g4, 0x2e0, %g4
40007968: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
4000796c: 03 10 00 4c sethi %hi(0x40013000), %g1
40007970: 89 29 20 10 sll %g4, 0x10, %g4
40007974: 9b 31 20 10 srl %g4, 0x10, %o5
40007978: 80 a3 60 ff cmp %o5, 0xff
4000797c: 18 80 00 05 bgu 40007990 <_Scheduler_priority_Block+0x104>
40007980: 82 10 62 20 or %g1, 0x220, %g1
40007984: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
40007988: 10 80 00 04 b 40007998 <_Scheduler_priority_Block+0x10c>
4000798c: 82 00 60 08 add %g1, 8, %g1
40007990: 89 31 20 18 srl %g4, 0x18, %g4
40007994: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
40007998: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000799c: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
400079a0: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
400079a4: 85 30 a0 0c srl %g2, 0xc, %g2
400079a8: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
400079ac: 89 28 a0 02 sll %g2, 2, %g4
400079b0: 83 28 a0 04 sll %g2, 4, %g1
400079b4: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
}
400079b8: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
400079bc: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
400079c0: 86 01 20 04 add %g4, 4, %g3
400079c4: 80 a0 80 03 cmp %g2, %g3
400079c8: 02 80 00 03 be 400079d4 <_Scheduler_priority_Block+0x148> <== NEVER TAKEN
400079cc: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
400079d0: 82 10 00 02 mov %g2, %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
400079d4: 05 10 00 51 sethi %hi(0x40014400), %g2
400079d8: c2 20 a2 bc st %g1, [ %g2 + 0x2bc ] ! 400146bc <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
400079dc: 03 10 00 51 sethi %hi(0x40014400), %g1
400079e0: 82 10 62 ac or %g1, 0x2ac, %g1 ! 400146ac <_Per_CPU_Information>
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
400079e4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
400079e8: 80 a6 00 02 cmp %i0, %g2
400079ec: 12 80 00 03 bne 400079f8 <_Scheduler_priority_Block+0x16c>
400079f0: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
400079f4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
400079f8: 81 c7 e0 08 ret
400079fc: 81 e8 00 00 restore
40007bb0 <_Scheduler_priority_Schedule>:
#include <rtems/system.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulerpriority.h>
void _Scheduler_priority_Schedule(void)
{
40007bb0: 9d e3 bf a0 save %sp, -96, %sp
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
(Chain_Control *) _Scheduler.information
40007bb4: 03 10 00 4e sethi %hi(0x40013800), %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40007bb8: c6 00 62 90 ld [ %g1 + 0x290 ], %g3 ! 40013a90 <_Scheduler>
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40007bbc: 03 10 00 51 sethi %hi(0x40014400), %g1
40007bc0: c4 10 62 d0 lduh [ %g1 + 0x2d0 ], %g2 ! 400146d0 <_Priority_Major_bit_map>
40007bc4: 03 10 00 4c sethi %hi(0x40013000), %g1
40007bc8: 85 28 a0 10 sll %g2, 0x10, %g2
40007bcc: 89 30 a0 10 srl %g2, 0x10, %g4
40007bd0: 80 a1 20 ff cmp %g4, 0xff
40007bd4: 18 80 00 05 bgu 40007be8 <_Scheduler_priority_Schedule+0x38>
40007bd8: 82 10 62 20 or %g1, 0x220, %g1
40007bdc: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
40007be0: 10 80 00 04 b 40007bf0 <_Scheduler_priority_Schedule+0x40>
40007be4: 84 00 a0 08 add %g2, 8, %g2
40007be8: 85 30 a0 18 srl %g2, 0x18, %g2
40007bec: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40007bf0: 83 28 a0 10 sll %g2, 0x10, %g1
40007bf4: 09 10 00 51 sethi %hi(0x40014400), %g4
40007bf8: 83 30 60 0f srl %g1, 0xf, %g1
40007bfc: 88 11 22 e0 or %g4, 0x2e0, %g4
40007c00: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
40007c04: 03 10 00 4c sethi %hi(0x40013000), %g1
40007c08: 89 29 20 10 sll %g4, 0x10, %g4
40007c0c: 9b 31 20 10 srl %g4, 0x10, %o5
40007c10: 80 a3 60 ff cmp %o5, 0xff
40007c14: 18 80 00 05 bgu 40007c28 <_Scheduler_priority_Schedule+0x78>
40007c18: 82 10 62 20 or %g1, 0x220, %g1
40007c1c: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
40007c20: 10 80 00 04 b 40007c30 <_Scheduler_priority_Schedule+0x80>
40007c24: 82 00 60 08 add %g1, 8, %g1
40007c28: 89 31 20 18 srl %g4, 0x18, %g4
40007c2c: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
40007c30: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40007c34: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
40007c38: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
40007c3c: 85 30 a0 0c srl %g2, 0xc, %g2
40007c40: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
40007c44: 89 28 a0 02 sll %g2, 2, %g4
40007c48: 83 28 a0 04 sll %g2, 4, %g1
40007c4c: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
}
40007c50: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
40007c54: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40007c58: 86 01 20 04 add %g4, 4, %g3
40007c5c: 80 a0 80 03 cmp %g2, %g3
40007c60: 02 80 00 03 be 40007c6c <_Scheduler_priority_Schedule+0xbc><== NEVER TAKEN
40007c64: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
40007c68: 82 10 00 02 mov %g2, %g1
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
40007c6c: 05 10 00 51 sethi %hi(0x40014400), %g2
40007c70: c2 20 a2 bc st %g1, [ %g2 + 0x2bc ] ! 400146bc <_Per_CPU_Information+0x10>
40007c74: 81 c7 e0 08 ret
40007c78: 81 e8 00 00 restore
40007d94 <_Scheduler_priority_Yield>:
* ready chain
* select heir
*/
void _Scheduler_priority_Yield(void)
{
40007d94: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_priority_Per_thread *sched_info;
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
40007d98: 25 10 00 51 sethi %hi(0x40014400), %l2
40007d9c: a4 14 a2 ac or %l2, 0x2ac, %l2 ! 400146ac <_Per_CPU_Information>
40007da0: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info;
ready = sched_info->ready_chain;
40007da4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
40007da8: 7f ff e7 c4 call 40001cb8 <sparc_disable_interrupts>
40007dac: e2 00 40 00 ld [ %g1 ], %l1
40007db0: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
40007db4: c4 04 40 00 ld [ %l1 ], %g2
40007db8: c2 04 60 08 ld [ %l1 + 8 ], %g1
40007dbc: 80 a0 80 01 cmp %g2, %g1
40007dc0: 22 80 00 1a be,a 40007e28 <_Scheduler_priority_Yield+0x94>
40007dc4: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
40007dc8: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
40007dcc: c2 04 20 04 ld [ %l0 + 4 ], %g1
next->previous = previous;
40007dd0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40007dd4: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40007dd8: c2 04 60 08 ld [ %l1 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
40007ddc: 84 04 60 04 add %l1, 4, %g2
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
40007de0: e0 24 60 08 st %l0, [ %l1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
40007de4: c4 24 00 00 st %g2, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
40007de8: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40007dec: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
40007df0: 7f ff e7 b6 call 40001cc8 <sparc_enable_interrupts>
40007df4: 01 00 00 00 nop
40007df8: 7f ff e7 b0 call 40001cb8 <sparc_disable_interrupts>
40007dfc: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
40007e00: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40007e04: 80 a4 00 01 cmp %l0, %g1
40007e08: 12 80 00 04 bne 40007e18 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
40007e0c: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
40007e10: c2 04 40 00 ld [ %l1 ], %g1
40007e14: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
40007e18: 03 10 00 51 sethi %hi(0x40014400), %g1
40007e1c: 82 10 62 ac or %g1, 0x2ac, %g1 ! 400146ac <_Per_CPU_Information>
40007e20: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40007e24: 30 80 00 05 b,a 40007e38 <_Scheduler_priority_Yield+0xa4>
}
else if ( !_Thread_Is_heir( executing ) )
40007e28: 80 a4 00 01 cmp %l0, %g1
40007e2c: 02 80 00 03 be 40007e38 <_Scheduler_priority_Yield+0xa4>
40007e30: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
40007e34: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
_ISR_Enable( level );
40007e38: 7f ff e7 a4 call 40001cc8 <sparc_enable_interrupts>
40007e3c: 81 e8 00 00 restore
40006dbc <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40006dbc: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40006dc0: 03 10 00 79 sethi %hi(0x4001e400), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40006dc4: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40006dc8: d2 00 60 64 ld [ %g1 + 0x64 ], %o1
if ((!the_tod) ||
40006dcc: 80 a4 20 00 cmp %l0, 0
40006dd0: 02 80 00 2b be 40006e7c <_TOD_Validate+0xc0> <== NEVER TAKEN
40006dd4: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40006dd8: 11 00 03 d0 sethi %hi(0xf4000), %o0
40006ddc: 40 00 47 d2 call 40018d24 <.udiv>
40006de0: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40006de4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40006de8: 80 a0 40 08 cmp %g1, %o0
40006dec: 1a 80 00 24 bcc 40006e7c <_TOD_Validate+0xc0>
40006df0: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40006df4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40006df8: 80 a0 60 3b cmp %g1, 0x3b
40006dfc: 18 80 00 20 bgu 40006e7c <_TOD_Validate+0xc0>
40006e00: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40006e04: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40006e08: 80 a0 60 3b cmp %g1, 0x3b
40006e0c: 18 80 00 1c bgu 40006e7c <_TOD_Validate+0xc0>
40006e10: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40006e14: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40006e18: 80 a0 60 17 cmp %g1, 0x17
40006e1c: 18 80 00 18 bgu 40006e7c <_TOD_Validate+0xc0>
40006e20: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
40006e24: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40006e28: 80 a0 60 00 cmp %g1, 0
40006e2c: 02 80 00 14 be 40006e7c <_TOD_Validate+0xc0> <== NEVER TAKEN
40006e30: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
40006e34: 18 80 00 12 bgu 40006e7c <_TOD_Validate+0xc0>
40006e38: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40006e3c: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
40006e40: 80 a0 e7 c3 cmp %g3, 0x7c3
40006e44: 08 80 00 0e bleu 40006e7c <_TOD_Validate+0xc0>
40006e48: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40006e4c: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40006e50: 80 a0 a0 00 cmp %g2, 0
40006e54: 02 80 00 0a be 40006e7c <_TOD_Validate+0xc0> <== NEVER TAKEN
40006e58: 80 88 e0 03 btst 3, %g3
40006e5c: 07 10 00 74 sethi %hi(0x4001d000), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
40006e60: 12 80 00 03 bne 40006e6c <_TOD_Validate+0xb0>
40006e64: 86 10 e1 38 or %g3, 0x138, %g3 ! 4001d138 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40006e68: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40006e6c: 83 28 60 02 sll %g1, 2, %g1
40006e70: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40006e74: 80 a0 40 02 cmp %g1, %g2
40006e78: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40006e7c: 81 c7 e0 08 ret
40006e80: 81 e8 00 00 restore
40007e98 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40007e98: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
40007e9c: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40007ea0: 40 00 03 3b call 40008b8c <_Thread_Set_transient>
40007ea4: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40007ea8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40007eac: 80 a0 40 19 cmp %g1, %i1
40007eb0: 02 80 00 05 be 40007ec4 <_Thread_Change_priority+0x2c>
40007eb4: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40007eb8: 90 10 00 18 mov %i0, %o0
40007ebc: 40 00 03 1a call 40008b24 <_Thread_Set_priority>
40007ec0: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40007ec4: 7f ff e7 7d call 40001cb8 <sparc_disable_interrupts>
40007ec8: 01 00 00 00 nop
40007ecc: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40007ed0: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
40007ed4: 80 a6 60 04 cmp %i1, 4
40007ed8: 02 80 00 10 be 40007f18 <_Thread_Change_priority+0x80>
40007edc: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40007ee0: 80 a4 60 00 cmp %l1, 0
40007ee4: 12 80 00 03 bne 40007ef0 <_Thread_Change_priority+0x58> <== NEVER TAKEN
40007ee8: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007eec: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40007ef0: 7f ff e7 76 call 40001cc8 <sparc_enable_interrupts>
40007ef4: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40007ef8: 03 00 00 ef sethi %hi(0x3bc00), %g1
40007efc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40007f00: 80 8e 40 01 btst %i1, %g1
40007f04: 02 80 00 28 be 40007fa4 <_Thread_Change_priority+0x10c>
40007f08: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40007f0c: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40007f10: 40 00 02 d8 call 40008a70 <_Thread_queue_Requeue>
40007f14: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40007f18: 80 a4 60 00 cmp %l1, 0
40007f1c: 12 80 00 0b bne 40007f48 <_Thread_Change_priority+0xb0> <== NEVER TAKEN
40007f20: 03 10 00 4e sethi %hi(0x40013800), %g1
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007f24: c0 24 20 10 clr [ %l0 + 0x10 ]
if ( prepend_it )
40007f28: 80 8e a0 ff btst 0xff, %i2
40007f2c: 02 80 00 04 be 40007f3c <_Thread_Change_priority+0xa4>
40007f30: 82 10 62 90 or %g1, 0x290, %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
40007f34: 10 80 00 03 b 40007f40 <_Thread_Change_priority+0xa8>
40007f38: c2 00 60 28 ld [ %g1 + 0x28 ], %g1
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
40007f3c: c2 00 60 24 ld [ %g1 + 0x24 ], %g1
40007f40: 9f c0 40 00 call %g1
40007f44: 90 10 00 10 mov %l0, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
40007f48: 7f ff e7 60 call 40001cc8 <sparc_enable_interrupts>
40007f4c: 90 10 00 18 mov %i0, %o0
40007f50: 7f ff e7 5a call 40001cb8 <sparc_disable_interrupts>
40007f54: 01 00 00 00 nop
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
40007f58: 03 10 00 4e sethi %hi(0x40013800), %g1
40007f5c: c2 00 62 98 ld [ %g1 + 0x298 ], %g1 ! 40013a98 <_Scheduler+0x8>
40007f60: 9f c0 40 00 call %g1
40007f64: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40007f68: 03 10 00 51 sethi %hi(0x40014400), %g1
40007f6c: 82 10 62 ac or %g1, 0x2ac, %g1 ! 400146ac <_Per_CPU_Information>
40007f70: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
40007f74: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40007f78: 80 a0 80 03 cmp %g2, %g3
40007f7c: 02 80 00 08 be 40007f9c <_Thread_Change_priority+0x104>
40007f80: 01 00 00 00 nop
40007f84: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
40007f88: 80 a0 a0 00 cmp %g2, 0
40007f8c: 02 80 00 04 be 40007f9c <_Thread_Change_priority+0x104>
40007f90: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40007f94: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
40007f98: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40007f9c: 7f ff e7 4b call 40001cc8 <sparc_enable_interrupts>
40007fa0: 81 e8 00 00 restore
40007fa4: 81 c7 e0 08 ret
40007fa8: 81 e8 00 00 restore
40008178 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008178: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
4000817c: 90 10 00 18 mov %i0, %o0
40008180: 40 00 00 5f call 400082fc <_Thread_Get>
40008184: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008188: c2 07 bf fc ld [ %fp + -4 ], %g1
4000818c: 80 a0 60 00 cmp %g1, 0
40008190: 12 80 00 08 bne 400081b0 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40008194: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40008198: 7f ff ff 85 call 40007fac <_Thread_Clear_state>
4000819c: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
400081a0: 03 10 00 51 sethi %hi(0x40014400), %g1
400081a4: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 40014480 <_Thread_Dispatch_disable_level>
400081a8: 84 00 bf ff add %g2, -1, %g2
400081ac: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
400081b0: 81 c7 e0 08 ret
400081b4: 81 e8 00 00 restore
400081b8 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
400081b8: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
400081bc: 2b 10 00 51 sethi %hi(0x40014400), %l5
400081c0: 82 15 62 ac or %l5, 0x2ac, %g1 ! 400146ac <_Per_CPU_Information>
_ISR_Disable( level );
400081c4: 7f ff e6 bd call 40001cb8 <sparc_disable_interrupts>
400081c8: e2 00 60 0c ld [ %g1 + 0xc ], %l1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
400081cc: 25 10 00 51 sethi %hi(0x40014400), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
400081d0: 39 10 00 51 sethi %hi(0x40014400), %i4
400081d4: ba 10 20 01 mov 1, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
400081d8: 2f 10 00 50 sethi %hi(0x40014000), %l7
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
400081dc: a8 07 bf f8 add %fp, -8, %l4
_Timestamp_Subtract(
400081e0: a6 07 bf f0 add %fp, -16, %l3
400081e4: a4 14 a1 2c or %l2, 0x12c, %l2
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
400081e8: 10 80 00 2b b 40008294 <_Thread_Dispatch+0xdc>
400081ec: 2d 10 00 51 sethi %hi(0x40014400), %l6
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
400081f0: fa 27 20 80 st %i5, [ %i4 + 0x80 ]
_Thread_Dispatch_necessary = false;
400081f4: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
400081f8: 80 a4 00 11 cmp %l0, %l1
400081fc: 02 80 00 2b be 400082a8 <_Thread_Dispatch+0xf0>
40008200: e0 20 60 0c st %l0, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40008204: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
40008208: 80 a0 60 01 cmp %g1, 1
4000820c: 12 80 00 03 bne 40008218 <_Thread_Dispatch+0x60>
40008210: c2 05 e3 e4 ld [ %l7 + 0x3e4 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008214: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Enable( level );
40008218: 7f ff e6 ac call 40001cc8 <sparc_enable_interrupts>
4000821c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008220: 40 00 0c c6 call 4000b538 <_TOD_Get_uptime>
40008224: 90 10 00 14 mov %l4, %o0
_Timestamp_Subtract(
40008228: 90 10 00 12 mov %l2, %o0
4000822c: 92 10 00 14 mov %l4, %o1
40008230: 40 00 02 e3 call 40008dbc <_Timespec_Subtract>
40008234: 94 10 00 13 mov %l3, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008238: 90 04 60 84 add %l1, 0x84, %o0
4000823c: 40 00 02 c7 call 40008d58 <_Timespec_Add_to>
40008240: 92 10 00 13 mov %l3, %o1
_Thread_Time_of_last_context_switch = uptime;
40008244: c2 07 bf f8 ld [ %fp + -8 ], %g1
40008248: c2 24 80 00 st %g1, [ %l2 ]
4000824c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008250: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008254: c2 05 a1 04 ld [ %l6 + 0x104 ], %g1
40008258: 80 a0 60 00 cmp %g1, 0
4000825c: 02 80 00 06 be 40008274 <_Thread_Dispatch+0xbc> <== NEVER TAKEN
40008260: 90 10 00 11 mov %l1, %o0
executing->libc_reent = *_Thread_libc_reent;
40008264: c4 00 40 00 ld [ %g1 ], %g2
40008268: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
4000826c: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
40008270: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40008274: 40 00 03 82 call 4000907c <_User_extensions_Thread_switch>
40008278: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
4000827c: 90 04 60 c0 add %l1, 0xc0, %o0
40008280: 40 00 04 73 call 4000944c <_CPU_Context_switch>
40008284: 92 04 20 c0 add %l0, 0xc0, %o1
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
40008288: 82 15 62 ac or %l5, 0x2ac, %g1
_ISR_Disable( level );
4000828c: 7f ff e6 8b call 40001cb8 <sparc_disable_interrupts>
40008290: e2 00 60 0c ld [ %g1 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40008294: 82 15 62 ac or %l5, 0x2ac, %g1
40008298: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
4000829c: 80 a0 a0 00 cmp %g2, 0
400082a0: 32 bf ff d4 bne,a 400081f0 <_Thread_Dispatch+0x38>
400082a4: e0 00 60 10 ld [ %g1 + 0x10 ], %l0
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400082a8: 03 10 00 51 sethi %hi(0x40014400), %g1
400082ac: c0 20 60 80 clr [ %g1 + 0x80 ] ! 40014480 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
400082b0: 7f ff e6 86 call 40001cc8 <sparc_enable_interrupts>
400082b4: 01 00 00 00 nop
_API_extensions_Run_postswitch();
400082b8: 7f ff f8 8d call 400064ec <_API_extensions_Run_postswitch>
400082bc: 01 00 00 00 nop
}
400082c0: 81 c7 e0 08 ret
400082c4: 81 e8 00 00 restore
4000d1ac <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000d1ac: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000d1b0: 03 10 00 51 sethi %hi(0x40014400), %g1
4000d1b4: e0 00 62 b8 ld [ %g1 + 0x2b8 ], %l0 ! 400146b8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000d1b8: 3f 10 00 34 sethi %hi(0x4000d000), %i7
4000d1bc: be 17 e1 ac or %i7, 0x1ac, %i7 ! 4000d1ac <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000d1c0: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000d1c4: 7f ff d2 c1 call 40001cc8 <sparc_enable_interrupts>
4000d1c8: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000d1cc: 03 10 00 50 sethi %hi(0x40014000), %g1
doneConstructors = 1;
4000d1d0: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000d1d4: e2 08 62 48 ldub [ %g1 + 0x248 ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000d1d8: 90 10 00 10 mov %l0, %o0
4000d1dc: 7f ff ef 38 call 40008ebc <_User_extensions_Thread_begin>
4000d1e0: c4 28 62 48 stb %g2, [ %g1 + 0x248 ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000d1e4: 7f ff ec 39 call 400082c8 <_Thread_Enable_dispatch>
4000d1e8: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000d1ec: 80 a4 60 00 cmp %l1, 0
4000d1f0: 32 80 00 05 bne,a 4000d204 <_Thread_Handler+0x58>
4000d1f4: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
INIT_NAME ();
4000d1f8: 40 00 1a 12 call 40013a40 <_init>
4000d1fc: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000d200: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000d204: 80 a0 60 00 cmp %g1, 0
4000d208: 12 80 00 06 bne 4000d220 <_Thread_Handler+0x74> <== NEVER TAKEN
4000d20c: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000d210: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000d214: 9f c0 40 00 call %g1
4000d218: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000d21c: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000d220: 7f ff ef 38 call 40008f00 <_User_extensions_Thread_exitted>
4000d224: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000d228: 90 10 20 00 clr %o0
4000d22c: 92 10 20 01 mov 1, %o1
4000d230: 7f ff e7 51 call 40006f74 <_Internal_error_Occurred>
4000d234: 94 10 20 05 mov 5, %o2
400083a8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
400083a8: 9d e3 bf a0 save %sp, -96, %sp
400083ac: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
400083b0: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
400083b4: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
400083b8: c0 26 61 4c clr [ %i1 + 0x14c ]
400083bc: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
400083c0: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
400083c4: 90 10 00 19 mov %i1, %o0
400083c8: 40 00 02 01 call 40008bcc <_Thread_Stack_Allocate>
400083cc: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
400083d0: 80 a2 00 1b cmp %o0, %i3
400083d4: 0a 80 00 57 bcs 40008530 <_Thread_Initialize+0x188>
400083d8: 80 a2 20 00 cmp %o0, 0
400083dc: 02 80 00 55 be 40008530 <_Thread_Initialize+0x188> <== NEVER TAKEN
400083e0: 01 00 00 00 nop
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
400083e4: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
400083e8: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
400083ec: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
400083f0: 03 10 00 51 sethi %hi(0x40014400), %g1
400083f4: d0 00 61 10 ld [ %g1 + 0x110 ], %o0 ! 40014510 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
400083f8: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
400083fc: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40008400: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
40008404: c0 26 60 6c clr [ %i1 + 0x6c ]
40008408: 80 a2 20 00 cmp %o0, 0
4000840c: 02 80 00 08 be 4000842c <_Thread_Initialize+0x84>
40008410: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
40008414: 90 02 20 01 inc %o0
40008418: 40 00 03 ef call 400093d4 <_Workspace_Allocate>
4000841c: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40008420: b6 92 20 00 orcc %o0, 0, %i3
40008424: 22 80 00 34 be,a 400084f4 <_Thread_Initialize+0x14c>
40008428: a0 10 20 00 clr %l0
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
4000842c: 80 a6 e0 00 cmp %i3, 0
40008430: 02 80 00 0b be 4000845c <_Thread_Initialize+0xb4>
40008434: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008438: 03 10 00 51 sethi %hi(0x40014400), %g1
4000843c: c4 00 61 10 ld [ %g1 + 0x110 ], %g2 ! 40014510 <_Thread_Maximum_extensions>
40008440: 10 80 00 04 b 40008450 <_Thread_Initialize+0xa8>
40008444: 82 10 20 00 clr %g1
40008448: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
4000844c: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008450: 80 a0 40 02 cmp %g1, %g2
40008454: 08 bf ff fd bleu 40008448 <_Thread_Initialize+0xa0>
40008458: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
4000845c: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40008460: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
the_thread->Start.budget_algorithm = budget_algorithm;
40008464: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
40008468: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
4000846c: c0 26 60 44 clr [ %i1 + 0x44 ]
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
40008470: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008474: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
40008478: c0 26 60 1c clr [ %i1 + 0x1c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
4000847c: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
40008480: 82 10 20 01 mov 1, %g1
40008484: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
40008488: 03 10 00 4e sethi %hi(0x40013800), %g1
4000848c: c2 00 62 a8 ld [ %g1 + 0x2a8 ], %g1 ! 40013aa8 <_Scheduler+0x18>
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
40008490: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
40008494: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
40008498: 9f c0 40 00 call %g1
4000849c: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
400084a0: a0 92 20 00 orcc %o0, 0, %l0
400084a4: 22 80 00 15 be,a 400084f8 <_Thread_Initialize+0x150>
400084a8: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
400084ac: 90 10 00 19 mov %i1, %o0
400084b0: 40 00 01 9d call 40008b24 <_Thread_Set_priority>
400084b4: 92 10 00 1d mov %i5, %o1
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
400084b8: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
400084bc: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
400084c0: c0 26 60 84 clr [ %i1 + 0x84 ]
400084c4: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
400084c8: 83 28 60 02 sll %g1, 2, %g1
400084cc: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
400084d0: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
400084d4: 90 10 00 19 mov %i1, %o0
400084d8: 40 00 02 ac call 40008f88 <_User_extensions_Thread_create>
400084dc: b0 10 20 01 mov 1, %i0
if ( extension_status )
400084e0: 80 8a 20 ff btst 0xff, %o0
400084e4: 22 80 00 05 be,a 400084f8 <_Thread_Initialize+0x150>
400084e8: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
400084ec: 81 c7 e0 08 ret
400084f0: 81 e8 00 00 restore
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
400084f4: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
400084f8: 40 00 03 c0 call 400093f8 <_Workspace_Free>
400084fc: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
40008500: 40 00 03 be call 400093f8 <_Workspace_Free>
40008504: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
40008508: 40 00 03 bc call 400093f8 <_Workspace_Free>
4000850c: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( extensions_area );
40008510: 40 00 03 ba call 400093f8 <_Workspace_Free>
40008514: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
#endif
_Workspace_Free( sched );
40008518: 40 00 03 b8 call 400093f8 <_Workspace_Free>
4000851c: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40008520: 40 00 01 c2 call 40008c28 <_Thread_Stack_Free>
40008524: 90 10 00 19 mov %i1, %o0
return false;
40008528: 81 c7 e0 08 ret
4000852c: 81 e8 00 00 restore
}
40008530: 81 c7 e0 08 ret
40008534: 91 e8 20 00 restore %g0, 0, %o0
4000c190 <_Thread_Resume>:
*/
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000c190: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000c194: 7f ff d7 3d call 40001e88 <sparc_disable_interrupts>
4000c198: a0 10 00 18 mov %i0, %l0
4000c19c: b0 10 00 08 mov %o0, %i0
current_state = the_thread->current_state;
4000c1a0: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000c1a4: 80 88 60 02 btst 2, %g1
4000c1a8: 02 80 00 09 be 4000c1cc <_Thread_Resume+0x3c> <== NEVER TAKEN
4000c1ac: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000c1b0: 80 a0 60 00 cmp %g1, 0
4000c1b4: 12 80 00 06 bne 4000c1cc <_Thread_Resume+0x3c>
4000c1b8: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Thread_Control *the_thread
)
{
_Scheduler.Operations.unblock( the_thread );
4000c1bc: 03 10 00 5d sethi %hi(0x40017400), %g1
4000c1c0: c2 00 61 24 ld [ %g1 + 0x124 ], %g1 ! 40017524 <_Scheduler+0x14>
4000c1c4: 9f c0 40 00 call %g1
4000c1c8: 90 10 00 10 mov %l0, %o0
_Scheduler_Unblock( the_thread );
}
}
_ISR_Enable( level );
4000c1cc: 7f ff d7 33 call 40001e98 <sparc_enable_interrupts>
4000c1d0: 81 e8 00 00 restore
40008a70 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
40008a70: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
40008a74: 80 a6 20 00 cmp %i0, 0
40008a78: 02 80 00 19 be 40008adc <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
40008a7c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
40008a80: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
40008a84: 80 a4 60 01 cmp %l1, 1
40008a88: 12 80 00 15 bne 40008adc <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
40008a8c: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
40008a90: 7f ff e4 8a call 40001cb8 <sparc_disable_interrupts>
40008a94: 01 00 00 00 nop
40008a98: a0 10 00 08 mov %o0, %l0
40008a9c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
40008aa0: 03 00 00 ef sethi %hi(0x3bc00), %g1
40008aa4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40008aa8: 80 88 80 01 btst %g2, %g1
40008aac: 02 80 00 0a be 40008ad4 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
40008ab0: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
40008ab4: 92 10 00 19 mov %i1, %o1
40008ab8: 94 10 20 01 mov 1, %o2
40008abc: 40 00 0c 0c call 4000baec <_Thread_queue_Extract_priority_helper>
40008ac0: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
40008ac4: 90 10 00 18 mov %i0, %o0
40008ac8: 92 10 00 19 mov %i1, %o1
40008acc: 7f ff ff 49 call 400087f0 <_Thread_queue_Enqueue_priority>
40008ad0: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
40008ad4: 7f ff e4 7d call 40001cc8 <sparc_enable_interrupts>
40008ad8: 90 10 00 10 mov %l0, %o0
40008adc: 81 c7 e0 08 ret
40008ae0: 81 e8 00 00 restore
40008ae4 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40008ae4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008ae8: 90 10 00 18 mov %i0, %o0
40008aec: 7f ff fe 04 call 400082fc <_Thread_Get>
40008af0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40008af4: c2 07 bf fc ld [ %fp + -4 ], %g1
40008af8: 80 a0 60 00 cmp %g1, 0
40008afc: 12 80 00 08 bne 40008b1c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40008b00: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
40008b04: 40 00 0c 32 call 4000bbcc <_Thread_queue_Process_timeout>
40008b08: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40008b0c: 03 10 00 51 sethi %hi(0x40014400), %g1
40008b10: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 40014480 <_Thread_Dispatch_disable_level>
40008b14: 84 00 bf ff add %g2, -1, %g2
40008b18: c4 20 60 80 st %g2, [ %g1 + 0x80 ]
40008b1c: 81 c7 e0 08 ret
40008b20: 81 e8 00 00 restore
40016534 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
40016534: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40016538: 39 10 00 f5 sethi %hi(0x4003d400), %i4
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4001653c: b6 07 bf f4 add %fp, -12, %i3
40016540: ae 07 bf f8 add %fp, -8, %l7
40016544: a4 07 bf e8 add %fp, -24, %l2
40016548: a6 07 bf ec add %fp, -20, %l3
4001654c: ee 27 bf f4 st %l7, [ %fp + -12 ]
head->previous = NULL;
40016550: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
40016554: f6 27 bf fc st %i3, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40016558: e6 27 bf e8 st %l3, [ %fp + -24 ]
head->previous = NULL;
4001655c: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
40016560: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016564: a8 06 20 30 add %i0, 0x30, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016568: 3b 10 00 f5 sethi %hi(0x4003d400), %i5
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
4001656c: a2 06 20 68 add %i0, 0x68, %l1
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016570: ac 06 20 08 add %i0, 8, %l6
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40016574: aa 06 20 40 add %i0, 0x40, %l5
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
40016578: f6 26 20 78 st %i3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
4001657c: c2 07 21 10 ld [ %i4 + 0x110 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40016580: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016584: 94 10 00 12 mov %l2, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
40016588: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
4001658c: 90 10 00 14 mov %l4, %o0
40016590: 40 00 11 8b call 4001abbc <_Watchdog_Adjust_to_chain>
40016594: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
40016598: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001659c: e0 07 60 88 ld [ %i5 + 0x88 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
400165a0: 80 a4 00 0a cmp %l0, %o2
400165a4: 08 80 00 06 bleu 400165bc <_Timer_server_Body+0x88>
400165a8: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
400165ac: 90 10 00 11 mov %l1, %o0
400165b0: 40 00 11 83 call 4001abbc <_Watchdog_Adjust_to_chain>
400165b4: 94 10 00 12 mov %l2, %o2
400165b8: 30 80 00 06 b,a 400165d0 <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
400165bc: 1a 80 00 05 bcc 400165d0 <_Timer_server_Body+0x9c>
400165c0: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
400165c4: 92 10 20 01 mov 1, %o1
400165c8: 40 00 11 55 call 4001ab1c <_Watchdog_Adjust>
400165cc: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
400165d0: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
400165d4: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
400165d8: 40 00 02 c0 call 400170d8 <_Chain_Get>
400165dc: 01 00 00 00 nop
if ( timer == NULL ) {
400165e0: 92 92 20 00 orcc %o0, 0, %o1
400165e4: 02 80 00 0c be 40016614 <_Timer_server_Body+0xe0>
400165e8: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400165ec: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400165f0: 80 a0 60 01 cmp %g1, 1
400165f4: 02 80 00 05 be 40016608 <_Timer_server_Body+0xd4>
400165f8: 90 10 00 14 mov %l4, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400165fc: 80 a0 60 03 cmp %g1, 3
40016600: 12 bf ff f5 bne 400165d4 <_Timer_server_Body+0xa0> <== NEVER TAKEN
40016604: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40016608: 40 00 11 a1 call 4001ac8c <_Watchdog_Insert>
4001660c: 92 02 60 10 add %o1, 0x10, %o1
40016610: 30 bf ff f1 b,a 400165d4 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
40016614: 7f ff e3 94 call 4000f464 <sparc_disable_interrupts>
40016618: 01 00 00 00 nop
tmp = ts->insert_chain;
4001661c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
40016620: c2 07 bf f4 ld [ %fp + -12 ], %g1
40016624: 80 a0 40 17 cmp %g1, %l7
40016628: 12 80 00 04 bne 40016638 <_Timer_server_Body+0x104> <== NEVER TAKEN
4001662c: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
40016630: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
40016634: a0 10 20 00 clr %l0
}
_ISR_Enable( level );
40016638: 7f ff e3 8f call 4000f474 <sparc_enable_interrupts>
4001663c: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
40016640: 80 8c 20 ff btst 0xff, %l0
40016644: 12 bf ff ce bne 4001657c <_Timer_server_Body+0x48> <== NEVER TAKEN
40016648: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
4001664c: 80 a0 40 13 cmp %g1, %l3
40016650: 02 80 00 18 be 400166b0 <_Timer_server_Body+0x17c>
40016654: 01 00 00 00 nop
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
40016658: 7f ff e3 83 call 4000f464 <sparc_disable_interrupts>
4001665c: 01 00 00 00 nop
40016660: 84 10 00 08 mov %o0, %g2
initialized = false;
}
#endif
return status;
}
40016664: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
40016668: 80 a4 00 13 cmp %l0, %l3
4001666c: 02 80 00 0e be 400166a4 <_Timer_server_Body+0x170>
40016670: 80 a4 20 00 cmp %l0, 0
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
40016674: c2 04 00 00 ld [ %l0 ], %g1
head->next = new_first;
40016678: c2 27 bf e8 st %g1, [ %fp + -24 ]
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
4001667c: 02 80 00 0a be 400166a4 <_Timer_server_Body+0x170> <== NEVER TAKEN
40016680: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
40016684: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
40016688: 7f ff e3 7b call 4000f474 <sparc_enable_interrupts>
4001668c: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40016690: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40016694: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
40016698: 9f c0 40 00 call %g1
4001669c: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
400166a0: 30 bf ff ee b,a 40016658 <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
400166a4: 7f ff e3 74 call 4000f474 <sparc_enable_interrupts>
400166a8: 90 10 00 02 mov %g2, %o0
400166ac: 30 bf ff b3 b,a 40016578 <_Timer_server_Body+0x44>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
400166b0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
400166b4: 7f ff ff 70 call 40016474 <_Thread_Disable_dispatch>
400166b8: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
400166bc: d0 06 00 00 ld [ %i0 ], %o0
400166c0: 40 00 0f 72 call 4001a488 <_Thread_Set_state>
400166c4: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
400166c8: 7f ff ff 71 call 4001648c <_Timer_server_Reset_interval_system_watchdog>
400166cc: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
400166d0: 7f ff ff 84 call 400164e0 <_Timer_server_Reset_tod_system_watchdog>
400166d4: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
400166d8: 40 00 0d 20 call 40019b58 <_Thread_Enable_dispatch>
400166dc: 01 00 00 00 nop
ts->active = true;
400166e0: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400166e4: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400166e8: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400166ec: 40 00 11 c4 call 4001adfc <_Watchdog_Remove>
400166f0: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400166f4: 40 00 11 c2 call 4001adfc <_Watchdog_Remove>
400166f8: 90 10 00 15 mov %l5, %o0
400166fc: 30 bf ff 9f b,a 40016578 <_Timer_server_Body+0x44>
40016700 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
40016700: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
40016704: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
40016708: 80 a0 60 00 cmp %g1, 0
4001670c: 12 80 00 49 bne 40016830 <_Timer_server_Schedule_operation_method+0x130>
40016710: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
40016714: 7f ff ff 58 call 40016474 <_Thread_Disable_dispatch>
40016718: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
4001671c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
40016720: 80 a0 60 01 cmp %g1, 1
40016724: 12 80 00 1f bne 400167a0 <_Timer_server_Schedule_operation_method+0xa0>
40016728: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
4001672c: 7f ff e3 4e call 4000f464 <sparc_disable_interrupts>
40016730: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
40016734: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40016738: c4 00 61 10 ld [ %g1 + 0x110 ], %g2 ! 4003d510 <_Watchdog_Ticks_since_boot>
initialized = false;
}
#endif
return status;
}
4001673c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40016740: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40016744: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
40016748: 80 a0 40 03 cmp %g1, %g3
4001674c: 02 80 00 08 be 4001676c <_Timer_server_Schedule_operation_method+0x6c>
40016750: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40016754: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
40016758: 80 a3 40 04 cmp %o5, %g4
4001675c: 08 80 00 03 bleu 40016768 <_Timer_server_Schedule_operation_method+0x68>
40016760: 86 10 20 00 clr %g3
delta_interval -= delta;
40016764: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
40016768: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
4001676c: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
40016770: 7f ff e3 41 call 4000f474 <sparc_enable_interrupts>
40016774: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
40016778: 90 06 20 30 add %i0, 0x30, %o0
4001677c: 40 00 11 44 call 4001ac8c <_Watchdog_Insert>
40016780: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40016784: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40016788: 80 a0 60 00 cmp %g1, 0
4001678c: 12 80 00 27 bne 40016828 <_Timer_server_Schedule_operation_method+0x128>
40016790: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40016794: 7f ff ff 3e call 4001648c <_Timer_server_Reset_interval_system_watchdog>
40016798: 90 10 00 18 mov %i0, %o0
4001679c: 30 80 00 23 b,a 40016828 <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400167a0: 12 80 00 22 bne 40016828 <_Timer_server_Schedule_operation_method+0x128><== NEVER TAKEN
400167a4: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400167a8: 7f ff e3 2f call 4000f464 <sparc_disable_interrupts>
400167ac: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
400167b0: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
400167b4: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
400167b8: 03 10 00 f5 sethi %hi(0x4003d400), %g1
400167bc: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
400167c0: 80 a0 80 03 cmp %g2, %g3
400167c4: 02 80 00 0d be 400167f8 <_Timer_server_Schedule_operation_method+0xf8>
400167c8: c2 00 60 88 ld [ %g1 + 0x88 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
400167cc: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
400167d0: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
400167d4: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
400167d8: 08 80 00 07 bleu 400167f4 <_Timer_server_Schedule_operation_method+0xf4>
400167dc: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
400167e0: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
400167e4: 80 a1 00 0d cmp %g4, %o5
400167e8: 08 80 00 03 bleu 400167f4 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
400167ec: 86 10 20 00 clr %g3
delta_interval -= delta;
400167f0: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400167f4: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400167f8: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400167fc: 7f ff e3 1e call 4000f474 <sparc_enable_interrupts>
40016800: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
40016804: 90 06 20 68 add %i0, 0x68, %o0
40016808: 40 00 11 21 call 4001ac8c <_Watchdog_Insert>
4001680c: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40016810: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
40016814: 80 a0 60 00 cmp %g1, 0
40016818: 12 80 00 04 bne 40016828 <_Timer_server_Schedule_operation_method+0x128>
4001681c: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
40016820: 7f ff ff 30 call 400164e0 <_Timer_server_Reset_tod_system_watchdog>
40016824: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
40016828: 40 00 0c cc call 40019b58 <_Thread_Enable_dispatch>
4001682c: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
40016830: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
40016834: 40 00 02 13 call 40017080 <_Chain_Append>
40016838: 81 e8 00 00 restore
40008f40 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40008f40: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40008f44: 23 10 00 51 sethi %hi(0x40014400), %l1
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40008f48: b2 0e 60 ff and %i1, 0xff, %i1
}
}
40008f4c: a2 14 62 68 or %l1, 0x268, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40008f50: 10 80 00 09 b 40008f74 <_User_extensions_Fatal+0x34>
40008f54: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
40008f58: 80 a0 60 00 cmp %g1, 0
40008f5c: 02 80 00 05 be 40008f70 <_User_extensions_Fatal+0x30>
40008f60: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40008f64: 92 10 00 19 mov %i1, %o1
40008f68: 9f c0 40 00 call %g1
40008f6c: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40008f70: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40008f74: 80 a4 00 11 cmp %l0, %l1
40008f78: 32 bf ff f8 bne,a 40008f58 <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN
40008f7c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40008f80: 81 c7 e0 08 ret <== NOT EXECUTED
40008f84: 81 e8 00 00 restore <== NOT EXECUTED
40008e04 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
40008e04: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40008e08: 03 10 00 4e sethi %hi(0x40013800), %g1
40008e0c: 82 10 63 68 or %g1, 0x368, %g1 ! 40013b68 <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008e10: 05 10 00 51 sethi %hi(0x40014400), %g2
initial_extensions = Configuration.User_extension_table;
40008e14: e6 00 60 3c ld [ %g1 + 0x3c ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40008e18: e4 00 60 38 ld [ %g1 + 0x38 ], %l2
40008e1c: 82 10 a2 68 or %g2, 0x268, %g1
40008e20: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40008e24: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
40008e28: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008e2c: c6 20 a2 68 st %g3, [ %g2 + 0x268 ]
40008e30: 05 10 00 51 sethi %hi(0x40014400), %g2
40008e34: 82 10 a0 84 or %g2, 0x84, %g1 ! 40014484 <_User_extensions_Switches_list>
40008e38: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40008e3c: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008e40: c6 20 a0 84 st %g3, [ %g2 + 0x84 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
40008e44: 80 a4 e0 00 cmp %l3, 0
40008e48: 02 80 00 1b be 40008eb4 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40008e4c: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
40008e50: 83 2c a0 02 sll %l2, 2, %g1
40008e54: a1 2c a0 04 sll %l2, 4, %l0
40008e58: a0 24 00 01 sub %l0, %g1, %l0
40008e5c: a0 04 00 12 add %l0, %l2, %l0
40008e60: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40008e64: 40 00 01 6c call 40009414 <_Workspace_Allocate_or_fatal_error>
40008e68: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40008e6c: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40008e70: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40008e74: 92 10 20 00 clr %o1
40008e78: 40 00 13 bf call 4000dd74 <memset>
40008e7c: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40008e80: 10 80 00 0b b 40008eac <_User_extensions_Handler_initialization+0xa8>
40008e84: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
40008e88: 90 04 60 14 add %l1, 0x14, %o0
40008e8c: 92 04 c0 09 add %l3, %o1, %o1
40008e90: 40 00 13 80 call 4000dc90 <memcpy>
40008e94: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
40008e98: 90 10 00 11 mov %l1, %o0
40008e9c: 40 00 0b 71 call 4000bc60 <_User_extensions_Add_set>
40008ea0: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
40008ea4: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40008ea8: 80 a4 00 12 cmp %l0, %l2
40008eac: 0a bf ff f7 bcs 40008e88 <_User_extensions_Handler_initialization+0x84>
40008eb0: 93 2c 20 05 sll %l0, 5, %o1
40008eb4: 81 c7 e0 08 ret
40008eb8: 81 e8 00 00 restore
4000b0e8 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000b0e8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000b0ec: 7f ff de fe call 40002ce4 <sparc_disable_interrupts>
4000b0f0: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000b0f4: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b0f8: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000b0fc: 80 a0 40 11 cmp %g1, %l1
4000b100: 02 80 00 1f be 4000b17c <_Watchdog_Adjust+0x94>
4000b104: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000b108: 02 80 00 1a be 4000b170 <_Watchdog_Adjust+0x88>
4000b10c: a4 10 20 01 mov 1, %l2
4000b110: 80 a6 60 01 cmp %i1, 1
4000b114: 12 80 00 1a bne 4000b17c <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000b118: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000b11c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000b120: 10 80 00 07 b 4000b13c <_Watchdog_Adjust+0x54>
4000b124: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
4000b128: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000b12c: 80 a6 80 19 cmp %i2, %i1
4000b130: 3a 80 00 05 bcc,a 4000b144 <_Watchdog_Adjust+0x5c>
4000b134: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
4000b138: b4 26 40 1a sub %i1, %i2, %i2
break;
4000b13c: 10 80 00 10 b 4000b17c <_Watchdog_Adjust+0x94>
4000b140: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
4000b144: 7f ff de ec call 40002cf4 <sparc_enable_interrupts>
4000b148: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000b14c: 40 00 00 94 call 4000b39c <_Watchdog_Tickle>
4000b150: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000b154: 7f ff de e4 call 40002ce4 <sparc_disable_interrupts>
4000b158: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000b15c: c2 04 00 00 ld [ %l0 ], %g1
4000b160: 80 a0 40 11 cmp %g1, %l1
4000b164: 02 80 00 06 be 4000b17c <_Watchdog_Adjust+0x94>
4000b168: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
4000b16c: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b170: 80 a6 a0 00 cmp %i2, 0
4000b174: 32 bf ff ed bne,a 4000b128 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
4000b178: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
4000b17c: 7f ff de de call 40002cf4 <sparc_enable_interrupts>
4000b180: 91 e8 00 08 restore %g0, %o0, %o0
40009228 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
40009228: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
4000922c: 7f ff e2 a3 call 40001cb8 <sparc_disable_interrupts>
40009230: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
40009234: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
40009238: 80 a6 20 01 cmp %i0, 1
4000923c: 22 80 00 1d be,a 400092b0 <_Watchdog_Remove+0x88>
40009240: c0 24 20 08 clr [ %l0 + 8 ]
40009244: 0a 80 00 1c bcs 400092b4 <_Watchdog_Remove+0x8c>
40009248: 03 10 00 51 sethi %hi(0x40014400), %g1
4000924c: 80 a6 20 03 cmp %i0, 3
40009250: 18 80 00 19 bgu 400092b4 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
40009254: 01 00 00 00 nop
40009258: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
4000925c: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
40009260: c4 00 40 00 ld [ %g1 ], %g2
40009264: 80 a0 a0 00 cmp %g2, 0
40009268: 02 80 00 07 be 40009284 <_Watchdog_Remove+0x5c>
4000926c: 05 10 00 51 sethi %hi(0x40014400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
40009270: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009274: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
40009278: 84 00 c0 02 add %g3, %g2, %g2
4000927c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009280: 05 10 00 51 sethi %hi(0x40014400), %g2
40009284: c4 00 a1 8c ld [ %g2 + 0x18c ], %g2 ! 4001458c <_Watchdog_Sync_count>
40009288: 80 a0 a0 00 cmp %g2, 0
4000928c: 22 80 00 07 be,a 400092a8 <_Watchdog_Remove+0x80>
40009290: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009294: 05 10 00 51 sethi %hi(0x40014400), %g2
40009298: c6 00 a2 b4 ld [ %g2 + 0x2b4 ], %g3 ! 400146b4 <_Per_CPU_Information+0x8>
4000929c: 05 10 00 51 sethi %hi(0x40014400), %g2
400092a0: c6 20 a1 24 st %g3, [ %g2 + 0x124 ] ! 40014524 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
400092a4: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
400092a8: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
400092ac: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
400092b0: 03 10 00 51 sethi %hi(0x40014400), %g1
400092b4: c2 00 61 90 ld [ %g1 + 0x190 ], %g1 ! 40014590 <_Watchdog_Ticks_since_boot>
400092b8: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
400092bc: 7f ff e2 83 call 40001cc8 <sparc_enable_interrupts>
400092c0: 01 00 00 00 nop
return( previous_state );
}
400092c4: 81 c7 e0 08 ret
400092c8: 81 e8 00 00 restore
4000a900 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000a900: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000a904: 7f ff df cf call 40002840 <sparc_disable_interrupts>
4000a908: a0 10 00 18 mov %i0, %l0
4000a90c: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000a910: 11 10 00 72 sethi %hi(0x4001c800), %o0
4000a914: 94 10 00 19 mov %i1, %o2
4000a918: 90 12 22 08 or %o0, 0x208, %o0
4000a91c: 7f ff e6 4e call 40004254 <printk>
4000a920: 92 10 00 10 mov %l0, %o1
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000a924: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000a928: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000a92c: 80 a4 40 19 cmp %l1, %i1
4000a930: 02 80 00 0e be 4000a968 <_Watchdog_Report_chain+0x68>
4000a934: 11 10 00 72 sethi %hi(0x4001c800), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000a938: 92 10 00 11 mov %l1, %o1
4000a93c: 40 00 00 10 call 4000a97c <_Watchdog_Report>
4000a940: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000a944: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000a948: 80 a4 40 19 cmp %l1, %i1
4000a94c: 12 bf ff fc bne 4000a93c <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000a950: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000a954: 11 10 00 72 sethi %hi(0x4001c800), %o0
4000a958: 92 10 00 10 mov %l0, %o1
4000a95c: 7f ff e6 3e call 40004254 <printk>
4000a960: 90 12 22 20 or %o0, 0x220, %o0
4000a964: 30 80 00 03 b,a 4000a970 <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
4000a968: 7f ff e6 3b call 40004254 <printk>
4000a96c: 90 12 22 30 or %o0, 0x230, %o0
}
_ISR_Enable( level );
4000a970: 7f ff df b8 call 40002850 <sparc_enable_interrupts>
4000a974: 81 e8 00 00 restore
40006ac8 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40006ac8: 9d e3 bf 98 save %sp, -104, %sp
40006acc: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40006ad0: 10 80 00 09 b 40006af4 <rtems_chain_get_with_wait+0x2c>
40006ad4: a4 07 bf fc add %fp, -4, %l2
40006ad8: 92 10 20 00 clr %o1
40006adc: 94 10 00 1a mov %i2, %o2
40006ae0: 7f ff fc fc call 40005ed0 <rtems_event_receive>
40006ae4: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40006ae8: 80 a2 20 00 cmp %o0, 0
40006aec: 32 80 00 09 bne,a 40006b10 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
40006af0: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40006af4: 40 00 01 64 call 40007084 <_Chain_Get>
40006af8: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
40006afc: a2 92 20 00 orcc %o0, 0, %l1
40006b00: 02 bf ff f6 be 40006ad8 <rtems_chain_get_with_wait+0x10>
40006b04: 90 10 00 19 mov %i1, %o0
40006b08: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
40006b0c: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006b10: 81 c7 e0 08 ret
40006b14: 91 e8 00 08 restore %g0, %o0, %o0
40008c78 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
40008c78: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
40008c7c: 80 a6 20 00 cmp %i0, 0
40008c80: 02 80 00 1d be 40008cf4 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
40008c84: 21 10 00 7c sethi %hi(0x4001f000), %l0
40008c88: a0 14 20 ec or %l0, 0xec, %l0 ! 4001f0ec <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
40008c8c: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
40008c90: c2 04 00 00 ld [ %l0 ], %g1
40008c94: 80 a0 60 00 cmp %g1, 0
40008c98: 22 80 00 14 be,a 40008ce8 <rtems_iterate_over_all_threads+0x70>
40008c9c: a0 04 20 04 add %l0, 4, %l0
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
40008ca0: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
40008ca4: 80 a4 a0 00 cmp %l2, 0
40008ca8: 12 80 00 0b bne 40008cd4 <rtems_iterate_over_all_threads+0x5c>
40008cac: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40008cb0: 10 80 00 0e b 40008ce8 <rtems_iterate_over_all_threads+0x70>
40008cb4: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40008cb8: 83 2c 60 02 sll %l1, 2, %g1
40008cbc: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
40008cc0: 80 a2 20 00 cmp %o0, 0
40008cc4: 02 80 00 04 be 40008cd4 <rtems_iterate_over_all_threads+0x5c><== NEVER TAKEN
40008cc8: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
40008ccc: 9f c6 00 00 call %i0
40008cd0: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40008cd4: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
40008cd8: 80 a4 40 01 cmp %l1, %g1
40008cdc: 28 bf ff f7 bleu,a 40008cb8 <rtems_iterate_over_all_threads+0x40>
40008ce0: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
40008ce4: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40008ce8: 80 a4 00 13 cmp %l0, %l3
40008cec: 32 bf ff ea bne,a 40008c94 <rtems_iterate_over_all_threads+0x1c>
40008cf0: c2 04 00 00 ld [ %l0 ], %g1
40008cf4: 81 c7 e0 08 ret
40008cf8: 81 e8 00 00 restore
40013eec <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40013eec: 9d e3 bf a0 save %sp, -96, %sp
40013ef0: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40013ef4: 80 a4 20 00 cmp %l0, 0
40013ef8: 02 80 00 1f be 40013f74 <rtems_partition_create+0x88>
40013efc: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40013f00: 80 a6 60 00 cmp %i1, 0
40013f04: 02 80 00 1c be 40013f74 <rtems_partition_create+0x88>
40013f08: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40013f0c: 80 a7 60 00 cmp %i5, 0
40013f10: 02 80 00 19 be 40013f74 <rtems_partition_create+0x88> <== NEVER TAKEN
40013f14: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40013f18: 02 80 00 32 be 40013fe0 <rtems_partition_create+0xf4>
40013f1c: 80 a6 a0 00 cmp %i2, 0
40013f20: 02 80 00 30 be 40013fe0 <rtems_partition_create+0xf4>
40013f24: 80 a6 80 1b cmp %i2, %i3
40013f28: 0a 80 00 13 bcs 40013f74 <rtems_partition_create+0x88>
40013f2c: b0 10 20 08 mov 8, %i0
40013f30: 80 8e e0 07 btst 7, %i3
40013f34: 12 80 00 10 bne 40013f74 <rtems_partition_create+0x88>
40013f38: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40013f3c: 12 80 00 0e bne 40013f74 <rtems_partition_create+0x88>
40013f40: b0 10 20 09 mov 9, %i0
40013f44: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40013f48: c4 00 60 00 ld [ %g1 ], %g2
40013f4c: 84 00 a0 01 inc %g2
40013f50: c4 20 60 00 st %g2, [ %g1 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40013f54: 25 10 00 f4 sethi %hi(0x4003d000), %l2
40013f58: 40 00 12 45 call 4001886c <_Objects_Allocate>
40013f5c: 90 14 a2 14 or %l2, 0x214, %o0 ! 4003d214 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40013f60: a2 92 20 00 orcc %o0, 0, %l1
40013f64: 12 80 00 06 bne 40013f7c <rtems_partition_create+0x90>
40013f68: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
40013f6c: 40 00 16 fb call 40019b58 <_Thread_Enable_dispatch>
40013f70: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40013f74: 81 c7 e0 08 ret
40013f78: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40013f7c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40013f80: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40013f84: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
40013f88: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
40013f8c: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40013f90: 40 00 61 3b call 4002c47c <.udiv>
40013f94: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013f98: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40013f9c: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013fa0: 96 10 00 1b mov %i3, %o3
40013fa4: a6 04 60 24 add %l1, 0x24, %l3
40013fa8: 40 00 0c 5b call 40017114 <_Chain_Initialize>
40013fac: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013fb0: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013fb4: a4 14 a2 14 or %l2, 0x214, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013fb8: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013fbc: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013fc0: 85 28 a0 02 sll %g2, 2, %g2
40013fc4: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40013fc8: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40013fcc: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40013fd0: 40 00 16 e2 call 40019b58 <_Thread_Enable_dispatch>
40013fd4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40013fd8: 81 c7 e0 08 ret
40013fdc: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
40013fe0: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013fe4: 81 c7 e0 08 ret
40013fe8: 81 e8 00 00 restore
40006ef4 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40006ef4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
40006ef8: 11 10 00 78 sethi %hi(0x4001e000), %o0
40006efc: 92 10 00 18 mov %i0, %o1
40006f00: 90 12 23 cc or %o0, 0x3cc, %o0
40006f04: 40 00 08 e4 call 40009294 <_Objects_Get>
40006f08: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40006f0c: c2 07 bf fc ld [ %fp + -4 ], %g1
40006f10: 80 a0 60 00 cmp %g1, 0
40006f14: 12 80 00 66 bne 400070ac <rtems_rate_monotonic_period+0x1b8>
40006f18: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40006f1c: 25 10 00 79 sethi %hi(0x4001e400), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40006f20: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
40006f24: a4 14 a3 5c or %l2, 0x35c, %l2
40006f28: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
40006f2c: 80 a0 80 01 cmp %g2, %g1
40006f30: 02 80 00 06 be 40006f48 <rtems_rate_monotonic_period+0x54>
40006f34: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40006f38: 40 00 0c 44 call 4000a048 <_Thread_Enable_dispatch>
40006f3c: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40006f40: 81 c7 e0 08 ret
40006f44: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40006f48: 12 80 00 0e bne 40006f80 <rtems_rate_monotonic_period+0x8c>
40006f4c: 01 00 00 00 nop
switch ( the_period->state ) {
40006f50: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40006f54: 80 a0 60 04 cmp %g1, 4
40006f58: 18 80 00 06 bgu 40006f70 <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
40006f5c: b0 10 20 00 clr %i0
40006f60: 83 28 60 02 sll %g1, 2, %g1
40006f64: 05 10 00 71 sethi %hi(0x4001c400), %g2
40006f68: 84 10 a3 44 or %g2, 0x344, %g2 ! 4001c744 <CSWTCH.2>
40006f6c: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
40006f70: 40 00 0c 36 call 4000a048 <_Thread_Enable_dispatch>
40006f74: 01 00 00 00 nop
return( return_value );
40006f78: 81 c7 e0 08 ret
40006f7c: 81 e8 00 00 restore
}
_ISR_Disable( level );
40006f80: 7f ff ef 13 call 40002bcc <sparc_disable_interrupts>
40006f84: 01 00 00 00 nop
40006f88: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40006f8c: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
40006f90: 80 a4 60 00 cmp %l1, 0
40006f94: 12 80 00 15 bne 40006fe8 <rtems_rate_monotonic_period+0xf4>
40006f98: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
40006f9c: 7f ff ef 10 call 40002bdc <sparc_enable_interrupts>
40006fa0: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
40006fa4: 7f ff ff 7a call 40006d8c <_Rate_monotonic_Initiate_statistics>
40006fa8: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40006fac: 82 10 20 02 mov 2, %g1
40006fb0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40006fb4: 03 10 00 1c sethi %hi(0x40007000), %g1
40006fb8: 82 10 63 7c or %g1, 0x37c, %g1 ! 4000737c <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40006fbc: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
40006fc0: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
40006fc4: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
40006fc8: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40006fcc: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40006fd0: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40006fd4: 11 10 00 79 sethi %hi(0x4001e400), %o0
40006fd8: 92 04 20 10 add %l0, 0x10, %o1
40006fdc: 40 00 10 0e call 4000b014 <_Watchdog_Insert>
40006fe0: 90 12 21 f0 or %o0, 0x1f0, %o0
40006fe4: 30 80 00 1b b,a 40007050 <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40006fe8: 12 80 00 1e bne 40007060 <rtems_rate_monotonic_period+0x16c>
40006fec: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40006ff0: 7f ff ff 83 call 40006dfc <_Rate_monotonic_Update_statistics>
40006ff4: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40006ff8: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40006ffc: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40007000: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40007004: 7f ff ee f6 call 40002bdc <sparc_enable_interrupts>
40007008: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
4000700c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007010: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007014: 13 00 00 10 sethi %hi(0x4000), %o1
40007018: 40 00 0e 2b call 4000a8c4 <_Thread_Set_state>
4000701c: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40007020: 7f ff ee eb call 40002bcc <sparc_disable_interrupts>
40007024: 01 00 00 00 nop
local_state = the_period->state;
40007028: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
4000702c: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
40007030: 7f ff ee eb call 40002bdc <sparc_enable_interrupts>
40007034: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40007038: 80 a4 e0 03 cmp %l3, 3
4000703c: 12 80 00 05 bne 40007050 <rtems_rate_monotonic_period+0x15c>
40007040: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40007044: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40007048: 40 00 0b 39 call 40009d2c <_Thread_Clear_state>
4000704c: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
40007050: 40 00 0b fe call 4000a048 <_Thread_Enable_dispatch>
40007054: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40007058: 81 c7 e0 08 ret
4000705c: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
40007060: 12 bf ff b8 bne 40006f40 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
40007064: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40007068: 7f ff ff 65 call 40006dfc <_Rate_monotonic_Update_statistics>
4000706c: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
40007070: 7f ff ee db call 40002bdc <sparc_enable_interrupts>
40007074: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007078: 82 10 20 02 mov 2, %g1
4000707c: 92 04 20 10 add %l0, 0x10, %o1
40007080: 11 10 00 79 sethi %hi(0x4001e400), %o0
40007084: 90 12 21 f0 or %o0, 0x1f0, %o0 ! 4001e5f0 <_Watchdog_Ticks_chain>
40007088: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
4000708c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007090: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007094: 40 00 0f e0 call 4000b014 <_Watchdog_Insert>
40007098: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
4000709c: 40 00 0b eb call 4000a048 <_Thread_Enable_dispatch>
400070a0: 01 00 00 00 nop
return RTEMS_TIMEOUT;
400070a4: 81 c7 e0 08 ret
400070a8: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
400070ac: b0 10 20 04 mov 4, %i0
}
400070b0: 81 c7 e0 08 ret
400070b4: 81 e8 00 00 restore
400070b8 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
400070b8: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
400070bc: 80 a6 60 00 cmp %i1, 0
400070c0: 02 80 00 79 be 400072a4 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
400070c4: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
400070c8: 13 10 00 71 sethi %hi(0x4001c400), %o1
400070cc: 9f c6 40 00 call %i1
400070d0: 92 12 63 58 or %o1, 0x358, %o1 ! 4001c758 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
400070d4: 90 10 00 18 mov %i0, %o0
400070d8: 13 10 00 71 sethi %hi(0x4001c400), %o1
400070dc: 9f c6 40 00 call %i1
400070e0: 92 12 63 78 or %o1, 0x378, %o1 ! 4001c778 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
400070e4: 90 10 00 18 mov %i0, %o0
400070e8: 13 10 00 71 sethi %hi(0x4001c400), %o1
400070ec: 9f c6 40 00 call %i1
400070f0: 92 12 63 a0 or %o1, 0x3a0, %o1 ! 4001c7a0 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
400070f4: 90 10 00 18 mov %i0, %o0
400070f8: 13 10 00 71 sethi %hi(0x4001c400), %o1
400070fc: 9f c6 40 00 call %i1
40007100: 92 12 63 c8 or %o1, 0x3c8, %o1 ! 4001c7c8 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
40007104: 90 10 00 18 mov %i0, %o0
40007108: 13 10 00 72 sethi %hi(0x4001c800), %o1
4000710c: 9f c6 40 00 call %i1
40007110: 92 12 60 18 or %o1, 0x18, %o1 ! 4001c818 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007114: 3b 10 00 78 sethi %hi(0x4001e000), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007118: 2b 10 00 72 sethi %hi(0x4001c800), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000711c: 82 17 63 cc or %i5, 0x3cc, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
40007120: 27 10 00 72 sethi %hi(0x4001c800), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
40007124: 35 10 00 72 sethi %hi(0x4001c800), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007128: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
4000712c: ae 07 bf a0 add %fp, -96, %l7
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007130: ac 07 bf d8 add %fp, -40, %l6
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007134: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007138: aa 15 60 68 or %l5, 0x68, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
4000713c: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007140: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
40007144: a6 14 e0 80 or %l3, 0x80, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
40007148: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
4000714c: 10 80 00 52 b 40007294 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
40007150: b4 16 a0 a0 or %i2, 0xa0, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
40007154: 40 00 17 a6 call 4000cfec <rtems_rate_monotonic_get_statistics>
40007158: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
4000715c: 80 a2 20 00 cmp %o0, 0
40007160: 32 80 00 4c bne,a 40007290 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007164: a0 04 20 01 inc %l0
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007168: 92 10 00 16 mov %l6, %o1
4000716c: 40 00 17 cd call 4000d0a0 <rtems_rate_monotonic_get_status>
40007170: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007174: d0 07 bf d8 ld [ %fp + -40 ], %o0
40007178: 92 10 20 05 mov 5, %o1
4000717c: 40 00 00 ae call 40007434 <rtems_object_get_name>
40007180: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007184: d8 1f bf a0 ldd [ %fp + -96 ], %o4
40007188: 92 10 00 15 mov %l5, %o1
4000718c: 90 10 00 18 mov %i0, %o0
40007190: 94 10 00 10 mov %l0, %o2
40007194: 9f c6 40 00 call %i1
40007198: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
4000719c: d2 07 bf a0 ld [ %fp + -96 ], %o1
400071a0: 80 a2 60 00 cmp %o1, 0
400071a4: 12 80 00 08 bne 400071c4 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
400071a8: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
400071ac: 90 10 00 18 mov %i0, %o0
400071b0: 13 10 00 6e sethi %hi(0x4001b800), %o1
400071b4: 9f c6 40 00 call %i1
400071b8: 92 12 61 f8 or %o1, 0x1f8, %o1 ! 4001b9f8 <_rodata_start+0x158>
continue;
400071bc: 10 80 00 35 b 40007290 <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
400071c0: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400071c4: 40 00 0e 71 call 4000ab88 <_Timespec_Divide_by_integer>
400071c8: 90 10 00 14 mov %l4, %o0
(*print)( context,
400071cc: d0 07 bf ac ld [ %fp + -84 ], %o0
400071d0: 40 00 45 20 call 40018650 <.div>
400071d4: 92 10 23 e8 mov 0x3e8, %o1
400071d8: 96 10 00 08 mov %o0, %o3
400071dc: d0 07 bf b4 ld [ %fp + -76 ], %o0
400071e0: d6 27 bf 9c st %o3, [ %fp + -100 ]
400071e4: 40 00 45 1b call 40018650 <.div>
400071e8: 92 10 23 e8 mov 0x3e8, %o1
400071ec: c2 07 bf f0 ld [ %fp + -16 ], %g1
400071f0: b6 10 00 08 mov %o0, %i3
400071f4: d0 07 bf f4 ld [ %fp + -12 ], %o0
400071f8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
400071fc: 40 00 45 15 call 40018650 <.div>
40007200: 92 10 23 e8 mov 0x3e8, %o1
40007204: d8 07 bf b0 ld [ %fp + -80 ], %o4
40007208: d6 07 bf 9c ld [ %fp + -100 ], %o3
4000720c: d4 07 bf a8 ld [ %fp + -88 ], %o2
40007210: 9a 10 00 1b mov %i3, %o5
40007214: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40007218: 92 10 00 13 mov %l3, %o1
4000721c: 9f c6 40 00 call %i1
40007220: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
40007224: d2 07 bf a0 ld [ %fp + -96 ], %o1
40007228: 94 10 00 11 mov %l1, %o2
4000722c: 40 00 0e 57 call 4000ab88 <_Timespec_Divide_by_integer>
40007230: 90 10 00 1c mov %i4, %o0
(*print)( context,
40007234: d0 07 bf c4 ld [ %fp + -60 ], %o0
40007238: 40 00 45 06 call 40018650 <.div>
4000723c: 92 10 23 e8 mov 0x3e8, %o1
40007240: 96 10 00 08 mov %o0, %o3
40007244: d0 07 bf cc ld [ %fp + -52 ], %o0
40007248: d6 27 bf 9c st %o3, [ %fp + -100 ]
4000724c: 40 00 45 01 call 40018650 <.div>
40007250: 92 10 23 e8 mov 0x3e8, %o1
40007254: c2 07 bf f0 ld [ %fp + -16 ], %g1
40007258: b6 10 00 08 mov %o0, %i3
4000725c: d0 07 bf f4 ld [ %fp + -12 ], %o0
40007260: 92 10 23 e8 mov 0x3e8, %o1
40007264: 40 00 44 fb call 40018650 <.div>
40007268: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
4000726c: d4 07 bf c0 ld [ %fp + -64 ], %o2
40007270: d6 07 bf 9c ld [ %fp + -100 ], %o3
40007274: d8 07 bf c8 ld [ %fp + -56 ], %o4
40007278: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
4000727c: 92 10 00 1a mov %i2, %o1
40007280: 90 10 00 18 mov %i0, %o0
40007284: 9f c6 40 00 call %i1
40007288: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
4000728c: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
40007290: 82 17 63 cc or %i5, 0x3cc, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007294: c2 00 60 0c ld [ %g1 + 0xc ], %g1
40007298: 80 a4 00 01 cmp %l0, %g1
4000729c: 08 bf ff ae bleu 40007154 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
400072a0: 90 10 00 10 mov %l0, %o0
400072a4: 81 c7 e0 08 ret
400072a8: 81 e8 00 00 restore
40015490 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
40015490: 9d e3 bf 98 save %sp, -104, %sp
40015494: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
40015498: 80 a6 60 00 cmp %i1, 0
4001549c: 02 80 00 2e be 40015554 <rtems_signal_send+0xc4>
400154a0: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
400154a4: 40 00 11 ba call 40019b8c <_Thread_Get>
400154a8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400154ac: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
400154b0: a2 10 00 08 mov %o0, %l1
switch ( location ) {
400154b4: 80 a0 60 00 cmp %g1, 0
400154b8: 12 80 00 27 bne 40015554 <rtems_signal_send+0xc4>
400154bc: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
400154c0: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
400154c4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
400154c8: 80 a0 60 00 cmp %g1, 0
400154cc: 02 80 00 24 be 4001555c <rtems_signal_send+0xcc>
400154d0: 01 00 00 00 nop
if ( asr->is_enabled ) {
400154d4: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
400154d8: 80 a0 60 00 cmp %g1, 0
400154dc: 02 80 00 15 be 40015530 <rtems_signal_send+0xa0>
400154e0: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400154e4: 7f ff e7 e0 call 4000f464 <sparc_disable_interrupts>
400154e8: 01 00 00 00 nop
*signal_set |= signals;
400154ec: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
400154f0: b2 10 40 19 or %g1, %i1, %i1
400154f4: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
400154f8: 7f ff e7 df call 4000f474 <sparc_enable_interrupts>
400154fc: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
40015500: 03 10 00 f5 sethi %hi(0x4003d400), %g1
40015504: 82 10 62 34 or %g1, 0x234, %g1 ! 4003d634 <_Per_CPU_Information>
40015508: c4 00 60 08 ld [ %g1 + 8 ], %g2
4001550c: 80 a0 a0 00 cmp %g2, 0
40015510: 02 80 00 0f be 4001554c <rtems_signal_send+0xbc>
40015514: 01 00 00 00 nop
40015518: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4001551c: 80 a4 40 02 cmp %l1, %g2
40015520: 12 80 00 0b bne 4001554c <rtems_signal_send+0xbc> <== NEVER TAKEN
40015524: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
40015528: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
4001552c: 30 80 00 08 b,a 4001554c <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
40015530: 7f ff e7 cd call 4000f464 <sparc_disable_interrupts>
40015534: 01 00 00 00 nop
*signal_set |= signals;
40015538: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4001553c: b2 10 40 19 or %g1, %i1, %i1
40015540: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
40015544: 7f ff e7 cc call 4000f474 <sparc_enable_interrupts>
40015548: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
4001554c: 40 00 11 83 call 40019b58 <_Thread_Enable_dispatch>
40015550: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
40015554: 81 c7 e0 08 ret
40015558: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
4001555c: 40 00 11 7f call 40019b58 <_Thread_Enable_dispatch>
40015560: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
40015564: 81 c7 e0 08 ret
40015568: 81 e8 00 00 restore
4000ce7c <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000ce7c: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000ce80: 80 a6 a0 00 cmp %i2, 0
4000ce84: 02 80 00 5a be 4000cfec <rtems_task_mode+0x170>
4000ce88: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000ce8c: 03 10 00 51 sethi %hi(0x40014400), %g1
4000ce90: e2 00 62 b8 ld [ %g1 + 0x2b8 ], %l1 ! 400146b8 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ce94: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000ce98: e0 04 61 4c ld [ %l1 + 0x14c ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ce9c: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000cea0: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000cea4: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000cea8: 80 a0 60 00 cmp %g1, 0
4000ceac: 02 80 00 03 be 4000ceb8 <rtems_task_mode+0x3c>
4000ceb0: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000ceb4: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000ceb8: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
4000cebc: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000cec0: 7f ff f2 67 call 4000985c <_CPU_ISR_Get_level>
4000cec4: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000cec8: a7 2c e0 0a sll %l3, 0xa, %l3
4000cecc: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
4000ced0: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000ced4: 80 8e 61 00 btst 0x100, %i1
4000ced8: 02 80 00 06 be 4000cef0 <rtems_task_mode+0x74>
4000cedc: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000cee0: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000cee4: 80 a0 00 01 cmp %g0, %g1
4000cee8: 82 60 3f ff subx %g0, -1, %g1
4000ceec: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000cef0: 80 8e 62 00 btst 0x200, %i1
4000cef4: 02 80 00 0b be 4000cf20 <rtems_task_mode+0xa4>
4000cef8: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000cefc: 80 8e 22 00 btst 0x200, %i0
4000cf00: 22 80 00 07 be,a 4000cf1c <rtems_task_mode+0xa0>
4000cf04: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000cf08: 82 10 20 01 mov 1, %g1
4000cf0c: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000cf10: 03 10 00 50 sethi %hi(0x40014000), %g1
4000cf14: c2 00 63 e4 ld [ %g1 + 0x3e4 ], %g1 ! 400143e4 <_Thread_Ticks_per_timeslice>
4000cf18: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000cf1c: 80 8e 60 0f btst 0xf, %i1
4000cf20: 02 80 00 06 be 4000cf38 <rtems_task_mode+0xbc>
4000cf24: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000cf28: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000cf2c: 7f ff d3 67 call 40001cc8 <sparc_enable_interrupts>
4000cf30: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000cf34: 80 8e 64 00 btst 0x400, %i1
4000cf38: 02 80 00 14 be 4000cf88 <rtems_task_mode+0x10c>
4000cf3c: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000cf40: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000cf44: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000cf48: 80 a0 00 18 cmp %g0, %i0
4000cf4c: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000cf50: 80 a0 40 02 cmp %g1, %g2
4000cf54: 22 80 00 0e be,a 4000cf8c <rtems_task_mode+0x110>
4000cf58: 03 10 00 51 sethi %hi(0x40014400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000cf5c: 7f ff d3 57 call 40001cb8 <sparc_disable_interrupts>
4000cf60: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
4000cf64: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
4000cf68: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
4000cf6c: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000cf70: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000cf74: 7f ff d3 55 call 40001cc8 <sparc_enable_interrupts>
4000cf78: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000cf7c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000cf80: 80 a0 00 01 cmp %g0, %g1
4000cf84: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000cf88: 03 10 00 51 sethi %hi(0x40014400), %g1
4000cf8c: c4 00 61 d8 ld [ %g1 + 0x1d8 ], %g2 ! 400145d8 <_System_state_Current>
4000cf90: 80 a0 a0 03 cmp %g2, 3
4000cf94: 12 80 00 16 bne 4000cfec <rtems_task_mode+0x170>
4000cf98: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000cf9c: 07 10 00 51 sethi %hi(0x40014400), %g3
if ( are_signals_pending ||
4000cfa0: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000cfa4: 86 10 e2 ac or %g3, 0x2ac, %g3
if ( are_signals_pending ||
4000cfa8: 12 80 00 0a bne 4000cfd0 <rtems_task_mode+0x154>
4000cfac: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
4000cfb0: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
4000cfb4: 80 a0 80 03 cmp %g2, %g3
4000cfb8: 02 80 00 0d be 4000cfec <rtems_task_mode+0x170>
4000cfbc: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000cfc0: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000cfc4: 80 a0 a0 00 cmp %g2, 0
4000cfc8: 02 80 00 09 be 4000cfec <rtems_task_mode+0x170> <== NEVER TAKEN
4000cfcc: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000cfd0: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
4000cfd4: 03 10 00 51 sethi %hi(0x40014400), %g1
4000cfd8: 82 10 62 ac or %g1, 0x2ac, %g1 ! 400146ac <_Per_CPU_Information>
4000cfdc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000cfe0: 7f ff ec 76 call 400081b8 <_Thread_Dispatch>
4000cfe4: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000cfe8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000cfec: 81 c7 e0 08 ret
4000cff0: 91 e8 00 01 restore %g0, %g1, %o0
4000a704 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000a704: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000a708: 80 a6 60 00 cmp %i1, 0
4000a70c: 02 80 00 07 be 4000a728 <rtems_task_set_priority+0x24>
4000a710: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000a714: 03 10 00 60 sethi %hi(0x40018000), %g1
4000a718: c2 08 62 f4 ldub [ %g1 + 0x2f4 ], %g1 ! 400182f4 <rtems_maximum_priority>
4000a71c: 80 a6 40 01 cmp %i1, %g1
4000a720: 18 80 00 1c bgu 4000a790 <rtems_task_set_priority+0x8c>
4000a724: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000a728: 80 a6 a0 00 cmp %i2, 0
4000a72c: 02 80 00 19 be 4000a790 <rtems_task_set_priority+0x8c>
4000a730: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000a734: 40 00 09 19 call 4000cb98 <_Thread_Get>
4000a738: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000a73c: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a740: 80 a0 60 00 cmp %g1, 0
4000a744: 12 80 00 13 bne 4000a790 <rtems_task_set_priority+0x8c>
4000a748: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000a74c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000a750: 80 a6 60 00 cmp %i1, 0
4000a754: 02 80 00 0d be 4000a788 <rtems_task_set_priority+0x84>
4000a758: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000a75c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000a760: 80 a0 60 00 cmp %g1, 0
4000a764: 02 80 00 06 be 4000a77c <rtems_task_set_priority+0x78>
4000a768: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000a76c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000a770: 80 a0 40 19 cmp %g1, %i1
4000a774: 08 80 00 05 bleu 4000a788 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000a778: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000a77c: 92 10 00 19 mov %i1, %o1
4000a780: 40 00 07 ed call 4000c734 <_Thread_Change_priority>
4000a784: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000a788: 40 00 08 f7 call 4000cb64 <_Thread_Enable_dispatch>
4000a78c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000a790: 81 c7 e0 08 ret
4000a794: 81 e8 00 00 restore
40015e9c <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40015e9c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40015ea0: 11 10 00 f5 sethi %hi(0x4003d400), %o0
40015ea4: 92 10 00 18 mov %i0, %o1
40015ea8: 90 12 22 c4 or %o0, 0x2c4, %o0
40015eac: 40 00 0b be call 40018da4 <_Objects_Get>
40015eb0: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40015eb4: c2 07 bf fc ld [ %fp + -4 ], %g1
40015eb8: 80 a0 60 00 cmp %g1, 0
40015ebc: 12 80 00 0c bne 40015eec <rtems_timer_cancel+0x50>
40015ec0: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40015ec4: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40015ec8: 80 a0 60 04 cmp %g1, 4
40015ecc: 02 80 00 04 be 40015edc <rtems_timer_cancel+0x40> <== NEVER TAKEN
40015ed0: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40015ed4: 40 00 13 ca call 4001adfc <_Watchdog_Remove>
40015ed8: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40015edc: 40 00 0f 1f call 40019b58 <_Thread_Enable_dispatch>
40015ee0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40015ee4: 81 c7 e0 08 ret
40015ee8: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015eec: 81 c7 e0 08 ret
40015ef0: 91 e8 20 04 restore %g0, 4, %o0
40016384 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016384: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
40016388: 03 10 00 f5 sethi %hi(0x4003d400), %g1
4001638c: e2 00 63 04 ld [ %g1 + 0x304 ], %l1 ! 4003d704 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016390: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
40016394: 80 a4 60 00 cmp %l1, 0
40016398: 02 80 00 33 be 40016464 <rtems_timer_server_fire_when+0xe0>
4001639c: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
400163a0: 03 10 00 f5 sethi %hi(0x4003d400), %g1
400163a4: c2 08 60 10 ldub [ %g1 + 0x10 ], %g1 ! 4003d410 <_TOD_Is_set>
400163a8: 80 a0 60 00 cmp %g1, 0
400163ac: 02 80 00 2e be 40016464 <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
400163b0: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
400163b4: 80 a6 a0 00 cmp %i2, 0
400163b8: 02 80 00 2b be 40016464 <rtems_timer_server_fire_when+0xe0>
400163bc: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
400163c0: 90 10 00 19 mov %i1, %o0
400163c4: 7f ff f4 07 call 400133e0 <_TOD_Validate>
400163c8: b0 10 20 14 mov 0x14, %i0
400163cc: 80 8a 20 ff btst 0xff, %o0
400163d0: 02 80 00 27 be 4001646c <rtems_timer_server_fire_when+0xe8>
400163d4: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
400163d8: 7f ff f3 ce call 40013310 <_TOD_To_seconds>
400163dc: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400163e0: 27 10 00 f5 sethi %hi(0x4003d400), %l3
400163e4: c2 04 e0 88 ld [ %l3 + 0x88 ], %g1 ! 4003d488 <_TOD_Now>
400163e8: 80 a2 00 01 cmp %o0, %g1
400163ec: 08 80 00 1e bleu 40016464 <rtems_timer_server_fire_when+0xe0>
400163f0: a4 10 00 08 mov %o0, %l2
400163f4: 11 10 00 f5 sethi %hi(0x4003d400), %o0
400163f8: 92 10 00 10 mov %l0, %o1
400163fc: 90 12 22 c4 or %o0, 0x2c4, %o0
40016400: 40 00 0a 69 call 40018da4 <_Objects_Get>
40016404: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40016408: c2 07 bf fc ld [ %fp + -4 ], %g1
4001640c: b2 10 00 08 mov %o0, %i1
40016410: 80 a0 60 00 cmp %g1, 0
40016414: 12 80 00 14 bne 40016464 <rtems_timer_server_fire_when+0xe0>
40016418: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
4001641c: 40 00 12 78 call 4001adfc <_Watchdog_Remove>
40016420: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
40016424: 82 10 20 03 mov 3, %g1
40016428: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
4001642c: c2 04 e0 88 ld [ %l3 + 0x88 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
40016430: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016434: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
40016438: c2 04 60 04 ld [ %l1 + 4 ], %g1
4001643c: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40016440: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
40016444: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
40016448: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
4001644c: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016450: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
40016454: 9f c0 40 00 call %g1
40016458: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
4001645c: 40 00 0d bf call 40019b58 <_Thread_Enable_dispatch>
40016460: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40016464: 81 c7 e0 08 ret
40016468: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
4001646c: 81 c7 e0 08 ret
40016470: 81 e8 00 00 restore