=============================================================================== 40017008 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 40017008: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 4001700c: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 40017010: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 40017014: 80 a6 80 01 cmp %i2, %g1 40017018: 18 80 00 16 bgu 40017070 <_CORE_message_queue_Broadcast+0x68><== NEVER TAKEN 4001701c: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 40017020: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 40017024: 80 a0 60 00 cmp %g1, 0 40017028: 02 80 00 0b be 40017054 <_CORE_message_queue_Broadcast+0x4c> 4001702c: a2 10 20 00 clr %l1 *count = 0; 40017030: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 40017034: 81 c7 e0 08 ret 40017038: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 4001703c: 92 10 00 19 mov %i1, %o1 40017040: 40 00 20 df call 4001f3bc 40017044: 94 10 00 1a mov %i2, %o2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 40017048: c2 04 a0 28 ld [ %l2 + 0x28 ], %g1 */ number_broadcasted = 0; while ((the_thread = _Thread_queue_Dequeue(&the_message_queue->Wait_queue))) { waitp = &the_thread->Wait; number_broadcasted += 1; 4001704c: a2 04 60 01 inc %l1 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 40017050: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 40017054: 40 00 0a 32 call 4001991c <_Thread_queue_Dequeue> 40017058: 90 10 00 10 mov %l0, %o0 4001705c: a4 92 20 00 orcc %o0, 0, %l2 40017060: 32 bf ff f7 bne,a 4001703c <_CORE_message_queue_Broadcast+0x34> 40017064: d0 04 a0 2c ld [ %l2 + 0x2c ], %o0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 40017068: e2 27 40 00 st %l1, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 4001706c: b0 10 20 00 clr %i0 } 40017070: 81 c7 e0 08 ret 40017074: 81 e8 00 00 restore =============================================================================== 4000f8e4 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 4000f8e4: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 4000f8e8: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; 4000f8ec: c0 26 20 48 clr [ %i0 + 0x48 ] the_message_queue->maximum_message_size = maximum_message_size; 4000f8f0: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 4000f8f4: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 4000f8f8: 80 8e e0 03 btst 3, %i3 4000f8fc: 02 80 00 07 be 4000f918 <_CORE_message_queue_Initialize+0x34> 4000f900: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 4000f904: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 4000f908: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 4000f90c: 80 a4 80 1b cmp %l2, %i3 4000f910: 0a 80 00 22 bcs 4000f998 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 4000f914: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 4000f918: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 4000f91c: 92 10 00 1a mov %i2, %o1 4000f920: 90 10 00 11 mov %l1, %o0 4000f924: 40 00 3d 20 call 4001eda4 <.umul> 4000f928: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 4000f92c: 80 a2 00 12 cmp %o0, %l2 4000f930: 0a 80 00 1a bcs 4000f998 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 4000f934: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 4000f938: 40 00 0b 7d call 4001272c <_Workspace_Allocate> 4000f93c: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 4000f940: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 4000f944: 80 a2 20 00 cmp %o0, 0 4000f948: 02 80 00 14 be 4000f998 <_CORE_message_queue_Initialize+0xb4> 4000f94c: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 4000f950: 90 04 20 60 add %l0, 0x60, %o0 4000f954: 94 10 00 1a mov %i2, %o2 4000f958: 40 00 13 7e call 40014750 <_Chain_Initialize> 4000f95c: 96 10 00 11 mov %l1, %o3 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000f960: 82 04 20 54 add %l0, 0x54, %g1 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 4000f964: c2 24 20 50 st %g1, [ %l0 + 0x50 ] the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); 4000f968: 82 04 20 50 add %l0, 0x50, %g1 the_chain->permanent_null = NULL; the_chain->last = _Chain_Head(the_chain); 4000f96c: c2 24 20 58 st %g1, [ %l0 + 0x58 ] _Thread_queue_Initialize( 4000f970: c2 06 40 00 ld [ %i1 ], %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 4000f974: c0 24 20 54 clr [ %l0 + 0x54 ] 4000f978: 82 18 60 01 xor %g1, 1, %g1 4000f97c: 80 a0 00 01 cmp %g0, %g1 4000f980: 90 10 00 10 mov %l0, %o0 4000f984: 92 60 3f ff subx %g0, -1, %o1 4000f988: 94 10 20 80 mov 0x80, %o2 4000f98c: 96 10 20 06 mov 6, %o3 4000f990: 40 00 08 55 call 40011ae4 <_Thread_queue_Initialize> 4000f994: b0 10 20 01 mov 1, %i0 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 4000f998: 81 c7 e0 08 ret 4000f99c: 81 e8 00 00 restore =============================================================================== 4000f9a0 <_CORE_message_queue_Seize>: void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 4000f9a0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; 4000f9a4: 27 10 00 92 sethi %hi(0x40024800), %l3 4000f9a8: a6 14 e2 9c or %l3, 0x29c, %l3 ! 40024a9c <_Per_CPU_Information> 4000f9ac: e4 04 e0 0c ld [ %l3 + 0xc ], %l2 void *buffer, size_t *size_p, bool wait, Watchdog_Interval timeout ) { 4000f9b0: a0 10 00 19 mov %i1, %l0 CORE_message_queue_Buffer_control *the_message; Thread_Control *executing; executing = _Thread_Executing; executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; _ISR_Disable( level ); 4000f9b4: 7f ff de 3e call 400072ac 4000f9b8: c0 24 a0 34 clr [ %l2 + 0x34 ] 4000f9bc: 82 10 00 08 mov %o0, %g1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 4000f9c0: e2 06 20 50 ld [ %i0 + 0x50 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000f9c4: 84 06 20 54 add %i0, 0x54, %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 4000f9c8: 80 a4 40 02 cmp %l1, %g2 4000f9cc: 02 80 00 15 be 4000fa20 <_CORE_message_queue_Seize+0x80> 4000f9d0: 86 06 20 50 add %i0, 0x50, %g3 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 4000f9d4: c4 04 40 00 ld [ %l1 ], %g2 the_chain->first = new_first; 4000f9d8: c4 26 20 50 st %g2, [ %i0 + 0x50 ] the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { 4000f9dc: 80 a4 60 00 cmp %l1, 0 4000f9e0: 02 80 00 10 be 4000fa20 <_CORE_message_queue_Seize+0x80> <== NEVER TAKEN 4000f9e4: c6 20 a0 04 st %g3, [ %g2 + 4 ] the_message_queue->number_of_pending_messages -= 1; 4000f9e8: c2 06 20 48 ld [ %i0 + 0x48 ], %g1 4000f9ec: 82 00 7f ff add %g1, -1, %g1 4000f9f0: c2 26 20 48 st %g1, [ %i0 + 0x48 ] _ISR_Enable( level ); 4000f9f4: 7f ff de 32 call 400072bc 4000f9f8: b0 06 20 60 add %i0, 0x60, %i0 *size_p = the_message->Contents.size; 4000f9fc: d4 04 60 08 ld [ %l1 + 8 ], %o2 _Thread_Executing->Wait.count = 4000fa00: c2 04 e0 0c ld [ %l3 + 0xc ], %g1 the_message = _CORE_message_queue_Get_pending_message( the_message_queue ); if ( the_message != NULL ) { the_message_queue->number_of_pending_messages -= 1; _ISR_Enable( level ); *size_p = the_message->Contents.size; 4000fa04: d4 26 c0 00 st %o2, [ %i3 ] _Thread_Executing->Wait.count = 4000fa08: c0 20 60 24 clr [ %g1 + 0x24 ] const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 4000fa0c: 90 10 00 1a mov %i2, %o0 4000fa10: 40 00 1d cc call 40017140 4000fa14: 92 04 60 0c add %l1, 0xc, %o1 RTEMS_INLINE_ROUTINE void _CORE_message_queue_Free_message_buffer ( CORE_message_queue_Control *the_message_queue, CORE_message_queue_Buffer_control *the_message ) { _Chain_Append( &the_message_queue->Inactive_messages, &the_message->Node ); 4000fa18: 7f ff ff 83 call 4000f824 <_Chain_Append> 4000fa1c: 93 e8 00 11 restore %g0, %l1, %o1 return; } #endif } if ( !wait ) { 4000fa20: 80 8f 20 ff btst 0xff, %i4 4000fa24: 32 80 00 08 bne,a 4000fa44 <_CORE_message_queue_Seize+0xa4> 4000fa28: 84 10 20 01 mov 1, %g2 _ISR_Enable( level ); 4000fa2c: 7f ff de 24 call 400072bc 4000fa30: 90 10 00 01 mov %g1, %o0 executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; 4000fa34: 82 10 20 04 mov 4, %g1 4000fa38: c2 24 a0 34 st %g1, [ %l2 + 0x34 ] executing->Wait.return_argument = size_p; /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); } 4000fa3c: 81 c7 e0 08 ret 4000fa40: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 4000fa44: c4 26 20 30 st %g2, [ %i0 + 0x30 ] executing->Wait.return_code = CORE_MESSAGE_QUEUE_STATUS_UNSATISFIED_NOWAIT; return; } _Thread_queue_Enter_critical_section( &the_message_queue->Wait_queue ); executing->Wait.queue = &the_message_queue->Wait_queue; 4000fa48: f0 24 a0 44 st %i0, [ %l2 + 0x44 ] executing->Wait.id = id; 4000fa4c: e0 24 a0 20 st %l0, [ %l2 + 0x20 ] executing->Wait.return_argument_second.mutable_object = buffer; 4000fa50: f4 24 a0 2c st %i2, [ %l2 + 0x2c ] executing->Wait.return_argument = size_p; 4000fa54: f6 24 a0 28 st %i3, [ %l2 + 0x28 ] /* Wait.count will be filled in with the message priority */ _ISR_Enable( level ); 4000fa58: 90 10 00 01 mov %g1, %o0 4000fa5c: 7f ff de 18 call 400072bc 4000fa60: 35 10 00 46 sethi %hi(0x40011800), %i2 _Thread_queue_Enqueue( &the_message_queue->Wait_queue, timeout ); 4000fa64: b2 10 00 1d mov %i5, %i1 4000fa68: 40 00 07 77 call 40011844 <_Thread_queue_Enqueue_with_handler> 4000fa6c: 95 ee a3 c4 restore %i2, 0x3c4, %o2 =============================================================================== 40006760 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 40006760: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 40006764: 03 10 00 50 sethi %hi(0x40014000), %g1 40006768: c2 00 62 78 ld [ %g1 + 0x278 ], %g1 ! 40014278 <_Thread_Dispatch_disable_level> 4000676c: 80 a0 60 00 cmp %g1, 0 40006770: 02 80 00 0d be 400067a4 <_CORE_mutex_Seize+0x44> 40006774: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 40006778: 80 8e a0 ff btst 0xff, %i2 4000677c: 02 80 00 0b be 400067a8 <_CORE_mutex_Seize+0x48> <== NEVER TAKEN 40006780: 90 10 00 18 mov %i0, %o0 40006784: 03 10 00 50 sethi %hi(0x40014000), %g1 40006788: c2 00 63 fc ld [ %g1 + 0x3fc ], %g1 ! 400143fc <_System_state_Current> 4000678c: 80 a0 60 01 cmp %g1, 1 40006790: 08 80 00 05 bleu 400067a4 <_CORE_mutex_Seize+0x44> 40006794: 90 10 20 00 clr %o0 40006798: 92 10 20 00 clr %o1 4000679c: 40 00 01 dd call 40006f10 <_Internal_error_Occurred> 400067a0: 94 10 20 12 mov 0x12, %o2 400067a4: 90 10 00 18 mov %i0, %o0 400067a8: 40 00 12 9a call 4000b210 <_CORE_mutex_Seize_interrupt_trylock> 400067ac: 92 07 a0 54 add %fp, 0x54, %o1 400067b0: 80 a2 20 00 cmp %o0, 0 400067b4: 02 80 00 0a be 400067dc <_CORE_mutex_Seize+0x7c> 400067b8: 80 8e a0 ff btst 0xff, %i2 400067bc: 35 10 00 51 sethi %hi(0x40014400), %i2 400067c0: 12 80 00 09 bne 400067e4 <_CORE_mutex_Seize+0x84> 400067c4: b4 16 a0 dc or %i2, 0xdc, %i2 ! 400144dc <_Per_CPU_Information> 400067c8: 7f ff ed 38 call 40001ca8 400067cc: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 400067d0: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 400067d4: 84 10 20 01 mov 1, %g2 400067d8: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 400067dc: 81 c7 e0 08 ret 400067e0: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 400067e4: 82 10 20 01 mov 1, %g1 400067e8: c2 26 20 30 st %g1, [ %i0 + 0x30 ] 400067ec: c2 06 a0 0c ld [ %i2 + 0xc ], %g1 400067f0: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 400067f4: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 400067f8: 03 10 00 50 sethi %hi(0x40014000), %g1 400067fc: c4 00 62 78 ld [ %g1 + 0x278 ], %g2 ! 40014278 <_Thread_Dispatch_disable_level> 40006800: 84 00 a0 01 inc %g2 40006804: c4 20 62 78 st %g2, [ %g1 + 0x278 ] 40006808: 7f ff ed 28 call 40001ca8 4000680c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 40006810: 90 10 00 18 mov %i0, %o0 40006814: 7f ff ff ba call 400066fc <_CORE_mutex_Seize_interrupt_blocking> 40006818: 92 10 00 1b mov %i3, %o1 4000681c: 81 c7 e0 08 ret 40006820: 81 e8 00 00 restore =============================================================================== 4000b210 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 4000b210: 9d e3 bf a0 save %sp, -96, %sp { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 4000b214: 03 10 00 51 sethi %hi(0x40014400), %g1 4000b218: c2 00 60 e8 ld [ %g1 + 0xe8 ], %g1 ! 400144e8 <_Per_CPU_Information+0xc> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 4000b21c: c4 06 20 50 ld [ %i0 + 0x50 ], %g2 Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 4000b220: c0 20 60 34 clr [ %g1 + 0x34 ] if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 4000b224: 80 a0 a0 00 cmp %g2, 0 4000b228: 02 80 00 2f be 4000b2e4 <_CORE_mutex_Seize_interrupt_trylock+0xd4> 4000b22c: a0 10 00 18 mov %i0, %l0 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 4000b230: c4 00 60 08 ld [ %g1 + 8 ], %g2 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 4000b234: c0 26 20 50 clr [ %i0 + 0x50 ] the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 4000b238: c4 26 20 60 st %g2, [ %i0 + 0x60 ] the_mutex->nest_count = 1; 4000b23c: 84 10 20 01 mov 1, %g2 4000b240: c4 26 20 54 st %g2, [ %i0 + 0x54 ] return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 4000b244: c4 06 20 48 ld [ %i0 + 0x48 ], %g2 if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 4000b248: 80 a0 a0 02 cmp %g2, 2 4000b24c: 02 80 00 05 be 4000b260 <_CORE_mutex_Seize_interrupt_trylock+0x50> 4000b250: c2 26 20 5c st %g1, [ %i0 + 0x5c ] 4000b254: 80 a0 a0 03 cmp %g2, 3 4000b258: 12 80 00 07 bne 4000b274 <_CORE_mutex_Seize_interrupt_trylock+0x64> 4000b25c: 01 00 00 00 nop _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 4000b260: c6 00 60 1c ld [ %g1 + 0x1c ], %g3 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 4000b264: 80 a0 a0 03 cmp %g2, 3 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 4000b268: 88 00 e0 01 add %g3, 1, %g4 } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { 4000b26c: 02 80 00 03 be 4000b278 <_CORE_mutex_Seize_interrupt_trylock+0x68> 4000b270: c8 20 60 1c st %g4, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 4000b274: 30 80 00 2b b,a 4000b320 <_CORE_mutex_Seize_interrupt_trylock+0x110> */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 4000b278: c4 04 20 4c ld [ %l0 + 0x4c ], %g2 current = executing->current_priority; 4000b27c: c8 00 60 14 ld [ %g1 + 0x14 ], %g4 if ( current == ceiling ) { 4000b280: 80 a1 00 02 cmp %g4, %g2 4000b284: 12 80 00 03 bne 4000b290 <_CORE_mutex_Seize_interrupt_trylock+0x80> 4000b288: 01 00 00 00 nop _ISR_Enable( *level_p ); 4000b28c: 30 80 00 25 b,a 4000b320 <_CORE_mutex_Seize_interrupt_trylock+0x110> return 0; } if ( current > ceiling ) { 4000b290: 08 80 00 0f bleu 4000b2cc <_CORE_mutex_Seize_interrupt_trylock+0xbc> 4000b294: 84 10 20 06 mov 6, %g2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 4000b298: 03 10 00 50 sethi %hi(0x40014000), %g1 4000b29c: c4 00 62 78 ld [ %g1 + 0x278 ], %g2 ! 40014278 <_Thread_Dispatch_disable_level> 4000b2a0: 84 00 a0 01 inc %g2 4000b2a4: c4 20 62 78 st %g2, [ %g1 + 0x278 ] _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); 4000b2a8: 7f ff da 80 call 40001ca8 4000b2ac: d0 06 40 00 ld [ %i1 ], %o0 _Thread_Change_priority( 4000b2b0: d0 04 20 5c ld [ %l0 + 0x5c ], %o0 4000b2b4: d2 04 20 4c ld [ %l0 + 0x4c ], %o1 4000b2b8: 7f ff f1 6b call 40007864 <_Thread_Change_priority> 4000b2bc: 94 10 20 00 clr %o2 the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 4000b2c0: 7f ff f2 cd call 40007df4 <_Thread_Enable_dispatch> 4000b2c4: b0 10 20 00 clr %i0 4000b2c8: 30 80 00 1d b,a 4000b33c <_CORE_mutex_Seize_interrupt_trylock+0x12c> return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 4000b2cc: c4 20 60 34 st %g2, [ %g1 + 0x34 ] the_mutex->lock = CORE_MUTEX_UNLOCKED; the_mutex->nest_count = 0; /* undo locking above */ 4000b2d0: c0 24 20 54 clr [ %l0 + 0x54 ] _Thread_Enable_dispatch(); return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; the_mutex->lock = CORE_MUTEX_UNLOCKED; 4000b2d4: 84 10 20 01 mov 1, %g2 4000b2d8: c4 24 20 50 st %g2, [ %l0 + 0x50 ] the_mutex->nest_count = 0; /* undo locking above */ executing->resource_count--; /* undo locking above */ 4000b2dc: c6 20 60 1c st %g3, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 4000b2e0: 30 80 00 10 b,a 4000b320 <_CORE_mutex_Seize_interrupt_trylock+0x110> /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 4000b2e4: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 4000b2e8: 80 a0 80 01 cmp %g2, %g1 4000b2ec: 12 80 00 14 bne 4000b33c <_CORE_mutex_Seize_interrupt_trylock+0x12c> 4000b2f0: b0 10 20 01 mov 1, %i0 switch ( the_mutex->Attributes.lock_nesting_behavior ) { 4000b2f4: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 4000b2f8: 80 a0 60 00 cmp %g1, 0 4000b2fc: 22 80 00 07 be,a 4000b318 <_CORE_mutex_Seize_interrupt_trylock+0x108> 4000b300: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 4000b304: 80 a0 60 01 cmp %g1, 1 4000b308: 12 80 00 0d bne 4000b33c <_CORE_mutex_Seize_interrupt_trylock+0x12c><== ALWAYS TAKEN 4000b30c: 82 10 20 02 mov 2, %g1 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 4000b310: 10 80 00 08 b 4000b330 <_CORE_mutex_Seize_interrupt_trylock+0x120><== NOT EXECUTED 4000b314: c2 20 a0 34 st %g1, [ %g2 + 0x34 ] <== NOT EXECUTED * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 4000b318: 82 00 60 01 inc %g1 4000b31c: c2 24 20 54 st %g1, [ %l0 + 0x54 ] _ISR_Enable( *level_p ); 4000b320: 7f ff da 62 call 40001ca8 4000b324: d0 06 40 00 ld [ %i1 ], %o0 return 0; 4000b328: 81 c7 e0 08 ret 4000b32c: 91 e8 20 00 restore %g0, 0, %o0 case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; _ISR_Enable( *level_p ); 4000b330: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 4000b334: 7f ff da 5d call 40001ca8 <== NOT EXECUTED 4000b338: b0 10 20 00 clr %i0 <== NOT EXECUTED 4000b33c: 81 c7 e0 08 ret 4000b340: 81 e8 00 00 restore =============================================================================== 400069a0 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 400069a0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 400069a4: 90 10 00 18 mov %i0, %o0 400069a8: 40 00 05 ee call 40008160 <_Thread_queue_Dequeue> 400069ac: a0 10 00 18 mov %i0, %l0 400069b0: 80 a2 20 00 cmp %o0, 0 400069b4: 12 80 00 0e bne 400069ec <_CORE_semaphore_Surrender+0x4c> 400069b8: b0 10 20 00 clr %i0 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 400069bc: 7f ff ec b7 call 40001c98 400069c0: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 400069c4: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 400069c8: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 400069cc: 80 a0 40 02 cmp %g1, %g2 400069d0: 1a 80 00 05 bcc 400069e4 <_CORE_semaphore_Surrender+0x44> <== NEVER TAKEN 400069d4: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 400069d8: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 400069dc: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 400069e0: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 400069e4: 7f ff ec b1 call 40001ca8 400069e8: 01 00 00 00 nop } return status; } 400069ec: 81 c7 e0 08 ret 400069f0: 81 e8 00 00 restore =============================================================================== 40006d20 <_Chain_Get_with_empty_check>: bool _Chain_Get_with_empty_check( Chain_Control *chain, Chain_Node **node ) { 40006d20: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; bool is_empty_now; _ISR_Disable( level ); 40006d24: 7f ff ed 71 call 400022e8 40006d28: 01 00 00 00 nop Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true; Chain_Node *first = the_chain->first; 40006d2c: c4 06 00 00 ld [ %i0 ], %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40006d30: 86 06 20 04 add %i0, 4, %g3 ) { bool is_empty_now = true; Chain_Node *first = the_chain->first; if ( first != _Chain_Tail( the_chain ) ) { 40006d34: 80 a0 80 03 cmp %g2, %g3 40006d38: 22 80 00 0a be,a 40006d60 <_Chain_Get_with_empty_check+0x40><== NEVER TAKEN 40006d3c: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED Chain_Node *new_first = first->next; 40006d40: c2 00 80 00 ld [ %g2 ], %g1 the_chain->first = new_first; 40006d44: c2 26 00 00 st %g1, [ %i0 ] new_first->previous = _Chain_Head( the_chain ); 40006d48: f0 20 60 04 st %i0, [ %g1 + 4 ] *the_node = first; 40006d4c: c4 26 40 00 st %g2, [ %i1 ] is_empty_now = new_first == _Chain_Tail( the_chain ); 40006d50: 82 18 40 03 xor %g1, %g3, %g1 40006d54: 80 a0 00 01 cmp %g0, %g1 40006d58: 10 80 00 03 b 40006d64 <_Chain_Get_with_empty_check+0x44> 40006d5c: b0 60 3f ff subx %g0, -1, %i0 RTEMS_INLINE_ROUTINE bool _Chain_Get_with_empty_check_unprotected( Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true; 40006d60: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node ); _ISR_Enable( level ); 40006d64: 7f ff ed 65 call 400022f8 40006d68: 01 00 00 00 nop return is_empty_now; } 40006d6c: 81 c7 e0 08 ret 40006d70: 81 e8 00 00 restore =============================================================================== 40005768 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 40005768: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 4000576c: e2 06 21 5c ld [ %i0 + 0x15c ], %l1 option_set = (rtems_option) the_thread->Wait.option; 40005770: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 _ISR_Disable( level ); 40005774: 7f ff f1 49 call 40001c98 40005778: a0 10 00 18 mov %i0, %l0 4000577c: b0 10 00 08 mov %o0, %i0 pending_events = api->pending_events; 40005780: c4 04 40 00 ld [ %l1 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 40005784: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 40005788: 82 88 c0 02 andcc %g3, %g2, %g1 4000578c: 12 80 00 03 bne 40005798 <_Event_Surrender+0x30> 40005790: 09 10 00 51 sethi %hi(0x40014400), %g4 _ISR_Enable( level ); 40005794: 30 80 00 42 b,a 4000589c <_Event_Surrender+0x134> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 40005798: 88 11 20 dc or %g4, 0xdc, %g4 ! 400144dc <_Per_CPU_Information> 4000579c: da 01 20 08 ld [ %g4 + 8 ], %o5 400057a0: 80 a3 60 00 cmp %o5, 0 400057a4: 22 80 00 1d be,a 40005818 <_Event_Surrender+0xb0> 400057a8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 400057ac: c8 01 20 0c ld [ %g4 + 0xc ], %g4 400057b0: 80 a4 00 04 cmp %l0, %g4 400057b4: 32 80 00 19 bne,a 40005818 <_Event_Surrender+0xb0> 400057b8: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 400057bc: 09 10 00 51 sethi %hi(0x40014400), %g4 400057c0: da 01 20 f8 ld [ %g4 + 0xf8 ], %o5 ! 400144f8 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 400057c4: 80 a3 60 02 cmp %o5, 2 400057c8: 02 80 00 07 be 400057e4 <_Event_Surrender+0x7c> <== NEVER TAKEN 400057cc: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 400057d0: c8 01 20 f8 ld [ %g4 + 0xf8 ], %g4 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 400057d4: 80 a1 20 01 cmp %g4, 1 400057d8: 32 80 00 10 bne,a 40005818 <_Event_Surrender+0xb0> 400057dc: c8 04 20 10 ld [ %l0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 400057e0: 80 a0 40 03 cmp %g1, %g3 400057e4: 02 80 00 04 be 400057f4 <_Event_Surrender+0x8c> 400057e8: 80 8c a0 02 btst 2, %l2 400057ec: 02 80 00 0a be 40005814 <_Event_Surrender+0xac> <== NEVER TAKEN 400057f0: 01 00 00 00 nop RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 400057f4: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 400057f8: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 400057fc: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; 40005800: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 40005804: c2 20 80 00 st %g1, [ %g2 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 40005808: 84 10 20 03 mov 3, %g2 4000580c: 03 10 00 51 sethi %hi(0x40014400), %g1 40005810: c4 20 60 f8 st %g2, [ %g1 + 0xf8 ] ! 400144f8 <_Event_Sync_state> } _ISR_Enable( level ); 40005814: 30 80 00 22 b,a 4000589c <_Event_Surrender+0x134> } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 40005818: 80 89 21 00 btst 0x100, %g4 4000581c: 02 80 00 20 be 4000589c <_Event_Surrender+0x134> 40005820: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 40005824: 02 80 00 04 be 40005834 <_Event_Surrender+0xcc> 40005828: 80 8c a0 02 btst 2, %l2 4000582c: 02 80 00 1c be 4000589c <_Event_Surrender+0x134> <== NEVER TAKEN 40005830: 01 00 00 00 nop 40005834: 84 28 80 01 andn %g2, %g1, %g2 api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 40005838: c4 24 40 00 st %g2, [ %l1 ] the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 4000583c: c4 04 20 28 ld [ %l0 + 0x28 ], %g2 * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; 40005840: c0 24 20 24 clr [ %l0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 40005844: c2 20 80 00 st %g1, [ %g2 ] _ISR_Flash( level ); 40005848: 7f ff f1 18 call 40001ca8 4000584c: 90 10 00 18 mov %i0, %o0 40005850: 7f ff f1 12 call 40001c98 40005854: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 40005858: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 4000585c: 80 a0 60 02 cmp %g1, 2 40005860: 02 80 00 06 be 40005878 <_Event_Surrender+0x110> 40005864: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 40005868: 7f ff f1 10 call 40001ca8 4000586c: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 40005870: 10 80 00 08 b 40005890 <_Event_Surrender+0x128> 40005874: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 40005878: c2 24 20 50 st %g1, [ %l0 + 0x50 ] _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 4000587c: 7f ff f1 0b call 40001ca8 40005880: 90 10 00 18 mov %i0, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 40005884: 40 00 0d e7 call 40009020 <_Watchdog_Remove> 40005888: 90 04 20 48 add %l0, 0x48, %o0 4000588c: 33 04 00 ff sethi %hi(0x1003fc00), %i1 40005890: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 40005894: 40 00 08 6d call 40007a48 <_Thread_Clear_state> 40005898: 91 e8 00 10 restore %g0, %l0, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 4000589c: 7f ff f1 03 call 40001ca8 400058a0: 81 e8 00 00 restore =============================================================================== 400058a8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 400058a8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 400058ac: 90 10 00 18 mov %i0, %o0 400058b0: 40 00 09 5e call 40007e28 <_Thread_Get> 400058b4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 400058b8: c2 07 bf fc ld [ %fp + -4 ], %g1 400058bc: 80 a0 60 00 cmp %g1, 0 400058c0: 12 80 00 1c bne 40005930 <_Event_Timeout+0x88> <== NEVER TAKEN 400058c4: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 400058c8: 7f ff f0 f4 call 40001c98 400058cc: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 400058d0: 03 10 00 51 sethi %hi(0x40014400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 400058d4: c2 00 60 e8 ld [ %g1 + 0xe8 ], %g1 ! 400144e8 <_Per_CPU_Information+0xc> 400058d8: 80 a4 00 01 cmp %l0, %g1 400058dc: 12 80 00 09 bne 40005900 <_Event_Timeout+0x58> 400058e0: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 400058e4: 03 10 00 51 sethi %hi(0x40014400), %g1 400058e8: c4 00 60 f8 ld [ %g1 + 0xf8 ], %g2 ! 400144f8 <_Event_Sync_state> 400058ec: 80 a0 a0 01 cmp %g2, 1 400058f0: 32 80 00 05 bne,a 40005904 <_Event_Timeout+0x5c> 400058f4: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 400058f8: 84 10 20 02 mov 2, %g2 400058fc: c4 20 60 f8 st %g2, [ %g1 + 0xf8 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 40005900: 82 10 20 06 mov 6, %g1 40005904: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 40005908: 7f ff f0 e8 call 40001ca8 4000590c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 40005910: 90 10 00 10 mov %l0, %o0 40005914: 13 04 00 ff sethi %hi(0x1003fc00), %o1 40005918: 40 00 08 4c call 40007a48 <_Thread_Clear_state> 4000591c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 40005920: 03 10 00 50 sethi %hi(0x40014000), %g1 40005924: c4 00 62 78 ld [ %g1 + 0x278 ], %g2 ! 40014278 <_Thread_Dispatch_disable_level> 40005928: 84 00 bf ff add %g2, -1, %g2 4000592c: c4 20 62 78 st %g2, [ %g1 + 0x278 ] 40005930: 81 c7 e0 08 ret 40005934: 81 e8 00 00 restore =============================================================================== 4000b88c <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 4000b88c: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 4000b890: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 4000b894: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 4000b898: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 4000b89c: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 4000b8a0: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 4000b8a4: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 4000b8a8: a2 06 40 1a add %i1, %i2, %l1 uintptr_t const free_size = stats->free_size; 4000b8ac: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 4000b8b0: 92 10 00 1a mov %i2, %o1 uintptr_t const free_size = stats->free_size; uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 4000b8b4: 80 a4 40 19 cmp %l1, %i1 4000b8b8: 0a 80 00 9f bcs 4000bb34 <_Heap_Extend+0x2a8> 4000b8bc: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 4000b8c0: 90 10 00 19 mov %i1, %o0 4000b8c4: 94 10 00 13 mov %l3, %o2 4000b8c8: 98 07 bf fc add %fp, -4, %o4 4000b8cc: 7f ff ed ad call 40006f80 <_Heap_Get_first_and_last_block> 4000b8d0: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 4000b8d4: 80 8a 20 ff btst 0xff, %o0 4000b8d8: 02 80 00 97 be 4000bb34 <_Heap_Extend+0x2a8> 4000b8dc: aa 10 00 12 mov %l2, %l5 4000b8e0: ba 10 20 00 clr %i5 4000b8e4: b8 10 20 00 clr %i4 4000b8e8: b0 10 20 00 clr %i0 4000b8ec: ae 10 20 00 clr %l7 4000b8f0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 4000b8f4: 80 a0 40 11 cmp %g1, %l1 4000b8f8: 1a 80 00 05 bcc 4000b90c <_Heap_Extend+0x80> 4000b8fc: ec 05 40 00 ld [ %l5 ], %l6 4000b900: 80 a6 40 16 cmp %i1, %l6 4000b904: 2a 80 00 8c bcs,a 4000bb34 <_Heap_Extend+0x2a8> 4000b908: b0 10 20 00 clr %i0 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 4000b90c: 80 a4 40 01 cmp %l1, %g1 4000b910: 02 80 00 06 be 4000b928 <_Heap_Extend+0x9c> 4000b914: 80 a4 40 16 cmp %l1, %l6 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 4000b918: 2a 80 00 05 bcs,a 4000b92c <_Heap_Extend+0xa0> 4000b91c: b8 10 00 15 mov %l5, %i4 4000b920: 10 80 00 04 b 4000b930 <_Heap_Extend+0xa4> 4000b924: 90 10 00 16 mov %l6, %o0 4000b928: ae 10 00 15 mov %l5, %l7 4000b92c: 90 10 00 16 mov %l6, %o0 4000b930: 40 00 16 35 call 40011204 <.urem> 4000b934: 92 10 00 13 mov %l3, %o1 4000b938: b4 05 bf f8 add %l6, -8, %i2 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 4000b93c: 80 a5 80 19 cmp %l6, %i1 4000b940: 12 80 00 05 bne 4000b954 <_Heap_Extend+0xc8> 4000b944: 90 26 80 08 sub %i2, %o0, %o0 start_block->prev_size = extend_area_end; 4000b948: e2 25 40 00 st %l1, [ %l5 ] RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area( uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) 4000b94c: 10 80 00 04 b 4000b95c <_Heap_Extend+0xd0> 4000b950: b0 10 00 08 mov %o0, %i0 merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 4000b954: 2a 80 00 02 bcs,a 4000b95c <_Heap_Extend+0xd0> 4000b958: ba 10 00 08 mov %o0, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 4000b95c: ea 02 20 04 ld [ %o0 + 4 ], %l5 4000b960: aa 0d 7f fe and %l5, -2, %l5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 4000b964: aa 02 00 15 add %o0, %l5, %l5 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 4000b968: 80 a5 40 12 cmp %l5, %l2 4000b96c: 12 bf ff e2 bne 4000b8f4 <_Heap_Extend+0x68> 4000b970: 82 10 00 15 mov %l5, %g1 if ( extend_area_begin < heap->area_begin ) { 4000b974: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 4000b978: 80 a6 40 01 cmp %i1, %g1 4000b97c: 3a 80 00 04 bcc,a 4000b98c <_Heap_Extend+0x100> 4000b980: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 4000b984: 10 80 00 05 b 4000b998 <_Heap_Extend+0x10c> 4000b988: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { 4000b98c: 80 a0 40 11 cmp %g1, %l1 4000b990: 2a 80 00 02 bcs,a 4000b998 <_Heap_Extend+0x10c> 4000b994: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 4000b998: c4 07 bf fc ld [ %fp + -4 ], %g2 4000b99c: c2 07 bf f8 ld [ %fp + -8 ], %g1 extend_first_block->prev_size = extend_area_end; 4000b9a0: e2 20 80 00 st %l1, [ %g2 ] heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 4000b9a4: 86 20 40 02 sub %g1, %g2, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 4000b9a8: 88 10 e0 01 or %g3, 1, %g4 _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 4000b9ac: c6 20 40 00 st %g3, [ %g1 ] extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 4000b9b0: c8 20 a0 04 st %g4, [ %g2 + 4 ] extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 4000b9b4: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 4000b9b8: 80 a0 c0 02 cmp %g3, %g2 4000b9bc: 08 80 00 04 bleu 4000b9cc <_Heap_Extend+0x140> 4000b9c0: c0 20 60 04 clr [ %g1 + 4 ] heap->first_block = extend_first_block; 4000b9c4: 10 80 00 06 b 4000b9dc <_Heap_Extend+0x150> 4000b9c8: c4 24 20 20 st %g2, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 4000b9cc: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 4000b9d0: 80 a0 80 01 cmp %g2, %g1 4000b9d4: 2a 80 00 02 bcs,a 4000b9dc <_Heap_Extend+0x150> 4000b9d8: c2 24 20 24 st %g1, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 4000b9dc: 80 a5 e0 00 cmp %l7, 0 4000b9e0: 02 80 00 14 be 4000ba30 <_Heap_Extend+0x1a4> 4000b9e4: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 4000b9e8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 4000b9ec: 92 10 00 12 mov %l2, %o1 4000b9f0: 40 00 16 05 call 40011204 <.urem> 4000b9f4: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 4000b9f8: 80 a2 20 00 cmp %o0, 0 4000b9fc: 02 80 00 04 be 4000ba0c <_Heap_Extend+0x180> <== ALWAYS TAKEN 4000ba00: c2 05 c0 00 ld [ %l7 ], %g1 return value - remainder + alignment; 4000ba04: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 4000ba08: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 4000ba0c: 92 06 7f f8 add %i1, -8, %o1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 4000ba10: c2 26 7f f8 st %g1, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 4000ba14: 82 25 c0 09 sub %l7, %o1, %g1 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 4000ba18: 82 10 60 01 or %g1, 1, %g1 _Heap_Free_block( heap, new_first_block ); 4000ba1c: 90 10 00 10 mov %l0, %o0 4000ba20: 7f ff ff 90 call 4000b860 <_Heap_Free_block> 4000ba24: c2 22 60 04 st %g1, [ %o1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 4000ba28: 10 80 00 09 b 4000ba4c <_Heap_Extend+0x1c0> 4000ba2c: 80 a6 20 00 cmp %i0, 0 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 4000ba30: 80 a7 20 00 cmp %i4, 0 4000ba34: 02 80 00 05 be 4000ba48 <_Heap_Extend+0x1bc> 4000ba38: c2 07 bf f8 ld [ %fp + -8 ], %g1 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 4000ba3c: b8 27 00 01 sub %i4, %g1, %i4 4000ba40: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 4000ba44: f8 20 60 04 st %i4, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 4000ba48: 80 a6 20 00 cmp %i0, 0 4000ba4c: 02 80 00 15 be 4000baa0 <_Heap_Extend+0x214> 4000ba50: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 4000ba54: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 4000ba58: a2 24 40 18 sub %l1, %i0, %l1 4000ba5c: 40 00 15 ea call 40011204 <.urem> 4000ba60: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 4000ba64: c4 06 20 04 ld [ %i0 + 4 ], %g2 4000ba68: a2 24 40 08 sub %l1, %o0, %l1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 4000ba6c: 82 04 40 18 add %l1, %i0, %g1 (last_block->size_and_flag - last_block_new_size) 4000ba70: 84 20 80 11 sub %g2, %l1, %g2 | HEAP_PREV_BLOCK_USED; 4000ba74: 84 10 a0 01 or %g2, 1, %g2 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 4000ba78: c4 20 60 04 st %g2, [ %g1 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000ba7c: c2 06 20 04 ld [ %i0 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 4000ba80: 90 10 00 10 mov %l0, %o0 4000ba84: 82 08 60 01 and %g1, 1, %g1 4000ba88: 92 10 00 18 mov %i0, %o1 block->size_and_flag = size | flag; 4000ba8c: a2 14 40 01 or %l1, %g1, %l1 4000ba90: 7f ff ff 74 call 4000b860 <_Heap_Free_block> 4000ba94: e2 26 20 04 st %l1, [ %i0 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 4000ba98: 10 80 00 0f b 4000bad4 <_Heap_Extend+0x248> 4000ba9c: 80 a6 20 00 cmp %i0, 0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 4000baa0: 80 a7 60 00 cmp %i5, 0 4000baa4: 02 80 00 0b be 4000bad0 <_Heap_Extend+0x244> 4000baa8: c6 07 bf fc ld [ %fp + -4 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000baac: c4 07 60 04 ld [ %i5 + 4 ], %g2 _Heap_Link_above( 4000bab0: c2 07 bf f8 ld [ %fp + -8 ], %g1 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 4000bab4: 86 20 c0 1d sub %g3, %i5, %g3 4000bab8: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 4000babc: 84 10 c0 02 or %g3, %g2, %g2 4000bac0: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 4000bac4: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000bac8: 84 10 a0 01 or %g2, 1, %g2 4000bacc: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 4000bad0: 80 a6 20 00 cmp %i0, 0 4000bad4: 32 80 00 09 bne,a 4000baf8 <_Heap_Extend+0x26c> 4000bad8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 4000badc: 80 a5 e0 00 cmp %l7, 0 4000bae0: 32 80 00 06 bne,a 4000baf8 <_Heap_Extend+0x26c> 4000bae4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 4000bae8: d2 07 bf fc ld [ %fp + -4 ], %o1 4000baec: 7f ff ff 5d call 4000b860 <_Heap_Free_block> 4000baf0: 90 10 00 10 mov %l0, %o0 */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( heap->last_block, (uintptr_t) heap->first_block - (uintptr_t) heap->last_block 4000baf4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 4000baf8: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000bafc: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 4000bb00: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000bb04: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 4000bb08: 84 10 c0 02 or %g3, %g2, %g2 4000bb0c: c4 20 60 04 st %g2, [ %g1 + 4 ] } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 4000bb10: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 4000bb14: b0 10 20 01 mov 1, %i0 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 4000bb18: a8 20 40 14 sub %g1, %l4, %l4 /* Statistics */ stats->size += extended_size; 4000bb1c: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 if ( extended_size_ptr != NULL ) 4000bb20: 80 a6 e0 00 cmp %i3, 0 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 4000bb24: 82 00 40 14 add %g1, %l4, %g1 if ( extended_size_ptr != NULL ) 4000bb28: 02 80 00 03 be 4000bb34 <_Heap_Extend+0x2a8> <== NEVER TAKEN 4000bb2c: c2 24 20 2c st %g1, [ %l0 + 0x2c ] *extended_size_ptr = extended_size; 4000bb30: e8 26 c0 00 st %l4, [ %i3 ] 4000bb34: 81 c7 e0 08 ret 4000bb38: 81 e8 00 00 restore =============================================================================== 4000b58c <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 4000b58c: 9d e3 bf a0 save %sp, -96, %sp 4000b590: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 4000b594: 40 00 15 de call 40010d0c <.urem> 4000b598: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 4000b59c: d8 06 20 20 ld [ %i0 + 0x20 ], %o4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 4000b5a0: a2 06 7f f8 add %i1, -8, %l1 4000b5a4: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 4000b5a8: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4000b5ac: 80 a2 00 0c cmp %o0, %o4 4000b5b0: 0a 80 00 05 bcs 4000b5c4 <_Heap_Free+0x38> 4000b5b4: 82 10 20 00 clr %g1 4000b5b8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 4000b5bc: 80 a0 40 08 cmp %g1, %o0 4000b5c0: 82 60 3f ff subx %g0, -1, %g1 uintptr_t next_block_size = 0; bool next_is_free = false; _Heap_Protection_block_check( heap, block ); if ( !_Heap_Is_block_in_heap( heap, block ) ) { 4000b5c4: 80 a0 60 00 cmp %g1, 0 4000b5c8: 02 80 00 6a be 4000b770 <_Heap_Free+0x1e4> 4000b5cc: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 4000b5d0: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 4000b5d4: 84 0b 7f fe and %o5, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 4000b5d8: 82 02 00 02 add %o0, %g2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4000b5dc: 80 a0 40 0c cmp %g1, %o4 4000b5e0: 0a 80 00 05 bcs 4000b5f4 <_Heap_Free+0x68> <== NEVER TAKEN 4000b5e4: 86 10 20 00 clr %g3 4000b5e8: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 4000b5ec: 80 a0 c0 01 cmp %g3, %g1 4000b5f0: 86 60 3f ff subx %g0, -1, %g3 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 4000b5f4: 80 a0 e0 00 cmp %g3, 0 4000b5f8: 02 80 00 5e be 4000b770 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b5fc: b0 10 20 00 clr %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 4000b600: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 4000b604: 80 89 20 01 btst 1, %g4 4000b608: 02 80 00 5a be 4000b770 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b60c: 88 09 3f fe and %g4, -2, %g4 if ( !_Heap_Protection_determine_block_free( heap, block ) ) { return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block 4000b610: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 4000b614: 80 a0 40 09 cmp %g1, %o1 4000b618: 02 80 00 07 be 4000b634 <_Heap_Free+0xa8> 4000b61c: 96 10 20 00 clr %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 4000b620: 86 00 40 04 add %g1, %g4, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000b624: c6 00 e0 04 ld [ %g3 + 4 ], %g3 4000b628: 86 08 e0 01 and %g3, 1, %g3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 4000b62c: 80 a0 00 03 cmp %g0, %g3 4000b630: 96 60 3f ff subx %g0, -1, %o3 if ( !_Heap_Is_prev_used( block ) ) { 4000b634: 80 8b 60 01 btst 1, %o5 4000b638: 12 80 00 26 bne 4000b6d0 <_Heap_Free+0x144> 4000b63c: 80 8a e0 ff btst 0xff, %o3 uintptr_t const prev_size = block->prev_size; 4000b640: da 02 00 00 ld [ %o0 ], %o5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 4000b644: 86 22 00 0d sub %o0, %o5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 4000b648: 80 a0 c0 0c cmp %g3, %o4 4000b64c: 0a 80 00 04 bcs 4000b65c <_Heap_Free+0xd0> <== NEVER TAKEN 4000b650: 94 10 20 00 clr %o2 4000b654: 80 a2 40 03 cmp %o1, %g3 4000b658: 94 60 3f ff subx %g0, -1, %o2 Heap_Block * const prev_block = _Heap_Block_at( block, -prev_size ); if ( !_Heap_Is_block_in_heap( heap, prev_block ) ) { 4000b65c: 80 a2 a0 00 cmp %o2, 0 4000b660: 02 80 00 44 be 4000b770 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b664: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 4000b668: d8 00 e0 04 ld [ %g3 + 4 ], %o4 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 4000b66c: 80 8b 20 01 btst 1, %o4 4000b670: 02 80 00 40 be 4000b770 <_Heap_Free+0x1e4> <== NEVER TAKEN 4000b674: 80 8a e0 ff btst 0xff, %o3 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 4000b678: 22 80 00 0f be,a 4000b6b4 <_Heap_Free+0x128> 4000b67c: 9a 00 80 0d add %g2, %o5, %o5 uintptr_t const size = block_size + prev_size + next_block_size; 4000b680: 88 00 80 04 add %g2, %g4, %g4 4000b684: 9a 01 00 0d add %g4, %o5, %o5 return _Heap_Free_list_tail(heap)->prev; } RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; 4000b688: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = block->prev; 4000b68c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 prev->next = next; 4000b690: c8 20 60 08 st %g4, [ %g1 + 8 ] next->prev = prev; 4000b694: c2 21 20 0c st %g1, [ %g4 + 0xc ] _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 4000b698: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 4000b69c: 82 00 7f ff add %g1, -1, %g1 4000b6a0: c2 24 20 38 st %g1, [ %l0 + 0x38 ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 4000b6a4: da 20 c0 0d st %o5, [ %g3 + %o5 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b6a8: 82 13 60 01 or %o5, 1, %g1 4000b6ac: 10 80 00 27 b 4000b748 <_Heap_Free+0x1bc> 4000b6b0: c2 20 e0 04 st %g1, [ %g3 + 4 ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b6b4: 88 13 60 01 or %o5, 1, %g4 4000b6b8: c8 20 e0 04 st %g4, [ %g3 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b6bc: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = size; 4000b6c0: da 22 00 02 st %o5, [ %o0 + %g2 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b6c4: 86 08 ff fe and %g3, -2, %g3 4000b6c8: 10 80 00 20 b 4000b748 <_Heap_Free+0x1bc> 4000b6cc: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 4000b6d0: 22 80 00 0d be,a 4000b704 <_Heap_Free+0x178> 4000b6d4: c6 04 20 08 ld [ %l0 + 8 ], %g3 uintptr_t const size = block_size + next_block_size; 4000b6d8: 86 01 00 02 add %g4, %g2, %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace( Heap_Block *old_block, Heap_Block *new_block ) { Heap_Block *next = old_block->next; 4000b6dc: c8 00 60 08 ld [ %g1 + 8 ], %g4 Heap_Block *prev = old_block->prev; 4000b6e0: c2 00 60 0c ld [ %g1 + 0xc ], %g1 new_block->next = next; 4000b6e4: c8 22 20 08 st %g4, [ %o0 + 8 ] new_block->prev = prev; 4000b6e8: c2 22 20 0c st %g1, [ %o0 + 0xc ] next->prev = new_block; prev->next = new_block; 4000b6ec: d0 20 60 08 st %o0, [ %g1 + 8 ] Heap_Block *prev = old_block->prev; new_block->next = next; new_block->prev = prev; next->prev = new_block; 4000b6f0: d0 21 20 0c st %o0, [ %g4 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b6f4: 82 10 e0 01 or %g3, 1, %g1 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 4000b6f8: c6 22 00 03 st %g3, [ %o0 + %g3 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 4000b6fc: 10 80 00 13 b 4000b748 <_Heap_Free+0x1bc> 4000b700: c2 22 20 04 st %g1, [ %o0 + 4 ] ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 4000b704: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 4000b708: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 4000b70c: d0 20 e0 0c st %o0, [ %g3 + 0xc ] next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 4000b710: 86 10 a0 01 or %g2, 1, %g3 4000b714: c6 22 20 04 st %g3, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b718: c6 00 60 04 ld [ %g1 + 4 ], %g3 next_block->prev_size = block_size; 4000b71c: c4 22 00 02 st %g2, [ %o0 + %g2 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 4000b720: 86 08 ff fe and %g3, -2, %g3 4000b724: c6 20 60 04 st %g3, [ %g1 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 4000b728: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 if ( stats->max_free_blocks < stats->free_blocks ) { 4000b72c: c6 04 20 3c ld [ %l0 + 0x3c ], %g3 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 4000b730: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 4000b734: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 4000b738: 80 a0 c0 01 cmp %g3, %g1 4000b73c: 1a 80 00 03 bcc 4000b748 <_Heap_Free+0x1bc> 4000b740: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 4000b744: c2 24 20 3c st %g1, [ %l0 + 0x3c ] } } /* Statistics */ --stats->used_blocks; 4000b748: c2 04 20 40 ld [ %l0 + 0x40 ], %g1 ++stats->frees; stats->free_size += block_size; return( true ); 4000b74c: b0 10 20 01 mov 1, %i0 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 4000b750: 82 00 7f ff add %g1, -1, %g1 4000b754: c2 24 20 40 st %g1, [ %l0 + 0x40 ] ++stats->frees; 4000b758: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 4000b75c: 82 00 60 01 inc %g1 4000b760: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 4000b764: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 4000b768: 84 00 40 02 add %g1, %g2, %g2 4000b76c: c4 24 20 30 st %g2, [ %l0 + 0x30 ] return( true ); } 4000b770: 81 c7 e0 08 ret 4000b774: 81 e8 00 00 restore =============================================================================== 40012654 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 40012654: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 40012658: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 4001265c: 7f ff f9 ac call 40010d0c <.urem> 40012660: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 40012664: c4 06 20 20 ld [ %i0 + 0x20 ], %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 40012668: a2 06 7f f8 add %i1, -8, %l1 4001266c: a0 10 00 18 mov %i0, %l0 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 40012670: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 40012674: 80 a2 00 02 cmp %o0, %g2 40012678: 0a 80 00 05 bcs 4001268c <_Heap_Size_of_alloc_area+0x38> 4001267c: 82 10 20 00 clr %g1 40012680: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 40012684: 80 a0 40 08 cmp %g1, %o0 40012688: 82 60 3f ff subx %g0, -1, %g1 uintptr_t const alloc_begin = (uintptr_t) alloc_begin_ptr; Heap_Block *block = _Heap_Block_of_alloc_area( alloc_begin, page_size ); Heap_Block *next_block = NULL; uintptr_t block_size = 0; if ( !_Heap_Is_block_in_heap( heap, block ) ) { 4001268c: 80 a0 60 00 cmp %g1, 0 40012690: 02 80 00 15 be 400126e4 <_Heap_Size_of_alloc_area+0x90> 40012694: b0 10 20 00 clr %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 40012698: e2 02 20 04 ld [ %o0 + 4 ], %l1 4001269c: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 400126a0: a2 02 00 11 add %o0, %l1, %l1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 400126a4: 80 a4 40 02 cmp %l1, %g2 400126a8: 0a 80 00 05 bcs 400126bc <_Heap_Size_of_alloc_area+0x68> <== NEVER TAKEN 400126ac: 82 10 20 00 clr %g1 400126b0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 400126b4: 80 a0 40 11 cmp %g1, %l1 400126b8: 82 60 3f ff subx %g0, -1, %g1 } block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( 400126bc: 80 a0 60 00 cmp %g1, 0 400126c0: 02 80 00 09 be 400126e4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 400126c4: b0 10 20 00 clr %i0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 400126c8: c2 04 60 04 ld [ %l1 + 4 ], %g1 !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 400126cc: 80 88 60 01 btst 1, %g1 400126d0: 02 80 00 05 be 400126e4 <_Heap_Size_of_alloc_area+0x90> <== NEVER TAKEN 400126d4: a2 24 40 19 sub %l1, %i1, %l1 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 400126d8: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 400126dc: a2 04 60 04 add %l1, 4, %l1 400126e0: e2 26 80 00 st %l1, [ %i2 ] return true; } 400126e4: 81 c7 e0 08 ret 400126e8: 81 e8 00 00 restore =============================================================================== 40007d88 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 40007d88: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 40007d8c: 23 10 00 1f sethi %hi(0x40007c00), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 40007d90: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 40007d94: e4 06 20 10 ld [ %i0 + 0x10 ], %l2 uintptr_t const min_block_size = heap->min_block_size; 40007d98: e8 06 20 14 ld [ %i0 + 0x14 ], %l4 Heap_Block *const first_block = heap->first_block; 40007d9c: e6 06 20 20 ld [ %i0 + 0x20 ], %l3 Heap_Block *const last_block = heap->last_block; 40007da0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 40007da4: 80 8e a0 ff btst 0xff, %i2 40007da8: 02 80 00 04 be 40007db8 <_Heap_Walk+0x30> 40007dac: a2 14 61 34 or %l1, 0x134, %l1 40007db0: 23 10 00 1f sethi %hi(0x40007c00), %l1 40007db4: a2 14 61 3c or %l1, 0x13c, %l1 ! 40007d3c <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 40007db8: 03 10 00 5a sethi %hi(0x40016800), %g1 40007dbc: c2 00 62 9c ld [ %g1 + 0x29c ], %g1 ! 40016a9c <_System_state_Current> 40007dc0: 80 a0 60 03 cmp %g1, 3 40007dc4: 12 80 01 2d bne 40008278 <_Heap_Walk+0x4f0> 40007dc8: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 40007dcc: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 40007dd0: da 04 20 18 ld [ %l0 + 0x18 ], %o5 40007dd4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40007dd8: c2 04 20 08 ld [ %l0 + 8 ], %g1 40007ddc: e6 23 a0 60 st %l3, [ %sp + 0x60 ] 40007de0: c2 23 a0 68 st %g1, [ %sp + 0x68 ] 40007de4: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40007de8: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 40007dec: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 40007df0: 90 10 00 19 mov %i1, %o0 40007df4: 92 10 20 00 clr %o1 40007df8: 15 10 00 50 sethi %hi(0x40014000), %o2 40007dfc: 96 10 00 12 mov %l2, %o3 40007e00: 94 12 a3 90 or %o2, 0x390, %o2 40007e04: 9f c4 40 00 call %l1 40007e08: 98 10 00 14 mov %l4, %o4 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 40007e0c: 80 a4 a0 00 cmp %l2, 0 40007e10: 12 80 00 07 bne 40007e2c <_Heap_Walk+0xa4> 40007e14: 80 8c a0 07 btst 7, %l2 (*printer)( source, true, "page size is zero\n" ); 40007e18: 15 10 00 51 sethi %hi(0x40014400), %o2 40007e1c: 90 10 00 19 mov %i1, %o0 40007e20: 92 10 20 01 mov 1, %o1 40007e24: 10 80 00 38 b 40007f04 <_Heap_Walk+0x17c> 40007e28: 94 12 a0 28 or %o2, 0x28, %o2 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 40007e2c: 22 80 00 08 be,a 40007e4c <_Heap_Walk+0xc4> 40007e30: 90 10 00 14 mov %l4, %o0 (*printer)( 40007e34: 15 10 00 51 sethi %hi(0x40014400), %o2 40007e38: 90 10 00 19 mov %i1, %o0 40007e3c: 92 10 20 01 mov 1, %o1 40007e40: 94 12 a0 40 or %o2, 0x40, %o2 40007e44: 10 80 01 0b b 40008270 <_Heap_Walk+0x4e8> 40007e48: 96 10 00 12 mov %l2, %o3 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 40007e4c: 7f ff e7 1e call 40001ac4 <.urem> 40007e50: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 40007e54: 80 a2 20 00 cmp %o0, 0 40007e58: 22 80 00 08 be,a 40007e78 <_Heap_Walk+0xf0> 40007e5c: 90 04 e0 08 add %l3, 8, %o0 (*printer)( 40007e60: 15 10 00 51 sethi %hi(0x40014400), %o2 40007e64: 90 10 00 19 mov %i1, %o0 40007e68: 92 10 20 01 mov 1, %o1 40007e6c: 94 12 a0 60 or %o2, 0x60, %o2 40007e70: 10 80 01 00 b 40008270 <_Heap_Walk+0x4e8> 40007e74: 96 10 00 14 mov %l4, %o3 40007e78: 7f ff e7 13 call 40001ac4 <.urem> 40007e7c: 92 10 00 12 mov %l2, %o1 ); return false; } if ( 40007e80: 80 a2 20 00 cmp %o0, 0 40007e84: 22 80 00 08 be,a 40007ea4 <_Heap_Walk+0x11c> 40007e88: c2 04 e0 04 ld [ %l3 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 40007e8c: 15 10 00 51 sethi %hi(0x40014400), %o2 40007e90: 90 10 00 19 mov %i1, %o0 40007e94: 92 10 20 01 mov 1, %o1 40007e98: 94 12 a0 88 or %o2, 0x88, %o2 40007e9c: 10 80 00 f5 b 40008270 <_Heap_Walk+0x4e8> 40007ea0: 96 10 00 13 mov %l3, %o3 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 40007ea4: 80 88 60 01 btst 1, %g1 40007ea8: 32 80 00 07 bne,a 40007ec4 <_Heap_Walk+0x13c> 40007eac: ec 05 60 04 ld [ %l5 + 4 ], %l6 (*printer)( 40007eb0: 15 10 00 51 sethi %hi(0x40014400), %o2 40007eb4: 90 10 00 19 mov %i1, %o0 40007eb8: 92 10 20 01 mov 1, %o1 40007ebc: 10 80 00 12 b 40007f04 <_Heap_Walk+0x17c> 40007ec0: 94 12 a0 c0 or %o2, 0xc0, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 40007ec4: ac 0d bf fe and %l6, -2, %l6 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 40007ec8: ac 05 40 16 add %l5, %l6, %l6 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 40007ecc: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( _Heap_Is_free( last_block ) ) { 40007ed0: 80 88 60 01 btst 1, %g1 40007ed4: 12 80 00 07 bne 40007ef0 <_Heap_Walk+0x168> 40007ed8: 80 a5 80 13 cmp %l6, %l3 (*printer)( 40007edc: 15 10 00 51 sethi %hi(0x40014400), %o2 40007ee0: 90 10 00 19 mov %i1, %o0 40007ee4: 92 10 20 01 mov 1, %o1 40007ee8: 10 80 00 07 b 40007f04 <_Heap_Walk+0x17c> 40007eec: 94 12 a0 f0 or %o2, 0xf0, %o2 ); return false; } if ( 40007ef0: 02 80 00 08 be 40007f10 <_Heap_Walk+0x188> <== ALWAYS TAKEN 40007ef4: 15 10 00 51 sethi %hi(0x40014400), %o2 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 40007ef8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 40007efc: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 40007f00: 94 12 a1 08 or %o2, 0x108, %o2 <== NOT EXECUTED 40007f04: 9f c4 40 00 call %l1 40007f08: b0 10 20 00 clr %i0 40007f0c: 30 80 00 db b,a 40008278 <_Heap_Walk+0x4f0> block = next_block; } while ( block != first_block ); return true; } 40007f10: d6 04 20 08 ld [ %l0 + 8 ], %o3 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 40007f14: fa 04 20 10 ld [ %l0 + 0x10 ], %i5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); 40007f18: ae 10 00 10 mov %l0, %l7 40007f1c: 10 80 00 32 b 40007fe4 <_Heap_Walk+0x25c> 40007f20: b8 10 00 0b mov %o3, %i4 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 40007f24: 80 a0 80 1c cmp %g2, %i4 40007f28: 18 80 00 05 bgu 40007f3c <_Heap_Walk+0x1b4> 40007f2c: 82 10 20 00 clr %g1 40007f30: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 40007f34: 80 a0 40 1c cmp %g1, %i4 40007f38: 82 60 3f ff subx %g0, -1, %g1 const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { 40007f3c: 80 a0 60 00 cmp %g1, 0 40007f40: 32 80 00 08 bne,a 40007f60 <_Heap_Walk+0x1d8> 40007f44: 90 07 20 08 add %i4, 8, %o0 (*printer)( 40007f48: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f4c: 96 10 00 1c mov %i4, %o3 40007f50: 90 10 00 19 mov %i1, %o0 40007f54: 92 10 20 01 mov 1, %o1 40007f58: 10 80 00 c6 b 40008270 <_Heap_Walk+0x4e8> 40007f5c: 94 12 a1 38 or %o2, 0x138, %o2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 40007f60: 7f ff e6 d9 call 40001ac4 <.urem> 40007f64: 92 10 00 1d mov %i5, %o1 ); return false; } if ( 40007f68: 80 a2 20 00 cmp %o0, 0 40007f6c: 22 80 00 08 be,a 40007f8c <_Heap_Walk+0x204> 40007f70: c2 07 20 04 ld [ %i4 + 4 ], %g1 !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 40007f74: 15 10 00 51 sethi %hi(0x40014400), %o2 40007f78: 96 10 00 1c mov %i4, %o3 40007f7c: 90 10 00 19 mov %i1, %o0 40007f80: 92 10 20 01 mov 1, %o1 40007f84: 10 80 00 bb b 40008270 <_Heap_Walk+0x4e8> 40007f88: 94 12 a1 58 or %o2, 0x158, %o2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 40007f8c: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 40007f90: 82 07 00 01 add %i4, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 40007f94: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 40007f98: 80 88 60 01 btst 1, %g1 40007f9c: 22 80 00 08 be,a 40007fbc <_Heap_Walk+0x234> 40007fa0: d8 07 20 0c ld [ %i4 + 0xc ], %o4 (*printer)( 40007fa4: 15 10 00 51 sethi %hi(0x40014400), %o2 40007fa8: 96 10 00 1c mov %i4, %o3 40007fac: 90 10 00 19 mov %i1, %o0 40007fb0: 92 10 20 01 mov 1, %o1 40007fb4: 10 80 00 af b 40008270 <_Heap_Walk+0x4e8> 40007fb8: 94 12 a1 88 or %o2, 0x188, %o2 ); return false; } if ( free_block->prev != prev_block ) { 40007fbc: 80 a3 00 17 cmp %o4, %l7 40007fc0: 22 80 00 08 be,a 40007fe0 <_Heap_Walk+0x258> 40007fc4: ae 10 00 1c mov %i4, %l7 (*printer)( 40007fc8: 15 10 00 51 sethi %hi(0x40014400), %o2 40007fcc: 96 10 00 1c mov %i4, %o3 40007fd0: 90 10 00 19 mov %i1, %o0 40007fd4: 92 10 20 01 mov 1, %o1 40007fd8: 10 80 00 49 b 400080fc <_Heap_Walk+0x374> 40007fdc: 94 12 a1 a8 or %o2, 0x1a8, %o2 return false; } prev_block = free_block; free_block = free_block->next; 40007fe0: f8 07 20 08 ld [ %i4 + 8 ], %i4 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 40007fe4: 80 a7 00 10 cmp %i4, %l0 40007fe8: 32 bf ff cf bne,a 40007f24 <_Heap_Walk+0x19c> 40007fec: c4 04 20 20 ld [ %l0 + 0x20 ], %g2 40007ff0: 35 10 00 51 sethi %hi(0x40014400), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 40007ff4: 31 10 00 51 sethi %hi(0x40014400), %i0 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 40007ff8: b4 16 a3 68 or %i2, 0x368, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 40007ffc: b0 16 23 50 or %i0, 0x350, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 40008000: 37 10 00 51 sethi %hi(0x40014400), %i3 block = next_block; } while ( block != first_block ); return true; } 40008004: c2 05 a0 04 ld [ %l6 + 4 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 40008008: c6 04 20 20 ld [ %l0 + 0x20 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 4000800c: ae 08 7f fe and %g1, -2, %l7 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 40008010: ba 05 80 17 add %l6, %l7, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 40008014: 80 a0 c0 1d cmp %g3, %i5 40008018: 18 80 00 05 bgu 4000802c <_Heap_Walk+0x2a4> <== NEVER TAKEN 4000801c: 84 10 20 00 clr %g2 40008020: c4 04 20 24 ld [ %l0 + 0x24 ], %g2 40008024: 80 a0 80 1d cmp %g2, %i5 40008028: 84 60 3f ff subx %g0, -1, %g2 bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { 4000802c: 80 a0 a0 00 cmp %g2, 0 40008030: 12 80 00 07 bne 4000804c <_Heap_Walk+0x2c4> 40008034: 84 1d 80 15 xor %l6, %l5, %g2 (*printer)( 40008038: 15 10 00 51 sethi %hi(0x40014400), %o2 4000803c: 90 10 00 19 mov %i1, %o0 40008040: 92 10 20 01 mov 1, %o1 40008044: 10 80 00 2c b 400080f4 <_Heap_Walk+0x36c> 40008048: 94 12 a1 e0 or %o2, 0x1e0, %o2 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 4000804c: 80 a0 00 02 cmp %g0, %g2 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 40008050: c2 27 bf fc st %g1, [ %fp + -4 ] 40008054: b8 40 20 00 addx %g0, 0, %i4 40008058: 90 10 00 17 mov %l7, %o0 4000805c: 7f ff e6 9a call 40001ac4 <.urem> 40008060: 92 10 00 12 mov %l2, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 40008064: 80 a2 20 00 cmp %o0, 0 40008068: 02 80 00 0c be 40008098 <_Heap_Walk+0x310> 4000806c: c2 07 bf fc ld [ %fp + -4 ], %g1 40008070: 80 8f 20 ff btst 0xff, %i4 40008074: 02 80 00 0a be 4000809c <_Heap_Walk+0x314> 40008078: 80 a5 c0 14 cmp %l7, %l4 (*printer)( 4000807c: 15 10 00 51 sethi %hi(0x40014400), %o2 40008080: 90 10 00 19 mov %i1, %o0 40008084: 92 10 20 01 mov 1, %o1 40008088: 94 12 a2 10 or %o2, 0x210, %o2 4000808c: 96 10 00 16 mov %l6, %o3 40008090: 10 80 00 1b b 400080fc <_Heap_Walk+0x374> 40008094: 98 10 00 17 mov %l7, %o4 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 40008098: 80 a5 c0 14 cmp %l7, %l4 4000809c: 1a 80 00 0d bcc 400080d0 <_Heap_Walk+0x348> 400080a0: 80 a7 40 16 cmp %i5, %l6 400080a4: 80 8f 20 ff btst 0xff, %i4 400080a8: 02 80 00 0a be 400080d0 <_Heap_Walk+0x348> <== NEVER TAKEN 400080ac: 80 a7 40 16 cmp %i5, %l6 (*printer)( 400080b0: 15 10 00 51 sethi %hi(0x40014400), %o2 400080b4: 90 10 00 19 mov %i1, %o0 400080b8: 92 10 20 01 mov 1, %o1 400080bc: 94 12 a2 40 or %o2, 0x240, %o2 400080c0: 96 10 00 16 mov %l6, %o3 400080c4: 98 10 00 17 mov %l7, %o4 400080c8: 10 80 00 3f b 400081c4 <_Heap_Walk+0x43c> 400080cc: 9a 10 00 14 mov %l4, %o5 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 400080d0: 38 80 00 0e bgu,a 40008108 <_Heap_Walk+0x380> 400080d4: b8 08 60 01 and %g1, 1, %i4 400080d8: 80 8f 20 ff btst 0xff, %i4 400080dc: 02 80 00 0b be 40008108 <_Heap_Walk+0x380> 400080e0: b8 08 60 01 and %g1, 1, %i4 (*printer)( 400080e4: 15 10 00 51 sethi %hi(0x40014400), %o2 400080e8: 90 10 00 19 mov %i1, %o0 400080ec: 92 10 20 01 mov 1, %o1 400080f0: 94 12 a2 70 or %o2, 0x270, %o2 400080f4: 96 10 00 16 mov %l6, %o3 400080f8: 98 10 00 1d mov %i5, %o4 400080fc: 9f c4 40 00 call %l1 40008100: b0 10 20 00 clr %i0 40008104: 30 80 00 5d b,a 40008278 <_Heap_Walk+0x4f0> block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 40008108: c2 07 60 04 ld [ %i5 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 4000810c: 80 88 60 01 btst 1, %g1 40008110: 12 80 00 3f bne 4000820c <_Heap_Walk+0x484> 40008114: 80 a7 20 00 cmp %i4, 0 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 40008118: da 05 a0 0c ld [ %l6 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 4000811c: c2 04 20 08 ld [ %l0 + 8 ], %g1 40008120: 05 10 00 50 sethi %hi(0x40014000), %g2 block = next_block; } while ( block != first_block ); return true; } 40008124: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 40008128: 80 a3 40 01 cmp %o5, %g1 4000812c: 02 80 00 07 be 40008148 <_Heap_Walk+0x3c0> 40008130: 86 10 a3 50 or %g2, 0x350, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 40008134: 80 a3 40 10 cmp %o5, %l0 40008138: 12 80 00 04 bne 40008148 <_Heap_Walk+0x3c0> 4000813c: 86 16 e3 18 or %i3, 0x318, %g3 40008140: 19 10 00 50 sethi %hi(0x40014000), %o4 40008144: 86 13 23 60 or %o4, 0x360, %g3 ! 40014360 block->next, block->next == last_free_block ? 40008148: c4 05 a0 08 ld [ %l6 + 8 ], %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 4000814c: 19 10 00 50 sethi %hi(0x40014000), %o4 40008150: 80 a0 80 04 cmp %g2, %g4 40008154: 02 80 00 07 be 40008170 <_Heap_Walk+0x3e8> 40008158: 82 13 23 70 or %o4, 0x370, %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 4000815c: 80 a0 80 10 cmp %g2, %l0 40008160: 12 80 00 04 bne 40008170 <_Heap_Walk+0x3e8> 40008164: 82 16 e3 18 or %i3, 0x318, %g1 40008168: 09 10 00 50 sethi %hi(0x40014000), %g4 4000816c: 82 11 23 80 or %g4, 0x380, %g1 ! 40014380 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 40008170: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 40008174: c4 23 a0 60 st %g2, [ %sp + 0x60 ] 40008178: c2 23 a0 64 st %g1, [ %sp + 0x64 ] 4000817c: 90 10 00 19 mov %i1, %o0 40008180: 92 10 20 00 clr %o1 40008184: 15 10 00 51 sethi %hi(0x40014400), %o2 40008188: 96 10 00 16 mov %l6, %o3 4000818c: 94 12 a2 a8 or %o2, 0x2a8, %o2 40008190: 9f c4 40 00 call %l1 40008194: 98 10 00 17 mov %l7, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 40008198: da 07 40 00 ld [ %i5 ], %o5 4000819c: 80 a5 c0 0d cmp %l7, %o5 400081a0: 02 80 00 0c be 400081d0 <_Heap_Walk+0x448> 400081a4: 80 a7 20 00 cmp %i4, 0 (*printer)( 400081a8: 15 10 00 51 sethi %hi(0x40014400), %o2 400081ac: fa 23 a0 5c st %i5, [ %sp + 0x5c ] 400081b0: 90 10 00 19 mov %i1, %o0 400081b4: 92 10 20 01 mov 1, %o1 400081b8: 94 12 a2 e0 or %o2, 0x2e0, %o2 400081bc: 96 10 00 16 mov %l6, %o3 400081c0: 98 10 00 17 mov %l7, %o4 400081c4: 9f c4 40 00 call %l1 400081c8: b0 10 20 00 clr %i0 400081cc: 30 80 00 2b b,a 40008278 <_Heap_Walk+0x4f0> ); return false; } if ( !prev_used ) { 400081d0: 32 80 00 0a bne,a 400081f8 <_Heap_Walk+0x470> 400081d4: c2 04 20 08 ld [ %l0 + 8 ], %g1 (*printer)( 400081d8: 15 10 00 51 sethi %hi(0x40014400), %o2 400081dc: 90 10 00 19 mov %i1, %o0 400081e0: 92 10 20 01 mov 1, %o1 400081e4: 10 80 00 22 b 4000826c <_Heap_Walk+0x4e4> 400081e8: 94 12 a3 20 or %o2, 0x320, %o2 { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { if ( free_block == block ) { 400081ec: 02 80 00 19 be 40008250 <_Heap_Walk+0x4c8> 400081f0: 80 a7 40 13 cmp %i5, %l3 return true; } free_block = free_block->next; 400081f4: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 400081f8: 80 a0 40 10 cmp %g1, %l0 400081fc: 12 bf ff fc bne 400081ec <_Heap_Walk+0x464> 40008200: 80 a0 40 16 cmp %g1, %l6 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 40008204: 10 80 00 17 b 40008260 <_Heap_Walk+0x4d8> 40008208: 15 10 00 51 sethi %hi(0x40014400), %o2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 4000820c: 22 80 00 0a be,a 40008234 <_Heap_Walk+0x4ac> 40008210: da 05 80 00 ld [ %l6 ], %o5 (*printer)( 40008214: 90 10 00 19 mov %i1, %o0 40008218: 92 10 20 00 clr %o1 4000821c: 94 10 00 18 mov %i0, %o2 40008220: 96 10 00 16 mov %l6, %o3 40008224: 9f c4 40 00 call %l1 40008228: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 4000822c: 10 80 00 09 b 40008250 <_Heap_Walk+0x4c8> 40008230: 80 a7 40 13 cmp %i5, %l3 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 40008234: 90 10 00 19 mov %i1, %o0 40008238: 92 10 20 00 clr %o1 4000823c: 94 10 00 1a mov %i2, %o2 40008240: 96 10 00 16 mov %l6, %o3 40008244: 9f c4 40 00 call %l1 40008248: 98 10 00 17 mov %l7, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 4000824c: 80 a7 40 13 cmp %i5, %l3 40008250: 32 bf ff 6d bne,a 40008004 <_Heap_Walk+0x27c> 40008254: ac 10 00 1d mov %i5, %l6 return true; } 40008258: 81 c7 e0 08 ret 4000825c: 91 e8 20 01 restore %g0, 1, %o0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 40008260: 90 10 00 19 mov %i1, %o0 40008264: 92 10 20 01 mov 1, %o1 40008268: 94 12 a3 90 or %o2, 0x390, %o2 4000826c: 96 10 00 16 mov %l6, %o3 40008270: 9f c4 40 00 call %l1 40008274: b0 10 20 00 clr %i0 40008278: 81 c7 e0 08 ret 4000827c: 81 e8 00 00 restore =============================================================================== 40006f10 <_Internal_error_Occurred>: void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 40006f10: 9d e3 bf a0 save %sp, -96, %sp _Internal_errors_What_happened.the_source = the_source; 40006f14: 05 10 00 50 sethi %hi(0x40014000), %g2 40006f18: 82 10 a3 0c or %g2, 0x30c, %g1 ! 4001430c <_Internal_errors_What_happened> void _Internal_error_Occurred( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 40006f1c: 90 10 00 18 mov %i0, %o0 40006f20: 94 10 00 1a mov %i2, %o2 _Internal_errors_What_happened.the_source = the_source; 40006f24: f0 20 a3 0c st %i0, [ %g2 + 0x30c ] _Internal_errors_What_happened.is_internal = is_internal; 40006f28: f2 28 60 04 stb %i1, [ %g1 + 4 ] _Internal_errors_What_happened.the_error = the_error; 40006f2c: f4 20 60 08 st %i2, [ %g1 + 8 ] _User_extensions_Fatal( the_source, is_internal, the_error ); 40006f30: 40 00 07 84 call 40008d40 <_User_extensions_Fatal> 40006f34: 92 0e 60 ff and %i1, 0xff, %o1 RTEMS_INLINE_ROUTINE void _System_state_Set ( System_state_Codes state ) { _System_state_Current = state; 40006f38: 84 10 20 05 mov 5, %g2 <== NOT EXECUTED 40006f3c: 03 10 00 50 sethi %hi(0x40014000), %g1 <== NOT EXECUTED _System_state_Set( SYSTEM_STATE_FAILED ); _CPU_Fatal_halt( the_error ); 40006f40: 7f ff eb 56 call 40001c98 <== NOT EXECUTED 40006f44: c4 20 63 fc st %g2, [ %g1 + 0x3fc ] ! 400143fc <_System_state_Current><== NOT EXECUTED 40006f48: 82 10 00 08 mov %o0, %g1 <== NOT EXECUTED 40006f4c: 30 80 00 00 b,a 40006f4c <_Internal_error_Occurred+0x3c> <== NOT EXECUTED =============================================================================== 40006fc0 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 40006fc0: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 40006fc4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 40006fc8: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 40006fcc: 80 a0 60 00 cmp %g1, 0 40006fd0: 02 80 00 20 be 40007050 <_Objects_Allocate+0x90> <== NEVER TAKEN 40006fd4: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 40006fd8: a2 04 20 20 add %l0, 0x20, %l1 40006fdc: 7f ff fd 88 call 400065fc <_Chain_Get> 40006fe0: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 40006fe4: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 40006fe8: 80 a0 60 00 cmp %g1, 0 40006fec: 02 80 00 19 be 40007050 <_Objects_Allocate+0x90> 40006ff0: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 40006ff4: 80 a2 20 00 cmp %o0, 0 40006ff8: 32 80 00 0a bne,a 40007020 <_Objects_Allocate+0x60> 40006ffc: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 _Objects_Extend_information( information ); 40007000: 40 00 00 1e call 40007078 <_Objects_Extend_information> 40007004: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 40007008: 7f ff fd 7d call 400065fc <_Chain_Get> 4000700c: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 40007010: b0 92 20 00 orcc %o0, 0, %i0 40007014: 02 80 00 0f be 40007050 <_Objects_Allocate+0x90> 40007018: 01 00 00 00 nop uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 4000701c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 40007020: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 40007024: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 40007028: 40 00 26 8d call 40010a5c <.udiv> 4000702c: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 40007030: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 40007034: 91 2a 20 02 sll %o0, 2, %o0 40007038: c4 00 40 08 ld [ %g1 + %o0 ], %g2 4000703c: 84 00 bf ff add %g2, -1, %g2 40007040: c4 20 40 08 st %g2, [ %g1 + %o0 ] information->inactive--; 40007044: c2 14 20 2c lduh [ %l0 + 0x2c ], %g1 40007048: 82 00 7f ff add %g1, -1, %g1 4000704c: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 40007050: 81 c7 e0 08 ret 40007054: 81 e8 00 00 restore =============================================================================== 400073d4 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 400073d4: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 400073d8: b3 2e 60 10 sll %i1, 0x10, %i1 400073dc: b3 36 60 10 srl %i1, 0x10, %i1 400073e0: 80 a6 60 00 cmp %i1, 0 400073e4: 02 80 00 17 be 40007440 <_Objects_Get_information+0x6c> 400073e8: a0 10 20 00 clr %l0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 400073ec: 40 00 10 e3 call 4000b778 <_Objects_API_maximum_class> 400073f0: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 400073f4: 80 a2 20 00 cmp %o0, 0 400073f8: 02 80 00 12 be 40007440 <_Objects_Get_information+0x6c> 400073fc: 80 a6 40 08 cmp %i1, %o0 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 40007400: 18 80 00 10 bgu 40007440 <_Objects_Get_information+0x6c> 40007404: 03 10 00 50 sethi %hi(0x40014000), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 40007408: b1 2e 20 02 sll %i0, 2, %i0 4000740c: 82 10 61 dc or %g1, 0x1dc, %g1 40007410: c2 00 40 18 ld [ %g1 + %i0 ], %g1 40007414: 80 a0 60 00 cmp %g1, 0 40007418: 02 80 00 0a be 40007440 <_Objects_Get_information+0x6c> <== NEVER TAKEN 4000741c: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 40007420: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 40007424: 80 a4 20 00 cmp %l0, 0 40007428: 02 80 00 06 be 40007440 <_Objects_Get_information+0x6c> <== NEVER TAKEN 4000742c: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 40007430: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 40007434: 80 a0 00 01 cmp %g0, %g1 40007438: 82 60 20 00 subx %g0, 0, %g1 4000743c: a0 0c 00 01 and %l0, %g1, %l0 #endif return info; } 40007440: 81 c7 e0 08 ret 40007444: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 40018c30 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 40018c30: c2 02 20 08 ld [ %o0 + 8 ], %g1 if ( information->maximum >= index ) { 40018c34: c4 12 20 10 lduh [ %o0 + 0x10 ], %g2 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 40018c38: 82 22 40 01 sub %o1, %g1, %g1 40018c3c: 82 00 60 01 inc %g1 if ( information->maximum >= index ) { 40018c40: 80 a0 80 01 cmp %g2, %g1 40018c44: 0a 80 00 09 bcs 40018c68 <_Objects_Get_no_protection+0x38> 40018c48: 83 28 60 02 sll %g1, 2, %g1 if ( (the_object = information->local_table[ index ]) != NULL ) { 40018c4c: c4 02 20 1c ld [ %o0 + 0x1c ], %g2 40018c50: d0 00 80 01 ld [ %g2 + %g1 ], %o0 40018c54: 80 a2 20 00 cmp %o0, 0 40018c58: 02 80 00 05 be 40018c6c <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 40018c5c: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 40018c60: 81 c3 e0 08 retl 40018c64: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 40018c68: 82 10 20 01 mov 1, %g1 return NULL; 40018c6c: 90 10 20 00 clr %o0 } 40018c70: 81 c3 e0 08 retl 40018c74: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 40008cb4 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 40008cb4: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 40008cb8: 92 96 20 00 orcc %i0, 0, %o1 40008cbc: 12 80 00 06 bne 40008cd4 <_Objects_Id_to_name+0x20> 40008cc0: 83 32 60 18 srl %o1, 0x18, %g1 40008cc4: 03 10 00 77 sethi %hi(0x4001dc00), %g1 40008cc8: c2 00 60 38 ld [ %g1 + 0x38 ], %g1 ! 4001dc38 <_Per_CPU_Information+0xc> 40008ccc: d2 00 60 08 ld [ %g1 + 8 ], %o1 40008cd0: 83 32 60 18 srl %o1, 0x18, %g1 40008cd4: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 40008cd8: 84 00 7f ff add %g1, -1, %g2 40008cdc: 80 a0 a0 02 cmp %g2, 2 40008ce0: 18 80 00 12 bgu 40008d28 <_Objects_Id_to_name+0x74> 40008ce4: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 40008ce8: 10 80 00 12 b 40008d30 <_Objects_Id_to_name+0x7c> 40008cec: 83 28 60 02 sll %g1, 2, %g1 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 40008cf0: 85 28 a0 02 sll %g2, 2, %g2 40008cf4: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 40008cf8: 80 a2 20 00 cmp %o0, 0 40008cfc: 02 80 00 0b be 40008d28 <_Objects_Id_to_name+0x74> <== NEVER TAKEN 40008d00: 01 00 00 00 nop #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 40008d04: 7f ff ff cf call 40008c40 <_Objects_Get> 40008d08: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 40008d0c: 80 a2 20 00 cmp %o0, 0 40008d10: 02 80 00 06 be 40008d28 <_Objects_Id_to_name+0x74> 40008d14: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 40008d18: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 40008d1c: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 40008d20: 40 00 02 3c call 40009610 <_Thread_Enable_dispatch> 40008d24: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 40008d28: 81 c7 e0 08 ret 40008d2c: 91 e8 00 10 restore %g0, %l0, %o0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 40008d30: 05 10 00 76 sethi %hi(0x4001d800), %g2 40008d34: 84 10 a1 2c or %g2, 0x12c, %g2 ! 4001d92c <_Objects_Information_table> 40008d38: c2 00 80 01 ld [ %g2 + %g1 ], %g1 40008d3c: 80 a0 60 00 cmp %g1, 0 40008d40: 12 bf ff ec bne 40008cf0 <_Objects_Id_to_name+0x3c> 40008d44: 85 32 60 1b srl %o1, 0x1b, %g2 40008d48: 30 bf ff f8 b,a 40008d28 <_Objects_Id_to_name+0x74> =============================================================================== 40007530 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 40007530: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 40007534: 85 2f 20 10 sll %i4, 0x10, %g2 40007538: 85 30 a0 10 srl %g2, 0x10, %g2 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 4000753c: 07 10 00 50 sethi %hi(0x40014000), %g3 uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 40007540: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 40007544: 86 10 e1 dc or %g3, 0x1dc, %g3 40007548: 85 2e 60 02 sll %i1, 2, %g2 4000754c: c6 00 c0 02 ld [ %g3 + %g2 ], %g3 #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; 40007550: f4 36 20 04 sth %i2, [ %i0 + 4 ] uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 40007554: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; information->size = size; information->local_table = 0; 40007558: c0 26 20 1c clr [ %i0 + 0x1c ] information->inactive_per_block = 0; 4000755c: c0 26 20 30 clr [ %i0 + 0x30 ] information->object_blocks = 0; 40007560: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 40007564: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 40007568: c0 36 20 10 clrh [ %i0 + 0x10 ] , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 4000756c: c2 07 a0 5c ld [ %fp + 0x5c ], %g1 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 40007570: b5 2e a0 10 sll %i2, 0x10, %i2 40007574: b5 36 a0 10 srl %i2, 0x10, %i2 40007578: 85 2e a0 02 sll %i2, 2, %g2 4000757c: f0 20 c0 02 st %i0, [ %g3 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 40007580: 85 36 e0 1f srl %i3, 0x1f, %g2 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 40007584: c4 2e 20 12 stb %g2, [ %i0 + 0x12 ] (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 40007588: 07 20 00 00 sethi %hi(0x80000000), %g3 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 4000758c: 80 a0 a0 00 cmp %g2, 0 40007590: 02 80 00 09 be 400075b4 <_Objects_Initialize_information+0x84> 40007594: b6 2e c0 03 andn %i3, %g3, %i3 40007598: 80 a6 e0 00 cmp %i3, 0 4000759c: 12 80 00 07 bne 400075b8 <_Objects_Initialize_information+0x88> 400075a0: 05 10 00 50 sethi %hi(0x40014000), %g2 _Internal_error_Occurred( 400075a4: 90 10 20 00 clr %o0 400075a8: 92 10 20 01 mov 1, %o1 400075ac: 7f ff fe 59 call 40006f10 <_Internal_error_Occurred> 400075b0: 94 10 20 13 mov 0x13, %o2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 400075b4: 05 10 00 50 sethi %hi(0x40014000), %g2 400075b8: 84 10 a0 30 or %g2, 0x30, %g2 ! 40014030 400075bc: c4 26 20 1c st %g2, [ %i0 + 0x1c ] uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 400075c0: 05 00 00 40 sethi %hi(0x10000), %g2 /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 400075c4: 80 a0 00 1b cmp %g0, %i3 400075c8: b3 2e 60 18 sll %i1, 0x18, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 400075cc: b5 2e a0 1b sll %i2, 0x1b, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 400075d0: b2 16 40 02 or %i1, %g2, %i1 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 400075d4: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 400075d8: 84 40 20 00 addx %g0, 0, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 400075dc: b4 16 40 1a or %i1, %i2, %i2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 400075e0: b4 16 80 02 or %i2, %g2, %i2 /* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 400075e4: 80 88 60 03 btst 3, %g1 400075e8: 02 80 00 04 be 400075f8 <_Objects_Initialize_information+0xc8><== ALWAYS TAKEN 400075ec: f4 26 20 08 st %i2, [ %i0 + 8 ] name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 400075f0: 82 00 60 04 add %g1, 4, %g1 <== NOT EXECUTED 400075f4: 82 08 7f fc and %g1, -4, %g1 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 400075f8: c2 36 20 38 sth %g1, [ %i0 + 0x38 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 400075fc: 82 06 20 24 add %i0, 0x24, %g1 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); the_chain->permanent_null = NULL; 40007600: c0 26 20 24 clr [ %i0 + 0x24 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40007604: c2 26 20 20 st %g1, [ %i0 + 0x20 ] _Chain_Initialize_empty( &information->Inactive ); 40007608: 82 06 20 20 add %i0, 0x20, %g1 /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 4000760c: 80 a6 e0 00 cmp %i3, 0 40007610: 02 80 00 04 be 40007620 <_Objects_Initialize_information+0xf0> 40007614: c2 26 20 28 st %g1, [ %i0 + 0x28 ] /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 40007618: 7f ff fe 98 call 40007078 <_Objects_Extend_information> 4000761c: 81 e8 00 00 restore 40007620: 81 c7 e0 08 ret 40007624: 81 e8 00 00 restore =============================================================================== 4000af40 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 4000af40: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 4000af44: e0 06 21 5c ld [ %i0 + 0x15c ], %l0 if ( !api ) 4000af48: 80 a4 20 00 cmp %l0, 0 4000af4c: 02 80 00 1d be 4000afc0 <_RTEMS_tasks_Post_switch_extension+0x80><== NEVER TAKEN 4000af50: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 4000af54: 7f ff db 51 call 40001c98 4000af58: 01 00 00 00 nop signal_set = asr->signals_posted; 4000af5c: e6 04 20 14 ld [ %l0 + 0x14 ], %l3 asr->signals_posted = 0; 4000af60: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 4000af64: 7f ff db 51 call 40001ca8 4000af68: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 4000af6c: 80 a4 e0 00 cmp %l3, 0 4000af70: 02 80 00 14 be 4000afc0 <_RTEMS_tasks_Post_switch_extension+0x80> 4000af74: a2 07 bf fc add %fp, -4, %l1 return; asr->nest_level += 1; 4000af78: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000af7c: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 4000af80: 82 00 60 01 inc %g1 4000af84: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000af88: 94 10 00 11 mov %l1, %o2 4000af8c: 25 00 00 3f sethi %hi(0xfc00), %l2 4000af90: 40 00 07 79 call 4000cd74 4000af94: 92 14 a3 ff or %l2, 0x3ff, %o1 ! ffff (*asr->handler)( signal_set ); 4000af98: c2 04 20 0c ld [ %l0 + 0xc ], %g1 4000af9c: 9f c0 40 00 call %g1 4000afa0: 90 10 00 13 mov %l3, %o0 asr->nest_level -= 1; 4000afa4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000afa8: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 4000afac: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000afb0: 92 14 a3 ff or %l2, 0x3ff, %o1 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 4000afb4: c2 24 20 1c st %g1, [ %l0 + 0x1c ] rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 4000afb8: 40 00 07 6f call 4000cd74 4000afbc: 94 10 00 11 mov %l1, %o2 4000afc0: 81 c7 e0 08 ret 4000afc4: 81 e8 00 00 restore =============================================================================== 40007318 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 40007318: 9d e3 bf 98 save %sp, -104, %sp 4000731c: 11 10 00 77 sethi %hi(0x4001dc00), %o0 40007320: 92 10 00 18 mov %i0, %o1 40007324: 90 12 22 9c or %o0, 0x29c, %o0 40007328: 40 00 07 c9 call 4000924c <_Objects_Get> 4000732c: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 40007330: c2 07 bf fc ld [ %fp + -4 ], %g1 40007334: 80 a0 60 00 cmp %g1, 0 40007338: 12 80 00 24 bne 400073c8 <_Rate_monotonic_Timeout+0xb0> <== NEVER TAKEN 4000733c: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 40007340: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 40007344: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 40007348: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 4000734c: 80 88 80 01 btst %g2, %g1 40007350: 22 80 00 0b be,a 4000737c <_Rate_monotonic_Timeout+0x64> 40007354: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 40007358: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 4000735c: c2 04 20 08 ld [ %l0 + 8 ], %g1 40007360: 80 a0 80 01 cmp %g2, %g1 40007364: 32 80 00 06 bne,a 4000737c <_Rate_monotonic_Timeout+0x64> 40007368: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 4000736c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 40007370: 40 00 09 1a call 400097d8 <_Thread_Clear_state> 40007374: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 40007378: 30 80 00 06 b,a 40007390 <_Rate_monotonic_Timeout+0x78> _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 4000737c: 80 a0 60 01 cmp %g1, 1 40007380: 12 80 00 0d bne 400073b4 <_Rate_monotonic_Timeout+0x9c> 40007384: 82 10 20 04 mov 4, %g1 the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 40007388: 82 10 20 03 mov 3, %g1 4000738c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 40007390: 7f ff fe 66 call 40006d28 <_Rate_monotonic_Initiate_statistics> 40007394: 90 10 00 10 mov %l0, %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 40007398: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 4000739c: 11 10 00 78 sethi %hi(0x4001e000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 400073a0: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 400073a4: 90 12 20 cc or %o0, 0xcc, %o0 400073a8: 40 00 0e f0 call 4000af68 <_Watchdog_Insert> 400073ac: 92 04 20 10 add %l0, 0x10, %o1 400073b0: 30 80 00 02 b,a 400073b8 <_Rate_monotonic_Timeout+0xa0> _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 400073b4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 400073b8: 03 10 00 78 sethi %hi(0x4001e000), %g1 400073bc: c4 00 60 08 ld [ %g1 + 8 ], %g2 ! 4001e008 <_Thread_Dispatch_disable_level> 400073c0: 84 00 bf ff add %g2, -1, %g2 400073c4: c4 20 60 08 st %g2, [ %g1 + 8 ] 400073c8: 81 c7 e0 08 ret 400073cc: 81 e8 00 00 restore =============================================================================== 40006d20 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 40006d20: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 40006d24: 03 10 00 77 sethi %hi(0x4001dc00), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 40006d28: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 40006d2c: d2 00 63 c4 ld [ %g1 + 0x3c4 ], %o1 if ((!the_tod) || 40006d30: 80 a4 20 00 cmp %l0, 0 40006d34: 02 80 00 2b be 40006de0 <_TOD_Validate+0xc0> <== NEVER TAKEN 40006d38: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 40006d3c: 11 00 03 d0 sethi %hi(0xf4000), %o0 40006d40: 40 00 46 ca call 40018868 <.udiv> 40006d44: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 40006d48: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 40006d4c: 80 a0 40 08 cmp %g1, %o0 40006d50: 1a 80 00 24 bcc 40006de0 <_TOD_Validate+0xc0> 40006d54: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 40006d58: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 40006d5c: 80 a0 60 3b cmp %g1, 0x3b 40006d60: 18 80 00 20 bgu 40006de0 <_TOD_Validate+0xc0> 40006d64: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 40006d68: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 40006d6c: 80 a0 60 3b cmp %g1, 0x3b 40006d70: 18 80 00 1c bgu 40006de0 <_TOD_Validate+0xc0> 40006d74: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 40006d78: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40006d7c: 80 a0 60 17 cmp %g1, 0x17 40006d80: 18 80 00 18 bgu 40006de0 <_TOD_Validate+0xc0> 40006d84: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 40006d88: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 40006d8c: 80 a0 60 00 cmp %g1, 0 40006d90: 02 80 00 14 be 40006de0 <_TOD_Validate+0xc0> <== NEVER TAKEN 40006d94: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 40006d98: 18 80 00 12 bgu 40006de0 <_TOD_Validate+0xc0> 40006d9c: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 40006da0: c6 04 00 00 ld [ %l0 ], %g3 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 40006da4: 80 a0 e7 c3 cmp %g3, 0x7c3 40006da8: 08 80 00 0e bleu 40006de0 <_TOD_Validate+0xc0> 40006dac: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 40006db0: c4 04 20 08 ld [ %l0 + 8 ], %g2 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 40006db4: 80 a0 a0 00 cmp %g2, 0 40006db8: 02 80 00 0a be 40006de0 <_TOD_Validate+0xc0> <== NEVER TAKEN 40006dbc: 80 88 e0 03 btst 3, %g3 40006dc0: 07 10 00 73 sethi %hi(0x4001cc00), %g3 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 40006dc4: 12 80 00 03 bne 40006dd0 <_TOD_Validate+0xb0> 40006dc8: 86 10 e0 88 or %g3, 0x88, %g3 ! 4001cc88 <_TOD_Days_per_month> days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 40006dcc: 82 00 60 0d add %g1, 0xd, %g1 else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 40006dd0: 83 28 60 02 sll %g1, 2, %g1 40006dd4: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 40006dd8: 80 a0 40 02 cmp %g1, %g2 40006ddc: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 40006de0: 81 c7 e0 08 ret 40006de4: 81 e8 00 00 restore =============================================================================== 40007864 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 40007864: 9d e3 bf a0 save %sp, -96, %sp */ /* * Save original state */ original_state = the_thread->current_state; 40007868: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 4000786c: 40 00 04 0b call 40008898 <_Thread_Set_transient> 40007870: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 40007874: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 40007878: 80 a0 40 19 cmp %g1, %i1 4000787c: 02 80 00 05 be 40007890 <_Thread_Change_priority+0x2c> 40007880: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 40007884: 90 10 00 18 mov %i0, %o0 40007888: 40 00 03 87 call 400086a4 <_Thread_Set_priority> 4000788c: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 40007890: 7f ff e9 02 call 40001c98 40007894: 01 00 00 00 nop 40007898: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 4000789c: f2 04 20 10 ld [ %l0 + 0x10 ], %i1 if ( state != STATES_TRANSIENT ) { 400078a0: 80 a6 60 04 cmp %i1, 4 400078a4: 02 80 00 10 be 400078e4 <_Thread_Change_priority+0x80> 400078a8: a2 0c 60 04 and %l1, 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 400078ac: 80 a4 60 00 cmp %l1, 0 400078b0: 12 80 00 03 bne 400078bc <_Thread_Change_priority+0x58> <== NEVER TAKEN 400078b4: 82 0e 7f fb and %i1, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 400078b8: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 400078bc: 7f ff e8 fb call 40001ca8 400078c0: 90 10 00 18 mov %i0, %o0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 400078c4: 03 00 00 ef sethi %hi(0x3bc00), %g1 400078c8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 400078cc: 80 8e 40 01 btst %i1, %g1 400078d0: 02 80 00 5c be 40007a40 <_Thread_Change_priority+0x1dc> 400078d4: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 400078d8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 400078dc: 40 00 03 45 call 400085f0 <_Thread_queue_Requeue> 400078e0: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 400078e4: 80 a4 60 00 cmp %l1, 0 400078e8: 12 80 00 1c bne 40007958 <_Thread_Change_priority+0xf4> <== NEVER TAKEN 400078ec: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 400078f0: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 400078f4: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 400078f8: c6 10 40 00 lduh [ %g1 ], %g3 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 400078fc: c0 24 20 10 clr [ %l0 + 0x10 ] 40007900: 84 10 c0 02 or %g3, %g2, %g2 40007904: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 40007908: 03 10 00 50 sethi %hi(0x40014000), %g1 4000790c: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 40007910: c4 10 63 18 lduh [ %g1 + 0x318 ], %g2 _Priority_bit_map_Add( &the_thread->Priority_map ); if ( prepend_it ) 40007914: 80 8e a0 ff btst 0xff, %i2 40007918: 84 10 c0 02 or %g3, %g2, %g2 4000791c: c4 30 63 18 sth %g2, [ %g1 + 0x318 ] 40007920: 02 80 00 08 be 40007940 <_Thread_Change_priority+0xdc> 40007924: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 40007928: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 4000792c: c2 24 20 04 st %g1, [ %l0 + 4 ] before_node = after_node->next; after_node->next = the_node; 40007930: e0 20 40 00 st %l0, [ %g1 ] the_node->next = before_node; 40007934: c4 24 00 00 st %g2, [ %l0 ] before_node->previous = the_node; 40007938: 10 80 00 08 b 40007958 <_Thread_Change_priority+0xf4> 4000793c: e0 20 a0 04 st %l0, [ %g2 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40007940: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 40007944: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 40007948: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 4000794c: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 40007950: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 40007954: c4 24 20 04 st %g2, [ %l0 + 4 ] _Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level ); 40007958: 7f ff e8 d4 call 40001ca8 4000795c: 90 10 00 18 mov %i0, %o0 40007960: 7f ff e8 ce call 40001c98 40007964: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_bit_map_Get_highest() ].first; 40007968: 03 10 00 50 sethi %hi(0x40014000), %g1 4000796c: da 00 61 d4 ld [ %g1 + 0x1d4 ], %o5 ! 400141d4 <_Thread_Ready_chain> RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 40007970: 03 10 00 50 sethi %hi(0x40014000), %g1 40007974: c4 10 63 18 lduh [ %g1 + 0x318 ], %g2 ! 40014318 <_Priority_Major_bit_map> 40007978: 03 10 00 4c sethi %hi(0x40013000), %g1 4000797c: 85 28 a0 10 sll %g2, 0x10, %g2 40007980: 87 30 a0 10 srl %g2, 0x10, %g3 40007984: 80 a0 e0 ff cmp %g3, 0xff 40007988: 18 80 00 05 bgu 4000799c <_Thread_Change_priority+0x138> 4000798c: 82 10 60 38 or %g1, 0x38, %g1 40007990: c4 08 40 03 ldub [ %g1 + %g3 ], %g2 40007994: 10 80 00 04 b 400079a4 <_Thread_Change_priority+0x140> 40007998: 84 00 a0 08 add %g2, 8, %g2 4000799c: 85 30 a0 18 srl %g2, 0x18, %g2 400079a0: c4 08 40 02 ldub [ %g1 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 400079a4: 83 28 a0 10 sll %g2, 0x10, %g1 400079a8: 07 10 00 50 sethi %hi(0x40014000), %g3 400079ac: 83 30 60 0f srl %g1, 0xf, %g1 400079b0: 86 10 e3 90 or %g3, 0x390, %g3 400079b4: c6 10 c0 01 lduh [ %g3 + %g1 ], %g3 400079b8: 03 10 00 4c sethi %hi(0x40013000), %g1 400079bc: 87 28 e0 10 sll %g3, 0x10, %g3 400079c0: 89 30 e0 10 srl %g3, 0x10, %g4 400079c4: 80 a1 20 ff cmp %g4, 0xff 400079c8: 18 80 00 05 bgu 400079dc <_Thread_Change_priority+0x178> 400079cc: 82 10 60 38 or %g1, 0x38, %g1 400079d0: c2 08 40 04 ldub [ %g1 + %g4 ], %g1 400079d4: 10 80 00 04 b 400079e4 <_Thread_Change_priority+0x180> 400079d8: 82 00 60 08 add %g1, 8, %g1 400079dc: 87 30 e0 18 srl %g3, 0x18, %g3 400079e0: c2 08 40 03 ldub [ %g1 + %g3 ], %g1 return (_Priority_Bits_index( major ) << 4) + _Priority_Bits_index( minor ); 400079e4: 83 28 60 10 sll %g1, 0x10, %g1 400079e8: 83 30 60 10 srl %g1, 0x10, %g1 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 400079ec: 85 28 a0 10 sll %g2, 0x10, %g2 400079f0: 85 30 a0 0c srl %g2, 0xc, %g2 400079f4: 84 00 40 02 add %g1, %g2, %g2 400079f8: 83 28 a0 02 sll %g2, 2, %g1 400079fc: 85 28 a0 04 sll %g2, 4, %g2 40007a00: 84 20 80 01 sub %g2, %g1, %g2 * ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) 40007a04: c6 03 40 02 ld [ %o5 + %g2 ], %g3 40007a08: 03 10 00 51 sethi %hi(0x40014400), %g1 40007a0c: 82 10 60 dc or %g1, 0xdc, %g1 ! 400144dc <_Per_CPU_Information> * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 40007a10: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() && 40007a14: 80 a0 80 03 cmp %g2, %g3 40007a18: 02 80 00 08 be 40007a38 <_Thread_Change_priority+0x1d4> 40007a1c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] 40007a20: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 40007a24: 80 a0 a0 00 cmp %g2, 0 40007a28: 02 80 00 04 be 40007a38 <_Thread_Change_priority+0x1d4> 40007a2c: 01 00 00 00 nop _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 40007a30: 84 10 20 01 mov 1, %g2 ! 1 40007a34: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 40007a38: 7f ff e8 9c call 40001ca8 40007a3c: 81 e8 00 00 restore 40007a40: 81 c7 e0 08 ret 40007a44: 81 e8 00 00 restore =============================================================================== 40007a48 <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) { 40007a48: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 40007a4c: 7f ff e8 93 call 40001c98 40007a50: a0 10 00 18 mov %i0, %l0 40007a54: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 40007a58: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & state ) { 40007a5c: 80 8e 40 01 btst %i1, %g1 40007a60: 02 80 00 2f be 40007b1c <_Thread_Clear_state+0xd4> 40007a64: 01 00 00 00 nop RTEMS_INLINE_ROUTINE States_Control _States_Clear ( States_Control states_to_clear, States_Control current_state ) { return (current_state & ~states_to_clear); 40007a68: b2 28 40 19 andn %g1, %i1, %i1 current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) { 40007a6c: 80 a6 60 00 cmp %i1, 0 40007a70: 12 80 00 2b bne 40007b1c <_Thread_Clear_state+0xd4> 40007a74: f2 24 20 10 st %i1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 40007a78: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 40007a7c: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 40007a80: c6 10 40 00 lduh [ %g1 ], %g3 40007a84: 84 10 c0 02 or %g3, %g2, %g2 40007a88: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 40007a8c: 03 10 00 50 sethi %hi(0x40014000), %g1 40007a90: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 40007a94: c4 10 63 18 lduh [ %g1 + 0x318 ], %g2 40007a98: 84 10 c0 02 or %g3, %g2, %g2 40007a9c: c4 30 63 18 sth %g2, [ %g1 + 0x318 ] _Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 40007aa0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40007aa4: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 40007aa8: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 40007aac: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 40007ab0: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 40007ab4: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 40007ab8: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 40007abc: 7f ff e8 7b call 40001ca8 40007ac0: 01 00 00 00 nop 40007ac4: 7f ff e8 75 call 40001c98 40007ac8: 01 00 00 00 nop * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 40007acc: 03 10 00 51 sethi %hi(0x40014400), %g1 40007ad0: 82 10 60 dc or %g1, 0xdc, %g1 ! 400144dc <_Per_CPU_Information> 40007ad4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 40007ad8: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 40007adc: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 40007ae0: 80 a0 80 03 cmp %g2, %g3 40007ae4: 1a 80 00 0e bcc 40007b1c <_Thread_Clear_state+0xd4> 40007ae8: 01 00 00 00 nop _Thread_Heir = the_thread; 40007aec: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 40007af0: c2 00 60 0c ld [ %g1 + 0xc ], %g1 40007af4: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 40007af8: 80 a0 60 00 cmp %g1, 0 40007afc: 32 80 00 05 bne,a 40007b10 <_Thread_Clear_state+0xc8> 40007b00: 84 10 20 01 mov 1, %g2 40007b04: 80 a0 a0 00 cmp %g2, 0 40007b08: 12 80 00 05 bne 40007b1c <_Thread_Clear_state+0xd4> <== ALWAYS TAKEN 40007b0c: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 40007b10: 03 10 00 51 sethi %hi(0x40014400), %g1 40007b14: 82 10 60 dc or %g1, 0xdc, %g1 ! 400144dc <_Per_CPU_Information> 40007b18: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 40007b1c: 7f ff e8 63 call 40001ca8 40007b20: 81 e8 00 00 restore =============================================================================== 40007ca4 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 40007ca4: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 40007ca8: 90 10 00 18 mov %i0, %o0 40007cac: 40 00 00 5f call 40007e28 <_Thread_Get> 40007cb0: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 40007cb4: c2 07 bf fc ld [ %fp + -4 ], %g1 40007cb8: 80 a0 60 00 cmp %g1, 0 40007cbc: 12 80 00 08 bne 40007cdc <_Thread_Delay_ended+0x38> <== NEVER TAKEN 40007cc0: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 40007cc4: 7f ff ff 61 call 40007a48 <_Thread_Clear_state> 40007cc8: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 40007ccc: 03 10 00 50 sethi %hi(0x40014000), %g1 40007cd0: c4 00 62 78 ld [ %g1 + 0x278 ], %g2 ! 40014278 <_Thread_Dispatch_disable_level> 40007cd4: 84 00 bf ff add %g2, -1, %g2 40007cd8: c4 20 62 78 st %g2, [ %g1 + 0x278 ] 40007cdc: 81 c7 e0 08 ret 40007ce0: 81 e8 00 00 restore =============================================================================== 40007ce4 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 40007ce4: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 40007ce8: 2b 10 00 51 sethi %hi(0x40014400), %l5 40007cec: 82 15 60 dc or %l5, 0xdc, %g1 ! 400144dc <_Per_CPU_Information> _ISR_Disable( level ); 40007cf0: 7f ff e7 ea call 40001c98 40007cf4: e2 00 60 0c ld [ %g1 + 0xc ], %l1 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 40007cf8: 25 10 00 50 sethi %hi(0x40014000), %l2 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 40007cfc: 39 10 00 50 sethi %hi(0x40014000), %i4 40007d00: ba 10 20 01 mov 1, %i5 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 40007d04: 2f 10 00 50 sethi %hi(0x40014000), %l7 _ISR_Enable( level ); #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 40007d08: a8 07 bf f8 add %fp, -8, %l4 _Timestamp_Subtract( 40007d0c: a6 07 bf f0 add %fp, -16, %l3 40007d10: a4 14 a3 28 or %l2, 0x328, %l2 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 40007d14: 10 80 00 2b b 40007dc0 <_Thread_Dispatch+0xdc> 40007d18: 2d 10 00 50 sethi %hi(0x40014000), %l6 heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 40007d1c: fa 27 22 78 st %i5, [ %i4 + 0x278 ] _Thread_Dispatch_necessary = false; 40007d20: c0 28 60 18 clrb [ %g1 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 40007d24: 80 a4 00 11 cmp %l0, %l1 40007d28: 02 80 00 2b be 40007dd4 <_Thread_Dispatch+0xf0> 40007d2c: e0 20 60 0c st %l0, [ %g1 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 40007d30: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 40007d34: 80 a0 60 01 cmp %g1, 1 40007d38: 12 80 00 03 bne 40007d44 <_Thread_Dispatch+0x60> 40007d3c: c2 05 e1 d8 ld [ %l7 + 0x1d8 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 40007d40: c2 24 20 78 st %g1, [ %l0 + 0x78 ] _ISR_Enable( level ); 40007d44: 7f ff e7 d9 call 40001ca8 40007d48: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 40007d4c: 40 00 0d 7e call 4000b344 <_TOD_Get_uptime> 40007d50: 90 10 00 14 mov %l4, %o0 _Timestamp_Subtract( 40007d54: 90 10 00 12 mov %l2, %o0 40007d58: 92 10 00 14 mov %l4, %o1 40007d5c: 40 00 03 98 call 40008bbc <_Timespec_Subtract> 40007d60: 94 10 00 13 mov %l3, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 40007d64: 90 04 60 84 add %l1, 0x84, %o0 40007d68: 40 00 03 7c call 40008b58 <_Timespec_Add_to> 40007d6c: 92 10 00 13 mov %l3, %o1 _Thread_Time_of_last_context_switch = uptime; 40007d70: c2 07 bf f8 ld [ %fp + -8 ], %g1 40007d74: c2 24 80 00 st %g1, [ %l2 ] 40007d78: c2 07 bf fc ld [ %fp + -4 ], %g1 40007d7c: c2 24 a0 04 st %g1, [ %l2 + 4 ] #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 40007d80: c2 05 a2 fc ld [ %l6 + 0x2fc ], %g1 40007d84: 80 a0 60 00 cmp %g1, 0 40007d88: 02 80 00 06 be 40007da0 <_Thread_Dispatch+0xbc> <== NEVER TAKEN 40007d8c: 90 10 00 11 mov %l1, %o0 executing->libc_reent = *_Thread_libc_reent; 40007d90: c4 00 40 00 ld [ %g1 ], %g2 40007d94: c4 24 61 58 st %g2, [ %l1 + 0x158 ] *_Thread_libc_reent = heir->libc_reent; 40007d98: c4 04 21 58 ld [ %l0 + 0x158 ], %g2 40007d9c: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 40007da0: 40 00 04 37 call 40008e7c <_User_extensions_Thread_switch> 40007da4: 92 10 00 10 mov %l0, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 40007da8: 90 04 60 d0 add %l1, 0xd0, %o0 40007dac: 40 00 05 26 call 40009244 <_CPU_Context_switch> 40007db0: 92 04 20 d0 add %l0, 0xd0, %o1 if ( executing->fp_context != NULL ) _Context_Restore_fp( &executing->fp_context ); #endif #endif executing = _Thread_Executing; 40007db4: 82 15 60 dc or %l5, 0xdc, %g1 _ISR_Disable( level ); 40007db8: 7f ff e7 b8 call 40001c98 40007dbc: e2 00 60 0c ld [ %g1 + 0xc ], %l1 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 40007dc0: 82 15 60 dc or %l5, 0xdc, %g1 40007dc4: c4 08 60 18 ldub [ %g1 + 0x18 ], %g2 40007dc8: 80 a0 a0 00 cmp %g2, 0 40007dcc: 32 bf ff d4 bne,a 40007d1c <_Thread_Dispatch+0x38> 40007dd0: e0 00 60 10 ld [ %g1 + 0x10 ], %l0 _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 40007dd4: 03 10 00 50 sethi %hi(0x40014000), %g1 40007dd8: c0 20 62 78 clr [ %g1 + 0x278 ] ! 40014278 <_Thread_Dispatch_disable_level> _ISR_Enable( level ); 40007ddc: 7f ff e7 b3 call 40001ca8 40007de0: 01 00 00 00 nop _API_extensions_Run_postswitch(); 40007de4: 7f ff f9 a5 call 40006478 <_API_extensions_Run_postswitch> 40007de8: 01 00 00 00 nop } 40007dec: 81 c7 e0 08 ret 40007df0: 81 e8 00 00 restore =============================================================================== 40007e28 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 40007e28: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 40007e2c: 80 a2 20 00 cmp %o0, 0 40007e30: 12 80 00 0a bne 40007e58 <_Thread_Get+0x30> 40007e34: 94 10 00 09 mov %o1, %o2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 40007e38: 03 10 00 50 sethi %hi(0x40014000), %g1 40007e3c: c4 00 62 78 ld [ %g1 + 0x278 ], %g2 ! 40014278 <_Thread_Dispatch_disable_level> 40007e40: 84 00 a0 01 inc %g2 40007e44: c4 20 62 78 st %g2, [ %g1 + 0x278 ] _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 40007e48: 03 10 00 51 sethi %hi(0x40014400), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 40007e4c: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 40007e50: 81 c3 e0 08 retl 40007e54: d0 00 60 e8 ld [ %g1 + 0xe8 ], %o0 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 40007e58: 87 32 20 18 srl %o0, 0x18, %g3 40007e5c: 86 08 e0 07 and %g3, 7, %g3 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 40007e60: 84 00 ff ff add %g3, -1, %g2 40007e64: 80 a0 a0 02 cmp %g2, 2 40007e68: 28 80 00 16 bleu,a 40007ec0 <_Thread_Get+0x98> 40007e6c: 85 32 20 1b srl %o0, 0x1b, %g2 goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; 40007e70: 82 10 20 01 mov 1, %g1 40007e74: 10 80 00 09 b 40007e98 <_Thread_Get+0x70> 40007e78: c2 22 80 00 st %g1, [ %o2 ] goto done; } api_information = _Objects_Information_table[ the_api ]; 40007e7c: 09 10 00 50 sethi %hi(0x40014000), %g4 40007e80: 88 11 21 dc or %g4, 0x1dc, %g4 ! 400141dc <_Objects_Information_table> 40007e84: c6 01 00 03 ld [ %g4 + %g3 ], %g3 /* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { 40007e88: 80 a0 e0 00 cmp %g3, 0 40007e8c: 32 80 00 05 bne,a 40007ea0 <_Thread_Get+0x78> <== ALWAYS TAKEN 40007e90: d0 00 e0 04 ld [ %g3 + 4 ], %o0 *location = OBJECTS_ERROR; 40007e94: c4 22 80 00 st %g2, [ %o2 ] <== NOT EXECUTED goto done; 40007e98: 81 c3 e0 08 retl 40007e9c: 90 10 20 00 clr %o0 } #endif information = api_information[ the_class ]; if ( !information ) { 40007ea0: 80 a2 20 00 cmp %o0, 0 40007ea4: 12 80 00 04 bne 40007eb4 <_Thread_Get+0x8c> 40007ea8: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; 40007eac: 81 c3 e0 08 retl 40007eb0: c4 22 80 00 st %g2, [ %o2 ] } tp = (Thread_Control *) _Objects_Get( information, id, location ); 40007eb4: 82 13 c0 00 mov %o7, %g1 40007eb8: 7f ff fd 81 call 400074bc <_Objects_Get> 40007ebc: 9e 10 40 00 mov %g1, %o7 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 40007ec0: 80 a0 a0 01 cmp %g2, 1 40007ec4: 22 bf ff ee be,a 40007e7c <_Thread_Get+0x54> 40007ec8: 87 28 e0 02 sll %g3, 2, %g3 *location = OBJECTS_ERROR; 40007ecc: 10 bf ff ea b 40007e74 <_Thread_Get+0x4c> 40007ed0: 82 10 20 01 mov 1, %g1 =============================================================================== 4000d0a4 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 4000d0a4: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 4000d0a8: 03 10 00 51 sethi %hi(0x40014400), %g1 4000d0ac: e0 00 60 e8 ld [ %g1 + 0xe8 ], %l0 ! 400144e8 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 4000d0b0: 3f 10 00 34 sethi %hi(0x4000d000), %i7 4000d0b4: be 17 e0 a4 or %i7, 0xa4, %i7 ! 4000d0a4 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 4000d0b8: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0 _ISR_Set_level(level); 4000d0bc: 7f ff d2 fb call 40001ca8 4000d0c0: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 4000d0c4: 03 10 00 50 sethi %hi(0x40014000), %g1 doneConstructors = 1; 4000d0c8: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 4000d0cc: e2 08 60 38 ldub [ %g1 + 0x38 ], %l1 /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 4000d0d0: 90 10 00 10 mov %l0, %o0 4000d0d4: 7f ff ee fa call 40008cbc <_User_extensions_Thread_begin> 4000d0d8: c4 28 60 38 stb %g2, [ %g1 + 0x38 ] /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 4000d0dc: 7f ff eb 46 call 40007df4 <_Thread_Enable_dispatch> 4000d0e0: a3 2c 60 18 sll %l1, 0x18, %l1 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 4000d0e4: 80 a4 60 00 cmp %l1, 0 4000d0e8: 32 80 00 05 bne,a 4000d0fc <_Thread_Handler+0x58> 4000d0ec: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 INIT_NAME (); 4000d0f0: 40 00 19 ec call 400138a0 <_init> 4000d0f4: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 4000d0f8: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 4000d0fc: 80 a0 60 00 cmp %g1, 0 4000d100: 12 80 00 06 bne 4000d118 <_Thread_Handler+0x74> <== NEVER TAKEN 4000d104: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 4000d108: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 4000d10c: 9f c0 40 00 call %g1 4000d110: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 4000d114: d0 24 20 28 st %o0, [ %l0 + 0x28 ] * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 4000d118: 7f ff ee fa call 40008d00 <_User_extensions_Thread_exitted> 4000d11c: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 4000d120: 90 10 20 00 clr %o0 4000d124: 92 10 20 01 mov 1, %o1 4000d128: 7f ff e7 7a call 40006f10 <_Internal_error_Occurred> 4000d12c: 94 10 20 05 mov 5, %o2 =============================================================================== 40007ed4 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 40007ed4: 9d e3 bf a0 save %sp, -96, %sp 40007ed8: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 40007edc: e2 0f a0 5f ldub [ %fp + 0x5f ], %l1 40007ee0: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 40007ee4: c0 26 61 5c clr [ %i1 + 0x15c ] 40007ee8: c0 26 61 60 clr [ %i1 + 0x160 ] extensions_area = NULL; the_thread->libc_reent = NULL; 40007eec: c0 26 61 58 clr [ %i1 + 0x158 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 40007ef0: 90 10 00 19 mov %i1, %o0 40007ef4: 40 00 02 8e call 4000892c <_Thread_Stack_Allocate> 40007ef8: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 40007efc: 80 a2 00 1b cmp %o0, %i3 40007f00: 0a 80 00 5b bcs 4000806c <_Thread_Initialize+0x198> 40007f04: 80 a2 20 00 cmp %o0, 0 40007f08: 22 80 00 57 be,a 40008064 <_Thread_Initialize+0x190> <== NEVER TAKEN 40007f0c: b0 10 20 00 clr %i0 <== NOT EXECUTED Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 40007f10: c2 06 60 c8 ld [ %i1 + 0xc8 ], %g1 the_stack->size = size; 40007f14: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 40007f18: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 40007f1c: 03 10 00 50 sethi %hi(0x40014000), %g1 40007f20: d0 00 63 08 ld [ %g1 + 0x308 ], %o0 ! 40014308 <_Thread_Maximum_extensions> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 40007f24: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 40007f28: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 40007f2c: c0 26 60 68 clr [ %i1 + 0x68 ] the_watchdog->user_data = user_data; 40007f30: c0 26 60 6c clr [ %i1 + 0x6c ] 40007f34: 80 a2 20 00 cmp %o0, 0 40007f38: 02 80 00 08 be 40007f58 <_Thread_Initialize+0x84> 40007f3c: b6 10 20 00 clr %i3 extensions_area = _Workspace_Allocate( 40007f40: 90 02 20 01 inc %o0 40007f44: 40 00 04 a2 call 400091cc <_Workspace_Allocate> 40007f48: 91 2a 20 02 sll %o0, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 40007f4c: b6 92 20 00 orcc %o0, 0, %i3 40007f50: 22 80 00 2c be,a 40008000 <_Thread_Initialize+0x12c> 40007f54: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 * if they are linked to the thread. An extension user may * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { 40007f58: 80 a6 e0 00 cmp %i3, 0 40007f5c: 02 80 00 0b be 40007f88 <_Thread_Initialize+0xb4> 40007f60: f6 26 61 64 st %i3, [ %i1 + 0x164 ] for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 40007f64: 03 10 00 50 sethi %hi(0x40014000), %g1 40007f68: c4 00 63 08 ld [ %g1 + 0x308 ], %g2 ! 40014308 <_Thread_Maximum_extensions> 40007f6c: 10 80 00 04 b 40007f7c <_Thread_Initialize+0xa8> 40007f70: 82 10 20 00 clr %g1 40007f74: 82 00 60 01 inc %g1 the_thread->extensions[i] = NULL; 40007f78: c0 26 c0 03 clr [ %i3 + %g3 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 40007f7c: 80 a0 40 02 cmp %g1, %g2 40007f80: 08 bf ff fd bleu 40007f74 <_Thread_Initialize+0xa0> 40007f84: 87 28 60 02 sll %g1, 2, %g3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 40007f88: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 40007f8c: 90 10 00 19 mov %i1, %o0 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 40007f90: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ] the_thread->Start.budget_callout = budget_callout; 40007f94: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 40007f98: 92 10 00 1d mov %i5, %o1 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 40007f9c: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 40007fa0: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 40007fa4: e2 2e 60 ac stb %l1, [ %i1 + 0xac ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 40007fa8: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] the_thread->current_state = STATES_DORMANT; 40007fac: 82 10 20 01 mov 1, %g1 the_thread->Wait.queue = NULL; 40007fb0: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 40007fb4: c2 26 60 10 st %g1, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 40007fb8: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 40007fbc: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 40007fc0: 40 00 01 b9 call 400086a4 <_Thread_Set_priority> 40007fc4: fa 26 60 bc st %i5, [ %i1 + 0xbc ] _Thread_Stack_Free( the_thread ); return false; } 40007fc8: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 40007fcc: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 40007fd0: c0 26 60 84 clr [ %i1 + 0x84 ] 40007fd4: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 40007fd8: 83 28 60 02 sll %g1, 2, %g1 40007fdc: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 40007fe0: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 40007fe4: 90 10 00 19 mov %i1, %o0 40007fe8: 40 00 03 68 call 40008d88 <_User_extensions_Thread_create> 40007fec: b0 10 20 01 mov 1, %i0 if ( extension_status ) 40007ff0: 80 8a 20 ff btst 0xff, %o0 40007ff4: 12 80 00 1f bne 40008070 <_Thread_Initialize+0x19c> 40007ff8: 01 00 00 00 nop return true; failed: if ( the_thread->libc_reent ) 40007ffc: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 40008000: 80 a2 20 00 cmp %o0, 0 40008004: 22 80 00 05 be,a 40008018 <_Thread_Initialize+0x144> 40008008: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( the_thread->libc_reent ); 4000800c: 40 00 04 79 call 400091f0 <_Workspace_Free> 40008010: 01 00 00 00 nop for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 40008014: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 40008018: 80 a2 20 00 cmp %o0, 0 4000801c: 22 80 00 05 be,a 40008030 <_Thread_Initialize+0x15c> 40008020: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 _Workspace_Free( the_thread->API_Extensions[i] ); 40008024: 40 00 04 73 call 400091f0 <_Workspace_Free> 40008028: 01 00 00 00 nop failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 4000802c: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 40008030: 80 a2 20 00 cmp %o0, 0 40008034: 02 80 00 05 be 40008048 <_Thread_Initialize+0x174> <== ALWAYS TAKEN 40008038: 80 a6 e0 00 cmp %i3, 0 _Workspace_Free( the_thread->API_Extensions[i] ); 4000803c: 40 00 04 6d call 400091f0 <_Workspace_Free> <== NOT EXECUTED 40008040: 01 00 00 00 nop <== NOT EXECUTED if ( extensions_area ) 40008044: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 40008048: 02 80 00 05 be 4000805c <_Thread_Initialize+0x188> 4000804c: 90 10 00 19 mov %i1, %o0 (void) _Workspace_Free( extensions_area ); 40008050: 40 00 04 68 call 400091f0 <_Workspace_Free> 40008054: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) (void) _Workspace_Free( fp_area ); #endif _Thread_Stack_Free( the_thread ); 40008058: 90 10 00 19 mov %i1, %o0 4000805c: 40 00 02 4b call 40008988 <_Thread_Stack_Free> 40008060: b0 10 20 00 clr %i0 return false; 40008064: 81 c7 e0 08 ret 40008068: 81 e8 00 00 restore * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 4000806c: b0 10 20 00 clr %i0 _Thread_Stack_Free( the_thread ); return false; } 40008070: 81 c7 e0 08 ret 40008074: 81 e8 00 00 restore =============================================================================== 4000bd2c <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) { 4000bd2c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 4000bd30: 7f ff d8 56 call 40001e88 4000bd34: a0 10 00 18 mov %i0, %l0 4000bd38: b0 10 00 08 mov %o0, %i0 current_state = the_thread->current_state; 4000bd3c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 4000bd40: 80 88 60 02 btst 2, %g1 4000bd44: 02 80 00 2e be 4000bdfc <_Thread_Resume+0xd0> <== NEVER TAKEN 4000bd48: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 4000bd4c: 80 a0 60 00 cmp %g1, 0 4000bd50: 12 80 00 2b bne 4000bdfc <_Thread_Resume+0xd0> 4000bd54: c2 24 20 10 st %g1, [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 4000bd58: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 4000bd5c: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 4000bd60: c6 10 40 00 lduh [ %g1 ], %g3 4000bd64: 84 10 c0 02 or %g3, %g2, %g2 4000bd68: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 4000bd6c: 03 10 00 60 sethi %hi(0x40018000), %g1 4000bd70: c6 14 20 94 lduh [ %l0 + 0x94 ], %g3 4000bd74: c4 10 60 58 lduh [ %g1 + 0x58 ], %g2 4000bd78: 84 10 c0 02 or %g3, %g2, %g2 4000bd7c: c4 30 60 58 sth %g2, [ %g1 + 0x58 ] _Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 4000bd80: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000bd84: 84 00 60 04 add %g1, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 4000bd88: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; 4000bd8c: c4 00 60 08 ld [ %g1 + 8 ], %g2 the_chain->last = the_node; 4000bd90: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 4000bd94: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 4000bd98: c4 24 20 04 st %g2, [ %l0 + 4 ] _ISR_Flash( level ); 4000bd9c: 7f ff d8 3f call 40001e98 4000bda0: 01 00 00 00 nop 4000bda4: 7f ff d8 39 call 40001e88 4000bda8: 01 00 00 00 nop if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 4000bdac: 03 10 00 60 sethi %hi(0x40018000), %g1 4000bdb0: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001821c <_Per_CPU_Information> 4000bdb4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 4000bdb8: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 4000bdbc: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 4000bdc0: 80 a0 80 03 cmp %g2, %g3 4000bdc4: 1a 80 00 0e bcc 4000bdfc <_Thread_Resume+0xd0> 4000bdc8: 01 00 00 00 nop _Thread_Heir = the_thread; 4000bdcc: e0 20 60 10 st %l0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 4000bdd0: c2 00 60 0c ld [ %g1 + 0xc ], %g1 4000bdd4: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 4000bdd8: 80 a0 60 00 cmp %g1, 0 4000bddc: 32 80 00 05 bne,a 4000bdf0 <_Thread_Resume+0xc4> 4000bde0: 84 10 20 01 mov 1, %g2 4000bde4: 80 a0 a0 00 cmp %g2, 0 4000bde8: 12 80 00 05 bne 4000bdfc <_Thread_Resume+0xd0> <== ALWAYS TAKEN 4000bdec: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 4000bdf0: 03 10 00 60 sethi %hi(0x40018000), %g1 4000bdf4: 82 10 62 1c or %g1, 0x21c, %g1 ! 4001821c <_Per_CPU_Information> 4000bdf8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 4000bdfc: 7f ff d8 27 call 40001e98 4000be00: 81 e8 00 00 restore =============================================================================== 40008ab0 <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) { 40008ab0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 40008ab4: 23 10 00 51 sethi %hi(0x40014400), %l1 40008ab8: a2 14 60 dc or %l1, 0xdc, %l1 ! 400144dc <_Per_CPU_Information> 40008abc: e0 04 60 0c ld [ %l1 + 0xc ], %l0 ready = executing->ready; _ISR_Disable( level ); 40008ac0: 7f ff e4 76 call 40001c98 40008ac4: e4 04 20 8c ld [ %l0 + 0x8c ], %l2 40008ac8: b0 10 00 08 mov %o0, %i0 */ RTEMS_INLINE_ROUTINE bool _Chain_Has_only_one_node( const Chain_Control *the_chain ) { return (the_chain->first == the_chain->last); 40008acc: c2 04 a0 08 ld [ %l2 + 8 ], %g1 if ( !_Chain_Has_only_one_node( ready ) ) { 40008ad0: c4 04 80 00 ld [ %l2 ], %g2 40008ad4: 80 a0 80 01 cmp %g2, %g1 40008ad8: 22 80 00 19 be,a 40008b3c <_Thread_Yield_processor+0x8c> 40008adc: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 40008ae0: c6 04 00 00 ld [ %l0 ], %g3 previous = the_node->previous; 40008ae4: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; previous->next = next; 40008ae8: c6 20 80 00 st %g3, [ %g2 ] Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous; 40008aec: c4 20 e0 04 st %g2, [ %g3 + 4 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40008af0: 84 04 a0 04 add %l2, 4, %g2 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 40008af4: c4 24 00 00 st %g2, [ %l0 ] old_last_node = the_chain->last; the_chain->last = the_node; 40008af8: e0 24 a0 08 st %l0, [ %l2 + 8 ] old_last_node->next = the_node; 40008afc: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last_node; 40008b00: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 40008b04: 7f ff e4 69 call 40001ca8 40008b08: 01 00 00 00 nop 40008b0c: 7f ff e4 63 call 40001c98 40008b10: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 40008b14: c2 04 60 10 ld [ %l1 + 0x10 ], %g1 40008b18: 80 a4 00 01 cmp %l0, %g1 40008b1c: 12 80 00 04 bne 40008b2c <_Thread_Yield_processor+0x7c> <== NEVER TAKEN 40008b20: 84 10 20 01 mov 1, %g2 _Thread_Heir = (Thread_Control *) ready->first; 40008b24: c2 04 80 00 ld [ %l2 ], %g1 40008b28: c2 24 60 10 st %g1, [ %l1 + 0x10 ] _Thread_Dispatch_necessary = true; 40008b2c: 03 10 00 51 sethi %hi(0x40014400), %g1 40008b30: 82 10 60 dc or %g1, 0xdc, %g1 ! 400144dc <_Per_CPU_Information> 40008b34: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 40008b38: 30 80 00 05 b,a 40008b4c <_Thread_Yield_processor+0x9c> } else if ( !_Thread_Is_heir( executing ) ) 40008b3c: 80 a4 00 01 cmp %l0, %g1 40008b40: 02 80 00 03 be 40008b4c <_Thread_Yield_processor+0x9c> <== ALWAYS TAKEN 40008b44: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 40008b48: c2 2c 60 18 stb %g1, [ %l1 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 40008b4c: 7f ff e4 57 call 40001ca8 40008b50: 81 e8 00 00 restore =============================================================================== 400085f0 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 400085f0: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 400085f4: 80 a6 20 00 cmp %i0, 0 400085f8: 02 80 00 19 be 4000865c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 400085fc: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 40008600: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 40008604: 80 a4 60 01 cmp %l1, 1 40008608: 12 80 00 15 bne 4000865c <_Thread_queue_Requeue+0x6c> <== NEVER TAKEN 4000860c: 01 00 00 00 nop Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 40008610: 7f ff e5 a2 call 40001c98 40008614: 01 00 00 00 nop 40008618: a0 10 00 08 mov %o0, %l0 4000861c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 40008620: 03 00 00 ef sethi %hi(0x3bc00), %g1 40008624: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 40008628: 80 88 80 01 btst %g2, %g1 4000862c: 02 80 00 0a be 40008654 <_Thread_queue_Requeue+0x64> <== NEVER TAKEN 40008630: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 40008634: 92 10 00 19 mov %i1, %o1 40008638: 94 10 20 01 mov 1, %o2 4000863c: 40 00 0c af call 4000b8f8 <_Thread_queue_Extract_priority_helper> 40008640: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 40008644: 90 10 00 18 mov %i0, %o0 40008648: 92 10 00 19 mov %i1, %o1 4000864c: 7f ff ff 4b call 40008378 <_Thread_queue_Enqueue_priority> 40008650: 94 07 bf fc add %fp, -4, %o2 } _ISR_Enable( level ); 40008654: 7f ff e5 95 call 40001ca8 40008658: 90 10 00 10 mov %l0, %o0 4000865c: 81 c7 e0 08 ret 40008660: 81 e8 00 00 restore =============================================================================== 40008664 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 40008664: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 40008668: 90 10 00 18 mov %i0, %o0 4000866c: 7f ff fd ef call 40007e28 <_Thread_Get> 40008670: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 40008674: c2 07 bf fc ld [ %fp + -4 ], %g1 40008678: 80 a0 60 00 cmp %g1, 0 4000867c: 12 80 00 08 bne 4000869c <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 40008680: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 40008684: 40 00 0c d3 call 4000b9d0 <_Thread_queue_Process_timeout> 40008688: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 4000868c: 03 10 00 50 sethi %hi(0x40014000), %g1 40008690: c4 00 62 78 ld [ %g1 + 0x278 ], %g2 ! 40014278 <_Thread_Dispatch_disable_level> 40008694: 84 00 bf ff add %g2, -1, %g2 40008698: c4 20 62 78 st %g2, [ %g1 + 0x278 ] 4000869c: 81 c7 e0 08 ret 400086a0: 81 e8 00 00 restore =============================================================================== 400163ec <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 400163ec: 9d e3 bf 88 save %sp, -120, %sp static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 400163f0: 35 10 00 f2 sethi %hi(0x4003c800), %i2 400163f4: a4 07 bf e8 add %fp, -24, %l2 400163f8: b2 07 bf f4 add %fp, -12, %i1 400163fc: ac 07 bf f8 add %fp, -8, %l6 40016400: a6 07 bf ec add %fp, -20, %l3 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40016404: ec 27 bf f4 st %l6, [ %fp + -12 ] the_chain->permanent_null = NULL; 40016408: c0 27 bf f8 clr [ %fp + -8 ] the_chain->last = _Chain_Head(the_chain); 4001640c: f2 27 bf fc st %i1, [ %fp + -4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40016410: e6 27 bf e8 st %l3, [ %fp + -24 ] the_chain->permanent_null = NULL; 40016414: c0 27 bf ec clr [ %fp + -20 ] the_chain->last = _Chain_Head(the_chain); 40016418: e4 27 bf f0 st %l2, [ %fp + -16 ] */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 4001641c: aa 06 20 30 add %i0, 0x30, %l5 _Chain_Initialize_empty( &insert_chain ); _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); 40016420: a8 10 00 12 mov %l2, %l4 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 40016424: 37 10 00 f2 sethi %hi(0x4003c800), %i3 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 40016428: a2 06 20 68 add %i0, 0x68, %l1 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 4001642c: b8 10 20 01 mov 1, %i4 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 40016430: ba 06 20 08 add %i0, 8, %i5 static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 40016434: ae 06 20 40 add %i0, 0x40, %l7 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 40016438: f2 26 20 78 st %i1, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 4001643c: c2 06 a1 74 ld [ %i2 + 0x174 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 40016440: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 40016444: 94 10 00 14 mov %l4, %o2 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 40016448: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 4001644c: 90 10 00 15 mov %l5, %o0 40016450: 40 00 11 9c call 4001aac0 <_Watchdog_Adjust_to_chain> 40016454: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 40016458: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 4001645c: e0 06 e0 c0 ld [ %i3 + 0xc0 ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 40016460: 80 a4 00 0a cmp %l0, %o2 40016464: 08 80 00 06 bleu 4001647c <_Timer_server_Body+0x90> 40016468: 92 24 00 0a sub %l0, %o2, %o1 /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 4001646c: 90 10 00 11 mov %l1, %o0 40016470: 40 00 11 94 call 4001aac0 <_Watchdog_Adjust_to_chain> 40016474: 94 10 00 14 mov %l4, %o2 40016478: 30 80 00 06 b,a 40016490 <_Timer_server_Body+0xa4> } else if ( snapshot < last_snapshot ) { 4001647c: 1a 80 00 05 bcc 40016490 <_Timer_server_Body+0xa4> 40016480: 90 10 00 11 mov %l1, %o0 /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 40016484: 92 10 20 01 mov 1, %o1 40016488: 40 00 11 66 call 4001aa20 <_Watchdog_Adjust> 4001648c: 94 22 80 10 sub %o2, %l0, %o2 } watchdogs->last_snapshot = snapshot; 40016490: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 40016494: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 40016498: 40 00 02 bf call 40016f94 <_Chain_Get> 4001649c: 01 00 00 00 nop if ( timer == NULL ) { 400164a0: 92 92 20 00 orcc %o0, 0, %o1 400164a4: 02 80 00 0c be 400164d4 <_Timer_server_Body+0xe8> 400164a8: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 400164ac: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 400164b0: 80 a0 60 01 cmp %g1, 1 400164b4: 02 80 00 05 be 400164c8 <_Timer_server_Body+0xdc> 400164b8: 90 10 00 15 mov %l5, %o0 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 400164bc: 80 a0 60 03 cmp %g1, 3 400164c0: 12 bf ff f5 bne 40016494 <_Timer_server_Body+0xa8> <== NEVER TAKEN 400164c4: 90 10 00 11 mov %l1, %o0 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 400164c8: 40 00 11 b2 call 4001ab90 <_Watchdog_Insert> 400164cc: 92 02 60 10 add %o1, 0x10, %o1 400164d0: 30 bf ff f1 b,a 40016494 <_Timer_server_Body+0xa8> * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 400164d4: 7f ff e3 a5 call 4000f368 400164d8: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 400164dc: c2 07 bf f4 ld [ %fp + -12 ], %g1 400164e0: 80 a0 40 16 cmp %g1, %l6 400164e4: 12 80 00 0a bne 4001650c <_Timer_server_Body+0x120> <== NEVER TAKEN 400164e8: 01 00 00 00 nop ts->insert_chain = NULL; 400164ec: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 400164f0: 7f ff e3 a2 call 4000f378 400164f4: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 400164f8: c2 07 bf e8 ld [ %fp + -24 ], %g1 400164fc: 80 a0 40 13 cmp %g1, %l3 40016500: 12 80 00 06 bne 40016518 <_Timer_server_Body+0x12c> 40016504: 01 00 00 00 nop 40016508: 30 80 00 1a b,a 40016570 <_Timer_server_Body+0x184> ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 4001650c: 7f ff e3 9b call 4000f378 <== NOT EXECUTED 40016510: 01 00 00 00 nop <== NOT EXECUTED 40016514: 30 bf ff ca b,a 4001643c <_Timer_server_Body+0x50> <== NOT EXECUTED /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 40016518: 7f ff e3 94 call 4000f368 4001651c: 01 00 00 00 nop 40016520: 84 10 00 08 mov %o0, %g2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 40016524: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 40016528: 80 a4 00 13 cmp %l0, %l3 4001652c: 02 80 00 0e be 40016564 <_Timer_server_Body+0x178> 40016530: 80 a4 20 00 cmp %l0, 0 { Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; 40016534: c2 04 00 00 ld [ %l0 ], %g1 the_chain->first = new_first; 40016538: c2 27 bf e8 st %g1, [ %fp + -24 ] watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { 4001653c: 02 80 00 0a be 40016564 <_Timer_server_Body+0x178> <== NEVER TAKEN 40016540: e4 20 60 04 st %l2, [ %g1 + 4 ] watchdog->state = WATCHDOG_INACTIVE; 40016544: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 40016548: 7f ff e3 8c call 4000f378 4001654c: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 40016550: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 40016554: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 40016558: 9f c0 40 00 call %g1 4001655c: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 } 40016560: 30 bf ff ee b,a 40016518 <_Timer_server_Body+0x12c> watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 40016564: 7f ff e3 85 call 4000f378 40016568: 90 10 00 02 mov %g2, %o0 4001656c: 30 bf ff b3 b,a 40016438 <_Timer_server_Body+0x4c> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 40016570: c0 2e 20 7c clrb [ %i0 + 0x7c ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); 40016574: 7f ff ff 6e call 4001632c <_Thread_Disable_dispatch> 40016578: 01 00 00 00 nop _Thread_Set_state( ts->thread, STATES_DELAYING ); 4001657c: d0 06 00 00 ld [ %i0 ], %o0 40016580: 40 00 0e a4 call 4001a010 <_Thread_Set_state> 40016584: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 40016588: 7f ff ff 6f call 40016344 <_Timer_server_Reset_interval_system_watchdog> 4001658c: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 40016590: 7f ff ff 82 call 40016398 <_Timer_server_Reset_tod_system_watchdog> 40016594: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 40016598: 40 00 0c 06 call 400195b0 <_Thread_Enable_dispatch> 4001659c: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 400165a0: 90 10 00 1d mov %i5, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 400165a4: f8 2e 20 7c stb %i4, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 400165a8: 40 00 11 d4 call 4001acf8 <_Watchdog_Remove> 400165ac: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 400165b0: 40 00 11 d2 call 4001acf8 <_Watchdog_Remove> 400165b4: 90 10 00 17 mov %l7, %o0 400165b8: 30 bf ff a0 b,a 40016438 <_Timer_server_Body+0x4c> =============================================================================== 400165bc <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 400165bc: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 400165c0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 400165c4: 80 a0 60 00 cmp %g1, 0 400165c8: 12 80 00 49 bne 400166ec <_Timer_server_Schedule_operation_method+0x130> 400165cc: a0 10 00 19 mov %i1, %l0 * is the reference point for the delta chain. Thus if we do not update the * reference point we have to add DT to the initial delta of the watchdog * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); 400165d0: 7f ff ff 57 call 4001632c <_Thread_Disable_dispatch> 400165d4: 01 00 00 00 nop if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 400165d8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 400165dc: 80 a0 60 01 cmp %g1, 1 400165e0: 12 80 00 1f bne 4001665c <_Timer_server_Schedule_operation_method+0xa0> 400165e4: 80 a0 60 03 cmp %g1, 3 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 400165e8: 7f ff e3 60 call 4000f368 400165ec: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 400165f0: 03 10 00 f2 sethi %hi(0x4003c800), %g1 400165f4: c4 00 61 74 ld [ %g1 + 0x174 ], %g2 ! 4003c974 <_Watchdog_Ticks_since_boot> */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 400165f8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 last_snapshot = ts->Interval_watchdogs.last_snapshot; 400165fc: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40016600: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 40016604: 80 a0 40 03 cmp %g1, %g3 40016608: 02 80 00 08 be 40016628 <_Timer_server_Schedule_operation_method+0x6c> 4001660c: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 40016610: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 40016614: 80 a3 40 04 cmp %o5, %g4 40016618: 08 80 00 03 bleu 40016624 <_Timer_server_Schedule_operation_method+0x68> 4001661c: 86 10 20 00 clr %g3 delta_interval -= delta; 40016620: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 40016624: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 40016628: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 4001662c: 7f ff e3 53 call 4000f378 40016630: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 40016634: 90 06 20 30 add %i0, 0x30, %o0 40016638: 40 00 11 56 call 4001ab90 <_Watchdog_Insert> 4001663c: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 40016640: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 40016644: 80 a0 60 00 cmp %g1, 0 40016648: 12 80 00 27 bne 400166e4 <_Timer_server_Schedule_operation_method+0x128> 4001664c: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 40016650: 7f ff ff 3d call 40016344 <_Timer_server_Reset_interval_system_watchdog> 40016654: 90 10 00 18 mov %i0, %o0 40016658: 30 80 00 23 b,a 400166e4 <_Timer_server_Schedule_operation_method+0x128> } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 4001665c: 12 80 00 22 bne 400166e4 <_Timer_server_Schedule_operation_method+0x128> 40016660: 01 00 00 00 nop /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 40016664: 7f ff e3 41 call 4000f368 40016668: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 4001666c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 40016670: da 06 20 74 ld [ %i0 + 0x74 ], %o5 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 40016674: 03 10 00 f2 sethi %hi(0x4003c800), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 40016678: 86 06 20 6c add %i0, 0x6c, %g3 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 4001667c: 80 a0 80 03 cmp %g2, %g3 40016680: 02 80 00 0d be 400166b4 <_Timer_server_Schedule_operation_method+0xf8> 40016684: c2 00 60 c0 ld [ %g1 + 0xc0 ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 40016688: c8 00 a0 10 ld [ %g2 + 0x10 ], %g4 if ( snapshot > last_snapshot ) { 4001668c: 80 a0 40 0d cmp %g1, %o5 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 40016690: 86 01 00 0d add %g4, %o5, %g3 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 40016694: 08 80 00 07 bleu 400166b0 <_Timer_server_Schedule_operation_method+0xf4> 40016698: 86 20 c0 01 sub %g3, %g1, %g3 /* * We advanced in time. */ delta = snapshot - last_snapshot; 4001669c: 9a 20 40 0d sub %g1, %o5, %o5 if (delta_interval > delta) { 400166a0: 80 a1 00 0d cmp %g4, %o5 400166a4: 08 80 00 03 bleu 400166b0 <_Timer_server_Schedule_operation_method+0xf4><== NEVER TAKEN 400166a8: 86 10 20 00 clr %g3 delta_interval -= delta; 400166ac: 86 21 00 0d sub %g4, %o5, %g3 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 400166b0: c6 20 a0 10 st %g3, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 400166b4: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 400166b8: 7f ff e3 30 call 4000f378 400166bc: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 400166c0: 90 06 20 68 add %i0, 0x68, %o0 400166c4: 40 00 11 33 call 4001ab90 <_Watchdog_Insert> 400166c8: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 400166cc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 400166d0: 80 a0 60 00 cmp %g1, 0 400166d4: 12 80 00 04 bne 400166e4 <_Timer_server_Schedule_operation_method+0x128> 400166d8: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 400166dc: 7f ff ff 2f call 40016398 <_Timer_server_Reset_tod_system_watchdog> 400166e0: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 400166e4: 40 00 0b b3 call 400195b0 <_Thread_Enable_dispatch> 400166e8: 81 e8 00 00 restore * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 400166ec: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 400166f0: 40 00 02 13 call 40016f3c <_Chain_Append> 400166f4: 81 e8 00 00 restore =============================================================================== 4000abe4 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 4000abe4: c6 02 00 00 ld [ %o0 ], %g3 4000abe8: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 4000abec: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 4000abf0: 80 a0 c0 02 cmp %g3, %g2 4000abf4: 14 80 00 0b bg 4000ac20 <_Timespec_Greater_than+0x3c> 4000abf8: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 4000abfc: 80 a0 c0 02 cmp %g3, %g2 4000ac00: 06 80 00 08 bl 4000ac20 <_Timespec_Greater_than+0x3c> <== NEVER TAKEN 4000ac04: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 4000ac08: c4 00 60 04 ld [ %g1 + 4 ], %g2 4000ac0c: c2 02 60 04 ld [ %o1 + 4 ], %g1 4000ac10: 80 a0 80 01 cmp %g2, %g1 4000ac14: 14 80 00 03 bg 4000ac20 <_Timespec_Greater_than+0x3c> 4000ac18: 90 10 20 01 mov 1, %o0 4000ac1c: 90 10 20 00 clr %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 4000ac20: 81 c3 e0 08 retl =============================================================================== 40008d40 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 40008d40: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008d44: 23 10 00 51 sethi %hi(0x40014400), %l1 the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 40008d48: b2 0e 60 ff and %i1, 0xff, %i1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008d4c: a2 14 60 98 or %l1, 0x98, %l1 40008d50: 10 80 00 09 b 40008d74 <_User_extensions_Fatal+0x34> 40008d54: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 40008d58: 80 a0 60 00 cmp %g1, 0 40008d5c: 02 80 00 05 be 40008d70 <_User_extensions_Fatal+0x30> 40008d60: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 40008d64: 92 10 00 19 mov %i1, %o1 40008d68: 9f c0 40 00 call %g1 40008d6c: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 40008d70: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008d74: 80 a4 00 11 cmp %l0, %l1 40008d78: 32 bf ff f8 bne,a 40008d58 <_User_extensions_Fatal+0x18> <== ALWAYS TAKEN 40008d7c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 40008d80: 81 c7 e0 08 ret <== NOT EXECUTED 40008d84: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 40008c04 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 40008c04: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 40008c08: 03 10 00 4e sethi %hi(0x40013800), %g1 40008c0c: 82 10 61 98 or %g1, 0x198, %g1 ! 40013998 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40008c10: 05 10 00 51 sethi %hi(0x40014400), %g2 initial_extensions = Configuration.User_extension_table; 40008c14: e6 00 60 3c ld [ %g1 + 0x3c ], %l3 User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 40008c18: e4 00 60 38 ld [ %g1 + 0x38 ], %l2 40008c1c: 82 10 a0 98 or %g2, 0x98, %g1 40008c20: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 40008c24: c0 20 60 04 clr [ %g1 + 4 ] the_chain->last = _Chain_Head(the_chain); 40008c28: c2 20 60 08 st %g1, [ %g1 + 8 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40008c2c: c6 20 a0 98 st %g3, [ %g2 + 0x98 ] 40008c30: 05 10 00 50 sethi %hi(0x40014000), %g2 40008c34: 82 10 a2 7c or %g2, 0x27c, %g1 ! 4001427c <_User_extensions_Switches_list> 40008c38: 86 00 60 04 add %g1, 4, %g3 the_chain->permanent_null = NULL; 40008c3c: c0 20 60 04 clr [ %g1 + 4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 40008c40: c6 20 a2 7c st %g3, [ %g2 + 0x27c ] initial_extensions = Configuration.User_extension_table; _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 40008c44: 80 a4 e0 00 cmp %l3, 0 40008c48: 02 80 00 1b be 40008cb4 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 40008c4c: c2 20 60 08 st %g1, [ %g1 + 8 ] extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 40008c50: 83 2c a0 02 sll %l2, 2, %g1 40008c54: a1 2c a0 04 sll %l2, 4, %l0 40008c58: a0 24 00 01 sub %l0, %g1, %l0 40008c5c: a0 04 00 12 add %l0, %l2, %l0 40008c60: a1 2c 20 02 sll %l0, 2, %l0 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 40008c64: 40 00 01 6a call 4000920c <_Workspace_Allocate_or_fatal_error> 40008c68: 90 10 00 10 mov %l0, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 40008c6c: 94 10 00 10 mov %l0, %o2 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 40008c70: a2 10 00 08 mov %o0, %l1 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 40008c74: 92 10 20 00 clr %o1 40008c78: 40 00 13 fd call 4000dc6c 40008c7c: a0 10 20 00 clr %l0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 40008c80: 10 80 00 0b b 40008cac <_User_extensions_Handler_initialization+0xa8> 40008c84: 80 a4 00 12 cmp %l0, %l2 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 40008c88: 90 04 60 14 add %l1, 0x14, %o0 40008c8c: 92 04 c0 09 add %l3, %o1, %o1 40008c90: 40 00 13 be call 4000db88 40008c94: 94 10 20 20 mov 0x20, %o2 _User_extensions_Add_set( extension ); 40008c98: 90 10 00 11 mov %l1, %o0 40008c9c: 40 00 0b b5 call 4000bb70 <_User_extensions_Add_set> 40008ca0: a0 04 20 01 inc %l0 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 40008ca4: a2 04 60 34 add %l1, 0x34, %l1 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 40008ca8: 80 a4 00 12 cmp %l0, %l2 40008cac: 0a bf ff f7 bcs 40008c88 <_User_extensions_Handler_initialization+0x84> 40008cb0: 93 2c 20 05 sll %l0, 5, %o1 40008cb4: 81 c7 e0 08 ret 40008cb8: 81 e8 00 00 restore =============================================================================== 40008d00 <_User_extensions_Thread_exitted>: void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 40008d00: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008d04: 23 10 00 51 sethi %hi(0x40014400), %l1 40008d08: a2 14 60 98 or %l1, 0x98, %l1 ! 40014498 <_User_extensions_List> 40008d0c: 10 80 00 08 b 40008d2c <_User_extensions_Thread_exitted+0x2c> 40008d10: e0 04 60 08 ld [ %l1 + 8 ], %l0 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 40008d14: 80 a0 60 00 cmp %g1, 0 40008d18: 22 80 00 05 be,a 40008d2c <_User_extensions_Thread_exitted+0x2c> 40008d1c: e0 04 20 04 ld [ %l0 + 4 ], %l0 (*the_extension->Callouts.thread_exitted)( executing ); 40008d20: 9f c0 40 00 call %g1 40008d24: 90 10 00 18 mov %i0, %o0 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 40008d28: e0 04 20 04 ld [ %l0 + 4 ], %l0 <== NOT EXECUTED ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 40008d2c: 80 a4 00 11 cmp %l0, %l1 40008d30: 32 bf ff f9 bne,a 40008d14 <_User_extensions_Thread_exitted+0x14> 40008d34: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) (*the_extension->Callouts.thread_exitted)( executing ); } } 40008d38: 81 c7 e0 08 ret 40008d3c: 81 e8 00 00 restore =============================================================================== 4000b094 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 4000b094: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 4000b098: 7f ff df 0b call 40002cc4 4000b09c: a0 10 00 18 mov %i0, %l0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 4000b0a0: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000b0a4: a2 06 20 04 add %i0, 4, %l1 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 4000b0a8: 80 a0 40 11 cmp %g1, %l1 4000b0ac: 02 80 00 1f be 4000b128 <_Watchdog_Adjust+0x94> 4000b0b0: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 4000b0b4: 02 80 00 1a be 4000b11c <_Watchdog_Adjust+0x88> 4000b0b8: a4 10 20 01 mov 1, %l2 4000b0bc: 80 a6 60 01 cmp %i1, 1 4000b0c0: 12 80 00 1a bne 4000b128 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 4000b0c4: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 4000b0c8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 4000b0cc: 10 80 00 07 b 4000b0e8 <_Watchdog_Adjust+0x54> 4000b0d0: b4 00 80 1a add %g2, %i2, %i2 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { 4000b0d4: f2 00 60 10 ld [ %g1 + 0x10 ], %i1 4000b0d8: 80 a6 80 19 cmp %i2, %i1 4000b0dc: 3a 80 00 05 bcc,a 4000b0f0 <_Watchdog_Adjust+0x5c> 4000b0e0: e4 20 60 10 st %l2, [ %g1 + 0x10 ] _Watchdog_First( header )->delta_interval -= units; 4000b0e4: b4 26 40 1a sub %i1, %i2, %i2 break; 4000b0e8: 10 80 00 10 b 4000b128 <_Watchdog_Adjust+0x94> 4000b0ec: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; _ISR_Enable( level ); 4000b0f0: 7f ff de f9 call 40002cd4 4000b0f4: 01 00 00 00 nop _Watchdog_Tickle( header ); 4000b0f8: 40 00 00 92 call 4000b340 <_Watchdog_Tickle> 4000b0fc: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 4000b100: 7f ff de f1 call 40002cc4 4000b104: 01 00 00 00 nop if ( _Chain_Is_empty( header ) ) 4000b108: c2 04 00 00 ld [ %l0 ], %g1 4000b10c: 80 a0 40 11 cmp %g1, %l1 4000b110: 02 80 00 06 be 4000b128 <_Watchdog_Adjust+0x94> 4000b114: 01 00 00 00 nop while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; 4000b118: b4 26 80 19 sub %i2, %i1, %i2 switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 4000b11c: 80 a6 a0 00 cmp %i2, 0 4000b120: 32 bf ff ed bne,a 4000b0d4 <_Watchdog_Adjust+0x40> <== ALWAYS TAKEN 4000b124: c2 04 00 00 ld [ %l0 ], %g1 } break; } } _ISR_Enable( level ); 4000b128: 7f ff de eb call 40002cd4 4000b12c: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 40009020 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 40009020: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 40009024: 7f ff e3 1d call 40001c98 40009028: a0 10 00 18 mov %i0, %l0 previous_state = the_watchdog->state; 4000902c: f0 06 20 08 ld [ %i0 + 8 ], %i0 switch ( previous_state ) { 40009030: 80 a6 20 01 cmp %i0, 1 40009034: 22 80 00 1d be,a 400090a8 <_Watchdog_Remove+0x88> 40009038: c0 24 20 08 clr [ %l0 + 8 ] 4000903c: 0a 80 00 1c bcs 400090ac <_Watchdog_Remove+0x8c> 40009040: 03 10 00 50 sethi %hi(0x40014000), %g1 40009044: 80 a6 20 03 cmp %i0, 3 40009048: 18 80 00 19 bgu 400090ac <_Watchdog_Remove+0x8c> <== NEVER TAKEN 4000904c: 01 00 00 00 nop 40009050: c2 04 00 00 ld [ %l0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 40009054: c0 24 20 08 clr [ %l0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 40009058: c4 00 40 00 ld [ %g1 ], %g2 4000905c: 80 a0 a0 00 cmp %g2, 0 40009060: 02 80 00 07 be 4000907c <_Watchdog_Remove+0x5c> 40009064: 05 10 00 50 sethi %hi(0x40014000), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 40009068: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 4000906c: c4 04 20 10 ld [ %l0 + 0x10 ], %g2 40009070: 84 00 c0 02 add %g3, %g2, %g2 40009074: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 40009078: 05 10 00 50 sethi %hi(0x40014000), %g2 4000907c: c4 00 a3 b0 ld [ %g2 + 0x3b0 ], %g2 ! 400143b0 <_Watchdog_Sync_count> 40009080: 80 a0 a0 00 cmp %g2, 0 40009084: 22 80 00 07 be,a 400090a0 <_Watchdog_Remove+0x80> 40009088: c4 04 20 04 ld [ %l0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 4000908c: 05 10 00 51 sethi %hi(0x40014400), %g2 40009090: c6 00 a0 e4 ld [ %g2 + 0xe4 ], %g3 ! 400144e4 <_Per_CPU_Information+0x8> 40009094: 05 10 00 50 sethi %hi(0x40014000), %g2 40009098: c6 20 a3 20 st %g3, [ %g2 + 0x320 ] ! 40014320 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 4000909c: c4 04 20 04 ld [ %l0 + 4 ], %g2 next->previous = previous; 400090a0: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 400090a4: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 400090a8: 03 10 00 50 sethi %hi(0x40014000), %g1 400090ac: c2 00 63 b4 ld [ %g1 + 0x3b4 ], %g1 ! 400143b4 <_Watchdog_Ticks_since_boot> 400090b0: c2 24 20 18 st %g1, [ %l0 + 0x18 ] _ISR_Enable( level ); 400090b4: 7f ff e2 fd call 40001ca8 400090b8: 01 00 00 00 nop return( previous_state ); } 400090bc: 81 c7 e0 08 ret 400090c0: 81 e8 00 00 restore =============================================================================== 4000a8d4 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 4000a8d4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 4000a8d8: 7f ff df d2 call 40002820 4000a8dc: a0 10 00 18 mov %i0, %l0 4000a8e0: b0 10 00 08 mov %o0, %i0 printk( "Watchdog Chain: %s %p\n", name, header ); 4000a8e4: 11 10 00 71 sethi %hi(0x4001c400), %o0 4000a8e8: 94 10 00 19 mov %i1, %o2 4000a8ec: 90 12 21 a8 or %o0, 0x1a8, %o0 4000a8f0: 7f ff e6 40 call 400041f0 4000a8f4: 92 10 00 10 mov %l0, %o1 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 4000a8f8: e2 06 40 00 ld [ %i1 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 4000a8fc: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 4000a900: 80 a4 40 19 cmp %l1, %i1 4000a904: 02 80 00 0e be 4000a93c <_Watchdog_Report_chain+0x68> 4000a908: 11 10 00 71 sethi %hi(0x4001c400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 4000a90c: 92 10 00 11 mov %l1, %o1 4000a910: 40 00 00 10 call 4000a950 <_Watchdog_Report> 4000a914: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next ) 4000a918: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; 4000a91c: 80 a4 40 19 cmp %l1, %i1 4000a920: 12 bf ff fc bne 4000a910 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 4000a924: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 4000a928: 11 10 00 71 sethi %hi(0x4001c400), %o0 4000a92c: 92 10 00 10 mov %l0, %o1 4000a930: 7f ff e6 30 call 400041f0 4000a934: 90 12 21 c0 or %o0, 0x1c0, %o0 4000a938: 30 80 00 03 b,a 4000a944 <_Watchdog_Report_chain+0x70> } else { printk( "Chain is empty\n" ); 4000a93c: 7f ff e6 2d call 400041f0 4000a940: 90 12 21 d0 or %o0, 0x1d0, %o0 } _ISR_Enable( level ); 4000a944: 7f ff df bb call 40002830 4000a948: 81 e8 00 00 restore =============================================================================== 4000675c : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 4000675c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); 40006760: 90 10 00 18 mov %i0, %o0 40006764: 40 00 01 48 call 40006c84 <_Chain_Append_with_empty_check> 40006768: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { 4000676c: 80 8a 20 ff btst 0xff, %o0 40006770: 02 80 00 05 be 40006784 <== NEVER TAKEN 40006774: 01 00 00 00 nop sc = rtems_event_send( task, events ); 40006778: b0 10 00 1a mov %i2, %i0 4000677c: 7f ff fd 78 call 40005d5c 40006780: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 40006784: 81 c7 e0 08 ret <== NOT EXECUTED 40006788: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 4000678c : rtems_chain_control *chain, rtems_id task, rtems_event_set events, rtems_chain_node **node ) { 4000678c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check( rtems_chain_control *chain, rtems_chain_node **node ) { return _Chain_Get_with_empty_check( chain, node ); 40006790: 90 10 00 18 mov %i0, %o0 40006794: 40 00 01 63 call 40006d20 <_Chain_Get_with_empty_check> 40006798: 92 10 00 1b mov %i3, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { 4000679c: 80 8a 20 ff btst 0xff, %o0 400067a0: 02 80 00 05 be 400067b4 <== NEVER TAKEN 400067a4: 01 00 00 00 nop sc = rtems_event_send( task, events ); 400067a8: b0 10 00 19 mov %i1, %i0 400067ac: 7f ff fd 6c call 40005d5c 400067b0: 93 e8 00 1a restore %g0, %i2, %o1 } return sc; } 400067b4: 81 c7 e0 08 ret <== NOT EXECUTED 400067b8: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 400067bc : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 400067bc: 9d e3 bf 98 save %sp, -104, %sp 400067c0: a0 10 00 18 mov %i0, %l0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 400067c4: 10 80 00 09 b 400067e8 400067c8: a4 07 bf fc add %fp, -4, %l2 400067cc: 92 10 20 00 clr %o1 400067d0: 94 10 00 1a mov %i2, %o2 400067d4: 7f ff fc fe call 40005bcc 400067d8: 96 10 00 12 mov %l2, %o3 ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 400067dc: 80 a2 20 00 cmp %o0, 0 400067e0: 32 80 00 09 bne,a 40006804 <== ALWAYS TAKEN 400067e4: e2 26 c0 00 st %l1, [ %i3 ] */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 400067e8: 40 00 01 63 call 40006d74 <_Chain_Get> 400067ec: 90 10 00 10 mov %l0, %o0 sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 400067f0: a2 92 20 00 orcc %o0, 0, %l1 400067f4: 02 bf ff f6 be 400067cc 400067f8: 90 10 00 19 mov %i1, %o0 400067fc: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 40006800: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 40006804: 81 c7 e0 08 ret 40006808: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 4000680c : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 4000680c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); 40006810: 90 10 00 18 mov %i0, %o0 40006814: 40 00 01 72 call 40006ddc <_Chain_Prepend_with_empty_check> 40006818: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { 4000681c: 80 8a 20 ff btst 0xff, %o0 40006820: 02 80 00 05 be 40006834 <== NEVER TAKEN 40006824: 01 00 00 00 nop sc = rtems_event_send( task, events ); 40006828: b0 10 00 1a mov %i2, %i0 4000682c: 7f ff fd 4c call 40005d5c 40006830: 93 e8 00 1b restore %g0, %i3, %o1 } return sc; } 40006834: 81 c7 e0 08 ret <== NOT EXECUTED 40006838: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED =============================================================================== 40008bec : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 40008bec: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 40008bf0: 80 a6 20 00 cmp %i0, 0 40008bf4: 02 80 00 1a be 40008c5c <== NEVER TAKEN 40008bf8: 21 10 00 99 sethi %hi(0x40026400), %l0 40008bfc: a0 14 21 f0 or %l0, 0x1f0, %l0 ! 400265f0 <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 40008c00: a6 04 20 0c add %l0, 0xc, %l3 #if defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 40008c04: c2 04 00 00 ld [ %l0 ], %g1 40008c08: e4 00 60 04 ld [ %g1 + 4 ], %l2 if ( !information ) 40008c0c: 80 a4 a0 00 cmp %l2, 0 40008c10: 12 80 00 0b bne 40008c3c 40008c14: a2 10 20 01 mov 1, %l1 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 40008c18: 10 80 00 0e b 40008c50 40008c1c: a0 04 20 04 add %l0, 4, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 40008c20: 83 2c 60 02 sll %l1, 2, %g1 40008c24: d0 00 80 01 ld [ %g2 + %g1 ], %o0 if ( !the_thread ) 40008c28: 80 a2 20 00 cmp %o0, 0 40008c2c: 02 80 00 04 be 40008c3c <== NEVER TAKEN 40008c30: a2 04 60 01 inc %l1 continue; (*routine)(the_thread); 40008c34: 9f c6 00 00 call %i0 40008c38: 01 00 00 00 nop information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 40008c3c: c2 14 a0 10 lduh [ %l2 + 0x10 ], %g1 40008c40: 80 a4 40 01 cmp %l1, %g1 40008c44: 28 bf ff f7 bleu,a 40008c20 40008c48: c4 04 a0 1c ld [ %l2 + 0x1c ], %g2 40008c4c: a0 04 20 04 add %l0, 4, %l0 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 40008c50: 80 a4 00 13 cmp %l0, %l3 40008c54: 32 bf ff ed bne,a 40008c08 40008c58: c2 04 00 00 ld [ %l0 ], %g1 40008c5c: 81 c7 e0 08 ret 40008c60: 81 e8 00 00 restore =============================================================================== 40013dac : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 40013dac: 9d e3 bf a0 save %sp, -96, %sp 40013db0: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 40013db4: 80 a4 20 00 cmp %l0, 0 40013db8: 02 80 00 1f be 40013e34 40013dbc: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 40013dc0: 80 a6 60 00 cmp %i1, 0 40013dc4: 02 80 00 1c be 40013e34 40013dc8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 40013dcc: 80 a7 60 00 cmp %i5, 0 40013dd0: 02 80 00 19 be 40013e34 <== NEVER TAKEN 40013dd4: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 40013dd8: 02 80 00 32 be 40013ea0 40013ddc: 80 a6 a0 00 cmp %i2, 0 40013de0: 02 80 00 30 be 40013ea0 40013de4: 80 a6 80 1b cmp %i2, %i3 40013de8: 0a 80 00 13 bcs 40013e34 40013dec: b0 10 20 08 mov 8, %i0 40013df0: 80 8e e0 07 btst 7, %i3 40013df4: 12 80 00 10 bne 40013e34 40013df8: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 40013dfc: 12 80 00 0e bne 40013e34 40013e00: b0 10 20 09 mov 9, %i0 40013e04: 03 10 00 f2 sethi %hi(0x4003c800), %g1 40013e08: c4 00 60 38 ld [ %g1 + 0x38 ], %g2 ! 4003c838 <_Thread_Dispatch_disable_level> 40013e0c: 84 00 a0 01 inc %g2 40013e10: c4 20 60 38 st %g2, [ %g1 + 0x38 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 40013e14: 25 10 00 f1 sethi %hi(0x4003c400), %l2 40013e18: 40 00 12 47 call 40018734 <_Objects_Allocate> 40013e1c: 90 14 a2 44 or %l2, 0x244, %o0 ! 4003c644 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 40013e20: a2 92 20 00 orcc %o0, 0, %l1 40013e24: 12 80 00 06 bne 40013e3c 40013e28: 92 10 00 1b mov %i3, %o1 _Thread_Enable_dispatch(); 40013e2c: 40 00 15 e1 call 400195b0 <_Thread_Enable_dispatch> 40013e30: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 40013e34: 81 c7 e0 08 ret 40013e38: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 40013e3c: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 40013e40: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 40013e44: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; 40013e48: f8 24 60 1c st %i4, [ %l1 + 0x1c ] the_partition->number_of_used_blocks = 0; 40013e4c: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 40013e50: 40 00 5e bd call 4002b944 <.udiv> 40013e54: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 40013e58: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 40013e5c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 40013e60: 96 10 00 1b mov %i3, %o3 40013e64: a6 04 60 24 add %l1, 0x24, %l3 40013e68: 40 00 0c 5a call 40016fd0 <_Chain_Initialize> 40013e6c: 90 10 00 13 mov %l3, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 40013e70: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 40013e74: a4 14 a2 44 or %l2, 0x244, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 40013e78: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 40013e7c: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 40013e80: 85 28 a0 02 sll %g2, 2, %g2 40013e84: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 40013e88: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 40013e8c: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 40013e90: 40 00 15 c8 call 400195b0 <_Thread_Enable_dispatch> 40013e94: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 40013e98: 81 c7 e0 08 ret 40013e9c: 81 e8 00 00 restore if ( !id ) return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; 40013ea0: b0 10 20 08 mov 8, %i0 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 40013ea4: 81 c7 e0 08 ret 40013ea8: 81 e8 00 00 restore =============================================================================== 40006e90 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 40006e90: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 40006e94: 11 10 00 77 sethi %hi(0x4001dc00), %o0 40006e98: 92 10 00 18 mov %i0, %o1 40006e9c: 90 12 22 9c or %o0, 0x29c, %o0 40006ea0: 40 00 08 eb call 4000924c <_Objects_Get> 40006ea4: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 40006ea8: c2 07 bf fc ld [ %fp + -4 ], %g1 40006eac: 80 a0 60 00 cmp %g1, 0 40006eb0: 12 80 00 66 bne 40007048 40006eb4: a0 10 00 08 mov %o0, %l0 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 40006eb8: 25 10 00 78 sethi %hi(0x4001e000), %l2 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 40006ebc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 40006ec0: a4 14 a2 6c or %l2, 0x26c, %l2 40006ec4: c2 04 a0 0c ld [ %l2 + 0xc ], %g1 40006ec8: 80 a0 80 01 cmp %g2, %g1 40006ecc: 02 80 00 06 be 40006ee4 40006ed0: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 40006ed4: 40 00 0b 2c call 40009b84 <_Thread_Enable_dispatch> 40006ed8: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 40006edc: 81 c7 e0 08 ret 40006ee0: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 40006ee4: 12 80 00 0e bne 40006f1c 40006ee8: 01 00 00 00 nop switch ( the_period->state ) { 40006eec: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40006ef0: 80 a0 60 04 cmp %g1, 4 40006ef4: 18 80 00 06 bgu 40006f0c <== NEVER TAKEN 40006ef8: b0 10 20 00 clr %i0 40006efc: 83 28 60 02 sll %g1, 2, %g1 40006f00: 05 10 00 70 sethi %hi(0x4001c000), %g2 40006f04: 84 10 a2 44 or %g2, 0x244, %g2 ! 4001c244 40006f08: f0 00 80 01 ld [ %g2 + %g1 ], %i0 case RATE_MONOTONIC_ACTIVE: default: /* unreached -- only to remove warnings */ return_value = RTEMS_SUCCESSFUL; break; } _Thread_Enable_dispatch(); 40006f0c: 40 00 0b 1e call 40009b84 <_Thread_Enable_dispatch> 40006f10: 01 00 00 00 nop return( return_value ); 40006f14: 81 c7 e0 08 ret 40006f18: 81 e8 00 00 restore } _ISR_Disable( level ); 40006f1c: 7f ff ef 24 call 40002bac 40006f20: 01 00 00 00 nop 40006f24: a6 10 00 08 mov %o0, %l3 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 40006f28: e2 04 20 38 ld [ %l0 + 0x38 ], %l1 40006f2c: 80 a4 60 00 cmp %l1, 0 40006f30: 12 80 00 15 bne 40006f84 40006f34: 80 a4 60 02 cmp %l1, 2 _ISR_Enable( level ); 40006f38: 7f ff ef 21 call 40002bbc 40006f3c: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 40006f40: 7f ff ff 7a call 40006d28 <_Rate_monotonic_Initiate_statistics> 40006f44: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 40006f48: 82 10 20 02 mov 2, %g1 40006f4c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 40006f50: 03 10 00 1c sethi %hi(0x40007000), %g1 40006f54: 82 10 63 18 or %g1, 0x318, %g1 ! 40007318 <_Rate_monotonic_Timeout> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 40006f58: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; 40006f5c: c2 24 20 2c st %g1, [ %l0 + 0x2c ] the_watchdog->id = id; 40006f60: f0 24 20 30 st %i0, [ %l0 + 0x30 ] the_watchdog->user_data = user_data; 40006f64: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 40006f68: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 40006f6c: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 40006f70: 11 10 00 78 sethi %hi(0x4001e000), %o0 40006f74: 92 04 20 10 add %l0, 0x10, %o1 40006f78: 40 00 0f fc call 4000af68 <_Watchdog_Insert> 40006f7c: 90 12 20 cc or %o0, 0xcc, %o0 40006f80: 30 80 00 1b b,a 40006fec _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 40006f84: 12 80 00 1e bne 40006ffc 40006f88: 80 a4 60 04 cmp %l1, 4 /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 40006f8c: 7f ff ff 83 call 40006d98 <_Rate_monotonic_Update_statistics> 40006f90: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 40006f94: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 40006f98: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 40006f9c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 40006fa0: 7f ff ef 07 call 40002bbc 40006fa4: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 40006fa8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40006fac: c2 04 20 08 ld [ %l0 + 8 ], %g1 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 40006fb0: 13 00 00 10 sethi %hi(0x4000), %o1 40006fb4: 40 00 0d 3a call 4000a49c <_Thread_Set_state> 40006fb8: c2 22 20 20 st %g1, [ %o0 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 40006fbc: 7f ff ee fc call 40002bac 40006fc0: 01 00 00 00 nop local_state = the_period->state; 40006fc4: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 40006fc8: e2 24 20 38 st %l1, [ %l0 + 0x38 ] _ISR_Enable( level ); 40006fcc: 7f ff ee fc call 40002bbc 40006fd0: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 40006fd4: 80 a4 e0 03 cmp %l3, 3 40006fd8: 12 80 00 05 bne 40006fec 40006fdc: 01 00 00 00 nop _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 40006fe0: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 40006fe4: 40 00 09 fd call 400097d8 <_Thread_Clear_state> 40006fe8: 13 00 00 10 sethi %hi(0x4000), %o1 _Thread_Enable_dispatch(); 40006fec: 40 00 0a e6 call 40009b84 <_Thread_Enable_dispatch> 40006ff0: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 40006ff4: 81 c7 e0 08 ret 40006ff8: 81 e8 00 00 restore } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 40006ffc: 12 bf ff b8 bne 40006edc <== NEVER TAKEN 40007000: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 40007004: 7f ff ff 65 call 40006d98 <_Rate_monotonic_Update_statistics> 40007008: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 4000700c: 7f ff ee ec call 40002bbc 40007010: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 40007014: 82 10 20 02 mov 2, %g1 40007018: 92 04 20 10 add %l0, 0x10, %o1 4000701c: 11 10 00 78 sethi %hi(0x4001e000), %o0 40007020: 90 12 20 cc or %o0, 0xcc, %o0 ! 4001e0cc <_Watchdog_Ticks_chain> 40007024: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; 40007028: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 4000702c: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 40007030: 40 00 0f ce call 4000af68 <_Watchdog_Insert> 40007034: b0 10 20 06 mov 6, %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 40007038: 40 00 0a d3 call 40009b84 <_Thread_Enable_dispatch> 4000703c: 01 00 00 00 nop return RTEMS_TIMEOUT; 40007040: 81 c7 e0 08 ret 40007044: 81 e8 00 00 restore #endif case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 40007048: b0 10 20 04 mov 4, %i0 } 4000704c: 81 c7 e0 08 ret 40007050: 81 e8 00 00 restore =============================================================================== 40007054 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 40007054: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 40007058: 80 a6 60 00 cmp %i1, 0 4000705c: 02 80 00 79 be 40007240 <== NEVER TAKEN 40007060: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 40007064: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007068: 9f c6 40 00 call %i1 4000706c: 92 12 62 58 or %o1, 0x258, %o1 ! 4001c258 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 40007070: 90 10 00 18 mov %i0, %o0 40007074: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007078: 9f c6 40 00 call %i1 4000707c: 92 12 62 78 or %o1, 0x278, %o1 ! 4001c278 (*print)( context, "--- Wall times are in seconds ---\n" ); 40007080: 90 10 00 18 mov %i0, %o0 40007084: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007088: 9f c6 40 00 call %i1 4000708c: 92 12 62 a0 or %o1, 0x2a0, %o1 ! 4001c2a0 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 40007090: 90 10 00 18 mov %i0, %o0 40007094: 13 10 00 70 sethi %hi(0x4001c000), %o1 40007098: 9f c6 40 00 call %i1 4000709c: 92 12 62 c8 or %o1, 0x2c8, %o1 ! 4001c2c8 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 400070a0: 90 10 00 18 mov %i0, %o0 400070a4: 13 10 00 70 sethi %hi(0x4001c000), %o1 400070a8: 9f c6 40 00 call %i1 400070ac: 92 12 63 18 or %o1, 0x318, %o1 ! 4001c318 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 400070b0: 3b 10 00 77 sethi %hi(0x4001dc00), %i5 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 400070b4: 2b 10 00 70 sethi %hi(0x4001c000), %l5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 400070b8: 82 17 62 9c or %i5, 0x29c, %g1 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 400070bc: 27 10 00 70 sethi %hi(0x4001c000), %l3 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 400070c0: 35 10 00 70 sethi %hi(0x4001c000), %i2 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 400070c4: e0 00 60 08 ld [ %g1 + 8 ], %l0 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 400070c8: ae 07 bf a0 add %fp, -96, %l7 if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 400070cc: ac 07 bf d8 add %fp, -40, %l6 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 400070d0: a4 07 bf f8 add %fp, -8, %l2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 400070d4: aa 15 63 68 or %l5, 0x368, %l5 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 400070d8: a8 07 bf b8 add %fp, -72, %l4 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 400070dc: a2 07 bf f0 add %fp, -16, %l1 (*print)( context, 400070e0: a6 14 e3 80 or %l3, 0x380, %l3 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 400070e4: b8 07 bf d0 add %fp, -48, %i4 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 400070e8: 10 80 00 52 b 40007230 400070ec: b4 16 a3 a0 or %i2, 0x3a0, %i2 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 400070f0: 40 00 17 92 call 4000cf38 400070f4: 92 10 00 17 mov %l7, %o1 if ( status != RTEMS_SUCCESSFUL ) 400070f8: 80 a2 20 00 cmp %o0, 0 400070fc: 32 80 00 4c bne,a 4000722c 40007100: a0 04 20 01 inc %l0 continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 40007104: 92 10 00 16 mov %l6, %o1 40007108: 40 00 17 b9 call 4000cfec 4000710c: 90 10 00 10 mov %l0, %o0 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 40007110: d0 07 bf d8 ld [ %fp + -40 ], %o0 40007114: 92 10 20 05 mov 5, %o1 40007118: 40 00 00 ae call 400073d0 4000711c: 94 10 00 12 mov %l2, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 40007120: d8 1f bf a0 ldd [ %fp + -96 ], %o4 40007124: 92 10 00 15 mov %l5, %o1 40007128: 90 10 00 18 mov %i0, %o0 4000712c: 94 10 00 10 mov %l0, %o2 40007130: 9f c6 40 00 call %i1 40007134: 96 10 00 12 mov %l2, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 40007138: d2 07 bf a0 ld [ %fp + -96 ], %o1 4000713c: 80 a2 60 00 cmp %o1, 0 40007140: 12 80 00 08 bne 40007160 40007144: 94 10 00 11 mov %l1, %o2 (*print)( context, "\n" ); 40007148: 90 10 00 18 mov %i0, %o0 4000714c: 13 10 00 6d sethi %hi(0x4001b400), %o1 40007150: 9f c6 40 00 call %i1 40007154: 92 12 60 f8 or %o1, 0xf8, %o1 ! 4001b4f8 <_rodata_start+0x158> continue; 40007158: 10 80 00 35 b 4000722c 4000715c: a0 04 20 01 inc %l0 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 40007160: 40 00 0e 5f call 4000aadc <_Timespec_Divide_by_integer> 40007164: 90 10 00 14 mov %l4, %o0 (*print)( context, 40007168: d0 07 bf ac ld [ %fp + -84 ], %o0 4000716c: 40 00 43 f4 call 4001813c <.div> 40007170: 92 10 23 e8 mov 0x3e8, %o1 40007174: 96 10 00 08 mov %o0, %o3 40007178: d0 07 bf b4 ld [ %fp + -76 ], %o0 4000717c: d6 27 bf 9c st %o3, [ %fp + -100 ] 40007180: 40 00 43 ef call 4001813c <.div> 40007184: 92 10 23 e8 mov 0x3e8, %o1 40007188: c2 07 bf f0 ld [ %fp + -16 ], %g1 4000718c: b6 10 00 08 mov %o0, %i3 40007190: d0 07 bf f4 ld [ %fp + -12 ], %o0 40007194: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40007198: 40 00 43 e9 call 4001813c <.div> 4000719c: 92 10 23 e8 mov 0x3e8, %o1 400071a0: d8 07 bf b0 ld [ %fp + -80 ], %o4 400071a4: d6 07 bf 9c ld [ %fp + -100 ], %o3 400071a8: d4 07 bf a8 ld [ %fp + -88 ], %o2 400071ac: 9a 10 00 1b mov %i3, %o5 400071b0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 400071b4: 92 10 00 13 mov %l3, %o1 400071b8: 9f c6 40 00 call %i1 400071bc: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 400071c0: d2 07 bf a0 ld [ %fp + -96 ], %o1 400071c4: 94 10 00 11 mov %l1, %o2 400071c8: 40 00 0e 45 call 4000aadc <_Timespec_Divide_by_integer> 400071cc: 90 10 00 1c mov %i4, %o0 (*print)( context, 400071d0: d0 07 bf c4 ld [ %fp + -60 ], %o0 400071d4: 40 00 43 da call 4001813c <.div> 400071d8: 92 10 23 e8 mov 0x3e8, %o1 400071dc: 96 10 00 08 mov %o0, %o3 400071e0: d0 07 bf cc ld [ %fp + -52 ], %o0 400071e4: d6 27 bf 9c st %o3, [ %fp + -100 ] 400071e8: 40 00 43 d5 call 4001813c <.div> 400071ec: 92 10 23 e8 mov 0x3e8, %o1 400071f0: c2 07 bf f0 ld [ %fp + -16 ], %g1 400071f4: b6 10 00 08 mov %o0, %i3 400071f8: d0 07 bf f4 ld [ %fp + -12 ], %o0 400071fc: 92 10 23 e8 mov 0x3e8, %o1 40007200: 40 00 43 cf call 4001813c <.div> 40007204: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 40007208: d4 07 bf c0 ld [ %fp + -64 ], %o2 4000720c: d6 07 bf 9c ld [ %fp + -100 ], %o3 40007210: d8 07 bf c8 ld [ %fp + -56 ], %o4 40007214: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 40007218: 92 10 00 1a mov %i2, %o1 4000721c: 90 10 00 18 mov %i0, %o0 40007220: 9f c6 40 00 call %i1 40007224: 9a 10 00 1b mov %i3, %o5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 40007228: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; 4000722c: 82 17 62 9c or %i5, 0x29c, %g1 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 40007230: c2 00 60 0c ld [ %g1 + 0xc ], %g1 40007234: 80 a4 00 01 cmp %l0, %g1 40007238: 08 bf ff ae bleu 400070f0 4000723c: 90 10 00 10 mov %l0, %o0 40007240: 81 c7 e0 08 ret 40007244: 81 e8 00 00 restore =============================================================================== 40012288 : */ void rtems_shutdown_executive( uint32_t result ) { 40012288: 9d e3 bf a0 save %sp, -96, %sp if ( _System_state_Is_up( _System_state_Get() ) ) { 4001228c: 03 10 00 50 sethi %hi(0x40014000), %g1 40012290: c4 00 63 fc ld [ %g1 + 0x3fc ], %g2 ! 400143fc <_System_state_Current> 40012294: 80 a0 a0 03 cmp %g2, 3 40012298: 32 80 00 08 bne,a 400122b8 4001229c: 90 10 20 00 clr %o0 400122a0: 84 10 20 04 mov 4, %g2 * if we were running within the same context, it would work. * * And we will not return to this thread, so there is no point of * saving the context. */ _Context_Restart_self( &_Thread_BSP_context ); 400122a4: 11 10 00 50 sethi %hi(0x40014000), %o0 400122a8: c4 20 63 fc st %g2, [ %g1 + 0x3fc ] 400122ac: 7f ff dc 33 call 40009378 <_CPU_Context_restore> 400122b0: 90 12 21 f0 or %o0, 0x1f0, %o0 _System_state_Set( SYSTEM_STATE_SHUTDOWN ); _Thread_Stop_multitasking(); } _Internal_error_Occurred( 400122b4: 90 10 20 00 clr %o0 <== NOT EXECUTED 400122b8: 92 10 20 01 mov 1, %o1 400122bc: 7f ff d3 15 call 40006f10 <_Internal_error_Occurred> 400122c0: 94 10 20 14 mov 0x14, %o2 =============================================================================== 40015350 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 40015350: 9d e3 bf 98 save %sp, -104, %sp 40015354: 90 10 00 18 mov %i0, %o0 register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 40015358: 80 a6 60 00 cmp %i1, 0 4001535c: 02 80 00 2e be 40015414 40015360: b0 10 20 0a mov 0xa, %i0 return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 40015364: 40 00 10 a0 call 400195e4 <_Thread_Get> 40015368: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 4001536c: c2 07 bf fc ld [ %fp + -4 ], %g1 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 40015370: a2 10 00 08 mov %o0, %l1 switch ( location ) { 40015374: 80 a0 60 00 cmp %g1, 0 40015378: 12 80 00 27 bne 40015414 4001537c: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 40015380: e0 02 21 5c ld [ %o0 + 0x15c ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 40015384: c2 04 20 0c ld [ %l0 + 0xc ], %g1 40015388: 80 a0 60 00 cmp %g1, 0 4001538c: 02 80 00 24 be 4001541c 40015390: 01 00 00 00 nop if ( asr->is_enabled ) { 40015394: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 40015398: 80 a0 60 00 cmp %g1, 0 4001539c: 02 80 00 15 be 400153f0 400153a0: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 400153a4: 7f ff e7 f1 call 4000f368 400153a8: 01 00 00 00 nop *signal_set |= signals; 400153ac: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 400153b0: b2 10 40 19 or %g1, %i1, %i1 400153b4: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 400153b8: 7f ff e7 f0 call 4000f378 400153bc: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 400153c0: 03 10 00 f2 sethi %hi(0x4003c800), %g1 400153c4: 82 10 62 a4 or %g1, 0x2a4, %g1 ! 4003caa4 <_Per_CPU_Information> 400153c8: c4 00 60 08 ld [ %g1 + 8 ], %g2 400153cc: 80 a0 a0 00 cmp %g2, 0 400153d0: 02 80 00 0f be 4001540c 400153d4: 01 00 00 00 nop 400153d8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 400153dc: 80 a4 40 02 cmp %l1, %g2 400153e0: 12 80 00 0b bne 4001540c <== NEVER TAKEN 400153e4: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 400153e8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 400153ec: 30 80 00 08 b,a 4001540c rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 400153f0: 7f ff e7 de call 4000f368 400153f4: 01 00 00 00 nop *signal_set |= signals; 400153f8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 400153fc: b2 10 40 19 or %g1, %i1, %i1 40015400: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 40015404: 7f ff e7 dd call 4000f378 40015408: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 4001540c: 40 00 10 69 call 400195b0 <_Thread_Enable_dispatch> 40015410: b0 10 20 00 clr %i0 ! 0 return RTEMS_SUCCESSFUL; 40015414: 81 c7 e0 08 ret 40015418: 81 e8 00 00 restore } _Thread_Enable_dispatch(); 4001541c: 40 00 10 65 call 400195b0 <_Thread_Enable_dispatch> 40015420: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; 40015424: 81 c7 e0 08 ret 40015428: 81 e8 00 00 restore =============================================================================== 4000cd74 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 4000cd74: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 4000cd78: 80 a6 a0 00 cmp %i2, 0 4000cd7c: 02 80 00 5a be 4000cee4 4000cd80: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 4000cd84: 03 10 00 51 sethi %hi(0x40014400), %g1 4000cd88: e2 00 60 e8 ld [ %g1 + 0xe8 ], %l1 ! 400144e8 <_Per_CPU_Information+0xc> api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 4000cd8c: c2 0c 60 74 ldub [ %l1 + 0x74 ], %g1 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 4000cd90: e0 04 61 5c ld [ %l1 + 0x15c ], %l0 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 4000cd94: 80 a0 00 01 cmp %g0, %g1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 4000cd98: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 4000cd9c: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 4000cda0: 80 a0 60 00 cmp %g1, 0 4000cda4: 02 80 00 03 be 4000cdb0 4000cda8: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 4000cdac: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 4000cdb0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 4000cdb4: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 4000cdb8: 7f ff f2 27 call 40009654 <_CPU_ISR_Get_level> 4000cdbc: a6 60 3f ff subx %g0, -1, %l3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 4000cdc0: a7 2c e0 0a sll %l3, 0xa, %l3 4000cdc4: a6 14 c0 08 or %l3, %o0, %l3 old_mode |= _ISR_Get_level(); 4000cdc8: a4 14 c0 12 or %l3, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 4000cdcc: 80 8e 61 00 btst 0x100, %i1 4000cdd0: 02 80 00 06 be 4000cde8 4000cdd4: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 4000cdd8: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 4000cddc: 80 a0 00 01 cmp %g0, %g1 4000cde0: 82 60 3f ff subx %g0, -1, %g1 4000cde4: c2 2c 60 74 stb %g1, [ %l1 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 4000cde8: 80 8e 62 00 btst 0x200, %i1 4000cdec: 02 80 00 0b be 4000ce18 4000cdf0: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 4000cdf4: 80 8e 22 00 btst 0x200, %i0 4000cdf8: 22 80 00 07 be,a 4000ce14 4000cdfc: c0 24 60 7c clr [ %l1 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 4000ce00: 82 10 20 01 mov 1, %g1 4000ce04: c2 24 60 7c st %g1, [ %l1 + 0x7c ] executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 4000ce08: 03 10 00 50 sethi %hi(0x40014000), %g1 4000ce0c: c2 00 61 d8 ld [ %g1 + 0x1d8 ], %g1 ! 400141d8 <_Thread_Ticks_per_timeslice> 4000ce10: c2 24 60 78 st %g1, [ %l1 + 0x78 ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 4000ce14: 80 8e 60 0f btst 0xf, %i1 4000ce18: 02 80 00 06 be 4000ce30 4000ce1c: 80 8e 64 00 btst 0x400, %i1 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 4000ce20: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 4000ce24: 7f ff d3 a1 call 40001ca8 4000ce28: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 4000ce2c: 80 8e 64 00 btst 0x400, %i1 4000ce30: 02 80 00 14 be 4000ce80 4000ce34: 88 10 20 00 clr %g4 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 4000ce38: c4 0c 20 08 ldub [ %l0 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 4000ce3c: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 4000ce40: 80 a0 00 18 cmp %g0, %i0 4000ce44: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 4000ce48: 80 a0 40 02 cmp %g1, %g2 4000ce4c: 22 80 00 0e be,a 4000ce84 4000ce50: 03 10 00 50 sethi %hi(0x40014000), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 4000ce54: 7f ff d3 91 call 40001c98 4000ce58: c2 2c 20 08 stb %g1, [ %l0 + 8 ] _signals = information->signals_pending; 4000ce5c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 information->signals_pending = information->signals_posted; 4000ce60: c4 04 20 14 ld [ %l0 + 0x14 ], %g2 information->signals_posted = _signals; 4000ce64: c2 24 20 14 st %g1, [ %l0 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 4000ce68: c4 24 20 18 st %g2, [ %l0 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 4000ce6c: 7f ff d3 8f call 40001ca8 4000ce70: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 4000ce74: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 4000ce78: 80 a0 00 01 cmp %g0, %g1 4000ce7c: 88 40 20 00 addx %g0, 0, %g4 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 4000ce80: 03 10 00 50 sethi %hi(0x40014000), %g1 4000ce84: c4 00 63 fc ld [ %g1 + 0x3fc ], %g2 ! 400143fc <_System_state_Current> 4000ce88: 80 a0 a0 03 cmp %g2, 3 4000ce8c: 12 80 00 16 bne 4000cee4 <== NEVER TAKEN 4000ce90: 82 10 20 00 clr %g1 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 4000ce94: 07 10 00 51 sethi %hi(0x40014400), %g3 if ( are_signals_pending || 4000ce98: 80 89 20 ff btst 0xff, %g4 bool are_signals_pending ) { Thread_Control *executing; executing = _Thread_Executing; 4000ce9c: 86 10 e0 dc or %g3, 0xdc, %g3 if ( are_signals_pending || 4000cea0: 12 80 00 0a bne 4000cec8 4000cea4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 4000cea8: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 4000ceac: 80 a0 80 03 cmp %g2, %g3 4000ceb0: 02 80 00 0d be 4000cee4 4000ceb4: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 4000ceb8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 4000cebc: 80 a0 a0 00 cmp %g2, 0 4000cec0: 02 80 00 09 be 4000cee4 <== NEVER TAKEN 4000cec4: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 4000cec8: 84 10 20 01 mov 1, %g2 ! 1 4000cecc: 03 10 00 51 sethi %hi(0x40014400), %g1 4000ced0: 82 10 60 dc or %g1, 0xdc, %g1 ! 400144dc <_Per_CPU_Information> 4000ced4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 4000ced8: 7f ff eb 83 call 40007ce4 <_Thread_Dispatch> 4000cedc: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 4000cee0: 82 10 20 00 clr %g1 ! 0 } 4000cee4: 81 c7 e0 08 ret 4000cee8: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 4000a69c : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 4000a69c: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 4000a6a0: 80 a6 60 00 cmp %i1, 0 4000a6a4: 02 80 00 07 be 4000a6c0 4000a6a8: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 4000a6ac: 03 10 00 60 sethi %hi(0x40018000), %g1 4000a6b0: c2 08 62 f4 ldub [ %g1 + 0x2f4 ], %g1 ! 400182f4 4000a6b4: 80 a6 40 01 cmp %i1, %g1 4000a6b8: 18 80 00 1c bgu 4000a728 4000a6bc: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 4000a6c0: 80 a6 a0 00 cmp %i2, 0 4000a6c4: 02 80 00 19 be 4000a728 4000a6c8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 4000a6cc: 40 00 07 fd call 4000c6c0 <_Thread_Get> 4000a6d0: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 4000a6d4: c2 07 bf fc ld [ %fp + -4 ], %g1 4000a6d8: 80 a0 60 00 cmp %g1, 0 4000a6dc: 12 80 00 13 bne 4000a728 4000a6e0: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 4000a6e4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 4000a6e8: 80 a6 60 00 cmp %i1, 0 4000a6ec: 02 80 00 0d be 4000a720 4000a6f0: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 4000a6f4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 4000a6f8: 80 a0 60 00 cmp %g1, 0 4000a6fc: 02 80 00 06 be 4000a714 4000a700: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 4000a704: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 4000a708: 80 a0 40 19 cmp %g1, %i1 4000a70c: 08 80 00 05 bleu 4000a720 <== ALWAYS TAKEN 4000a710: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 4000a714: 92 10 00 19 mov %i1, %o1 4000a718: 40 00 06 79 call 4000c0fc <_Thread_Change_priority> 4000a71c: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 4000a720: 40 00 07 db call 4000c68c <_Thread_Enable_dispatch> 4000a724: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 4000a728: 81 c7 e0 08 ret 4000a72c: 81 e8 00 00 restore =============================================================================== 40015d54 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 40015d54: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 40015d58: 11 10 00 f2 sethi %hi(0x4003c800), %o0 40015d5c: 92 10 00 18 mov %i0, %o1 40015d60: 90 12 23 04 or %o0, 0x304, %o0 40015d64: 40 00 0b c5 call 40018c78 <_Objects_Get> 40015d68: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 40015d6c: c2 07 bf fc ld [ %fp + -4 ], %g1 40015d70: 80 a0 60 00 cmp %g1, 0 40015d74: 12 80 00 0c bne 40015da4 40015d78: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 40015d7c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 40015d80: 80 a0 60 04 cmp %g1, 4 40015d84: 02 80 00 04 be 40015d94 <== NEVER TAKEN 40015d88: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 40015d8c: 40 00 13 db call 4001acf8 <_Watchdog_Remove> 40015d90: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 40015d94: 40 00 0e 07 call 400195b0 <_Thread_Enable_dispatch> 40015d98: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 40015d9c: 81 c7 e0 08 ret 40015da0: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 40015da4: 81 c7 e0 08 ret 40015da8: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 4001623c : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 4001623c: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 40016240: 03 10 00 f2 sethi %hi(0x4003c800), %g1 40016244: e2 00 63 44 ld [ %g1 + 0x344 ], %l1 ! 4003cb44 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 40016248: a0 10 00 18 mov %i0, %l0 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 4001624c: 80 a4 60 00 cmp %l1, 0 40016250: 02 80 00 33 be 4001631c 40016254: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 40016258: 03 10 00 f2 sethi %hi(0x4003c800), %g1 4001625c: c2 08 60 48 ldub [ %g1 + 0x48 ], %g1 ! 4003c848 <_TOD_Is_set> 40016260: 80 a0 60 00 cmp %g1, 0 40016264: 02 80 00 2e be 4001631c <== NEVER TAKEN 40016268: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 4001626c: 80 a6 a0 00 cmp %i2, 0 40016270: 02 80 00 2b be 4001631c 40016274: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 40016278: 90 10 00 19 mov %i1, %o0 4001627c: 7f ff f4 09 call 400132a0 <_TOD_Validate> 40016280: b0 10 20 14 mov 0x14, %i0 40016284: 80 8a 20 ff btst 0xff, %o0 40016288: 02 80 00 27 be 40016324 4001628c: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 40016290: 7f ff f3 d0 call 400131d0 <_TOD_To_seconds> 40016294: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 40016298: 27 10 00 f2 sethi %hi(0x4003c800), %l3 4001629c: c2 04 e0 c0 ld [ %l3 + 0xc0 ], %g1 ! 4003c8c0 <_TOD_Now> 400162a0: 80 a2 00 01 cmp %o0, %g1 400162a4: 08 80 00 1e bleu 4001631c 400162a8: a4 10 00 08 mov %o0, %l2 400162ac: 11 10 00 f2 sethi %hi(0x4003c800), %o0 400162b0: 92 10 00 10 mov %l0, %o1 400162b4: 90 12 23 04 or %o0, 0x304, %o0 400162b8: 40 00 0a 70 call 40018c78 <_Objects_Get> 400162bc: 94 07 bf fc add %fp, -4, %o2 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 400162c0: c2 07 bf fc ld [ %fp + -4 ], %g1 400162c4: b2 10 00 08 mov %o0, %i1 400162c8: 80 a0 60 00 cmp %g1, 0 400162cc: 12 80 00 14 bne 4001631c 400162d0: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 400162d4: 40 00 12 89 call 4001acf8 <_Watchdog_Remove> 400162d8: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 400162dc: 82 10 20 03 mov 3, %g1 400162e0: c2 26 60 38 st %g1, [ %i1 + 0x38 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 400162e4: c2 04 e0 c0 ld [ %l3 + 0xc0 ], %g1 (*timer_server->schedule_operation)( timer_server, the_timer ); 400162e8: 90 10 00 11 mov %l1, %o0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 400162ec: a4 24 80 01 sub %l2, %g1, %l2 (*timer_server->schedule_operation)( timer_server, the_timer ); 400162f0: c2 04 60 04 ld [ %l1 + 4 ], %g1 400162f4: 92 10 00 19 mov %i1, %o1 Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 400162f8: c0 26 60 18 clr [ %i1 + 0x18 ] the_watchdog->routine = routine; 400162fc: f4 26 60 2c st %i2, [ %i1 + 0x2c ] the_watchdog->id = id; 40016300: e0 26 60 30 st %l0, [ %i1 + 0x30 ] the_watchdog->user_data = user_data; 40016304: f6 26 60 34 st %i3, [ %i1 + 0x34 ] case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 40016308: e4 26 60 1c st %l2, [ %i1 + 0x1c ] (*timer_server->schedule_operation)( timer_server, the_timer ); 4001630c: 9f c0 40 00 call %g1 40016310: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 40016314: 40 00 0c a7 call 400195b0 <_Thread_Enable_dispatch> 40016318: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 4001631c: 81 c7 e0 08 ret 40016320: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 40016324: 81 c7 e0 08 ret 40016328: 81 e8 00 00 restore