RTEMS 4.11Annotated Report
Sat Jan 8 16:46:37 2011
40017014 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
40017014: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017018: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
4001701c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
40017020: 80 a6 80 01 cmp %i2, %g1
40017024: 18 80 00 16 bgu 4001707c <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN
40017028: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
4001702c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
40017030: 80 a0 60 00 cmp %g1, 0
40017034: 02 80 00 0b be 40017060 <_CORE_message_queue_Broadcast+0x4c>
40017038: a2 10 20 00 clr %l1
*count = 0;
4001703c: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017040: 81 c7 e0 08 ret
40017044: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
40017048: 92 10 00 19 mov %i1, %o1
4001704c: 40 00 20 b9 call 4001f330 <memcpy>
40017050: 94 10 00 1a mov %i2, %o2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
40017054: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1
*/
number_broadcasted = 0;
while ((the_thread =
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
40017058: a2 04 60 01 inc %l1
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
4001705c: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
40017060: 40 00 0a dc call 40019bd0 <_Thread_queue_Dequeue>
40017064: 90 10 00 10 mov %l0, %o0
40017068: a4 92 20 00 orcc %o0, 0, %l2
4001706c: 32 bf ff f7 bne,a 40017048 <_CORE_message_queue_Broadcast+0x34>
40017070: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
40017074: e2 27 40 00 st %l1, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
40017078: b0 10 20 00 clr %i0
}
4001707c: 81 c7 e0 08 ret
40017080: 81 e8 00 00 restore
4000f900 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
4000f900: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
4000f904: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
4000f908: c0 26 20 48 clr [ %i0 + 0x48 ]
the_message_queue->maximum_message_size = maximum_message_size;
4000f90c: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
4000f910: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
4000f914: 80 8e e0 03 btst 3, %i3
4000f918: 02 80 00 07 be 4000f934 <_CORE_message_queue_Initialize+0x34>
4000f91c: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
4000f920: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
4000f924: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
4000f928: 80 a4 80 1b cmp %l2, %i3
4000f92c: 0a 80 00 22 bcs 4000f9b4 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4000f930: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
4000f934: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
4000f938: 92 10 00 1a mov %i2, %o1
4000f93c: 90 10 00 11 mov %l1, %o0
4000f940: 40 00 3d 6d call 4001eef4 <.umul>
4000f944: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
4000f948: 80 a2 00 12 cmp %o0, %l2
4000f94c: 0a 80 00 1a bcs 4000f9b4 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
4000f950: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
4000f954: 40 00 0b ab call 40012800 <_Workspace_Allocate>
4000f958: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
4000f95c: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
4000f960: 80 a2 20 00 cmp %o0, 0
4000f964: 02 80 00 14 be 4000f9b4 <_CORE_message_queue_Initialize+0xb4>
4000f968: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
4000f96c: 90 04 20 60 add %l0, 0x60, %o0
4000f970: 94 10 00 1a mov %i2, %o2
4000f974: 40 00 13 ac call 40014824 <_Chain_Initialize>
4000f978: 96 10 00 11 mov %l1, %o3
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000f97c: 82 04 20 54 add %l0, 0x54, %g1
head->next = tail;
4000f980: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
4000f984: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
4000f988: c0 24 20 54 clr [ %l0 + 0x54 ]
tail->previous = head;
4000f98c: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
4000f990: c2 06 40 00 ld [ %i1 ], %g1
4000f994: 90 10 00 10 mov %l0, %o0
4000f998: 82 18 60 01 xor %g1, 1, %g1
4000f99c: 80 a0 00 01 cmp %g0, %g1
4000f9a0: 94 10 20 80 mov 0x80, %o2
4000f9a4: 92 60 3f ff subx %g0, -1, %o1
4000f9a8: 96 10 20 06 mov 6, %o3
4000f9ac: 40 00 09 06 call 40011dc4 <_Thread_queue_Initialize>
4000f9b0: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
4000f9b4: 81 c7 e0 08 ret
4000f9b8: 81 e8 00 00 restore
4000f9bc <_CORE_message_queue_Seize>:
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
4000f9bc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
4000f9c0: 27 10 00 92 sethi %hi(0x40024800), %l3
4000f9c4: a6 14 e3 cc or %l3, 0x3cc, %l3 ! 40024bcc <_Per_CPU_Information>
4000f9c8: e4 04 e0 0c ld [ %l3 + 0xc ], %l2
void *buffer,
size_t *size_p,
bool wait,
Watchdog_Interval timeout
)
{
4000f9cc: a0 10 00 19 mov %i1, %l0
CORE_message_queue_Buffer_control *the_message;
Thread_Control *executing;
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
4000f9d0: 7f ff de 38 call 400072b0 <sparc_disable_interrupts>
4000f9d4: c0 24 a0 34 clr [ %l2 + 0x34 ]
4000f9d8: 82 10 00 08 mov %o0, %g1
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
4000f9dc: e2 06 20 50 ld [ %i0 + 0x50 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000f9e0: 84 06 20 54 add %i0, 0x54, %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
4000f9e4: 80 a4 40 02 cmp %l1, %g2
4000f9e8: 02 80 00 15 be 4000fa3c <_CORE_message_queue_Seize+0x80>
4000f9ec: 86 06 20 50 add %i0, 0x50, %g3
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
4000f9f0: c4 04 40 00 ld [ %l1 ], %g2
head->next = new_first;
4000f9f4: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
_ISR_Disable( level );
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
4000f9f8: 80 a4 60 00 cmp %l1, 0
4000f9fc: 02 80 00 10 be 4000fa3c <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN
4000fa00: c6 20 a0 04 st %g3, [ %g2 + 4 ]
the_message_queue->number_of_pending_messages -= 1;
4000fa04: c2 06 20 48 ld [ %i0 + 0x48 ], %g1
4000fa08: 82 00 7f ff add %g1, -1, %g1
4000fa0c: c2 26 20 48 st %g1, [ %i0 + 0x48 ]
_ISR_Enable( level );
4000fa10: 7f ff de 2c call 400072c0 <sparc_enable_interrupts>
4000fa14: b0 06 20 60 add %i0, 0x60, %i0
*size_p = the_message->Contents.size;
4000fa18: d4 04 60 08 ld [ %l1 + 8 ], %o2
_Thread_Executing->Wait.count =
4000fa1c: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
the_message = _CORE_message_queue_Get_pending_message( the_message_queue );
if ( the_message != NULL ) {
the_message_queue->number_of_pending_messages -= 1;
_ISR_Enable( level );
*size_p = the_message->Contents.size;
4000fa20: d4 26 c0 00 st %o2, [ %i3 ]
_Thread_Executing->Wait.count =
4000fa24: c0 20 60 24 clr [ %g1 + 0x24 ]
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
4000fa28: 90 10 00 1a mov %i2, %o0
4000fa2c: 40 00 1e 1a call 40017294 <memcpy>
4000fa30: 92 04 60 0c add %l1, 0xc, %o1
RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer (
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Buffer_control *the_message
)
{
_Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node );
4000fa34: 7f ff ff 83 call 4000f840 <_Chain_Append>
4000fa38: 93 e8 00 11 restore %g0, %l1, %o1
return;
}
#endif
}
if ( !wait ) {
4000fa3c: 80 8f 20 ff btst 0xff, %i4
4000fa40: 32 80 00 08 bne,a 4000fa60 <_CORE_message_queue_Seize+0xa4>
4000fa44: 84 10 20 01 mov 1, %g2
_ISR_Enable( level );
4000fa48: 7f ff de 1e call 400072c0 <sparc_enable_interrupts>
4000fa4c: 90 10 00 01 mov %g1, %o0
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
4000fa50: 82 10 20 04 mov 4, %g1
4000fa54: c2 24 a0 34 st %g1, [ %l2 + 0x34 ]
executing->Wait.return_argument = size_p;
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
}
4000fa58: 81 c7 e0 08 ret
4000fa5c: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
4000fa60: c4 26 20 30 st %g2, [ %i0 + 0x30 ]
executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT;
return;
}
_Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue );
executing->Wait.queue = &the_message_queue->Wait_queue;
4000fa64: f0 24 a0 44 st %i0, [ %l2 + 0x44 ]
executing->Wait.id = id;
4000fa68: e0 24 a0 20 st %l0, [ %l2 + 0x20 ]
executing->Wait.return_argument_second.mutable_object = buffer;
4000fa6c: f4 24 a0 2c st %i2, [ %l2 + 0x2c ]
executing->Wait.return_argument = size_p;
4000fa70: f6 24 a0 28 st %i3, [ %l2 + 0x28 ]
/* Wait.count will be filled in with the message priority */
_ISR_Enable( level );
4000fa74: 90 10 00 01 mov %g1, %o0
4000fa78: 7f ff de 12 call 400072c0 <sparc_enable_interrupts>
4000fa7c: 35 10 00 47 sethi %hi(0x40011c00), %i2
_Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout );
4000fa80: b2 10 00 1d mov %i5, %i1
4000fa84: 40 00 08 26 call 40011b1c <_Thread_queue_Enqueue_with_handler>
4000fa88: 95 ee a2 a4 restore %i2, 0x2a4, %o2
40006774 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
40006774: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
40006778: 03 10 00 50 sethi %hi(0x40014000), %g1
4000677c: c2 00 63 d0 ld [ %g1 + 0x3d0 ], %g1 ! 400143d0 <_Thread_Dispatch_disable_level>
40006780: 80 a0 60 00 cmp %g1, 0
40006784: 02 80 00 0d be 400067b8 <_CORE_mutex_Seize+0x44>
40006788: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
4000678c: 80 8e a0 ff btst 0xff, %i2
40006790: 02 80 00 0b be 400067bc <_CORE_mutex_Seize+0x48> <== NEVER TAKEN
40006794: 90 10 00 18 mov %i0, %o0
40006798: 03 10 00 51 sethi %hi(0x40014400), %g1
4000679c: c2 00 61 48 ld [ %g1 + 0x148 ], %g1 ! 40014548 <_System_state_Current>
400067a0: 80 a0 60 01 cmp %g1, 1
400067a4: 08 80 00 05 bleu 400067b8 <_CORE_mutex_Seize+0x44>
400067a8: 90 10 20 00 clr %o0
400067ac: 92 10 20 00 clr %o1
400067b0: 40 00 01 da call 40006f18 <_Internal_error_Occurred>
400067b4: 94 10 20 12 mov 0x12, %o2
400067b8: 90 10 00 18 mov %i0, %o0
400067bc: 40 00 12 c8 call 4000b2dc <_CORE_mutex_Seize_interrupt_trylock>
400067c0: 92 07 a0 54 add %fp, 0x54, %o1
400067c4: 80 a2 20 00 cmp %o0, 0
400067c8: 02 80 00 0a be 400067f0 <_CORE_mutex_Seize+0x7c>
400067cc: 80 8e a0 ff btst 0xff, %i2
400067d0: 35 10 00 51 sethi %hi(0x40014400), %i2
400067d4: 12 80 00 09 bne 400067f8 <_CORE_mutex_Seize+0x84>
400067d8: b4 16 a2 1c or %i2, 0x21c, %i2 ! 4001461c <_Per_CPU_Information>
400067dc: 7f ff ed 33 call 40001ca8 <sparc_enable_interrupts>
400067e0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
400067e4: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
400067e8: 84 10 20 01 mov 1, %g2
400067ec: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
400067f0: 81 c7 e0 08 ret
400067f4: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
400067f8: 82 10 20 01 mov 1, %g1
400067fc: c2 26 20 30 st %g1, [ %i0 + 0x30 ]
40006800: c2 06 a0 0c ld [ %i2 + 0xc ], %g1
40006804: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
40006808: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
4000680c: 03 10 00 50 sethi %hi(0x40014000), %g1
40006810: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400143d0 <_Thread_Dispatch_disable_level>
40006814: 84 00 a0 01 inc %g2
40006818: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
4000681c: 7f ff ed 23 call 40001ca8 <sparc_enable_interrupts>
40006820: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
40006824: 90 10 00 18 mov %i0, %o0
40006828: 7f ff ff ba call 40006710 <_CORE_mutex_Seize_interrupt_blocking>
4000682c: 92 10 00 1b mov %i3, %o1
40006830: 81 c7 e0 08 ret
40006834: 81 e8 00 00 restore
4000b2dc <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
4000b2dc: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
4000b2e0: 03 10 00 51 sethi %hi(0x40014400), %g1
4000b2e4: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 40014628 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000b2e8: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
4000b2ec: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
4000b2f0: 80 a0 a0 00 cmp %g2, 0
4000b2f4: 02 80 00 2f be 4000b3b0 <_CORE_mutex_Seize_interrupt_trylock+0xd4>
4000b2f8: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000b2fc: c4 00 60 08 ld [ %g1 + 8 ], %g2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
4000b300: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
4000b304: c4 26 20 60 st %g2, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
4000b308: 84 10 20 01 mov 1, %g2
4000b30c: c4 26 20 54 st %g2, [ %i0 + 0x54 ]
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
4000b310: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
4000b314: 80 a0 a0 02 cmp %g2, 2
4000b318: 02 80 00 05 be 4000b32c <_CORE_mutex_Seize_interrupt_trylock+0x50>
4000b31c: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
4000b320: 80 a0 a0 03 cmp %g2, 3
4000b324: 12 80 00 07 bne 4000b340 <_CORE_mutex_Seize_interrupt_trylock+0x64>
4000b328: 01 00 00 00 nop
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000b32c: c6 00 60 1c ld [ %g1 + 0x1c ], %g3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000b330: 80 a0 a0 03 cmp %g2, 3
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
4000b334: 88 00 e0 01 add %g3, 1, %g4
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
4000b338: 02 80 00 03 be 4000b344 <_CORE_mutex_Seize_interrupt_trylock+0x68>
4000b33c: c8 20 60 1c st %g4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000b340: 30 80 00 2b b,a 4000b3ec <_CORE_mutex_Seize_interrupt_trylock+0x110>
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
4000b344: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
current = executing->current_priority;
4000b348: c8 00 60 14 ld [ %g1 + 0x14 ], %g4
if ( current == ceiling ) {
4000b34c: 80 a1 00 02 cmp %g4, %g2
4000b350: 12 80 00 03 bne 4000b35c <_CORE_mutex_Seize_interrupt_trylock+0x80>
4000b354: 01 00 00 00 nop
_ISR_Enable( *level_p );
4000b358: 30 80 00 25 b,a 4000b3ec <_CORE_mutex_Seize_interrupt_trylock+0x110>
return 0;
}
if ( current > ceiling ) {
4000b35c: 08 80 00 0f bleu 4000b398 <_CORE_mutex_Seize_interrupt_trylock+0xbc>
4000b360: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000b364: 03 10 00 50 sethi %hi(0x40014000), %g1
4000b368: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400143d0 <_Thread_Dispatch_disable_level>
4000b36c: 84 00 a0 01 inc %g2
4000b370: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
4000b374: 7f ff da 4d call 40001ca8 <sparc_enable_interrupts>
4000b378: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
4000b37c: d0 04 20 5c ld [ %l0 + 0x5c ], %o0
4000b380: d2 04 20 4c ld [ %l0 + 0x4c ], %o1
4000b384: 7f ff f2 28 call 40007c24 <_Thread_Change_priority>
4000b388: 94 10 20 00 clr %o2
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
4000b38c: 7f ff f3 53 call 400080d8 <_Thread_Enable_dispatch>
4000b390: b0 10 20 00 clr %i0
4000b394: 30 80 00 1d b,a 4000b408 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
4000b398: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
the_mutex->nest_count = 0; /* undo locking above */
4000b39c: c0 24 20 54 clr [ %l0 + 0x54 ]
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
the_mutex->lock = CORE_MUTEX_UNLOCKED;
4000b3a0: 84 10 20 01 mov 1, %g2
4000b3a4: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
executing->resource_count--; /* undo locking above */
4000b3a8: c6 20 60 1c st %g3, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
4000b3ac: 30 80 00 10 b,a 4000b3ec <_CORE_mutex_Seize_interrupt_trylock+0x110>
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
4000b3b0: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
4000b3b4: 80 a0 80 01 cmp %g2, %g1
4000b3b8: 12 80 00 14 bne 4000b408 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
4000b3bc: b0 10 20 01 mov 1, %i0
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
4000b3c0: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
4000b3c4: 80 a0 60 00 cmp %g1, 0
4000b3c8: 22 80 00 07 be,a 4000b3e4 <_CORE_mutex_Seize_interrupt_trylock+0x108>
4000b3cc: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
4000b3d0: 80 a0 60 01 cmp %g1, 1
4000b3d4: 12 80 00 0d bne 4000b408 <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN
4000b3d8: 82 10 20 02 mov 2, %g1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
4000b3dc: 10 80 00 08 b 4000b3fc <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED
4000b3e0: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
4000b3e4: 82 00 60 01 inc %g1
4000b3e8: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
4000b3ec: 7f ff da 2f call 40001ca8 <sparc_enable_interrupts>
4000b3f0: d0 06 40 00 ld [ %i1 ], %o0
return 0;
4000b3f4: 81 c7 e0 08 ret
4000b3f8: 91 e8 20 00 restore %g0, 0, %o0
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
_ISR_Enable( *level_p );
4000b3fc: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
4000b400: 7f ff da 2a call 40001ca8 <sparc_enable_interrupts> <== NOT EXECUTED
4000b404: b0 10 20 00 clr %i0 <== NOT EXECUTED
4000b408: 81 c7 e0 08 ret
4000b40c: 81 e8 00 00 restore
400069b4 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
400069b4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
400069b8: 90 10 00 18 mov %i0, %o0
400069bc: 40 00 06 9b call 40008428 <_Thread_queue_Dequeue>
400069c0: a0 10 00 18 mov %i0, %l0
400069c4: 80 a2 20 00 cmp %o0, 0
400069c8: 12 80 00 0e bne 40006a00 <_CORE_semaphore_Surrender+0x4c>
400069cc: b0 10 20 00 clr %i0
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
400069d0: 7f ff ec b2 call 40001c98 <sparc_disable_interrupts>
400069d4: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
400069d8: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
400069dc: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
400069e0: 80 a0 40 02 cmp %g1, %g2
400069e4: 1a 80 00 05 bcc 400069f8 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN
400069e8: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
400069ec: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
400069f0: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
400069f4: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
400069f8: 7f ff ec ac call 40001ca8 <sparc_enable_interrupts>
400069fc: 01 00 00 00 nop
}
return status;
}
40006a00: 81 c7 e0 08 ret
40006a04: 81 e8 00 00 restore
40005768 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
40005768: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
4000576c: e2 06 21 4c ld [ %i0 + 0x14c ], %l1
option_set = (rtems_option) the_thread->Wait.option;
40005770: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
_ISR_Disable( level );
40005774: 7f ff f1 49 call 40001c98 <sparc_disable_interrupts>
40005778: a0 10 00 18 mov %i0, %l0
4000577c: b0 10 00 08 mov %o0, %i0
pending_events = api->pending_events;
40005780: c4 04 40 00 ld [ %l1 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
40005784: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
40005788: 82 88 c0 02 andcc %g3, %g2, %g1
4000578c: 12 80 00 03 bne 40005798 <_Event_Surrender+0x30>
40005790: 09 10 00 51 sethi %hi(0x40014400), %g4
_ISR_Enable( level );
40005794: 30 80 00 42 b,a 4000589c <_Event_Surrender+0x134>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
40005798: 88 11 22 1c or %g4, 0x21c, %g4 ! 4001461c <_Per_CPU_Information>
4000579c: da 01 20 08 ld [ %g4 + 8 ], %o5
400057a0: 80 a3 60 00 cmp %o5, 0
400057a4: 22 80 00 1d be,a 40005818 <_Event_Surrender+0xb0>
400057a8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
400057ac: c8 01 20 0c ld [ %g4 + 0xc ], %g4
400057b0: 80 a4 00 04 cmp %l0, %g4
400057b4: 32 80 00 19 bne,a 40005818 <_Event_Surrender+0xb0>
400057b8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
400057bc: 09 10 00 51 sethi %hi(0x40014400), %g4
400057c0: da 01 22 70 ld [ %g4 + 0x270 ], %o5 ! 40014670 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
400057c4: 80 a3 60 02 cmp %o5, 2
400057c8: 02 80 00 07 be 400057e4 <_Event_Surrender+0x7c> <== NEVER TAKEN
400057cc: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
400057d0: c8 01 22 70 ld [ %g4 + 0x270 ], %g4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
400057d4: 80 a1 20 01 cmp %g4, 1
400057d8: 32 80 00 10 bne,a 40005818 <_Event_Surrender+0xb0>
400057dc: c8 04 20 10 ld [ %l0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
400057e0: 80 a0 40 03 cmp %g1, %g3
400057e4: 02 80 00 04 be 400057f4 <_Event_Surrender+0x8c>
400057e8: 80 8c a0 02 btst 2, %l2
400057ec: 02 80 00 0a be 40005814 <_Event_Surrender+0xac> <== NEVER TAKEN
400057f0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
400057f4: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
400057f8: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
400057fc: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
40005800: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005804: c2 20 80 00 st %g1, [ %g2 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
40005808: 84 10 20 03 mov 3, %g2
4000580c: 03 10 00 51 sethi %hi(0x40014400), %g1
40005810: c4 20 62 70 st %g2, [ %g1 + 0x270 ] ! 40014670 <_Event_Sync_state>
}
_ISR_Enable( level );
40005814: 30 80 00 22 b,a 4000589c <_Event_Surrender+0x134>
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
40005818: 80 89 21 00 btst 0x100, %g4
4000581c: 02 80 00 20 be 4000589c <_Event_Surrender+0x134>
40005820: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
40005824: 02 80 00 04 be 40005834 <_Event_Surrender+0xcc>
40005828: 80 8c a0 02 btst 2, %l2
4000582c: 02 80 00 1c be 4000589c <_Event_Surrender+0x134> <== NEVER TAKEN
40005830: 01 00 00 00 nop
40005834: 84 28 80 01 andn %g2, %g1, %g2
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
40005838: c4 24 40 00 st %g2, [ %l1 ]
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
4000583c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
40005840: c0 24 20 24 clr [ %l0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
40005844: c2 20 80 00 st %g1, [ %g2 ]
_ISR_Flash( level );
40005848: 7f ff f1 18 call 40001ca8 <sparc_enable_interrupts>
4000584c: 90 10 00 18 mov %i0, %o0
40005850: 7f ff f1 12 call 40001c98 <sparc_disable_interrupts>
40005854: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
40005858: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
4000585c: 80 a0 60 02 cmp %g1, 2
40005860: 02 80 00 06 be 40005878 <_Event_Surrender+0x110>
40005864: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
40005868: 7f ff f1 10 call 40001ca8 <sparc_enable_interrupts>
4000586c: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005870: 10 80 00 08 b 40005890 <_Event_Surrender+0x128>
40005874: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
40005878: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
4000587c: 7f ff f1 0b call 40001ca8 <sparc_enable_interrupts>
40005880: 90 10 00 18 mov %i0, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
40005884: 40 00 0e 1a call 400090ec <_Watchdog_Remove>
40005888: 90 04 20 48 add %l0, 0x48, %o0
4000588c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
40005890: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40005894: 40 00 09 45 call 40007da8 <_Thread_Clear_state>
40005898: 91 e8 00 10 restore %g0, %l0, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
4000589c: 7f ff f1 03 call 40001ca8 <sparc_enable_interrupts>
400058a0: 81 e8 00 00 restore
400058a8 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
400058a8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
400058ac: 90 10 00 18 mov %i0, %o0
400058b0: 40 00 0a 17 call 4000810c <_Thread_Get>
400058b4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
400058b8: c2 07 bf fc ld [ %fp + -4 ], %g1
400058bc: 80 a0 60 00 cmp %g1, 0
400058c0: 12 80 00 1c bne 40005930 <_Event_Timeout+0x88> <== NEVER TAKEN
400058c4: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
400058c8: 7f ff f0 f4 call 40001c98 <sparc_disable_interrupts>
400058cc: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
400058d0: 03 10 00 51 sethi %hi(0x40014400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
400058d4: c2 00 62 28 ld [ %g1 + 0x228 ], %g1 ! 40014628 <_Per_CPU_Information+0xc>
400058d8: 80 a4 00 01 cmp %l0, %g1
400058dc: 12 80 00 09 bne 40005900 <_Event_Timeout+0x58>
400058e0: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
400058e4: 03 10 00 51 sethi %hi(0x40014400), %g1
400058e8: c4 00 62 70 ld [ %g1 + 0x270 ], %g2 ! 40014670 <_Event_Sync_state>
400058ec: 80 a0 a0 01 cmp %g2, 1
400058f0: 32 80 00 05 bne,a 40005904 <_Event_Timeout+0x5c>
400058f4: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
400058f8: 84 10 20 02 mov 2, %g2
400058fc: c4 20 62 70 st %g2, [ %g1 + 0x270 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
40005900: 82 10 20 06 mov 6, %g1
40005904: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
40005908: 7f ff f0 e8 call 40001ca8 <sparc_enable_interrupts>
4000590c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
40005910: 90 10 00 10 mov %l0, %o0
40005914: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40005918: 40 00 09 24 call 40007da8 <_Thread_Clear_state>
4000591c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40005920: 03 10 00 50 sethi %hi(0x40014000), %g1
40005924: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400143d0 <_Thread_Dispatch_disable_level>
40005928: 84 00 bf ff add %g2, -1, %g2
4000592c: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
40005930: 81 c7 e0 08 ret
40005934: 81 e8 00 00 restore
4000b94c <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000b94c: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
4000b950: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
4000b954: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000b958: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
4000b95c: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
4000b960: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
4000b964: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
4000b968: a2 06 40 1a add %i1, %i2, %l1
uintptr_t const free_size = stats->free_size;
4000b96c: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
4000b970: 92 10 00 1a mov %i2, %o1
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
4000b974: 80 a4 40 19 cmp %l1, %i1
4000b978: 0a 80 00 9f bcs 4000bbf4 <_Heap_Extend+0x2a8>
4000b97c: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
4000b980: 90 10 00 19 mov %i1, %o0
4000b984: 94 10 00 13 mov %l3, %o2
4000b988: 98 07 bf fc add %fp, -4, %o4
4000b98c: 7f ff ed 7f call 40006f88 <_Heap_Get_first_and_last_block>
4000b990: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
4000b994: 80 8a 20 ff btst 0xff, %o0
4000b998: 02 80 00 97 be 4000bbf4 <_Heap_Extend+0x2a8>
4000b99c: aa 10 00 12 mov %l2, %l5
4000b9a0: ba 10 20 00 clr %i5
4000b9a4: b8 10 20 00 clr %i4
4000b9a8: b0 10 20 00 clr %i0
4000b9ac: ae 10 20 00 clr %l7
4000b9b0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
4000b9b4: 80 a0 40 11 cmp %g1, %l1
4000b9b8: 1a 80 00 05 bcc 4000b9cc <_Heap_Extend+0x80>
4000b9bc: ec 05 40 00 ld [ %l5 ], %l6
4000b9c0: 80 a6 40 16 cmp %i1, %l6
4000b9c4: 2a 80 00 8c bcs,a 4000bbf4 <_Heap_Extend+0x2a8>
4000b9c8: b0 10 20 00 clr %i0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
4000b9cc: 80 a4 40 01 cmp %l1, %g1
4000b9d0: 02 80 00 06 be 4000b9e8 <_Heap_Extend+0x9c>
4000b9d4: 80 a4 40 16 cmp %l1, %l6
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
4000b9d8: 2a 80 00 05 bcs,a 4000b9ec <_Heap_Extend+0xa0>
4000b9dc: b8 10 00 15 mov %l5, %i4
4000b9e0: 10 80 00 04 b 4000b9f0 <_Heap_Extend+0xa4>
4000b9e4: 90 10 00 16 mov %l6, %o0
4000b9e8: ae 10 00 15 mov %l5, %l7
4000b9ec: 90 10 00 16 mov %l6, %o0
4000b9f0: 40 00 16 57 call 4001134c <.urem>
4000b9f4: 92 10 00 13 mov %l3, %o1
4000b9f8: b4 05 bf f8 add %l6, -8, %i2
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
4000b9fc: 80 a5 80 19 cmp %l6, %i1
4000ba00: 12 80 00 05 bne 4000ba14 <_Heap_Extend+0xc8>
4000ba04: 90 26 80 08 sub %i2, %o0, %o0
start_block->prev_size = extend_area_end;
4000ba08: e2 25 40 00 st %l1, [ %l5 ]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
4000ba0c: 10 80 00 04 b 4000ba1c <_Heap_Extend+0xd0>
4000ba10: b0 10 00 08 mov %o0, %i0
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
4000ba14: 2a 80 00 02 bcs,a 4000ba1c <_Heap_Extend+0xd0>
4000ba18: ba 10 00 08 mov %o0, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000ba1c: ea 02 20 04 ld [ %o0 + 4 ], %l5
4000ba20: aa 0d 7f fe and %l5, -2, %l5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000ba24: aa 02 00 15 add %o0, %l5, %l5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
4000ba28: 80 a5 40 12 cmp %l5, %l2
4000ba2c: 12 bf ff e2 bne 4000b9b4 <_Heap_Extend+0x68>
4000ba30: 82 10 00 15 mov %l5, %g1
if ( extend_area_begin < heap->area_begin ) {
4000ba34: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
4000ba38: 80 a6 40 01 cmp %i1, %g1
4000ba3c: 3a 80 00 04 bcc,a 4000ba4c <_Heap_Extend+0x100>
4000ba40: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
4000ba44: 10 80 00 05 b 4000ba58 <_Heap_Extend+0x10c>
4000ba48: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
4000ba4c: 80 a0 40 11 cmp %g1, %l1
4000ba50: 2a 80 00 02 bcs,a 4000ba58 <_Heap_Extend+0x10c>
4000ba54: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
4000ba58: c4 07 bf fc ld [ %fp + -4 ], %g2
4000ba5c: c2 07 bf f8 ld [ %fp + -8 ], %g1
extend_first_block->prev_size = extend_area_end;
4000ba60: e2 20 80 00 st %l1, [ %g2 ]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
4000ba64: 86 20 40 02 sub %g1, %g2, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
4000ba68: 88 10 e0 01 or %g3, 1, %g4
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
4000ba6c: c6 20 40 00 st %g3, [ %g1 ]
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
4000ba70: c8 20 a0 04 st %g4, [ %g2 + 4 ]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
4000ba74: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
4000ba78: 80 a0 c0 02 cmp %g3, %g2
4000ba7c: 08 80 00 04 bleu 4000ba8c <_Heap_Extend+0x140>
4000ba80: c0 20 60 04 clr [ %g1 + 4 ]
heap->first_block = extend_first_block;
4000ba84: 10 80 00 06 b 4000ba9c <_Heap_Extend+0x150>
4000ba88: c4 24 20 20 st %g2, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
4000ba8c: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
4000ba90: 80 a0 80 01 cmp %g2, %g1
4000ba94: 2a 80 00 02 bcs,a 4000ba9c <_Heap_Extend+0x150>
4000ba98: c2 24 20 24 st %g1, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
4000ba9c: 80 a5 e0 00 cmp %l7, 0
4000baa0: 02 80 00 14 be 4000baf0 <_Heap_Extend+0x1a4>
4000baa4: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
4000baa8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
4000baac: 92 10 00 12 mov %l2, %o1
4000bab0: 40 00 16 27 call 4001134c <.urem>
4000bab4: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
4000bab8: 80 a2 20 00 cmp %o0, 0
4000babc: 02 80 00 04 be 4000bacc <_Heap_Extend+0x180> <== ALWAYS TAKEN
4000bac0: c2 05 c0 00 ld [ %l7 ], %g1
return value - remainder + alignment;
4000bac4: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
4000bac8: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
4000bacc: 92 06 7f f8 add %i1, -8, %o1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
4000bad0: c2 26 7f f8 st %g1, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
4000bad4: 82 25 c0 09 sub %l7, %o1, %g1
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
4000bad8: 82 10 60 01 or %g1, 1, %g1
_Heap_Free_block( heap, new_first_block );
4000badc: 90 10 00 10 mov %l0, %o0
4000bae0: 7f ff ff 90 call 4000b920 <_Heap_Free_block>
4000bae4: c2 22 60 04 st %g1, [ %o1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000bae8: 10 80 00 09 b 4000bb0c <_Heap_Extend+0x1c0>
4000baec: 80 a6 20 00 cmp %i0, 0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
4000baf0: 80 a7 20 00 cmp %i4, 0
4000baf4: 02 80 00 05 be 4000bb08 <_Heap_Extend+0x1bc>
4000baf8: c2 07 bf f8 ld [ %fp + -8 ], %g1
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
4000bafc: b8 27 00 01 sub %i4, %g1, %i4
4000bb00: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
4000bb04: f8 20 60 04 st %i4, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
4000bb08: 80 a6 20 00 cmp %i0, 0
4000bb0c: 02 80 00 15 be 4000bb60 <_Heap_Extend+0x214>
4000bb10: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000bb14: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
4000bb18: a2 24 40 18 sub %l1, %i0, %l1
4000bb1c: 40 00 16 0c call 4001134c <.urem>
4000bb20: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
4000bb24: c4 06 20 04 ld [ %i0 + 4 ], %g2
4000bb28: a2 24 40 08 sub %l1, %o0, %l1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000bb2c: 82 04 40 18 add %l1, %i0, %g1
(last_block->size_and_flag - last_block_new_size)
4000bb30: 84 20 80 11 sub %g2, %l1, %g2
| HEAP_PREV_BLOCK_USED;
4000bb34: 84 10 a0 01 or %g2, 1, %g2
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
4000bb38: c4 20 60 04 st %g2, [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bb3c: c2 06 20 04 ld [ %i0 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
4000bb40: 90 10 00 10 mov %l0, %o0
4000bb44: 82 08 60 01 and %g1, 1, %g1
4000bb48: 92 10 00 18 mov %i0, %o1
block->size_and_flag = size | flag;
4000bb4c: a2 14 40 01 or %l1, %g1, %l1
4000bb50: 7f ff ff 74 call 4000b920 <_Heap_Free_block>
4000bb54: e2 26 20 04 st %l1, [ %i0 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000bb58: 10 80 00 0f b 4000bb94 <_Heap_Extend+0x248>
4000bb5c: 80 a6 20 00 cmp %i0, 0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
4000bb60: 80 a7 60 00 cmp %i5, 0
4000bb64: 02 80 00 0b be 4000bb90 <_Heap_Extend+0x244>
4000bb68: c6 07 bf fc ld [ %fp + -4 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bb6c: c4 07 60 04 ld [ %i5 + 4 ], %g2
_Heap_Link_above(
4000bb70: c2 07 bf f8 ld [ %fp + -8 ], %g1
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
4000bb74: 86 20 c0 1d sub %g3, %i5, %g3
4000bb78: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000bb7c: 84 10 c0 02 or %g3, %g2, %g2
4000bb80: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
4000bb84: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000bb88: 84 10 a0 01 or %g2, 1, %g2
4000bb8c: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
4000bb90: 80 a6 20 00 cmp %i0, 0
4000bb94: 32 80 00 09 bne,a 4000bbb8 <_Heap_Extend+0x26c>
4000bb98: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
4000bb9c: 80 a5 e0 00 cmp %l7, 0
4000bba0: 32 80 00 06 bne,a 4000bbb8 <_Heap_Extend+0x26c>
4000bba4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
4000bba8: d2 07 bf fc ld [ %fp + -4 ], %o1
4000bbac: 7f ff ff 5d call 4000b920 <_Heap_Free_block>
4000bbb0: 90 10 00 10 mov %l0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
4000bbb4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000bbb8: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bbbc: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
4000bbc0: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000bbc4: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
4000bbc8: 84 10 c0 02 or %g3, %g2, %g2
4000bbcc: c4 20 60 04 st %g2, [ %g1 + 4 ]
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000bbd0: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
4000bbd4: b0 10 20 01 mov 1, %i0
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
4000bbd8: a8 20 40 14 sub %g1, %l4, %l4
/* Statistics */
stats->size += extended_size;
4000bbdc: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
if ( extended_size_ptr != NULL )
4000bbe0: 80 a6 e0 00 cmp %i3, 0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
4000bbe4: 82 00 40 14 add %g1, %l4, %g1
if ( extended_size_ptr != NULL )
4000bbe8: 02 80 00 03 be 4000bbf4 <_Heap_Extend+0x2a8> <== NEVER TAKEN
4000bbec: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
*extended_size_ptr = extended_size;
4000bbf0: e8 26 c0 00 st %l4, [ %i3 ]
4000bbf4: 81 c7 e0 08 ret
4000bbf8: 81 e8 00 00 restore
4000b64c <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
4000b64c: 9d e3 bf a0 save %sp, -96, %sp
4000b650: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
4000b654: 40 00 16 00 call 40010e54 <.urem>
4000b658: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
4000b65c: d8 06 20 20 ld [ %i0 + 0x20 ], %o4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4000b660: a2 06 7f f8 add %i1, -8, %l1
4000b664: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
4000b668: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b66c: 80 a2 00 0c cmp %o0, %o4
4000b670: 0a 80 00 05 bcs 4000b684 <_Heap_Free+0x38>
4000b674: 82 10 20 00 clr %g1
4000b678: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
4000b67c: 80 a0 40 08 cmp %g1, %o0
4000b680: 82 60 3f ff subx %g0, -1, %g1
uintptr_t next_block_size = 0;
bool next_is_free = false;
_Heap_Protection_block_check( heap, block );
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
4000b684: 80 a0 60 00 cmp %g1, 0
4000b688: 02 80 00 6a be 4000b830 <_Heap_Free+0x1e4>
4000b68c: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000b690: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
4000b694: 84 0b 7f fe and %o5, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000b698: 82 02 00 02 add %o0, %g2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b69c: 80 a0 40 0c cmp %g1, %o4
4000b6a0: 0a 80 00 05 bcs 4000b6b4 <_Heap_Free+0x68> <== NEVER TAKEN
4000b6a4: 86 10 20 00 clr %g3
4000b6a8: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
4000b6ac: 80 a0 c0 01 cmp %g3, %g1
4000b6b0: 86 60 3f ff subx %g0, -1, %g3
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
4000b6b4: 80 a0 e0 00 cmp %g3, 0
4000b6b8: 02 80 00 5e be 4000b830 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b6bc: b0 10 20 00 clr %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000b6c0: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
4000b6c4: 80 89 20 01 btst 1, %g4
4000b6c8: 02 80 00 5a be 4000b830 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b6cc: 88 09 3f fe and %g4, -2, %g4
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
4000b6d0: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000b6d4: 80 a0 40 09 cmp %g1, %o1
4000b6d8: 02 80 00 07 be 4000b6f4 <_Heap_Free+0xa8>
4000b6dc: 96 10 20 00 clr %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
4000b6e0: 86 00 40 04 add %g1, %g4, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000b6e4: c6 00 e0 04 ld [ %g3 + 4 ], %g3
4000b6e8: 86 08 e0 01 and %g3, 1, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
4000b6ec: 80 a0 00 03 cmp %g0, %g3
4000b6f0: 96 60 3f ff subx %g0, -1, %o3
if ( !_Heap_Is_prev_used( block ) ) {
4000b6f4: 80 8b 60 01 btst 1, %o5
4000b6f8: 12 80 00 26 bne 4000b790 <_Heap_Free+0x144>
4000b6fc: 80 8a e0 ff btst 0xff, %o3
uintptr_t const prev_size = block->prev_size;
4000b700: da 02 00 00 ld [ %o0 ], %o5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
4000b704: 86 22 00 0d sub %o0, %o5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000b708: 80 a0 c0 0c cmp %g3, %o4
4000b70c: 0a 80 00 04 bcs 4000b71c <_Heap_Free+0xd0> <== NEVER TAKEN
4000b710: 94 10 20 00 clr %o2
4000b714: 80 a2 40 03 cmp %o1, %g3
4000b718: 94 60 3f ff subx %g0, -1, %o2
Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size );
if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) {
4000b71c: 80 a2 a0 00 cmp %o2, 0
4000b720: 02 80 00 44 be 4000b830 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b724: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4000b728: d8 00 e0 04 ld [ %g3 + 4 ], %o4
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
4000b72c: 80 8b 20 01 btst 1, %o4
4000b730: 02 80 00 40 be 4000b830 <_Heap_Free+0x1e4> <== NEVER TAKEN
4000b734: 80 8a e0 ff btst 0xff, %o3
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
4000b738: 22 80 00 0f be,a 4000b774 <_Heap_Free+0x128>
4000b73c: 9a 00 80 0d add %g2, %o5, %o5
uintptr_t const size = block_size + prev_size + next_block_size;
4000b740: 88 00 80 04 add %g2, %g4, %g4
4000b744: 9a 01 00 0d add %g4, %o5, %o5
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
4000b748: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = block->prev;
4000b74c: c2 00 60 0c ld [ %g1 + 0xc ], %g1
prev->next = next;
4000b750: c8 20 60 08 st %g4, [ %g1 + 8 ]
next->prev = prev;
4000b754: c2 21 20 0c st %g1, [ %g4 + 0xc ]
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
4000b758: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
4000b75c: 82 00 7f ff add %g1, -1, %g1
4000b760: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
4000b764: da 20 c0 0d st %o5, [ %g3 + %o5 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b768: 82 13 60 01 or %o5, 1, %g1
4000b76c: 10 80 00 27 b 4000b808 <_Heap_Free+0x1bc>
4000b770: c2 20 e0 04 st %g1, [ %g3 + 4 ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b774: 88 13 60 01 or %o5, 1, %g4
4000b778: c8 20 e0 04 st %g4, [ %g3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b77c: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = size;
4000b780: da 22 00 02 st %o5, [ %o0 + %g2 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b784: 86 08 ff fe and %g3, -2, %g3
4000b788: 10 80 00 20 b 4000b808 <_Heap_Free+0x1bc>
4000b78c: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
4000b790: 22 80 00 0d be,a 4000b7c4 <_Heap_Free+0x178>
4000b794: c6 04 20 08 ld [ %l0 + 8 ], %g3
uintptr_t const size = block_size + next_block_size;
4000b798: 86 01 00 02 add %g4, %g2, %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
4000b79c: c8 00 60 08 ld [ %g1 + 8 ], %g4
Heap_Block *prev = old_block->prev;
4000b7a0: c2 00 60 0c ld [ %g1 + 0xc ], %g1
new_block->next = next;
4000b7a4: c8 22 20 08 st %g4, [ %o0 + 8 ]
new_block->prev = prev;
4000b7a8: c2 22 20 0c st %g1, [ %o0 + 0xc ]
next->prev = new_block;
prev->next = new_block;
4000b7ac: d0 20 60 08 st %o0, [ %g1 + 8 ]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
4000b7b0: d0 21 20 0c st %o0, [ %g4 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b7b4: 82 10 e0 01 or %g3, 1, %g1
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
4000b7b8: c6 22 00 03 st %g3, [ %o0 + %g3 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
4000b7bc: 10 80 00 13 b 4000b808 <_Heap_Free+0x1bc>
4000b7c0: c2 22 20 04 st %g1, [ %o0 + 4 ]
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
4000b7c4: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
4000b7c8: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
4000b7cc: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
4000b7d0: 86 10 a0 01 or %g2, 1, %g3
4000b7d4: c6 22 20 04 st %g3, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b7d8: c6 00 60 04 ld [ %g1 + 4 ], %g3
next_block->prev_size = block_size;
4000b7dc: c4 22 00 02 st %g2, [ %o0 + %g2 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
4000b7e0: 86 08 ff fe and %g3, -2, %g3
4000b7e4: c6 20 60 04 st %g3, [ %g1 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000b7e8: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
if ( stats->max_free_blocks < stats->free_blocks ) {
4000b7ec: c6 04 20 3c ld [ %l0 + 0x3c ], %g3
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
4000b7f0: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
4000b7f4: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
4000b7f8: 80 a0 c0 01 cmp %g3, %g1
4000b7fc: 1a 80 00 03 bcc 4000b808 <_Heap_Free+0x1bc>
4000b800: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
4000b804: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
}
}
/* Statistics */
--stats->used_blocks;
4000b808: c2 04 20 40 ld [ %l0 + 0x40 ], %g1
++stats->frees;
stats->free_size += block_size;
return( true );
4000b80c: b0 10 20 01 mov 1, %i0
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
4000b810: 82 00 7f ff add %g1, -1, %g1
4000b814: c2 24 20 40 st %g1, [ %l0 + 0x40 ]
++stats->frees;
4000b818: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
4000b81c: 82 00 60 01 inc %g1
4000b820: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
4000b824: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000b828: 84 00 40 02 add %g1, %g2, %g2
4000b82c: c4 24 20 30 st %g2, [ %l0 + 0x30 ]
return( true );
}
4000b830: 81 c7 e0 08 ret
4000b834: 81 e8 00 00 restore
40012798 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
40012798: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
4001279c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
400127a0: 7f ff f9 ad call 40010e54 <.urem>
400127a4: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
400127a8: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
400127ac: a2 06 7f f8 add %i1, -8, %l1
400127b0: a0 10 00 18 mov %i0, %l0
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
400127b4: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400127b8: 80 a2 00 02 cmp %o0, %g2
400127bc: 0a 80 00 05 bcs 400127d0 <_Heap_Size_of_alloc_area+0x38>
400127c0: 82 10 20 00 clr %g1
400127c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
400127c8: 80 a0 40 08 cmp %g1, %o0
400127cc: 82 60 3f ff subx %g0, -1, %g1
uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr;
Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size );
Heap_Block *next_block = NULL;
uintptr_t block_size = 0;
if ( !_Heap_Is_block_in_heap( heap, block ) ) {
400127d0: 80 a0 60 00 cmp %g1, 0
400127d4: 02 80 00 15 be 40012828 <_Heap_Size_of_alloc_area+0x90>
400127d8: b0 10 20 00 clr %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
400127dc: e2 02 20 04 ld [ %o0 + 4 ], %l1
400127e0: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
400127e4: a2 02 00 11 add %o0, %l1, %l1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
400127e8: 80 a4 40 02 cmp %l1, %g2
400127ec: 0a 80 00 05 bcs 40012800 <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN
400127f0: 82 10 20 00 clr %g1
400127f4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
400127f8: 80 a0 40 11 cmp %g1, %l1
400127fc: 82 60 3f ff subx %g0, -1, %g1
}
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
40012800: 80 a0 60 00 cmp %g1, 0
40012804: 02 80 00 09 be 40012828 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
40012808: b0 10 20 00 clr %i0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
4001280c: c2 04 60 04 ld [ %l1 + 4 ], %g1
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
40012810: 80 88 60 01 btst 1, %g1
40012814: 02 80 00 05 be 40012828 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN
40012818: a2 24 40 19 sub %l1, %i1, %l1
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
4001281c: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
40012820: a2 04 60 04 add %l1, 4, %l1
40012824: e2 26 80 00 st %l1, [ %i2 ]
return true;
}
40012828: 81 c7 e0 08 ret
4001282c: 81 e8 00 00 restore
40007d90 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40007d90: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40007d94: 23 10 00 1f sethi %hi(0x40007c00), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
40007d98: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
40007d9c: e4 06 20 10 ld [ %i0 + 0x10 ], %l2
uintptr_t const min_block_size = heap->min_block_size;
40007da0: e8 06 20 14 ld [ %i0 + 0x14 ], %l4
Heap_Block *const first_block = heap->first_block;
40007da4: e6 06 20 20 ld [ %i0 + 0x20 ], %l3
Heap_Block *const last_block = heap->last_block;
40007da8: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
40007dac: 80 8e a0 ff btst 0xff, %i2
40007db0: 02 80 00 04 be 40007dc0 <_Heap_Walk+0x30>
40007db4: a2 14 61 3c or %l1, 0x13c, %l1
40007db8: 23 10 00 1f sethi %hi(0x40007c00), %l1
40007dbc: a2 14 61 44 or %l1, 0x144, %l1 ! 40007d44 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
40007dc0: 03 10 00 5a sethi %hi(0x40016800), %g1
40007dc4: c2 00 63 d8 ld [ %g1 + 0x3d8 ], %g1 ! 40016bd8 <_System_state_Current>
40007dc8: 80 a0 60 03 cmp %g1, 3
40007dcc: 12 80 01 2d bne 40008280 <_Heap_Walk+0x4f0>
40007dd0: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
40007dd4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40007dd8: da 04 20 18 ld [ %l0 + 0x18 ], %o5
40007ddc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007de0: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007de4: e6 23 a0 60 st %l3, [ %sp + 0x60 ]
40007de8: c2 23 a0 68 st %g1, [ %sp + 0x68 ]
40007dec: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40007df0: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
40007df4: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
40007df8: 90 10 00 19 mov %i1, %o0
40007dfc: 92 10 20 00 clr %o1
40007e00: 15 10 00 51 sethi %hi(0x40014400), %o2
40007e04: 96 10 00 12 mov %l2, %o3
40007e08: 94 12 a0 d8 or %o2, 0xd8, %o2
40007e0c: 9f c4 40 00 call %l1
40007e10: 98 10 00 14 mov %l4, %o4
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
40007e14: 80 a4 a0 00 cmp %l2, 0
40007e18: 12 80 00 07 bne 40007e34 <_Heap_Walk+0xa4>
40007e1c: 80 8c a0 07 btst 7, %l2
(*printer)( source, true, "page size is zero\n" );
40007e20: 15 10 00 51 sethi %hi(0x40014400), %o2
40007e24: 90 10 00 19 mov %i1, %o0
40007e28: 92 10 20 01 mov 1, %o1
40007e2c: 10 80 00 38 b 40007f0c <_Heap_Walk+0x17c>
40007e30: 94 12 a1 70 or %o2, 0x170, %o2
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
40007e34: 22 80 00 08 be,a 40007e54 <_Heap_Walk+0xc4>
40007e38: 90 10 00 14 mov %l4, %o0
(*printer)(
40007e3c: 15 10 00 51 sethi %hi(0x40014400), %o2
40007e40: 90 10 00 19 mov %i1, %o0
40007e44: 92 10 20 01 mov 1, %o1
40007e48: 94 12 a1 88 or %o2, 0x188, %o2
40007e4c: 10 80 01 0b b 40008278 <_Heap_Walk+0x4e8>
40007e50: 96 10 00 12 mov %l2, %o3
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40007e54: 7f ff e7 1c call 40001ac4 <.urem>
40007e58: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
40007e5c: 80 a2 20 00 cmp %o0, 0
40007e60: 22 80 00 08 be,a 40007e80 <_Heap_Walk+0xf0>
40007e64: 90 04 e0 08 add %l3, 8, %o0
(*printer)(
40007e68: 15 10 00 51 sethi %hi(0x40014400), %o2
40007e6c: 90 10 00 19 mov %i1, %o0
40007e70: 92 10 20 01 mov 1, %o1
40007e74: 94 12 a1 a8 or %o2, 0x1a8, %o2
40007e78: 10 80 01 00 b 40008278 <_Heap_Walk+0x4e8>
40007e7c: 96 10 00 14 mov %l4, %o3
40007e80: 7f ff e7 11 call 40001ac4 <.urem>
40007e84: 92 10 00 12 mov %l2, %o1
);
return false;
}
if (
40007e88: 80 a2 20 00 cmp %o0, 0
40007e8c: 22 80 00 08 be,a 40007eac <_Heap_Walk+0x11c>
40007e90: c2 04 e0 04 ld [ %l3 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
40007e94: 15 10 00 51 sethi %hi(0x40014400), %o2
40007e98: 90 10 00 19 mov %i1, %o0
40007e9c: 92 10 20 01 mov 1, %o1
40007ea0: 94 12 a1 d0 or %o2, 0x1d0, %o2
40007ea4: 10 80 00 f5 b 40008278 <_Heap_Walk+0x4e8>
40007ea8: 96 10 00 13 mov %l3, %o3
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
40007eac: 80 88 60 01 btst 1, %g1
40007eb0: 32 80 00 07 bne,a 40007ecc <_Heap_Walk+0x13c>
40007eb4: ec 05 60 04 ld [ %l5 + 4 ], %l6
(*printer)(
40007eb8: 15 10 00 51 sethi %hi(0x40014400), %o2
40007ebc: 90 10 00 19 mov %i1, %o0
40007ec0: 92 10 20 01 mov 1, %o1
40007ec4: 10 80 00 12 b 40007f0c <_Heap_Walk+0x17c>
40007ec8: 94 12 a2 08 or %o2, 0x208, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40007ecc: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40007ed0: ac 05 40 16 add %l5, %l6, %l6
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40007ed4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
40007ed8: 80 88 60 01 btst 1, %g1
40007edc: 12 80 00 07 bne 40007ef8 <_Heap_Walk+0x168>
40007ee0: 80 a5 80 13 cmp %l6, %l3
(*printer)(
40007ee4: 15 10 00 51 sethi %hi(0x40014400), %o2
40007ee8: 90 10 00 19 mov %i1, %o0
40007eec: 92 10 20 01 mov 1, %o1
40007ef0: 10 80 00 07 b 40007f0c <_Heap_Walk+0x17c>
40007ef4: 94 12 a2 38 or %o2, 0x238, %o2
);
return false;
}
if (
40007ef8: 02 80 00 08 be 40007f18 <_Heap_Walk+0x188> <== ALWAYS TAKEN
40007efc: 15 10 00 51 sethi %hi(0x40014400), %o2
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
40007f00: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
40007f04: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
40007f08: 94 12 a2 50 or %o2, 0x250, %o2 <== NOT EXECUTED
40007f0c: 9f c4 40 00 call %l1
40007f10: b0 10 20 00 clr %i0
40007f14: 30 80 00 db b,a 40008280 <_Heap_Walk+0x4f0>
block = next_block;
} while ( block != first_block );
return true;
}
40007f18: d6 04 20 08 ld [ %l0 + 8 ], %o3
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
40007f1c: fa 04 20 10 ld [ %l0 + 0x10 ], %i5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
40007f20: ae 10 00 10 mov %l0, %l7
40007f24: 10 80 00 32 b 40007fec <_Heap_Walk+0x25c>
40007f28: b8 10 00 0b mov %o3, %i4
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40007f2c: 80 a0 80 1c cmp %g2, %i4
40007f30: 18 80 00 05 bgu 40007f44 <_Heap_Walk+0x1b4>
40007f34: 82 10 20 00 clr %g1
40007f38: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
40007f3c: 80 a0 40 1c cmp %g1, %i4
40007f40: 82 60 3f ff subx %g0, -1, %g1
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
40007f44: 80 a0 60 00 cmp %g1, 0
40007f48: 32 80 00 08 bne,a 40007f68 <_Heap_Walk+0x1d8>
40007f4c: 90 07 20 08 add %i4, 8, %o0
(*printer)(
40007f50: 15 10 00 51 sethi %hi(0x40014400), %o2
40007f54: 96 10 00 1c mov %i4, %o3
40007f58: 90 10 00 19 mov %i1, %o0
40007f5c: 92 10 20 01 mov 1, %o1
40007f60: 10 80 00 c6 b 40008278 <_Heap_Walk+0x4e8>
40007f64: 94 12 a2 80 or %o2, 0x280, %o2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40007f68: 7f ff e6 d7 call 40001ac4 <.urem>
40007f6c: 92 10 00 1d mov %i5, %o1
);
return false;
}
if (
40007f70: 80 a2 20 00 cmp %o0, 0
40007f74: 22 80 00 08 be,a 40007f94 <_Heap_Walk+0x204>
40007f78: c2 07 20 04 ld [ %i4 + 4 ], %g1
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
40007f7c: 15 10 00 51 sethi %hi(0x40014400), %o2
40007f80: 96 10 00 1c mov %i4, %o3
40007f84: 90 10 00 19 mov %i1, %o0
40007f88: 92 10 20 01 mov 1, %o1
40007f8c: 10 80 00 bb b 40008278 <_Heap_Walk+0x4e8>
40007f90: 94 12 a2 a0 or %o2, 0x2a0, %o2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40007f94: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
40007f98: 82 07 00 01 add %i4, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40007f9c: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
40007fa0: 80 88 60 01 btst 1, %g1
40007fa4: 22 80 00 08 be,a 40007fc4 <_Heap_Walk+0x234>
40007fa8: d8 07 20 0c ld [ %i4 + 0xc ], %o4
(*printer)(
40007fac: 15 10 00 51 sethi %hi(0x40014400), %o2
40007fb0: 96 10 00 1c mov %i4, %o3
40007fb4: 90 10 00 19 mov %i1, %o0
40007fb8: 92 10 20 01 mov 1, %o1
40007fbc: 10 80 00 af b 40008278 <_Heap_Walk+0x4e8>
40007fc0: 94 12 a2 d0 or %o2, 0x2d0, %o2
);
return false;
}
if ( free_block->prev != prev_block ) {
40007fc4: 80 a3 00 17 cmp %o4, %l7
40007fc8: 22 80 00 08 be,a 40007fe8 <_Heap_Walk+0x258>
40007fcc: ae 10 00 1c mov %i4, %l7
(*printer)(
40007fd0: 15 10 00 51 sethi %hi(0x40014400), %o2
40007fd4: 96 10 00 1c mov %i4, %o3
40007fd8: 90 10 00 19 mov %i1, %o0
40007fdc: 92 10 20 01 mov 1, %o1
40007fe0: 10 80 00 49 b 40008104 <_Heap_Walk+0x374>
40007fe4: 94 12 a2 f0 or %o2, 0x2f0, %o2
return false;
}
prev_block = free_block;
free_block = free_block->next;
40007fe8: f8 07 20 08 ld [ %i4 + 8 ], %i4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
40007fec: 80 a7 00 10 cmp %i4, %l0
40007ff0: 32 bf ff cf bne,a 40007f2c <_Heap_Walk+0x19c>
40007ff4: c4 04 20 20 ld [ %l0 + 0x20 ], %g2
40007ff8: 35 10 00 52 sethi %hi(0x40014800), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40007ffc: 31 10 00 52 sethi %hi(0x40014800), %i0
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
40008000: b4 16 a0 b0 or %i2, 0xb0, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
40008004: b0 16 20 98 or %i0, 0x98, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008008: 37 10 00 52 sethi %hi(0x40014800), %i3
block = next_block;
} while ( block != first_block );
return true;
}
4000800c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
40008010: c6 04 20 20 ld [ %l0 + 0x20 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
40008014: ae 08 7f fe and %g1, -2, %l7
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
40008018: ba 05 80 17 add %l6, %l7, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
4000801c: 80 a0 c0 1d cmp %g3, %i5
40008020: 18 80 00 05 bgu 40008034 <_Heap_Walk+0x2a4> <== NEVER TAKEN
40008024: 84 10 20 00 clr %g2
40008028: c4 04 20 24 ld [ %l0 + 0x24 ], %g2
4000802c: 80 a0 80 1d cmp %g2, %i5
40008030: 84 60 3f ff subx %g0, -1, %g2
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
40008034: 80 a0 a0 00 cmp %g2, 0
40008038: 12 80 00 07 bne 40008054 <_Heap_Walk+0x2c4>
4000803c: 84 1d 80 15 xor %l6, %l5, %g2
(*printer)(
40008040: 15 10 00 51 sethi %hi(0x40014400), %o2
40008044: 90 10 00 19 mov %i1, %o0
40008048: 92 10 20 01 mov 1, %o1
4000804c: 10 80 00 2c b 400080fc <_Heap_Walk+0x36c>
40008050: 94 12 a3 28 or %o2, 0x328, %o2
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
40008054: 80 a0 00 02 cmp %g0, %g2
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
40008058: c2 27 bf fc st %g1, [ %fp + -4 ]
4000805c: b8 40 20 00 addx %g0, 0, %i4
40008060: 90 10 00 17 mov %l7, %o0
40008064: 7f ff e6 98 call 40001ac4 <.urem>
40008068: 92 10 00 12 mov %l2, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
4000806c: 80 a2 20 00 cmp %o0, 0
40008070: 02 80 00 0c be 400080a0 <_Heap_Walk+0x310>
40008074: c2 07 bf fc ld [ %fp + -4 ], %g1
40008078: 80 8f 20 ff btst 0xff, %i4
4000807c: 02 80 00 0a be 400080a4 <_Heap_Walk+0x314>
40008080: 80 a5 c0 14 cmp %l7, %l4
(*printer)(
40008084: 15 10 00 51 sethi %hi(0x40014400), %o2
40008088: 90 10 00 19 mov %i1, %o0
4000808c: 92 10 20 01 mov 1, %o1
40008090: 94 12 a3 58 or %o2, 0x358, %o2
40008094: 96 10 00 16 mov %l6, %o3
40008098: 10 80 00 1b b 40008104 <_Heap_Walk+0x374>
4000809c: 98 10 00 17 mov %l7, %o4
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
400080a0: 80 a5 c0 14 cmp %l7, %l4
400080a4: 1a 80 00 0d bcc 400080d8 <_Heap_Walk+0x348>
400080a8: 80 a7 40 16 cmp %i5, %l6
400080ac: 80 8f 20 ff btst 0xff, %i4
400080b0: 02 80 00 0a be 400080d8 <_Heap_Walk+0x348> <== NEVER TAKEN
400080b4: 80 a7 40 16 cmp %i5, %l6
(*printer)(
400080b8: 15 10 00 51 sethi %hi(0x40014400), %o2
400080bc: 90 10 00 19 mov %i1, %o0
400080c0: 92 10 20 01 mov 1, %o1
400080c4: 94 12 a3 88 or %o2, 0x388, %o2
400080c8: 96 10 00 16 mov %l6, %o3
400080cc: 98 10 00 17 mov %l7, %o4
400080d0: 10 80 00 3f b 400081cc <_Heap_Walk+0x43c>
400080d4: 9a 10 00 14 mov %l4, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
400080d8: 38 80 00 0e bgu,a 40008110 <_Heap_Walk+0x380>
400080dc: b8 08 60 01 and %g1, 1, %i4
400080e0: 80 8f 20 ff btst 0xff, %i4
400080e4: 02 80 00 0b be 40008110 <_Heap_Walk+0x380>
400080e8: b8 08 60 01 and %g1, 1, %i4
(*printer)(
400080ec: 15 10 00 51 sethi %hi(0x40014400), %o2
400080f0: 90 10 00 19 mov %i1, %o0
400080f4: 92 10 20 01 mov 1, %o1
400080f8: 94 12 a3 b8 or %o2, 0x3b8, %o2
400080fc: 96 10 00 16 mov %l6, %o3
40008100: 98 10 00 1d mov %i5, %o4
40008104: 9f c4 40 00 call %l1
40008108: b0 10 20 00 clr %i0
4000810c: 30 80 00 5d b,a 40008280 <_Heap_Walk+0x4f0>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
40008110: c2 07 60 04 ld [ %i5 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
40008114: 80 88 60 01 btst 1, %g1
40008118: 12 80 00 3f bne 40008214 <_Heap_Walk+0x484>
4000811c: 80 a7 20 00 cmp %i4, 0
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
40008120: da 05 a0 0c ld [ %l6 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008124: c2 04 20 08 ld [ %l0 + 8 ], %g1
40008128: 05 10 00 51 sethi %hi(0x40014400), %g2
block = next_block;
} while ( block != first_block );
return true;
}
4000812c: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008130: 80 a3 40 01 cmp %o5, %g1
40008134: 02 80 00 07 be 40008150 <_Heap_Walk+0x3c0>
40008138: 86 10 a0 98 or %g2, 0x98, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
4000813c: 80 a3 40 10 cmp %o5, %l0
40008140: 12 80 00 04 bne 40008150 <_Heap_Walk+0x3c0>
40008144: 86 16 e0 60 or %i3, 0x60, %g3
40008148: 19 10 00 51 sethi %hi(0x40014400), %o4
4000814c: 86 13 20 a8 or %o4, 0xa8, %g3 ! 400144a8 <C.0.4226+0x44>
block->next,
block->next == last_free_block ?
40008150: c4 05 a0 08 ld [ %l6 + 8 ], %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008154: 19 10 00 51 sethi %hi(0x40014400), %o4
40008158: 80 a0 80 04 cmp %g2, %g4
4000815c: 02 80 00 07 be 40008178 <_Heap_Walk+0x3e8>
40008160: 82 13 20 b8 or %o4, 0xb8, %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
40008164: 80 a0 80 10 cmp %g2, %l0
40008168: 12 80 00 04 bne 40008178 <_Heap_Walk+0x3e8>
4000816c: 82 16 e0 60 or %i3, 0x60, %g1
40008170: 09 10 00 51 sethi %hi(0x40014400), %g4
40008174: 82 11 20 c8 or %g4, 0xc8, %g1 ! 400144c8 <C.0.4226+0x64>
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
40008178: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
4000817c: c4 23 a0 60 st %g2, [ %sp + 0x60 ]
40008180: c2 23 a0 64 st %g1, [ %sp + 0x64 ]
40008184: 90 10 00 19 mov %i1, %o0
40008188: 92 10 20 00 clr %o1
4000818c: 15 10 00 51 sethi %hi(0x40014400), %o2
40008190: 96 10 00 16 mov %l6, %o3
40008194: 94 12 a3 f0 or %o2, 0x3f0, %o2
40008198: 9f c4 40 00 call %l1
4000819c: 98 10 00 17 mov %l7, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
400081a0: da 07 40 00 ld [ %i5 ], %o5
400081a4: 80 a5 c0 0d cmp %l7, %o5
400081a8: 02 80 00 0c be 400081d8 <_Heap_Walk+0x448>
400081ac: 80 a7 20 00 cmp %i4, 0
(*printer)(
400081b0: 15 10 00 52 sethi %hi(0x40014800), %o2
400081b4: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
400081b8: 90 10 00 19 mov %i1, %o0
400081bc: 92 10 20 01 mov 1, %o1
400081c0: 94 12 a0 28 or %o2, 0x28, %o2
400081c4: 96 10 00 16 mov %l6, %o3
400081c8: 98 10 00 17 mov %l7, %o4
400081cc: 9f c4 40 00 call %l1
400081d0: b0 10 20 00 clr %i0
400081d4: 30 80 00 2b b,a 40008280 <_Heap_Walk+0x4f0>
);
return false;
}
if ( !prev_used ) {
400081d8: 32 80 00 0a bne,a 40008200 <_Heap_Walk+0x470>
400081dc: c2 04 20 08 ld [ %l0 + 8 ], %g1
(*printer)(
400081e0: 15 10 00 52 sethi %hi(0x40014800), %o2
400081e4: 90 10 00 19 mov %i1, %o0
400081e8: 92 10 20 01 mov 1, %o1
400081ec: 10 80 00 22 b 40008274 <_Heap_Walk+0x4e4>
400081f0: 94 12 a0 68 or %o2, 0x68, %o2
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
if ( free_block == block ) {
400081f4: 02 80 00 19 be 40008258 <_Heap_Walk+0x4c8>
400081f8: 80 a7 40 13 cmp %i5, %l3
return true;
}
free_block = free_block->next;
400081fc: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
40008200: 80 a0 40 10 cmp %g1, %l0
40008204: 12 bf ff fc bne 400081f4 <_Heap_Walk+0x464>
40008208: 80 a0 40 16 cmp %g1, %l6
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
4000820c: 10 80 00 17 b 40008268 <_Heap_Walk+0x4d8>
40008210: 15 10 00 52 sethi %hi(0x40014800), %o2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
40008214: 22 80 00 0a be,a 4000823c <_Heap_Walk+0x4ac>
40008218: da 05 80 00 ld [ %l6 ], %o5
(*printer)(
4000821c: 90 10 00 19 mov %i1, %o0
40008220: 92 10 20 00 clr %o1
40008224: 94 10 00 18 mov %i0, %o2
40008228: 96 10 00 16 mov %l6, %o3
4000822c: 9f c4 40 00 call %l1
40008230: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40008234: 10 80 00 09 b 40008258 <_Heap_Walk+0x4c8>
40008238: 80 a7 40 13 cmp %i5, %l3
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
4000823c: 90 10 00 19 mov %i1, %o0
40008240: 92 10 20 00 clr %o1
40008244: 94 10 00 1a mov %i2, %o2
40008248: 96 10 00 16 mov %l6, %o3
4000824c: 9f c4 40 00 call %l1
40008250: 98 10 00 17 mov %l7, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
40008254: 80 a7 40 13 cmp %i5, %l3
40008258: 12 bf ff 6d bne 4000800c <_Heap_Walk+0x27c>
4000825c: ac 10 00 1d mov %i5, %l6
return true;
}
40008260: 81 c7 e0 08 ret
40008264: 91 e8 20 01 restore %g0, 1, %o0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
40008268: 90 10 00 19 mov %i1, %o0
4000826c: 92 10 20 01 mov 1, %o1
40008270: 94 12 a0 d8 or %o2, 0xd8, %o2
40008274: 96 10 00 16 mov %l6, %o3
40008278: 9f c4 40 00 call %l1
4000827c: b0 10 20 00 clr %i0
40008280: 81 c7 e0 08 ret
40008284: 81 e8 00 00 restore
40006f18 <_Internal_error_Occurred>:
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40006f18: 9d e3 bf a0 save %sp, -96, %sp
_Internal_errors_What_happened.the_source = the_source;
40006f1c: 05 10 00 51 sethi %hi(0x40014400), %g2
40006f20: 82 10 a0 84 or %g2, 0x84, %g1 ! 40014484 <_Internal_errors_What_happened>
void _Internal_error_Occurred(
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40006f24: 90 10 00 18 mov %i0, %o0
40006f28: 94 10 00 1a mov %i2, %o2
_Internal_errors_What_happened.the_source = the_source;
40006f2c: f0 20 a0 84 st %i0, [ %g2 + 0x84 ]
_Internal_errors_What_happened.is_internal = is_internal;
40006f30: f2 28 60 04 stb %i1, [ %g1 + 4 ]
_Internal_errors_What_happened.the_error = the_error;
40006f34: f4 20 60 08 st %i2, [ %g1 + 8 ]
_User_extensions_Fatal( the_source, is_internal, the_error );
40006f38: 40 00 07 b3 call 40008e04 <_User_extensions_Fatal>
40006f3c: 92 0e 60 ff and %i1, 0xff, %o1
RTEMS_INLINE_ROUTINE void _System_state_Set (
System_state_Codes state
)
{
_System_state_Current = state;
40006f40: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED
40006f44: 03 10 00 51 sethi %hi(0x40014400), %g1 <== NOT EXECUTED
_System_state_Set( SYSTEM_STATE_FAILED );
_CPU_Fatal_halt( the_error );
40006f48: 7f ff eb 54 call 40001c98 <sparc_disable_interrupts> <== NOT EXECUTED
40006f4c: c4 20 61 48 st %g2, [ %g1 + 0x148 ] ! 40014548 <_System_state_Current><== NOT EXECUTED
40006f50: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED
40006f54: 30 80 00 00 b,a 40006f54 <_Internal_error_Occurred+0x3c> <== NOT EXECUTED
40006fc8 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40006fc8: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40006fcc: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
40006fd0: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
40006fd4: 80 a0 60 00 cmp %g1, 0
40006fd8: 02 80 00 20 be 40007058 <_Objects_Allocate+0x90> <== NEVER TAKEN
40006fdc: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40006fe0: a2 04 20 20 add %l0, 0x20, %l1
40006fe4: 7f ff fd 8b call 40006610 <_Chain_Get>
40006fe8: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
40006fec: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
40006ff0: 80 a0 60 00 cmp %g1, 0
40006ff4: 02 80 00 19 be 40007058 <_Objects_Allocate+0x90>
40006ff8: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
40006ffc: 80 a2 20 00 cmp %o0, 0
40007000: 32 80 00 0a bne,a 40007028 <_Objects_Allocate+0x60>
40007004: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
_Objects_Extend_information( information );
40007008: 40 00 00 1e call 40007080 <_Objects_Extend_information>
4000700c: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
40007010: 7f ff fd 80 call 40006610 <_Chain_Get>
40007014: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
40007018: b0 92 20 00 orcc %o0, 0, %i0
4000701c: 02 80 00 0f be 40007058 <_Objects_Allocate+0x90>
40007020: 01 00 00 00 nop
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
40007024: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
40007028: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
4000702c: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
40007030: 40 00 26 dd call 40010ba4 <.udiv>
40007034: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
40007038: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
4000703c: 91 2a 20 02 sll %o0, 2, %o0
40007040: c4 00 40 08 ld [ %g1 + %o0 ], %g2
40007044: 84 00 bf ff add %g2, -1, %g2
40007048: c4 20 40 08 st %g2, [ %g1 + %o0 ]
information->inactive--;
4000704c: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1
40007050: 82 00 7f ff add %g1, -1, %g1
40007054: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
40007058: 81 c7 e0 08 ret
4000705c: 81 e8 00 00 restore
400073dc <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
400073dc: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
400073e0: b3 2e 60 10 sll %i1, 0x10, %i1
400073e4: b3 36 60 10 srl %i1, 0x10, %i1
400073e8: 80 a6 60 00 cmp %i1, 0
400073ec: 02 80 00 17 be 40007448 <_Objects_Get_information+0x6c>
400073f0: a0 10 20 00 clr %l0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
400073f4: 40 00 11 11 call 4000b838 <_Objects_API_maximum_class>
400073f8: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
400073fc: 80 a2 20 00 cmp %o0, 0
40007400: 02 80 00 12 be 40007448 <_Objects_Get_information+0x6c>
40007404: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
40007408: 18 80 00 10 bgu 40007448 <_Objects_Get_information+0x6c>
4000740c: 03 10 00 50 sethi %hi(0x40014000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
40007410: b1 2e 20 02 sll %i0, 2, %i0
40007414: 82 10 63 38 or %g1, 0x338, %g1
40007418: c2 00 40 18 ld [ %g1 + %i0 ], %g1
4000741c: 80 a0 60 00 cmp %g1, 0
40007420: 02 80 00 0a be 40007448 <_Objects_Get_information+0x6c> <== NEVER TAKEN
40007424: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
40007428: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
4000742c: 80 a4 20 00 cmp %l0, 0
40007430: 02 80 00 06 be 40007448 <_Objects_Get_information+0x6c> <== NEVER TAKEN
40007434: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
40007438: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
4000743c: 80 a0 00 01 cmp %g0, %g1
40007440: 82 60 20 00 subx %g0, 0, %g1
40007444: a0 0c 00 01 and %l0, %g1, %l0
#endif
return info;
}
40007448: 81 c7 e0 08 ret
4000744c: 91 e8 00 10 restore %g0, %l0, %o0
40018c24 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018c24: c2 02 20 08 ld [ %o0 + 8 ], %g1
if ( information->maximum >= index ) {
40018c28: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
40018c2c: 82 22 40 01 sub %o1, %g1, %g1
40018c30: 82 00 60 01 inc %g1
if ( information->maximum >= index ) {
40018c34: 80 a0 80 01 cmp %g2, %g1
40018c38: 0a 80 00 09 bcs 40018c5c <_Objects_Get_no_protection+0x38>
40018c3c: 83 28 60 02 sll %g1, 2, %g1
if ( (the_object = information->local_table[ index ]) != NULL ) {
40018c40: c4 02 20 1c ld [ %o0 + 0x1c ], %g2
40018c44: d0 00 80 01 ld [ %g2 + %g1 ], %o0
40018c48: 80 a2 20 00 cmp %o0, 0
40018c4c: 02 80 00 05 be 40018c60 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
40018c50: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
40018c54: 81 c3 e0 08 retl
40018c58: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
40018c5c: 82 10 20 01 mov 1, %g1
return NULL;
40018c60: 90 10 20 00 clr %o0
}
40018c64: 81 c3 e0 08 retl
40018c68: c2 22 80 00 st %g1, [ %o2 ]
40008cb8 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
40008cb8: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
40008cbc: 92 96 20 00 orcc %i0, 0, %o1
40008cc0: 12 80 00 06 bne 40008cd8 <_Objects_Id_to_name+0x20>
40008cc4: 83 32 60 18 srl %o1, 0x18, %g1
40008cc8: 03 10 00 77 sethi %hi(0x4001dc00), %g1
40008ccc: c2 00 60 28 ld [ %g1 + 0x28 ], %g1 ! 4001dc28 <_Per_CPU_Information+0xc>
40008cd0: d2 00 60 08 ld [ %g1 + 8 ], %o1
40008cd4: 83 32 60 18 srl %o1, 0x18, %g1
40008cd8: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008cdc: 84 00 7f ff add %g1, -1, %g2
40008ce0: 80 a0 a0 02 cmp %g2, 2
40008ce4: 18 80 00 12 bgu 40008d2c <_Objects_Id_to_name+0x74>
40008ce8: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40008cec: 10 80 00 12 b 40008d34 <_Objects_Id_to_name+0x7c>
40008cf0: 83 28 60 02 sll %g1, 2, %g1
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
40008cf4: 85 28 a0 02 sll %g2, 2, %g2
40008cf8: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
40008cfc: 80 a2 20 00 cmp %o0, 0
40008d00: 02 80 00 0b be 40008d2c <_Objects_Id_to_name+0x74> <== NEVER TAKEN
40008d04: 01 00 00 00 nop
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
40008d08: 7f ff ff cf call 40008c44 <_Objects_Get>
40008d0c: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
40008d10: 80 a2 20 00 cmp %o0, 0
40008d14: 02 80 00 06 be 40008d2c <_Objects_Id_to_name+0x74>
40008d18: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
40008d1c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
40008d20: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
40008d24: 40 00 02 f3 call 400098f0 <_Thread_Enable_dispatch>
40008d28: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
40008d2c: 81 c7 e0 08 ret
40008d30: 91 e8 00 10 restore %g0, %l0, %o0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
40008d34: 05 10 00 76 sethi %hi(0x4001d800), %g2
40008d38: 84 10 a1 38 or %g2, 0x138, %g2 ! 4001d938 <_Objects_Information_table>
40008d3c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
40008d40: 80 a0 60 00 cmp %g1, 0
40008d44: 12 bf ff ec bne 40008cf4 <_Objects_Id_to_name+0x3c>
40008d48: 85 32 60 1b srl %o1, 0x1b, %g2
40008d4c: 30 bf ff f8 b,a 40008d2c <_Objects_Id_to_name+0x74>
40007538 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007538: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
4000753c: 85 2f 20 10 sll %i4, 0x10, %g2
40007540: 85 30 a0 10 srl %g2, 0x10, %g2
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007544: 07 10 00 50 sethi %hi(0x40014000), %g3
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
40007548: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
4000754c: 86 10 e3 38 or %g3, 0x338, %g3
40007550: 85 2e 60 02 sll %i1, 2, %g2
40007554: c6 00 c0 02 ld [ %g3 + %g2 ], %g3
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
40007558: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
4000755c: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
information->local_table = 0;
40007560: c0 26 20 1c clr [ %i0 + 0x1c ]
information->inactive_per_block = 0;
40007564: c0 26 20 30 clr [ %i0 + 0x30 ]
information->object_blocks = 0;
40007568: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
4000756c: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
40007570: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
40007574: c2 07 a0 5c ld [ %fp + 0x5c ], %g1
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
40007578: b5 2e a0 10 sll %i2, 0x10, %i2
4000757c: b5 36 a0 10 srl %i2, 0x10, %i2
40007580: 85 2e a0 02 sll %i2, 2, %g2
40007584: f0 20 c0 02 st %i0, [ %g3 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
40007588: 85 36 e0 1f srl %i3, 0x1f, %g2
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
4000758c: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ]
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
40007590: 07 20 00 00 sethi %hi(0x80000000), %g3
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
40007594: 80 a0 a0 00 cmp %g2, 0
40007598: 02 80 00 09 be 400075bc <_Objects_Initialize_information+0x84>
4000759c: b6 2e c0 03 andn %i3, %g3, %i3
400075a0: 80 a6 e0 00 cmp %i3, 0
400075a4: 12 80 00 07 bne 400075c0 <_Objects_Initialize_information+0x88>
400075a8: 05 10 00 50 sethi %hi(0x40014000), %g2
_Internal_error_Occurred(
400075ac: 90 10 20 00 clr %o0
400075b0: 92 10 20 01 mov 1, %o1
400075b4: 7f ff fe 59 call 40006f18 <_Internal_error_Occurred>
400075b8: 94 10 20 13 mov 0x13, %o2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
400075bc: 05 10 00 50 sethi %hi(0x40014000), %g2
400075c0: 84 10 a1 90 or %g2, 0x190, %g2 ! 40014190 <null_local_table.3306>
400075c4: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400075c8: 05 00 00 40 sethi %hi(0x10000), %g2
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
400075cc: 80 a0 00 1b cmp %g0, %i3
400075d0: b3 2e 60 18 sll %i1, 0x18, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400075d4: b5 2e a0 1b sll %i2, 0x1b, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400075d8: b2 16 40 02 or %i1, %g2, %i1
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
400075dc: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
400075e0: 84 40 20 00 addx %g0, 0, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
400075e4: b4 16 40 1a or %i1, %i2, %i2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
400075e8: b4 16 80 02 or %i2, %g2, %i2
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
400075ec: 80 88 60 03 btst 3, %g1
400075f0: 02 80 00 04 be 40007600 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN
400075f4: f4 26 20 08 st %i2, [ %i0 + 8 ]
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
400075f8: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED
400075fc: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
40007600: c2 36 20 38 sth %g1, [ %i0 + 0x38 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
40007604: 82 06 20 24 add %i0, 0x24, %g1
head->next = tail;
head->previous = NULL;
40007608: c0 26 20 24 clr [ %i0 + 0x24 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4000760c: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
40007610: 82 06 20 20 add %i0, 0x20, %g1
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
40007614: 80 a6 e0 00 cmp %i3, 0
40007618: 02 80 00 04 be 40007628 <_Objects_Initialize_information+0xf0>
4000761c: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
40007620: 7f ff fe 98 call 40007080 <_Objects_Extend_information>
40007624: 81 e8 00 00 restore
40007628: 81 c7 e0 08 ret
4000762c: 81 e8 00 00 restore
4000b00c <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
4000b00c: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000b010: e0 06 21 4c ld [ %i0 + 0x14c ], %l0
if ( !api )
4000b014: 80 a4 20 00 cmp %l0, 0
4000b018: 02 80 00 1d be 4000b08c <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN
4000b01c: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
4000b020: 7f ff db 1e call 40001c98 <sparc_disable_interrupts>
4000b024: 01 00 00 00 nop
signal_set = asr->signals_posted;
4000b028: e6 04 20 14 ld [ %l0 + 0x14 ], %l3
asr->signals_posted = 0;
4000b02c: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
4000b030: 7f ff db 1e call 40001ca8 <sparc_enable_interrupts>
4000b034: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
4000b038: 80 a4 e0 00 cmp %l3, 0
4000b03c: 02 80 00 14 be 4000b08c <_RTEMS_tasks_Post_switch_extension+0x80>
4000b040: a2 07 bf fc add %fp, -4, %l1
return;
asr->nest_level += 1;
4000b044: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b048: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
4000b04c: 82 00 60 01 inc %g1
4000b050: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b054: 94 10 00 11 mov %l1, %o2
4000b058: 25 00 00 3f sethi %hi(0xfc00), %l2
4000b05c: 40 00 07 99 call 4000cec0 <rtems_task_mode>
4000b060: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff <PROM_START+0xffff>
(*asr->handler)( signal_set );
4000b064: c2 04 20 0c ld [ %l0 + 0xc ], %g1
4000b068: 9f c0 40 00 call %g1
4000b06c: 90 10 00 13 mov %l3, %o0
asr->nest_level -= 1;
4000b070: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b074: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000b078: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b07c: 92 14 a3 ff or %l2, 0x3ff, %o1
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
4000b080: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
4000b084: 40 00 07 8f call 4000cec0 <rtems_task_mode>
4000b088: 94 10 00 11 mov %l1, %o2
4000b08c: 81 c7 e0 08 ret
4000b090: 81 e8 00 00 restore
40007318 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
40007318: 9d e3 bf 98 save %sp, -104, %sp
4000731c: 11 10 00 77 sethi %hi(0x4001dc00), %o0
40007320: 92 10 00 18 mov %i0, %o1
40007324: 90 12 22 ac or %o0, 0x2ac, %o0
40007328: 40 00 07 c7 call 40009244 <_Objects_Get>
4000732c: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40007330: c2 07 bf fc ld [ %fp + -4 ], %g1
40007334: 80 a0 60 00 cmp %g1, 0
40007338: 12 80 00 24 bne 400073c8 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN
4000733c: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
40007340: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
40007344: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
40007348: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
4000734c: 80 88 80 01 btst %g2, %g1
40007350: 22 80 00 0b be,a 4000737c <_Rate_monotonic_Timeout+0x64>
40007354: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
40007358: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
4000735c: c2 04 20 08 ld [ %l0 + 8 ], %g1
40007360: 80 a0 80 01 cmp %g2, %g1
40007364: 32 80 00 06 bne,a 4000737c <_Rate_monotonic_Timeout+0x64>
40007368: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
4000736c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
40007370: 40 00 09 ee call 40009b28 <_Thread_Clear_state>
40007374: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_SIZE+0xfc3fff8>
40007378: 30 80 00 06 b,a 40007390 <_Rate_monotonic_Timeout+0x78>
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
4000737c: 80 a0 60 01 cmp %g1, 1
40007380: 12 80 00 0d bne 400073b4 <_Rate_monotonic_Timeout+0x9c>
40007384: 82 10 20 04 mov 4, %g1
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
40007388: 82 10 20 03 mov 3, %g1
4000738c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
40007390: 7f ff fe 66 call 40006d28 <_Rate_monotonic_Initiate_statistics>
40007394: 90 10 00 10 mov %l0, %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40007398: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
4000739c: 11 10 00 78 sethi %hi(0x4001e000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
400073a0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
400073a4: 90 12 20 f0 or %o0, 0xf0, %o0
400073a8: 40 00 0e cd call 4000aedc <_Watchdog_Insert>
400073ac: 92 04 20 10 add %l0, 0x10, %o1
400073b0: 30 80 00 02 b,a 400073b8 <_Rate_monotonic_Timeout+0xa0>
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
400073b4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
400073b8: 03 10 00 78 sethi %hi(0x4001e000), %g1
400073bc: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 ! 4001e010 <_Thread_Dispatch_disable_level>
400073c0: 84 00 bf ff add %g2, -1, %g2
400073c4: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
400073c8: 81 c7 e0 08 ret
400073cc: 81 e8 00 00 restore
4000b860 <_Scheduler_priority_Block>:
void _Scheduler_priority_Block(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
4000b860: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract(
Thread_Control *the_thread
)
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
4000b864: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
4000b868: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
4000b86c: c6 00 40 00 ld [ %g1 ], %g3
4000b870: c4 00 60 08 ld [ %g1 + 8 ], %g2
4000b874: 80 a0 c0 02 cmp %g3, %g2
4000b878: 32 80 00 17 bne,a 4000b8d4 <_Scheduler_priority_Block+0x74>
4000b87c: c4 06 40 00 ld [ %i1 ], %g2
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
4000b880: c0 20 60 04 clr [ %g1 + 4 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
4000b884: 84 00 60 04 add %g1, 4, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
4000b888: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4000b88c: c4 20 40 00 st %g2, [ %g1 ]
_Chain_Initialize_empty( ready );
_Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
4000b890: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
4000b894: c6 00 60 04 ld [ %g1 + 4 ], %g3
4000b898: c4 10 60 0e lduh [ %g1 + 0xe ], %g2
4000b89c: c8 10 c0 00 lduh [ %g3 ], %g4
4000b8a0: 84 09 00 02 and %g4, %g2, %g2
4000b8a4: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
4000b8a8: 85 28 a0 10 sll %g2, 0x10, %g2
4000b8ac: 80 a0 a0 00 cmp %g2, 0
4000b8b0: 32 80 00 0d bne,a 4000b8e4 <_Scheduler_priority_Block+0x84>
4000b8b4: 03 10 00 51 sethi %hi(0x40014400), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
4000b8b8: 05 10 00 51 sethi %hi(0x40014400), %g2
4000b8bc: c2 10 60 0c lduh [ %g1 + 0xc ], %g1
4000b8c0: c6 10 a2 40 lduh [ %g2 + 0x240 ], %g3
4000b8c4: 82 08 40 03 and %g1, %g3, %g1
4000b8c8: c2 30 a2 40 sth %g1, [ %g2 + 0x240 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
4000b8cc: 10 80 00 06 b 4000b8e4 <_Scheduler_priority_Block+0x84>
4000b8d0: 03 10 00 51 sethi %hi(0x40014400), %g1
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
4000b8d4: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
4000b8d8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
4000b8dc: c4 20 40 00 st %g2, [ %g1 ]
4000b8e0: 03 10 00 51 sethi %hi(0x40014400), %g1
{
_Scheduler_priority_Ready_queue_extract(the_thread);
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
4000b8e4: c2 00 62 2c ld [ %g1 + 0x22c ], %g1 ! 4001462c <_Per_CPU_Information+0x10>
4000b8e8: 80 a6 40 01 cmp %i1, %g1
4000b8ec: 32 80 00 32 bne,a 4000b9b4 <_Scheduler_priority_Block+0x154>
4000b8f0: 03 10 00 51 sethi %hi(0x40014400), %g1
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
4000b8f4: 03 10 00 51 sethi %hi(0x40014400), %g1
4000b8f8: c4 10 62 40 lduh [ %g1 + 0x240 ], %g2 ! 40014640 <_Priority_Major_bit_map>
_Scheduler_priority_Block_body(the_scheduler, the_thread);
}
4000b8fc: c6 06 00 00 ld [ %i0 ], %g3
4000b900: 85 28 a0 10 sll %g2, 0x10, %g2
4000b904: 03 10 00 4c sethi %hi(0x40013000), %g1
4000b908: 89 30 a0 10 srl %g2, 0x10, %g4
4000b90c: 80 a1 20 ff cmp %g4, 0xff
4000b910: 18 80 00 05 bgu 4000b924 <_Scheduler_priority_Block+0xc4>
4000b914: 82 10 61 80 or %g1, 0x180, %g1
4000b918: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
4000b91c: 10 80 00 04 b 4000b92c <_Scheduler_priority_Block+0xcc>
4000b920: 84 00 a0 08 add %g2, 8, %g2
4000b924: 85 30 a0 18 srl %g2, 0x18, %g2
4000b928: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
4000b92c: 83 28 a0 10 sll %g2, 0x10, %g1
4000b930: 09 10 00 51 sethi %hi(0x40014400), %g4
4000b934: 83 30 60 0f srl %g1, 0xf, %g1
4000b938: 88 11 22 50 or %g4, 0x250, %g4
4000b93c: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
4000b940: 03 10 00 4c sethi %hi(0x40013000), %g1
4000b944: 89 29 20 10 sll %g4, 0x10, %g4
4000b948: 9b 31 20 10 srl %g4, 0x10, %o5
4000b94c: 80 a3 60 ff cmp %o5, 0xff
4000b950: 18 80 00 05 bgu 4000b964 <_Scheduler_priority_Block+0x104>
4000b954: 82 10 61 80 or %g1, 0x180, %g1
4000b958: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
4000b95c: 10 80 00 04 b 4000b96c <_Scheduler_priority_Block+0x10c>
4000b960: 82 00 60 08 add %g1, 8, %g1
4000b964: 89 31 20 18 srl %g4, 0x18, %g4
4000b968: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
4000b96c: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000b970: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
4000b974: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000b978: 85 30 a0 0c srl %g2, 0xc, %g2
4000b97c: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
4000b980: 89 28 a0 02 sll %g2, 2, %g4
4000b984: 83 28 a0 04 sll %g2, 4, %g1
4000b988: 82 20 40 04 sub %g1, %g4, %g1
4000b98c: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
4000b990: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000b994: 86 01 20 04 add %g4, 4, %g3
4000b998: 80 a0 80 03 cmp %g2, %g3
4000b99c: 02 80 00 03 be 4000b9a8 <_Scheduler_priority_Block+0x148> <== NEVER TAKEN
4000b9a0: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
4000b9a4: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
4000b9a8: 05 10 00 51 sethi %hi(0x40014400), %g2
4000b9ac: c2 20 a2 2c st %g1, [ %g2 + 0x22c ] ! 4001462c <_Per_CPU_Information+0x10>
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
4000b9b0: 03 10 00 51 sethi %hi(0x40014400), %g1
4000b9b4: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001461c <_Per_CPU_Information>
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
_Scheduler_priority_Schedule_body(the_scheduler);
if ( _Thread_Is_executing( the_thread ) )
4000b9b8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
4000b9bc: 80 a6 40 02 cmp %i1, %g2
4000b9c0: 12 80 00 03 bne 4000b9cc <_Scheduler_priority_Block+0x16c>
4000b9c4: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
4000b9c8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
4000b9cc: 81 c7 e0 08 ret
4000b9d0: 81 e8 00 00 restore
4000791c <_Scheduler_priority_Schedule>:
*/
void _Scheduler_priority_Schedule(
Scheduler_Control *the_scheduler
)
{
4000791c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
40007920: 03 10 00 51 sethi %hi(0x40014400), %g1
40007924: c4 10 62 40 lduh [ %g1 + 0x240 ], %g2 ! 40014640 <_Priority_Major_bit_map>
_Scheduler_priority_Schedule_body( the_scheduler );
}
40007928: c6 06 00 00 ld [ %i0 ], %g3
4000792c: 85 28 a0 10 sll %g2, 0x10, %g2
40007930: 03 10 00 4c sethi %hi(0x40013000), %g1
40007934: 89 30 a0 10 srl %g2, 0x10, %g4
40007938: 80 a1 20 ff cmp %g4, 0xff
4000793c: 18 80 00 05 bgu 40007950 <_Scheduler_priority_Schedule+0x34>
40007940: 82 10 61 80 or %g1, 0x180, %g1
40007944: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
40007948: 10 80 00 04 b 40007958 <_Scheduler_priority_Schedule+0x3c>
4000794c: 84 00 a0 08 add %g2, 8, %g2
40007950: 85 30 a0 18 srl %g2, 0x18, %g2
40007954: c4 08 40 02 ldub [ %g1 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
40007958: 83 28 a0 10 sll %g2, 0x10, %g1
4000795c: 09 10 00 51 sethi %hi(0x40014400), %g4
40007960: 83 30 60 0f srl %g1, 0xf, %g1
40007964: 88 11 22 50 or %g4, 0x250, %g4
40007968: c8 11 00 01 lduh [ %g4 + %g1 ], %g4
4000796c: 03 10 00 4c sethi %hi(0x40013000), %g1
40007970: 89 29 20 10 sll %g4, 0x10, %g4
40007974: 9b 31 20 10 srl %g4, 0x10, %o5
40007978: 80 a3 60 ff cmp %o5, 0xff
4000797c: 18 80 00 05 bgu 40007990 <_Scheduler_priority_Schedule+0x74>
40007980: 82 10 61 80 or %g1, 0x180, %g1
40007984: c2 08 40 0d ldub [ %g1 + %o5 ], %g1
40007988: 10 80 00 04 b 40007998 <_Scheduler_priority_Schedule+0x7c>
4000798c: 82 00 60 08 add %g1, 8, %g1
40007990: 89 31 20 18 srl %g4, 0x18, %g4
40007994: c2 08 40 04 ldub [ %g1 + %g4 ], %g1
return (_Priority_Bits_index( major ) << 4) +
_Priority_Bits_index( minor );
40007998: 83 28 60 10 sll %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
4000799c: 85 28 a0 10 sll %g2, 0x10, %g2
_Priority_Bits_index( minor );
400079a0: 83 30 60 10 srl %g1, 0x10, %g1
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
400079a4: 85 30 a0 0c srl %g2, 0xc, %g2
400079a8: 84 00 40 02 add %g1, %g2, %g2
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
400079ac: 89 28 a0 02 sll %g2, 2, %g4
400079b0: 83 28 a0 04 sll %g2, 4, %g1
400079b4: 82 20 40 04 sub %g1, %g4, %g1
400079b8: c4 00 c0 01 ld [ %g3 + %g1 ], %g2
400079bc: 88 00 c0 01 add %g3, %g1, %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
400079c0: 86 01 20 04 add %g4, 4, %g3
400079c4: 80 a0 80 03 cmp %g2, %g3
400079c8: 02 80 00 03 be 400079d4 <_Scheduler_priority_Schedule+0xb8><== NEVER TAKEN
400079cc: 82 10 20 00 clr %g1
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
400079d0: 82 10 00 02 mov %g2, %g1
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
400079d4: 05 10 00 51 sethi %hi(0x40014400), %g2
400079d8: c2 20 a2 2c st %g1, [ %g2 + 0x22c ] ! 4001462c <_Per_CPU_Information+0x10>
400079dc: 81 c7 e0 08 ret
400079e0: 81 e8 00 00 restore
40007b20 <_Scheduler_priority_Yield>:
*/
void _Scheduler_priority_Yield(
Scheduler_Control *the_scheduler __attribute__((unused))
)
{
40007b20: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
40007b24: 25 10 00 51 sethi %hi(0x40014400), %l2
40007b28: a4 14 a2 1c or %l2, 0x21c, %l2 ! 4001461c <_Per_CPU_Information>
40007b2c: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
40007b30: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
40007b34: 7f ff e8 59 call 40001c98 <sparc_disable_interrupts>
40007b38: e2 00 40 00 ld [ %g1 ], %l1
40007b3c: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
40007b40: c4 04 40 00 ld [ %l1 ], %g2
40007b44: c2 04 60 08 ld [ %l1 + 8 ], %g1
40007b48: 80 a0 80 01 cmp %g2, %g1
40007b4c: 22 80 00 1a be,a 40007bb4 <_Scheduler_priority_Yield+0x94>
40007b50: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
40007b54: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
40007b58: c2 04 20 04 ld [ %l0 + 4 ], %g1
next->previous = previous;
40007b5c: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
40007b60: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40007b64: c2 04 60 08 ld [ %l1 + 8 ], %g1
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
40007b68: 84 04 60 04 add %l1, 4, %g2
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
40007b6c: e0 24 60 08 st %l0, [ %l1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
40007b70: c4 24 00 00 st %g2, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
40007b74: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
40007b78: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
40007b7c: 7f ff e8 4b call 40001ca8 <sparc_enable_interrupts>
40007b80: 01 00 00 00 nop
40007b84: 7f ff e8 45 call 40001c98 <sparc_disable_interrupts>
40007b88: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
40007b8c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
40007b90: 80 a4 00 01 cmp %l0, %g1
40007b94: 12 80 00 04 bne 40007ba4 <_Scheduler_priority_Yield+0x84> <== NEVER TAKEN
40007b98: 84 10 20 01 mov 1, %g2
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
40007b9c: c2 04 40 00 ld [ %l1 ], %g1
40007ba0: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
40007ba4: 03 10 00 51 sethi %hi(0x40014400), %g1
40007ba8: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001461c <_Per_CPU_Information>
40007bac: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
40007bb0: 30 80 00 05 b,a 40007bc4 <_Scheduler_priority_Yield+0xa4>
}
else if ( !_Thread_Is_heir( executing ) )
40007bb4: 80 a4 00 01 cmp %l0, %g1
40007bb8: 02 80 00 03 be 40007bc4 <_Scheduler_priority_Yield+0xa4> <== ALWAYS TAKEN
40007bbc: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
40007bc0: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
40007bc4: 7f ff e8 39 call 40001ca8 <sparc_enable_interrupts>
40007bc8: 81 e8 00 00 restore
40006d40 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40006d40: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40006d44: 03 10 00 77 sethi %hi(0x4001dc00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
40006d48: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
40006d4c: d2 00 63 64 ld [ %g1 + 0x364 ], %o1
if ((!the_tod) ||
40006d50: 80 a4 20 00 cmp %l0, 0
40006d54: 02 80 00 2b be 40006e00 <_TOD_Validate+0xc0> <== NEVER TAKEN
40006d58: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
40006d5c: 11 00 03 d0 sethi %hi(0xf4000), %o0
40006d60: 40 00 46 a8 call 40018800 <.udiv>
40006d64: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
40006d68: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
40006d6c: 80 a0 40 08 cmp %g1, %o0
40006d70: 1a 80 00 24 bcc 40006e00 <_TOD_Validate+0xc0>
40006d74: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
40006d78: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
40006d7c: 80 a0 60 3b cmp %g1, 0x3b
40006d80: 18 80 00 20 bgu 40006e00 <_TOD_Validate+0xc0>
40006d84: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
40006d88: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
40006d8c: 80 a0 60 3b cmp %g1, 0x3b
40006d90: 18 80 00 1c bgu 40006e00 <_TOD_Validate+0xc0>
40006d94: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
40006d98: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40006d9c: 80 a0 60 17 cmp %g1, 0x17
40006da0: 18 80 00 18 bgu 40006e00 <_TOD_Validate+0xc0>
40006da4: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
40006da8: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
40006dac: 80 a0 60 00 cmp %g1, 0
40006db0: 02 80 00 14 be 40006e00 <_TOD_Validate+0xc0> <== NEVER TAKEN
40006db4: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
40006db8: 18 80 00 12 bgu 40006e00 <_TOD_Validate+0xc0>
40006dbc: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40006dc0: c6 04 00 00 ld [ %l0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
40006dc4: 80 a0 e7 c3 cmp %g3, 0x7c3
40006dc8: 08 80 00 0e bleu 40006e00 <_TOD_Validate+0xc0>
40006dcc: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
40006dd0: c4 04 20 08 ld [ %l0 + 8 ], %g2
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
40006dd4: 80 a0 a0 00 cmp %g2, 0
40006dd8: 02 80 00 0a be 40006e00 <_TOD_Validate+0xc0> <== NEVER TAKEN
40006ddc: 80 88 e0 03 btst 3, %g3
40006de0: 07 10 00 73 sethi %hi(0x4001cc00), %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
40006de4: 12 80 00 03 bne 40006df0 <_TOD_Validate+0xb0>
40006de8: 86 10 e0 20 or %g3, 0x20, %g3 ! 4001cc20 <_TOD_Days_per_month>
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
40006dec: 82 00 60 0d add %g1, 0xd, %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
40006df0: 83 28 60 02 sll %g1, 2, %g1
40006df4: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
40006df8: 80 a0 40 02 cmp %g1, %g2
40006dfc: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
40006e00: 81 c7 e0 08 ret
40006e04: 81 e8 00 00 restore
40007c24 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
40007c24: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
40007c28: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
40007c2c: 40 00 03 70 call 400089ec <_Thread_Set_transient>
40007c30: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
40007c34: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
40007c38: 80 a0 40 19 cmp %g1, %i1
40007c3c: 02 80 00 05 be 40007c50 <_Thread_Change_priority+0x2c>
40007c40: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
40007c44: 90 10 00 18 mov %i0, %o0
40007c48: 40 00 03 4d call 4000897c <_Thread_Set_priority>
40007c4c: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
40007c50: 7f ff e8 12 call 40001c98 <sparc_disable_interrupts>
40007c54: 01 00 00 00 nop
40007c58: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
40007c5c: f2 04 20 10 ld [ %l0 + 0x10 ], %i1
if ( state != STATES_TRANSIENT ) {
40007c60: 80 a6 60 04 cmp %i1, 4
40007c64: 02 80 00 10 be 40007ca4 <_Thread_Change_priority+0x80>
40007c68: a2 0c 60 04 and %l1, 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
40007c6c: 80 a4 60 00 cmp %l1, 0
40007c70: 12 80 00 03 bne 40007c7c <_Thread_Change_priority+0x58> <== NEVER TAKEN
40007c74: 82 0e 7f fb and %i1, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007c78: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
40007c7c: 7f ff e8 0b call 40001ca8 <sparc_enable_interrupts>
40007c80: 90 10 00 18 mov %i0, %o0
if ( _States_Is_waiting_on_thread_queue( state ) ) {
40007c84: 03 00 00 ef sethi %hi(0x3bc00), %g1
40007c88: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40007c8c: 80 8e 40 01 btst %i1, %g1
40007c90: 02 80 00 44 be 40007da0 <_Thread_Change_priority+0x17c>
40007c94: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
40007c98: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
40007c9c: 40 00 03 0b call 400088c8 <_Thread_queue_Requeue>
40007ca0: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
40007ca4: 80 a4 60 00 cmp %l1, 0
40007ca8: 12 80 00 26 bne 40007d40 <_Thread_Change_priority+0x11c> <== NEVER TAKEN
40007cac: 80 8e a0 ff btst 0xff, %i2
* Ready Queue with interrupts off.
*
* FIXME: hard-coded for priority scheduling. Might be ok since this
* function is specific to priority scheduling?
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
40007cb0: c0 24 20 10 clr [ %l0 + 0x10 ]
40007cb4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
if ( prepend_it )
40007cb8: 02 80 00 12 be 40007d00 <_Thread_Change_priority+0xdc>
40007cbc: 05 10 00 51 sethi %hi(0x40014400), %g2
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40007cc0: c6 00 60 04 ld [ %g1 + 4 ], %g3
40007cc4: c8 10 60 0a lduh [ %g1 + 0xa ], %g4
40007cc8: da 10 c0 00 lduh [ %g3 ], %o5
40007ccc: 88 13 40 04 or %o5, %g4, %g4
40007cd0: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40007cd4: c6 10 a2 40 lduh [ %g2 + 0x240 ], %g3
40007cd8: c8 10 60 08 lduh [ %g1 + 8 ], %g4
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
_Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
40007cdc: c2 00 40 00 ld [ %g1 ], %g1
40007ce0: 86 11 00 03 or %g4, %g3, %g3
40007ce4: c6 30 a2 40 sth %g3, [ %g2 + 0x240 ]
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
40007ce8: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
40007cec: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
40007cf0: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
40007cf4: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
40007cf8: 10 80 00 12 b 40007d40 <_Thread_Change_priority+0x11c>
40007cfc: e0 20 a0 04 st %l0, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
40007d00: c6 00 60 04 ld [ %g1 + 4 ], %g3
40007d04: c8 10 60 0a lduh [ %g1 + 0xa ], %g4
40007d08: da 10 c0 00 lduh [ %g3 ], %o5
40007d0c: 88 13 40 04 or %o5, %g4, %g4
40007d10: c8 30 c0 00 sth %g4, [ %g3 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
40007d14: c8 10 60 08 lduh [ %g1 + 8 ], %g4
40007d18: c6 10 a2 40 lduh [ %g2 + 0x240 ], %g3
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
_Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
40007d1c: c2 00 40 00 ld [ %g1 ], %g1
40007d20: 86 11 00 03 or %g4, %g3, %g3
40007d24: c6 30 a2 40 sth %g3, [ %g2 + 0x240 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
40007d28: c4 00 60 08 ld [ %g1 + 8 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
40007d2c: 86 00 60 04 add %g1, 4, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
tail->previous = the_node;
40007d30: e0 20 60 08 st %l0, [ %g1 + 8 ]
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
the_node->next = tail;
40007d34: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
40007d38: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last;
40007d3c: c4 24 20 04 st %g2, [ %l0 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread );
else
_Scheduler_priority_Ready_queue_enqueue( the_thread );
}
_ISR_Flash( level );
40007d40: 7f ff e7 da call 40001ca8 <sparc_enable_interrupts>
40007d44: 90 10 00 18 mov %i0, %o0
40007d48: 7f ff e7 d4 call 40001c98 <sparc_disable_interrupts>
40007d4c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
Scheduler_Control *the_scheduler
)
{
the_scheduler->Operations.schedule( the_scheduler );
40007d50: 11 10 00 51 sethi %hi(0x40014400), %o0
40007d54: 90 12 20 54 or %o0, 0x54, %o0 ! 40014454 <_Scheduler>
40007d58: c2 02 20 04 ld [ %o0 + 4 ], %g1
40007d5c: 9f c0 40 00 call %g1
40007d60: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
40007d64: 03 10 00 51 sethi %hi(0x40014400), %g1
40007d68: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001461c <_Per_CPU_Information>
40007d6c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule(&_Scheduler);
if ( !_Thread_Is_executing_also_the_heir() &&
40007d70: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40007d74: 80 a0 80 03 cmp %g2, %g3
40007d78: 02 80 00 08 be 40007d98 <_Thread_Change_priority+0x174>
40007d7c: 01 00 00 00 nop
40007d80: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
40007d84: 80 a0 a0 00 cmp %g2, 0
40007d88: 02 80 00 04 be 40007d98 <_Thread_Change_priority+0x174>
40007d8c: 01 00 00 00 nop
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
40007d90: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
40007d94: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
40007d98: 7f ff e7 c4 call 40001ca8 <sparc_enable_interrupts>
40007d9c: 81 e8 00 00 restore
40007da0: 81 c7 e0 08 ret
40007da4: 81 e8 00 00 restore
40007f88 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
40007f88: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40007f8c: 90 10 00 18 mov %i0, %o0
40007f90: 40 00 00 5f call 4000810c <_Thread_Get>
40007f94: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
40007f98: c2 07 bf fc ld [ %fp + -4 ], %g1
40007f9c: 80 a0 60 00 cmp %g1, 0
40007fa0: 12 80 00 08 bne 40007fc0 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
40007fa4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
40007fa8: 7f ff ff 80 call 40007da8 <_Thread_Clear_state>
40007fac: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_SIZE+0xfc00018>
40007fb0: 03 10 00 50 sethi %hi(0x40014000), %g1
40007fb4: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400143d0 <_Thread_Dispatch_disable_level>
40007fb8: 84 00 bf ff add %g2, -1, %g2
40007fbc: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
40007fc0: 81 c7 e0 08 ret
40007fc4: 81 e8 00 00 restore
40007fc8 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
40007fc8: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
40007fcc: 2b 10 00 51 sethi %hi(0x40014400), %l5
40007fd0: 82 15 62 1c or %l5, 0x21c, %g1 ! 4001461c <_Per_CPU_Information>
_ISR_Disable( level );
40007fd4: 7f ff e7 31 call 40001c98 <sparc_disable_interrupts>
40007fd8: e2 00 60 0c ld [ %g1 + 0xc ], %l1
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
40007fdc: 25 10 00 51 sethi %hi(0x40014400), %l2
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40007fe0: 39 10 00 50 sethi %hi(0x40014000), %i4
40007fe4: ba 10 20 01 mov 1, %i5
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40007fe8: 2f 10 00 50 sethi %hi(0x40014000), %l7
_ISR_Enable( level );
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40007fec: a8 07 bf f8 add %fp, -8, %l4
_Timestamp_Subtract(
40007ff0: a6 07 bf f0 add %fp, -16, %l3
40007ff4: a4 14 a0 9c or %l2, 0x9c, %l2
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
40007ff8: 10 80 00 2b b 400080a4 <_Thread_Dispatch+0xdc>
40007ffc: 2d 10 00 51 sethi %hi(0x40014400), %l6
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
40008000: fa 27 23 d0 st %i5, [ %i4 + 0x3d0 ]
_Thread_Dispatch_necessary = false;
40008004: c0 28 60 18 clrb [ %g1 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
40008008: 80 a4 00 11 cmp %l0, %l1
4000800c: 02 80 00 2b be 400080b8 <_Thread_Dispatch+0xf0>
40008010: e0 20 60 0c st %l0, [ %g1 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
40008014: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
40008018: 80 a0 60 01 cmp %g1, 1
4000801c: 12 80 00 03 bne 40008028 <_Thread_Dispatch+0x60>
40008020: c2 05 e3 34 ld [ %l7 + 0x334 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
40008024: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
_ISR_Enable( level );
40008028: 7f ff e7 20 call 40001ca8 <sparc_enable_interrupts>
4000802c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
40008030: 40 00 0c f8 call 4000b410 <_TOD_Get_uptime>
40008034: 90 10 00 14 mov %l4, %o0
_Timestamp_Subtract(
40008038: 90 10 00 12 mov %l2, %o0
4000803c: 92 10 00 14 mov %l4, %o1
40008040: 40 00 03 10 call 40008c80 <_Timespec_Subtract>
40008044: 94 10 00 13 mov %l3, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
40008048: 90 04 60 84 add %l1, 0x84, %o0
4000804c: 40 00 02 f4 call 40008c1c <_Timespec_Add_to>
40008050: 92 10 00 13 mov %l3, %o1
_Thread_Time_of_last_context_switch = uptime;
40008054: c2 07 bf f8 ld [ %fp + -8 ], %g1
40008058: c2 24 80 00 st %g1, [ %l2 ]
4000805c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008060: c2 24 a0 04 st %g1, [ %l2 + 4 ]
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
40008064: c2 05 a0 74 ld [ %l6 + 0x74 ], %g1
40008068: 80 a0 60 00 cmp %g1, 0
4000806c: 02 80 00 06 be 40008084 <_Thread_Dispatch+0xbc> <== NEVER TAKEN
40008070: 90 10 00 11 mov %l1, %o0
executing->libc_reent = *_Thread_libc_reent;
40008074: c4 00 40 00 ld [ %g1 ], %g2
40008078: c4 24 61 48 st %g2, [ %l1 + 0x148 ]
*_Thread_libc_reent = heir->libc_reent;
4000807c: c4 04 21 48 ld [ %l0 + 0x148 ], %g2
40008080: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
40008084: 40 00 03 af call 40008f40 <_User_extensions_Thread_switch>
40008088: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
4000808c: 90 04 60 c0 add %l1, 0xc0, %o0
40008090: 40 00 04 a0 call 40009310 <_CPU_Context_switch>
40008094: 92 04 20 c0 add %l0, 0xc0, %o1
if ( executing->fp_context != NULL )
_Context_Restore_fp( &executing->fp_context );
#endif
#endif
executing = _Thread_Executing;
40008098: 82 15 62 1c or %l5, 0x21c, %g1
_ISR_Disable( level );
4000809c: 7f ff e6 ff call 40001c98 <sparc_disable_interrupts>
400080a0: e2 00 60 0c ld [ %g1 + 0xc ], %l1
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
400080a4: 82 15 62 1c or %l5, 0x21c, %g1
400080a8: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2
400080ac: 80 a0 a0 00 cmp %g2, 0
400080b0: 32 bf ff d4 bne,a 40008000 <_Thread_Dispatch+0x38>
400080b4: e0 00 60 10 ld [ %g1 + 0x10 ], %l0
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
400080b8: 03 10 00 50 sethi %hi(0x40014000), %g1
400080bc: c0 20 63 d0 clr [ %g1 + 0x3d0 ] ! 400143d0 <_Thread_Dispatch_disable_level>
_ISR_Enable( level );
400080c0: 7f ff e6 fa call 40001ca8 <sparc_enable_interrupts>
400080c4: 01 00 00 00 nop
_API_extensions_Run_postswitch();
400080c8: 7f ff f8 f1 call 4000648c <_API_extensions_Run_postswitch>
400080cc: 01 00 00 00 nop
}
400080d0: 81 c7 e0 08 ret
400080d4: 81 e8 00 00 restore
4000810c <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
4000810c: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
40008110: 80 a2 20 00 cmp %o0, 0
40008114: 12 80 00 0a bne 4000813c <_Thread_Get+0x30>
40008118: 94 10 00 09 mov %o1, %o2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
4000811c: 03 10 00 50 sethi %hi(0x40014000), %g1
40008120: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400143d0 <_Thread_Dispatch_disable_level>
40008124: 84 00 a0 01 inc %g2
40008128: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
4000812c: 03 10 00 51 sethi %hi(0x40014400), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
40008130: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
40008134: 81 c3 e0 08 retl
40008138: d0 00 62 28 ld [ %g1 + 0x228 ], %o0
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
4000813c: 87 32 20 18 srl %o0, 0x18, %g3
40008140: 86 08 e0 07 and %g3, 7, %g3
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
40008144: 84 00 ff ff add %g3, -1, %g2
40008148: 80 a0 a0 02 cmp %g2, 2
4000814c: 28 80 00 16 bleu,a 400081a4 <_Thread_Get+0x98>
40008150: 85 32 20 1b srl %o0, 0x1b, %g2
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
40008154: 82 10 20 01 mov 1, %g1
40008158: 10 80 00 09 b 4000817c <_Thread_Get+0x70>
4000815c: c2 22 80 00 st %g1, [ %o2 ]
goto done;
}
api_information = _Objects_Information_table[ the_api ];
40008160: 09 10 00 50 sethi %hi(0x40014000), %g4
40008164: 88 11 23 38 or %g4, 0x338, %g4 ! 40014338 <_Objects_Information_table>
40008168: c6 01 00 03 ld [ %g4 + %g3 ], %g3
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
4000816c: 80 a0 e0 00 cmp %g3, 0
40008170: 32 80 00 05 bne,a 40008184 <_Thread_Get+0x78> <== ALWAYS TAKEN
40008174: d0 00 e0 04 ld [ %g3 + 4 ], %o0
*location = OBJECTS_ERROR;
40008178: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED
goto done;
4000817c: 81 c3 e0 08 retl
40008180: 90 10 20 00 clr %o0
}
#endif
information = api_information[ the_class ];
if ( !information ) {
40008184: 80 a2 20 00 cmp %o0, 0
40008188: 12 80 00 04 bne 40008198 <_Thread_Get+0x8c>
4000818c: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
40008190: 81 c3 e0 08 retl
40008194: c4 22 80 00 st %g2, [ %o2 ]
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
40008198: 82 13 c0 00 mov %o7, %g1
4000819c: 7f ff fc ca call 400074c4 <_Objects_Get>
400081a0: 9e 10 40 00 mov %g1, %o7
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
400081a4: 80 a0 a0 01 cmp %g2, 1
400081a8: 22 bf ff ee be,a 40008160 <_Thread_Get+0x54>
400081ac: 87 28 e0 02 sll %g3, 2, %g3
*location = OBJECTS_ERROR;
400081b0: 10 bf ff ea b 40008158 <_Thread_Get+0x4c>
400081b4: 82 10 20 01 mov 1, %g1
4000d1f0 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
4000d1f0: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
4000d1f4: 03 10 00 51 sethi %hi(0x40014400), %g1
4000d1f8: e0 00 62 28 ld [ %g1 + 0x228 ], %l0 ! 40014628 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
4000d1fc: 3f 10 00 34 sethi %hi(0x4000d000), %i7
4000d200: be 17 e1 f0 or %i7, 0x1f0, %i7 ! 4000d1f0 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
4000d204: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
4000d208: 7f ff d2 a8 call 40001ca8 <sparc_enable_interrupts>
4000d20c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000d210: 03 10 00 50 sethi %hi(0x40014000), %g1
doneConstructors = 1;
4000d214: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
4000d218: e2 08 61 98 ldub [ %g1 + 0x198 ], %l1
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
4000d21c: 90 10 00 10 mov %l0, %o0
4000d220: 7f ff ee d8 call 40008d80 <_User_extensions_Thread_begin>
4000d224: c4 28 61 98 stb %g2, [ %g1 + 0x198 ]
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
4000d228: 7f ff eb ac call 400080d8 <_Thread_Enable_dispatch>
4000d22c: a3 2c 60 18 sll %l1, 0x18, %l1
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
4000d230: 80 a4 60 00 cmp %l1, 0
4000d234: 32 80 00 05 bne,a 4000d248 <_Thread_Handler+0x58>
4000d238: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
INIT_NAME ();
4000d23c: 40 00 19 eb call 400139e8 <_init>
4000d240: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
4000d244: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
4000d248: 80 a0 60 00 cmp %g1, 0
4000d24c: 12 80 00 06 bne 4000d264 <_Thread_Handler+0x74> <== NEVER TAKEN
4000d250: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
4000d254: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
4000d258: 9f c0 40 00 call %g1
4000d25c: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
4000d260: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
4000d264: 7f ff ee d8 call 40008dc4 <_User_extensions_Thread_exitted>
4000d268: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
4000d26c: 90 10 20 00 clr %o0
4000d270: 92 10 20 01 mov 1, %o1
4000d274: 7f ff e7 29 call 40006f18 <_Internal_error_Occurred>
4000d278: 94 10 20 05 mov 5, %o2
400081b8 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
400081b8: 9d e3 bf a0 save %sp, -96, %sp
400081bc: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
400081c0: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
400081c4: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
400081c8: c0 26 61 4c clr [ %i1 + 0x14c ]
400081cc: c0 26 61 50 clr [ %i1 + 0x150 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
400081d0: c0 26 61 48 clr [ %i1 + 0x148 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
400081d4: 90 10 00 19 mov %i1, %o0
400081d8: 40 00 02 2d call 40008a8c <_Thread_Stack_Allocate>
400081dc: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
400081e0: 80 a2 00 1b cmp %o0, %i3
400081e4: 0a 80 00 69 bcs 40008388 <_Thread_Initialize+0x1d0>
400081e8: 80 a2 20 00 cmp %o0, 0
400081ec: 02 80 00 67 be 40008388 <_Thread_Initialize+0x1d0> <== NEVER TAKEN
400081f0: 01 00 00 00 nop
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
400081f4: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
400081f8: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
400081fc: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
40008200: 03 10 00 51 sethi %hi(0x40014400), %g1
40008204: d0 00 60 80 ld [ %g1 + 0x80 ], %o0 ! 40014480 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40008208: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
4000820c: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
40008210: c0 26 60 68 clr [ %i1 + 0x68 ]
the_watchdog->user_data = user_data;
40008214: c0 26 60 6c clr [ %i1 + 0x6c ]
40008218: 80 a2 20 00 cmp %o0, 0
4000821c: 02 80 00 08 be 4000823c <_Thread_Initialize+0x84>
40008220: b6 10 20 00 clr %i3
extensions_area = _Workspace_Allocate(
40008224: 90 02 20 01 inc %o0
40008228: 40 00 04 1c call 40009298 <_Workspace_Allocate>
4000822c: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
40008230: b6 92 20 00 orcc %o0, 0, %i3
40008234: 22 80 00 34 be,a 40008304 <_Thread_Initialize+0x14c>
40008238: a0 10 20 00 clr %l0
* if they are linked to the thread. An extension user may
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
4000823c: 80 a6 e0 00 cmp %i3, 0
40008240: 02 80 00 0b be 4000826c <_Thread_Initialize+0xb4>
40008244: f6 26 61 54 st %i3, [ %i1 + 0x154 ]
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008248: 03 10 00 51 sethi %hi(0x40014400), %g1
4000824c: c4 00 60 80 ld [ %g1 + 0x80 ], %g2 ! 40014480 <_Thread_Maximum_extensions>
40008250: 10 80 00 04 b 40008260 <_Thread_Initialize+0xa8>
40008254: 82 10 20 00 clr %g1
40008258: 82 00 60 01 inc %g1
the_thread->extensions[i] = NULL;
4000825c: c0 26 c0 03 clr [ %i3 + %g3 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
40008260: 80 a0 40 02 cmp %g1, %g2
40008264: 08 bf ff fd bleu 40008258 <_Thread_Initialize+0xa0>
40008268: 87 28 60 02 sll %g1, 2, %g3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
4000826c: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
40008270: 11 10 00 51 sethi %hi(0x40014400), %o0
40008274: c2 26 60 a4 st %g1, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
40008278: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
4000827c: 90 12 20 54 or %o0, 0x54, %o0
40008280: c2 26 60 a8 st %g1, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
40008284: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
40008288: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
4000828c: c2 26 60 ac st %g1, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
40008290: 82 10 20 01 mov 1, %g1
40008294: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
40008298: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
the_thread->Wait.queue = NULL;
4000829c: c0 26 60 44 clr [ %i1 + 0x44 ]
the_thread->resource_count = 0;
400082a0: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
400082a4: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
400082a8: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
400082ac: 9f c0 40 00 call %g1
400082b0: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
400082b4: a0 92 20 00 orcc %o0, 0, %l0
400082b8: 02 80 00 13 be 40008304 <_Thread_Initialize+0x14c>
400082bc: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
400082c0: 40 00 01 af call 4000897c <_Thread_Set_priority>
400082c4: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread );
return false;
}
400082c8: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
400082cc: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
400082d0: c0 26 60 84 clr [ %i1 + 0x84 ]
400082d4: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
400082d8: 83 28 60 02 sll %g1, 2, %g1
400082dc: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
400082e0: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
400082e4: 90 10 00 19 mov %i1, %o0
400082e8: 40 00 02 d9 call 40008e4c <_User_extensions_Thread_create>
400082ec: b0 10 20 01 mov 1, %i0
if ( extension_status )
400082f0: 80 8a 20 ff btst 0xff, %o0
400082f4: 22 80 00 05 be,a 40008308 <_Thread_Initialize+0x150>
400082f8: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
400082fc: 81 c7 e0 08 ret
40008300: 81 e8 00 00 restore
return true;
failed:
if ( the_thread->libc_reent )
40008304: d0 06 61 48 ld [ %i1 + 0x148 ], %o0
40008308: 80 a2 20 00 cmp %o0, 0
4000830c: 22 80 00 05 be,a 40008320 <_Thread_Initialize+0x168>
40008310: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
_Workspace_Free( the_thread->libc_reent );
40008314: 40 00 03 ea call 400092bc <_Workspace_Free>
40008318: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
4000831c: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
40008320: 80 a2 20 00 cmp %o0, 0
40008324: 22 80 00 05 be,a 40008338 <_Thread_Initialize+0x180>
40008328: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
4000832c: 40 00 03 e4 call 400092bc <_Workspace_Free>
40008330: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
40008334: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
40008338: 80 a2 20 00 cmp %o0, 0
4000833c: 02 80 00 05 be 40008350 <_Thread_Initialize+0x198> <== ALWAYS TAKEN
40008340: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
40008344: 40 00 03 de call 400092bc <_Workspace_Free> <== NOT EXECUTED
40008348: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
4000834c: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
40008350: 02 80 00 05 be 40008364 <_Thread_Initialize+0x1ac>
40008354: 80 a4 20 00 cmp %l0, 0
(void) _Workspace_Free( extensions_area );
40008358: 40 00 03 d9 call 400092bc <_Workspace_Free>
4000835c: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
(void) _Workspace_Free( fp_area );
#endif
if ( sched )
40008360: 80 a4 20 00 cmp %l0, 0
40008364: 02 80 00 05 be 40008378 <_Thread_Initialize+0x1c0>
40008368: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
4000836c: 40 00 03 d4 call 400092bc <_Workspace_Free>
40008370: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
40008374: 90 10 00 19 mov %i1, %o0
40008378: 40 00 01 dc call 40008ae8 <_Thread_Stack_Free>
4000837c: b0 10 20 00 clr %i0
return false;
40008380: 81 c7 e0 08 ret
40008384: 81 e8 00 00 restore
}
40008388: 81 c7 e0 08 ret
4000838c: 91 e8 20 00 restore %g0, 0, %o0
4000c008 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
4000c008: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
4000c00c: 7f ff d7 9f call 40001e88 <sparc_disable_interrupts>
4000c010: 01 00 00 00 nop
4000c014: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
4000c018: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
4000c01c: 80 88 60 02 btst 2, %g1
4000c020: 02 80 00 0a be 4000c048 <_Thread_Resume+0x40> <== NEVER TAKEN
4000c024: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
4000c028: 80 a0 60 00 cmp %g1, 0
4000c02c: 12 80 00 07 bne 4000c048 <_Thread_Resume+0x40>
4000c030: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
the_scheduler->Operations.unblock( the_scheduler, the_thread );
4000c034: 11 10 00 5f sethi %hi(0x40017c00), %o0
4000c038: 90 12 23 b4 or %o0, 0x3b4, %o0 ! 40017fb4 <_Scheduler>
4000c03c: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
4000c040: 9f c0 40 00 call %g1
4000c044: 92 10 00 18 mov %i0, %o1
_Scheduler_Unblock( &_Scheduler, the_thread );
}
}
_ISR_Enable( level );
4000c048: 7f ff d7 94 call 40001e98 <sparc_enable_interrupts>
4000c04c: 91 e8 00 10 restore %g0, %l0, %o0
400088c8 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
400088c8: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
400088cc: 80 a6 20 00 cmp %i0, 0
400088d0: 02 80 00 19 be 40008934 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
400088d4: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
400088d8: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
400088dc: 80 a4 60 01 cmp %l1, 1
400088e0: 12 80 00 15 bne 40008934 <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN
400088e4: 01 00 00 00 nop
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
400088e8: 7f ff e4 ec call 40001c98 <sparc_disable_interrupts>
400088ec: 01 00 00 00 nop
400088f0: a0 10 00 08 mov %o0, %l0
400088f4: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
400088f8: 03 00 00 ef sethi %hi(0x3bc00), %g1
400088fc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
40008900: 80 88 80 01 btst %g2, %g1
40008904: 02 80 00 0a be 4000892c <_Thread_queue_Requeue+0x64> <== NEVER TAKEN
40008908: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
4000890c: 92 10 00 19 mov %i1, %o1
40008910: 94 10 20 01 mov 1, %o2
40008914: 40 00 0c 86 call 4000bb2c <_Thread_queue_Extract_priority_helper>
40008918: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
4000891c: 90 10 00 18 mov %i0, %o0
40008920: 92 10 00 19 mov %i1, %o1
40008924: 7f ff ff 49 call 40008648 <_Thread_queue_Enqueue_priority>
40008928: 94 07 bf fc add %fp, -4, %o2
}
_ISR_Enable( level );
4000892c: 7f ff e4 df call 40001ca8 <sparc_enable_interrupts>
40008930: 90 10 00 10 mov %l0, %o0
40008934: 81 c7 e0 08 ret
40008938: 81 e8 00 00 restore
4000893c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
4000893c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
40008940: 90 10 00 18 mov %i0, %o0
40008944: 7f ff fd f2 call 4000810c <_Thread_Get>
40008948: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000894c: c2 07 bf fc ld [ %fp + -4 ], %g1
40008950: 80 a0 60 00 cmp %g1, 0
40008954: 12 80 00 08 bne 40008974 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
40008958: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
4000895c: 40 00 0c ac call 4000bc0c <_Thread_queue_Process_timeout>
40008960: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
40008964: 03 10 00 50 sethi %hi(0x40014000), %g1
40008968: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 400143d0 <_Thread_Dispatch_disable_level>
4000896c: 84 00 bf ff add %g2, -1, %g2
40008970: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
40008974: 81 c7 e0 08 ret
40008978: 81 e8 00 00 restore
400163f8 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
400163f8: 9d e3 bf 88 save %sp, -120, %sp
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
400163fc: 39 10 00 f2 sethi %hi(0x4003c800), %i4
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40016400: b6 07 bf f4 add %fp, -12, %i3
40016404: ae 07 bf f8 add %fp, -8, %l7
40016408: a4 07 bf e8 add %fp, -24, %l2
4001640c: a6 07 bf ec add %fp, -20, %l3
40016410: ee 27 bf f4 st %l7, [ %fp + -12 ]
head->previous = NULL;
40016414: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
40016418: f6 27 bf fc st %i3, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
4001641c: e6 27 bf e8 st %l3, [ %fp + -24 ]
head->previous = NULL;
40016420: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
40016424: e4 27 bf f0 st %l2, [ %fp + -16 ]
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016428: a8 06 20 30 add %i0, 0x30, %l4
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001642c: 3b 10 00 f2 sethi %hi(0x4003c800), %i5
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40016430: a2 06 20 68 add %i0, 0x68, %l1
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
40016434: ac 06 20 08 add %i0, 8, %l6
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
40016438: aa 06 20 40 add %i0, 0x40, %l5
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
4001643c: f6 26 20 78 st %i3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
40016440: c2 07 20 e0 ld [ %i4 + 0xe0 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
40016444: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016448: 94 10 00 12 mov %l2, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
4001644c: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016450: 90 10 00 14 mov %l4, %o0
40016454: 40 00 11 53 call 4001a9a0 <_Watchdog_Adjust_to_chain>
40016458: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
4001645c: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
40016460: e0 07 60 58 ld [ %i5 + 0x58 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
40016464: 80 a4 00 0a cmp %l0, %o2
40016468: 08 80 00 06 bleu 40016480 <_Timer_server_Body+0x88>
4001646c: 92 24 00 0a sub %l0, %o2, %o1
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
40016470: 90 10 00 11 mov %l1, %o0
40016474: 40 00 11 4b call 4001a9a0 <_Watchdog_Adjust_to_chain>
40016478: 94 10 00 12 mov %l2, %o2
4001647c: 30 80 00 06 b,a 40016494 <_Timer_server_Body+0x9c>
} else if ( snapshot < last_snapshot ) {
40016480: 1a 80 00 05 bcc 40016494 <_Timer_server_Body+0x9c>
40016484: 90 10 00 11 mov %l1, %o0
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
40016488: 92 10 20 01 mov 1, %o1
4001648c: 40 00 11 1d call 4001a900 <_Watchdog_Adjust>
40016490: 94 22 80 10 sub %o2, %l0, %o2
}
watchdogs->last_snapshot = snapshot;
40016494: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
40016498: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
4001649c: 40 00 02 c1 call 40016fa0 <_Chain_Get>
400164a0: 01 00 00 00 nop
if ( timer == NULL ) {
400164a4: 92 92 20 00 orcc %o0, 0, %o1
400164a8: 02 80 00 0c be 400164d8 <_Timer_server_Body+0xe0>
400164ac: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400164b0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
400164b4: 80 a0 60 01 cmp %g1, 1
400164b8: 02 80 00 05 be 400164cc <_Timer_server_Body+0xd4>
400164bc: 90 10 00 14 mov %l4, %o0
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
400164c0: 80 a0 60 03 cmp %g1, 3
400164c4: 12 bf ff f5 bne 40016498 <_Timer_server_Body+0xa0> <== NEVER TAKEN
400164c8: 90 10 00 11 mov %l1, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400164cc: 40 00 11 69 call 4001aa70 <_Watchdog_Insert>
400164d0: 92 02 60 10 add %o1, 0x10, %o1
400164d4: 30 bf ff f1 b,a 40016498 <_Timer_server_Body+0xa0>
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
400164d8: 7f ff e3 a4 call 4000f368 <sparc_disable_interrupts>
400164dc: 01 00 00 00 nop
tmp = ts->insert_chain;
400164e0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
400164e4: c2 07 bf f4 ld [ %fp + -12 ], %g1
400164e8: 80 a0 40 17 cmp %g1, %l7
400164ec: 12 80 00 04 bne 400164fc <_Timer_server_Body+0x104> <== NEVER TAKEN
400164f0: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
400164f4: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
400164f8: a0 10 20 00 clr %l0
}
_ISR_Enable( level );
400164fc: 7f ff e3 9f call 4000f378 <sparc_enable_interrupts>
40016500: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
40016504: 80 8c 20 ff btst 0xff, %l0
40016508: 12 bf ff ce bne 40016440 <_Timer_server_Body+0x48> <== NEVER TAKEN
4001650c: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
40016510: 80 a0 40 13 cmp %g1, %l3
40016514: 02 80 00 18 be 40016574 <_Timer_server_Body+0x17c>
40016518: 01 00 00 00 nop
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
4001651c: 7f ff e3 93 call 4000f368 <sparc_disable_interrupts>
40016520: 01 00 00 00 nop
40016524: 84 10 00 08 mov %o0, %g2
initialized = false;
}
#endif
return status;
}
40016528: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
4001652c: 80 a4 00 13 cmp %l0, %l3
40016530: 02 80 00 0e be 40016568 <_Timer_server_Body+0x170>
40016534: 80 a4 20 00 cmp %l0, 0
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
40016538: c2 04 00 00 ld [ %l0 ], %g1
head->next = new_first;
4001653c: c2 27 bf e8 st %g1, [ %fp + -24 ]
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
40016540: 02 80 00 0a be 40016568 <_Timer_server_Body+0x170> <== NEVER TAKEN
40016544: e4 20 60 04 st %l2, [ %g1 + 4 ]
watchdog->state = WATCHDOG_INACTIVE;
40016548: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
4001654c: 7f ff e3 8b call 4000f378 <sparc_enable_interrupts>
40016550: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
40016554: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
40016558: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
4001655c: 9f c0 40 00 call %g1
40016560: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
}
40016564: 30 bf ff ee b,a 4001651c <_Timer_server_Body+0x124>
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
40016568: 7f ff e3 84 call 4000f378 <sparc_enable_interrupts>
4001656c: 90 10 00 02 mov %g2, %o0
40016570: 30 bf ff b3 b,a 4001643c <_Timer_server_Body+0x44>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
40016574: c0 2e 20 7c clrb [ %i0 + 0x7c ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
40016578: 7f ff ff 70 call 40016338 <_Thread_Disable_dispatch>
4001657c: 01 00 00 00 nop
_Thread_Set_state( ts->thread, STATES_DELAYING );
40016580: d0 06 00 00 ld [ %i0 ], %o0
40016584: 40 00 0f 1f call 4001a200 <_Thread_Set_state>
40016588: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
4001658c: 7f ff ff 71 call 40016350 <_Timer_server_Reset_interval_system_watchdog>
40016590: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
40016594: 7f ff ff 84 call 400163a4 <_Timer_server_Reset_tod_system_watchdog>
40016598: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
4001659c: 40 00 0c b9 call 40019880 <_Thread_Enable_dispatch>
400165a0: 01 00 00 00 nop
ts->active = true;
400165a4: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400165a8: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
400165ac: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
400165b0: 40 00 11 8c call 4001abe0 <_Watchdog_Remove>
400165b4: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
400165b8: 40 00 11 8a call 4001abe0 <_Watchdog_Remove>
400165bc: 90 10 00 15 mov %l5, %o0
400165c0: 30 bf ff 9f b,a 4001643c <_Timer_server_Body+0x44>
400165c4 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
400165c4: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
400165c8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
400165cc: 80 a0 60 00 cmp %g1, 0
400165d0: 12 80 00 49 bne 400166f4 <_Timer_server_Schedule_operation_method+0x130>
400165d4: a0 10 00 19 mov %i1, %l0
* is the reference point for the delta chain. Thus if we do not update the
* reference point we have to add DT to the initial delta of the watchdog
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
400165d8: 7f ff ff 58 call 40016338 <_Thread_Disable_dispatch>
400165dc: 01 00 00 00 nop
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
400165e0: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
400165e4: 80 a0 60 01 cmp %g1, 1
400165e8: 12 80 00 1f bne 40016664 <_Timer_server_Schedule_operation_method+0xa0>
400165ec: 80 a0 60 03 cmp %g1, 3
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
400165f0: 7f ff e3 5e call 4000f368 <sparc_disable_interrupts>
400165f4: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
400165f8: 03 10 00 f2 sethi %hi(0x4003c800), %g1
400165fc: c4 00 60 e0 ld [ %g1 + 0xe0 ], %g2 ! 4003c8e0 <_Watchdog_Ticks_since_boot>
initialized = false;
}
#endif
return status;
}
40016600: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
last_snapshot = ts->Interval_watchdogs.last_snapshot;
40016604: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
40016608: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
4001660c: 80 a0 40 03 cmp %g1, %g3
40016610: 02 80 00 08 be 40016630 <_Timer_server_Schedule_operation_method+0x6c>
40016614: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
40016618: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
4001661c: 80 a3 40 04 cmp %o5, %g4
40016620: 08 80 00 03 bleu 4001662c <_Timer_server_Schedule_operation_method+0x68>
40016624: 86 10 20 00 clr %g3
delta_interval -= delta;
40016628: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
4001662c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
40016630: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
40016634: 7f ff e3 51 call 4000f378 <sparc_enable_interrupts>
40016638: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
4001663c: 90 06 20 30 add %i0, 0x30, %o0
40016640: 40 00 11 0c call 4001aa70 <_Watchdog_Insert>
40016644: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
40016648: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
4001664c: 80 a0 60 00 cmp %g1, 0
40016650: 12 80 00 27 bne 400166ec <_Timer_server_Schedule_operation_method+0x128>
40016654: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
40016658: 7f ff ff 3e call 40016350 <_Timer_server_Reset_interval_system_watchdog>
4001665c: 90 10 00 18 mov %i0, %o0
40016660: 30 80 00 23 b,a 400166ec <_Timer_server_Schedule_operation_method+0x128>
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
40016664: 12 80 00 22 bne 400166ec <_Timer_server_Schedule_operation_method+0x128>
40016668: 01 00 00 00 nop
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
4001666c: 7f ff e3 3f call 4000f368 <sparc_disable_interrupts>
40016670: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
40016674: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
40016678: da 06 20 74 ld [ %i0 + 0x74 ], %o5
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
4001667c: 03 10 00 f2 sethi %hi(0x4003c800), %g1
40016680: 86 06 20 6c add %i0, 0x6c, %g3
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
40016684: 80 a0 80 03 cmp %g2, %g3
40016688: 02 80 00 0d be 400166bc <_Timer_server_Schedule_operation_method+0xf8>
4001668c: c2 00 60 58 ld [ %g1 + 0x58 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
40016690: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4
if ( snapshot > last_snapshot ) {
40016694: 80 a0 40 0d cmp %g1, %o5
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
40016698: 86 01 00 0d add %g4, %o5, %g3
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
4001669c: 08 80 00 07 bleu 400166b8 <_Timer_server_Schedule_operation_method+0xf4>
400166a0: 86 20 c0 01 sub %g3, %g1, %g3
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
400166a4: 9a 20 40 0d sub %g1, %o5, %o5
if (delta_interval > delta) {
400166a8: 80 a1 00 0d cmp %g4, %o5
400166ac: 08 80 00 03 bleu 400166b8 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN
400166b0: 86 10 20 00 clr %g3
delta_interval -= delta;
400166b4: 86 21 00 0d sub %g4, %o5, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
400166b8: c6 20 a0 10 st %g3, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
400166bc: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
400166c0: 7f ff e3 2e call 4000f378 <sparc_enable_interrupts>
400166c4: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
400166c8: 90 06 20 68 add %i0, 0x68, %o0
400166cc: 40 00 10 e9 call 4001aa70 <_Watchdog_Insert>
400166d0: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
400166d4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
400166d8: 80 a0 60 00 cmp %g1, 0
400166dc: 12 80 00 04 bne 400166ec <_Timer_server_Schedule_operation_method+0x128>
400166e0: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
400166e4: 7f ff ff 30 call 400163a4 <_Timer_server_Reset_tod_system_watchdog>
400166e8: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
400166ec: 40 00 0c 65 call 40019880 <_Thread_Enable_dispatch>
400166f0: 81 e8 00 00 restore
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
400166f4: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
400166f8: 40 00 02 14 call 40016f48 <_Chain_Append>
400166fc: 81 e8 00 00 restore
4000ab58 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
4000ab58: c6 02 00 00 ld [ %o0 ], %g3
4000ab5c: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
4000ab60: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
4000ab64: 80 a0 c0 02 cmp %g3, %g2
4000ab68: 14 80 00 0b bg 4000ab94 <_Timespec_Greater_than+0x3c>
4000ab6c: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
4000ab70: 80 a0 c0 02 cmp %g3, %g2
4000ab74: 06 80 00 08 bl 4000ab94 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN
4000ab78: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
4000ab7c: c4 00 60 04 ld [ %g1 + 4 ], %g2
4000ab80: c2 02 60 04 ld [ %o1 + 4 ], %g1
4000ab84: 80 a0 80 01 cmp %g2, %g1
4000ab88: 14 80 00 03 bg 4000ab94 <_Timespec_Greater_than+0x3c>
4000ab8c: 90 10 20 01 mov 1, %o0
4000ab90: 90 10 20 00 clr %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
4000ab94: 81 c3 e0 08 retl
40008e04 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
40008e04: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40008e08: 23 10 00 51 sethi %hi(0x40014400), %l1
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40008e0c: b2 0e 60 ff and %i1, 0xff, %i1
}
}
40008e10: a2 14 61 d8 or %l1, 0x1d8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40008e14: 10 80 00 09 b 40008e38 <_User_extensions_Fatal+0x34>
40008e18: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
40008e1c: 80 a0 60 00 cmp %g1, 0
40008e20: 02 80 00 05 be 40008e34 <_User_extensions_Fatal+0x30>
40008e24: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
40008e28: 92 10 00 19 mov %i1, %o1
40008e2c: 9f c0 40 00 call %g1
40008e30: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40008e34: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40008e38: 80 a4 00 11 cmp %l0, %l1
40008e3c: 32 bf ff f8 bne,a 40008e1c <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN
40008e40: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40008e44: 81 c7 e0 08 ret <== NOT EXECUTED
40008e48: 81 e8 00 00 restore <== NOT EXECUTED
40008cc8 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
40008cc8: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40008ccc: 03 10 00 4e sethi %hi(0x40013800), %g1
40008cd0: 82 10 62 e8 or %g1, 0x2e8, %g1 ! 40013ae8 <Configuration>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008cd4: 05 10 00 51 sethi %hi(0x40014400), %g2
initial_extensions = Configuration.User_extension_table;
40008cd8: e6 00 60 40 ld [ %g1 + 0x40 ], %l3
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
40008cdc: e4 00 60 3c ld [ %g1 + 0x3c ], %l2
40008ce0: 82 10 a1 d8 or %g2, 0x1d8, %g1
40008ce4: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40008ce8: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
40008cec: c2 20 60 08 st %g1, [ %g1 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008cf0: c6 20 a1 d8 st %g3, [ %g2 + 0x1d8 ]
40008cf4: 05 10 00 50 sethi %hi(0x40014000), %g2
40008cf8: 82 10 a3 d4 or %g2, 0x3d4, %g1 ! 400143d4 <_User_extensions_Switches_list>
40008cfc: 86 00 60 04 add %g1, 4, %g3
head->previous = NULL;
40008d00: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
40008d04: c6 20 a3 d4 st %g3, [ %g2 + 0x3d4 ]
initial_extensions = Configuration.User_extension_table;
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
40008d08: 80 a4 e0 00 cmp %l3, 0
40008d0c: 02 80 00 1b be 40008d78 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
40008d10: c2 20 60 08 st %g1, [ %g1 + 8 ]
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
40008d14: 83 2c a0 02 sll %l2, 2, %g1
40008d18: a1 2c a0 04 sll %l2, 4, %l0
40008d1c: a0 24 00 01 sub %l0, %g1, %l0
40008d20: a0 04 00 12 add %l0, %l2, %l0
40008d24: a1 2c 20 02 sll %l0, 2, %l0
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40008d28: 40 00 01 6c call 400092d8 <_Workspace_Allocate_or_fatal_error>
40008d2c: 90 10 00 10 mov %l0, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40008d30: 94 10 00 10 mov %l0, %o2
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
40008d34: a2 10 00 08 mov %o0, %l1
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
40008d38: 92 10 20 00 clr %o1
40008d3c: 40 00 14 1f call 4000ddb8 <memset>
40008d40: a0 10 20 00 clr %l0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40008d44: 10 80 00 0b b 40008d70 <_User_extensions_Handler_initialization+0xa8>
40008d48: 80 a4 00 12 cmp %l0, %l2
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
40008d4c: 90 04 60 14 add %l1, 0x14, %o0
40008d50: 92 04 c0 09 add %l3, %o1, %o1
40008d54: 40 00 13 e0 call 4000dcd4 <memcpy>
40008d58: 94 10 20 20 mov 0x20, %o2
_User_extensions_Add_set( extension );
40008d5c: 90 10 00 11 mov %l1, %o0
40008d60: 40 00 0b d1 call 4000bca4 <_User_extensions_Add_set>
40008d64: a0 04 20 01 inc %l0
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
40008d68: a2 04 60 34 add %l1, 0x34, %l1
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
40008d6c: 80 a4 00 12 cmp %l0, %l2
40008d70: 0a bf ff f7 bcs 40008d4c <_User_extensions_Handler_initialization+0x84>
40008d74: 93 2c 20 05 sll %l0, 5, %o1
40008d78: 81 c7 e0 08 ret
40008d7c: 81 e8 00 00 restore
40008dc4 <_User_extensions_Thread_exitted>:
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
40008dc4: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
40008dc8: 23 10 00 51 sethi %hi(0x40014400), %l1
40008dcc: a2 14 61 d8 or %l1, 0x1d8, %l1 ! 400145d8 <_User_extensions_List>
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40008dd0: 10 80 00 08 b 40008df0 <_User_extensions_Thread_exitted+0x2c>
40008dd4: e0 04 60 08 ld [ %l1 + 8 ], %l0
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
40008dd8: 80 a0 60 00 cmp %g1, 0
40008ddc: 22 80 00 05 be,a 40008df0 <_User_extensions_Thread_exitted+0x2c>
40008de0: e0 04 20 04 ld [ %l0 + 4 ], %l0
(*the_extension->Callouts.thread_exitted)( executing );
40008de4: 9f c0 40 00 call %g1
40008de8: 90 10 00 18 mov %i0, %o0
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
40008dec: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
40008df0: 80 a4 00 11 cmp %l0, %l1
40008df4: 32 bf ff f9 bne,a 40008dd8 <_User_extensions_Thread_exitted+0x14>
40008df8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
(*the_extension->Callouts.thread_exitted)( executing );
}
}
40008dfc: 81 c7 e0 08 ret
40008e00: 81 e8 00 00 restore
4000af9c <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
4000af9c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
4000afa0: 7f ff df 49 call 40002cc4 <sparc_disable_interrupts>
4000afa4: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
4000afa8: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000afac: a2 06 20 04 add %i0, 4, %l1
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
4000afb0: 80 a0 40 11 cmp %g1, %l1
4000afb4: 02 80 00 1f be 4000b030 <_Watchdog_Adjust+0x94>
4000afb8: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
4000afbc: 02 80 00 1a be 4000b024 <_Watchdog_Adjust+0x88>
4000afc0: a4 10 20 01 mov 1, %l2
4000afc4: 80 a6 60 01 cmp %i1, 1
4000afc8: 12 80 00 1a bne 4000b030 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
4000afcc: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
4000afd0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
4000afd4: 10 80 00 07 b 4000aff0 <_Watchdog_Adjust+0x54>
4000afd8: b4 00 80 1a add %g2, %i2, %i2
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
4000afdc: f2 00 60 10 ld [ %g1 + 0x10 ], %i1
4000afe0: 80 a6 80 19 cmp %i2, %i1
4000afe4: 3a 80 00 05 bcc,a 4000aff8 <_Watchdog_Adjust+0x5c>
4000afe8: e4 20 60 10 st %l2, [ %g1 + 0x10 ]
_Watchdog_First( header )->delta_interval -= units;
4000afec: b4 26 40 1a sub %i1, %i2, %i2
break;
4000aff0: 10 80 00 10 b 4000b030 <_Watchdog_Adjust+0x94>
4000aff4: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
4000aff8: 7f ff df 37 call 40002cd4 <sparc_enable_interrupts>
4000affc: 01 00 00 00 nop
_Watchdog_Tickle( header );
4000b000: 40 00 00 94 call 4000b250 <_Watchdog_Tickle>
4000b004: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
4000b008: 7f ff df 2f call 40002cc4 <sparc_disable_interrupts>
4000b00c: 01 00 00 00 nop
if ( _Chain_Is_empty( header ) )
4000b010: c2 04 00 00 ld [ %l0 ], %g1
4000b014: 80 a0 40 11 cmp %g1, %l1
4000b018: 02 80 00 06 be 4000b030 <_Watchdog_Adjust+0x94>
4000b01c: 01 00 00 00 nop
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
4000b020: b4 26 80 19 sub %i2, %i1, %i2
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
4000b024: 80 a6 a0 00 cmp %i2, 0
4000b028: 32 bf ff ed bne,a 4000afdc <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN
4000b02c: c2 04 00 00 ld [ %l0 ], %g1
}
break;
}
}
_ISR_Enable( level );
4000b030: 7f ff df 29 call 40002cd4 <sparc_enable_interrupts>
4000b034: 91 e8 00 08 restore %g0, %o0, %o0
400090ec <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
400090ec: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
400090f0: 7f ff e2 ea call 40001c98 <sparc_disable_interrupts>
400090f4: a0 10 00 18 mov %i0, %l0
previous_state = the_watchdog->state;
400090f8: f0 06 20 08 ld [ %i0 + 8 ], %i0
switch ( previous_state ) {
400090fc: 80 a6 20 01 cmp %i0, 1
40009100: 22 80 00 1d be,a 40009174 <_Watchdog_Remove+0x88>
40009104: c0 24 20 08 clr [ %l0 + 8 ]
40009108: 0a 80 00 1c bcs 40009178 <_Watchdog_Remove+0x8c>
4000910c: 03 10 00 51 sethi %hi(0x40014400), %g1
40009110: 80 a6 20 03 cmp %i0, 3
40009114: 18 80 00 19 bgu 40009178 <_Watchdog_Remove+0x8c> <== NEVER TAKEN
40009118: 01 00 00 00 nop
4000911c: c2 04 00 00 ld [ %l0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
40009120: c0 24 20 08 clr [ %l0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
40009124: c4 00 40 00 ld [ %g1 ], %g2
40009128: 80 a0 a0 00 cmp %g2, 0
4000912c: 02 80 00 07 be 40009148 <_Watchdog_Remove+0x5c>
40009130: 05 10 00 51 sethi %hi(0x40014400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
40009134: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
40009138: c4 04 20 10 ld [ %l0 + 0x10 ], %g2
4000913c: 84 00 c0 02 add %g3, %g2, %g2
40009140: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
40009144: 05 10 00 51 sethi %hi(0x40014400), %g2
40009148: c4 00 a0 fc ld [ %g2 + 0xfc ], %g2 ! 400144fc <_Watchdog_Sync_count>
4000914c: 80 a0 a0 00 cmp %g2, 0
40009150: 22 80 00 07 be,a 4000916c <_Watchdog_Remove+0x80>
40009154: c4 04 20 04 ld [ %l0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
40009158: 05 10 00 51 sethi %hi(0x40014400), %g2
4000915c: c6 00 a2 24 ld [ %g2 + 0x224 ], %g3 ! 40014624 <_Per_CPU_Information+0x8>
40009160: 05 10 00 51 sethi %hi(0x40014400), %g2
40009164: c6 20 a0 94 st %g3, [ %g2 + 0x94 ] ! 40014494 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
40009168: c4 04 20 04 ld [ %l0 + 4 ], %g2
next->previous = previous;
4000916c: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
40009170: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
40009174: 03 10 00 51 sethi %hi(0x40014400), %g1
40009178: c2 00 61 00 ld [ %g1 + 0x100 ], %g1 ! 40014500 <_Watchdog_Ticks_since_boot>
4000917c: c2 24 20 18 st %g1, [ %l0 + 0x18 ]
_ISR_Enable( level );
40009180: 7f ff e2 ca call 40001ca8 <sparc_enable_interrupts>
40009184: 01 00 00 00 nop
return( previous_state );
}
40009188: 81 c7 e0 08 ret
4000918c: 81 e8 00 00 restore
4000a7cc <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
4000a7cc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
4000a7d0: 7f ff e0 14 call 40002820 <sparc_disable_interrupts>
4000a7d4: a0 10 00 18 mov %i0, %l0
4000a7d8: b0 10 00 08 mov %o0, %i0
printk( "Watchdog Chain: %s %p\n", name, header );
4000a7dc: 11 10 00 71 sethi %hi(0x4001c400), %o0
4000a7e0: 94 10 00 19 mov %i1, %o2
4000a7e4: 90 12 21 20 or %o0, 0x120, %o0
4000a7e8: 7f ff e6 82 call 400041f0 <printk>
4000a7ec: 92 10 00 10 mov %l0, %o1
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
4000a7f0: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
4000a7f4: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
4000a7f8: 80 a4 40 19 cmp %l1, %i1
4000a7fc: 02 80 00 0e be 4000a834 <_Watchdog_Report_chain+0x68>
4000a800: 11 10 00 71 sethi %hi(0x4001c400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
4000a804: 92 10 00 11 mov %l1, %o1
4000a808: 40 00 00 10 call 4000a848 <_Watchdog_Report>
4000a80c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
4000a810: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
4000a814: 80 a4 40 19 cmp %l1, %i1
4000a818: 12 bf ff fc bne 4000a808 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
4000a81c: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
4000a820: 11 10 00 71 sethi %hi(0x4001c400), %o0
4000a824: 92 10 00 10 mov %l0, %o1
4000a828: 7f ff e6 72 call 400041f0 <printk>
4000a82c: 90 12 21 38 or %o0, 0x138, %o0
4000a830: 30 80 00 03 b,a 4000a83c <_Watchdog_Report_chain+0x70>
} else {
printk( "Chain is empty\n" );
4000a834: 7f ff e6 6f call 400041f0 <printk>
4000a838: 90 12 21 48 or %o0, 0x148, %o0
}
_ISR_Enable( level );
4000a83c: 7f ff df fd call 40002830 <sparc_enable_interrupts>
4000a840: 81 e8 00 00 restore
400068d8 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
400068d8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
400068dc: 90 10 00 18 mov %i0, %o0
400068e0: 40 00 01 4a call 40006e08 <_Chain_Append_with_empty_check>
400068e4: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
400068e8: 80 8a 20 ff btst 0xff, %o0
400068ec: 02 80 00 05 be 40006900 <rtems_chain_append_with_notification+0x28><== NEVER TAKEN
400068f0: 01 00 00 00 nop
sc = rtems_event_send( task, events );
400068f4: b0 10 00 1a mov %i2, %i0
400068f8: 7f ff fd 75 call 40005ecc <rtems_event_send>
400068fc: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
40006900: 81 c7 e0 08 ret
40006904: 91 e8 20 00 restore %g0, 0, %o0
40006938 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
40006938: 9d e3 bf 98 save %sp, -104, %sp
4000693c: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
40006940: 10 80 00 09 b 40006964 <rtems_chain_get_with_wait+0x2c>
40006944: a4 07 bf fc add %fp, -4, %l2
40006948: 92 10 20 00 clr %o1
4000694c: 94 10 00 1a mov %i2, %o2
40006950: 7f ff fc fb call 40005d3c <rtems_event_receive>
40006954: 96 10 00 12 mov %l2, %o3
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
40006958: 80 a2 20 00 cmp %o0, 0
4000695c: 32 80 00 09 bne,a 40006980 <rtems_chain_get_with_wait+0x48><== ALWAYS TAKEN
40006960: e2 26 c0 00 st %l1, [ %i3 ]
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
40006964: 40 00 01 65 call 40006ef8 <_Chain_Get>
40006968: 90 10 00 10 mov %l0, %o0
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
4000696c: a2 92 20 00 orcc %o0, 0, %l1
40006970: 02 bf ff f6 be 40006948 <rtems_chain_get_with_wait+0x10>
40006974: 90 10 00 19 mov %i1, %o0
40006978: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
4000697c: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
40006980: 81 c7 e0 08 ret
40006984: 91 e8 00 08 restore %g0, %o0, %o0
40006988 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
40006988: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
4000698c: 90 10 00 18 mov %i0, %o0
40006990: 40 00 01 74 call 40006f60 <_Chain_Prepend_with_empty_check>
40006994: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
40006998: 80 8a 20 ff btst 0xff, %o0
4000699c: 02 80 00 05 be 400069b0 <rtems_chain_prepend_with_notification+0x28><== NEVER TAKEN
400069a0: 01 00 00 00 nop
sc = rtems_event_send( task, events );
400069a4: b0 10 00 1a mov %i2, %i0
400069a8: 7f ff fd 49 call 40005ecc <rtems_event_send>
400069ac: 93 e8 00 1b restore %g0, %i3, %o1
}
return sc;
}
400069b0: 81 c7 e0 08 ret <== NOT EXECUTED
400069b4: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
40008c04 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
40008c04: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
40008c08: 80 a6 20 00 cmp %i0, 0
40008c0c: 02 80 00 1d be 40008c80 <rtems_iterate_over_all_threads+0x7c><== NEVER TAKEN
40008c10: 21 10 00 99 sethi %hi(0x40026400), %l0
40008c14: a0 14 21 9c or %l0, 0x19c, %l0 ! 4002659c <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
40008c18: a6 04 20 0c add %l0, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
40008c1c: c2 04 00 00 ld [ %l0 ], %g1
40008c20: 80 a0 60 00 cmp %g1, 0
40008c24: 22 80 00 14 be,a 40008c74 <rtems_iterate_over_all_threads+0x70>
40008c28: a0 04 20 04 add %l0, 4, %l0
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
40008c2c: e4 00 60 04 ld [ %g1 + 4 ], %l2
if ( !information )
40008c30: 80 a4 a0 00 cmp %l2, 0
40008c34: 12 80 00 0b bne 40008c60 <rtems_iterate_over_all_threads+0x5c>
40008c38: a2 10 20 01 mov 1, %l1
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40008c3c: 10 80 00 0e b 40008c74 <rtems_iterate_over_all_threads+0x70>
40008c40: a0 04 20 04 add %l0, 4, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
40008c44: 83 2c 60 02 sll %l1, 2, %g1
40008c48: d0 00 80 01 ld [ %g2 + %g1 ], %o0
if ( !the_thread )
40008c4c: 80 a2 20 00 cmp %o0, 0
40008c50: 02 80 00 04 be 40008c60 <rtems_iterate_over_all_threads+0x5c><== NEVER TAKEN
40008c54: a2 04 60 01 inc %l1
continue;
(*routine)(the_thread);
40008c58: 9f c6 00 00 call %i0
40008c5c: 01 00 00 00 nop
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
40008c60: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1
40008c64: 80 a4 40 01 cmp %l1, %g1
40008c68: 28 bf ff f7 bleu,a 40008c44 <rtems_iterate_over_all_threads+0x40>
40008c6c: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2
40008c70: a0 04 20 04 add %l0, 4, %l0
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
40008c74: 80 a4 00 13 cmp %l0, %l3
40008c78: 32 bf ff ea bne,a 40008c20 <rtems_iterate_over_all_threads+0x1c>
40008c7c: c2 04 00 00 ld [ %l0 ], %g1
40008c80: 81 c7 e0 08 ret
40008c84: 81 e8 00 00 restore
40013dac <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
40013dac: 9d e3 bf a0 save %sp, -96, %sp
40013db0: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
40013db4: 80 a4 20 00 cmp %l0, 0
40013db8: 02 80 00 1f be 40013e34 <rtems_partition_create+0x88>
40013dbc: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
40013dc0: 80 a6 60 00 cmp %i1, 0
40013dc4: 02 80 00 1c be 40013e34 <rtems_partition_create+0x88>
40013dc8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
40013dcc: 80 a7 60 00 cmp %i5, 0
40013dd0: 02 80 00 19 be 40013e34 <rtems_partition_create+0x88> <== NEVER TAKEN
40013dd4: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
40013dd8: 02 80 00 32 be 40013ea0 <rtems_partition_create+0xf4>
40013ddc: 80 a6 a0 00 cmp %i2, 0
40013de0: 02 80 00 30 be 40013ea0 <rtems_partition_create+0xf4>
40013de4: 80 a6 80 1b cmp %i2, %i3
40013de8: 0a 80 00 13 bcs 40013e34 <rtems_partition_create+0x88>
40013dec: b0 10 20 08 mov 8, %i0
40013df0: 80 8e e0 07 btst 7, %i3
40013df4: 12 80 00 10 bne 40013e34 <rtems_partition_create+0x88>
40013df8: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
40013dfc: 12 80 00 0e bne 40013e34 <rtems_partition_create+0x88>
40013e00: b0 10 20 09 mov 9, %i0
40013e04: 03 10 00 f1 sethi %hi(0x4003c400), %g1
40013e08: c4 00 63 b0 ld [ %g1 + 0x3b0 ], %g2 ! 4003c7b0 <_Thread_Dispatch_disable_level>
40013e0c: 84 00 a0 01 inc %g2
40013e10: c4 20 63 b0 st %g2, [ %g1 + 0x3b0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
40013e14: 25 10 00 f1 sethi %hi(0x4003c400), %l2
40013e18: 40 00 12 44 call 40018728 <_Objects_Allocate>
40013e1c: 90 14 a1 c4 or %l2, 0x1c4, %o0 ! 4003c5c4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
40013e20: a2 92 20 00 orcc %o0, 0, %l1
40013e24: 12 80 00 06 bne 40013e3c <rtems_partition_create+0x90>
40013e28: 92 10 00 1b mov %i3, %o1
_Thread_Enable_dispatch();
40013e2c: 40 00 16 95 call 40019880 <_Thread_Enable_dispatch>
40013e30: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
40013e34: 81 c7 e0 08 ret
40013e38: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
40013e3c: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
40013e40: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
40013e44: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
40013e48: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
the_partition->number_of_used_blocks = 0;
40013e4c: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
40013e50: 40 00 5e 96 call 4002b8a8 <.udiv>
40013e54: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013e58: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
40013e5c: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
40013e60: 96 10 00 1b mov %i3, %o3
40013e64: a6 04 60 24 add %l1, 0x24, %l3
40013e68: 40 00 0c 5d call 40016fdc <_Chain_Initialize>
40013e6c: 90 10 00 13 mov %l3, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013e70: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013e74: a4 14 a1 c4 or %l2, 0x1c4, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013e78: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
40013e7c: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
40013e80: 85 28 a0 02 sll %g2, 2, %g2
40013e84: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
40013e88: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
40013e8c: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
40013e90: 40 00 16 7c call 40019880 <_Thread_Enable_dispatch>
40013e94: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40013e98: 81 c7 e0 08 ret
40013e9c: 81 e8 00 00 restore
if ( !id )
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
40013ea0: b0 10 20 08 mov 8, %i0
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
40013ea4: 81 c7 e0 08 ret
40013ea8: 81 e8 00 00 restore
40006e90 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
40006e90: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
40006e94: 11 10 00 77 sethi %hi(0x4001dc00), %o0
40006e98: 92 10 00 18 mov %i0, %o1
40006e9c: 90 12 22 ac or %o0, 0x2ac, %o0
40006ea0: 40 00 08 e9 call 40009244 <_Objects_Get>
40006ea4: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
40006ea8: c2 07 bf fc ld [ %fp + -4 ], %g1
40006eac: 80 a0 60 00 cmp %g1, 0
40006eb0: 12 80 00 66 bne 40007048 <rtems_rate_monotonic_period+0x1b8>
40006eb4: a0 10 00 08 mov %o0, %l0
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
40006eb8: 25 10 00 78 sethi %hi(0x4001e000), %l2
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
40006ebc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
40006ec0: a4 14 a2 5c or %l2, 0x25c, %l2
40006ec4: c2 04 a0 0c ld [ %l2 + 0xc ], %g1
40006ec8: 80 a0 80 01 cmp %g2, %g1
40006ecc: 02 80 00 06 be 40006ee4 <rtems_rate_monotonic_period+0x54>
40006ed0: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
40006ed4: 40 00 0b e1 call 40009e58 <_Thread_Enable_dispatch>
40006ed8: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
40006edc: 81 c7 e0 08 ret
40006ee0: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
40006ee4: 12 80 00 0e bne 40006f1c <rtems_rate_monotonic_period+0x8c>
40006ee8: 01 00 00 00 nop
switch ( the_period->state ) {
40006eec: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40006ef0: 80 a0 60 04 cmp %g1, 4
40006ef4: 18 80 00 06 bgu 40006f0c <rtems_rate_monotonic_period+0x7c><== NEVER TAKEN
40006ef8: b0 10 20 00 clr %i0
40006efc: 83 28 60 02 sll %g1, 2, %g1
40006f00: 05 10 00 70 sethi %hi(0x4001c000), %g2
40006f04: 84 10 a2 3c or %g2, 0x23c, %g2 ! 4001c23c <CSWTCH.2>
40006f08: f0 00 80 01 ld [ %g2 + %g1 ], %i0
case RATE_MONOTONIC_ACTIVE:
default: /* unreached -- only to remove warnings */
return_value = RTEMS_SUCCESSFUL;
break;
}
_Thread_Enable_dispatch();
40006f0c: 40 00 0b d3 call 40009e58 <_Thread_Enable_dispatch>
40006f10: 01 00 00 00 nop
return( return_value );
40006f14: 81 c7 e0 08 ret
40006f18: 81 e8 00 00 restore
}
_ISR_Disable( level );
40006f1c: 7f ff ef 24 call 40002bac <sparc_disable_interrupts>
40006f20: 01 00 00 00 nop
40006f24: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
40006f28: e2 04 20 38 ld [ %l0 + 0x38 ], %l1
40006f2c: 80 a4 60 00 cmp %l1, 0
40006f30: 12 80 00 15 bne 40006f84 <rtems_rate_monotonic_period+0xf4>
40006f34: 80 a4 60 02 cmp %l1, 2
_ISR_Enable( level );
40006f38: 7f ff ef 21 call 40002bbc <sparc_enable_interrupts>
40006f3c: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
40006f40: 7f ff ff 7a call 40006d28 <_Rate_monotonic_Initiate_statistics>
40006f44: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40006f48: 82 10 20 02 mov 2, %g1
40006f4c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
40006f50: 03 10 00 1c sethi %hi(0x40007000), %g1
40006f54: 82 10 63 18 or %g1, 0x318, %g1 ! 40007318 <_Rate_monotonic_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40006f58: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
40006f5c: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
the_watchdog->id = id;
40006f60: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
the_watchdog->user_data = user_data;
40006f64: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
40006f68: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
40006f6c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40006f70: 11 10 00 78 sethi %hi(0x4001e000), %o0
40006f74: 92 04 20 10 add %l0, 0x10, %o1
40006f78: 40 00 0f d9 call 4000aedc <_Watchdog_Insert>
40006f7c: 90 12 20 f0 or %o0, 0xf0, %o0
40006f80: 30 80 00 1b b,a 40006fec <rtems_rate_monotonic_period+0x15c>
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
40006f84: 12 80 00 1e bne 40006ffc <rtems_rate_monotonic_period+0x16c>
40006f88: 80 a4 60 04 cmp %l1, 4
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
40006f8c: 7f ff ff 83 call 40006d98 <_Rate_monotonic_Update_statistics>
40006f90: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40006f94: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
40006f98: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
40006f9c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
40006fa0: 7f ff ef 07 call 40002bbc <sparc_enable_interrupts>
40006fa4: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
40006fa8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40006fac: c2 04 20 08 ld [ %l0 + 8 ], %g1
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40006fb0: 13 00 00 10 sethi %hi(0x4000), %o1
40006fb4: 40 00 0d db call 4000a720 <_Thread_Set_state>
40006fb8: c2 22 20 20 st %g1, [ %o0 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
40006fbc: 7f ff ee fc call 40002bac <sparc_disable_interrupts>
40006fc0: 01 00 00 00 nop
local_state = the_period->state;
40006fc4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
40006fc8: e2 24 20 38 st %l1, [ %l0 + 0x38 ]
_ISR_Enable( level );
40006fcc: 7f ff ee fc call 40002bbc <sparc_enable_interrupts>
40006fd0: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
40006fd4: 80 a4 e0 03 cmp %l3, 3
40006fd8: 12 80 00 05 bne 40006fec <rtems_rate_monotonic_period+0x15c>
40006fdc: 01 00 00 00 nop
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
40006fe0: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
40006fe4: 40 00 0a d1 call 40009b28 <_Thread_Clear_state>
40006fe8: 13 00 00 10 sethi %hi(0x4000), %o1
_Thread_Enable_dispatch();
40006fec: 40 00 0b 9b call 40009e58 <_Thread_Enable_dispatch>
40006ff0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40006ff4: 81 c7 e0 08 ret
40006ff8: 81 e8 00 00 restore
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
40006ffc: 12 bf ff b8 bne 40006edc <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
40007000: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
40007004: 7f ff ff 65 call 40006d98 <_Rate_monotonic_Update_statistics>
40007008: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
4000700c: 7f ff ee ec call 40002bbc <sparc_enable_interrupts>
40007010: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
40007014: 82 10 20 02 mov 2, %g1
40007018: 92 04 20 10 add %l0, 0x10, %o1
4000701c: 11 10 00 78 sethi %hi(0x4001e000), %o0
40007020: 90 12 20 f0 or %o0, 0xf0, %o0 ! 4001e0f0 <_Watchdog_Ticks_chain>
40007024: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
40007028: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
4000702c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
40007030: 40 00 0f ab call 4000aedc <_Watchdog_Insert>
40007034: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
40007038: 40 00 0b 88 call 40009e58 <_Thread_Enable_dispatch>
4000703c: 01 00 00 00 nop
return RTEMS_TIMEOUT;
40007040: 81 c7 e0 08 ret
40007044: 81 e8 00 00 restore
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
40007048: b0 10 20 04 mov 4, %i0
}
4000704c: 81 c7 e0 08 ret
40007050: 81 e8 00 00 restore
40007054 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
40007054: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
40007058: 80 a6 60 00 cmp %i1, 0
4000705c: 02 80 00 79 be 40007240 <rtems_rate_monotonic_report_statistics_with_plugin+0x1ec><== NEVER TAKEN
40007060: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
40007064: 13 10 00 70 sethi %hi(0x4001c000), %o1
40007068: 9f c6 40 00 call %i1
4000706c: 92 12 62 50 or %o1, 0x250, %o1 ! 4001c250 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
40007070: 90 10 00 18 mov %i0, %o0
40007074: 13 10 00 70 sethi %hi(0x4001c000), %o1
40007078: 9f c6 40 00 call %i1
4000707c: 92 12 62 70 or %o1, 0x270, %o1 ! 4001c270 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
40007080: 90 10 00 18 mov %i0, %o0
40007084: 13 10 00 70 sethi %hi(0x4001c000), %o1
40007088: 9f c6 40 00 call %i1
4000708c: 92 12 62 98 or %o1, 0x298, %o1 ! 4001c298 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
40007090: 90 10 00 18 mov %i0, %o0
40007094: 13 10 00 70 sethi %hi(0x4001c000), %o1
40007098: 9f c6 40 00 call %i1
4000709c: 92 12 62 c0 or %o1, 0x2c0, %o1 ! 4001c2c0 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
400070a0: 90 10 00 18 mov %i0, %o0
400070a4: 13 10 00 70 sethi %hi(0x4001c000), %o1
400070a8: 9f c6 40 00 call %i1
400070ac: 92 12 63 10 or %o1, 0x310, %o1 ! 4001c310 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400070b0: 3b 10 00 77 sethi %hi(0x4001dc00), %i5
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400070b4: 2b 10 00 70 sethi %hi(0x4001c000), %l5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400070b8: 82 17 62 ac or %i5, 0x2ac, %g1
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
400070bc: 27 10 00 70 sethi %hi(0x4001c000), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
400070c0: 35 10 00 70 sethi %hi(0x4001c000), %i2
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400070c4: e0 00 60 08 ld [ %g1 + 8 ], %l0
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
400070c8: ae 07 bf a0 add %fp, -96, %l7
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
400070cc: ac 07 bf d8 add %fp, -40, %l6
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
400070d0: a4 07 bf f8 add %fp, -8, %l2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
400070d4: aa 15 63 60 or %l5, 0x360, %l5
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
400070d8: a8 07 bf b8 add %fp, -72, %l4
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
400070dc: a2 07 bf f0 add %fp, -16, %l1
(*print)( context,
400070e0: a6 14 e3 78 or %l3, 0x378, %l3
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
400070e4: b8 07 bf d0 add %fp, -48, %i4
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
400070e8: 10 80 00 52 b 40007230 <rtems_rate_monotonic_report_statistics_with_plugin+0x1dc>
400070ec: b4 16 a3 98 or %i2, 0x398, %i2
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
400070f0: 40 00 17 71 call 4000ceb4 <rtems_rate_monotonic_get_statistics>
400070f4: 92 10 00 17 mov %l7, %o1
if ( status != RTEMS_SUCCESSFUL )
400070f8: 80 a2 20 00 cmp %o0, 0
400070fc: 32 80 00 4c bne,a 4000722c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
40007100: a0 04 20 01 inc %l0
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
40007104: 92 10 00 16 mov %l6, %o1
40007108: 40 00 17 98 call 4000cf68 <rtems_rate_monotonic_get_status>
4000710c: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
40007110: d0 07 bf d8 ld [ %fp + -40 ], %o0
40007114: 92 10 20 05 mov 5, %o1
40007118: 40 00 00 ae call 400073d0 <rtems_object_get_name>
4000711c: 94 10 00 12 mov %l2, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
40007120: d8 1f bf a0 ldd [ %fp + -96 ], %o4
40007124: 92 10 00 15 mov %l5, %o1
40007128: 90 10 00 18 mov %i0, %o0
4000712c: 94 10 00 10 mov %l0, %o2
40007130: 9f c6 40 00 call %i1
40007134: 96 10 00 12 mov %l2, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
40007138: d2 07 bf a0 ld [ %fp + -96 ], %o1
4000713c: 80 a2 60 00 cmp %o1, 0
40007140: 12 80 00 08 bne 40007160 <rtems_rate_monotonic_report_statistics_with_plugin+0x10c>
40007144: 94 10 00 11 mov %l1, %o2
(*print)( context, "\n" );
40007148: 90 10 00 18 mov %i0, %o0
4000714c: 13 10 00 6d sethi %hi(0x4001b400), %o1
40007150: 9f c6 40 00 call %i1
40007154: 92 12 60 e8 or %o1, 0xe8, %o1 ! 4001b4e8 <_rodata_start+0x158>
continue;
40007158: 10 80 00 35 b 4000722c <rtems_rate_monotonic_report_statistics_with_plugin+0x1d8>
4000715c: a0 04 20 01 inc %l0
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
40007160: 40 00 0e 3c call 4000aa50 <_Timespec_Divide_by_integer>
40007164: 90 10 00 14 mov %l4, %o0
(*print)( context,
40007168: d0 07 bf ac ld [ %fp + -84 ], %o0
4000716c: 40 00 43 f5 call 40018140 <.div>
40007170: 92 10 23 e8 mov 0x3e8, %o1
40007174: 96 10 00 08 mov %o0, %o3
40007178: d0 07 bf b4 ld [ %fp + -76 ], %o0
4000717c: d6 27 bf 9c st %o3, [ %fp + -100 ]
40007180: 40 00 43 f0 call 40018140 <.div>
40007184: 92 10 23 e8 mov 0x3e8, %o1
40007188: c2 07 bf f0 ld [ %fp + -16 ], %g1
4000718c: b6 10 00 08 mov %o0, %i3
40007190: d0 07 bf f4 ld [ %fp + -12 ], %o0
40007194: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007198: 40 00 43 ea call 40018140 <.div>
4000719c: 92 10 23 e8 mov 0x3e8, %o1
400071a0: d8 07 bf b0 ld [ %fp + -80 ], %o4
400071a4: d6 07 bf 9c ld [ %fp + -100 ], %o3
400071a8: d4 07 bf a8 ld [ %fp + -88 ], %o2
400071ac: 9a 10 00 1b mov %i3, %o5
400071b0: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
400071b4: 92 10 00 13 mov %l3, %o1
400071b8: 9f c6 40 00 call %i1
400071bc: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
400071c0: d2 07 bf a0 ld [ %fp + -96 ], %o1
400071c4: 94 10 00 11 mov %l1, %o2
400071c8: 40 00 0e 22 call 4000aa50 <_Timespec_Divide_by_integer>
400071cc: 90 10 00 1c mov %i4, %o0
(*print)( context,
400071d0: d0 07 bf c4 ld [ %fp + -60 ], %o0
400071d4: 40 00 43 db call 40018140 <.div>
400071d8: 92 10 23 e8 mov 0x3e8, %o1
400071dc: 96 10 00 08 mov %o0, %o3
400071e0: d0 07 bf cc ld [ %fp + -52 ], %o0
400071e4: d6 27 bf 9c st %o3, [ %fp + -100 ]
400071e8: 40 00 43 d6 call 40018140 <.div>
400071ec: 92 10 23 e8 mov 0x3e8, %o1
400071f0: c2 07 bf f0 ld [ %fp + -16 ], %g1
400071f4: b6 10 00 08 mov %o0, %i3
400071f8: d0 07 bf f4 ld [ %fp + -12 ], %o0
400071fc: 92 10 23 e8 mov 0x3e8, %o1
40007200: 40 00 43 d0 call 40018140 <.div>
40007204: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
40007208: d4 07 bf c0 ld [ %fp + -64 ], %o2
4000720c: d6 07 bf 9c ld [ %fp + -100 ], %o3
40007210: d8 07 bf c8 ld [ %fp + -56 ], %o4
40007214: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
40007218: 92 10 00 1a mov %i2, %o1
4000721c: 90 10 00 18 mov %i0, %o0
40007220: 9f c6 40 00 call %i1
40007224: 9a 10 00 1b mov %i3, %o5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
40007228: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
4000722c: 82 17 62 ac or %i5, 0x2ac, %g1
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
40007230: c2 00 60 0c ld [ %g1 + 0xc ], %g1
40007234: 80 a4 00 01 cmp %l0, %g1
40007238: 08 bf ff ae bleu 400070f0 <rtems_rate_monotonic_report_statistics_with_plugin+0x9c>
4000723c: 90 10 00 10 mov %l0, %o0
40007240: 81 c7 e0 08 ret
40007244: 81 e8 00 00 restore
40015350 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
40015350: 9d e3 bf 98 save %sp, -104, %sp
40015354: 90 10 00 18 mov %i0, %o0
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
40015358: 80 a6 60 00 cmp %i1, 0
4001535c: 02 80 00 2e be 40015414 <rtems_signal_send+0xc4>
40015360: b0 10 20 0a mov 0xa, %i0
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40015364: 40 00 11 54 call 400198b4 <_Thread_Get>
40015368: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4001536c: c2 07 bf fc ld [ %fp + -4 ], %g1
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
40015370: a2 10 00 08 mov %o0, %l1
switch ( location ) {
40015374: 80 a0 60 00 cmp %g1, 0
40015378: 12 80 00 27 bne 40015414 <rtems_signal_send+0xc4>
4001537c: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
40015380: e0 02 21 4c ld [ %o0 + 0x14c ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
40015384: c2 04 20 0c ld [ %l0 + 0xc ], %g1
40015388: 80 a0 60 00 cmp %g1, 0
4001538c: 02 80 00 24 be 4001541c <rtems_signal_send+0xcc>
40015390: 01 00 00 00 nop
if ( asr->is_enabled ) {
40015394: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
40015398: 80 a0 60 00 cmp %g1, 0
4001539c: 02 80 00 15 be 400153f0 <rtems_signal_send+0xa0>
400153a0: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400153a4: 7f ff e7 f1 call 4000f368 <sparc_disable_interrupts>
400153a8: 01 00 00 00 nop
*signal_set |= signals;
400153ac: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
400153b0: b2 10 40 19 or %g1, %i1, %i1
400153b4: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
400153b8: 7f ff e7 f0 call 4000f378 <sparc_enable_interrupts>
400153bc: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
400153c0: 03 10 00 f2 sethi %hi(0x4003c800), %g1
400153c4: 82 10 62 04 or %g1, 0x204, %g1 ! 4003ca04 <_Per_CPU_Information>
400153c8: c4 00 60 08 ld [ %g1 + 8 ], %g2
400153cc: 80 a0 a0 00 cmp %g2, 0
400153d0: 02 80 00 0f be 4001540c <rtems_signal_send+0xbc>
400153d4: 01 00 00 00 nop
400153d8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
400153dc: 80 a4 40 02 cmp %l1, %g2
400153e0: 12 80 00 0b bne 4001540c <rtems_signal_send+0xbc> <== NEVER TAKEN
400153e4: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
400153e8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
400153ec: 30 80 00 08 b,a 4001540c <rtems_signal_send+0xbc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
400153f0: 7f ff e7 de call 4000f368 <sparc_disable_interrupts>
400153f4: 01 00 00 00 nop
*signal_set |= signals;
400153f8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
400153fc: b2 10 40 19 or %g1, %i1, %i1
40015400: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
40015404: 7f ff e7 dd call 4000f378 <sparc_enable_interrupts>
40015408: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
4001540c: 40 00 11 1d call 40019880 <_Thread_Enable_dispatch>
40015410: b0 10 20 00 clr %i0 ! 0 <PROM_START>
return RTEMS_SUCCESSFUL;
40015414: 81 c7 e0 08 ret
40015418: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
4001541c: 40 00 11 19 call 40019880 <_Thread_Enable_dispatch>
40015420: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
40015424: 81 c7 e0 08 ret
40015428: 81 e8 00 00 restore
4000cec0 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
4000cec0: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
4000cec4: 80 a6 a0 00 cmp %i2, 0
4000cec8: 02 80 00 5a be 4000d030 <rtems_task_mode+0x170>
4000cecc: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
4000ced0: 03 10 00 51 sethi %hi(0x40014400), %g1
4000ced4: e2 00 62 28 ld [ %g1 + 0x228 ], %l1 ! 40014628 <_Per_CPU_Information+0xc>
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000ced8: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
4000cedc: e0 04 61 4c ld [ %l1 + 0x14c ], %l0
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000cee0: 80 a0 00 01 cmp %g0, %g1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000cee4: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
4000cee8: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
4000ceec: 80 a0 60 00 cmp %g1, 0
4000cef0: 02 80 00 03 be 4000cefc <rtems_task_mode+0x3c>
4000cef4: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
4000cef8: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000cefc: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
4000cf00: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
4000cf04: 7f ff f2 07 call 40009720 <_CPU_ISR_Get_level>
4000cf08: a6 60 3f ff subx %g0, -1, %l3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
4000cf0c: a7 2c e0 0a sll %l3, 0xa, %l3
4000cf10: a6 14 c0 08 or %l3, %o0, %l3
old_mode |= _ISR_Get_level();
4000cf14: a4 14 c0 12 or %l3, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
4000cf18: 80 8e 61 00 btst 0x100, %i1
4000cf1c: 02 80 00 06 be 4000cf34 <rtems_task_mode+0x74>
4000cf20: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
4000cf24: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
4000cf28: 80 a0 00 01 cmp %g0, %g1
4000cf2c: 82 60 3f ff subx %g0, -1, %g1
4000cf30: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
4000cf34: 80 8e 62 00 btst 0x200, %i1
4000cf38: 02 80 00 0b be 4000cf64 <rtems_task_mode+0xa4>
4000cf3c: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
4000cf40: 80 8e 22 00 btst 0x200, %i0
4000cf44: 22 80 00 07 be,a 4000cf60 <rtems_task_mode+0xa0>
4000cf48: c0 24 60 7c clr [ %l1 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
4000cf4c: 82 10 20 01 mov 1, %g1
4000cf50: c2 24 60 7c st %g1, [ %l1 + 0x7c ]
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
4000cf54: 03 10 00 50 sethi %hi(0x40014000), %g1
4000cf58: c2 00 63 34 ld [ %g1 + 0x334 ], %g1 ! 40014334 <_Thread_Ticks_per_timeslice>
4000cf5c: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
4000cf60: 80 8e 60 0f btst 0xf, %i1
4000cf64: 02 80 00 06 be 4000cf7c <rtems_task_mode+0xbc>
4000cf68: 80 8e 64 00 btst 0x400, %i1
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
4000cf6c: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
4000cf70: 7f ff d3 4e call 40001ca8 <sparc_enable_interrupts>
4000cf74: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
4000cf78: 80 8e 64 00 btst 0x400, %i1
4000cf7c: 02 80 00 14 be 4000cfcc <rtems_task_mode+0x10c>
4000cf80: 88 10 20 00 clr %g4
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000cf84: c4 0c 20 08 ldub [ %l0 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
4000cf88: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
4000cf8c: 80 a0 00 18 cmp %g0, %i0
4000cf90: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
4000cf94: 80 a0 40 02 cmp %g1, %g2
4000cf98: 22 80 00 0e be,a 4000cfd0 <rtems_task_mode+0x110>
4000cf9c: 03 10 00 51 sethi %hi(0x40014400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
4000cfa0: 7f ff d3 3e call 40001c98 <sparc_disable_interrupts>
4000cfa4: c2 2c 20 08 stb %g1, [ %l0 + 8 ]
_signals = information->signals_pending;
4000cfa8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
information->signals_pending = information->signals_posted;
4000cfac: c4 04 20 14 ld [ %l0 + 0x14 ], %g2
information->signals_posted = _signals;
4000cfb0: c2 24 20 14 st %g1, [ %l0 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
4000cfb4: c4 24 20 18 st %g2, [ %l0 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
4000cfb8: 7f ff d3 3c call 40001ca8 <sparc_enable_interrupts>
4000cfbc: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
4000cfc0: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
4000cfc4: 80 a0 00 01 cmp %g0, %g1
4000cfc8: 88 40 20 00 addx %g0, 0, %g4
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
4000cfcc: 03 10 00 51 sethi %hi(0x40014400), %g1
4000cfd0: c4 00 61 48 ld [ %g1 + 0x148 ], %g2 ! 40014548 <_System_state_Current>
4000cfd4: 80 a0 a0 03 cmp %g2, 3
4000cfd8: 12 80 00 16 bne 4000d030 <rtems_task_mode+0x170> <== NEVER TAKEN
4000cfdc: 82 10 20 00 clr %g1
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000cfe0: 07 10 00 51 sethi %hi(0x40014400), %g3
if ( are_signals_pending ||
4000cfe4: 80 89 20 ff btst 0xff, %g4
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
4000cfe8: 86 10 e2 1c or %g3, 0x21c, %g3
if ( are_signals_pending ||
4000cfec: 12 80 00 0a bne 4000d014 <rtems_task_mode+0x154>
4000cff0: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
4000cff4: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
4000cff8: 80 a0 80 03 cmp %g2, %g3
4000cffc: 02 80 00 0d be 4000d030 <rtems_task_mode+0x170>
4000d000: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
4000d004: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
4000d008: 80 a0 a0 00 cmp %g2, 0
4000d00c: 02 80 00 09 be 4000d030 <rtems_task_mode+0x170> <== NEVER TAKEN
4000d010: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
4000d014: 84 10 20 01 mov 1, %g2 ! 1 <PROM_START+0x1>
4000d018: 03 10 00 51 sethi %hi(0x40014400), %g1
4000d01c: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001461c <_Per_CPU_Information>
4000d020: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
4000d024: 7f ff eb e9 call 40007fc8 <_Thread_Dispatch>
4000d028: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
4000d02c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
4000d030: 81 c7 e0 08 ret
4000d034: 91 e8 00 01 restore %g0, %g1, %o0
4000a6a0 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
4000a6a0: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
4000a6a4: 80 a6 60 00 cmp %i1, 0
4000a6a8: 02 80 00 07 be 4000a6c4 <rtems_task_set_priority+0x24>
4000a6ac: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
4000a6b0: 03 10 00 60 sethi %hi(0x40018000), %g1
4000a6b4: c2 08 62 84 ldub [ %g1 + 0x284 ], %g1 ! 40018284 <rtems_maximum_priority>
4000a6b8: 80 a6 40 01 cmp %i1, %g1
4000a6bc: 18 80 00 1c bgu 4000a72c <rtems_task_set_priority+0x8c>
4000a6c0: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
4000a6c4: 80 a6 a0 00 cmp %i2, 0
4000a6c8: 02 80 00 19 be 4000a72c <rtems_task_set_priority+0x8c>
4000a6cc: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
4000a6d0: 40 00 08 b6 call 4000c9a8 <_Thread_Get>
4000a6d4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
4000a6d8: c2 07 bf fc ld [ %fp + -4 ], %g1
4000a6dc: 80 a0 60 00 cmp %g1, 0
4000a6e0: 12 80 00 13 bne 4000a72c <rtems_task_set_priority+0x8c>
4000a6e4: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
4000a6e8: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
4000a6ec: 80 a6 60 00 cmp %i1, 0
4000a6f0: 02 80 00 0d be 4000a724 <rtems_task_set_priority+0x84>
4000a6f4: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
4000a6f8: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
4000a6fc: 80 a0 60 00 cmp %g1, 0
4000a700: 02 80 00 06 be 4000a718 <rtems_task_set_priority+0x78>
4000a704: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
4000a708: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
4000a70c: 80 a0 40 19 cmp %g1, %i1
4000a710: 08 80 00 05 bleu 4000a724 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
4000a714: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
4000a718: 92 10 00 19 mov %i1, %o1
4000a71c: 40 00 07 69 call 4000c4c0 <_Thread_Change_priority>
4000a720: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
4000a724: 40 00 08 94 call 4000c974 <_Thread_Enable_dispatch>
4000a728: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
4000a72c: 81 c7 e0 08 ret
4000a730: 81 e8 00 00 restore
40015d60 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
40015d60: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
40015d64: 11 10 00 f2 sethi %hi(0x4003c800), %o0
40015d68: 92 10 00 18 mov %i0, %o1
40015d6c: 90 12 22 94 or %o0, 0x294, %o0
40015d70: 40 00 0b bf call 40018c6c <_Objects_Get>
40015d74: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
40015d78: c2 07 bf fc ld [ %fp + -4 ], %g1
40015d7c: 80 a0 60 00 cmp %g1, 0
40015d80: 12 80 00 0c bne 40015db0 <rtems_timer_cancel+0x50>
40015d84: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
40015d88: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
40015d8c: 80 a0 60 04 cmp %g1, 4
40015d90: 02 80 00 04 be 40015da0 <rtems_timer_cancel+0x40> <== NEVER TAKEN
40015d94: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
40015d98: 40 00 13 92 call 4001abe0 <_Watchdog_Remove>
40015d9c: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
40015da0: 40 00 0e b8 call 40019880 <_Thread_Enable_dispatch>
40015da4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
40015da8: 81 c7 e0 08 ret
40015dac: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40015db0: 81 c7 e0 08 ret
40015db4: 91 e8 20 04 restore %g0, 4, %o0
40016248 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016248: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
4001624c: 03 10 00 f2 sethi %hi(0x4003c800), %g1
40016250: e2 00 62 d4 ld [ %g1 + 0x2d4 ], %l1 ! 4003cad4 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
40016254: a0 10 00 18 mov %i0, %l0
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
40016258: 80 a4 60 00 cmp %l1, 0
4001625c: 02 80 00 33 be 40016328 <rtems_timer_server_fire_when+0xe0>
40016260: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
40016264: 03 10 00 f1 sethi %hi(0x4003c400), %g1
40016268: c2 08 63 c0 ldub [ %g1 + 0x3c0 ], %g1 ! 4003c7c0 <_TOD_Is_set>
4001626c: 80 a0 60 00 cmp %g1, 0
40016270: 02 80 00 2e be 40016328 <rtems_timer_server_fire_when+0xe0><== NEVER TAKEN
40016274: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
40016278: 80 a6 a0 00 cmp %i2, 0
4001627c: 02 80 00 2b be 40016328 <rtems_timer_server_fire_when+0xe0>
40016280: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
40016284: 90 10 00 19 mov %i1, %o0
40016288: 7f ff f4 06 call 400132a0 <_TOD_Validate>
4001628c: b0 10 20 14 mov 0x14, %i0
40016290: 80 8a 20 ff btst 0xff, %o0
40016294: 02 80 00 27 be 40016330 <rtems_timer_server_fire_when+0xe8>
40016298: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
4001629c: 7f ff f3 cd call 400131d0 <_TOD_To_seconds>
400162a0: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
400162a4: 27 10 00 f2 sethi %hi(0x4003c800), %l3
400162a8: c2 04 e0 58 ld [ %l3 + 0x58 ], %g1 ! 4003c858 <_TOD_Now>
400162ac: 80 a2 00 01 cmp %o0, %g1
400162b0: 08 80 00 1e bleu 40016328 <rtems_timer_server_fire_when+0xe0>
400162b4: a4 10 00 08 mov %o0, %l2
400162b8: 11 10 00 f2 sethi %hi(0x4003c800), %o0
400162bc: 92 10 00 10 mov %l0, %o1
400162c0: 90 12 22 94 or %o0, 0x294, %o0
400162c4: 40 00 0a 6a call 40018c6c <_Objects_Get>
400162c8: 94 07 bf fc add %fp, -4, %o2
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
400162cc: c2 07 bf fc ld [ %fp + -4 ], %g1
400162d0: b2 10 00 08 mov %o0, %i1
400162d4: 80 a0 60 00 cmp %g1, 0
400162d8: 12 80 00 14 bne 40016328 <rtems_timer_server_fire_when+0xe0>
400162dc: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
400162e0: 40 00 12 40 call 4001abe0 <_Watchdog_Remove>
400162e4: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
400162e8: 82 10 20 03 mov 3, %g1
400162ec: c2 26 60 38 st %g1, [ %i1 + 0x38 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400162f0: c2 04 e0 58 ld [ %l3 + 0x58 ], %g1
(*timer_server->schedule_operation)( timer_server, the_timer );
400162f4: 90 10 00 11 mov %l1, %o0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
400162f8: a4 24 80 01 sub %l2, %g1, %l2
(*timer_server->schedule_operation)( timer_server, the_timer );
400162fc: c2 04 60 04 ld [ %l1 + 4 ], %g1
40016300: 92 10 00 19 mov %i1, %o1
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
40016304: c0 26 60 18 clr [ %i1 + 0x18 ]
the_watchdog->routine = routine;
40016308: f4 26 60 2c st %i2, [ %i1 + 0x2c ]
the_watchdog->id = id;
4001630c: e0 26 60 30 st %l0, [ %i1 + 0x30 ]
the_watchdog->user_data = user_data;
40016310: f6 26 60 34 st %i3, [ %i1 + 0x34 ]
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
40016314: e4 26 60 1c st %l2, [ %i1 + 0x1c ]
(*timer_server->schedule_operation)( timer_server, the_timer );
40016318: 9f c0 40 00 call %g1
4001631c: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
40016320: 40 00 0d 58 call 40019880 <_Thread_Enable_dispatch>
40016324: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
40016328: 81 c7 e0 08 ret
4001632c: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
40016330: 81 c7 e0 08 ret
40016334: 81 e8 00 00 restore